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Air quality monitoring across local and hyperlocal scales has attracted increased attention from 

both the public and research community. There are several approaches such as passive samplers 

and low-cost air quality sensors, depending on the pollutant and measurement objectives. Local 

and hyperlocal air pollutant measurements help to characterize local emission sources such as 

traffic and industry, including separating these signals from large scale influences (e.g., urban 

and regional scales), and better understand how land use types and meteorology influence 

pollutant spatiotemporal patterns. 

Low-cost sensors (LCS) are now a popular approach to monitor several criteria pollutants (e.g., 

particulate matter (PM), ozone, carbon monoxide), complementing the use of relatively 

expensive regulatory-grade reference monitors. Utilizing LCS networks for local air quality 

monitoring helps people understand more about air pollutants in their immediate surroundings, 

raising awareness of the exposures they may encounter. LCS have several advantages compared 

to the reference grade monitors including cost (typically ~$300 compared to ~$20,000), 

compactness and ease to deploy, and largely “plug-and-play” data management with many 
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vendors providing cloud-based services and automated mapping. However, LCS data accuracy 

and precision typically do not match the reference monitors and protocols are lacking to 

efficiently detect changes in sensor performance over time. Work is needed to assess LCS utility 

in harsh environments and determine whether small variations can be accurately detected. With 

the fast development and utilization of LCS for different air quality related projects, a general 

guideline for LCS deployment is needed to make sure results generated by LCS can be 

comparable. 

This dissertation includes four major chapters to advance air quality measurement strategies 

and/or to conduct monitoring studies at local and hyperlocal scales. It begins by meticulously 

characterizing five different types of low-cost sensors (LCS) under the challenging winter 

conditions of Mongolia, facilitating the establishment of long-term PM2.5 monitoring networks 

outdoors and within kindergartens. Utilizing indoor network measurements, a novel land use 

regression model was developed to predict indoor PM2.5 concentrations within kindergartens in 

the absence of physical sensors. The subsequent study focused on the characterization of a 

popular LCS device based on device siting and varying meteorological conditions, offering 

valuable insights for the deployment of citizen science-based LCS networks. The final 

investigation centered on characterizing the impact of traffic-related ultrafine particle (UFP) 

concentrations by employing a near-road, engineered vegetative buffer within the Green Heart 

Louisville study area. Stationary monitoring campaigns were conducted to measure UFP number 

concentrations in the study area both with and without the presence of the vegetative buffer to 

understand the efficiency of vegetation to modulate ground-level UFP concentrations. These 

projects collectively yield significant findings that enhance the accuracy of exposure estimates 

and inform the public about their exposure to particulate matter.
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Chapter 1: Introduction 

This dissertation contributes to the advancement of knowledge concerning the characterization of 

low-cost sensor (LCS) devices used for particulate matter (PM) monitoring and their application 

to local scale air quality monitoring. The research encompasses the implementation of LCS 

devices under extreme environmental conditions, particularly in regions such as Mongolia, and 

the evaluation of sensor performance under real-world conditions to ascertain their potential for 

long-term air quality monitoring. This endeavor addresses the monitoring gaps resulting from the 

costliness of reference grade monitors. Additionally, this study focuses on enhancing 

understanding of ultrafine particulate matter (UFP) originating from traffic emissions in urban 

settings, and seeks to quantify the efficacy of engineered vegetative buffers to mitigate UFP 

exposures for nearby residents. 

This chapter provides a summary of the health-related impacts associated with two major air 

pollutants, PM2.5 and UFP, and outlines the technological advancements in sensor technology for 

sampling these pollutants. Detailed background information will be presented in subsequent 

chapters. 

1.1 Human Health & Urban air pollutants: PM2.5 and UFP 
 

Air pollution, notably particulate matter less than 2.5 micrometers aerodynamic diameter 

(PM2.5), is a significant contributor to global human mortality [1], [2], [3], [4]. These fine 

particles can penetrate deep into the respiratory system, leading to respiratory issues such as 

asthma, bronchitis and chronic obstructive pulmonary disease (COPD) [5]. PM2.5 exposure is 

also associated with cardiovascular diseases, including heart attacks and strokes, as well as 
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neurological disorders, cognitive decline, and adverse birth outcomes[5], [6], [7], [8], [9]. 

Certain populations, such as children, the elderly, and individuals with pre-existing health 

conditions, are particularly vulnerable to the health impacts of PM2.5 exposure [10], [11], [12]. 

Unlike PM2.5, which has been extensively studied, there is a need for further research to fully 

understand ultrafine particulate matter (UFP). UFPs, defined as particles with aerodynamic 

diameters less than 0.1 micrometers, constitute a significant portion of airborne pollutants in 

urban environments[13]. These particles possess unique characteristics due to their extremely 

small size, which grants them increased surface area and reactivity[14]. Despite their importance, 

the generation, distribution, and health impacts of UFPs remain relatively understudied 

compared to larger particles. 

UFPs are generated through a multitude of processes, including combustion engines, industrial 

activities, and natural sources such as sea spray and wildfires[13]. The combustion of fossil 

fuels, particularly from vehicular traffic, represents a major source of UFP emissions in urban 

settings[15], [16]. Industrial processes, such as power generation and manufacturing, also 

contribute to the release of UFPs into the atmosphere[17]. Due to their small size, UFPs can 

penetrate deep into the respiratory system, reaching the alveolar region of the lungs[13]. This 

unique characteristic raises concerns about their potential health impacts, as they can bypass the 

body's natural defense mechanisms and enter systemic circulation. Epidemiological studies have 

linked exposure to UFPs with adverse health outcomes, including respiratory and cardiovascular 

diseases, as well as increased mortality rates even increased risk of Alzheimer’s and Parkinson’s 

disease[18], [19]. 
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Furthermore, the surface chemistry of UFPs may facilitate the adsorption of toxic pollutants, 

such as heavy metals and organic compounds, exacerbating their potential health effects[20]. 

Additionally, UFPs have been implicated in the exacerbation of pre-existing health conditions, 

such as asthma and COPD, due to their ability to induce inflammation and oxidative stress in the 

respiratory tract[18], [21]. 

1.2 Characterizing PM2.5 and LCS technology 
 

The reference method for measuring PM2.5 typically involves the use of a high-volume sampler 

(HVS) or a low-volume sampler (LVS) in conjunction with a filter, such as a Teflon or quartz 

filter, to collect particulate matter from the air[22]. The collected samples are then analyzed 

using gravimetric analysis (after conditioning the particle laden filters at a specified temperature 

and relative humidity), where the mass of the collected particles is determined by weighing the 

filter before and after sampling. This method provides standardized measurements of PM2.5 

concentrations by capturing particles smaller than 2.5 micrometers in diameter and controlling 

the water content through the post-sampling equilibration process. Additionally, the reference 

method often includes quality assurance measures, such as calibration checks and blank filter 

tests, to ensure the accuracy and reliability of the measurements[23]. 

In addition to the reference method using high-volume or low-volume samplers, there are also 

Federal Equivalent Method (FEM) approaches. The FEM is a designation given to instruments 

and methods that have been demonstrated to provide results comparable to those obtained by the 

Federal Reference Method (FRM), but may offer advantages such as improved portability, 

reduced cost, or increased ease of use[24]. FEM instruments undergo rigorous testing and 
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evaluation by regulatory agencies to ensure their accuracy and reliability in measuring PM2.5 

concentrations[25]. 

While FRM sampling and FEM monitoring are renowned for their accuracy in measuring PM2.5 

levels in ambient air, their widespread adoption is often impeded by the considerable costs 

involved in both initial procurement and ongoing maintenance. These financial constraints 

present significant hurdles for individuals and communities striving to effectively monitor their 

local PM2.5 levels. Addressing these challenges necessitates the development and deployment of 

alternative, more cost-effective monitoring solutions capable of providing reliable PM2.5 

measurements without sacrificing accuracy[26]. 

Emerging technologies, such as low-cost sensor (LCS) networks and other portable monitoring 

devices, offer promising avenues for democratizing access to real-time air quality data at a 

fraction of the cost of traditional FEM and FRM hardware and operations. Air quality LCS 

devices have been available on the market for several years, with prices ranging from $200 to 

$1500 depending on features. Some LCS devices are tailored for indoor air quality 

measurements, boasting digital real-time displays and user-friendly interfaces (e.g., AirVisual 

Pro, Laser Egg), while others are ruggedized for outdoor deployment (e.g., PurpleAir)[6], [7], 

[8], [27]. However, it's crucial to note that LCSs exhibit varying data quality, as evidenced by 

studies comparing them to regulatory-grade air quality monitors (typically FEMs) [28], [29]. 

With proper operation and maintenance, LCS-generated air quality data can serve as educational 

tools for general audiences and be instrumental in research projects[29], [30]. 

In contrast, regulatory-grade monitors typically cost $20,000 or more, making them financially 

unfeasible for research studies requiring high temporal and spatial resolutions[31]. For the price 
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of one regulatory monitor, researchers could deploy a network of LCSs to achieve high spatial 

resolution results, thereby maximizing research efficiency and data coverage. 

By reducing the financial barriers to entry and empowering individuals and communities with 

access to affordable PM2.5 monitoring tools, we can elevate public awareness of air quality 

issues, bolster evidence-based policymaking, and ultimately, safeguard human health and the 

environment. 

1.3 UFP characterizing inside Green Heart Louisville  
 

Airborne ultrafine particles (PM0.1; UFP) pose a health risk as discussed in the previous section. 

A 2021 World Health Organization (WHO) report [32] presents the good practice statement: 

“Distinguish between low and high PNC [particle number concentration] to guide decisions on 

the priorities of UFP source emission control. Low PNC can be considered < 1,000 particles/cm3 

(24-hour mean). High PNC can be considered > 10,000 particles/cm3 (24-hour mean) or 20,000 

particles/cm3 (1-hour mean).” PNC was often above 20,000 particles/cm3 based on our observed 

ground-level rush hour near-highway measurements in the Green Heart Louisville study area and 

warrants attention. 

Green Heart Louisville is an extensive neighborhood greening initiative in a Louisville, 

Kentucky neighborhood, aiming to explore the relationships between urban greenery and 

cardiovascular health. Complementing the neighborhood greening efforts, engineered vegetation 

belts primarily consisting of mature evergreen trees were strategically planted along an interstate 

highway that intersects the study area. The goal of this intervention was to mitigate urban air 

pollution, particularly stemming from fresh traffic emissions, and reduce elevated ultrafine 

particle (UFP) concentrations near the roadway. 
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While Tong et al. utilized computational fluid dynamics modeling to estimate downwind UFP 

impacts for vegetation positioned behind noise walls[33], there remains a gap in field 

assessments regarding the combination effect of dense vegetation planted on the road side of 

noise barriers. By meticulously examining the effectiveness of engineered vegetation buffers in 

reducing UFP levels near highways, we aim to establish a baseline for future studies and 

contribute additional insights to air quality monitoring in urban environments. 

1.4 Objectives 

Given the significance of both PM2.5 and UFPs as major air pollutants for urban environment and 

their potential health impacts, this dissertation aims to contribute to the body of knowledge in 

this field by investigating the effectiveness of LCS devices usage in PM2.5 monitoring under 

extreme environment and also assess the impact of urban greenness on reducing UFPs in urban 

environments. 

Chapter 2: Assess different characteristics of particulate matter low-cost sensor devices in the 

extreme environmental conditions of Mongolia 

I evaluated five low-cost air quality sensor devices for their suitability in a urban PM-

monitoring network based on their performance compared to a reference grade monitor 

and under extreme cold conditions. Evaluation process include developing adjustment 

factors using long-term collocated data and local environmental conditions. I 

hypothesized that with careful adjustments LCS can be used in urban PM monitoring and 

generate reliable results that can be directly compared to the reference grade monitors. 

Chapter 3: LCS characterizations based on its deployment siting and meteorological conditions 
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In collaboration with Tyler Cargill, we conducted long-term collocations of PM LCS 

devices of the same sensor type at different monitoring stations in US. We evaluated the 

performance of LCS devices compared to each other and to the reference monitors, 

taking into consideration local meteorological conditions. I hypothesized that the 

deployment microenvironment will affect the sensor data quality and will cause 

complexities in LCS data adjustments and interpretation. 

Chapter 4: Children’s PM2.5 indoor exposures in Mongolian kindergartens 

Mongolia’s population centers experience poor wintertime air quality. A study was 

conducted to characterize particulate matter LCS devices in the Mongolian cold climate, 

quantify ambient PM2.5 spatiotemporal variability across a small city, and assess 

children’s exposures in kindergartens. I hypothesized that this 25-site indoor network can 

be used to predict indoor PM2.5 exposures for other kindergartens with similar conditions 

using LUR approaches.  

 

Chapter 5: The effects of vegetation planted along a highway noise wall barrier on ultrafine 

particle concentrations 

In collaboration with Maryssa Loehr, we conducted mobile and stationary measurements 

of ultrafine particulate matter in the Green Heart Study neighborhood near a major 

highway (I-264). I focused on stationary measurements and vertical pollutant profiles 

while Maryssa Loehr focused on mobile measurements downwind of the highway and 

into the neighborhood. We hypothesize that the combination of a vegetation buffer and 

the noise wall have a complex effect on the dispersion of UFP as compared to an open 
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fetch with only a noise wall that could potentially modulate ground-level downwind UFP 

concentrations. 

Conclusions and recommended future work for each study is summarized in each chapter to 

address different topics of interest. Furthermore, Chapter 6 includes key conclusion from this 

thesis regarding human exposures to particulate matter air pollution. 
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Chapter 2: Particulate matter low-cost sensor 

device performance in a cold climate 

This work was funded by UNICEF Mongolia (PD Ref. No. MGLA/2880/2019/002-PC). 

2.1 Abstract 

Mongolia’s population centers experience poor wintertime air quality because the cold climate 

drives strong ground-level inversions and pervasive solid fuels use for distributed residential 

space heating. Ulaanbaatar (UB, pop. ~1.5MM) has robust air monitoring but measurements 

outside of UB are sparse. The use of low-cost particulate matter sensor (LCS) devices enables 

dense networks to increase the spatial resolution of air quality monitoring. However, LCS device 

performance and data quality are affected by the environmental and aerosol properties. In this 

study, five PM LCS device types were deployed for more than one year in a Mongolian 

secondary city to assess which device(s) would be suitable for network deployments. These LCS 

devices were collocated with a US EPA-approved Federal Equivalent Method (FEM) monitor. 

