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Geometric aspect of condensed matter has arouse a lot of interests in recent years. The

idea of Berry phase is highly appreciated in various systems. We explored the geometric

features of two specific electron systems, fractional quantum Hall (FQH) states and d-wave

superconducting states. For FQH states, we propose a two body operator which generates the

geometric change of Laughlin state in the guiding center degrees of freedom on torus. This

operator therefore generates the adiabatic evolution between Laughlin states on regular tori

and the quasi-one-dimensional thin torus limit. For d-wave superconducting model, we study

the local and topological features of Berry phases associated with the adiabatic transport

of vortices in a lattice fermions. We find bosonic statistics for vortices in hall filling. Away

from half filling, we find the complicate Berry phase to be path dependent. However, it is

shown that“statistical” flux attached to the vortex are still absent. The average flux density

associated with Berry curvature is tied to the average density of cooper pair in the magnetic

unit cell. This is familiar from dual theories of bosonic systems, even though the underlying

particles are fermions in this case.
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Chapter 1

Introduction

As Wheeler [73] put it, “All physics is geometry”. This notion became widely accepted since

the early 20th century through Einstein’s general relativity theory. In quantum mechanics, a

geometric revolution took place much later until 1950s. Through the discovery of Aharonov-

Bohm (AB) [1] effect, it was realized that geometry may play a role in quantum mechanics

even where it does not in classical physics. Prior to that, on the theory side, Dirac’s monopole

quantization [11] can be seen as a prelude to later work by Chern on characteristic classes

of vector bundles [10]. In particle physics, geometric notions gained prominence through the

realization of fundamental forces as gauge forces. In the 80s, Michael Berry demonstrated

that certain aspects of quantum mechanics are intrinsically geometric, even in the absence

of curved space time and gauge forces [8].

Michael Berry showed that in quantum mechanical systems, an energy eigenstate picks

up the “Berry phase” when it experiences an adiabatically evolution along a closed loop in

some parameter space. This notion proved to be of central importance in many areas of

physics. For example, fundamental phenomena already understood at the time, such as the
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AB effect and Pancharatnam phase, could now be reinterpreted in the language of Berry

phases. In condensed matter physics, Berry phases have useful applications in the realm of

many-particle physics. They offer a route to classifying many body ground states such as

quantum Hall fluids [61], Chern insulators [20], and topological insulators [17]. They are

also fundamental in defining exotic statistics of the elementary excitations in some of these

systems.

We will start by introducing the reader into the idea of the geometric phase and the Berry

phase by some examples, both classical and quantum mechanical. A simple understanding

of a geometric phase may come from the parallel transport on a sphere. A man carrying an

arrow (always pointing tangentially to the surface) walks from the north pole southward to

the equator. He turns and walks along the equator for some distance, then turns north back

to where he began. As long as his arrow always keeps the same angel with the great circle he

is walking on, he will find that the direction of the arrow is different from the beginning when

he returns back to north pole. The difference is proportional to the area that his journey

encloses. This is not surprising from a mathematical point of view due to the curvature

of the sphere. Another famous example of a geometric phase is the Foucault pendulum,

which is a common display in science museums. The vertical plane in which the pendulum

is swinging will rotate with time due to the rotation of the earth. Once 24 hours, the pivot

of pendulum returns to its original place in a non-rotating earth frame, but the vertical

swinging plane does not go back to itself. Instead it rotates a certain angle proportional to

the area that the pendulum pivot encircles in one day. This experiment was introduced early

on in 1851 as a simple proof of the Earth’s rotation and the explanation involves nothing

more complicated than the Coriolis force. The common feature of two examples above is a
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change of phase when going around a closed loop on some manifold, which is the defining

feature of a geometric phase.

As mentioned, the AB effect is a common example of Berry phases in a quantum me-

chanical system, where a charged particle picks up an additional phase by traveling in a

loop around a solenoid with non-zero magnetic flux. Classically this phase has no analog

and so there is no effect, as would be expected from the fact that the field vanishes along

the path of the particle. However, quantum mechanically, the wave function of the particle

gains the Berry phase, which may lead to interference effects. This may be understood in a

field theory language as shown in the following. The classical Lagrange function L0 of the

particle is modified by the magnetic field of the solenoid as follows ,

L(x, ẋ) = eA · ẋ + L0(x, ẋ) (1.1)

Note that the vector potential A does not vanish even in regions where the B field is zero.

However, this does not affect the classical equation of motions in such regions. In the path

integral formalism, a closed path has a phase associated to it given by exp( i~
∫ tf
ti
dtL(x, ẋ)),

where ~ is the Planck constant. The extra term in the modified Lagrange function then leads

to additional phase equal to e
~Φ, where Φ is the flux through the closed path of the particle.

This phase difference may lead to interference effect and to an effective change of boundary

conditions if the particle is confined to a wire enclosing the solenoid. Note however, there is

no effect if the additional phase is an integer multiple of 2π, or Φ = 2nπ~/e = nh/e. One

may notice that here appears a natural unit of flux in quantum mechanics, the so called flux

quantum, Φ0 = h/e. Thus the AB phase can be written as 2πΦ/Φ0.
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In the Hilbert space formulation of quantum mechanics, the AB phase naturally appears

as a Berry phase. Here we quote the formal definition of the Berry phase as follows [8],

γn(C) = i

∮
C

〈n(R)|∇Rn(R)〉 · dR. (1.2)

where C is the closed path, R is the changing parameter, and |n(R)〉 is the energy eigenstate

of the system. The berry phase γn is a change of phase on the state |n〉 after an adiabatically

evolution around the closed path C in parameter space R,

|n(Rf )〉 = eiγn|n(Ri)〉, (1.3)

where f and i refer to “final” and “initial”, although Rf and Ri are the same point in

parameter space.

One important property of the Berry phase is gauge invariance. The integrant of Eq. 1.2

is called Berry connection, as shown below,

An(R) = i〈n(R)|∇Rn(R)〉. (1.4)

It’s obvious that the Berry connection is gauge dependent. We can make a gauge transfor-

mation |n(R)〉 → eiΛ(R)|n(R)〉, where Λ(R) is arbitrary analytical function and the Berry

connection transforms into An(R)−∇RΛ(R). Integration over some path adds an additional

term Λ(Ri)−Λ(Rf ) to the Berry phase. However, when the path is closed, there is a single

value restriction for the gauge transformation. In other words, the gauge factor eiΛ(R) must
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be single valued. This implies, for a closed loop,

Λ(Ri)− Λ(Rf ) = 2π · integer. (1.5)

where Ri and Rf correspond to the same physical point, but we allow for the multivalueness

of the function Λ. Note that the integer can only be non-zero if the closed path is non-trivial

geometrically. In this case Λ is called a large gauge transformation. Eq. 1.5 only changes

the Berry phase by integer multiples of 2π, which has no physical effect.

The loop integral in the definition of the Berry phase can be easily transformed by Stocks’s

theorem into a surface integral of the so-called Berry curvature

γn(∂S) = i

∫
S

Bn(R) · dS, (1.6)

where the Berry curvature is Bn(R) = ∇R × An(R) , which is the magnetic field in AB

effect example. Berry curvature is also gauge invariant and thus observable. The integral of

the Berry curvature over closed surfaces, such as sphere or torus, is a topological invariant

equal to 2π times the Chern number, which leads to Dirac’s magnetic monopole quantization

[11] when apply to charged particle confined to a closed surface. Overall, the Berry phase is

a beautiful unifying concept that has close analogies to gauge field theories and differential

geometry.

The research presented in this thesis is exploring Berry phases and other geometric aspects

in different condensed matter systems, specifically, fractional quantum Hall (FQH) systems

and type II superconductors. This divides the thesis into two main parts. We will give
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a brief introduction to the specific system at the beginning of each respective chapter. In

chapter 2, we consider the change of Laughlin state defined on the torus with regard to the

modular parameter τ that parametrizes the geometry of the torus. Our results connect to

geometry in two essential ways. First, we obtain new results on a class of exactly solvable

one dimensional lattice Hamiltonians related to the system and parameterized by τ . This

is achieved by systematically studying in the evolution of the system as a function of τ (or

equivalently, the underlying metric of the torus) into the simple thin torus limit. This will

also result in a new “guiding-center-only” presentation of the famous Laughlin states. On

the other hand, the Berry phase of the system over the complex τ plane also has a physical

meaning, as it is connected to the so called “Hall viscosity” of the state. [2, 48, 51] We will

explore this connection by exposing its relation to our generator of the τ evolution of the

state, and thereby giving a numerical application of the latter. In chapter 3, we study the

Berry phase of magnetic vortices in a 2D lattice model of a type II superconductor. Here we

adiabatically evolve the system by moving the vortex around. We find the Berry curvature to

be very interesting in various aspects, and suggesting ( and some case rigorously establishing

) bosonic statistics of the vortex. In chapter 4 we summarize the thesis and conclude. There

are also various appendices explaining some detail aspects of this thesis.
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Chapter 2

Heat equation approach to geometric

changes of the torus Laughlin state

2.1 Introduction to Quantum Hall Effect

The integer quantum Hall effect is a remarkable discovery made in 1980 by von Klitzing et

al [30]. It is a macroscopic quantum phenomenon which occurs in 2D electron systems at

low temperature and strong magnetic field. It is characterized by the famous quantization

of Hall conductance, which appears as plateaus at integer multiples of e2/h. The quantized

conductance is so accurate that the mass in the SI unit may soon be redefined in term of

the von Klitzing constant RK = h/(2e) and Josephson constant. This great accuracy also

shows the robustness of the quantum Hall effect, in the sense that it is totally indifferent to

impurities and the detailed geometry of the 2D samples. Two years later, Tsui et al. [63]

discovered the fractional quantum Hall effect with fractional quantization of Hall conductance

of high mobility samples in 1982. These two great discoveries won the Nobel prize separately
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Figure 2.1: Experimental result of integer and fractional quantum Hall effect

in 1985 and 1998. Fig. 2.1 shows the experimental result taken from Ref. [74]. It is easy to

see the fascinating feature of integer and fractional quantization of Hall conductance.

Below we will introduce the theoretical basis of the quantum Hall effect, which is also

the basis for the research presented later in this chapter.

2.1.1 2D electron gas in a magnetic field

In order to understand the quantum Hall effect, we first need to know the dynamics of

electrons in a magnetic field. We begin with a semi-classical picture.

Classically, electrons move in cyclotron orbits in the presence of a uniform perpendicular

magnetic field. This is govern by the simple equation, mevωc = Bev, where e is electron

charge, me is the mass of electron, ωc is the cyclotron frequency, B is the magnetic field and
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v is the magnitude of the velocity. We introduce the semi classical quantization condition,

B · πr2 = nh/e, (2.1)

which means that the flux through the orbit is quantized as integer multiples of the flux

quanta Φ0 = h/e. According to our discussion about AB phase in chapter 1, we can under-

stand that this condition allows the electron to interference constructively with itself. Note

that this is a first occurrence of Berry phase in our discussion of quantum Hall physics. Then

it is easy to write down the quantized energy of the electron,

En =
1

2
mv2 = n~ωc, (2.2)

where v = rωc is used. When compared with the following quantum mechanical theory, this

semi-classical theory has the right energy spectrum except for the zero point energy ~ωc/2.

Quantum mechanically, the Hamiltonian for a 2D electron in constant magnetic field is

as follow,

H =
1

2me

(p̂− eA)2. (2.3)

Here p̂ is the canonical momentum, A is the magnetic vector potential. We neglect the

spin degree of freedom because the Zeeman effect favors the spin alignment with the strong

magnetic field. In the symmetric gauge, the magnetic vector potential for constant magnetic

field is A = (−By/2, Bx/2, 0). Then the dynamic momentum π = p − eA satisfies the

commutation relation [πx, πy] = −i~2/l2B , where the magnetic length is lB =
√

~/|e|B. We

can also introduce the corresponding classical coordinate of the cyclotron motion center, or
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guiding center,

R = (X, Y ) = (x− l2B
~
πy, y +

l2B
~
πx). (2.4)

They satisfy similar commutation relation [X, Y ] = il2B, and also commute with the dynamic

momentum, [π,R] = 0.

Thus we can construct two ladder operators,

a =
lB√
2~

(πx − iπy), (2.5)

b =
1√
2lB

(X + iY ). (2.6)

They satisfy the bosonic commutation relations [a, a†] = 1 and [b, b†] = 1. With the help

of these ladder operators, the Hamiltonian and angular momentum can be written into the

following “2nd quantized” form,

H = ~ωc(a†a+
1

2
), (2.7)

Lz = ~(a†a− b†b), (2.8)

where ωc is the same cyclotron frequency in the semi classical picture.

The common eigenstate for an electron is given by 2 positive quantum numbers n and

m, with a†a|n,m〉 = n|n,m〉, and b†b|n,m〉 = m|n,m〉. The wave function of the |0, 0〉 state

can be solved by the fact that it is annihilated by both a and b operators.

φ0,0(r) =
1√

2πlB
exp(− r2

4l2B
) =

1√
2πlB

exp(−|z|
2

4
),
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Here we introduce the complex coordinates z = (x− iy)/lB, which will be convenient in later

calculation.

Then all the other eigenstates are derived by applying a† and b† to the |0, 0〉 state as

follows,

φn,m(r) =
a†√
n!

b†√
m!
φ0,0(r).

One can see from Eq. 2.7 and 2.8 that n is the energy quantum number, and n-m is the

angular momentum quantum number. We see that states are largely degenerate. States

with the same energy constitute the Landau levels. Among these, the lowest Landau level

(LLL), where n=0, is what we will study later on in this chapter.

φ0,m =
1√

2π2mm!lB
zme−|z|

2/4. (2.9)

The lowest Landau level has many interesting properties. The probability of φ0,m localizes

in a ring shape with radius
√

2mlB. The expectation value of r2 is 〈r2〉 = 2(m + 1)l2B,

indicating that every electron state takes an ring shape area of 2πl2B. This is also true for

higher Landau levels. Interestingly, the magnetic flux through the area that every electron

state takes is 2πl2BB = h/e ≡ Φ0, where Φ0 is again the magnetic flux quantum. Here it

comes a simple conclusion, there is one electron state corresponding to each flux quantum

for every Landau level.

