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Abstract

Greedy geographic routing is attractive inwireless sen-
sor networks due to its efficiency and scalability. How-
ever, greedy geographic routing may incur long rout-
ing paths or even fail due to routing voids on random
network topologies. We study greedy geographic rout-
ing in an important class of wireless sensor networks
( e.g., surveillance or object tracking systems) that pro-
vide sensing coverage over a geographic area. Our geo-
metric analysis and simulation results demonstrate that
existing greedy geographic routing algorithms can suc-
cessfully find short routing paths based on local states in
sensing-covered networks. In particular, we derive theo-
retical upper bounds on the network dilation of sensing-
covered networks under greedy geographic routing algo-
rithms. Furthermore, we propose a new greedy geographic
routing algorithm called Bounded Voronoi Greedy For-
warding (BVGF) which allows sensing-covered networks
to achieve an asymptotic network dilation lower than 4.62
as long as the communication range is at least twice the
sensing range. Our results show that simple greedy geo-
graphic routing is an effective routing scheme in many
sensing-covered networks.

1. Introduction

Wireless sensor networks represent a new type of
ad hoc networks that integrate sensing, processing,
and wireless communication in a distributed system.
While sensor networks have many similarities with tra-

ditional ad hoc networks such as those comprised of
laptops, they also face new requirements introduced
by their distributed sensing applications. In particu-
lar, many critical applications (e.g., distributed detec-
tion [32], distributed tracking and classification [19])
of sensor networks introduce the fundamental require-
ment of sensing coverage that does not exist in tradi-
tional ad hoc networks. In a sensing-covered network,
every point in a geographic area of interest must be
within the sensing range of at least one sensor.

The problem of providing sensing coverage has re-
ceived significant attention. Several algorithms [5,7,23,
24] were presented to achieve sensing coverage when a
sensor network is deployed. Other projects [31, 33, 35]
developed online energy conservation protocols that
dynamically maintain sensing coverage using only a
subset of nodes.

Complimentary to existing research on coverage pro-
visioning and geographic routing on random network
topologies, we study the impacts of sensing coverage
on the performance of greedy geographic routing in wire-
less sensor networks.

Geographic routing is a suitable routing scheme in
sensor networks. Unlike IP networks, communication
on sensor networks often directly use physical loca-
tions as addresses. For example, instead of querying
a sensor with a particular ID, a user often queries a
geographic region. The identities of sensors that hap-
pen to be located in that region are not important.
Any node in that region that receives the query may
participate in data aggregation and reports the result
back the user. Due to this location-centric communi-
cation paradigm of sensor networks, geographic rout-
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ing can be performed without incurring the overhead
of location directory services [20]. Furthermore, geo-
graphic routing algorithms make efficient routing deci-
sions based on local states (e.g., locations of one-hop
neighbors). This localized nature enables geographic
routing to scale well in large distributed micro-sensing
applications.

As the simplest form of geographic routing, greedy
geographic routing is particularly attractive in sen-
sor networks. In this paper, greedy geographic rout-
ing refers to a simple routing scheme in which a routing
node always forwards a packet to the neighbor that has
the shortest distance1 to the destination. Due to their
low processing and memory cost, greedy geographic
routing algorithms can be easily implemented on re-
source constrained sensor network platforms. However,
earlier research has shown that greedy geographic rout-
ing can incur long routing paths or even fail due to rout-
ing voids on random network topologies. In this paper,
we present new geometric analysis and simulation re-
sults that demonstrate greedy geographic routing is a
viable and effective routing scheme in sensing-covered
networks. Specifically, the key results in this paper in-
clude the following:

• First, we establish a constant upper bound on
the network dilation of sensing-covered networks
based on Delaunay Triangulations in Section 4.

• We then derive a new upper bound on network
dilation for sensor networks under two existing
greedy geographic routing algorithms in Section
5. This bound monotonically decreases as the net-
work’s range ratio (the communication range di-
vided by the sensing range) increases.

• We also propose a new greedy geographic rout-
ing algorithm called Bounded Voronoi Greedy For-
warding (BVGF) that achieves a lower network di-
lation than two existing greedy geographic routing
algorithms (see Section 6).

• Finally, our analytic results and simulations (see
Section 8) demonstrated that both BVGF and ex-
isting greedy geographic routing algorithms can
successfully find short routing paths in sensing-
covered networks with high range ratios.