Devices were collocated in triplicate for a wintertime five-week period. PM2.5 hourly 

concentrations were highly correlated across devices of the same type with Pearson correlation 

coefficient greater than 0.96. During this period, three of the five LCS device types exhibited 

high data capture and high correlation with the FEM for temperatures as low as -30 ºC and 

hourly PM2.5 ranging ~1 to 1450 µg/m3. Compared to the FEM these device types were biased 

high by 25-40% with a discernible temperature-dependent bias that likely is a proxy for changes 

in aerosol properties in this wintertime environment dominated by residential heating with solid 

field (especially coal). The seasonal adjustment using multivariable quadratic regression model 
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removed bias from 30 percent to 0.5 percent with a decrease from RMSE to around half when 

comparing the raw data. 

2.2 Introduction 

2.2.1 Mongolia Air quality 

Air pollution is one of the major contributors to human mortality caused by environmental 

factors [1], [2], [3], [4]. Particulate matter less than 2.5 micrometers aerodynamic diameter 

(PM2.5) is classified as one of the major air pollutants globally because of its impact on human 

health. PM2.5 can enter the pulmonary alveoli during the air exchange process and spread through 

the human body to further damage other areas [1], [5]. PM2.5 properties including size 

distribution shape, and composition can vary based on the emissions source and environmental 

conditions; examples of fuel combustion include biomass burning, transportation, and residential 

cooking and heating [6]. Health effects like pulmonary disease, cardiovascular disease, 

premature death, and increased risk of cancer are related to air pollution and, more specifically, 

to PM2.5 [7], [8], [9]. 

Mongolia is one of the coldest countries in the world; wintertime temperatures can drop to as low 

as -40 °C in Ulaanbaatar, the capitol city of Mongolia [10]. PM2.5 is a major pollutant in 

Mongolia, especially in the winter and dust seasons. Most Mongolians live in gers, a traditional 

Mongolian dwelling like a yurt, because of the traditional nomadic lifestyles. In the winter, the 

traditional heating systems in gers (and ger area houses) typically use coal as a primary 

combustion source, which leads to high particulate matter emissions. The Mongolian National 

Agency for Meteorology and Environment Monitoring (NAMEM) reports that, in the wintertime 

2017, the PM2.5 mean concentration for the Ulaanbaatar was 80–140 µg/m3 depending on 
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location [11], [12]. The associated health impacts are significant and, in the absence of strict 

emission controls, are projected to increase as the Ulaanbaatar’s population grows [13]. 

2.2.2 PM2.5 Low-Cost Sensor Devices 

Air quality low-cost sensor devices have been on the market for several years and the price can 

vary from $200 to more than $1000 depending on their features. Some of these sensors are 

specifically designed for indoor air quality measurements with a digital real time display and a 

user-friendly operating interface (e.g., AirVisual Pro, Laser Egg). Other sensors are designed 

with a more rugged casing for outdoor deployment (e.g., PurpleAir). Numerous studies have 

demonstrated dramatic differences in performance for PM2.5 concentrations reported by LCS 

devices and regulatory-grade air quality monitors [6], [7], [8], [14]. However, with proper 

operation and maintenance, the air quality data generated by these low-cost sensor devices can 

be educational and indicative for general audiences and can be useful for research projects [15], 

[16]. In comparison, the cost of regulatory grade monitors is usually $10,000 or more [17]. 

Studies seeking to assess PM spatiotemporal variability most often resort to LCS devices for cost 

control.  

2.2.3 LCS Devices Performance Evaluation 

Numerous studies in the literature demonstrate that LCS devices, like PurpleAir and AirVisual 

Pro [e.g. 18], can be used for air quality measurements and in some cases result in a near 

research grade dataset after proper adjustments based on regulatory monitors [8], [19]. Many 

studies illustrate the influence of ambient humidity and temperature on different LCS device 

reported PM2.5 concentrations compared to the regulatory monitors [17], [20], [21], [22], [23]. In 

this work, a LCS devices performance evaluation study was conducted in Bayankhongor (BKH), 
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a secondary city in Mongolia with population ~32,700 in 2023, and UB to assess which device(s) 

would be suitable for longer-term network deployments in the harsh Mongolian environment.  

2.3 Materials and Methods 

2.3.1 Performance Evaluation Pilot Study 

An LCS device pilot study was conducted in Mongolia during winter 2019-2020 with five 

objectives: 

1. Evaluate LCS devices operating performance outdoors for the extreme conditions of 

Mongolian wintertime. 

2. Compare LCS device PM2.5 concentrations to an FEM for outdoor measurements. 

3. Evaluate LCS device precision by placing identical devices side-by-side (collocation) both 

indoors and outdoors.  

5. Develop appropriate practices for using LCS devices in full-scale network deployments. 

This paper focuses only on the outdoor studies conducted in BKH. The tested devices include: 

Habitat Map AirBeam2 (AB2); Wicked Device Air Quality Egg (AQE, Outdoor Model); IQAir 

AirVisual Pro (AVP); Kaiterra Laser Egg (LE); and PurpleAir Model PA-II-SD (PA). Note that 

some of the devices have switched to different PM sensors after our study. 

A Beta Attenuation Monitor (BAM; MetOne Model 1020) PM2.5 FEM was installed at a 

monitoring station in BKH commissioned for this project.  Three LCS devices of each type were 

installed outdoors at this site for the collocation study. 

LCS device precision was evaluated using the triplicate devices, and LCS accuracy was 

evaluated by comparing concentration data to the FEM. All devices were operated with their 
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default configurations except the AirVisual Pro.  This device was a user-selected sampling 

frequency and was set to highest value (continuous operation) to evaluate performance at high 

time resolution. As described in the Supplemental Material, this approach led to rapid 

degradation of device performance. The remaining three devices were operated for another ten 

months to collect a full year of data. 

2.3.3 Data processing and calculations 

All LCS devices reported data to the respective manufacturer’s server through an Internet 

connection. Data were downloaded from the manufacturer’s data dashboards and imported into 

RStudio (R language program R.13) for further data analysis. All LCS devices output time series 

data between 1 to 5 mins depending on the sensor settings. These data were averaged over 1-

hour time intervals FEM time base. For the LCS devices, a data completeness criterion of 75% of 

raw values was required for the hourly average to be deemed valid. Daily (24-hour) averages 

were also compared because this is relevant for certain reporting such as the US EPA PM2.5 Air 

Quality Index (AQI). 

2.3.4 LCS Devices PM2.5 Data Adjustments 

The primary goal was to develop adjustment factors to render the LCS PM2.5 values as close to 

the FEM data as practicable. One LCS device of each type was chosen for these adjustments by 

selecting the LCS which most closely matched the central tendency across the three identical 

devices. An ordinary linear least squares regression against this “comparison” device was used to 

remove bias between the LCS devices of the same type. Relative humidity (RH) and temperature 

(T) dependence of the LCS bias compared to the FEM using the regression conducted with a 

yearlong dataset for three different LCS types. Because of data completeness issues, only 



 

17 

 

duplicate devices for each device type were included in this data adjustment analysis. Three 

different scenarios were considered for LCS data adjustments, first after obtaining the yearlong 

dataset for both LCS and the FEM BAM, a multivariable quadratic regression model was used to 

adjust the LCS data make it more reference like based on equation 2.1. 

 

Because of the distinct seasonal differences in Mongolian environmental conditions and aerosol 

properties, the yearlong dataset was then split into winter season and non-winter seasons. The 

non-winter seasons data were adjusted using the multivariable linear regression model shown in 

equation 2.2. 

 

Some authors reported challenges for LCS during dust events [24]. There is a dust season in 

Mongolia, and we operationally defined dust events as hours meeting the following criteria: (i) 

LCS/FEM PM2.5  0.4; and (ii) FEM PM2.5 > 50 g/m3. Dust event hours were removed from the 

datasets prior to performing the regressions. 

2.3.5 Performance metrics  

The performance of each LCS device was evaluated by using specific statistical measures against 

the FEM listed as follows: bias, mean absolute error (MAE), root mean square error (RMSE), 

and correlation coefficient (r). The scaled arithmetic difference and scaled relative difference 

were also used as a measure of bias across PM2.5 concentration ranges. The square root of 2 term 

in the denominator was not included in both formulas because we assumed the FEM is a “gold 
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standard” and all bias is assigned to the LCS devices. After developing the adjustment factors 

using a yearlong dataset, these factors were then applied to a new set of data from November to 

December 2020 for validation purposes. 

2.4 Results 

This section summarizes the pilot study results. First, the outdoor collocated LCS devices are 

compared with each other to assess the precision within each LCS type. Second, the quantitative 

performance of LCS devices is directly compared to the FEM monitor. Finally, the proposed 

adjustments for all LCS devices based on the FEM are developed and evaluated. 

2.4.1 Pilot study reference station measurements 

Five types of commercial LCS devices with triplicates of each device were deployed outdoors at 

the Bayankhongor air motoring station (“BKH/Shelter”) commissioned for this project. 

Measurements started in November 2019. The three collocated Laser Egg monitors failed early 

in the deployment under the cold temperature. This was expected because they are designed for 

indoor use and were included in the outdoor study because at that time, they were the only PM2.5 

LCS device with an in-country distributor. The remaining four device types operated 

continuously, even at extreme temperatures as low as -30 °C. 

Figure 2.1 shows hourly PM2.5 scattergrams for all collocated LCS device types for the period 

November 5 December 15, 2019. At the BKH station, ambient hourly temperature varied 

between -24 °C to +8 °C and Relative Humidity (RH) varied from 14% to 91% for this six-week 

period. Overall, the correlations among collocated sensors of the same type were strong 

(typically r > 0.95) with LCSs hourly PM2.5 concentrations ranging from 1 µg/m3 to 1450 µg/m3. 

Table 2.2 shows the grand average PM2.5 concentrations for all collocated LCS devices at BKH 
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station for the expanded time period of November 7, 2019, to February 27, 2020. Scaled 

differences (difference divided by the average) for each device type were PA (26%), AVP 

(24%), AB2 (20%), and AQE (22%). 

  

Figure 2.1 Scatter plot for intercomparing LCS collocated data at the Bayankhongor outdoor 

reference station from 06Nov2019-15Dec2019, each row represents a different LCS type. The 

solid diagonal line is the 1:1 line. 

 

Table 2.1 PM2.5 grand average concentrations (µg/m3) for triplicate LCS devices outdoors at 

BKH reference station, 07Nov2019-27Feb2020.  

Collocation 

Device 

PA AVP AB2 AQE 

1 99 79 53 110 
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2 86 76 65 113 

3 112 97 58 91 

Mean 99 84 59 104 

 

Figure 2.2 shows PM2.5 scattergrams for one of each LCS device type against the BAM FEM 

reference for all hourly data collected from November 7 to December 15, 2019. BAM PM2.5 

hourly concentrations range from 3 µg/m3 to 1120 µg/m3. Figure 2.3 shows the daily averages 

for each LCS device type against the BAM FEM for the same time period.  

 

Figure 2.2 Scattergrams for the low-cost sensor devices (one of each type) versus the BAM 

FEM, Bayankhongor outdoor hourly-average PM2.5 concentrations, 06Nov2019-15Dec2019.  

The solid diagonal line is the 1:1 line. 
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Figure 2.3 Scattergrams for the low-cost sensor devices (one of each type) versus the BAM 

FEM, Bayankhongor outdoor daily-average PM2.5 concentrations, 06Nov2019-015Dec2019.  

The solid diagonal line is the 1:1 line. 

2.4.2 Temperature and RH dependence 

The PA-to-BAM relationship was further evaluated by stratifying the hourly and daily average 

PM2.5 data by ambient temperature (Figure 2.4) and relative humidity (Figure 2.5). For the 

period from November 7, 2019, to March 21, 2020, the BKH station ambient temperature varied 

between -30 °C and +11 °C and RH varied from 6% to 91%. At high temperatures the PA bias 

was relatively higher while at low temperatures the PA bias was relatively lower (Figure 2.4, A).  

The opposite pattern was expected if the wintertime particles have a large semivolatile 

component that would be measured by the low-cost sensors but at least partially missed by the 

FEM because of its inlet line heater and the relatively warm temperature inside the shelter 

housing the BAM. This temperature-dependent bias is not observed in the daily average 
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concentrations (Figure 2.4, B) because of the range of temperatures experienced over a day.  The 

reason for the temperature dependence of the bias is currently unclear. At high RH values 

(Figure 2.5, A) the PA readings was more dispersed compared to RH around 25%, similar RH 

dependence was also observed for daily data (Figure 2.5, B). 

 

Figure 2.4 Hourly average (A) and daily average (B) PM2.5 from the Purple Air (PA) and FEM 

monitor (BAM) for the period 06Nov2019-20March2020. Data are color-coded by ambient 

temperature. 
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Figure 2.5 Hourly average (A) and daily average (B) PM2.5 from the Purple Air (PA) and FEM 

monitor (BAM) for the period 06Nov2019-20March2020. Data are color-coded by ambient 

relative humidity. 

The AQE-to-BAM temperature and RH dependence was also evaluated with hourly and daily 

average PM2.5 data. 

 

Figure 2.6 Hourly average (A) and daily average (B) PM2.5 from the Air Quality Egg (AQE) and 

FEM monitor (BAM) for the period 06Nov2019-20March2020. Data are color-coded by ambient 

temperature. 
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Figure 2.7A shows at higher RH, AQE is biased high compared to the FEM BAM while at 

lower RH the scatter is largely about the 1:1 line. Figure 2.7B more clearly shows the RH 

dependence of the LCS-to-FEM bias.  

 

Figure 2.7 Hourly (A) and daily average (B) PM2.5 from the Air Quality Egg (AQE) and 

reference monitor (BAM) for the period 06Nov2019-20March2020. Data are color-coded by 

ambient relative humidity. 

2.4.3 LCS PM2.5 adjustments using one year of hourly data (Nov-06-

2019~Nov-06-2020) 

In this data adjustment analysis, there were only three different LCS device types and each 

device type was in duplicate instead of triplicate because of data completeness issues. As 

previously described, an ordinary least squares regression was used to remove the PM2.5 bias 

between LCS devices of the same type. Subsequently, linear and quadratic regression models 

were used to develop adjustment factors for each device type to better match the FEM. Table 2.2 

presents the quadratic regression coefficients for the winter data (October to March) while Table 

2.3 presents the linear regression coefficients for the non-winter (April to September) data.  
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Table 2.2 Adjustment factors for the low-cost sensor devices for the winter season. 