As we pointed out, the lowest Landau level is localized circularly. The phase around

the circle is 2πm according to Eq. 2.9. This is how the angular momentum is quantized.

However, we can also interpret this phase as Aharonov-Bohm (AB) phase. As we discussed
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in chapter 1, an electron gets AB phase when it encircles magnetic flux.

AB phase =
e

~

∮
A · dl =

e

~
Φ

Here Φ is the magnetic flux inside the closed loop. For lowest Landau level, Φ = 2mπl2BB =

mΦ0. So the AB phase for the electron in LLL is 2πm, which is the same as the angular

momentum phase. Therefore, the lowest Landau level with definite angular momentum

has the corresponding amount of magnetic flux inside its orbital. The situations for higher

Landau levels are similar. This orbital-flux correspondence leads to a well known “flux

pumping” thought experiment. If we place an additional solenoid at the origin, perpendicular

to the plane, the magnetic flux can be adiabatically changed for all the states in the Landau

levels. If we increase the magnetic flux by Φ0, the physics of electron will remain the same

because this is only a gauge change with trivial gauge phase. The only difference is that all

the m values are increased by 1. This notion of flux pumping is essentially related to the

quantized Hall conductance, as we will now explain.

2.1.2 The integer quantum Hall effect

We briefly describe a thought experiment explaining integer quantum Hall effect. This is

basically equivalent to Laughlin’s Gedankenexperiment[31, 76].

We consider an annulus of 2D electrons in Fig. 2.2 , with constant perpendicular magnetic

field B. The inner and outer edges of the annulus have voltage difference ∆V . We assume

that the fermi energy is in the “mobility” gap so that there is no current across the annulus.

This also means that Landau levels are either fully occupied or empty, hence there is no

12



Figure 2.2: IQHE on an annulus with uniform field B. Additional solenoid is present in the
center of annulus.

possibility of dissipation. We assume there are ν fully occupied Landau levels.

There is a solenoid at the center of the annulus with adjustable magnetic flux through

it. As we mentioned in the last section, a change in flux by nΦ0 restores the annulus to its

original quasi equilibrium state except for a 2nπ gauge phase for every electron. However,

electrons are transferred from one edge to the other if we change the flux adiabatically. The

free energy changes by

∆F = νne∆V.

Flux change dΦ also results in a voltage ε around the annulus. This will do the following

work,

W =

∫
dtIε =

∫
dtI

dΦ

dt
= nIΦ0.

The work done should be equal to the change of free energy. Thus we have,

σxy =
I

∆V
= ν

e2

h
.

13



This is the expected result for the integer quantum Hall effect. It shows that when every

extended state below the fermi energy is fully occupied, the Hall conductance is quantized.

With the help of defects-induced local states, the fermi level will reside within the mobility

gap between Landau levels over finite ranges of magnetic field. Then the Hall plateaus are

well explained.

Of course this is only a rough understanding of integer quantum Hall effect. Details

about the defects, edge states, external field and temperature effect need to be considered

in order to get a full description, which we will not introduce here.

2.1.3 The fractional quantum Hall effect

One may find that the Coulomb interaction between electrons is neglected in the last section

on the integer quantum Hall effect. It can be assumed to be weak compared to the Landau

level splitting. However the coulomb interaction is essential for fractional quantum Hall

effect. The resulting energy gap is then determined by the interaction, so the state is less

robust. This is also the reason that FQHE was found in high mobility samples, where

electron interactions is comparable to the impurity potential.

From the knowledge of IQHE, the existence of an energy gap is essential for the quan-

tization of Hall conductance. For the FQHE case, we can make a similar guess that the

Coulomb interaction leads to splitting of Landau levels at a fractional occupation. This has

been verified by exact diagonalization of Coulomb interaction in small systems [75].

Due to the quenching of kinetic energy within a Landau level, even a weak interaction

dominate the physics of partially filled Landau levels and can not be treated perturbatively.

However, the variational method based on Laughlin’s trial wave function has proven to be
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very powerful [32]. We follow the Laughlin’s reasoning to arrive at the wave function named

after him.

To make things simple, we first restrict the electrons to the lowest Landau level Hilbert

space, where ν = 1/3, 1/5, 2/3, ... fractions are expected to happen. As we find in Eq. 2.9,

the single electron wave function in symmetric gauge has the following general form,

φ(r) = f(z)e−|z|
2/4,

where f(z) is a polynomial in z. So the multi-electrons wave function in this Hilbert space

is in general as follows,

Ψ(r1, r2, · · · , rN) = f(z1, z2, · · · , zN)e−
∑
i |zi|2/4.

We can further restrict the polynomial f to be homogenous because the total angular mo-

mentum, which is proportional to the sum of powers of zi in each term, should be conserved

by Coulomb interaction. There is also a natural restriction that f should be anti-symmetric

according to Pauli principle.

Another restriction is from the nature of Coulomb interaction, which depends only on

the distance between electrons. So f should be a function of inter-electron distance only.

The simplest form of f is a Jastrow type function, where only two body correlation enters.

f(z1, z2, · · · ) =
∏
i>j

g(zi − zj).

With all the restrictions combined, the polynomial is fixed as g(z) = zq, where q is an
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odd integer. Then we arrive at Laughlin’s wave function,

Ψq(r1, r2, · · · , rN) =
∏
i>j

(zi − zj)qe−
∑
i |zi|2/4. (2.10)

Laughlin wave function is a great success, espeicially in the sense that it’s only an ansatz.

It captures nearly all the essential features of 1/3 fractional electron states although the exact

interaction is not Coulomb type, as we will see in Section 2.1.4. It is the starting point of

all the other trial wave functions.

I was gladly informed by Prof. Clark during the defense that the Laughlin states, which

I am dealing with a lot, has some relation with the Wayman Crow Professor of Physics

at Washington University, Eugene Feenberg. Robert Laughlin made an acknowledgement of

Eugene Feenberg’s Jastrow ground state in his Nobel bibliography, saying that it was Eugene

Feenberg’s book, which connected his guess to one-component plasma. I have enjoyed 5

years of the distinguish Eugene Feenberg Memorial Lectures. Until in the end, I realized this

mystery relationship, which I would call “Yinyuan” in Buddhism language. That is, some

hidden cause is always around, but people won’t find it and realize its importance until the

very moment.

The Laughlin states have occupation number ν = 1/q in the thermodynamic limit. Here

we emphasize that the occupation number is the ratio of electrons to the total flux quanta.

As we showed before, the flux can be changed, so that the occupation number will deviate

from 1/q slightly. This process can be understood as introducing of finite size quasiparticles.
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Let us first look at the state in which the Laughlin state is multiplied by all the zi,

∏
i

ziΨq ∝
∏
i

b†i |Ψq〉.

If one expand the Laughlin state into polynomials, in every term the power of zi is increased

by 1. This is reminiscent of our earlier discussion of adiabatic flux pumping. The effect is

the same as if a flux quantum Φ0 was introduced in the origin by an infinitesimal solenoid.

In a region near the origin, the amplitude of the electron wave function decreases. So there

appears some positive charge around the origin. This can be considered as a quasipairicle.

There is nothing special for the origin in the infinite 2D plane. We can introduce such

quasiparticles at any coordinate z0. If q quasiparticles are introduced, the wave function

becomes, ∏
i

(zi − z0)qΨq.

This is the Laughlin state with one extra electron fixed at z0. In other words, q quasiparticles

are neutralized by one electron. So the charge of a quasiparticle is fractional, e∗ = −e/q.

This is usually called a quasi-holes because of positive fractional charge.

Similarly, a negative charge quasielectron can be introduced at the origin by decreasing

the flux by Φ0. The wave function of the quasielectron is

∏
i

[e−|zi|
2/4 ∂

∂zi
e|zi|

2/4]Ψq ∝
∏
i

bi|Ψ〉.

Again we can replace the origin with a fixed coordinate z0 by replacing the derivative with

(2 ∂
∂zi
− z∗0). Quasielectrons are just anti-particle of quasiholes, with fractional charge e/q.
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Laughlin states are quite good approximations to the exact ground states of FQHE at

filling factor 1/q [12]. However, there are obvious plateaus at other filling factor p/q exper-

imentally. These fractions can be understood by a hierarchy theory proposed by Haldane,

Laughlin and Halperin [19, 26] or the composite fermion picture of Jain [29]. While the

electrons form Laughlin states at some circumstance, the quasiparticles emerged in Laughlin

states, can interact with each other and form Laughlin states of quasiparticles at appropriate

densities. It has been shown that fractions such as 2/5, 3/7 and 4/9 is successfully explained

by the hierarchy theory. Some other FQH states such as filling factor 2/3, 3/5 are nothing

more than the particle-hole inversion of 1/3 and 2/5 states.

The occupation number ν can be fractional due to the fact that fractionally charged

quasi-particles may be transported in the adiabatic pumping flux argument, as the additional

quasiparticles will be trapped at the local impurity sites.

2.1.4 Haldane’s pseudopotential

The concept of pseudopotentials was first introduced by Haldane [19]. It becomes a extremely

powerful tool in quantum Hall physics. It suggests special model Hamiltonians that have

exactly solvable ground states as we will show in the following.

Haldane’s pseudopotential is defined as the energy cost for two electrons to have a

given relative angular momentum. These pseudopotentials give a complete description of

a generic two body interaction V (|r1 − r2|), which is rotationally and translationally invari-

ant, through the LLL Hilbert space. The relative wave function where two electrons i, j has

relative angular momentum m~ is ψm(ri, rj) ∝ zmexp(−|z|2/8), where z = zi − zj is the
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relative coordinate. According to the definition, the pseudopotential Vm is given as follows,

〈ψm|V (|ri − rj|)|ψ′m〉 = Vmδm,m′

Due to the antisymmetry of the wave function, Vm is non-zero only for odd m. Because the

interaction will preserve angular momentum conservation, it is specified by only the diagonal

part of the matrix element, which is a minimal description. So the interaction can be written

in the following form,

H =
∑
i>j

V (ri − rj) =
∑
n

∑
i>j

|ψ2n+1(ri, rj)〉V2n+1〈ψ2n+1(ri, rj)|. (2.11)

Model Hamiltonians can be built by choosing explicit values for the parameters V2n+1. The

most simple example is given by setting Vl = 0, for all l > 1, namely only the V1 term remain

positive. This turns out to be a very simple repulsive interaction,

V1(r) = ∇2
zδ

2(z). (2.12)

It is basically a hard core repulsion interaction which is exactly solvable. For Laughlin state

at filling factor ν = 1/3, there is no pairs of electrons with relative angular momentum ~.

Clearly the above interaction will annihilate the q = 3 Laughlin states. Actually it is the

unique ground state of V1 in LLL Hilbert space with filling factor 1/3 [19].

Similar model Hamiltonians can be constructed for other Laughlin states with ν = 1/q

by setting Vl = 0 for l >= q, and Vl > 0 for l < q.
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2.2 Motivations

In the last section, we have discussed the technical basis for understanding the QHE. We

have seen that the Laughlin states are very successful special wave functions that paved

the way for furthur theoretical developments. There are many other special wave functions

[41, 50, 24, 26, 59] that describe other fractional states. These “wave function” approaches

are greatly enhanced by the construction of parent Hamiltinians. [50, 24, 19, 62, 18] This

very particular class of quasi-solvable1 Hamiltonians consists of Landau level projected ultra-

local interactions, which enforce the analytic properties that uniquely characterize the re-

spective ground state. The prime example for such a parent Hamiltonian is given by the

V1-pseudopotential,[19] as we discussed in section 2.1.4. Its unique ground state at filling

factor ν = 1/3 is the Laughlin state corresponding to this filling.

Due to the Landau level projection, the pseudo-potential Hamiltonian acts only on the

“guiding center” degrees of freedom, which exhaust the large degeneracy within a given

Landau level, and commute with the generators of inter-level transitions. (The latter are

related to the kinetic momenta of the particles, see section 2.1.1) It is therefore beneficial

to make the action of the Hamiltonian on guiding center variables manifest. This is in

particular the case when the Hamiltonian is expressed using creation/annihilation operators

for a set of eigenstates, say, of one of the two non-commuting guiding center components

in Eq. 2.4, which form a basis for the LLL. In numerics, such a second quantized “guiding

center” description of the Hamiltonian is essential to make use of the reduced Hilbert space

dimensionality owing to the LLL projection.

1By this we mean that the ground state is exactly known.
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Previous work on Jack polynomials has provided a general rule to construct the guiding

center representation of some special wave functions in the plane, sphere and cylinder ge-

ometries. [7, 6] However things are quite different on the torus because the Jastrow factor

appearing in these special wave functions are no longer of polynomial form so that the Jack

polynomial approach does not work on the torus. Here, we would like to explore the possi-

bility of constructing the guiding center representations by adiabatically evolving from the

thin torus limit, which is simple and well known[55]. We manage to find the generator for

adiabatic evolution in geometric parameter τ , which makes the guiding center representa-

tion avaiable for general tori. Further more, this generator is also intimately related to the

geometric phases that defines the Hall viscosity. The following part of this chapter has been

published in Ref. [77].

2.3 Guiding center representation of Laughlin state,

from cylinder to torus

We illustrate the guiding center representation for the cylinder geometry first, for reasons

that will soon become apparent. We introduce a set of LLL basis states as described above,

given by:

φn(z) = ξne−
1
2
x2e−

1
2
n2/r2 (2.13)

where ξ = ez/r is an analytic function of z = x+iy that satisfies periodic boundary conditions

in y, appropriate for a cylinder of perimeter 2πr (using Landau gauge, A = (0, x)). These

orbitals are eigenstates of the x-component of the guiding center with eigenvalues n/r, where,
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for the time being, we set the magnetic length lB equal to 1. The 1/3-Laughlin state on the

cylinder is then expressed as[52]

ψ1/3(z1 . . . zN) =
∏
i<j

(ξi − ξj)3 × e− 1
2

∑
k x

2
k . (2.14)

With respect to the basis Eq. (2.13), the V1 pseudo-potential takes on the following second

quantized form (cf, e.g., Ref. [33]):

V̂1 =
∑
R

Q†RQR

QR =
∑
x

x exp(−x2/r2) cR−xcR+x

(2.15)

In the first line, the sum goes over both integer and half-odd integer values of R, whereas in

the second it goes over integer (half-odd integer) if R is integer (half-odd integer), such that

labels R± x are then always integer.

