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A Protocol for Supporting Context Provision

in Wireless Mobile Ad Hoc Networks

Abstract

The increasing ubiquity of mobile computing devices
has made ad hoc networks everyday occurrences. In
these highly dynamic environments, the multitude of
devices provides a varied and rapidly changing envi-
ronment in which applications must learn to operate.
Successful end-user applications will not only learn to
function in this environment but will take advantage
of the variety of information available. Protocols for
gathering an application’s contextual information must
be built into the network to function in a timely and
adaptive fashion. This paper presents a protocol for
providing context information to such applications. We
present an implementation and show how it provides
context information to mobile applications in an on-
demand manner. We also provide a simulation anal-
ysis of the tradeoffs between consistency and range of
context definitions in highly dynamic ad hoc networks.

1 Introduction

A mobile ad hoc network is an opportunistically
formed structure that changes rapidly in response to
the movement of the hosts forming the network. To
communicate, nodes in such a network commonly use
ad hoc routing protocols (e.g., DSDV [14], DSR [3],
AODV [15]) that deliver messages between a known
source and destination using intermediate nodes as
routers. Ad hoc multicast routing protocols require
nodes to register as receivers for a specific multicast
address. The network maintains a multicast tree [6, 8]
or mesh [2, 12] for delivering messages to registered
receivers.

Directly applying these routing techniques to gath-
ering context information poses several drawbacks. In
both unicast and multicast routing, the paths along
which messages are delivered may extend across the
entire ad hoc network. As the ubiquity of mobile de-

vices increases, ad hoc networks may grow very large.
Consider an ad hoc network composed of cars on a
highway. Cars may be transitively connected for hun-
dreds of miles, but it is generally not necessary or de-
sirable to communicate at great distances. Many appli-
cations require only local interactions, e.g., gathering
traffic information. In addition, for traditional rout-
ing protocols to function, senders and receivers require
explicit knowledge of each other. Often, however, an
application has no a priori knowledge about the hosts
with which it will want to interact, since hosts in ad
hoc networks move at will, and hosts that are encoun-
tered once may never be encountered again. Support-
ing context-aware applications in this unpredictable en-
vironment requires reevaluating what applications need
from underlying protocols and providing solutions tai-
lored to these needs.

Emerging applications for this environment focus on
providing context information to the user. This context
can be defined by physical properties of the host or sur-
rounding hosts and by information available on them.
For example, a context-aware tour guide [1, 5] may
interact with nearby kiosks to display locally relevant
tourist information. Cars on a highway may interact to
gather traffic information about their intended routes.
In any of these cases, devices cooperate to gather the
information presented to the user. This information
defines the operating context of the application, which
differs for each application. The scope of interaction
is driven by the instantaneous needs of applications,
which change over time.

We focus on supporting an application’s ability to
specify what context information it needs from its en-
vironment and gathering that information in a man-
ner that adapts to environmental changes. Because
the network is constantly being reshaped, an applica-
tion’s requests must be evaluated in a timely fashion
to ensure the freshness of the information. Previous
work resulted in the Content-Based Multicast model
(CBM) [21], which focuses on disseminating informa-
tion collected by sensors. In general, this model is
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tailored for distributing information about a (possibly
mobile) threat to interested parties. The dissemination
pattern in CBM is based on the relative movement pat-
terns of the threat being sensed and the interested par-
ties. Mobile nodes that sense the presence of a threat
push information about the threat in the direction of
its movement. At the same time, mobile components
pull information about threats present in their direc-
tion of travel. This combination of both push and pull
actions allows this multicast protocol to adjust to dy-
namic components with varying speeds.

While the CBM model addresses needs of context
aware applications, it is tailored to a specific class of
context-aware applications. It is a protocol tailored
to dissemination of mobile threats to mobile parties.
Our approach focuses on a more general treatment of
context that caters to the varying and unpredictable
needs of applications in heterogeneous mobile ad hoc
networks. While traditional approaches to context-
aware computing either deal with specific types of con-
text (like CBM) or only context that can be sensed by
the local host, we extend the notion of context to in-
clude information available in a region of the ad hoc
network surrounding the host of interest. The proto-
col constructs and dynamically maintains a tree over a
subnet of neighboring hosts and links whose attributes
contribute to an application’s specific definition of con-
text. Here we present the first implementation of the
Network Abstractions model presented in [17]. In this
paper, we explore the protocol in detail, focusing on its
practicality, implementation, and performance in an ef-
fort to quantify the guarantees that can be associated
with extended contexts in ad hoc networks.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the Network Abstrac-
tions model and protocol. Section 3 discusses our im-
plementation. Section 4 provides an analysis of the
model through simulation. Discussions and conclusions
appear in Sections 5 and 6 respectively.

2 Network Abstractions Overview

Ad hoc mobile networks contain many hosts and
links with varying properties which define the context
for an individual host in the network. An adaptive
application’s behavior depends on this continuously
changing context. Because this definition of context
includes information from across the network, it allows
more flexible interactions between mobile applications
and their environments. This approach, however, has
the potential to greatly increase the amount of con-
text information available, and so an application on
a host must precisely specify its context based on the
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Figure 1. A Network Abstraction defined to include
all hosts within three hops of the reference (shown in
gray)

properties of hosts and links in the network. For ex-
ample, an ad hoc network on a highway might extend
for hundreds of miles, but a driver may be interested
only in gas stations within five miles. The Network
Abstractions approach discussed next allows a context
specification to remain as general and flexible as pos-
sible while ensuring the feasibility of the protocol to
dynamically compute the context. The model provides
an application on a particular host, called the reference,
the ability to specify a context that spans a subset of
the network.