Adjustment 

Coefficients 

PurpleAir 

#3 

Air Quality 

Egg #1 

Air Beam 2 

#1 

(Intercept) 7.986 16.6 13.749 

LCS PM2.5 0.5010 0.6254 1.9079 

LCS temp 1.2150 0.3707 0.5807 

LCS RH -0.0815 -0.3107 -0.3152 

(LCS PM2.5)
2 0.0001 -0.0001 0.0036 

(LCS temp)2 0.0593  0.0018 0.0143 

(LCS RH)2 0.0044 0.0045 0.0045 

LCS PM2.5*LCS temp -0.0071 -0.0183 0.0045 

LCS PM2.5*LCS RH -0.0046 -0.0035 -0.0166 

LCS temp*LCS RH -0.0021 0.0121 0.0063 
 

Table 2.3 Adjustment factors for the low-cost sensor devices for the non-winter seasons.   

Adjustment 

Coefficient 

PurpleAir #3 Air Quality Egg #1 Air Beam #1 

LCS PM2.5 0.6278 0.4964 2.0489 

LCS temp 0.5469 0.5964 0.6561 

LCS RH 0.0632 0.0384 0.0589 

 

Table 2.4 presents valued for the performance metrics recommended by U.S. EPA [25]: Pearson 

correlation coefficient (Corr), Low-cost sensor device to FEM monitor bias (Bias), Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), and Normalized Root Mean Square 

Error (NRMSE). 

Table 2.4 Assessment metrics with bias, MAE and RMSE all having units of µg/m3, NRMSE is 

in percentage. 

Metric 

PA  

Raw 

PA  

Adjusted 

AQE  

Raw 

AQE 

Adjusted 

AB2 

 Raw 

AB2 

 Adjusted 

Corr 0.93 0.95 0.89 0.90 0.91 0.94 

Bias -29 0.5 -17 0.7 23 0.04 

MAE 39 11 27 16 23 13 

RMSE 

NRMSE 

79 

179  

22 

50  

50 

103  

30 

61  

43 

92  

24 

51  
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2.5 Discussion and conclusions: 

Based on the results in section 2.4 all collocated LCS devices of the same type were highly 

correlated, and the scaled differences within each device type were less than 25%. PA, AVP and 

AQE were biased high and the AB2 was biased low compared to the BAM FEM. AB2 exhibits a 

dramatic reduction in response at high concentrations which is a problem if seeking to report 

hourly data. AQE data were closer to the BAM data, however, AQE have lower data 

completeness because communications to the Wi-Fi were periodically dropped. In both daily and 

hourly data comparisons PA, AQE and AB2 exhibit linear relationships; the issue with the AB2 

hourly data is damped out upon averaging over the day because of strong within-day PM2.5 

variations. 

The AB2, AQE, LE and PA devices all use low-cost sensors manufactured by Plantower. AQE 

and PA devices used Plantower version PMS5003, LE used Plantower version PMS3003 and 

AB2 used Plantower version PMS7003. The reported PM2.5 concentrations for all LCS brands 

were different to some extent and these differences may be caused by the version of Plantower 

sensors, how the manufacturer packages of the sensors into a device and, perhaps more 

importantly, how they processes the raw optical attenuation signal from Plantower sensor to 

estimate PM2.5 mass concentration. 

While the PA, AQE and AB2 relationships to the BAM were stable though March 20, 2020, the 

AVP relationship to the BAM drifted over time. Therefore, the collocation analysis was limited 

to the period November 7–December 5, 2019, which was prior to the onset of drift. The AVP 

concentration is biased high for early data and biased low for later data (i.e. after December 15, 

2019). One possible reason might be the sensors were contaminated from exposure to the high 



 

27 

 

wintertime outdoor PM levels. This should not be an issue for most indoor deployments where 

the concentrations are much lower.  Furthermore, for the purposes of assessing the quality of 

data generated by the LCS, the sampling mode for all AVP in this study was changed to 

continuous mode instead of the factory default mode. This continuous sampling greatly 

accelerated the contamination rate and for settings like Mongolia with high PM concentrations 

the continuous sampling would, in retrospect, be not recommended.  

Overall, the pilot study focused on evaluating PM2.5 LCS during the extreme wintertime 

conditions in Mongolia. Key observations are as follows:  

Outdoor Measurements 

1. Most LCS devices operated even at extremely low temperatures.  An exception was the 

Laser Egg and it is not designed for outdoor use.  This study did not test LCS devices at 

high temperature/high humidity conditions. 

2. PM2.5 concentrations for all LCS devices except the AirBeam2 were biased high 

compared to a US EPA Federal Equivalent Method (FEM) monitor.  A correction factor 

must be applied to make these data “reference like”.  The bias might depend on 

environmental conditions (e.g. temperature, humidity) and particulate matter properties 

(size distribution, composition) and these parameters often vary by season. 

3. PM2.5 concentrations reported by LCS devices of the same type varied by as much as 20-

30%. Therefore, the collocation before each network deployment is essential for 

understanding the unique characteristics of each sensor. 
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4. PM sensors can become contaminated when exposed to high concentrations for long time 

periods.   

We also have the following recommendations for deployments in general: 

A. LCS device selection should consider the study objectives.  Real-time reporting requires 

reliable Wi-Fi.  Other applications might place a higher priority on data completeness and 

in these cases LCS devices with on-board data storage are attractive. Sometimes this is an 

option (e.g. PA-II-SD, AQE) not included in the standard device configuration.   

B. Correction factors to make the LCS device data “reference monitor-like” will depend on 

environmental conditions and particle characteristics. Correction factors developed in 

one setting (e.g. Mongolia) should not be applied to other settings (e.g. hot, humid 

zones).  For the data collected to date, there is a temperature dependence to the Mongolia 

data. Studies in other locations have observed a relative humidity dependence. Any 

project with goals beyond a qualitative tracking of air quality should include steps to 

periodically compare the LCS devices to a reference monitor and develop and apply 

correction factors as needed.  
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Chapter 3: The influence of siting 

microenvironment on PM2.5 low-cost sensor 

device performance  

3.1 Abstract  

In recent years, the establishment of air quality low-cost sensor (LCS) monitoring networks has 

gained significant attention. The affordability of these LCS devices has empowered community 

groups and civil societies to enhance their understanding of local air quality conditions. 

However, our research indicates that the interpretation of data for these sensors may be 

confounded by the microenvironmental siting conditions that affect device performance. This 

paper provides a summary of our observations during the testing and deployment stages of 

particulate matter LCS devices. Our objective is to offer the public insights into issues that may 

arise when deploying these devices and that may lead to measurement bias. By addressing the 

nuances of LCS device placement, we aim to improve the utility and reliability of the data 

generated by these networks. 

3.2 Introduction 

A crucial aspect of ambient air monitoring with non-open path methods is to deliver a 

representative sample of the ambient air to the monitor’s sensing element. Much work has been 

invested to design and characterize the EPA Louvered PM10 inlet [1,2] which can be paired with 

a downstream cyclone or impactor to achieve a smaller particle size cutoff (e.g., PM1, PM2.5). 

EPA provides extensive criteria for locating air monitoring stations and for monitor probe (or 

sampler inlet) placement to minimize obstructions to air flow [3]. For example, PM 
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samplers/monitors for air standards compliance measurements and operating at 1.67 LPM flow 

rate are to be placed at least 2m horizontal distance from supporting structures and at least 10 m 

from trees. Collocated monitors with flow rate < 200 LPM must be within must be within 4 

meters of each other and at least 1 meter apart to avoid airflow interference. In contrast, low-cost 

sensor (LCS) devices typically have simplistic inlets (e.g., a small hole) and very low flow rate 

(e.g., ~0.1 LPM) and there are no published criteria for device placement other than on the 

prevailing upwind side of structures [4]. It is typically assumed that LCS devices can be placed 

within centimeters apart because of the very low flow rates. Indeed, best practices include 

collocating all PM LCS devices with a reference-grade monitor before deploying the devices as a 

distributed network [5] and the LCS devices are often tightly grouped for such studies. In this 

work, collocation studies were conducted with PM LCS devices arranged in different 

configurations to assess measurement bias that might arise from device placement and not the 

sensor’s actual performance.  

3.3 Material and Methods 

Collocated PurpleAir SD-II PM LCS devices were deployed in two configurations to assess how 

obstructions (e.g., a mounting board for the devices, and devices close to each other), might 

affect air flow and lead to biased PM2.5 measurements. These deployments were conducted at 

State/Local/Tribal (SLT) air monitoring stations with PM2.5 Federal Equivalent Method (FEM) 

monitors and on-site meteorology measurements including wind speed and direction at 10 m. 

3.3.1 Blair Street (City of St. Louis) collocation 

At the Missouri Department of Natural Resources (MDNR) Blair Street station in the City of St. 

Louis, ten PurpleAir devices were collocated with a PM2.5 FEM (Teledyne Model T640) to 



 

34 

 

quantify LCS precision and derive LCS-to-FEM adjustment factors. The devices were deployed 

atop a shelter and mounted on both sides of a wood board suspended by a post ~1.5 m above the 

shelter roof (Figure 3.1). Each side of the board had five devices for the collocation study and 

one additional long-term device operating at the site year-round. The St. Louis collocation was 

conducted from January 22 to March 15, 2021. Subsequently, the ten collocation devices were 

moved to the Louisville Metropolitan Air Pollution Control District (LMAPCD) Canon’s Lane 

station in the City of Louisville (KY) and deployed in the configuration shown in Figure 3.2. 

Again, the devices were mounted on a wood board suspended by a post ~0.5 m above the shelter 

roof. The Louisville study was conducted from April 13 to June 2, 2021.  

TOP VIEW 

Figure 3.1 PurpleAir SA-II device collocation study layout in St. Louis, MO. 

Figure 3.2 PurpleAir SA-II device collocation study layout in Louisville, KY. 
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PurpleAir raw data is reported at two-minute intervals and was averaged to hourly values.  One-

hour average winds data for the St. Louis site were provided by MDNR as scalar mean wind 

speed and vector mean wind direction.  

3.4 Results 

3.4.1 St. Louis and Louisville Collocation Results 

The initial collocation of ten PurpleAir devices at the Blair Street reference site alongside a 

PM2.5 FEM was aimed at developing adjustment factors to better match the LCS devices data to 

the FEM data. Figure 3.3 shows PM2.5 hourly average scattergrams for the ten PurpleAir devices 

against the FEM. The panels are organized according to the layout in Figure 

3.1.

 

Figure 3.3 PurpleAir vs. Teledyne T640 FEM PM2.5 data for the St. Louis collocation study. 

Differences in performance metrics, such as the precision of collocated LCS data and slopes for 

ordinary least squares regression of the LCS on T640 FEM, were observed between sensors 

deployed on different sides of the wood board. Sensors in Group 1 (top row in Figure 3.1) 

exhibited generally higher regression slopes in comparison to the FEM, indicating a bias of 
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approximately 20% higher than Group 2 devices (bottom row in Figure 3.1). Furthermore, Group 

1 devices demonstrated greater collocated precision than those in Group 2. These differences 

were more pronounced than initially anticipated, underscoring the influence of sensor 

microenvironment on LCS performance.  

Figure 3.4 shows hourly PM2.5 scattergram matrices for the St. Louis (left) and Louisville (right) 

deployments. LCS device layout profoundly affects the scatter. The St. Louis data clusters into 

two groups of five devices with excellent agreement across devices on the same side of the 

mounting board and large scatter for devices on different sides of the board. In contrast, the 

Louisville study features all ten devices in a single row and exhibits excellent agreement across 

all devices. Without a detailed understanding of the drivers for these differences, the scatter in 

the St. Louis study data might be incorrectly attributed to the LCS devicess. These findings also 

suggest that similar issues might arise during network deployments depending on the 

microenvironment around each LCS device. 
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Figure 3.4 PurpleAir 1-hour PM2.5 scatterplots for different device deployment layouts at St. 

Louis and Louisville sites, all axis ranges are 0-40 µg/m3. 
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The St. Louis study data were further analyzed by assessing the role of wind speed and wind 

direction. Hourly mean scalar wind speed data were aggregated into four groups: #1 (0-3 MPH), 

#2 (3-6 MPH), #3 (6-9 MPH), and #4 (9-12 MPH). Hourly vector mean wind direction was 

aggregated into two groups: North-South (315°~45° and 135°~225°) and East-West (45°~135° 

and 225°~315°). The mounting board is nominally oriented in the East-West direction so North-

South winds are perpendicular to the board and East-West winds are parallel to the board. One 

PurpleAir device was selected from each side of the board and hourly PM2.5 data were compared. 

Figure 3.5 demonstrates the results for all winds direction with color coded wind speed. There is 

excellent agreement at low winds speeds (blue) and increased bias between the data with 

increasing wind speed. The data are well distributed about the 1:1 line (i.e. litte overall bias), and 

this wind speed induced scatter might be incorrectly charcterized as sensor imprecision in the 

absense of  considering the role of wind speed. 

 

Figure 3.5 (a) Hourly PurpleAir PM2.5 data color coded based on wind speed in MPH (left) from 

selected sensors in each group, (b) top view of PurpleAir sensor deployment and indicated 

groups based on direction (right). 
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Figure 3.6 (left) shows the results for data stratified by north versus south wind directions.  For 

winds from the north (red), PM2.5 concentrations are biased high for the device on the downwind 

(south) side of the board. Similarly, for winds from the south (aqua), PM2.5 concentrations are 

biased high for the device on the downwind (north) side of the board.  Figure 3.6 (right) exhibits 

similar patterns east and west winds albeit with less scatter; this likely arises because the board is 

not perfectly aligned with the cardinal wind direction also might due to the data stratified by east 

and west wind angle includes a wide range of directions.  

 

Figure 3.6 Group 1 and 2 sensor PM2.5 comparison for data grouped by wind directions: winds 

nominally perpendicular to the mounting board (left) and winds nominally parallel to the 

mounting board (right) from 0.1 to 12 mph. 