The one parameter family of models (2.15) share many features with one-dimensional

(1D) lattice models that arise elsewhere in solid state physics, such as translational invariance

and short ranged (exponentially decaying) interactions. It is thus not surprising that it has

recently been proposed to be of use in the absence of (proper) Landau level physics, e.g., in

flat band solids both with[46] and without[70] non-zero Chern numbers, and in quite general

terms in Ref. [55].

Despite the usefulness of the second quantized description (2.15) of the pseudo-potential,

it would be very difficult to solve for the zero energy eigenstates of the model in this form,

or to even know analytically that such zero energy eigenstates exist. For this we rely on the
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original first-quantized definition of the pseudo-potential V̂1, and on the explicitly known

analytic form of the Laughlin state, Eq. (2.14), in terms of ordinary position variables. It

would be highly non-trivial, however, to come up with such a first quantized language for

the problem Eq. (2.15) if its connection to LLL orbitals were not a priori known. This

is so because this language becomes available only after proper embedding of the degrees

of freedom associated with the operators cn, c†n in Eq. (2.15) into a larger Hilbert space.

In Eq. (2.15), no information is retained about the kinetic momenta that determine the

structure of the Landau levels. Indeed, as Haldane has recently shown,[22] by making these

kinetic momenta subject to a different metric from that entering the interactions, one obtains

a different way to naturally embed the problem (2.15) into the larger Hilbert space of square

integrable functions. In this setup, Eq. (2.15) remains unaltered, but the resulting wave

function loses the analytic properties of Eq. (2.14) that make the problem tractable.[22, 47]

Moreover, the solid state applications mentioned initially represent yet another way to embed

the problem (2.15) into a larger Hilbert space.

These considerations show that “interaction only” models such as (2.15), especially ones

that share the “center-of-mass conserving” property,[55] may enjoy a considerable range of

applications, but at the same time, may be quite hard to solve in general.2 This is chiefly

due to the fact that the Laughlin state, in its second quantized/guiding center presentation,

is quite a bit more complicated than in its analytic first quantized form Eq. (2.14). While

no closed form seems to be known for the amplitudes 〈0|cn1 . . . cnN |ψ1/3〉, much progress

has recently been made in understanding their structure for the cylinder geometry, and

2We note though a tractable truncated version of Eq. (2.15) with matrix product ground state given in
Ref. [42].
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for any other geometry in which the analytic part of Laughlin’s wave function is given

by a polynomial. Indeed, for Laughlin states and many other quantum Hall trial wave

functions, these polynomials have been identified as Jack polynomials, multiplied by Jastrow

factors.[7, 6] This allows the amplitudes 〈0|cn1 . . . cnN |ψ1/3〉 to be determined recursively. For

the cylinder Laughlin state, this can be sketched as follows. We consider the expansion of

Eq. (2.14) into monomials,

ψ1/3(z1 . . . zN) =
∑
{nk}

C{nk}
∏
k

ξnkk e
− 1

2
x2k (2.16)

The product in the above equation can be interpreted as a state with definite single particle

occupation numbers, up to a normalization. (The C{nk} have the proper (anti)-symmetry

to allow (anti)-symmetrization of the product.) This normalization is readily read from

Eq. (2.13). We thus have[52]

|ψ1/3〉r =
∑
{nk}

e
1

2r2

∑
k n

2
kC{nk} c

†
nN
. . . c†n1

|0〉 . (2.17)

The monomial coefficients do not depend on r, and are known recursively, starting from the

coefficient of the “root configuration” c†nN . . . c
†
n1
|0〉 = |10010010010 . . . 〉 through a process

known as “inward squeezing”.[7, 6]

A remarkable aspect of Eq. (2.17) is that the dependence on geometry, in this case the

cylinder radius r, comes in only through the trivial normalization factor. This is matched

by a similarly trivial r-dependence of the interaction V̂1. It is quite easy to see that the

condition that the Hamiltonian Eq. (2.15) has a zero energy eigenstate (which, by positive
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Figure 2.3: Fundamental domain for torus wave functions.

semi-definiteness, must be a ground state), which reduces to QR|ψ1/3〉r = 0 ∀R, yields an

r-independent condition on the coefficients C{nk}. In this way it becomes manifest that

regardless of the value or r, one is always solving the same problem, which is intuitively

clear from the simple analytic form of the Laughlin wave function (2.14) and its trivial r-

dependence. It should also be emphasized that the simple r-dependence of Eq. (2.17) is

not particular to the Laughlin state. It is a direct consequence of the polynomial form of

the wave function, and carries over without change to any quantum Hall trial state on the

cylinder.

The situation is rather different for the torus geometry. The main purpose of this work

will be to get a handle on the guiding center presentation of the torus Laughlin states. In

the remainder of this introduction, we review some well known facts that make life more

complicated on the torus.

In first quantized language, we pass to the torus by introducing periodic boundary con-

ditions in the complex plane along two fundamental periods L1 and L2, where L1 is taken

to be real, and ImL2 > 0 (Fig. 2.3). The geometry of the torus can be parameterized by

τ = L2/L1, the modular parameter.

The LLL basis on torus can be know from symmetrization of LLL basis on cylinder
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according to magnetic translation. It can be written into the following theta function form,

χl(z) ∝ e
1
2
y2θ

[
l/L

0

]
(Lz/L1, Lτ). (2.18)

Here l = 0, 1, 2, ...L − 1, is the label indicating the degeneracy of LLL on torus. L =

L1ImL2/(2π) is the number of flux quanta penetrating the surface of the torus. θ
[
a
b

]
(z, τ) is

the Jacobi theta function of characteristics a and b.

θ

[
a

b

]
(z, τ) =

∑
m

eiπτ(m+a)2+2iπ(m+a)(z+b).

The basis has the following periodic condition:

χl(z + L1)

χl(z)
= 1 (2.19)

χl(z + L2)

χl(z)
= e−iπLτ−2πiLz (2.20)

Under magnetic translation, the basis evolve as follows,

T1χl(z) = χl(z +
1

L
) = e2πi l

Lχl(z) (2.21)

T2χl(z) = e−2πixχl(z −
τ

L
) ∝ χl−1(z) (2.22)

Here Ti stand for magnetic translation of Li/L along L1 or L2 direction. It clear that the

LLL states return to itself after magnetic translation of L1 and L2.
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The Laughlin state at general filling factor 1/q then becomes[23]

ψ`1/q(z1 . . . zN) = exp(−1

2

∑
k

y2
k)F

`(Z, τ)
∏
i<j

θ1(
zi − zj
L1

, τ)q (2.23)

Here, θ1(z, τ) is the odd Jacobi theta-function, and for the factor depending on the “center of

mass” Z = z1+. . . zN , which also depends on an additional label ` = 0 . . . q−1 corresponding

to a choice of basis in the q-fold degenerate[72] ground state space, we adopt the convention

of Ref. [49]:

F `(Z, τ) = θ

 `
q

+ L−q
2q

−L−q
2

 (qZ/L1, qτ) . (2.24)

Thus, while the Laughlin state is still of the general form of a Gaussian factor multiplying

an analytic function in the complex particle coordinates zi, the latter is not of polynomial

form. As a result, to the best of our knowledge, there is currently no detailed understanding

of the structure of the guiding center description of this state. By this we mean a general

understanding of the coefficients of the analog of Eq. (2.17):

|ψ`1/3〉τ =
∑
{nk}

C`
{nk}(τ) c†nN . . . c

†
n1
|0〉 . (2.25)

In particular, the τ -dependence of the coefficients C`
{nk}(τ) is not of a simple form reminiscent

of the r-dependence explicit in Eq. (2.17). Moreover, intuitively, one would still expect

that these coefficients can be generated from the dominance pattern, i.e., 100100100 . . . at

ν = 1/3. Indeed, this configuration is still dominant on the torus, in the sense that it is

the configuration that dominates in the thin torus limit[55, 3, 56, 4]. The success of the
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thin torus approach in determining physical properties, such as Abelian and non-Abelian

statistics[57, 53, 14, 15] and the presence of gapless excitations[58], suggests that even on

the torus these patterns allow for a reconstruction of the full many-body wave function.

On the other hand, there is no notion of “inward” squeezing on the torus, due to periodic

boundary conditions. The main result of this chapter will be the development of a machinery

for the above mentioned reconstruction of the full torus Laughlin state in the guiding center

description, from the thin torus state. Since as an additional complication, such machinery

can be expected to depend non-trivially on τ , we first focus our attention on the dependence

of the coefficients C`
{nk}(τ) on the geometric parameter.

As a final remark, we point out[23] that the torus Laughlin states at ν = 1/3 are still

the unique ground state of the V1 pseudo-potential. Its second quantized form agrees with a

straightforward periodization of the model (2.15), with

QR =
∑

0<x<L/2
x+R∈Z

∑
m∈Z

(x+mL) exp[
2πiτ

L
(x+mL)2] cR−xcR+x . (2.26)

One sees that for τ = i|L2|/2πr, L2 = iL/r, this reduces to the cylinder form Eq. (2.15) for

L → ∞, and respects the periodic boundary condition cn = cn+L otherwise. (Eq. (2.26) is

valid for general complex τ , though). One therefore passes from Eq. (2.15) to Eq. (2.26) (with

imaginary τ) through straightforward introduction of periodic boundary conditions (PBCs).

Yet the solution of Eq. (2.26) is arguably much less under control. The introduction of PBCs

is a standard and very useful tool throughout solid state physics. We thus expect that a

better understanding of the guiding center description of the torus Laughlin state will also

benefit the solid state applications[70, 46] mentioned initially.
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The remainder of this chapter is organized as follows. In section 2.4 we construct a

two-body operators that generated the changes in the guiding center variables of the torus

Laughlin state with modular parameter τ . Sections 2.4.1 and 2.4.2 highlight further formal

similarities and differences between the cylinder and the torus. Sec. 2.4.3 presents the heat

equation for the τ -derivative of the analytic Laughlin state. Sec. 2.4.4 introduces a 2D to

1D mapping, which is our device for embedding lowest Landau levels at different modular

parameter τ into the same larger Hilbert space. In Sec. 2.4.5 we derive the generator

mentioned above. In Sec. 2.4.6 we symmetrize this operator and present a byproduct of this

study, a hitherto unknown class of two-body operators that annihilate the torus Laughlin

state. In Sec. 2.4.7 we postulate a presentation of the torus Laughlin state in terms of its

thin torus, or “dominance” pattern, and the class of two-body operators generating changes

in geometry. In Sec. 2.5 we demonstrate the postulate of Sec. 2.4.7 numerically, and work

out the relation of our generator with the Hall viscosity[48], which we calculate numerically

as a demonstration of analytical results, comparing the resulting data to earlier numerical

studies. We discuss our results in Sec. 2.6. We also have Appendix in the end of the thesis

discussing some technical details.

2.4 Construction of the 2-body operator

2.4.1 A final look at the cylinder case

As motivated above, to establish a machinery that generates the full guiding center descrip-

tion of the Laughlin state from the root configuration, a natural starting point is to get

under control how this description changes with the geometric parameter τ . To this end, we
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will seek to construct an operator that generates changes of the guiding center degrees of

freedom to first order in dτ . The similar problem for the cylinder, where r is the geometric

parameter, is comparatively trivial and was already addressed in the introduction. For later

reference, it is instructive to first cast these results in terms of a generator of infinitesimal

changes in the parameter r−2. Eq. (2.17) can be written as

|ψ1/3〉r′ = e(r′−2−r−2)Gr−2 |ψ1/3〉r (2.27)

where

Gr−2 =
1

2

∑
n

n2c†ncn (2.28)

is the generator of changes in the geometric parameter r−2. Note that it is independent of

r. We emphasize again that (2.27), (2.28) are very general, and apply to other quantum

Hall trial states on the cylinder as well. In writing (2.27), we leave it understood that the

exponentiated operator generates the change of the guiding center degrees of freedom only;

it does not generate in any way the change of the LLL orbitals themselves as a function

of r, Eq. (2.13). We are only concerned here with the change in guiding center degrees of

freedom, since the object of study is the second quantized Hamiltonian Eq. (2.15), in which

degrees of freedom associated with kinetic momenta are not retained. We will thus carefully

distinguish from now on between the Laughlin wave function ψ1/3 ≡ ψ1/3(z1 . . . zN ; r), which

lives in the full Hilbert space of square integrable functions over some domain, and the ket

|ψ1/3〉r, which lives in an abstract Hilbert space denoted L that is isomorphic to the LLL for

any given value of cylinder radius r. Similar conventions will be used below for the torus.

In L, therefore, all those orbitals with the same guiding center quantum number n become
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identified, which originally belonged to different LLLs corresponding to different values of

the parameter r. 3

We note that a similarly universal operator that generates changes of the guiding center

degrees of freedom in response to a change in geometry can be obtained on the plane.[51, 47]

Here, since a geometric deformation by means of uniform strain does not affect boundary

conditions, such a deformation is implemented by a change in the metric, and unlike in

Eq. (2.27), the operation implementing this deformation is unitary.

On the other hand, it is worth pointing out that in (2.27), the lack of unitarity leads to

a breakdown of the equation in the “thin cylinder” limit r → 0, in which |ψ1/3〉r approaches

|100100100 . . . 〉. The equation remains valid for arbitrarily small but finite r, where the

limiting state |100100100 . . . 〉 receives arbitrarily small corrections, which are, however, im-

portant and may not be dropped, since they become large under the non-unitary evolution

facilitated by the exponential operator. This is immediately clear from the fact that the

thin cylinder state is an eigenstate of the one-body operator in the exponent. This operator

is thus not capable of generating the off-diagonal matrix element needed to “squeeze” the

full many-body wave function out of the thin cylinder state, i.e., the root configuration.

Eq. (2.27) is thus not a tool to generate the full cylinder Laughlin state out of the root con-

figuration. For the cylinder, however, other such tools are already available, as mentioned

in the Introduction.[7, 6]

3Indeed, as formulated at present, these different Landau levels do not even live in the same Hilbert
space, since the domain of the underlying wave functions depends on the value of r. This is inconsequential
at present, however, and will later be remedied.
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2.4.2 General considerations for the generator on the torus

We desire to construct an operator analogous to Gr−2 for the torus Laughlin state, which

generates changes in the guiding center variables of the state in τ . This operator is thus

defined by the following equation:

∇τ |ψ`1/q(τ)〉 = Gτ |ψ`1/q(τ)〉 . (2.29)

Here, Gτ denotes the operator valued two-component object (Gτx , Gτy), and ∇τ ≡ (∂τx , ∂τy).