2. Related Work

Routing in ad hoc wireless (sensor) networks has
been studied extensively in the past decade. The most

1 Different definitions of distance (e.g., Euclidean distance or
projected distance on the straight line toward the destination)
may be adopted by different algorithms.

relevant work includes various geographic routing algo-
rithms [3,4,17,22,26,29,30]. Existing geographic rout-
ing algorithms switch between greedy mode and re-
covery mode depending on the network topology. In
greedy mode, GPSR (Greedy Perimeter Stateless Rout-
ing) [17] and Cartesian routing [13] choose the neighbor
closest to the destination as the next hop while MFR
(Most Forward within Radius) [30] prefers the neigh-
bor with shortest projected distance (on the straight
line joining the current node and the destination) to
the destination. In this paper, we refer to these two
greedy routing schemes as greedy forwarding (GF). Al-
though GF is very efficient, it may fail if a node encoun-
ters local minima, which occurs when it cannot find a
“better” neighbor than itself due to the routing voids
on the network topology. Previous studies found rout-
ing voids are prevalent in ad hoc networks, and hence
it is important for geographic routing algorithms to re-
cover when a packet reaches a routing void. To recover
from local minima, GPSR [17] and GOAFR [18] route
a packet around the faces of a planar subgraph ex-
tracted from the original network, while limited flood-
ing is used in [29] to circumvent the routing void. Un-
fortunately, the recovery mode inevitably introduces
additional overhead and complexity to geographic rout-
ing algorithms.

Analysis on (network and Euclidean) stretch factors
of specific geometric topologies has been studied in the
context of wireless networks. The recovery algorithm in
GPSR [17] routes packets around the faces of one of two
planar subgraphs, namely Relative Neighborhood Graph
(RNG) and Gabriel Graph (GG), to escape from rout-
ing voids. However GG and RNG are not good span-
ners of the original graph [12], i.e., two nodes that are
few hops away in the original network might be very
far apart in GG and RNG.

The Delaunay Triangulation (DT) has been shown
to be a good spanner with a constant stretch fac-
tor [6, 10, 16]. However, the DT of a random network
topology may contain arbitrarily long edges which ex-
ceed limited wireless transmission range. To enable the
local routing algorithms to leverage on the good span-
ning property of DT, [14,21] proposed two distributed
algorithms for constructing local approximations of the
DT. Interestingly, these local approximations to DT
are also good spanners with the same constant stretch
factor as DT. However, finding the routing path with
bounded length in DT requires global topology infor-
mation [10]. Parallel Voronoi Routing(PVR) [2] algo-
rithm deals with this problem by exploring the parallel
routes which may have bounded lengths. Unlike the ex-
isting works that assume arbitrary node distribution,
our work focuses on the greedy geographic routing on
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sensing-covered topologies.

3. Preliminaries

In this section, we introduce a set of assumptions
and definitions used throughout the rest of this paper.

3.1. Assumptions

We assume every node integrates sensors, process-
ing units, and a wireless interface. All nodes are located
in a two dimensional space. Every node has the same
sensing range Rs. For a node located at point p, we use
circle C(p, Rs) that is centered at point p and has ra-
dius Rs to represent the sensing circle of the node. A
node can cover any point inside its sensing circle. We
assume that a node does not cover points on its sens-
ing circle. While this assumption has little impact on
the performance of a sensor network in practice, it sim-
plifies our theoretical analysis. A network deployed in
a convex region A is covered if any point in A is cov-
ered by at least one node. Any two nodes u and v can
directly communicate with each other if and only if
|uv| ≤ Rc, where |uv| is the Euclidean distance be-
tween u and v, and Rc is the communication range of
the wireless network. The graph G(V, E) is the com-
munication graph of a set of nodes V , where each node
is represented by a vertex in V , and edge (u, v) ∈ E
if and only if |uv| ≤ Rc. For simplicity, we also use
G(V, E) to represent the sensor network whose com-
munication graph is G(V, E).

3.2. Double Range Property

The ratio between the communication range, Rc,
and the sensing range, Rs, has a significant impact on
the routing quality of a sensing-covered network. In
this paper, we call Rc/Rs the range ratio. Intuitively, a
sensing-covered network with a larger range ratio has
a denser communication graph and hence better rout-
ing quality.

In practice, both communication and sensing ranges
are highly dependent on the system platform, the
application, and the environment. The communica-
tion range of a wireless network interface depends
on the property of radio (e.g., transmission power,
baseband/wide-band, and antenna) and the environ-
ment (e.g., indoor or outdoor) [36]. The outdoor com-
munication ranges of several wireless (sensor) network
interfaces are listed in Table 1. This data was ob-
tained from the product specifications from their ven-
dors [8, 9, 27, 28]2.