The study further delved into the interplay between wind direction and LCS device performance 

by examining responses under two distinct wind speed regimes: Wind Speed range #1 (0.2~3 

mph) and Wind Speed range #3 (6~9 mph). As illustrated in Figure 3.7, within the North-South 

wind direction subset, LCS devices from both groups exhibited remarkable concordance at lower 

wind speeds (Wind Speed #1), indicating a high level of agreement in measurements despite 

differing orientations. This consistency suggests minimal influence of low wind speeds on sensor 
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discrepancies. Conversely, as wind speeds increased to the Wind Speed #3 category, the data 

began to reveal distinct divergences in sensor output, manifesting as splits in the measurement 

slopes that are stratified by wind direction. This divergence highlights the critical need for 

considering both wind speed and direction in sensor deployment and data interpretation 

especially in cases when the microenvironment about the device influences 

airflow.

 

Figure 3.7 Group 1, 2 comparisons under low (0.2~3 mph) (left) and high(6~9mph) (right) wind 

speed for North and South wind direction only. 

For conditions involving crosswinds (North-South), particularly when wind speeds range from 6 

to 12 mph, the scattergrams comparing sensors from the two groups begin to diverge, forming 

distinct slopes. Specifically, under northerly wind conditions, Group 2 sensors exhibit a higher 

bias compared to Group 1 sensors, whereas under southerly winds, the opposite trend is 

observed, with Group 1 sensors showing a higher bias compared to Group 2. These disparities 

highlight significant sensor-to-sensor biases, which pose challenges during the sensor adjustment 

phases. Conversely, under East-West wind conditions in Figure 3.8, calm winds demonstrate a 

excellent correlation between each sensor group, but as wind speed increases, the data show 
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slope variations with different wind directions. However, the deviations observed under East-

West conditions are not as pronounced as those under North-South wind conditions. 

 

Figure 3.8 Group 1, 2 comparisons under low (0.1~3 mph) (left) and high (6~9 mph) (right) 

wind speed for East and West wind direction only. 

Further analysis of sensor performance, in relation to the reference monitor T640 at the Blair 

Street reference site, was conducted under varying meteorological conditions. Data from one 

sensor in Group 1 were plotted against the reference monitor for both North-South and East-

West wind directions (Figure 3.9), and similarly, data from a Group 2 sensor were plotted 

(Figure 3.10). The Group 2 sensor shows clear wind direction dependance on LCS PM2.5 

compared to reference monitor for NS wind directions.  
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Figure 3.9 Group 1 sensor compared to T640 data color coded based on wind directions. 

 

Figure 3.10 Group 2 sensor compared to T640 data color coded based on wind directions. 

This detailed examination underscores the critical influence of meteorological conditions, 

especially wind direction and speed, on the performance and reliability of low-cost air quality 

devices when the microenvironment affect airflow near the device inlet. These findings suggest 

that sensor deployment strategies, as well as calibration and adjustment methodologies, must 

account for microenvironmental effects to enhance the precision and applicability of air quality 

monitoring efforts. 
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3.5 Conclusions and discussions 

Our investigation into the deployment and performance of PurpleAir LCS devices at multiple 

sites reveals several key findings: 

Siting and Configuration Impact: The performance of LCS devices is significantly influenced 

by their microenvironment (e.g., layout configuration for collocated devices). This was evident 

from the variation in data accuracy between sensors deployed on different sides of a wood board 

at the Blair Street site, as well as the comparison between the St. Louis and Louisville 

deployment layouts. Such discrepancies highlight the need for standardized siting criteria to 

minimize biases and improve the comparability of data across different locations. 

Meteorological Dependencies: The analysis underscored the dependency of LCS measurements 

on meteorological conditions, particularly wind speed and direction, when there are 

microenvironmental siting influences. This dependency manifests in the stratification of PM 

when comparing across devices, where different wind conditions resulted in divergent sensor 

readings. The findings demonstrate that the extent of biases induced by LCS device layout 

depends on the meteorological conditions. 

Perceived Sensor-to-Sensor Variability: Despite being of the same model and make, 

significant sensor-to-sensor imprecision was observed because of microenvironmental 

influences. The true sensor-to-sensor imprecision was relatively small as observed during calm 

winds. 

The deployment of LCSs for air quality monitoring has democratized access to environmental 

data, enabling communities to identify and respond to pollution sources with unprecedented 

granularity. However, this study highlights the critical need for establishing robust guidelines for 
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sensor siting, configuration, and data interpretation to leverage fully the potential of these 

technologies. It is imperative for future deployments to consider the effects of 

microenvironmental siting on sensor performance to ensure data accuracy and reliability. 

To mitigate the identified challenges, we recommend the following: 

Development of Standardized Siting Criteria: Collaborative efforts between sensor 

manufacturers, environmental scientists, and regulatory bodies should aim to establish 

comprehensive guidelines for LCS deployment. These criteria should account for local 

environmental characteristics, potential sources of air pollution, and meteorological conditions. 

Enhanced Sensor Calibration Protocols: Prior to deployment, LCSs should undergo rigorous 

calibration against reference-grade monitors in conditions that closely mimic their intended 

deployment environment. Additionally, periodic recalibration should be considered to account 

for sensor drift and other environmental factors that may affect sensor accuracy over time. 

Public Engagement and Education: Engaging with the community and educating the public 

about the nuances of LCS data interpretation can enhance the impact of community-based air 

quality monitoring projects. Transparent communication about the strengths and limitations of 

LCS data can foster informed decision-making and community action on air quality issues. 

Looking ahead, the integration of advanced data analytics and machine learning models presents 

an opportunity to refine LCS data interpretation further, potentially compensating for the effects 

of variable siting and environmental factors. Continued research and development in sensor 

technology, alongside efforts to standardize data collection and analysis protocols, will be critical 

in advancing the field of air quality monitoring. 



 

45 

 

In conclusion, while low-cost air quality sensors offer a promising tool for community-based 

environmental monitoring, their effective deployment requires careful consideration of siting, 

environmental factors, and calibration. By addressing these challenges, we can improve the 

accuracy and reliability of LCS data, empowering communities to take informed action towards 

improving air quality and public health. 
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Chapter 4: Winter PM2.5 indoor levels in 

Mongolian kindergartens 

This work was funded by UNICEF Mongolia (PD Ref. No. MGLA/2880/2019/002-PC). 

4.1 Abstract 

Mongolia’s population centers experience poor wintertime air quality because the cold climate 

drives strong ground-level inversions and solid carbon fuels are pervasively used for distributed 

residential space heating. Infiltration of the poor-quality ambient air leads to high indoor PM2.5 

exposure, especially for those who live or study in or near the “ger” (yurt) neighborhoods that 

surround Ulaanbaatar’s urban core.  While the air quality in the core, which has distributed 

central heating, is relatively poor, it is much worse in the surrounding ger areas, where the 

dwellings are individually heated by coal burning stoves   In a partnership between UNICEF and 

Washington University in St. Louis, a two-year monitoring study was conducted to quantitatively 

evaluate Mongolian indoor air quality, with a focus on children’s exposure inside kindergartens 

and hospitals in the Bayanzurkh District of Ulaanbaatar. A 28-site network of air sensors, 

deployed in February 2020 and operated through spring 2022, included 24 kindergartens and 4 

healthcare facilities, where AirVisual Pro low-cost sensing devices (IQAir, Goldach, 

Switzerland) assessed the indoor PM2.5 and CO2 concentrations. A subset of four sites also had 

PurpleAir PM devices outdoors (PurpleAir Inc., Draper, Utah). Adjustments factors for the 

AirVisual Pro and PurpleAir sensor, and others, were developed from a winter 2019/2020 
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outdoor pilot study in Bayankhongor, Mongolia, that included collocation with a MetOne Model 

2010 Beta Attenuation Monitor (BAM).  

In the Bayanzurkh District, kindergarten indoor concentrations were highest in and near the ger 

areas. Across the District, large variations of indoor concentrations were sometimes observed 

over relatively small spatial scales. Indoor air quality and detailed building characteristics data 

were paired with land use characteristics to generate an indoor-focused land use regression 

model that helped predict indoor PM2.5 concentrations for kindergartens that did not have a 

monitoring sensor. Here, we report the measured indoor and outdoor PM2.5 spatiotemporal 

variability results across the networks and discuss their application in the land use regression 

model for predicting the air quality inside kindergartens without sensors.  

4.2 Introduction 

4.2.1 Mongolian air quality 

Air pollution is a major contributor to human mortality caused by environmental factors[1], [2], 

[3], [4]. Because of its impact on human health, particulate matter less than 2.5 micrometers in 

aerodynamic diameter (PM2.5) is classified as an especially harmful air pollutant globally. PM2.5 

can enter the pulmonary alveoli during the air exchange process and spread through the human 

body to damage other areas[1], [5]. The composition of PM2.5 can vary with the emission source 

and local environmental conditions; some of the major sources include biomass burning, 

incomplete fuel combustion, transportation, and residential cooking[6]. Health effects such as 

pulmonary disease, cardiovascular disease, premature death, and increased risk of cancer are 

related to air pollution and, more specifically, to PM2.5[7], [8], [9]. 
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Mongolia is one of the coldest countries in the world:  the wintertime temperature can drop to as 

low as -40 °C in Ulaanbaatar, the capitol city of Mongolia[10]. In Mongolia, pollution by PM2.5 

is especially high in the winter and the dust season that follows winter. Because most 

Mongolians have traditional nomadic lifestyles, they live in gers, a yurt that is easily relocated 

several times during the three grazing seasons. In the winter, the heating systems in the 

individual gers in the neighborhoods outside the core of Ulaanbaatar use coal and other solid 

fuels as a primary combustion source, which creates high particulate matter emissions. The 

Mongolian National Agency for Meteorology and Environment Monitoring (NAMEM) reports 

that, in the winter of 2017, the mean concentration of particulate matter in urban centers was 

between 80–140 µg/m3 [11], [12]. The associated health impacts for example respiratory 

infections and premature death and, in the absence of strict emission controls, are projected to 

increase as Ulaanbaatar’s population grows[13]. 

4.2.2 The effect of Mongolian indoor air quality on children’s health 

In September 2019, the United Nations Children’s Fund (UNICEF) and Washington University 

in St. Louis (WUSTL) entered into a Program Cooperation Agreement to support an existing air 

pollution study administered by UNICEF Mongolia. The specific goals of this project are to 

develop and operationalize an ambient air quality monitoring network in Bayankhongor (BKH) 

and to deploy indoor air quality monitoring systems for kindergartens and health care facilities in 

both BKH and Ulaanbaatar (UB). This study has three broader objectives:  to help local 

government, UNICEF and the public better understand the air pollution problem; to guide 

researchers in selecting suitable sensors for their studies; and to inform and motivate the public 

to act to reduce air pollution. 
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4.2.3 Indoor LCS PM2.5 network with land use regression (LUR) prediction 

Most current research categorizes indoor PM2.5 sources into  indoor-generated emissions and 

outdoor infiltrations[14], [15], [16]. Indoor-generated PM primarily originates from activities 

such as cooking, cleaning, smoking, and incense burning [15], [16]. Conversely, outdoor air 

pollution contributes to indoor PM2.5 levels through infiltration and ventilation processes, 

particularly when outdoor concentrations significantly exceed indoor levels, as observed in 

Mongolia's winter conditions [17]. 

Using networks of air quality sensors has become a prevalent method for comprehending spatial 

variations in ambient PM2.5 within specific areas [18], [19].  Cheap, laser-based, low-cost sensors 

facilitate the assessment of hyperlocal PM2.5 variability, supplementing city-scale monitoring 

efforts. Moreover, they provide direct insights into individuals' exposure to indoor PM, 

particularly in environments such as kindergartens or schools, which typically lack indoor 

emission sources. In such settings, indoor PM2.5 monitoring can be directly correlated with 

outdoor PM concentrations after accounting for local meteorological conditions and building 

characteristics. 

Land use regression (LUR) modeling is widely recognized as a valuable technique for generating 

surface air pollution  maps, enabling the prediction of pollutant concentrations based on limited 

ground measurements and surrounding emission sources [18], [20], [21], [22]. As demonstrated 

by Briggs et al. in their LUR modeling work on predicting air quality, this empirical approach is 

inherently area-specific, necessitating tailored models to capture the spatial heterogeneity of 

pollutant distributions [23]. 
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This study presents an innovative approach to estimating indoor PM concentrations within 

kindergartens lacking indoor monitors. It leverages indoor low-cost sensor measurements 

collected in similar environments and integrates the LUR methodology with additional building 

characteristics as predictors. Through this novel approach, the study aims to showcase the 

efficacy of estimating indoor PM concentrations. 

The findings of this study can significantly contribute to the field, aiding researchers in achieving 

more accurate estimates of indoor exposure to PM2.5. Moreover, these insights could enhance 

epidemiological research by providing a more comprehensive understanding of indoor air quality 

dynamics and their implications for human health. 

4.3 Material and Methods 

4.3.1 Study area 

Two areas within Mongolia were selected as the focal points of the sensor network investigation: 

Bayankhongor (BKH), a remote city, and Ulaanbaatar (UB), the capital city.  Bayankhongor, 

situated approximately 650 km southwest of Ulaanbaatar, encompasses an urban area of 64 km2
, 

with a population of 32,500 as of 2021. In contrast, Ulaanbaatar, the capital, spans an area of 

4,700 km2 and has a population of 1.5 million (source: 

https://www.citypopulation.de/en/mongolia/cities/ ). Both cities grapple with severe winter air 

pollution, primarily attributed to the combustion of coal for residential heating and cooking. 

Ulaanbaatar, a major urban center, exhibits a notably more intricate array of pollution sources 

than Bayankhongor, yet coal burning is still the predominant contributor to its winter air 

pollution. 

https://www.citypopulation.de/en/mongolia/cities/
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4.3.2 Air quality data sampling 

We employed Purple Air and AirVisual Pro sensors for both outdoor and indoor PM2.5 

monitoring networks deployed in UB and BKH[24], [25], [26], [27], [28]. Both LCSs operate on 

similar light scattering principles, but differ in their features. Purple Air sensors feature a rigid 

casing suitable for long-term outdoor deployment under harsh conditions, while AirVisual Pro 

sensors offer a screen display showing real-time PM2.5 and CO2 concentrations, which is 

particularly useful for indoor monitoring. Purple Air utilizes two Plantower Particle sensors, 

PMS5003, capable of measuring ambient PM2.5. To identify spatial and temporal variabilities of 

PM2.5 in BKH, a network of outdoor network sensors was deployed in early February of 2020. 