Note that we require that Gτ is independent of the label ` distinguishing the q degenerate

Laughlin states |ψ`1/q(τ)〉, at given filling factor 1/q and given τ .

To highlight considerable differences with the similar problem on the cylinder, we now

show that it follows easily from these assumptions that, unlike for the cylinder, the compo-

nents of Gτ cannot be one-body operators. For, if Gτx,y were one-body operators, we could

symmetrize each with respect to the magnetic translation group. After symmetrization, Gτx,y

would still satisfy Eq. (2.29). This follows from the observation that Gτ was assumed to be

independent of `, and that the Laughlin states |ψ`1/q(τ)〉 are closed under magnetic transla-

tions. However, the only one-body operator that is invariant under magnetic translations is,

up to constants, the particle number operator N̂ . Since the |ψ`1/q(τ)〉 are eigenstates of N̂ ,

it is clear that no such operators could satisfy Eq. (2.29).

In the following, we will, however, show that Gτx,y can be a two-body operator.
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2.4.3 Heat equation for the torus Laughlin state

We begin by deriving a differential equation for the τ evolution of the analytic Laughlin

wave function Eq. (2.23). We have

∂τψ
`
1/q = e−

1
2

∑
k y

2
k((∂τF

`)frel + F `∂τfrel)

where frel denotes the theta-function Jastrow factor in Eq. (2.23) and ∂τ = 1
2
(∂τx−i∂τy). The

center-of-mass factor in the form Eq. (2.24) is also given by a theta function. Independent

of `, it satisfies the “heat equation”

∂τF
`(Z, τ) =

1

4πiq
∂2
Z F

`(Z, τ) =
1

4πiq
∂2
X F

`(Z, τ) (2.30)

with X = ReZ. Since ∂X leaves the relative part invariant, the operator (4πiq)−1∂2
X acting

on the torus Laughlin state produces just the first term above in ∂τψ1/q. The latter can thus

be expressed as

∂τψ
`
1/q =

[
1

4πiq
∂2
X + q

∑
i<j

∂τθ1(zi − zj, τ)

θ1(zi − zj, τ)

]
ψ`1/q . (2.31)

It is pleasing that the differential operator on the right hand side of the above equation has

the form of a two-body operator. The are, however, two remaining obstacles before we can

express the change of guiding center variables in terms of a two-body operator derived from

the above equation. First, as defined thus far, the Laughlin states Eq. (2.23) for different

parameter τ do not live in the same Hilbert space. In particular, for fixed τ the state (2.23)

is usually viewed as a member of the Hilbert space of square integrable functions over the

fundamental domain in Fig. 2.3. In order to view the differential operator in Eq. (2.31) as an
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operator in some Hilbert space, we must therefore first embed all Laughlin states for different

τ , in fact all the corresponding lowest Landau levels, into the same Hilbert space, since our

differential operator can be viewed as connecting states with infinitesimally different τ . The

second obstacle is that even with such embedding, the lowest Landau level will depend on

τ , i.e., will correspond to a different subspace of the larger Hilbert space H (to be defined

below) for different τ . The differential operator in Eq. (2.31) therefore not only describes

the change of guiding center degrees of freedom with τ , it also describes the change of the

Landau level itself, which we are not interested in. We will therefore find it necessary to

extract the piece of Eq. (2.31) that acts on guiding centers only.

2.4.4 Mapping the problem to 1D

We will first address the more technical problem, which is the embedding of the torus Landau

levels for different τ , denoted by Lτ in the following, into the same larger Hilbert space H.

One natural approach that has been emphasized in the recent literature[48] is to choose an

equivalent way to formulate the problem, where the fundamental domain remains unchanged

and instead the metric is deformed. We will return to this point of view in Sec. 2.5, where

we make connection with the Hall viscosity.

Here we will choose a different approach, which is rooted in the intuition that Landau-

level-projected physics is effectively one-dimensional. One manifestation of this is the form of

the “1D lattice” Hamiltonian Eq. (2.15) that governs the guiding center degrees of freedom.

Another is the fact that wave functions in the LLL are entirely determined by holomorphic

functions satisfying certain boundary conditions. As is well known, the values of such func-

tions in the entire complex plane are already determined by those on (any interval on) the
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real axis. For this reason we may restrict our study of the Laughlin states (2.23) to the

real axis without any loss of information. Also, we find it convenient to choose L1 = 1,

L2 = τ as the fundamental domain for the original two-dimensional (2D) wave functions.

With this, after restriction to the real axis, all states (2.23) become elements of H = L2[0, 1]

of square integrable functions within the interval [0, 1]. We note that with these conventions,

the area of the fundamental domain is not preserved as we change τ . Therefore, we must

accommodate for this by changing the magnetic length accordingly, such that Imτ = 2πLl2b .

This, however, results only in the following trivial modification of the wave functions (2.23),

exp(−1

2

∑
k

y2
k) −→ exp(−1

2

∑
k

y2
k/l

2
B) ,

which is inconsequential since we work at y = 0 in the following. Clearly, when Eq. (2.31)

is now restricted to y = 0, the operator on the right hand side is a well defined differential

operator within the Hilbert space H (in the usual sense that its domain is dense in H.)

A preferred basis for the LLL at given τ , both within the original 2D as well as the 1D

Hilbert space, is given by the following wave functions,

χn(z) =

(
2L

τy

)1/4

e
− y2

2l2
B θ

[
n/L

0

]
(Lz, Lτ) . (2.32)

These are eigenstates of the operator exp(2πi
τy
πy), where πy is the guiding center y-components.

For any τ , the restriction of these orbitals to the real axis spans a different subspace Lτ of

the 1D Hilbert space H, which is in one-to-one correspondence with the lowest Landau level

at τ .
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To see why the orbitals χn are a natural choice of basis in the present context, we observe

that the mapping to the 1D Hilbert space H introduces a new scalar product between

wave functions, defined as usual by integration over [0, 1] (instead of integration over the

fundamental domain in 2D). Eq. (2.32) as written is normalized independent of n with

respect to the 2D scalar product, but not with respect to the scalar product of H. However,

these orbitals are orthogonal in both cases thanks to trivial considerations of properties

under translation in x, which are unaffected by the 1D mapping. The fact that the basis

Eq. (2.32) remains orthogonal, and in particular linearly independent, after restriction to

the real axis makes it manifest that the mapping between the original lowest Landau level

and its image Lτ in the 1D Hilbert space is one-to-one.

We note that working with y-guiding-center eigenstates instead of x (as in our initial

discussion for the cylinder) leaves the second quantized Hamiltonian invariant, except for

the trivial replacement τ → −1/τ associated with the “modular S transformation” . This is

due to the “S-duality” of the physics on the torus (see, e.g., Ref. [54]). The torus Hamiltonian

(2.26) was already written with reference to the orbitals (2.32).

2.4.5 Definition of a 2-body operator generating the deformation

of guiding center variables

We first explain how to relate a result obtained within the 1D framework introduced above

to the desired one, which uses ordinary conventions based on a Hilbert space equipped with

the standard 2D scalar product. Fig. 2.4 shows this process in detail. The top segment

shows lowest Landau levels Lτ , Lτ ′ at different modular parameter that, using the 2D to
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Figure 2.4: Commuting diagram displaying the various Hilbert spaces and sub-spaces
defined in the main text, and operators acting between them.

1D mapping defined in the text, have been embedded into the same larger 1D Hilbert space

H. At the same time, each Landau level is isomorphic (through embeddings Iτ , Iτ ′ , which

will be defined in the following) to the same finite dimensional “abstract” Landau level

space L, in which only the guiding center degrees of freedom are represented. The generator

G̃τ of changes in the guiding center degrees of freedom with τ is first constructed using the

normalization conventions of the 1D Hilbert space. It is related by a similarity transformation

to the operator Gτ , which generates the analogous changes for the normalization convention

of the usual 2D Hilbert space. In the horizontal direction, we have mappings between states

defined for values of the modular parameter. The upper line is defined through the flow of

Eq. (2.31), which describes precisely the change of the Laughlin state, restricted to the real

axis. The lower line represents the corresponding change in guiding center degrees of freedom,

given by Eq. (2.58). The operator Gτ is constructed such that the diagram commutes.

Next we will do the exact process showed in Fig. 2.4 in detail. Suppose we have an
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operator G̃τx (G̃τy) that generates the change with τx (τy) in the coefficients C̃{nk}(τ) in the

expansion of the Laughlin state,

ψ1/q(τ) =
∑
{nk}

C̃{nk}(τ)A χ̃n1(z1, τ) · . . . · χ̃nN (zN , τ), (2.33)

where χ̃n(z, τ) = Nn(τ)χn(z, τ), Nn(τ) being the factor that normalizes the state χn with

respect to the 1D scalar product, 1〈φ|ψ〉1 =
∫ 1

0
dx φ∗(x)ψ(x), i.e., Nn = 1〈χn|χn〉−1/2

1 , and

we will often leave the τ -dependence understood. Likewise, we have dropped the label ` for

now, which is just a spectator in the “heat equation” (2.31). A denotes anti-symmetrization

in the indices nk. The Laughlin state in Eq. (2.33) is a member of the subspace Lτ of H as

defined in the preceding section. We may now map the state (2.33) to the abstract Landau

level Hilbert space L as discussed in Sec. 2.4.1, by applying a projector which “forgets” the

degrees of freedom associated with kinetic momenta. This situation is represented by the

diagram in Fig. 2.4.

If we perform this projection orthogonally with respect to the 1D scalar product, we

obtain a ket

|ψ̃1/q(τ)〉 =
∑
{nk}

C̃{nk}(τ)c†n1
. . . c†nN |0〉 . (2.34)

By definition, we then have

∇τ |ψ̃1/q(τ)〉 = G̃τ |ψ̃1/q(τ)〉 , (2.35)
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where we assume G̃τ = (G̃τx , G̃τy) to be of the form

G̃τ =
∑

mm′nn′

Gmm′nn′c
†
mc
†
m′cncn′ . (2.36)

In the end, one wants to do the projection of Eq. (2.33) orthogonally with respect to the

original 2D scalar product. This gives

|ψ1/q(τ)〉 =
∑
{nk}

C{nk}(τ)c†n1
. . . c†nN |0〉 (2.37)

where C{nk} = Nn1 . . .NnN C̃{nk} from the change of normalization, c†n → Nnc†n. This implies

the relation

|ψ1/q(τ)〉 = e
∑L−1
n=0 ln[Nn(τ)]c†ncn|ψ̃1/q(τ)〉 . (2.38)

From this last line, we obtain that the desired operator Gτ defined by Eq. (2.29) is related

to Eq. (2.36) via 4

Gτ =
∑
n

∇τNn(τ)

Nn(τ)
c†ncn

+
∑

mm′nn′

Nm(τ)Nm′(τ)

Nn(τ)Nn′(τ)
Gmm′nn′ c

†
mc
†
m′cncn′ . (2.39)

With this we have completely relegated the solution of the problem to the 1D Hilbert space.

We point out that the 1D mapping described above may generally provide an efficient way

to calculate the matrix elements of operators acting within the lowest Landau level on the

4It turns out that the final form of G̃τ also contains a one body part that we omit in (2.36), (2.39) for
brevity. However this part transforms analogously.
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torus.5 In this case, Eq. (2.39) will apply without the τ -derivative part. The explicit form

of Nn(τ) will be given below.

We now define the operator Iτ which injects the ket |ψ̃1/q(τ)〉 into Lτ ∈ H, by sending

c†n|0〉 to χ̃n(τ). Thus

ψ1/q = Iτ |ψ̃1/q〉 . (2.40)

For the time being, we work at fixed τx. Using the heat equation (2.31) with ∂τ = −i∂τy and

differentiating Eq. (2.40), one obtains

∂τyψ1/q = i∆ψ1/q = (∂τyIτ )|ψ̃1/q〉+ Iτ G̃τy |ψ̃1/q〉 , (2.41)

where ∆ denotes the differential operator on the right hand side of Eq. (2.31), and we also

used Eq. (2.35).