2.1 Model Overview

As discussed previously, an application in an ad hoc
mobile network ideally operates only over a context
tailored to its specific needs. The Network Abstrac-
tions model views this context as a subnet surround-
ing the application of interest. Consider the example
network shown in Figure 1. In this network, the ref-
erence host where the application is running is shown
in gray. The links shown are available communication
links. This figure depicts the application’s definition
of a context that includes all hosts within fewer than
three hops. The number inside each node is its short-
est distance from the reference in terms of number of
hops. The dashed line labeled “D=3” represents the
application’s bound on the context (three hops), while
the darkened links indicate paths in a tree that define
the context. By defining such a context, the applica-
tion has restricted its operation to a subnet of the ad
hoc network that is locally relevant to its desired func-
tionality.

This example uses a simple definition of “distance”
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(number of hops), but this approach can be general-
ized to include distance definitions tailored to unique
applications. We will provide examples of more so-
phisticated distance metrics later in this section. In
general, after providing its application-specific defini-
tion of distance and the maximum allowable distance,
the reference host would like a list of hosts such that:

Given a host α and a positive D, find the set of all

hosts Qα such that all hosts in Qα are reachable

from α, and for all hosts β in Qα, the cost of the

shortest path from α to β is less than D.

In the Network Abstractions model, the application
specifies its distance metric with two components. The
first defines the weight of a link in the network. In
general, the weight on a link, wij , is a combination
of properties of the link (e.g., latency, bandwidth, or
physical distance) and properties of the two hosts (i
and j) it connects (e.g., available power, location, or
direction). The second component is a cost function
evaluated over a series of weights. In the hop count
example, the weight of all links is defined to be one,
while the cost function simply adds the weights of links
along the path.

The cost function determines the cost of a particu-
lar path in the network, defined by the series of nodes
traversed by the path. Cost functions are defined re-
cursively; this allows them to be computed in a dis-
tributed fashion. A path from reference host 0 to host
k is represented as Pk. The cost function is defined as:

f0(Pk) = Cost(f0(Pk−1), wk−1,k)

where Cost indicates the application-specified func-
tion evaluated over the cost at the previous hop and
the weight of the most recent link. To be able to suc-
cessfully bound a context, we must require that the
cost function strictly increases with the number of hops
from the reference host. The reason will become more
evident in the upcoming examples. Recursive evalua-
tion of this cost function over a network path deter-
mines its cost. In a real network, multiple paths may
exist between two nodes. Therefore, as shown by the
darkened links in Figure 1, we build a tree rooted at the
reference node that includes only the lowest cost path
to each node in the network. Extensions to the Net-
work Abstractions protocol [10] provide a mesh based
abstraction for delivering queries and replies; through-
out the presentation, we will focus on the tree-based
abstraction.

To take maximum advantage of the abstraction pro-
vided by the cost function and its associated properties,
an application bounds the maximum allowable cost.
Nodes to which the cost is less than the bound are in-
cluded in the context. This allows an application to

restrict its operating context to a portion of the ad hoc
network that exactly satisfies the application’s needs.
Nodes that lie outside the context’s bound are never
touched by the context’s computation.

2.2 Example Metrics

Next we examine some example distance metrics.
First we provide a metric that uses a sophisticated
weight definition, then show a more complicated cost
function.

2.2.1 Network Latency

Imagine field researchers studying the behavioral pat-
terns of a group of animals. Each researcher is as-
signed a particular animal or animals to monitor. The
researchers might carry wireless PDAs with attached
cameras that automatically record their observations.
If one researcher’s subject moves behind a boulder, and
the researcher can no longer see it from his location, he
may want to use another’s camera feed to observe the
target. The context in this case will be bounded by
network latency—only cameras within a certain end-
to-end latency can provide a camera feed with a high
enough frame rate to be useful. A link’s weight is de-
fined as:

wij =
node latency i

2
+

node latency j

2
+ link latency ij

where the first two components define the average time
between when the node receives a packet and when it
propagates the packet. We use only half of this num-
ber; otherwise we would count the node’s latency twice
if the node is in the middle of the path. This latency
value will suffice under the assumption that a node’s
incoming latency is approximately equivalent to its out-
going latency. The third component of wij is the time
required for a message to travel between two nodes.

The application also provides a cost function; a sim-
ple one to use with this weight definition is the same
as in the hop count example:

f0(Pk) = f0(Pk−1) + wk−1,k

where the cost of the path from node 0 (the reference)
to node k along path Pk is the sum of the cost to the
previous node plus the weight of the new link. A bound
on this cost function is defined by a bound on the total
allowed latency.

2.2.2 Physical Distance

Next we present a general-purpose metric based on
physical distance. Cars traveling on a highway collect
information about weather conditions, highway exits,
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Figure 2. (a) Physical distance only; (b) Physical distance with hop count, restricted due to distance; (c) Physical

distance with hop count, restricted due to hop count; (d) The correct cost function

accidents, traffic patterns, etc. As a car moves, it wants
to operate over the information that will affect its im-
mediate route, so the data might be restricted to infor-
mation within a certain physical distance (e.g., within
a mile). The context requirements for each car’s tasks
are likely to be different. The Network Abstractions
model allows each application to tailor its context defi-
nition to its needs by defining a weight for each network
link.