To quantify UB kindergarten children’s exposure to PM2.5 and high concentrations of CO2, as 

well as measure temperature and relative humidity, network of AirVisual Pro sensors, equipped 

with a light scattering particle sensor and an IR CO2 sensor, was also deployed inside classrooms 

in early February of 2020. Each kindergarten room was assigned a unique identification number, 

e.g., “KG167”, which was the same as the school’s government-assigned name. 

The last data was retrieved of February 2022, yielding two years of continuous LCS indoor 

monitoring data inside kindergartens. By this time it had become apparent that the extreme 

winter cold had damaged the onboard SD data storage cards of the outdoor PurpleAir sensors, 

and that intermittent wi-fi had compromised the continuity of the data, so we turned our attention 

to the kindergarten indoor data. Data generated from LCS were utilized to better understand the 

dynamics of the 24 kindergarten buildings and human activities inside the classrooms. PM2.5 

measured by LCS served as the dependent variable for the land use regression (LUR) model, 

which will be discussed in later sections.   
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To make sure LCS could be intercompared with each other, 10 additional outdoor AVP sensors 

were collocated with our reference BAM instrument at BKH, and adjustment factors based on 

linear regressions were generated for each sensor to remove bias between the LCS and the 

reference monitor. The 10 AVP sensors were then distributed into the UB kindergarten LCS 

network, where sensor-specific adjustments to the LCSs in the indoor network fine-tuned the 

accuracy of the collected data.  

The average PM2.5 indoor concentrations for winter 2021 and 2022 were used as the winter PM2.5 

average dependent variable for the LUR model. To more accurately estimate children’s exposure 

to indoor PM2.5 inside kindergartens, the average data included only 8 to 17 hours, representing 

school operation hours on weekdays, excluding holidays. Due to outdoor air infiltration, During 

the winter of 2021, the kindergarten was closed due to COVID-19, so data from that period 

reflect solely PM2.5 from outside infiltrating the room. Winter 2022 data, however, reflected 

resumed indoor operations post-COVID-19 restrictions, including potential ventilation such as 

opening doors and windows. KG167 winter 2021 data and KG210 winter 2022 data were 

excluded due to sensor failure. 

4.3.3 Auxiliary databases for the land use regression prediction 

To predict indoor PM2.5 concentrations, the land use regression model employed in this study 

relied on the local environmental characteristics of Ulaanbaatar and considered specific building 

characteristics. This modeling approach assumed that kindergartens lack significant indoor air 

pollution sources, and thus indoor PM2.5 concentrations primarily reflected outdoor PM2.5 levels, 

adjusted for building characteristics to account for infiltration. 
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Shapefiles for main roads, kindergarten locations for the year 2019, medium-sized heat-only 

boiler locations, and UB restaurant locations were provided by colleagues from Public Lab 

Mongolia (PLM). Additionally, the number of gers within the study area in 2022 was manually 

counted using satellite imagery from Google Earth. Information regarding traffic signals and 

crossings, gas stations, parking lots, and local roads was obtained from OpenStreetMap (2023) 

(source: https://www.openstreetmap.org/ ). 

For the indoor monitoring location within each kindergarten, ArcGIS Pro 3.0 (ESRI, Redlands, 

CA) was utilized to calculate proximity variables by determining the distances to main roads, the 

city center, medium-sized heat-only boiler locations, traffic signals and crossings, UB restaurant 

locations, and gas stations and parking lots. Cumulative occurrence variables were also 

computed using ArcGIS Pro by creating buffers ranging from 100 m to 1000 m, with 100-meter 

increments. Within each buffer zone, these cumulative occurrence variables encompassed counts 

of gers, medium-sized heat-only boilers, traffic signals and crossings, UB restaurants, the total 

road length, and the total number of areas with a gas station or a parking lot. 

Building characteristic data were collected through a survey conducted by a consulting firm in 

Mongolia (NEWCON LLC, Mongolia). Based on the survey results, categorical variables were 

created as predictors for the land use regression model, including building types and heating 

methods. The combination of proximity and cumulative occurrence variables resulted in a total 

of 94 independent variables. 

4.3.4 Variable selections and model validation 

All land use regression analyses, including variable selection, were conducted using R for 

Windows, version 4.3.0. Because the initial model comprised 94 independent variables and high 

https://www.openstreetmap.org/
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collinearity expected among predictors, a Pearson correlation matrix was calculated. Pairs of 

predictors exhibiting the highest correlation were then removed in a stepwise process. 

Subsequently, the correlation of each predictor with the dependent variable was assessed, and 

predictors with lower correlations were systematically removed. This process was iterated until a 

feasible model, comprising 20 variables, was obtained from the initial set of 94 independent 

variables. 

To determine the final combination of predictors explaining the most variance in PM2.5 

concentrations, forward stepwise variable selection was employed using the "step ()" function 

from the stats package in R (source: https://search.r-

project.org/CRAN/refmans/emdi/html/step.html ). The resulting combination of predictors was 

evaluated based on the adjusted R-squared value. 

Two separate land use regression models were constructed for the winters of 2021 and 2022. The 

final models were validated using the leave-one-out cross-validation (LOOCV) method, 

considering the limited sample size. For the winter 2021 model, validation was conducted with 

21 sites, with KG 167 removed for sensor failure, and for the winter 2022 model, it was 

performed with 21 sites, with KG 210 removed for sensor failure. Results of the cross-validation 

process are presented in the Results section. 

https://search.r-project.org/CRAN/refmans/emdi/html/step.html
https://search.r-project.org/CRAN/refmans/emdi/html/step.html
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4.4 Results 

4.4.1 Spatial variation PM2.5 findings from indoor LCS networks Bayanzurkh 

(BZD) 

Figure 4.1 shows all the indoor monitoring sites, with their specific kindergarten labels. 

 

Figure 4.1 BZD:  Indoor monitoring sites at 24 kindergartens (and four healthcare facilities not 

discussed here). 

Figure 4.2 shows the winter indoor average PM2.5 concentrations for two consecutive winters.  

Measurement data are from November to February of 2020-21 and 2021-22. Each circle 

represents a location shown in Figure 4.1, and the size of the circle is proportional to the actual 

PM2.5 concentration. The average concentration includes hourly data only from 8 a.m. to 5 p.m., 
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the assumed hours of the kindergarten’s operation. The circle colors, the same as those used by 

the US Air Quality Index (US AQI), show similar spatial variations of PM2.5 concentration for 

the two winters. 
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Figure 4.2 Bayanzurkh district (Ulaanbaatar) indoor winter average PM2.5 (Nov 

2020~Feb 2021 and Nov 2021~Feb 2022) 
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4.4.2 Land use regression model            

The final land use regression (LUR) model for winter 2021 was constructed using forward 

stepwise selection with the dependent variable (Y) as the winter averaged PM2.5 indoor 

concentration measurements from indoor AirVisual Pro sensors. After selecting the independent 

variables, the remaining variables are the manual ger counts within a 1000 m buffer, the total 

distance of road within a 300 m buffer, and inverse of each kindergarten’s distance from the 

nearest mid-sized heat-only boilers. 

Table 4.1 shows the detailed coefficients for the model, with the standard error, t-value, p-value 

(Pr(>|t|)), and variance inflation factor (VIF). The winter 2021 LUR model shows that all 

remaining coefficients are statistically significant, based on their p-values, and all VIF values are 

smaller than 5, which shows there is no multicollinearity within the independent variables. 

Table 4.1 Winter 2021 LUR, detailed information about independent variables 

Independent 

variables 

Name 

code 

Estimate Std. 

Error 

t value P value VIF 

Intercept - -3.09e+1 2.30e+1 -1.34 0.19 - 

Ger counts Ger1000 3.69e-2 1.11e-2 3.33 <<0.05 1.41 

Total distance 

of road within 

300m 

Roads300 8.58e-3 3.87e-3 2.22 0.04 1.02 

Proximity to 

HOB 

NEAR_H

OB 

1.19e+3 5.97e+2 1.99 0.06 1.42 
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Due to COVID restrictions, winter 2021 PM2.5 measurements do not reflect activities inside the 

kindergartens. In contrast, the winter 2022 PM2.5 measurements were collected after COVID 

restrictions were lifted, and they reflect normal kindergarten operations. 

The LUR model for winter 2022 was also constructed using forward stepwise selection. Its five 

independent variables include the manual ger counts within a 900 m buffer, the total road length 

within a 300 m buffer, the number of medium sized HOBs within a 600 m buffer, the 

kindergarten’s heating method (boiler), and its proximity to the nearest traffic signal or crossing. 

All predictors are statistically significant based on their p values much small than 0.05 except the 

inverse distance to the nearest traffic signal or crossing with a p value of 0.058. Table 4.2 shows 

the detailed LUR model results, including coefficient values for the winter 2022 model. 

Table 4.2 Winter 2022 LUR, detailed information about independent variables 

Independent 

variables 

Name code Estimate Std. 

Error 

t value P value VIF 

Intercept - -1.22e+1 1.55e+1 -0.79 0.44 - 

Ger counts Ger900 3.61e-2 6.62e-3 5.44 <<0.05 1.16 

Total distance 

of roads 

within 300m 

Roads300 8.86e-3 2.36e-3 3.75 <<0.05 1.09 

Medium size 

HOB counts 

with 600m 

MediumHO

B600 

7.59 2.56 2.97 <<0.05 1.31 

Categorical 

variable Boiler 

boiler -2.71e+1 8.23 -3.29 <<0.05 1.45 

Proximity to 

the nearest 

traffic signal  

NEAR_traffi

c_signal_or 

crossing 

-1.11e+3 5.43e+2 -2.05 0.058 1.32 
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4.4.3 Model performance evaluation and model validation 

Each model’s performance was evaluated based on statistical metrics that had been previously 

implemented in other studies for LUR modeling, as discussed in the Introduction. Because of the 

relatively small dataset, the model validation used leave-one-out-cross-validation (LOOCV). 

Statistical metrics for performance evaluation included the determination coefficient (R2), 

residual standard error (RSE), adjusted R2, and mean absolute error (MAE). Table 4.3 gives 

detailed information about both full model’s performances and the LOOCV validation 

performance. The performance metrics for both LUR models yielded 0.88 and 0.95 as the 

adjusted R2 values for winter 2021 and 2022 respectively. The winter 2021 validation shows the 

model is sensitive to the cross validation, based on the lower R2 value from LOOCV. The winter 

2022 LUR model is comparably more robust, based on the LOOCV results. Both models have p-

values that are much smaller than 0.05 indicating they are both significant. 

Table 4.3 Detailed information for the LUR models and the LOOCV procedure 

Winter- 

based LUR 

LUR Model LOOCV 

RSE R2 Adjusted R2 P-Value R2 RMSE MAE 

Winter 2021 25.82 0.66 0.60 <<0.05 0.51 27.87 19.42 

Winter 2022 14.79 0.84 0.79 <<0.05 0.72 16.76 12.19 
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Figure 4.3 shows observed and predicted values of the LUR models for winter 2021 and winter 

2022. Both winter models have similar scattering along the 1:1 line, and, compared to winter 

2022, winter 2021 had higher indoor PM2.5 concentrations for the extreme values. 

4.5 Discussion 

The findings of this study underscore the unusual challenges posed by air pollution in 

Ulaanbaatar, Mongolia, where winter PM2.5 concentrations are significantly elevated due to 

traditional heating practices, predominantly coal combustion in the ger areas. The extreme cold 

exacerbates the issue by trapping fine particulate matter within the city's shallow mixing layer, 

prolonging exposure to high PM2.5 concentrations, especially in residential areas, where most 

particles are emitted. 

Figure 4.3 Scattergram of indoor PM2.5 predictions versus observations using LUR for winter 
2021 and winter 2022 PM2.5 averaged data. 
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Our study utilized low-cost sensor (LCS) networks to characterize PM2.5 concentrations both 

indoors and outdoors, providing insights into spatial and temporal variations at hyperlocal scales. 

Additionally, we employed land use regression (LUR) models to predict indoor PM2.5 

concentrations, particularly in areas where indoor levels are primarily influenced by outdoor 

infiltrations and air exchange. 

A notable aspect of our research is the differences between winters 2021 and 2022, which were 

caused by COVID-19 restrictions. These restrictions led to changes in building operation, 

resulting in two distinct LUR models. Based on its model performance and LOOCV method 

results, the winter 2021 model is more sensitive, reflecting the reduced traffic and other activity 

changes during the COVID lockdown.  Despite this sensitivity, the 2021 model is not suitable for 

predicting indoor PM2.5 level in normal times. 

On the other hand, the winter 2022 LUR model is a valuable tool for qualitatively assessing 

children's exposure to indoor PM2.5 in Ulaanbaatar during future winter months. By identifying 

locations with immediate needs for improved indoor air quality, our research can contribute to 

providing a healthier environment for future generations. 

In conclusion, this study sheds light on the intricate dynamics of air pollution in Ulaanbaatar, 

emphasizing the need for targeted interventions to mitigate its adverse effects on public health. 

Moving forward, continued monitoring and assessment efforts are essential for devising effective 

strategies to improve air quality and safeguard the well-being of the population. 
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Chapter 5: The effects of vegetation planted 

along highway noise wall barriers on 

downwind ultrafine particle concentrations 

This work was funded by the Green Heart Louisville project (NIH R01 ES029846-01) and the 

University of Louisville Superfund Research Center (NIH 2P42ES023716). Field measurements 

were supported by Maryssa Loehr, Tyler Cargill, Yan He and Xuan Liu (Washington University 

in St. Louis). 

5.1 Abstract  

Computational fluid dynamics modeling suggests vegetation barriers–alone or in tandem with 

noise barriers–can reduce ultrafine particle (UFP) concentrations downwind of major roadways. 

Prior measurement studies provide limited evidence for UFP reductions, and more studies are 

needed to establish a firmer scientific basis for the design and implementation of engineered 

vegetation barriers. To examine the relationship between urban vegetation and cardiovascular 

health, the Green Heart Louisville project planted an extensive green belt in a Louisville, KY, 

neighborhood. Vegetation barrier were installed adjacent to both sides of concrete noise barriers 

lining a limited access highway bisecting the study area. After about six month, a series of multi-

day field campaigns measured ultrafine particle (UFP) number concentrations in the study area, 

establishing a baseline value for the neighborhood’s exposure.  Over each multi-day period, 

typically three vehicles equipped with mixing condensation particle counters (MCPC, a 

vibration-stabilized version of the Brechtel Model 1720) were used to conduct short-term 

stationary monitoring on roads just outside the vegetation barriers/noise wall. We operationally 
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defined the UFP concentration as the total particle number concentration measured by the 

MCPC. During one period, 3-D wind measurements characterized the airflow recirculation zone 

on the downwind side of the noise barrier, and the UFP vertical profile was measured 3 meters 

downwind of the noise barrier. Notably, UFP concentrations immediately above the noise wall 

were comparable to concentrations near the ground level in the recirculation zone, demonstrating 

that downwind measurements, even in the relatively static recirculation zone, could effectively 

characterize the vegetative barrier impacts. Some stretches of the noise walls had no plantings, 

and under crosswind conditions, there was an average of 10% less UFP immediately downwind 

of a vegetation barrier/noise wall combination compared to an adjacent unplanted section. 