For Re τ = Re τ ′, it is easy to see that Pτ∂τyIτ ≡ 0, where Pτ is the orthogonal projection

operator onto Lτ (we work in the 1D Hilbert space now, and will always refer to its scalar

product when not stated otherwise). To see this, it is sufficient to observe that 〈χm|∂τyχn〉 =

0 for all m, n. This follows from the fact that 〈χm(τ)|χn(τ ′)〉 = δm,n〈χm(τ)|χm(τ ′)〉 is always

real for Re τ = Re τ ′. Thus, acting on the last equation with Pτ , we get

Pτ∆Pτψ1/q = Pτ∆PτIτ |ψ1/q〉 = Iτ G̃τy |ψ̃1/q〉 .

where we have also inserted Pτ before ψ1/q ∈ Lτ . Since we only care about how the operator

G̃τy acts on these q states, for which we have the last equation, we may thus define this

5We are indebted to G. Möller for this observation.
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operator though the identity

G̃τy = I−1
τ Pτ∆PτIτ . (2.42)

The last equation expresses that the matrix elements of G̃τy are just those of the differential

operator ∆ restricted to the LLL subspace Lτ . These can thus be calculated straightfor-

wardly by evaluating the standard expression for two-body operators:

Gy
mm′nn′ =

1

2

∫ 1

0

dx

∫ 1

0

dx′ χ̃∗m(x)χ̃∗m′(x
′) ∆ χ̃∗n′(x

′)χ̃∗n(x) . (2.43)

As a last step, we calculate Gτy by fixing the normalization convention for single particle

orbitals in accordance with the usual 2D scalar product, as displayed in Eq. (2.39). We may

then obtain the generator for changes in τx simply by studying the analytic properties of the

coefficients C{nk}(τ) in Eq. (2.37). As shown in Appendix .1, one has

∂τxC{nk} = −i∂τyC{nk} + i
N

4τy
. (2.44)

We can thus let Gτx = −iGτy + i N̂
4τy

. Moreover, Eq. (2.44) follows from the fact that

C{nk}/τ
N/4
y is holomorphic in τ . We may use this insight to conveniently redefine the nor-

malization of the Laughlin states via

ψ′`1/q(z1, . . . , zN , τ) = τ−N/4y ψ`1/q(z1, . . . , zN , τ) . (2.45)

The corresponding generator for changes in τy is then given by G′τy = Gτy − N̂
4τy

. In the

following, we will always refer to the normalization convention (2.45). Dropping all primes,
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we then have

Gτx = −iGτy ≡ Gτ . (2.46)

With the ket |ψ1/q(τ)〉 now referring to Eq. (2.45), |ψ1/q(τ)〉 is then holomorphic in τ , and

we have

∂τ |ψ1/q(τ)〉 = Gτ |ψ1/q(τ)〉 . (2.47)

We present our final result as

Gτ = G0 +
1

4πiq
G1 + qG2 . (2.48)

Here, the first term corresponds to −i times the one-body operator in the y-component of

Eq. (2.39), plus the shift of iN/4τy shown in Eq. (2.44). Defining the functions

San =
∑
l

(2πi[lL+ n])ae−2πLτy(l+n/L)2 , (2.49)

the normalization factors defined above correspond to (Nn)−2 =
√

2L/τyS0
n. We thus get

G0 =
i

2

∑
n

∂τyS0
n

S0
n

c†ncn = − 1

4πiL

∑
n

S2
n

S0
n

c†ncn . (2.50)

Next, G1 is the contribution coming from the differential operator ∂2
X in Eq. (2.31). Note

that after normal ordering, the square of a single body operator still contains a single body

operator. We thus get the following result:

G1 = (
q

L
)2[
∑
n

S2
n

S0
n

c†ncn +
∑
n1 6=n2

S1
n1
S1
n2

S0
n1
S0
n2

c†n1
cn1c

†
n2
cn2 ] . (2.51)
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Note that S2
n 6= (S1

n)2, owing to the fact that Pτ∂
2
XPτ 6= (Pτ∂XPτ )

2. Finally, G2 relates to

the θ-function part of Eq. (2.31). Eq. (2.43) can be evaluated by expanding the factors in

the integrand, which are all periodic in x, x′, into Fourier series. For the ∂θ/θ-terms, this

can be done by contour integration and using known properties of θ functions. Key steps in

this term are shown in Appendix .3. With the help of Eq. 30, straightforward calculation

allows one to express G2 through rapidly converging, albeit multiple sums,

G2 =
1

2

∑
n1n2n3n4

∆n1n2n3n4

S0
n1
S0
n2

c†n1
c†n2
cn4cn3 +

1

2
CN̂(N̂ − 1) , (2.52)

and we have defined the function

∆n1n2n3n4 = δn1+n2,n3+n4

2π

i

∑
n6=0

n=n3−n1 mod L

(
eiπτn

1− e2iπτn
)2

∑
l1

eiπτL[(n1+n)/L+l1]2(eiπτL(n1/L+l1)2)∗

∑
l4

(eiπτL[(n4+n)/L+l4]2)∗eiπτL(n4/L+l4)2 ,

(2.53)

and the (τ -dependent) constant

C =
1

4πi
[

∫ 1/2

−1/2

(
∂τθ4

θ4

)2dz − π2] . (2.54)

In the above, the Kronecker δ is understood to be periodic, enforcing identity n1+n2 = n3+n4

mod L.
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2.4.6 Symmetry considerations

The operator Gτ defined in the preceding section is manifestly invariant under magnetic

translations in the x-direction. In the basis we chose here, this is tantamount to the con-

servation, modulo L, of the “center-of-mass” operator
∑

n nc
†
ncn. On the other hand, the

operator is not invariant under magnetic translations in the τ -direction, which amounts to an

ordinary shift of the orbital indices. As already pointed out in Sec. 2.4.2, the symmetrized

operator

Gτ,sym =
1

L

L−1∑
n=0

T nτ Gτ (T
†
τ )n (2.55)

also satisfies Eq. (2.29), where Tτ generates magnetic translations in τ . This is a trivial

consequence of the fact that the |ψ`1/q(τ)〉 transform among themselves under Tτ , and all

satisfy Eq. (2.29). Likewise, each term on the right hand side of Eq. (2.55) satisfies Eq. (2.29).

We may thus define the L− 1 linearly independent 2-body operators

Dn = Gτ,sym − T nτ Gτ (T
†
τ )n, n = 0 . . . L− 2, (2.56)

that all annihilate each of the q-fold degenerate Laughlin states,

Dn|ψ`1/q〉 = 0 . (2.57)

We note that the Dn are not in any obvious way related to the operators Q†RQR of the

pseudo-potential Hamiltonian, with QR given by (2.26). Indeed, the Dn have a non-vanishing

single-body term, whereas the Q†RQR do not. The Dn thus represent a new class of two-

body operators that annihilate the torus Laughlin states (in the absence of quasi-holes). For
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q = 3 and various values of particle number N , we have verified that the property (2.56)

characterizes the q = 3 Laughlin states uniquely.

Note that the single-body contribution to Gτ,sym is proportional to the particle number,

as explained in Sec. 2.4.2. This term can thus be replaced by a constant when acting on the

Laughlin state, and hence can be ignored altogether in practical calculations, where the real

part of this constant is usually adjusted to fix the normalization of the state (see below), and

the imaginary part only affects the phase convention. For the same reason, we do not need

the value of the τ -dependent constant C defined in Eq. (2.54) for the purpose of practical

calculations.

2.4.7 Presentation of the Laughlin state through its thin torus

limit

In the following, we will generally identify Gτ with the symmetrized operator Gτ,sym discussed

in the preceding section, without carrying along the ”sym” label. Putting the results of Sec.

2.4.5 in integral form, we have, via Eq. (2.47),

|ψ`1/q(τ ′)〉 = P e
∫ τ ′
τ Gτdτ |ψ`1/q(τ)〉 , (2.58)

where P means path ordering. The integral in Eq. (2.58) should be interpreted as a complex

contour integral, where the result is independent of the path connecting τ and τ ′. This

is so since by construction, Gτ generates exactly the change with τ of the guiding center

coordinates of the states in Eq. (2.45), which are single valued functions of τ . (This requires

that we carry along all the τ -dependent constant number terms mentioned in the preceding
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section.)

We may also want to add, possibly different, real constants to Gτx and Gτy , such that the

normalization of the Laughlin state is preserved under the evolution with these operators.

When evaluating Eq. (2.58) iteratively, this simply corresponds to normalizing the state at

each step. We denote the accordingly modified operators by GN
τx and GN

τy , and introduce the

operator valued 1-form dGN
τ = GN

τxdτx +GN
τydτy. We may then write

|ψ`1/q(τ ′)〉N = P e
∫ τ ′
τ dGNτ |ψ`1/q(τ)〉N , (2.59)

where the subscript N denotes normalized Laughlin states. We are now interested in the

thin torus limit τ → i∞, in which |ψ`1/3(τ)〉N approaches the ket |100100100 . . . 〉,[55] or

one related to the latter through repeated action of Tτ . Here, the labels 100100100. . . are

occupation numbers in the basis (2.32). Given our earlier discussion for the cylinder, it

cannot be taken for granted that Eq. (2.59) remains well-defined in this limit. On the

other hand, it may seem plausible that this is the case, since the operators GN
τx , G

N
τy do

generate off-diagonal matrix elements when acting on the thin torus state, unlike the case

of the cylinder. It thus seems feasible that the full Laughlin states at arbitrary τ admit the

following presentation in terms of their respective thin torus limit,

|ψ`1/q(τ)〉N = P e
∫ τ
∞ dGNτ |...100...100...100... . . . 〉 , (2.60)

where the pattern on the right hand side denotes one of the q thin torus patterns at filling

factor 1/q. The correctness of the above assertion remains non-trivial, however, as the
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τ ′ → ∞ limit in Eq. (2.59) must be taken with care. In the next Section we provide

numerical evidence for q = 3, demonstrating the above relation for various particle numbers

N . We thus find that the full torus Laughlin state may be generated from its given thin

torus limit via application of the above path-ordered exponential involving the two-body

operator constructed here. We conjecture that this is true for general q. An application

demonstrating this technique will be discussed in the following.

2.5 Application: Hall viscosity

As an application of our findings in Sec. 2.4, we use Eq. (2.60) (or the differential form

Eq. (2.47)) to calculate the ν = 1/3 torus Laughlin state along a contour in the complex τ -

plane, starting from the thin torus limit at τ = i∞. As a physical motivation for calculating

the Laughlin state along such contours, we will be asking how the Hall viscosity[48] evolves

along such contours. Hall viscosity is “a non dissipative viscosity coefficient analogous to Hall

conductivity, for paired states, Laughlin states, and more general quantum Hall states”. It is

an invariant within a topological phase. This quantity is naturally related to the main theme

of our work, i.e., changes of the Laughlin state with changes in geometry. The notion of a Hall

viscosity of fractional quantum Hall liquids has generated much interest recently,[48, 21, 51]

expanding earlier work[2] on integer quantum Hall states. In particular, in an insightful

paper, [48] Read has derived a general relation between the viscosity of a quantum Hall

fluid and a characteristic quantum number s̄, which can be interpreted as “orbital spin per

particle” and is related to the conformal field theory description of the state in question.

Here we only give a brief summary of the relevant definitions, following closely Ref. [51], to
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which we refer the interested reader for details.

We denote the fourth-rank viscosity tensor of the fluid by ηabcd, where we are interested in

the case of two spatial dimensions. In a situation with no dissipation, only its anti-symmetric

or “Hall viscosity” component η
(A)
abcd = −η(A)

cdab may be non-zero, and this is possible only when

time reversal symmetry and the symmetry under reflection of space are both broken. This

is the situation in a magnetic field (where in a constant field, only the product of these two

symmetries is unbroken).

We now consider a system with periodic boundary conditions defined by two periods

L1 = (L1, 0) and L2 = (L1τx, L1τy), and Hamiltonian

H =
1

2

N∑
i=1

gabπiaπib +

PLLL

∑
m,n

∑
i<j

V (||xij +mL1 + nL2||g)PLLL

(2.61)

Here, πa is a component of the kinetic momentum, PLLL denotes LLL-projection, and we have

introduced a metric gab. We have also introduced the “periodized” version of a potential

V that depends on xi, xj only via ||xij||g ≡ gabx
a
ijx

b
ij with xij = xi − xj. We follow Ref.

[51] and parametrize the metric via g(λ) = ΛTΛ, Λ = exp(λ), where Λ can be viewed as a

coordinate transformation that transforms the identity metric into the metric g. Clearly, g

is invariant under Λ → RΛ, where R is a rotation matrix. Since λ can be interpreted as

being proportional to an “infinitesimal version” of Λ, whose rotational component is just

its anti-symmetric part, we may fix this rotational degree of freedom by requiring λ to be

symmetric. Then, the Hall viscosity of the ground state of Eq. (2.61) can be related[2, 51, 9]

to the adiabatic curvature on the space of background metrics, here parameterized by the
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symmetric matrix λ. Specializing to g = id, we have:

η
(A)
abcd = − 1

V
Fab;cd (2.62)

where Fab;cd is the Berry curvature

Fab;cd = −2Im〈∂λabψ|∂λcdψ〉|g=id , (2.63)

and ψ denotes the ground state of Eq. (2.61). Fab;cd clearly has the anti-symmetry of η
(A)
abcd,

and it is also symmetric in the index pairs ab and cd. Furthermore, at least in the thermody-

namic limit of large L1, one would expect η
(A)
abcd to acquire full rotational symmetry. In two

dimensions, this requires the trace η
(A)
abcc to vanish, where we use the sum convention, and

similarly for the first index pair. (In higher dimensions, rotational symmetry requires η(A)

to vanish identically). Moreover, in an incompressible fluid, the strain tensor uab must be

traceless. Therefore, since the viscosity couples to the rate of strain u̇ab via η
(A)
abcdu̇cd to give

a viscous contribution to the stress tensor, only the traceless part of η
(A)
abcd is of interest. It

therefore makes sense to restrict our attention to traceless λab, corresponding to volume pre-

serving coordinate transformations. Requiring Fab;cd thus to be anti-symmetric, symmetric

in the first and second pair, as well as traceless, in D = 2 the associated curvature 2-form

F = 1
2
Fab;cd dλab∧dλcd can only depend on the following two independent linear combinations

of 1-forms, dλ11− dλ22 and dλ12 + dλ21. Hence it must be proportional to their product:[51]

F = −1

2
s (dλ11 − dλ22) ∧ (dλ12 + dλ21) , (2.64)
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and we introduced a proportionality factor −s/2 whose physical meaning will be given below.

The above expression in Eq. (2.62) gives

η
(A)
abcd = η(A)(δadεbc + δbcεad) (2.65)

with

η(A) =
1

2
s̄n̄~ , (2.66)

where n̄ = N/V is the particle density, s̄ = s/N , and we have restored a factor of ~. As shown

in Ref. [48], in the thermodynamic limit the parameter s̄ is quantized and can be identified

with the average orbital spin per particle, which is related to the conformal dimension of the

field describing particles in the conformal field theory description of the state. It is further

related to the topological shift on the sphere, S, of the underlying state via s̄ = S/2. For

the Laughlin 1/3 state, s̄ = 3/2.

We now consider fixed boundary conditions described by τ , and introduce a metric that

corresponds to the infinitesimal transformation

dλ =
1

2τy

−dτy dτx

dτx dτy

 . (2.67)

It is not difficult to see that the corresponding metric change is equivalent to changing the

modular parameter τ to τ ′ = τ + dτx + idτy. We may thus rewrite Eq. (2.64) as

F = −Ns̄
2τ 2
y

dτx ∧ dτy . (2.68)
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To each λ can be associated a τ ′, where Λ = exp(λ) is the coordinate transformation that

changes the τ -boundary condition into a τ ′-boundary condition, where

τ ′ =
ΛL1 · ΛL2 + iΛL1 × ΛL2

||ΛL1||2
. (2.69)

For fixed τ , we now parameterize λ, and thus the metric, by τ ′. (Note that the right hand

side of Eq. (2.69) can be viewed as a function of Λ and τ .) Eq. (2.68) then implies that

s̄ =
4τ 2
y

N
Im 〈∂τ ′xψ|∂τ ′yψ〉 . (2.70)

We emphasize that in the above, ψ ≡ ψ(τ, gτ (τ
′)) always satisfies the same boundary condi-

tion defined by τ , and depends on τ ′ only through the metric. At the same time, ψ(τ, gτ (τ
′)) is

related to ψ(τ ′, id) by the unitary transformation χn(τ, gτ (τ
′))→ χn(τ ′, id), with χn(τ, g(τ ′))

the deformed version of the state (2.32) in the presence of the metric g(τ ′). However, for

fixed τ , the ψ(τ, gτ (τ
′)) live in the same Hilbert space,[51] independent of τ ′. The advantage

of introducing both τ and τ ′, where the former describes boundary conditions, and the latter

describes the “true geometry” of the system, is that we may restrict ourselves to metrics

gτ (τ
′) in the vicinity of the identity (corresponding to τ ′ close to τ), such that Eq. (2.62) is

directly applicable.