If the calculated context is based on the physical
distance between the reference host and other hosts,
a link’s weight reflects the distance vector between
two connected nodes, accounting for both the displace-
ment and the direction of displacement between the
two nodes: wij = ~IJ.

Figure 2(a) shows an example network where speci-
fying distance alone causes the context to not be easily
bounded. This results from the fact that a cost func-
tion based on distance alone is not strictly increasing
as the number of hops from the reference host grows.
To overcome this problem, the cost function should be
based on both the distance vector and a hop count. The

cost function’s value at a given node consists of three
values: (maxD, C, V). The first value, maxD , stores
the maximum distance seen on this path. This may or
may not be the magnitude of the distance vector from
the reference to this host. The second value, C , keeps
the number of consecutive hops for which maxD did
not increase. The final value, V, is the distance vector
from the reference host to this host.

Specifying a bound for this cost function requires
bounding both maxD and C . A host is in the context
only if both its maxD and C are less than the bound’s
values. Neither the value of maxD nor the value of C
can ever decrease, and, if one value remains constant
for any hop, the other is guaranteed to increase.

Figure 2(d) shows the cost function. In the first case,
the new magnitude of the vector from the reference host
to this host is larger than the current value of maxD ;
maxD is reset to the magnitude of the vector from the
reference to this host, C remains the same, and the
distance vector to this host is stored. In the second
case, maxD is the same for this node as the previous
node; maxD remains the same, C is incremented by
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one, and the distance vector to this host is stored.

Figure 2(b) shows the same nodes as Figure 2(a)
using this new cost function. The application specified
bound shown in Figure 2(b) is D = (10, 2) where 10 is
the bound on maxD and 2 is the bound on C . This cost
function can be correctly bounded, and no hosts that
should qualify are missed. Figure 2(c) shows the same
cost function applied to a different network. In this
case, while the paths never left the area within distance
10, node Z still falls outside the context because the
maximum distance remained the same for more than
two hops.

2.3 Protocol Overview

An application desires the guarantee that any mes-
sage it sends will be received only by hosts within the
context and that it is received by all hosts within the
context. Our protocol dynamically builds a tree over
exactly the nodes in the context based on an appli-
cation’s specification, defining a single route from the
reference host to all other hosts in the context. In
this section, we provide an overview of the protocol in
preparation for a discussion of its implementation and
analysis. The details of the protocol were presented
in [17].

The protocol provides two distinct functions. First
it disseminates one-time queries over the context. This
type of query serves applications that interact with the
data in their contexts in a polling manner. Such queries
may require replies from context members, but the con-
text is built on the fly, and the structure is not main-
tained. This lack of maintenance benefits periodic ac-
tivity because it removes the overhead that maintaining
contexts introduces. In some cases, however, applica-
tions require constant interaction with the data in their
environments. For this reason, the protocol also allows
applications to register persistent queries on their con-
texts. These persistent queries require the context to
be maintained as the hosts defining it move. Due to
the maintenance cost involved, ideal interactions would
extend one-time queries to larger contexts (e.g., traffic
conditions for the next five miles), but only maintain
smaller contexts (e.g., cars within potential collision
range of my car).

2.3.1 Assumptions

The protocol relies on a few assumptions regarding
the behavior of the underlying system. First, it as-
sumes a message passing mechanism that guarantees
reliable one-hop delivery with associated acknowledg-
ments. These acknowledgments lie outside the concern

of this protocol. The protocol also assumes that dis-
connection is detectable, i.e., when a link disappears,
both hosts that were connected by the link can detect
the disconnection. Finally, the protocol assumes that
the underlying system maintains the weights on links in
the network by responding to changes in the contextual
information required by applications.

2.3.2 The Query Component

The protocol is on-demand in that a tree is built only
when a data query is sent. Piggy-backed on this data
message are the context specification and the informa-
tion necessary for its computation. Specifically, the
query contains the context’s definition of link weight,
the cost function, and the bound. The protocol uses
this information to determine which hosts belong to
the context and should receive this message.

2.3.3 Tree Building

Because any information required for computing an-
other host’s context arrives in a query, hosts need not
keep information about the system’s global state. An
application with a data query to send bundles the con-
text specification with the query. It then determines
which of its neighbors are within the context and sends
them the query. Due to the wireless nature of the net-
work, this can be accomplished via one message trans-
mission broadcast to any neighbor determined to be in
the context. Neighbors in the context determine which
(if any) of their neighbors are also in the context and
rebroadcast the message. In the course of query propa-
gation, every context member remembers the previous
hop in its shortest path back to the reference host. A
node only rebroadcasts a duplicate message if its cost
has decreased since this may cause inclusion of addi-
tional nodes in the context. When the query reaches
the bound, it will not be forwarded on; the query distri-
bution stabilizes when every node in the context knows
its shortest path to the reference host. Again the con-
text is guaranteed to be boundable because the costs
of paths strictly increase as the number of hops from
the reference host grows.