However, due to the complexity of the built-up environment, this difference was not statistically 

significant.  As the vegetative buffer grows, we will periodically repeat these measurements to 

assess its impacts on downwind UFP levels. 

5.2 Introduction 

Urban air pollution, exacerbated by highway traffic-related emissions, has been identified as a 

concern in numerous studies[1], [2], [3], [4], [5]. Exposure to toxic and potentially carcinogenic 

compounds, particularly ultrafine particles (UFP), poses a growing risk in urban areas, where a 

much of the population spends considerable time immersed in this microenvironment. The 

increase in cardiovascular disease cases linked to traffic emissions underscores the pressing need 

for effective mitigation strategies [3]. 

One promising approach to mitigating air pollution in heavily trafficked urban areas involves 

increasing urban green spaces [6]. This strategy enhances particle deposition on leaves, reducing 
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airborne particle concentrations  [7]. However, whether roadside vegetative barriers significantly 

attenuate pollution remains a topic of debate, with conflicting evidence [8], [9], [10], [11]. 

Moreover, the health benefits of green infrastructure extend beyond pollution attenuation. 

Reported positive outcomes include reduced stress, reduced psychiatric morbidity, and a 

decrease in cardiovascular disease (CVD) rates, ultimately contributing to lower all-cause 

mortality [12]. 

The combination of constructed noise barriers and engineered vegetation buffers offers a focal 

point for assessing near-road air pollution. Research has extensively investigated the influence of 

solid noise barriers on air quality in proximity to roadways using dispersion modeling[13], [14], 

[15]. However, these studies exhibit variations in their focus: some exclusively consider solid 

barriers[13], [16], [17], [18], [19], [20], [21], while others examine combinations of vegetation 

and solid barriers[10], [22]. Furthermore, fieldwork assessments differ depending on the local 

layout of barriers, with some studies evaluating only solid barriers[13], [23], others focusing 

solely on vegetation barriers[11], [24], and still others examining solid barriers with a sparse 

layer of vegetation[25], [26], [27], [28], [29]. Nevertheless, there is a scarcity of studies that 

closely resemble our scenarios, which involve engineered vegetation interspersed between the 

highway and solid noise barriers, within similar local environments. The lack of well-structured 

longitudinal studies further limits our understanding of the long-term growth of vegetation within 

these built environments. 

This study aims to bridge these gaps by providing a comprehensive examination of the 

combination effects of built-in noise walls and engineered vegetation buffers on near-road air 

pollution. Through rigorous fieldwork assessments and a longitudinal approach, we seek to 
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enhance our understanding of the dynamic interplay between urban infrastructure, vegetation, 

and air quality, contributing valuable insights to the development of sustainable and effective 

urban planning strategies. 

5.3 Material and Methods 

5.3.1 Study layout 

To optimize particle attenuation, the engineered vegetation barrier was strategically positioned 

along the interstate highway, forming a green barrier between the highway traffic and the pre-

existing noise wall. This particular stretch of I-264 is a 6-lane highway carrying an average daily 

traffic of approximately 96,600 vehicles in 2020 (Kentucky Department of Transportation 

https://maps.kytc.ky.gov/trafficcounts/). Notably, 15-foot-high noise walls had been previously 

installed on both sides of the highway.  

Figure 5.1 is an annotated aerial photograph of the buffer sections along the highway, along with 

the designated unplanted location for conducting Buffer and NoBuffer comparisons. Unlike most 

near-road studies of UFP, which typically occur in well-controlled suburban settings featuring 

open land adjacent to the highway, our investigation took place within a built-up residential 

environment characterized by more complex topography. 

Within the study area, the primary locations for collecting stationary samples are two local 

parallel roads on the residential side of the barrier walls, which allowed collecting samples 

downwind of the highway in either direction. The central study zone, an approximate area of 

400m by 800m, contains around 300 mostly single-family residences. Compared to previous 

near-road UFP studies, this setting introduces the additional dynamic complexities of a 

residential environment and varied elevations. 
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Figure 5.1 Planted vegetation barriers along the Waterson expressway, with the north buffer 

next to Expressway Ave (PN1,UN,PN2) and the south buffer next to Stanley Ave (US,PS). P= 

planted, U=unplanted, N = north, S=south. Satellite image obtained from Google Earth. 

Stationary measurements were carried out on local roadways and alleyways on both the northern 

and southern sides of I-264, a six-lane highway. The primary measurement locations, on 

Expressway Ave and Stanley Ave, are labeled with red letters in Figure 5.1. Throughout the 

sampling periods, two, or at times three, parked instrumented vehicles and initiated sample 

collection simultaneously. The sampling runs were timed to capture both morning and evening 

rush hour periods during persistent southerly or northerly winds. By comparing the UFP counts 

downwind of areas with and without a vegetation barriers, this approach aimed to assess the 

effects of an engineered vegetative buffer.  

Stanley Ave 

Expressway Ave 

Prevailing wind 

direction 

https://www.google.com/maps/@38.1904456,-85.7739583,685m/data=!3m1!1e3?entry=ttu 
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5.3.2 Instrumentations 

Multi-day field campaigns were conducted from 2021 to 2023 to measure the number 

concentration of ultrafine particles. Mixing condensation particle counters (MCPCs) with a 

particle size range of 8-2000 nm (ⴄ = 50% at 8 nm) were employed at a high temporal resolution 

of 1 second. The specific MCPC used in this study was the Brechtel model 1720 (Hayward, 

California). 

To ensure accurate measurements, a sample inlet was installed on the vehicle carrying the 

MCPC, connecting a 1.0 µm cut cyclone to the downstream MCPC via a 1-meter-long anti-static 

conductive tubing. Prior to each run, the sample flowrate was verified with a digital flow meter, 

and the sampling line was tested for air infiltration by placing a high-efficiency particulate air 

(HEPA) filter at the cyclone inlet and checking for a nearly zero particle count.   Up to three 

instrumented vehicles were utilized, and any variations between individual instrument setups 

were corrected through collocation data comparisons conducted throughout each sampling 

campaign. This rigorous approach ensured the reliability and consistency of the collected data. 

The wind data utilized in this study were collected from the Automated Surface Observing 

System (ASOS) monitoring station at Louisville Muhammad Ali International Airport (IATA 

code, SDF), approximately 3 kilometers east of the study area. Hourly averages of both wind 

speed and direction served to categorize each 10- to 20-minute stationary run into distinct wind 

direction sectors. To achieve a more refined local wind resolution, an RM Young model 810003-

D anemometer from was employed. This device provided wind data with a 1-second resolution, 

crucial for analyzing and characterizing the recirculation zone situated downwind of the noise 

wall. 
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The vertical profile of the UFP concentration was established using a vertical scissor-type man 

lift capable of reaching a height of 32 feet, placed adjacent to the noise wall on Expressway Ave. 

A MCPC instrument was installed atop the lift platform, while a corresponding MCPC was 

positioned at ground level directly beneath the lift. UFP concentrations downwind of the 

highway were simultaneously measured by the lift monitor at various heights and the stationary 

ground-level monitor. The resulting ratio of UFP concentrations is discussed further in the 

Results section. 

5.4 Results 

5.4.1 The combined effects of the vegetation barrier and the noise wall on UFP 

concentration counts, based on stationary measurements 

The stationary measurement runs for this baseline study are summarized in Table 1, which lists 

the maximum and minimum UFP number concentrations for runs within each stationary 

measurement day. The median UFP counts during a given measurement run, spanning 10 to 20 

minutes, surpass 60,000 #/cc. Local meteorological conditions contribute to variations, with 

concentrations reaching as low as 2,000 #/cc. Upwind UFP concentrations are considered as the 

background reference, and range from 3,000 to 30,000 #/cc across different measurement days. 

The 2021 World Health Organization (WHO) Global Air Quality Guidelines [30] distinguish 

between low and high (>10,000)  particle number concentrations (PNCs), and our stationary 

measurements during multiple periods consistently indicated levels above 10,000 #/cc near the 

highway within the residential neighborhood. 

A subset of these stationary runs, detailed in Table 5.1, focuses on UFP measurements at planted 

(P) and unplanted (U) zones (see Figure 5.1). These measurements form the basis for evaluating 

the vegetation buffer’s effects on UFP concentrations. 
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Wind direction data from the nearby airport was categorized into two groups, as shown in based 

on Figure 5.2. For winds from the North or South (Group 1), blowing perpendicular to the 

highway and the barrier wall, the data reveal an approximate 10 percent decrease in UFP mean 

concentrations for sections of the noise wall with an engineered vegetation buffer area compared 

to the UFP mean concentrations in zones equipped with only a noise wall. This finding accords 

with earlier reports on black carbon concentrations downstream of vegetation, which 

demonstrated a 12% reduction [11]. 

However, for stationary runs in the subset with group 2 (East or West) wind directions, blowing 

parallel to the wall and the highway, there is no discernible difference in UFP concentrations 

between areas with a buffer versus those without. 

 

Figure 5.2 UFP stationary data groups based on wind direction (left figure) and box plots for the 

distribution of run-specific ratios stratified by wind direction relative to the highway. 

All stationary measurement series were categorized by wind direction into two groups, illustrated 

in Figure 5.2, with a boxplot depicting the ratio of the means of the UFP concentrations, with 

and without buffers. Group 1, representing NS winds across the roadway, shows a significant 10 
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percent reduction in UFP concentration behind buffered zones. Conversely, Group 2, 

characterized by EW winds (parallel to the roadway), shows no substantial difference in UFP 

concentrations, regardless of buffering. Since downwind stationary measurements were 

conducted on both sides of the highway at both buffered and non-buffered locations, Figure 5.3 

separates the measurements made on the south side of the highway from those on the north side.  

For Group 1 wind directions, both sides demonstrate a consistent 10 percent reduction in UFP 

concentrations behind buffered areas, whereas Group 2 wind directions showed no notable 

differences. These findings highlight the impact of wind direction on UFP concentrations and 

also demonstrate the spatial variability introduced by buffers. Figures 5.2 and 5.3 visually 

capture these stratified results: the intricate relationship between wind direction, buffer presence 

or absence, and UFP concentrations across different locations. 

  

Figure 5.3 Distribution of run-specific Buffer vs. NoBuffer ratios stratified by wind direction 

relative to the highway and sampling locations on South side and North side of the highway. 
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Table 5.1 UFP concentrations captured at near noise wall locations for all stationary measurements. The highest medians of each 

measurement campaign day are in bold, the lowest are in bold italic and, with upwind measurement as the reference for the 

background UFP concentrations. 

Measurement 

ID 
Date Time of Day 

Number 

of Runs 

Max Stationary Series 

Median(#/cc) 

Min Stationary Series 

Median(#/cc) 

Upwind of Highway 

Median (#/cc) 

1 3/29/2021 Morning & Evening 4 35,231 15,116 - 

2 3/30/2021 Morning & Evening 3 50,697 8,053 - 

3 3/31/2021 Morning & Evening 4 11,287 7,557 - 

4 4/1/2021 Morning & Evening 4 23,686 13,446 - 

5 4/2/2021 Morning 3 60,970 26,818 - 

6 6/1/2021 Morning & Evening 3 22,065 9,098 - 

7 6/3/2021 Morning & Evening 3 18,850 17,703 6,929 

8 6/4/2021 Morning & Evening 5 26,083 11,487 - 

9 10/12/2021 Morning & Evening 7 21,418 8,160 4,052 

10 10/13/2021 Morning & Evening 8 13,858 10,016 4,566 

11 10/14/2021 Morning & Evening 6 61,868 26,952 14,255 

12 10/15/2021 Morning 2 17,351 16,219 4,803 

13 4/19/2022 Morning & Evening 6 16,662 10,482 - 

14 4/20/2022 Morning & Evening 8 60,744 19,139 15,276 

15 4/21/2022 Evening 5 17,504 9,343 3,230 

16 4/22/2022 Morning 3 49,413 37,716 29,455 

17 8/9/2022 Morning & Evening 5 18,727 5,330 - 

18 8/10/2022 Morning 4 8,224 2,320 - 

19 8/11/2022 Morning 4 16,133 6,046 - 

20 8/12/2022 Morning & Evening 9 18,657 12,882 - 

21 8/15/2022 Morning & Evening 8 15,634 7,099 - 

22 8/16/2022 Morning & Evening 6 15,641 14,131 - 

23 8/17/2022 Morning & Evening 6 16,828 10,680 - 

24 8/18/2022 Morning & Evening 8 20,383 11,029 - 
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5.4.2 Special Study 1: Downwind vertical UFP profile, with buffer and noise 

wall 

This special study assessed the vertical UFP profile behind the noise wall, using a lift equipped 

with MCPC and 2D wind sensors, positioned in conjunction with ground level UFP 

measurements. As shown in Figure 6, the UFP concentrations increase with height and then 

decrease when the lift reaches the height of the noise wall. Fluid dynamics suggest that solid 

noise barriers have the potential to induce the formation of a recirculation zone downstream of 

the barrier, leading to the establishment of a mixing zone. This phenomenon may contribute to 

the observed increase in ultrafine particle (UFP) concentrations at lift heights ranging from 10 to 

15 feet, as illustrated in Figure 5.4. [9]. 

 

Figure 5.4 Vertical profile measurement setup, with ratios of the lift and ground 

level UFP concentration mean values versus height.  Blue curve shows power law 

curve fit. 
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5.4.3 Special Study 2: Recirculation zone characterization  

Our stationary measurements were performed adjacent to the highway behind a noise wall, 

potentially situated within the recirculation zone that created by the wind when downwind of a 

noise wall, which varies with the wind speed. In order to better characterize the size of this zone, 

we used a 3D sonic anemometer to analyze variations in the vertical wind component at varying 

distances from the noise wall. The outcomes for a specific measurement period are depicted in 

Figure 5.5. 