We now consider ψ = ψN1/3, the normalized Laughlin 1/3 state (where we suppress labels

τ , τ ′, and `). We have the expansion

ψN1/3 =
∑
{nk}

CN
{nk}(τ

′)|{nk}〉g , (2.71)
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and |{nk}〉g〉 is short for the Slater determinant A [χn1(z1, τ, g(τ ′)) · . . . · χnN (zN , τ, g(τ ′))].

We write −2Im 〈∂τ ′xψ|∂τ ′yψ〉 = ∇τ ′ × A where

A = i
∑
{nk}

(
|CN
{nk}|

2
g〈{nk}|∇τ ′|{nk}〉g + CN ∗

{nk}∇τ ′C
N
{nk}
)

(2.72)

is the Berry connection. It turns out that in the first term, which describes the change of the

LLL basis with τ ′, g〈{nk}|∇τ ′|{nk}〉g is independent of {nk}, and contributes a constant 1/2

to Eq. (2.70).[34] The second term depends on the changes of the C{nk} with τ ′, which we

described in the preceding section. We first assume the general situation where this change

is described by Eq. (2.29) with two generators Gτx and Gτy that are not necessarily related

and that do not necessarily preserve the normalization of the state. It is straightforward

to show that the contribution from the second term then leads to the following connected

expectation value,

− 2 Im
∑
{nk}

∂τ ′xC
N ∗
{nk}∂τ ′yC

N
{nk}

= i
[
〈G†τxGτy −G†τyGτx〉 − 〈G†τx〉〈Gτy〉+ 〈G†τy〉〈Gτx〉

]
,

(2.73)

where expectation values on the right hand side are taken in the state Eq. (2.71). The last

two terms take care of the normalization, and will cancel if both operators are anti-Hermitian

(describing unitary evolution), in which case the expression reduces to the expectation value

of a commutator. Note also that the expression is invariant under constant shifts of any

of the two operators. We now specialize to the case where these operators are related by
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Eq. (2.46). Plugging Eq. (2.72), Eq. (2.73) into Eq. (2.70), this gives

s̄ =
1

2
+

4τ 2
y

N
|∆Gτ |2 , (2.74)

where |∆Gτ | = (〈G†τGτ 〉 − 〈G†τ 〉〈Gτ 〉)1/2 is the variance of the operator Gτ in the state

ψN1/3, and is manifestly positive (the Laughlin state at τ certainly being no eigenstate of

Gτ for any τ). As stated above, for the Laughlin state s̄ is expected to approach 3/2 in

the thermodynamic limit. This has been checked in Ref. [51], by calculating torus Laughlin

(and other) states by exact diagonalization of parent Hamiltonians, and computing the Berry

curvature by taking overlaps between such states for different τ (or λ). Here we will consider

the same problem both as a demonstration and a consistency check of the results presented

in the preceding section. To this end, we calculate the Laughlin state from the presentation

(2.60), or by numerically integrating the differential equation (2.47) with thin torus initial

conditions, and then computing s̄ from Eq. (2.74). Note that both steps of the calculation

make use of the two-body operator Gτ . In particular, our results will confirm the accuracy

of Eq. (2.60), which may be written more carefully as

|ψ`1/q(τ)〉N = lim
τ ′→i∞

P e
∫ τ
τ ′ dG

N
τ |...100...100...100... . . . 〉 . (2.75)

Evaluating the expression on the right for some large but finite τ ′ is equivalent to integrating

Eq. (2.47) (and normalizing the result), where the thin torus limiting state defines the initial

condition at τ ′. This obviously introduces some error compared to the full Laughlin state at

the initial value τ ′, hence also at the final value τ . Since it is not clear a priori how this error
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Figure 2.5: Average “orbital spin per particle” s̄ as calculated from Eq. (2.70), for the
ν = 1/3 torus Laughlin state at τ generated via Eq. (2.75), using the procedure described
in the main text.

behaves in the limit of large imaginary τ ′, possible pitfalls are that the limit in Eq. (2.75)

is ill-defined, or that it is well-defined but does not agree with the Laughlin state. 6 Our

results, however, give strong support of Eq. (2.75).

Fig. 2.5 shows the results for the value of s̄− 1/2 from this method for q = 3. Beginning

with the thin torus state |100100100 . . . 〉 at large imaginary τ ′, we evolve the state down

to τ = i, i.e., a torus of aspect ratio 1, integrating Eq. (2.47) using the classical 4th order

Runge-Kutta method. We normalize the state at each step. Final state errors compared

with exact diagonalization at τ = i are shown in Fig. 2.5 for 5 particles for τ ′ = 30i and

step size dτ = 0.01i, 7 and 8 particles for τ ′ = 30i and dτ = 0.05i, 9 particles for τ ′ = 40i,

dτ = 0.025i. 10 particles data is shown for τ ′ = 80i, dτ = 0.02i. Crosses denote the value of

s̄− 1/2 obtained from the exactly diagonalized Laughlin state in Eq. (2.70), for comparison.

6The latter case is obviously realized for the Laughlin state on the cylinder and the operator Gr−2 defined
in Sec. 2.4.1, where the expression analogous to the right hand side Eq. (2.75) leaves the thin torus limiting
state invariant.

54



The errors of s̄ are at or smaller than 10−6 in these cases.

For particle numbers N = 5 to N = 9, we have observed that the error of the state

obtained at τ = i, compared to the Laughlin state generated from exact diagonalization of

the V1 Haldane pseudopotential, |ψ − ψed|, becomes systematically smaller with increasing

initial τ ′ and decreasing step size dτ . The observed state error at τ = i has been on the

order of 10−6 for N = 5, and on the order of 10−4 for N = 9. For N = 10, we show data

based on our method only. Generally, larger N requires larger τ ′ for the same accuracy.

One can also see from Fig. 2.5 that the expected value of s̄−1/2 = 1 is always approached

rather closely for τ = i, though it deviates from this value for |τ | noticeably larger than 1.

The crossover where notable deviations from 1 set in is pushed to larger |τ | with increased

particle number, as expected. However, the value of s̄ is found to be much more constant,

and close to its expected thermodynamic limit, when instead of varying the modulus of τ

we vary its phase at |τ | = 1, even for five particles, as shown in Fig. 2.6.

The state has been evolved out of the thin torus limit first down to τ = i as described in

the caption of Fig. 2.5, and then to τ = eiθ using the same method. The step sizes used are

dθ = 0.01rad for 5 particles and dθ = 0.001rad for 8 and 10 particles. The state difference

with the exactly diagonalized Laughlin state at the last step is listed in the figure. s̄− 1/2

remains close to 1, as expected in the thermodynamic limit[48], for a wide range of angles

θ. These observations are consistent with exact diagonalization data in Ref. [51] for N = 10

and (at τ = exp(iπ/3)) larger particle number.
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Figure 2.6: Average orbital spin per particle s̄, calculated from Eq. (2.70), for the ν = 1/3
torus Laughlin state, with τ goes along unit circle.

2.6 Discussion

In the preceding sections, we considered the change in the guiding center variables, with

modular parameter τ for the torus Laughlin states. Within a given Landau level, the guid-

ing center coordinates fully specify the state. We have shown that this change is generated

by a two-body operator Gτ , which we have explicitly constructed. We have demonstrated

numerically that by means of this two-body operator, the Laughlin state for any modular

parameter τ can be generated from its simple thin torus (τ = i∞) limit. The ability to

generate the full torus Laughlin state in this way may be compared to squeezing rules that

follow from the Jack polynomial structure of this state in other geometries.[7, 6] From a prac-

tical point of view, however, our method still requires integration of a first order differential

equation. While this requires some compromise between accuracy and computational effort,

the added benefit is that in the process of the calculation, the Laughlin state is generated
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along an entire contour in the complex τ plane, rather than just for a single value of τ . It

is thus likely that whenever a moderate error can be tolerated, but many τ values are of

interest, our method may become competitive compared to numerical diagonalization. As

a demonstration of these features, we have produced results relating to the Hall viscosity

that are similar to those of Ref. [51] (and are expected to be identical within numerical

accuracy for identical particle number, which we have not yet studied). The Hall viscosity

is itself deeply related to our main theme of study, i.e., geometric changes in the Laughlin

state,[2, 48, 51] and we have discussed its precise relation to the generator constructed here

(Eq. (2.74)), following Ref. [51].

We note that one key ingredient of our procedure is to embed different torus Laughlin

states, which are related to one another by the application of strain, into the same Hilbert

space. For this we make use of a dimensional reduction that is made possible by the analytic

properties of lowest Landau level wave functions on the torus. We argued that this mapping

may be useful in other contexts. However, recent work on Hall viscosity[51] achieves the

same embedding by a different method, which is to introduce a metric describing the effect

of strain, rather than a change in boundary conditions. We conjecture that if we had used

this method in Sec. 2.4, we would have directly obtained the symmetrized version of our

operator Gτ . In this way, however, we would not have obtained the family of two-body

operators given in Sec. 2.4.6, whose members annihilate the torus Laughlin states.

While primarily, we have been working in a finite dimensional Hilbert space that repre-

sents guiding center-coordinates only, the operator defined in Sec. 2.4 also naturally acts

within the full Hilbert space, which can be viewed as the tensor product of the degrees of

freedom for the guiding centers and the dynamical momenta, respectively. Within this larger,
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physical, Hilbert space, the operator Gτ generates the change in guiding center degrees of

freedom associated to a change in the torus geometry, but not the corresponding change

of the Landau level. As pointed out recently by Haldane,[22] the Laughlin state may be

generalized by the introduction of a geometric parameter that describes the deformation of

guiding center variables in response to a change in the “interaction metric”. The so deformed

Laughlin state is still the exact ground state of an appropriately deformed Hamiltonian. The

operator that we have constructed can thus also be viewed as generating the change of the

torus Laughlin state in response to a change of the interaction metric, i.e., the change in

ground state for the corresponding family of deformed pseudo-potential Hamiltonians. For

the disc geometry, this problem has been addressed from different angles previously.[51, 47]

We conjecture that the observations made here are not limited to Laughlin states, but

can be generalized to other quantum Hall states as well. Indeed, a great wealth of model

wave functions is obtained from conformal blocks in rational conformal field theories.[41] For

conformal blocks on the torus, the dependence on the modular parameter τ can be described

by Knizhnik-Zamolodchikov-Bernard (KZB) type equations.[5] We expect therefore that our

approach can be generalized to other trial wave functions related to conformal field theories.

The details of such generalizations are left for future work.
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Chapter 3

Geometric phase of d-wave vortices in

a model of lattice fermions

3.1 Introduction and moltivation

In this chapter, we switch our research topic from quantum Hall systems to superconducting

systems. The Berry phases usually don’t play a dominant role in superconductivity. How-

ever, as we have seen in chapter 1, the nature way to introduce Berry phase is applying

magnetic field. This is in particularly the case in type II superconductors, where magnetic

vortices are allowed to penetrate the superconductor when external magnetic field is applied.

A type II superconductor has 2 critical magnetic field Hc1 and Hc2. Below Hc1, the whole

bulk is superconducuting. When the fields exceeds Hc1, an Abrikosov lattice of vortices is

formed due to the free energy flip of superconducting-normal interface. Inside the vortex,

magnetic field penetrates the superconducting layer. When the magnetic field keeps increas-

ing, the Abrikosov lattice become more and more dense. Eventually, the superconductivity
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disappears when Hc2 is reached.

Here we are studying the Berry phase in the parameter space expanded by position of

magnetic vortices. The following part of this chapter has been published in Ref. [78].

3.2 Background

Our model description is based on a phenomenology of a BCS-like pairing state with d-

wave symmetry, which has led to considerable success in understanding the properties of

quasi-particles in high-Tc superconducting cuprates. This includes the mixed state of these

systems, where a magnetic field Hc1 < H < Hc2 is applied and leads to the presence of

an Abrikosov vortex lattice. Effective models[71, 16, 35, 64, 65, 67, 36, 37, 38, 66, 39,

68, 69, 60, 45, 44] have been developed that describe the dynamics of the quasi-particles

under the simultaneous influence of magnetic field, the supercurrent flow due to the vortices,

and in some cases the underlying microscopic lattice. The vortices of the mixed state are

usually assumed to be static, i.e., frozen into the Abrikosov lattice. However, it has been

argued[43] that both as a result of the small coherence length ξ, and possibly the proximity

to an insulating state, fluctuations of vortices may play a fundamental role. Moreover,

at sufficiently high magnetic fields below Hc2 , it has been predicted that thermal and/or

quantum fluctuations may melt the vortex lattice or glass, leading to a “vortex liquid”

regime[27]. For all these reasons, it is desirable to construct effective theories that include

the vortices as fundamental dynamical degrees of freedom. [40] Such a construction is readily

available in systems where the constituent particles are bosons, through the well-known

Kramers-Wannier duality [13]. In Fermi systems, however, the vortex degrees of freedom
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Figure 3.1: A magnetic unit cell of fermionic lattice for d-wave superconductor with 2 vortices
embedding. The ground state gain Berry phase when one vortex goes around a close loop.

only exist as dual partners of bosonic Cooper pairs that are themselves emergent particles.

This arguably complicates the task of passing directly from a microscopic description in terms

of electrons to an effective theory in terms of vortices, requiring more ad hoc assumptions.