The sensing range of a sensor network depends on
the sensor modality, sensor design, and the require-
ments of specific sensing applications. The sensing
range has a significant impact on the performance of
a sensing application and is usually determined empir-
ically to satisfy the Signal-to-Noise Ratio (SNR) re-
quired by the application. For example, the empiri-
cal results in [11] showed that the performance of tar-
get classification degrades quickly with the distance be-
tween a sensor and a target. In their real-world exper-
iments on sGate [27], a sensor platform from Sensoria
Corp., different types of military vehicles drove through
the sensor deployment region and the types of the ve-
hicles were identified based on the acoustic measure-
ments. The experimental results showed that the prob-
ability of correct vehicle classification decreases quickly
with the sensor-target distance, and drops below 50%
when the sensor-target distance exceeds 100m. Hence
the effective sensing range is much shorter than 100m.
The experiments for a similar application [15] showed
that the sensing range of seismic sensors is about 50m.

Clearly, the range ratio can vary across a wide range
for different sensor networks due to the heterogeneity
of such systems. As a starting point for the analysis,
in this paper we focus on those networks with the dou-
ble range property, i.e., Rc/Rs ≥ 2. This assumption
is motivated by the geometric analysis in [33], which
proved that a sensing-covered network is always con-
nected if it has the double range property. Since net-
work connectivity is necessary for any routing algo-
rithm to find a routing path, it is reasonable to assume
the double-range property as a starting point.

Empirical experiences have shown that the double
range property is applicable to a number of represen-
tative sensing applications. For example, the aforemen-
tioned sGate-based network used for target classifica-
tion [11] has a sensing range Rs < 100m, and commu-
nication range Rc = 1640ft (547m) (as shown in Table
1), which corresponds to a range ratio Rc/Rs > 5.47.
The double range property will also hold if the seismic
sensor used in [15] is combined with a wireless network
interface that has a communication range Rc ≥ 100m.

All results and analyses in the rest of this paper as-
sume a sensor network has the double property unless
otherwise stated.

3.3. Metrics

The performance of a routing algorithm can be char-
acterized by the network length (i.e., hop count) and

2 The empirical study in [36] shows that the effective communi-
cation range of Mica1 varies with different environments and
usually is shorter than 30m.
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Platforms Berkeley Mote Berkeley Mote Sensoria SGate 802.11b
(Mica 1) (Mica 2) (SonicWall)

Rc (ft) 100 1000 1640 1200 ∼ 2320

Table 1: The Communication Ranges of Wireless Network Platforms

Euclidean length (i.e., the sum of the Euclidean dis-
tance of each hop) of the routing paths it finds. Note
the path with shortest network length may be differ-
ent from the path with shortest Euclidean length. In
this paper, we focus more on the network length. Net-
work length has a significant impact on the delay and
throughput of multi-hop ad hoc networks. A routing al-
gorithm that can find the paths with short Euclidean
length may potentially reduce the network energy con-
sumption by controlling the transmission power of the
wireless nodes [25, 34].

The performance a routing algorithm is inherently
affected by the path quality of the underlying networks.
Stretch factor [12] is an important metric for compar-
ing the path quality between two graphs. Let τG(u, v)
and dG(u, v) represent the shortest network and Eu-
clidean length between nodes u and v in graph G(V, E),
respectively. A subgraph H(V, E ′), where E′ ⊆ E, is a
network t-spanner of graph G(V, E) if

∀ u, v ∈ V, τH(u, v) ≤ t · τG(u, v)

Similarly, H(V, E′) is an Euclidean t-spanner of graph
G(V, E) if

∀ u, v ∈ V, dH(u, v) ≤ t · dG(u, v)

where t is called network (Euclidean) stretch factor of
the spanner H(V, E′).

In this paper, we use dilation to represent the stretch
factor of the wireless network G(V, E) relative to an
ideal wireless network in which there exist a path with

network length
⌈

|uv|
Rc

⌉

and a path with Euclidean length

|uv| for any two nodes u and v. The network and Eu-
clidean dilations3 (denoted by Dn and De, respectively)
of network G(V, E) are defined as follows:

Dn = max
u,v∈V

τG(u, v)
⌈

|uv|
Rc

⌉ (1)

De = max
u,v∈V

dG(u, v)

|uv| (2)

Clearly, the network (Euclidean) dilation of a wireless
network is an upper bound of the network (Euclidean)

3 Euclidean dilation has been widely used in graph theory to
characterize the quality of a graph [12].

stretch factor relative to any possible wireless network
composed of the same set of nodes.