The 3D anemometer displays the vertical wind direction, as presented on the secondary Y-axis in 

Figure 5.5.  A positive wind angle (indicating wind from below) was observed when the sensor 

was positioned 5 feet away from the noise wall. After the sensor had been moved to 25 feet from 

the noise wall, the wind angle had reversed to negative values (indicating wind from above). 

This vertical wind component  was maintained until the sensor reached 45 feet away from the 

wall and further, where the wind angle stabilized at 0 degrees. This pattern suggests that the 

recirculation zone for this particular wind direction lies within the 0 to 25 foot range. 

Our stationary measurements in the main study were conducted at 20 feet from the noise wall, 

placing them within the recirculation zone. The effect of the recirculation zone introduces 

uncertainties into our Buffer to NoBuffer comparisons. However, upon comparing our vertical 

profile measurements with the ground level measurements, although a substantial majority of our 

measurements were made within the recirculation zone, the UFP concentrations right above the 

noise wall are strongly correlated with ground level concentrations. This finding instills 

confidence in our ability to compare the directional aspects of our measurements with those from 

the stationary measurement series reported in the main body of this study. 
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Figure 5.5 Time series for wind speed and angles at various distances from noise wall.  Left Y-

axis gives wind speeds, and right Y-axis shows vertical wind angle from 3D anemometer. 

5.5 Discussion and conclusions 

The near-road measurement results in this manuscript highlight the UFP concentrations within a 

built residential environment downwind of a major highway with a sound barrier and an 

extensive, but not complete, vegetation buffer. This work helps to assess the impact of vegetation 

barriers on the UFP exposure of the nearby residents and complements a chronic health study, 

conducted by the University of Louisville, linking urban greenness and cardiovascular disease. 

This work also considers the additional factor of a near-road solid noise wall adjacent to the 

vegetation barriers. Preliminary stationary measurements suggest up to an ~10 % reduction in 

UFP immediately behind the noise wall and buffer, compared to a noise wall only.  
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The air recirculation zone behind the noise wall (on the residential side) was assessed using a 3D 

sonic anemometer, validating that our stationary measurements fell within this zone. 

Nevertheless, UFP measurements at ground level and above the noise wall indicated that UFP 

concentrations in the recirculation zone on the residential side continued to reflect the impact of 

highway UFP concentrations. In future work, dispersion modeling can assess UFP levels 

downwind of the noise wall, and a steady-state Gaussian model will help understand the 

environment better. 

As expected, our measurements found a strong UFP gradient away from the highway for 

crosswinds and relatively homogeneous UFP concentrations for winds nominally parallel to the 

roadway. Although the combination of a noise wall and adjacent vegetation barriers did not 

dramatically alter the gradients, as the buffer strip trees continue to grow and fill out, 

longitudinal measurements may find a greater impact. 
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Chapter 6: Conclusions 

This dissertation contributes the advancement of air quality monitoring use low-cost air quality 

sensor devices and research grade instruments and human exposure estimates to urban air 

pollution on local and hyperlocal scales. 

Each chapter from 2 to 5 have their dedicated conclusions and discussions section, this chapter 

summarizes the main contributions to the thesis research. 

Chapter 2: Particulate matter low-cost sensor device performance in a cold climate 

The growing adoption of Low-Cost Sensors (LCS) for air quality monitoring, coupled 

with the dedicated efforts of researchers and citizen scientists to enhance the accuracy of 

LCS-generated data through adjustment factors and machine learning algorithms, 

underscores the vast opportunity to leverage LCS technology to address air pollution 

challenges. This study highlights the potential of LCS in monitoring air quality in 

severely polluted areas, particularly under extreme winter conditions. By developing 

area-specific adjustment factors, this research opens avenues for broader engagement of 

research and community groups in LCS initiatives, facilitating the utilization of more 

cost-effective technologies to monitor air pollution exposure. Furthermore, the 

adjustment factors derived in this study provide valuable guidance for future LCS 

network deployments, offering insights into optimizing sensor placement and data 

interpretation. Overall, this work contributes to advancing the accessibility and 

effectiveness of air quality monitoring efforts, with implications for both research and 

public health initiatives. 
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Chapter 3: LCS characterizations based on its deployment siting and meteorological conditions 

As Low-Cost Sensors become increasingly affordable and readily available in the market, 

researchers are turning to LCS-enabled networks to assess air quality variations at small 

spatial and temporal scales. However, the diverse designs of sensor brands can influence 

data reliability, particularly concerning sensor placement. In this study, we identified 

potential impacts on LCS data quality resulting from sensor siting, a factor that warrants 

careful consideration during sensor collocation studies and network deployments. Biases 

arising from microenvironmental airflow obstructions were very sensitive to 

meteorological conditions. For future LCS endeavors, especially network deployments 

targeting fine-scale spatial analysis to discern subtle concentration variations, it is 

essential to not only evaluate the sensor data quality compared to reference-grade 

monitors but also assess data performance based on various deployment siting criteria. 

This recommendation underscores the importance of comprehensive evaluation protocols 

to ensure the accuracy and reliability of LCS-generated data in air quality assessments. 

Chapter 4: Winter PM2.5 indoor levels in Mongolian kindergartens 

Land Use Regression models are frequently employed to create pollution surface maps 

for various air pollutants across large geographical areas. In this study, we leveraged 

Low-Cost Sensor technologies to establish an indoor PM2.5 sensor network within 

kindergartens in Mongolia. Through this initiative, we developed a novel LUR model 

aimed at estimating winter average PM2.5 exposure for children inside kindergartens in 

Mongolia. Our research demonstrates the effectiveness of utilizing indoor PM2.5 data in 

conjunction with nearby land use features and building characteristics to accurately 
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predict indoor PM levels at locations where physical sensors are not present. This 

approach showcases the potential of integrating LCS technologies with sophisticated 

modeling techniques to enhance our understanding of indoor air quality dynamics and 

better protect vulnerable populations such as young children in educational settings. 

Chapter 5: The effects of vegetation planted along highway noise wall barriers on downwind 

ultrafine particle concentrations 

The evidence regarding the ability of roadside vegetation to mitigate air pollution remains 

limited and, at times, contradictory. This study addresses this gap by assessing the 

effectiveness of an engineered vegetative buffer installed alongside a solid noise barrier 

in attenuating ultrafine particles (UFPs) near roadsides. Field sampling events were 

conducted to compare UFP levels with and without the vegetative buffer adjacent to the 

noise wall along the highway, providing valuable insights into the reduction of traffic-

related pollutants. Additionally, these assessments establish baseline measurements for a 

longitudinal study, with periodic monitoring of UFP levels as the trees within the buffer 

zone mature over the coming years. By investigating the effectiveness of engineered 

vegetative buffers in mitigating roadside air pollution, this research contributes to our 

understanding of sustainable strategies for improving air quality in urban environments. 

The air quality sampling datasets discussed in Chapters 2 and 4 provide high time resolution data 

for air quality monitoring in Mongolia. With the collection of higher quality land features in 

Mongolia in the future, the potential exists to develop a more sophisticated land use regression 

model. Such a model could greatly enhance our understanding of children’s exposure to air 

pollution and support ongoing clinical studies in Mongolia. 
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Furthermore, while air pollution is often studied on a regional and large scale, this work 

emphasizes finer spatial scales. By focusing on these scales and utilizing ground measurements, 

this research contributes to more accurate exposure estimates in the field. This emphasis on finer 

spatial scales underscores the importance of localized data in understanding and mitigating the 

impacts of air pollution on public health.
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Appendix A. Data summary for Mongolia 

PM2.5 Networks Bayankhongor (BKH) 

Reference monitoring BAM site:  

Reference monitor MetOne Beta Attenuation Mass Monitor 1020 (BAM): 

Continuous monitoring from Nov-06-2019 to Jan-12-2023 and still on going, data over three 

consecutive years. The data completeness shows total of 1120 (96.3%) valid days and 97% valid 

hours. 

Outdoor PurpleAir Network: 

Two different versions of outdoor PurpleAir network were installed, the first network have seven 

sites (Innovation center, KG6, KG16, Reference BAM Site, KG5, Airport, Children’s Hospital), 

because of the Wi-Fi connection issues the outdoor network was only operated for several month 

from the beginning of the deployment during 2020, the network was reinstalled using different 

PurpleAir sensors in February 2022 for six sites (Innovation center, KG6, KG16, Reference 

BAM Site, KG5, Background). 

Table A.1 BKH first PurpleAir network sensor ID and data collection period. 

Site Name Sensor Type & SN Beginning 

 

Ending 

KG5 PA(E39C) 2020-02-07 2020-07-21 

KG6 PA(5C4B) 2020-02-07 2020-07-21 

KG16 PA(5CA1) 2020-02-07 2020-07-21 
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Reference BAM Site PA(167,DAE4,F2D9) 2020-02-07  

Airport PA(457) 2020-02-07 2020-07-21 

Innovation Center PA(6ADF) 2020-02-07 2020-06-19 

Children’s Hospital PA(E53) 2020-05-05 2020-07-21 

 

The utility of LCS devices to evaluate air pollutant spatially variability is demonstrated by the 

BKH outdoor network.  Figure A.1 and the associated tables show the spatial patterns in outdoor 

PM2.5 across the BKH.  The first column of PM2.5 values are from the device output, and the 

second column are estimated “reference monitor-like” values calculate by adjusting the raw data 

using the PA-to-BAM relationship showed in early reports.  Concentration values for the 

February data better represent winter conditions but the trends across sites are similar for both 

time periods.  Concentrations are highest at the Innovation Center, followed by KG6 and KG16.  

These three sites are either within or on  
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Figure A.1 Outdoor PM2.5 average concentrations across BKH, February 7 to March 31, 2020.  

Air quality levels in the figure are color coded using the US EPA Air Quality Index (AQI) 

classifications. 

the border of large ger areas, consistent with residential coal combustion being a major-and 

perhaps the dominant-source of PM2.5.  Intermediate concentrations are observed at KG6 and the 

reference site which are in the commercial/downtown zone. The lowest concentrations are at the 

airport, consistent with the land use around it being less developed.   

This analysis demonstrates the importance of having network measurements and not just 

reference site data.  There are dramatic differences in concentrations across BKH on scale of less 

than one kilometer, and thus outdoor exposures-and indoor exposures to the extent they are 

coupled to outdoor concentrations-will also dramatically vary.  The WashU team is working to 

make the network data available in real time and will coordinate with UNICEF to design a 

public-friendly Mongolian language website displaying the real-time data across BKH.  

Grand average for PA PM2.5 data from Feb-07 to Mar-31  
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While the reference station does not capture the highest concentrations, PM2.5 patterns across the 

monitoring sites are well-correlated [not shown] and thus it should be possible to develop 

equations to predict the concentrations at other LCS monitoring locations and possibly estimate 

concentrations at locations without monitors using methods such as land use regression modeling 

(LUR).   

Figure A.2 shows diel (time of day) profiles for the outdoor network sites.  The patterns are 

more similar than different.  PM2.5 concentrations are highest in the morning (~8-9am) at the two 

sites centrally located within ger areas (Innovation Centre and KG6).  This morning peak is 

present but relatively smaller at the other sites.  At all sites, concentrations are relatively high 
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during the nighttime which is 

 

Figure A.2 Outdoor PM2.5 diel (time of day) profiles across BKH, February 7 to March 31, 

2020. 

consistent with residential space heating emissions compounded by the shallow atmospheric 

mixing layer depth at night.  These patterns have important implications to exposures.     

Table A.2 BKH Second PurpleAir Network sensor ID and data collection period. 

Site Name Sensor Type & SN Beginning Ending 

KG5 PA() 2022-02-19 2022-03-19 

KG6 PA(2137) 2022-02-19 2022-03-19 
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KG16 PA() 2022-02-19 2022-03-19 

Reference BAM Site PA(5e9) 2022-02-19 2022-03-19 

Background PA() 2022-02-25 2022-03-03 

Innovation Center PA(3575) 2022-02-19 2022-03-15 

 

Table A.2 shows the data range for the second round PurpleAir Network, due to the cellular 

network expiring early, the data collection only lasted a month, it is feasible to re-connect this 

network with updated internet connections. The results from this network [not shown] shows the 

same trend compared to the previous network, and the conclusion still the same based on the 

network performance[not shown]. 

Indoor AirVisual Pro (AVP) Network: 

Indoor AVP network was setup from the beginning of the deployment at KG5, Children’s 

Hospital, Maternity ward, KG6, KG16 and BAM site (Outdoor). Table A.3 listed all the sensors 

at each indoor BKH site and their time window with collected PM2.5 and CO2 data. 

Table A.3 BKH indoor network sensor ID and data collection period. 

Site Name Sensor Type & SN Beginning  Ending 

KG5 AVP(PPRGCGS) 2019-12-17 2022-02-16 

KG6 AVP(76UWMHU) 2020-02-05 2022-02-15 

KG16 AVP(T67Y7VW) 2020-02-05 2020-11-10 

Children’s Hospital AVP(66V6RYU) 2019-12-18 2022-02-15 

Maternity Hospital AVP(KGYMWWS) 2020-02-05 2020-12-22 

 



 

[94] 

 

Table A.4 Indoor network PM2.5 and CO2 concentrations based on all season and winter only. 

Site Name Mean PM2.5 

µg/m3 with 

room 

occupied 

75 percentile of 

CO2 

concentration in 

PPM with room 

occupied 

2022 Winter 

PM2.5 only 

with room 

occupied 

75 percentile of 

CO2 

concentration 

for 2022 winter 

with room 

occupied 

KG5 43 1072 51 943 

KG6 43 1138 62 1033 

KG16 21 1178 45* 1316* 

Children’s Hospital 37 1225 32 1441 

Maternity Hospital 66 1079 108* 1065* 

*Calculated same value for 2021 instead of 2022 because data missing for 2022 

Table A.4 shows the summary results for BKH indoor AVP network, from the summary data 

CO2 concentration is higher in winter for KG16 and Children’s Hospital, and PM2.5 

concentration is higher in the winter for all sites except Children’s Hospital.  

Based on the onsite observation from field work, Children’s Hospital is a room on the second 

floor and the room is more airtight than other locations this could cause similar PM2.5 

concentration all season vs. winter while CO2 concentration is higher in winter due to less 

frequent air ventilation. 