Such effective theories have been previously discussed in a continuum formalism.[43] In this

chapter, we aim to establish some key parameters of these theories in a microscopic lattice

model. This is similar in spirit, but physically different, from earlier considerations for

bosons in the absence of a lattice[25]. These defining parameters include the quantum

curvature felt by the vortices in the condensate, that is, the effective magnetic field, or Berry

curvature, experienced by them, and their mutual statistics. Specifically in the d-wave

pairing case, where the continuum description of vortices is somewhat plagued by subtleties

concerning self-adjoint extensions[37], our microscopic starting point also serves as lattice

regularization[64], which allows for a controlled study of the desired universal properties.
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3.3 Model description

We will study the Berry phases[8] of vortices in the BCS-Hofstadter model on a square lattice

in Fig. 3.1, which has been used previously as a microscopic description of the mixed state

in the cuprates[65].

H =
∑
〈rr′〉

[−trr′c†rσcr′σ′ +
∆rr′

2
(c†r↓c

†
r′↑ + c†r′↓c

†
r↑) + h.c.]− µN (3.1)

In the above, r is the lattice site coordinate shown as black dots in Fig. 3.1. The sum 〈rr′〉 is

over the nearest neighbors, and the hopping terms are just those of the Hofstadter model, to

be described below. The corresponding uniform magnetic flux through the plaquettes of the

lattice mirrors the fact that the penetration depth is much larger than the coherence length,

as befits a type II superconductor. Assuming symmetric gauge A(r) = (−y/2, x/2)Φ, where

Φ the magnetic flux per plaquette, the hopping amplitude assumes the form

trr′ = t e−i
∫ r′
r A·dl , (3.2)

where r refers to the discrete sites of the lattice. The d-wave paring term is defined as

∆rr′ = ηr−r′∆0,rr′e
iθrr′ (3.3)

ηr−r′ = +/− if (r− r′) ‖ x̂/ŷ (3.4)

Here, ηr−r′ encodes the d-wave symmetry. ∆0,rr′ is essentially constant, except for a sup-

pression of amplitude near the vortex core. We follow Ref. [67] in defining the pairing phase

62



factor eθrr′ via

eiθrr′ ≡ eiφ(r) + eiφ(r′)

| eiφ(r) + eiφ(r′) | , (3.5)

i.e., as a link-centered average of a field φ(r) that satisfies the following continuum equations,

∇×∇φ(r) = 2πẑ
∑
i

δ(r− ri) (3.6a)

∇ · ∇φ(r) = 0 , (3.6b)

where the ri denote the vortex positions, shown as the red crosses in Fig. 3.1 which can

take on continuous values. The total number of vortices nV is equal to the number of half

flux-quanta Φ0, lxlyΦ = nV Φ0 where Φ0 = π in natural units, and lx, ly are the number of

unit cells in the x and y direction, respectively. Eq. (3.6) can be solved[38] via

φ(r) =
∑
i

{arg[σ(z − zi, ω, ω′)] + 2γ(x− xi)(y − yi)}+ v0 · r , (3.7)

where σ(z, ω, ω′) is the Weierstrass sigma-function with half periods ω = lx/2, ω′ = ily/2,

z = x + iy, and the sum is over vortex positions. Integration constants v0 = 2
∑

i A(ri)

and γ = π
2lxly
− η

lx
have been chosen such that the superfluid velocity vS = ∇φ/2 − A

satisfies periodic boundary conditions, and averages to zero over the magnetic unit cell[67],

and η = ζ(ω) is pure imaginary, with ζ the Weierstrass zeta-function. This field φ(r) has

a self consistent topological feature. It has 2π winding around the magnetic vortices. This

feature remains to the pairing phase factor by Eq. (3.5). We made a brief plot of superfluid
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Figure 3.2: Superfluid velocity in a 7 by 5 magnetic unit cell. The positions of vortices are
(2,2) and (-2,-2).

velocity for two vortices in a 7 by 5 magnetic unit cell in Fig. 3.2. It is easy to see that

the velocity is periodic in lx and ly as it should be. The model retains the main feature of

d-wave superconductor vortex.

The pairing phase factor eiθrr′ in Eq.(3.5) is ill-defined when the denominator goes to

0. This is unacceptable since we mean to continuously change vortex coordinates in the

following. To remove this singularity, we define ∆0,rr′ as

∆0,rr′ ≡ ∆0[1− exp(−|e
iφ(r) + eiφ(r′)|

ξ
)] (3.8)

where ∆0 and ξ are constant parameters. This leads to a suppression of pairing amplitude

on links near the vortex, hence ξ may be thought of as a core radius.
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We further impose periodic magnetic boundary conditions on our model as follows:

cr = T lxx cr(T
†
x)lx = T lyy cr(T

†
y )ly (3.9)

TRcrT
†
R = cr+Re

i
∫ r+R
r A·dl+iR×rΦ (3.10)

In the above, the magnetic translation operators Tx and Ty are defined by letting R =

x̂ or ŷ. We note that with the boundary conditions (3.9) imposed on electron operators, the

physics is also periodic in the vortex positions ri. That is, one may see that the formal

replacements ri → ri+ lxx̂, ri → ri+ lyŷ affect the Hamiltonian by a unitary transformation,

as given explicitly below. In particular, the quasi-particle spectrum is invariant under such

replacements.

3.4 Calculation of the Berry phase

In the following, we will consider the model Eqs. (3.1)-(3.9) as a function of vortex positions

{ri}. We note that the simultaneous presence of the magnetic field and the discrete ionic

lattice generically opens up a gap in the quasi-particle spectrum of the d-wave superconduc-

tor, except for special vortex configurations that respect inversion symmetry [66]. The Berry

phase associated with the motion of vortices is thus well-defined. We further remark that

the model defined above is traditionally studied by means of a singular gauge transformation

[16], that, on average, removes the magnetic field. This is inconvenient for present purposes,

since the precise transformation depends on vortex positions, and the Berry phase is clearly

not invariant under unitary transformations that vary along the particular path in question.
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We thus need to stay within the present framework of magnetic translations and associated

boundary conditions.

To study the Berry phases associated with the motion of vortices, we first note that

within our model the vortex positions are well-defined continuous parameters that are, at

least for large enough lattice, entirely encoded in the pairing amplitudes ∆rr′ . The Berry

phase associated with vortex motion along closed paths may be computed via

eiγ ≈ 〈Ω1|Ωm〉 · · · · · 〈Ω3|Ω2〉 · 〈Ω2|Ω1〉 , (3.11)

where the |Ωi〉 are the ground states of the system along a reasonably fine discretization of

the path. The above formula has the advantage (over the standard integral formula) that a

random, discontinuous phase that each |Ωi〉 acquires in numerical diagonalization automat-

ically cancels. Each ground state is constructed as the vacuum of Bogoliubov operators

γn↑ =
∑
r

(u∗n(r)cr↑ − v∗n(r)c†r↓) (3.12)

γn↓ =
∑
r

(u∗n(r)cr↓ + v∗n(r)c†r↑) (3.13)

where the matrices Urn = un(r), Vrn = vn(r), satisfy Bogoliubov-deGennes equations

−t− µ −∆

−∆∗ t∗ + µ


 U

−V

 = En

 U

−V

 (3.14)

for non-negative eigenvalues En. It is clear from Eq. (3.12) that the state |0̃〉 =
∏

r c
†
r↓|0〉 is

a vacuum of both the operators γn↑ and γ†n↓, where |0〉 is the vacuum of the crσ operators.

66



The ground state of the Hamiltonian thus can be constructed as

|Ω〉 =
∏
n

γn↓|0̃〉 . (3.15)

Using this last relation, and the inverse of Eq. (3.12), one readily obtains

〈Ωi|Ωj〉 = det(UiU
†
j + ViV

†
j ) . (3.16)

3.5 Results

We first consider the important special case of Eq. (3.1) with µ = 0, or half-filling. In

this case the Hamiltonian is invariant under the anti-unitary charge conjugation operator

defined via CcrσC = (−1)rc†rσ, and the unique ground state |Ω〉 is then invariant under C as

well (up to a phase that can be made trivial). It then follows directly from Eq. (3.11) that

eiγ = ±1. The first immediate conclusion from this is that as long as vortices are moved

along contractible paths, the Berry phase must be +1 for continuity reasons. If vortices were

hard-core particles this would, in principle, still leave the possibility of fermionic statistics.

However, careful examination shows that the Hamiltonian can be analytically continued

without difficulty into configurations were two vortices fuse into a double vortex at a given

location. Exchange paths are thus contractible, and hence vortices must satisfy bosonic

statistics. We have tested this for various lattice sizes and exchange paths. The model

does, however, become singular when vortex positions are formally approaching lattice sites,

see Eq. (3.7). It is thus possible that lattice sites carry an effective π-flux felt by vortices
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encircling such sites. We have carefully checked that this is not the case in our model. Hence

at half filling, all Berry phases are unity. The above observations also hold for the s-wave

case.

The observation that vortices are bosonic is non-trivial, since time reversal symmetry

is absent, and hence generically in two spatial dimensions even non-Abelian statistics are

possible, as is the case if the pairing symmetry is p+ip[28]. Indeed, when we move away from

half filling, there is no longer any symmetry that requires the Berry phase to be trivial. We

will now show that this situation leads to a very intricate landscape of non-trivial quantum

curvature.

The Berry curvature is defined as the Berry phase around an infinitesimal area, divided

by the size of this area. In the following, we consider a lattice containing only two vortices in

the presence of periodic boundary condition. As Fig. 3.1 shows, One vortex remains fixed,

while for any point within the unit cell, we calculate the Berry curvature associated with

the motion of the other vortex according to Eq. (3.11). The Berry phase around arbitrary

loops can be obtained as the integral of the Berry curvature over the enclosed area. The

result for a 12 × 10 lattice at µ = 0.05 is presented in Fig. 3.3(a). It is apparent that the

Berry curvature in this model is a highly non-trivial function of position for any µ 6= 0. One

observes that the curvature is conspicuously concentrated on the links and the sites of the

lattice, even though the vortex positions themselves are formally not tied to the discrete

lattice. Singular structures form in particular around the lattice sites. The remaining space

within the plaquettes is nearly flat. These are described by B(r) ∼ aiδ(r − ri) + fi(θ)/r,

where B(r) is the curvature, and θ, r refer to polar coordinates with the lattice site ri at

the origin. The parameters ai and the functions fi depend sensitively on details such as
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Figure 3.3: Berry curvature for 12 by 10 lattice in the presence of two vortices, for µ = 0.05.
(a): 3D view of the Berry curvature in the vicinity of one plaquette. (b) Top view of the
lattice. (c): 3D view of the entire lattice.
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the lattice size, µ, the site index i, and the position of the other, fixed vortex. Yet another

interesting feature in Fig. 3.3(b) is the structure seen in the vicinity of the fixed vortex,

which is somewhat reminiscent of the shape of a dx2−y2 orbital. However, this structure does

not seem to be reflective of by the pairing symmetry, but rather more the lattice symmetry,

as similar calculations for the s-wave case show. We note that again no singularity indicative

of a flux tube carried by the fixed vortex appears in Fig. 3.3(b) at the position of this vortex

labeled by asterisk. This implies that we should still think of these vortices as bosons, which

move in an effective background magnetic field.

The complex nature of these features and the strong sensitivity on model parameters

are likely yet another facet of the fractal nature of the physics of the Hofstadter model. To

wit, in view of the fractal nature of the wave-vector dependence of spectral features of the

Hofstadter model, it is reasonable to expect that the response to a spatially inhomogeneous

perturbation (coupling to many different wave vectors) is characterized by complicated and

possibly chaotic spatial modulations. The addition of a pairing order parameter with vortices

clearly represents such a perturbation. Here we are mostly interested in how to reconcile

the complex features seen at µ 6= 0 with the trivial ones seen at µ = 0. It is clear that our

ability to precisely define the vortex position on scales below the lattice constant is dependent

on conventions, even though in the present case a natural convention is available, since our

ground states are naturally parameterized by the vortex positions in the continuum field (3.6)

used to define the Hamiltonian. We have, however, tested the robustness of the qualitative

features shown in Fig. 3.3 by varying the precise form of the pairing order parameter Eq. (3.3).

In particular, we have varied the core parameter ξ in Eq. (3.8), and tested various alternative

forms for Eq. (3.5). We also introduced variations in the boundary conditions described
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above. In all cases we found that the qualitative features of the Berry curvature remained

unaltered. Although we believe that the curvature landscape of Fig. 3.3(c) is interesting

in its own right, it is appropriate to make this landscape subject to some coarse graining

procedure. It is interesting to ask whether such coarse graining leads to a recovery of one of

the basic facts suggested by conventional wisdom about vortex-boson duality, namely that

the curvature discussed above is directly tied to particle (here, Cooper-pair) density. We will

show in the following that this statement is recovered when the Berry curvature is averaged

over the magnetic unit cell (as opposed to the, typically much smaller, lattice unit cell). To

this end, we again consider a lattice containing only two vortices within a single magnetic

unit cell, subject to the boundary conditions (3.9).

Let the coordinates of the “moving” vortex be r = (x, y). As remarked initially, a formal

shift of x by lx changes the Hamiltonian by a gauge transformation. We have H → U †xHUx

with Ux = eiπ(1−y/ly)N̂/2, where N̂ is the particle number operator. Analogous relations hold

for y → y + ly, with Uy = eiπ(1+x/lx)N̂/2. We now calculate the Berry phase associated with

a rectangular path of dimensions lx, ly around the lattice. We may then choose a ground

state phase convention |Ω(r)〉 along the path satisfying

|Ω(r + lyŷ)〉 = U †y |Ω(r)〉

|Ω(r + lxx̂)〉 = U †x|Ω(r)〉 (3.17)

along the horizontal and vertical path segments, respectively. The consistency of Eq. (3.17)

with the continuity of |Ω(r)〉 along the path follows from the observation that for any ground

state, U †yU
†
xUyUx|Ω〉 = |Ω〉. The latter holds because U †yU

†
xUyUx = exp(iπN̂) and because
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the ground state Eq. (3.15) always has even particle number parity. We determine the Berry

phase for the rectangular path as the integral over the Berry connection, 〈Ω(r)|∇|Ω(r)〉,

where we observe that

〈Ω(r + lxx̂)|∇|Ω(r + lxx̂)〉 = 〈Ω(r)|Ux∇U †x|Ω(r)〉

= 〈Ω(r)|∇|Ω(r)〉+
iπ

2ly
〈N̂〉ŷ .