Asymptotic network dilation (denoted by D̃n) is the
value that the network dilation converges to when the
network length approaches infinity. Asymptotic net-
work dilation is useful in characterizing the path qual-
ity of a large-scale wireless network.

We say Dn(R) is the network dilation of the wireless
network G(V, E) under routing algorithm R, (or network
dilation of R for abbreviation), if τG(u, v) in (1) repre-
sents the network length of the routing path between
nodes u and v chosen by R. The network dilation of a
routing algorithm characterizes the performance of the
algorithm relative to the ideal case in which the path

between any two nodes u and v has
⌈

|uv|
Rc

⌉

hops. The

Euclidean dilation of the routing algorithm R is de-
fined similarly.

4. Dilation Analysis Based on DT

In this section we study the dilation property of
sensing-covered networks based on Delaunay Triangu-
lations (DT). We first study the DT of sensing-covered
networks and prove that the DT of a sensing-covered
network is a subgraph of the communication graph,
when the double-range property holds. We then quan-
tify the Euclidean and network dilations of sensing-
covered networks.

4.1. Voronoi Diagram and Delaunay Trian-
gulation

Voronoi diagram is one of the most fundamental
structures in computational geometry and has found
applications in a variety of fields [1]. For a set of n nodes
V in 2D space, the Voronoi diagram of V is the parti-
tion of the plane into n Voronoi regions, one for each
node in V . The Voronoi region of node i (i ∈ V ) is de-
noted by Vor(i). Fig. 1 shows a Voronoi diagram of a
set of nodes. A point in the plane lies in Vor(i) if and
only if i is the closest node to the point. The bound-
ary between two contiguous Voronoi regions is called
a Voronoi edge. A Voronoi edge is on the perpendic-
ular bisector of the segment connecting two adjacent
nodes. A Voronoi vertex is the intersection of Voronoi
edges. As shown in Fig. 1, point p is a Voronoi vertex of
three contiguous Voronoi regions: Vor(u), Vor(v) and
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Vor(w). We assume that all nodes are in general posi-
tions (i.e., no four nodes are co-circular).

In the dual graph of Voronoi diagram, Delaunay
Triangulation (denoted by DT (V )), there is an edge
between nodes u and v in DT (V ) if and only if the
Voronoi regions of nodes u and v share a boundary.
DT (V ) consists of Delaunay triangles. Fig. 1 shows a
Delaunay triangle uvw. DT (V ) is planar, i.e., no two
edges cross. It has been shown in [10] that the Delau-
nay Triangulation of a set of nodes is a good Euclidean
spanner of the complete Euclidean graph composed of
the same set of nodes. The upper bound of the Eu-

clidean stretch factor is 1+
√

5
2 π [10]. A tighter bound

on the stretch factor, 4
√

3
9 π ≈ 2.42, is proved in [16].

4.2. Dilation Property

In this section, we investigate the Euclidean and net-
work dilations of sensing-covered networks. We first
study the properties of Voronoi diagrams and DT
in sensing-covered networks. These results lead to
bounded dilations of such networks.

In a sensing-covered network deployed in a convex
region A, the Voronoi region of a node located at the
vicinity of A’s boundary may exceed the boundary of A
or even be unbounded. In the rest of this paper, we only
consider the partial Voronoi diagram that is bounded
by the deployment region A and the corresponding dual
graph. As illustrated in Fig. 1, the Voronoi region of
any node in this partial Voronoi diagram is contained in
the region A. Consequently, the dual graph of this par-
tial Voronoi diagram is a partial DT that does not con-
tain the edges between any two nodes whose Voronoi
regions (of the original Voronoi diagram) joins outside
A.

In a sensing-covered convex region, any point is cov-
ered by the node closest to it. This simple observation
results in the the following Lemma.

Lemma 1 (Coverage Lemma). A convex region A
is covered by a set of nodes V if and only if each node can
cover its Voronoi region (including the bounary).

Proof. The nodes partition convex region A into a
number of Voronoi regions in the Voronoi diagram.
Clearly, if each Voronoi region (including the bound-
ary) is covered by the node within it, region A is
sensing-covered.