Bayanzurkh (BZD) 

Kindergarten Network: 

UB kindergarten indoor air quality monitoring network consist of 24 sites. All indoor monitoring 

was conducted using AVP devices. Ten AVP sensors were collocated at BKH BAM reference 
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site and then collocated at each kindergarten network site to remove the sensor-to-sensor biases 

between each AVP devices and low cost to reference biases between AVP and BAM. All results 

for the following analyses for network performance and building characteristics were conducted 

with all biases removed. Figure A.3 shows the detailed location of all indoor monitoring sites 

with specific kindergarten labels. Figure A.4 show winter averaged PM2.5 concentration for two 

consecutive winter, winter 2021 uses indoor measurement data from Nov-2020 to Feb-2021 and 

winter 2022 uses data from Nov-2021 to Feb-2022. Each circles represent the location shown in 

Figure A.3, and the size of the circle is proportional to the actual PM2.5 concentration. The 

average concentration included hourly data from 8 a.m. to 5 p.m. which gives the true PM2.5 

concentration children were exposed to during those heating seasons by assuming school hour is 

8 to 5. Each circle was color coded based on the US Air Quality Index (US AQI) and as we can 

see the spatial variations of PM2.5 concentration are similar for two winters. 
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Figure A.3 BZD 24 Kindergartens and 4 Healthcare Facilities Indoor Monitoring site. 
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Figure A.4 Bayanzurkh district (Ulaanbaatar) indoor winter averaged PM2.5 (Nov2020~Feb2021 

and Nov2021~Feb2022) 
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Figure A.5 Bayanzurkh district (Ulaanbaatar) indoor winter average CO2 (Nov2021~Feb2022) 

Figure A.5 shows the 75-percentile value of CO2 concentration for each site during the same 

winter period. Indoor CO2 as expected is not correlated with the indoor PM2.5, based on this map 

we can identify the sites need ventilation to lower the indoor CO2 concentrations. 
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Historical data for the kindergarten network were collected from March 2020 to February 2022, 

due to the coronavirus situation 2021 winter indoor data were collected when children were not 

Figure A.6 Time series plot for KG45 CO2 during the winter season from 2020 to 2022 
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in school most of the time. Carbon dioxide can be a indicator of indoor human activities, and 

Figure A.6 shows the hourly carbon dioxide concentration profile for kindergarten 45 between 

November to March for both year of 2021 and 2022. Based on the CO2 concentration profile, it 

was clear that for the most part of year 2021 winter, this school have no activities due to 

coronavirus situation. 

In order to prioritize the kindergartens which need the most attention for interventions, we 

looked at both PM2.5 concentration and CO2 concentration for the school based on school 

activities and different time of the year. The results shows the indoor PM2.5 are high during 

winter heating season due to the high outdoor PM concentration penatrate indoor, and CO2 

Figure A.7 Indoor PM2.5 winter (Nov-2021~Feb-2022) heating season mean school hour 

concentration, color code based on building type: masonry(red), concrete(grey), wood(light 

brown), not available(black). 
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concentration are high during the school hours with human activities and depending on the room 

size and ventilation CO2 indoor concentration are different. 

Figure A.7 shows the mean indoor PM2.5 concentration for winter Nov-2021 to Feb-2022, 

average values were calculated using a subset of hourly data by only considering the school 

hours from 8 a.m. to 5 p.m. The x-axis gives the rank of kindergartens that need the most 

attention regarding to indoor PM2.5 concentration. All kindergartens were color coded based on 

its building structure. According to US AQI any concentration above 55.5 µg/m3 are considered 

unhealthy and figure A.7 shows more than half of the kindergartens considered unhealthy for 

their indoor PM2.5 level. KG199, KG212 and KG202 were among the top three kindergartens 

need most attention for interventions. 
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Figure A.8 Indoor CO2 (Nov-2021~Feb-2022) heating season 75 percentile value school hour 

concentration, color code based on building type: masonry(red), concrete(grey), wood(light 

brown), not available(black) 

Figure A.8 shows the 75-percentile of CO2 indoor concentration in all kindergartens ranked 

from high to low, the concentration here is not extremely high but do note this measurement 

period is after coronavirus situation, based on the teacher survey most of these schools have a 30 

to 50 percent decrease in attendance before and after covid, which means under normal operation 

indoor CO2 concentration will be higher. Figure A.8 is color coded based on the building type, 

and we can see most masonry structures have higher indoor CO2 concentrations. This helps 

prioritize which schools need to install the mechanical ventilation and reduce the room capacity. 

Different building characteristics were investigated including the building structure (shown 

above), building Age, building capacity, over capacity number, heating type, and building area.  

Healthcare Facility Network: 
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During the first deployment in March 2020, four health care facilities were selected and after 

Feb-2022 all AirVisual pro from healthcare facilities were retrieved because no maintenance and 

Wi-Fi connection issues. Four sites including HCF#1, Bayanzurkh Children Hospital, Central 

Hospital, Amgalan Birth Hospital. Due to low maintenance and no Wi-Fi connections for most 

of the time, the data completeness for the Healthcare Facility network is low. 
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Appendix B. Mongolia kindergarten special 

studies activities that affect indoor air quality 

Two indoor special studies were conducted to further understand the relationship between indoor 

activities and indoor air quality for both summer and winter seasons. The first special study was 

conducted September 2021 and focus on the indoor air quality in late summer month. The second 

special study was conducted February 2022 to demonstrate to what extent the outdoor high PM2.5 

concentration affect indoor and what people should do indoor to improve the indoor air quality. 

KG Late summer special study from PLM (Public Lab Mongolia) Sept 2021: 

A special kindergarten indoor air quality study was conducted with the help of PLM colleagues 

to investigate the correlation between indoor human activities and indoor air quality. All 

AirVisual pro sensors used in this study were collocated side-by-side at PLM office to develop 

correction factors to make all sensors intercomparable. 

 

Figure B.1 Sensor arrangement inside two rooms in KG212 Room 1 is the intervention room 

while room conditions were changed winter open versus close and air purifier on versus off. 
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Room 2 is the control room where conditions remain the same throughout the study period. 

 

Figure B.2 Thursday September 2 school day (1200~1600 hours) 

Figure B.2 shows the timeseries plot from 1200 hour to 1600 hour for September 2 the first day 

of the special study, each line color corresponds to the sensor color showed in figure B.1. The 

outdoor PM2.5 is lower than indoor PM2.5 on this summertime day indicates the PM2.5 level in the 

summer was from human activities indoor. 
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Figure B.3 Friday September 3 school day (0900~1400 hour) 

Figure B.3 shows for a school day indoor activities will impact the indoor air quality. The 

intervention room 1 shows similar sensor concentration from 0900 to 1000 when all windows 

were closed and air purifier off. The next hour only turned on the indoor air purifier and three 

sensor reading starts to separate with 1C the lowest (nearest to the air purifier) and 1A the 

highest (furthest to the air purifier). After window opening from 1100 to 1200, the overall indoor 

PM2.5 concentration decreases because outdoor concentration is lower than indoor and opening 

window helps lower the indoor concentration. The big jump of indoor PM2.5 from 1200 to 1300 

was due to the room activity when furniture was moved and prepare for children’s nap time at 

noon. 
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In summary, this brief study under summertime conditions was helpful to demonstrate window 

opening and closing affects indoor PM2.5 and when outdoor air quality is less polluted opening 

window helps lower the indoor PM2.5 concentration. Air purifier is helpful reducing the PM2.5 but 

due to poor air circulation in the room the effect may be limited to mostly near the device. Indoor 

activities like vacuuming and preparing the room for children to sleep increases the indoor PM2.5 

this effect might disappear when the overall background outdoor concentration is much higher in 

the winter heating season. 



 

[108] 

 

Kindergarten Special Study Winter: 

KG special study was conducted from February 23rd 2022 to February 28th 2022 in the late 

winter month. The primary focus was to test out the effectiveness of clean indoor PM2.5 using 

Corsi-Rosenthal DIY box (figure B.4). CR box is a do-it-yourself method for indoor particle 

filteration assembled using 5 MERV 13 filters with a box fan on top of the box. 

 

Figure B.4 C-R box filtration system in KG45 

Two kindergartens were selected in this special study KG45 and KG122. KG45 is located inside 

the residential ger area in contrast KG122 located in the city center near a business district with 

central heating apartments, a strong indicator is the ger counts inside 1km radius of KG45 and 

KG122 are 1203 and 36 respectively. 

The building structure is also different between two kindergartens, KG45 is masonry structured 

building and KG122 is concrete reinforced structure. KG45 is heated by a local boiler and 
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KG122 is connected to the central steam heating. The room size between each kindergarten is 

quite different KG122 is 2-3 times larger than the classroom in KG45. 

KG45 is a two-story building with total of four classrooms and two on each side of the building, 

with the front gate facing west, the room 1 at the first floor located at the south corner of building 

was used as the primary intervention room with changes to the room conditions opening and 

closing windows and turn on and off CR box filter. The other rooms with no operations also had 

one air quality sensor to distinguish room to room indoor air quality differences. 

Outdoor sensor was installed at both locations paired with indoor measurements starting 

25Feb2022 based on the time series plot showed in Figure B.5, the outdoor concentration at both 

locations was significantly higher than indoor paired measurements, and the weekend indoor 

concentrations looks a lot smoother with slow raising and decaying concentrations, the weekday 

indoor concentrations is more complicated due to room operation and people entering and 

exiting the room. 
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Figure B.5 Outdoor Indoor paired measurements at both KG45 and KG122. 

Weekend Weekday 

Weekend Weekday 
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Figure B.6 shows an example of night study at KG45 with CR box on and off in room 1 and at 

the same time opening and closing windows as outdoor PM2.5 is higher than indoor during winter 

heating season. The room was sealed up with window closed and CR box fan off from 2000 to 

2030 hour, all three sensor show similar concentrations for 30 minutes. CR box filter was then 

setup at low speed for 30 minutes from 2030 to 2100, the indoor concentration decreased from 

over 100 to less than 50 µg/m3 the sensor away from the CR box fan has higher concentration 

due to poor room mixing. The CR box was then turned off with window still closed from 2100 to 

2115, the indoor PM2.5 concentration slowly goes up due to outdoor polluted air infiltrate the 

building. Window was then opened for 15 minutes from 2115 to 2130, the indoor air quality 

jumps to 300 µg/m3 in just this short amount of time. The room window was then closed, and 

filter fan was turned on high speed for 30 mins to clean the room from 300 to 25 µg/m3. 
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This quick study demonstrates how fast the outdoor polluted air can mix indoor and the CR box 

fan can clearly improve the indoor air quality if running them continuously. 

Figure B.7 shows the room arragement for kindergarten 122, the class room is separated into 

two parts with activity room and sleeping room, kids stays inside the activity room during the 

day and sleeping room is used for lunch break and nap time.  

 

Figure B.7 Room arrangement and sensor layout for KG122 activity room on the left and 

sleeping room on the right. 

Figure B.6 Room 1 testing layout and nighttime room operation for KG45 
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The classroom was equipped with an air purifier, and we tested out the effectiveness of 

improving the indoor air quality inside the main activity room at night with controlled 

environment and no kids inside. Figure B.8 shows the result for the time series plot from Feb23 

1900 to 2300. As you can see test1 shows the room air purifier setting was at high mode at 2000 

and low mode at 2130, the higher purifier speed seems cleanup the room faster, however under 

both situation it takes the air purifier about one hour to lower the indoor PM2.5 concentration 

level to under 25 µg/m3. The room windows were opened between 1930 to 2000 and 2100 to 

2130 to let the outdoor pollution in, meanwhile the sleeping room window was opened from 

1930 to 2000 and then the room was completely closed out by shutting door and windows, as 

you can see test5 shows steady decay after 2000. 

 

Figure B.8 Time series plot for testing our indoor air purifier in KG122. 
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CR box filter was also tested inside KG122, the results illustrated that the box filter can bring the 

overall indoor PM2.5 concentration lower than 10 µg/m3 which is better than the indoor air 

purifier, however based on the decibel readings the CR box filter is louder compared to the 

commercialized indoor air purifier, figure B.9 shows the result for box filter performance. 

During the normal weekday with the room under normal operations we noticed that the indoor 

concentrations were elevated and higher than outdoor concentrations due to indoor activities. 

And the elevated CO2 concentrations also indicated that the room might have incense burning 

during the day. Figure B.10 shows high CO2 indoor readings inside sleeping room in the early 

afternoon likely during the napping period for kids. And during the day the CO2 level is 

consistently higher than 2500 ppm which is higher than the recommended indoor CO2 

concentrations for kids. 

 

Figure B.9 Time series plot for testing out CR box filter in KG122. 
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Figure B.10 On a school day indoor PM2.5 concentration higher than outdoor, and elevated CO2 

indicates room operation. 

Recommendations based on special study: 

1. During the winter heating season, the outdoor concentration could be five times higher 

than indoor, if opening windows is needed to vent out room CO2 concentration, try to do 

that when you see a relatively low outdoor concentration. 

2. Indoor air purifier or DIY built filter box will effectively help improving the indoor air 

quality, this could be a useful short-term solution for most of the kindergartens, however, 

they need to have air purifier in each room and with long lasting filter replacement in 

order to keep the purifier effective. 

3. Based on kindergarten survey the kindergarten teacher usually keeps the air purifier 

running for 10 to 15 minutes at a time and based on our special study the runtime must be 
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longer than one hour to improving the indoor air quality during a testing period, which 

means during normal operation the time will be much longer to keep indoor PM2.5 

concentration relatively low. We recommend keeping the air purifier always on at low 

speed during the day normal operation hours. 

4. Don’t burn incense. 

Final Conclusions and Recommendations: 

The summer special study shows while the outdoor PM2.5 is low the indoor activities can still 

contribute to the increasing indoor PM2.5 levels. This suggests that it might still be useful to 

operate the air purifier in the summer.  

For those kindergartens with higher CO2 levels, it is important to open the window and exchange 

the outdoor air indoor to lower CO2 level, this can only be done in the summer while outdoor 

PM2.5 levels are low. 

The winter special study suggests the CR box fan can improve indoor air quality for 

kindergartens. However, during winter heating season when outdoor PM2.5 levels are high the air 

purifier needs to be always plugged in to clean the maintain the indoor PM2.5 at a lower level. 

Teacher survey shows most teaches turned on their air purifier for 10 to 20 minutes which is not 

enough to clean the room. 
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