2.3.4 Tree Maintenance

Some applications, for example one monitoring nearby
cars for possible collisions, require constant monitor-
ing of data in the context. The Network Abstractions
model accomplishes this through the use of persistent
queries. Contexts over which an application issues per-
sistent queries require maintenance. The protocol for
maintaining the context builds on the one-time query
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protocol above. At a general level, this protocol is
similar to an on-demand distance vector routing pro-
tocol like AODV [15]. The changes to the distance
vector protocol are crucial to being able to maintain
context-aware interactions in highly dynamic ad hoc
networks. First, the link weights used to determine
path costs are defined by arbitrary properties of the
environment. Each application chooses which proper-
ties to use according to its specific needs. Second, to
help applications interact only with a portion of the
network that should affect their behavior, we require
them to bound the context over which they operate.
This prevents maintaining lengthy paths in the net-
work that, because of the dynamic nature of the links,
are almost guaranteed to break. To achieve context
maintenance, hosts within the context must react to
changes that affect their cost. The new cost may push
the node (or other downstream nodes) out of the con-
text or pull them in. Because all needed information
is stored within the hosts in the context, the reference
host need not participate in this maintenance; instead
it is a local adjustment to a local change. As a practi-
cal concern, all distance vector protocols must account
for the “count-to-infinity” problem, where, upon loss
of a link, two nodes both believe their route back to
the reference node is through each other. Because the
Network Abstractions model bounds the contexts, it
can assume path lengths of reasonable sizes and ad-
just for this problem by maintaining the entire path
information.

2.4 Practical Research Issues

Next we present the first implementation of the pro-
tocol described above. This protocol allows us to ex-
plore the range of distance metrics and cost functions
applications can define. It also allows the develop-
ment of an extensive software system that eases appli-
cations’ interactions with their contexts in the ad hoc
mobile environment. We also provide a simulation of
the protocol over a simple metric (the hop count exam-
ple discussed above) used to examine the feasibility of
the consistency assumptions we make and to study the
guarantees we can associate with the protocol in a va-
riety of networks. Specifically, we test the limits of the
network changes our protocol can handle and measure
the correctness of the context building mechanisms.

3 Implementation

Our implementation is written in Java. This deci-
sion is driven by the fact that we aim to ease appli-
cation development, which means placing control over

the context in the hands of novice programmers. It is
imperative that we provide a flexible protocol that an
application programmer can tailor to his needs. Appli-
cations must be able to define individualized distance
metrics and add new environmental monitors to the
system to increase the flexibility of link weight defini-
tion.

The implementation allows issuance of both one-
time and persistent queries and maintains contexts
which have persistent queries. Our system includes
built-in metrics (e.g., hop count) but also provide a
general framework for defining new metrics. Our imple-
mentation uses the support of two additional packages;
one for neighbor discovery and one for environmental
monitoring. We first describe these two packages be-
fore detailing the protocol implementation.

3.1 Support Packages

3.1.1 Neighbor Discovery

In ad hoc networks, no wired infrastructure with ded-
icated routing nodes exists. Instead, all hosts serve
as routers. To distribute messages, a host must main-
tain knowledge of its current set of neighbors, and, as
movement causes this set to change, the host must be
notified. A node in the Network Abstractions protocol
receives knowledge of its neighbors from a discovery
service. This service uses a periodic beaconing mecha-
nism that can be parameterized with policies for neigh-
bor addition and removal (e.g., a neighbor is only added
when its beacon has been heard for two consecutive
beacon periods, and a neighbor is removed when it has
not been heard from for 10 seconds).

3.1.2 Environmental Monitoring

Essential to adapting to context information is the
ability to sense environmental changes. The Context
Toolkit [7] uses context widgets to abstract context
sensing and provide context information to applica-
tions. It allows applications to gather context informa-
tion from both local and remote sensors about which
the application has a priori knowledge. The ad hoc net-
work requires a more lightweight mechanism in which
both local and neighboring environmental sensors are
accessed in a context-sensitive manner. This sensor in-
formation is used to calculate the link weights needed
in the Network Abstractions protocol.

The monitor service we provide maintains a registry
of monitors available on the local host and neighbor-
ing hosts (within one hop). The former are referred
to as local monitors and the latter as remote moni-
tors. An application tailors the monitor package to
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its needed capabilities. As an example, to add a lo-
cation monitor, the application provides code that in-
teracts with, for instance, a GPS device. In general, a
monitor contains it’s current value in a variable (e.g.,
the value of a GPS monitor might be represented by
a variable of type Location) and contains methods
that allow applications to access the value (through the
queryValue()method) or react to changes in the value
(through the MonitorListener interface). This func-
tionality is contained in an abstract base class called
AbstractMonitor. When a programmer extends the
monitoring package to add a new monitor, he must ex-
tend the AbstractMonitor class. This extending class
is responsible for ensuring that the class’s value vari-
able is kept consistent with the current state of the
environment. Changes to this variable should be per-
formed through the setValue() method in the base
class to ensure that any listeners registered for changes
to the variable are notified. The programmer should
also add his defined monitors to the monitor registry
at run-time.

Figure 3 shows the code that a programmer must
write to extend the monitor package by showing the
code for a class that extends AbstractMonitor to col-
lect information from a GPS device. From the per-
spective of our package, the important pieces are how
the extending class interacts with the base class. The
details of communicating with a particular GPS device
are omitted; their complexity is directly dependent on
the individual device and its programming interface.

public class GPSMonitor extends AbstractMonitor{
public GPSMonitor(...){
//call the AbstractMonitor constructor

super();

//set up serial connection to GPS receiver

...

}
public void serialEvent(SerialPortEvent event){
//handle periodic events from GPS receiver

...

//turn GPS event into a GPSLocation object

...