(3.18)

It is clear that only the last term survives a cancellation between the vertical path segments,

giving iπ〈N̂〉/2. The same contribution is obtained from the horizontal segment. We thus

obtain γ = π〈N̂〉, or 2π times the number of Cooper pairs in the system, in agreement with

general expectations based on duality arguments applied to Cooper pairs[43]. It is worth

noting that the quantity γ, when expressed as an integral of the Berry curvature over the

entire lattice, is formally reminiscent of a Chern number. It is not truly a Chern number,

though, since the boundary conditions (3.17) do not quite allow one to make contact with

one-dimensional vector bundles over the torus. Indeed, γ is not quantized, as 〈N̂〉 may take

on arbitrary values in [0, 2lxly]. We note that the derivation above is independent of the

pairing symmetry.

3.6 Discussion

The present study establishes several aspects of Berry phases associated with vortex motion

in a microscopic model of superconducting lattice fermions. It is shown that these vortices

behave as bosons which, away from half filling, are subject to a non-trivial effective magnetic

field. In an average sense, it has been shown that this effective field is tied to the density of
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Cooper pairs. This is expected based on boson-vortex duality, and was seen to emerge here

in a microscopic model of fermions. We emphasize that the simple relation between Cooper-

pair density and effective field is only seen to emerge after averaging over a magnetic unit

cell. This may be used to justify a direct proportionality between Cooper pair density and

Berry curvature in the long wavelength effective theory. However, our results also indicate

that care must be used in order to justify such a relationship in general. On the one hand,

this is true because of the relatively large non-uniformity of the observed Berry curvature

within the magnetic unit cell. Moreover, in the presence of particle hole symmetry we have

found that the Berry phase associated with closed paths is always zero, and thus corresponds

to π times the average enclosed particle number only for such paths that happen to enclose

an even number of lattice sites. In this case, the background field appearing in the effective

theory should clearly be zero, and should not follow the total Cooper pair density. This

result will be robust to small perturbations respecting particle hole symmetry, and is thus

true for a wide class of microscopic models. We conjecture that the complex landscape of the

Berry curvature away from half filling is a facet of the fractal properties of the Hofstadter

model, and believe that it is worthy of further investigation.
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Chapter 4

Summary

It is widely convinced that Berry phase provide additional insight into various quantum

systems. In this thesis we take this geometric idea and find it extremely valuable, leading to

new understandings in both FQH system and superconducting system.

In the first part of the thesis, we have shown that geometric changes in the guiding

center coordinates of the torus Laughlin state are generated by a two-body operator. We

have demonstrated that the equation that governs the evolution of the torus Laughlin state

as a function of the modular parameter τ can be continued into the thin torus limit. This

gives rise to a new presentation of the torus Laughlin state in its second quantized, or guiding

center, form. This presentation allows one to calculate the torus Laughlin states in terms of

a simple thin torus or “dominance” pattern by means of integration of the flow generated

by the two-body operator defined in this work. This operator hence realizes the adiabatic

evolution of the simple thin torus product state into the full Laughlin state on regular tori.

To demonstrate this, we have numerically compared both the Laughlin state generated from

this method, as well as the Hall viscosity derived from it, to exact diagonalization results.
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While the demonstration of our new presentation of the torus Laughlin state rests in part

on numerics, we will leave more detailed analytic studies for future investigation.

The second part of the thesis deals with Berry phase in a lattice model of d-wave super-

conductor. The Berry phase of the vortex position shows rich features. Berry curvature is

mainly concentrated on the sites and the links of lattice, where electrons are most probably

located. We showed bosonic statistics for magnetic vortex for both half filling and way-from-

half filling cases, in the sense that there are no singularity of Berry curvature at the site

of another vortex. We also find that, average over magnetic unit cell, the Berry phase is

proportional to the density of particle numbers. This shares the same expectation of boson-

vortex duality, given our system is made of fermions. The duality shall not be taken for

granted in our case, because it is the emergent quasiparticles, the cooper pairs, fits into the

duality picture.
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Appendices

76



.1 Analytic properties of Laughlin state coefficients

Here is an appendix for connections of derivative of τx and τy due to analytic continuity of

Laughlin state and the single particle LLL orbitals.

For definiteness, we will refer to the Laughlin state ψ`1/q using the normalization conven-

tions (2.23), (2.24). The coefficients C{nk}(τ) defined in Eq. (2.37) then imply the following

expansion of the analytic Laughlin state,

ψ`1/q(τ) =
∑
{nk}

C{nk}(τ)Aχn1(z1, τ) · . . . · χnN (zN , τ) . (1)

Here, as before, the symbol A denotes anti-symmetrization, and single particle orbitals χn

are defined in Eq. (2.32). We define new orbitals χ′n(τ) = τ
1/4
y χn(τ) that are holomorphic in

τ , as is the Laughlin state ψ`1/q(τ). Hence, by acting with ∂τ̄ = 1
2
(∂τx + i∂τy) on Eq. (1), we

obtain

0 =
∑
{nk}

[
∂τ̄
(
C{nk}(τ)/τN/4y

)]
Aχ′n1

(z1, τ) · . . . · χ′nN (zN , τ) . (2)

The linear independence of the orbitals χ′n(τ) and of the associated many-particle Slater

determinants then implies

∂τ̄
(
C{nk}(τ)/τN/4y

)
= 0 , (3)

i.e., the quantities C{nk}(τ)/τ
N/4
y are holomorphic in τ . Eq. (2.44) follows immediately from

Eq. (3).
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.2 Hilbert space reduction by magnetic translational

operator

Due to the magnetic translational invariance, the Hilbert space of Laughlin state can be

reduced by a factor of q. Which will greatly reduce the computation cost of exact diagonal-

iztion. We’ll briefly discuss how we implemented it in the computation.

First, let’s remind how the magnetic translation act on the LLL orbitals χl.

T1χl(z) = χl(z +
1

L
) = e2πi l

Lχl(z), (4)

T2χl(z) = e−2πixχl(z −
τ

L
) ∝ χl−1(z). (5)

The Laughlin state has the following magnetic translational property,

T1|ψl1/q〉 = e2πi( l
q

+L−q
2q

)|ψl1/q〉, (6)

T2|ψl1/q〉 = eiπ(n−1)|ψl1/q〉. (7)

where n = L/q is the number of electrons in the Laughlin state.

On the other hand, if the Laughlin state is written in linear combination of multiple

particle states.

T1|ψl1/q〉 = e2πi
∑
m lm/N |ψl1/q〉 (8)

We can get: n(l + L−q
2

) =
∑

m lm(modN), where lm is the orbital index for single particle
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LLL. It is only true if every term in the Laughlin state has the same center of mass of the

guiding center. In other word, the Laughlin state has a fixed center of mass.

We know that the Laughlin State is q-fold degenerated. The degenerated states have

different center of mass. We can fix a momentum k =
∑

m lm, to tell which exact state we

are in.

(T2)q|ψ1/q〉 = eiπ(n−1)q|ψ1/q〉 = e2πik/n|ψ1/q〉 (9)

The first equity is from the magnetic translation of Laughlin state, while the later equity is

from the conclusion of center of mass we got by applying T1.

We can group the multi-particle state components in the Laughlin State by the translation

of (T2)q. In other word, we can symmetrize the state. The symmetrized basis is:

|φSymmj 〉 =

√
Lj

n

n∑
m=1

[e−2πikm/n(T q2 )m]|φl1,··· ,ln〉 (10)

Where Lj is the number of states linked by the symmetry operators. Then the Laugnlin

State is the linear combination of the symmetrized basis.

|ψ1/q〉 =
∑
j

Aj|φSymmj 〉 (11)

We can see T qŷ |φSymml1,··· ,ln〉 = e2πik/n|φSymml1,··· ,ln〉, which insure the magnetic translational property

of Laughlin states.

If the operator Ô commute with the translational operator [Ô, T q2 ] = 0, then Ô is living
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in the symmetrized space. (e.g. the V1 pseudo potential Hamiltonian.)

Ô|φSymmj 〉 =

√
Lj

n

∑
m

e−2πikm/nÔ(T q2 )m|φl1,··· ,ln〉

=
∑
m′

Bm′|φSymmm′ 〉 (12)

.3 Evaluation of second quantization of theta-function

term in the generator

In this section we will go through the key steps leading to the second quantization of ∂θ/θ

terms in the generator. We restate the definition of theta function used in the main text.

θ

[
a

b

]
(z, τ) =

∑
m

eiπτ(m+a)2+2iπ(m+a)(z+b) (13)

It is related to the traditional definition of theta function as follows,

θ1(z, τ) = θ

[
1/2

1/2

]
(z, τ), θ1(0) = 0, (14)

θ4(z, τ) = θ

[
0

1/2

]
(z, τ), θ4(

τ

2
) = 0. (15)

From the definition of θ function, We’ll write down the periodicity of theta function
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explicitly,

θ

[
a

b

]
(z + τ) = θ

[
a

b

]
(z)exp[−iπτ − 2πi(z + b)], (16)

θ′(z + τ)

θ(z + τ)
= −2πi+

θ′(z)

θ(z)
, (17)

θ′(z + 1)

θ(z + 1)
=
θ′(z)

θ(z)
. (18)

If we do a lauren expansion at z = τ/2,

θ′4(z)

θ4(z)
= (z − τ

2
)−1 − iπ + ..., (19)

then the Cauchy’s integral over (−1/2, 0), (1/2, 0), (1/2, τ), (−1/2, τ) square loop is

∮
θ′4(z)

θ4(z)
e2πinzdz = 2πiqn (20)

where q = eiπτ , n is arbitrary integer. Note here q is not the inverse of filling factor in

Laughlin state. Assume the odd Fourier expansion,

θ′4(z)

θ4(z)
=
∑
n6=0

Bne
−2πinz (21)

the left side of the Cauchy’s integral can be evaluated as follow,

(1− q2n)

∫ 1/2

−1/2

θ′4(z)

θ4(z)
e2πinzdz = 2πiqn, (22)

Bn = 2πi
qn

1− q2n
. (23)
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Here we comes,

θ′4(z)

θ4(z)
= 2πi

∑
n6=0

qn

1− q2n
e−2πinz (24)

Following the same strategy, we assume an even form,

(
θ′4(z)

θ4(z)
)2 =

∑
n6=0

Cne
−2πinz + C0 (25)

Evaluating the Cauchy’s integral (n 6= 0), we can calculate the coefficients Cn.

(1− q2n)Cn + 4πiq2n

∫ 1/2

−1/2

θ′4(z)

θ4(z)
e2πinzdz = 2πi(−2πi+ 2πin)qn (26)

Cn = 4π2 qn

1− q2n
(

2q2n

1− q2n
− n+ 1) (27)

Inserting Eq. 24 and 25 into the following expression,

θ′1(z)

θ1(z)
=
θ′4(z − τ/2)

θ4(z − τ/2)
− iπ (28)

∂τθ1(z, τ)

θ1(z)
=

1

4πi

∂2
zθ1(z)

θ1(z)
=

1

4πi
[(
θ′1(z)

θ1(z)
)2 + (

θ′1(z)

θ1(z)
)′] (29)

We can get the final equation we desire,

∂τθ1(z, τ)

θ1(z, τ)
=

1

4πi
[
∑
n6=0

8π2(
q′n

1− q′2n )2e2πinz +

∫ 1/2

−1/2

(
θ′4
θ4

)2dz − π2] (30)

Eq. 30 goes directly into G2 calculation.
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.4 Optimization of the generator in thin limit

Here is some estimation used in the computation process of the generator Gτ . With this,

our computation should work even when τy very small.

The main difficulties of evaluating the generator is from the G2 part. We’ll discuss the

evaluation of delta and Delta function defined below within a certain tolerance tol. again

here q = eiπτ is not the inverse of filling factor. The delta part can be easily handled by

solving the inequality as follows,

delta(l, n) =
∑
n1

qL[(l+n)/L+n1]2(qL(l/L+n1)2)∗, (31)

|qL[(l+n)/L+n1]2(qL(l/L+n1)2)∗| ≥ tol, (32)

− l + n/2

L
−
√

ln(tol)

−2πLτy
− n2

4L2
≤ n1 ≤ −

l + n/2

L
+

√
ln(tol)

−2πNτy
− n2

4L2
. (33)

It is clear that we only need to sum over a few n1 terms to get the accurate value of delta

function.

In order to estimate Delta function, we may first use the inequalities as follows,

∑
n

e−an
2

<
2√
a

(1 +
1

e
+

1

e2
+ · · · ) =

2e√
a(e− 1)

. (34)

Then the absolute value of delta function has up limit:

|delta(l, n)| < e−πτy
n2

2L
2e√

2πLτy(e− 1)
. (35)
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The other part of the Delta function also has up limit,

|csch(x+ iy)| ≤ |csch(x)|, (36)

|csch(iπnτ)|2 ≤ csch2(πnτy). (37)

Altogether, the summation terms of Delta function has the following up limit,

|Delta(l1, l2, l4|) = |
∑
n6=0

csch2(iπnτ)[delta(l1, n) delta(l4, n)∗]| (38)

≤
∑
n6=0

csch2(πnτy)e
−πτy n

2

L
2e2

πLτy(e− 1)2
. (39)

It is obvious that term inside the summation is a monotonic function when n goes away from

0. So we can compare every term in the summation with the desired tolerace, starting from

n = ±1 to both sides. Once Eq. 39 is smaller than the tolerance, we have already arrived

an accurate value of Delta function.

Despite of the effectiveness of evaluating the above functions. Care must also be taken

when the denominator in the generator goes beyond the minimal value of double precision.

By going to thin torus limit, the generator has only 2-body term from G1 component.

lim
τ→i∞

Gτ = −4πL2
∑
n1 6=n2

x1x2n̂1n̂2, (40)
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where xi is the guiding center coordinates,

xi = ni/L− floor(ni/L+ 0.5) if ni 6= L/2

= 0 if ni = L/2. (41)

With the same argument of symmetrizing with magnetic translation symmetry in the

main text, one can get a symmetrized version of the thin limit generator, which uniquely

define the dominant thin torus pattern as it’s eigenstate with biggest eigenvalue.
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[37] Ashot Melikyan and Zlatko Tešanović. Mixed state of a lattice d-wave superconductor.
Phys. Rev. B, 74(14):144501, October 2006.
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