//set local value variable, notify listeners

setValue(gpsLocation);

}
}

Figure 3. The GPSMonitor Class

To monitor context information on neighboring
hosts, the monitor registry creates instances of the
class RemoteMonitor that connect to concrete mon-
itors on the remote host. These RemoteMonitors
serve as proxies to the actual monitors; when the val-

ues change on the monitor on the remote host, the
RemoteMonitor’s value is also updated. To gain access
to RemoteMonitors, the application provides the id of
the host (which can be retrieved from the discovery
package) and the name of the monitor (e.g., “GPSMon-
itor”). The monitor registry creates the proxy on the
local host, connects it to the remote monitor, and re-
turns a handle to the proxy to the application. The
application interacts with the remote monitor in the
same manner as with a local monitor (e.g., by calling
the queryValue() method or registering listeners for
changes in the value).

3.2 Protocol Implementation

We describe the implementation of the protocol in
two phases. First, we discuss what an application pro-
grammer must do to use this implementation of the
Network Abstractions protocol, both in terms of the
classes the programmer must define and the interface
to the protocol that allows sending queries. We then
move on to describe the underpinnings of the protocol
that are transparent to the application.

Before defining a context, an application must create
the components that build a distance metric. This in-
cludes two pieces: a Cost that defines the components
of the costs of paths and a Metric that provides that
algorithm for computing these costs from a previous
hop cost and a link weight.

The Cost interface is simple; it requires the extend-
ing class to implement a single method that allows two
instances of the derived Cost to be compared. This
interface is shown in Figure 4.

int compareTo(Cost cost)
— compares two instances of the cost and

returns whether the passed cost is equal to,
greater than, or less than the stored cost.

Figure 4. The Cost interface

An extending class must first define any instance
variables needed to store the state of the particu-
lar cost. It must then provide a definition for the
compareTo() method. It can provide any other meth-
ods that its corresponding Metric class may require,
which is likely to include access methods for the in-
stance variables. As an example, consider the Cost

class a programmer must define if he wants to build
the distance-based metric described in the previous sec-
tion. The code for this Cost class is shown in Figure 5.
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public class DistanceCost implements Cost{
private double maxD;

private int c;

private DistanceVector v;

public DistanceCost(double in d, int in c,

DistanceVector in v){
//initialize the variables

maxD = in d; c = in c; v = in v;

}
public int compareTo(Cost cost){
//compare each variable

...

}
public double getD(){ return maxD; }
public int getC(){ return c; }
public DistanceVector getV(){ return v; }

}

Figure 5. The DistanceCost Class

The Metric base class is more complicated than the
Cost because it defines how the costs are generated
along paths in the context. The API for this base class
is shown in Figure 6. For an extending class, the tricky

private String[] monitorNames
— this instance variable holds the names of

the monitors whose values affect this metric.
This information is used when a context is
maintained to ensure the weight values are
correct. An extending class should take
care to ensure this variable is initialized.

public void setMonitorNames(String[] names)
— allows the extending class to set the names

of the monitors that affect this metric.
public abstract Cost wFunction(HostID otherHost)

— the implementation of this method should use
information about the local host (gathered
through the monitor registry if necessary)
and information about the remote host
(identified by the host id) to calculate the
weight on the link between the hosts.

public abstract Cost costFunction(Cost currentD,
Cost weight)

— the implementation of this method should take
the cost at the previous hop and the cost on
the subsequent link and calculate the new
cost.

Figure 6. The Cost interface

parts to adhering to these requirements include cor-
rectly implementing the logic of the cost function and
precisely identifying the monitors whose values are im-
portant. To continue the distance-based example, Fig-
ure 7 shows the code the programmer must define to

create this metric.

public class DistanceMetric extends Metric{
public DistanceMetric(){
String[] monitors = {‘‘GPSMonitor’’}
setMonitorNames(monitors);

}
public Cost wFunction(HostID otherHost){
//calculate the weight on the link

(the DistanceVector from this host to otherHost)

DistanceVector vec = ...

//store it in a DistanceCost object

DistanceCost weight = ...

return weight;

}
public Cost costFunction(Cost currentD,

Cost weight){
//implement the function from Figure 2(d)

DistanceCost newCost = ...

...

return newCost;

}
}

Figure 7. The DistanceMetric Class

The programmer extending the metric class does not
have to worry about how these methods are called; the
Network Abstractions protocol, when invoked, will take
the Cost and Metric that define a context and call the
necessary methods as appropriate.

To define a context using the Network Abstractions
protocol, an application programmer creates a Cost

and Metric as discussed above and passes them to the
Network Abstractions protocol. The basic interface the
protocol presents to the application is detailed in Fig-
ure 8. The first method, createContext() allows the
application to notify the Network Abstractions proto-
col of its intention to operate over a context defined by
the provided Metric and bound (of type Cost). Once
this context is defined, the application can use it to
send and register queries. As will be discussed next,
the protocol only maintains contexts that have persis-
tent queries registered.

When an application sends a one time query over
a defined context (via the sendQuery() method), the
protocol layer uses information provided by the neigh-
bor discovery and environmental monitoring services to
determine which neighbors must receive the message,
if any. If neighbors exist that are within the context’s
bound, the local host packages the application’s data
with the context information and broadcasts the entire
packet to its qualifying neighbors.

Upon receiving a one-time context query, the receiv-
ing host stores the previous hop, and repeats the prop-

8



public NetAbsID createContext(Metric m, Cost b)
— initializes a context according to the provided

metric and bound. the bound defines the
maximum allowed cost that belongs to the
context. this method returns a handle to the
application that it can use to access the
context.

public void sendQuery(NetAbsID id, Query q)
— this method sends the provided query to all

members of the context identified by id.
public Ticket registerQuery(NetAbsID id, Query q)

— this method registers the provided query on
all members of the context identified by id.
the method returns a ticket to the application
that it can use to deregister the query.

public void deregisterQuery(Ticket t)
– removes the persistent query identified by the

provided ticket.

Figure 8. The Network Abstractions interface

agation step, forwarding the packet to any of its neigh-
bors within the bound. It also passes the packet’s data
portion to application level listeners registered to re-
ceive it. If this same query (identified by a sequence
number) is received from another source, the new in-
formation is remembered and propagated only if the
cost of the new path is less than the previous cost.

An application can also reply to a data packet. The
protocol uses the stored previous hop information to
route the reply back to the reference host. Because this
reply is asynchronous and the context for a one-time
query is not maintained, it is possible that the route
no longer exists. In these cases, the reply is dropped.
To provide a stronger guarantee on a reply’s return, an
application should use a persistent query which forces
the protocol to maintain the context.

The structure of a persistent query differs slightly
from a one-time query in that it must include the en-
tire path. This information is used to overcome the
count-to-infinity problem encountered as the links in
the network change. The distribution of the query is
the same as above, but the actions taken upon query
reception vary slightly. The receiving host must re-
member the entire path back to the reference host.
When the same query arrives on multiple paths, the
host remembers every qualifying path. If the currently
used path breaks, the protocol can replace it with a
viable path. To keep both the current path and the
list of possible paths consistent, the protocol monitors
the aspects of the context that contribute to distance
definition (through the monitor package); if these val-
ues change, the cost at this host or its neighbors could

Figure 9. Screen capture of demonstration
system

also change. The protocol reacts to such changes and
updates its cost information locally. It also propagates
these changes to affected neighbors. Therefore local
changes to the metric do not affect the entire context,
only from the point of change out to the bound. Before
replacing a path, the protocol checks that the path is
loop-free.

Replies to persistent queries propagate back towards
the reference host along the paths maintained by the
protocol. A reply is not guaranteed to reach the refer-
ence. Our practical experience shows, however, that, in
reasonably sized networks with a fair amount of mobil-
ity, the delivery assumption is likely to hold. Section 4
provides an empirical evaluation of this assumption.

3.3 Demonstration System

Figure 9 shows a screen capture of our demonstra-
tion system. In this example, each circle depicts a
single host running an instance of the protocol. The
demonstration system uses the network for communi-
cation, which allows this system to display information
gathered from actual mobile hosts. This figure shows
a single context defined by a host (the gray host in the
center of the white hosts). This context is simple; it
includes all hosts within one hop. When a host moves
within the context’s bound, it receives a query regis-
tered on the context that causes the node to turn its
displayed circle white. When the node moves out of
the context, it turns itself black. The demonstration
system provides simulations using a variety of mobility
models, including a markov model, a random waypoint
model [4], and a highway model. This system is partic-
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ularly useful because it allows us to visually evaluate
what kinds of contexts match what styles of mobility.
This gives us some intuition into what our goals should
be before we start extensive simulation or implementa-
tion of a complex application.

3.4 Example Usage

The protocol implementation described here is cur-
rently in use to support the ongoing implementation of
a middleware model for ad hoc mobile computing. In
this system, called EgoSpaces, application agents op-
erate over projections (views) of the data available in
the world. EgoSpaces addresses the specific needs of
individual application agents, allowing them to define
what data is to be included in a view by constraining
properties of the data items, the agents that own the
data, the hosts on which those agents are running, and
attributes of the ad hoc network. This protocol pro-
vides the latter in a flexible manner, and EgoSpaces
uses the Network Abstractions protocol to deliver all
communication among agents.

4 Analysis and Experimental Results

To examine the definitions of contexts on real mobile
ad hoc networks, we used the ns-2 network simulator,
version 2.26. This section provides simulation results
for context dissemination. These simulations are a first
step in analyzing the practicality of the protocol we
have implemented. Not only do they serve to show
that it is beneficial to define contexts in the manner
described in ad hoc networks, the measurements also
provide information to application programmers about
what types or sizes of contexts should be used under
given mobility conditions or to achieve required guar-
antees. All of the simulations we describe in this sec-
tion implement a context defined by the number of hops
from the reference node. Because this is the simplest
type of context to define using the Network Abstrac-
tions protocol, this provides a baseline against which
we can compare simulations of more complex or com-
putationally difficult definitions. Before providing the
experimental results, we detail the simulation settings
we used.

4.1 Simulation Settings

We generated random 100 node ad hoc networks
that use the random waypoint mobility model. The
simulation is restricted to a 1000x1000m2 space. We
vary the network density (measured in average num-
ber of neighbors) by varying the transmission range.

We measured the average number of neighbors over
our simulation runs for each transmission range we
used; these averages are shown in Figure 10. While the
random waypoint mobility model suffers from “density
waves” as described in [18], it does not adversely affect
our simulations. An average of 1.09 neighbors (i.e.,
50m transmission range) represents an almost discon-
nected network, while an average of 23.89 neighbors
(i.e. 250m transmission range) is extremely dense.
While the optimal number of neighbors for a static
ad hoc network was shown to be the “magic number”
six [11], more recent work [18] shows that the optimal
number of neighbors in mobile ad hoc networks varies
with the degree of mobility and mobility model. The
extreme densities in our simulations lie well above the
optimum for our mobility degrees.

In our simulations, we used the MAC 802.11 stan-
dard [9] implementation built in to ns-2. Our pro-
tocol sends only broadcast packets, for which MAC
802.11 uses Carrier Sense Multiple Access with Colli-
sion Avoidance (CSMA/CA) 1. This broadcast mecha-
nism is not reliable, and we will measure our protocol’s
reliability over this broadcast scheme in our simula-
tions. We implemented a simple “routing protocol” on
top of the MAC layer that, when it receives a packet
to send simply broadcasts it once but does not repeat
it.

We also tested our protocol over a variety of mobility
scenarios using the random waypoint mobility model
with a 0s pause time. In the least dynamic scenarios,
we use a fixed speed of 1m/s for each mobile node. We
vary the maximum speed up to 20m/s while holding
a fixed minimum speed of 1m/s to avoid the speed
degradation described in [20].

4.2 Simulation Results

The results presented evaluate our protocol for three
metrics in a variety of settings. The first metric mea-
sures the context’s consistency, i.e., the percentage of
nodes receiving a context notification given the nodes
that were actually within the context when the query
was issued. Using this method to evaluate a proposed
context definition, we can give an application using the
protocol an idea of how successful it will be in reach-
ing the members of its contexts. Applications can use
this information to tailor their context definitions to
the combination of their needs and requirements. For
example, an application that relies on strong guaran-
tees (e.g., the application transfers money or measures

1In CSMA/CA a node ready to send senses the medium for
activity and uses a back off timer to wait if the medium is busy.
When the node senses a clear medium, it broadcasts the packet
but waits for no acknowledgements.
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Range (m) 50 75 100 125 150 175 200 225 250
Neighbors 1.09 2.47 4.21 6.38 9.18 12.30 15.51 19.47 23.89

Figure 10. Average number of neighbors for varying transmission ranges

safety criticality) will have to define contexts that have
an extremely high level of consistency. At the other
end of the spectrum, many applications can accept a
best-effort style of interaction, and can therefore define
wider contexts that provide weaker guarantees.

The second metric measures the context notifica-
tion’s settling time, i.e., the time that passes between
the reference host’s issuance of a context query and the
time that every node in the context that will receive
the query has received it. This is the first step in pro-
viding applications with information about how long
they should wait for responses from differently sized
contexts before timing out and resending a query if
necessary. This metric also gives us, as protocol im-
plementers, some information about how long a single
context definition is utilizing network resources.

The third metric evaluates the protocol’s efficiency
through the rate of “useful broadcasts”, i.e., the per-
centage of broadcast transmissions that reached nodes
that had not yet received the context query. As we will
see in the discussion of the results, this measurement
provides us insight into under what conditions (e.g.,
high speeds, densities, or loads) the protocol might re-
quire tailoring in the dynamic ad hoc network.

The first set of results compare context definitions of
varying sizes, specifically, definitions of one, two, three,
and four hop contexts. We then evaluate our protocol’s
performance as network load increases, specifically as
multiple nodes define contexts simultaneously. Unless
otherwise specified, nodes move with a 20m/s maxi-
mum speed.

Reasonably Sized Contexts Have Good Con-
sistency Guarantees. In comparing contexts of vary-
ing sizes, we found that as the size of the context (mea-
sured in this example in the number of hops) increases,
the consistency of the context decreases slightly. Re-
sults for different context sizes are shown in Figure 11.
These results show a single context definition on our
100 node network. The protocol can provide localized
contexts (e.g., one or two hops) with near 100% consis-
tency. With broader context definitions, the percent-
age of the context notified can drop as low as 94%.
The disparity between large and small context defini-
tions becomes most apparent with increasing network
density. At large densities, the extended contexts con-
tain almost the entire network, e.g., at a transmission
range of 175m, a four hop context contains ∼80% of
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Figure 11. Percentage of context members re-
ceiving the message for contexts of varying
sizes

the network’s nodes. In addition, the number of neigh-
bors is 12.3, leading to network congestion when many
neighboring nodes rebroadcast. This finding lends cre-
dence to the idea that applications should define con-
texts which require guarantees (e.g., automobile colli-
sion detection) as more localized, while contexts that
can tolerate some inconsistency (e.g., traffic informa-
tion collection) can cover a larger region. In addition,
small modifications to the protocol that address the
fact that neighboring nodes should not rebroadcast si-
multaneously may positively benefit performance. We
discuss this problem (called the “broadcast storm”)
and some possible solutions in the next section.

Context Building Settles Quickly. As the size
of the defined context increases, more time is required
to notify all the context members. Figure 12 shows
the settling times for contexts of varying sizes defined
on networks of increasing density. For a two hop con-
text with a reasonable density (9.18 neighbors at 150m
transmission range), the maximum time to notify a
context member was 20.12ms. The settling times for
different sized networks eventually become similar as
network density increases. This is due to the fact that
even though the context is defined to be four hops, all
nodes are within two hops of each other, effectively ren-
dering a four hop context definition a two hop context.

Efficiency Decreases Almost Linearly with In-

11



 0

 5

 10

 15

 20

 25

 30

 35

 40

 50  100  150  200  250

C
on

te
xt

 n
ot

ifi
ca

tio
n 

se
ttl

in
g 

tim
e 

(m
s)

Transmission range (meters)

one hop context
two hop context

three hop context
four hop context

Figure 12. Settling time for contexts of vary-
ing sizes

creasing Density. Figure 13 shows the protocol’s
efficiency versus density for different sized contexts.
First, notice that the efficiency for a one hop network
is always 100% because only one broadcast (the initial
one) is ever sent. For larger contexts, the efficiency is
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Figure 13. Percentage of broadcasts that
reached new context members for contexts
of varying sizes

lower and decreases with increasing density. Most of
the lower efficiency and the descending nature of the
curve results from the fact that rebroadcasting neigh-
bors are likely to reach the same set of additional nodes.
This becomes increasingly the case as the density of
the network increases. Even at high densities, how-
ever, a good number (> 20%) of the broadcasts reach
additional context members. In the next section, we
discuss possible solutions to increase the performance
of the protocol in these cases.

Consistency Remains above 80% with In-
creased Network Load. The remainder of the analy-
sis focuses on an increasing load in the network, caused
by multiple simultaneous context definitions by mul-
tiple nodes in the network. We show only results for
four hop contexts because they are the largest and have
the worst behavior; results for smaller contexts are dis-
cussed in comparison. As Figure 14 shows, five context
definitions have no significant impact on the consis-
tency as compared to a single definition. For ten def-
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Figure 14. Percentage of context members
receiving context messages for varying net-
work loads

initions, the atomicity starts to decrease, but remains
above ∼80% at all transmission ranges. With more
registrations, especially at the larger densities, the dif-
ferent context messages interfere significantly with each
other. Two factors contribute to this observation. The
first is that the broadcast messages collide and are
never delivered. The second results from the fact that
MAC 802.11 uses CSMA/CA. Because the medium
is busier (more neighboring nodes are broadcasting),
nodes are more likely to back off and wait their turn
to transmit. During this extended waiting time, the
context members are moving (at a maximum speed of
20m/s). Because the hosts are moving rapidly, con-
text members that were in the context initially move
out of it before the query can traverse the entire con-
text. These effects decrease significantly with smaller
context sizes, e.g., at a transmission rate of 175m, ten
definitions on a two hop context can be delivered with
∼97% consistency, and twenty can be delivered with
∼89.5% consistency. This type of information informs
applications that, in extremely mobile, dense, or active
networks, contexts that span a smaller set of nodes are
likely to be more consistent with respect to delivery
guarantees. Applications can use this information to
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determine which types of contexts are appropriate in
different environments.

Changing Speed has No Impact on Context
Notification. In our analysis of this protocol, we
tested scenarios with a wide variety of network speeds.
We found that even the consistency of context mes-
sage delivery is not greatly affected by the speed of the
nodes. It is likely that, were we to analyze transmis-
sion of replies to queries, we would find that routes
are somewhat less likely to hold up for scenarios with
higher node speeds. Such concerns are addressed by
the maintenance protocol; simulation results for this
portion of the protocol lie outside the scope of this pa-
per and are planned as future work.

5 Discussions and Future Work

Several of our results show that increased network
congestion negatively affects our protocol. Specifically,
Figure 11 showed that the consistency of context dis-
semination decreases as more neighboring hosts re-
broadcast, and Figure 13 showed that the efficiency
of the broadcast mechanism decreased with increasing
density. This results from a commonly known problem
called a “broadcast storm”. [13] describes this prob-
lem in mobile ad hoc networks and quantifies the addi-
tional coverage a broadcast gains. Several alternative
broadcasting mechanisms have been proposed, many of
which are compared in [19]. Such methods include us-
ing probabilistic methods or knowledge about the envi-
ronment or neighbor set to determine when to rebroad-
cast. Integrating these or similar intelligent broadcast
mechanisms may increase the resulting consistency and
efficiency of context notification.

Figure 14 shows that the consistency of context no-
tification tends to fall off when network load increases.
Future work includes investigating ways to handle this
undesirable effect. This could include reusing infor-
mation available about already constructed contexts to
limit the amount of work required to construct another
context for a new node. Also, one-time context distri-
butions may be able to use information stored on nodes
servicing persistent queries over maintained contexts.

The Network Abstractions protocol uses the appli-
cation’s specified distance metric to build the associ-
ated context. With some knowledge about the system
(e.g., radio transmission range, maximum node speed,
etc.) [16] shows that a node can predict a “safe dis-
tance” for a link. Incorporating a similar idea may
allow us to redefine applications’ contexts on the fly to
essentially replace a context specification like “all nodes
within two hops” with one like “all nodes guaranteed
to remain within two hops for 20ms”.

6 Conclusions

This work implements and analyzes a protocol for
providing contexts in mobile ad hoc networks. The pro-
tocol provides a flexible interface that gives the appli-
cation explicit control over the expense of its operation
while maintaining ease of programming by making the
definition of sophisticated contexts simple. This proto-
col generalizes the notion of distance to account for any
property, allowing an application to adjust its context
definitions to account for its instantaneous needs or
environment. Most importantly, the protocol explicitly
bounds the computation of the application’s context to
exactly what the application needs. In general, these
interactions will be localized in the neighborhood sur-
rounding the host of interest, and therefore the host’s
operations do not affect distant nodes. This bounding
allows an application to tailor its context definitions
based on its needed guarantees The implementation
presented here is currently in use by the EgoSpaces
middleware system. This will provide further evalua-
tion and feedback for protocol refinement. We also pre-
sented an initial analysis of our protocol over a variety
of networks and situations, showing that it is practical
in reasonable situations.
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