On the other hand, if region A is covered, any point
in region A must be covered by the closest node(s) to it.
In the Voronoi diagram, all the points in a Voronoi re-
gion share the same closest node. Thus every node can
cover all the points in its Voronoi region. Any point on
the boundary of two Voronoi regions Vor(i) and Vor(j)

has the same distance from i and j and is covered by
both of them.

According to Lemma 1, every Voronoi region Vor(u)
in a sensing-covered network is contained in the sens-
ing circle of u. This property results in the following
Lemma.

Lemma 2. In a sensing-covered network G(V, E) de-
ployed in region A, the Delaunay Triangulation of the
nodes is a subgraph of the communication graph, i.e.,
DT (V ) ⊆ G(V, E). Furthermore, any DT edge is shorter
than 2Rs.

p

u

v

w

Figure 1: The Voronoi Diagram of a Sensing-covered
Network

Proof. It is clear that the two graphs DT (V ) and
G(V, E) share the same set of vertices. We now show
that any DT edge between u and v is also an edge in
G(V, E). As illustrated in Fig. 1, the Voronoi vertex p
is the intersection of three contiguous Voronoi regions,
Vor(u), Vor(v) and Vor(w). From Lemma 1, p is cov-
ered by u, v and w. Hence |pu|, |pv| and |pw| are all
less than Rs. Thus from triangle inequality,

|uv| ≤ |up|+ |pv| < 2Rs

From the double range property, we have |uv| < Rc.
Therefore uv is an edge in the communication graph
G(V, E).

Since the communication graph of a sensing-covered
network contains the DT of the nodes, the dilation
property of a sensing-covered network is at least as
good as DT.

Theorem 1. A sensing-covered network G(V, E) has

a Euclidean dilation 4
√

3
9 π. i.e., ∀ u, v ∈ V, dG(u, v) ≤

4
√

3
9 π|uv|.
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Proof. As proved in [16], the upper bound on the

stretch factor of DT is 4
√

3
9 π. From Lemma 2, DT (V ) ⊆

G(V, E), thus we have

∀ u, v ∈ V, dG(u, v) ≤ dDT (u, v) ≤ 4
√

3

9
π|uv|

In addition to the competitive Euclidean dilation
shown by Theorem 1, we next show that a sensing-
covered network also has a good network dilation.

Theorem 2. In a sensing-covered network G(V, E), the
network length of the shortest path between node u and v
satisfies

τG(u, v) ≤
⌊

8π
√

3

9
· |uv|

Rc

⌋

+ 1 (3)

| SiSi+2 | > Rc

Si

Si+1

Si+2

Figure 2: Three Consecutive Nodes on Path Π

Proof. Clearly the theorem holds if the nodes u and
v are adjacent in G(V, E). Now we consider the case
where the network length between u and v is at least 2.
Let Π represent the path in G(V, E) that has the short-
est Euclidean length among all paths between nodes u
and v. Let N be the network length of path Π. Con-
sider three consecutive nodes si, si+1 and si+2 on Π,
as illustrated in Fig. 2. Clearly, there is no edge be-
tween si and si+2 in G(V, E) because, otherwise, choos-
ing node si+2 as the next hop of node si results in a
path with shorter Euclidean length than Π, which con-
tradicts the assumption that Π is the path with the
shortest Euclidean length between u and v in term of
Euclidean distance. Hence the Euclidean distance be-
tween nodes si and si+2 is longer than Rc. From trian-
gle inequality, we have

|sisi+1| + |si+1si+2| > |sisi+2| > Rc

Summing the above inequality over consecutive hops
on the path, we have:

Rc

⌊

N

2

⌋

< dG(u, v) (4)

From Theorem 1, we have

dG(u, v) ≤ 4
√

3πRc

9

|uv|
Rc

(5)

From (4) and (5), the shortest network length between
nodes i and j satisfies:

τG(u, v) ≤ N ≤
⌊

8π
√

3

9
· |uv|

Rc

⌋

+ 1

From Theorem 2, we can obtain the asymptotic
bound on the network dilation of sensing-covered net-
works by ignoring the rounding and constant term 1 in
(3).

Corollary 1. The asymptotic network dilation of

sensing-covered networks is 8
√

3π
9 .

Theorem 1 and Corollary 1 show that the sensing-
covered networks have good Euclidean and network di-
lation properties.

We note that the analysis in this section only con-
siders the DT subgraph of the communication graph
and ignores any communication edge that is not a DT
edge. When Rc/Rs is large, a DT edge in a sensing-
covered network can be significantly shorter than Rc,
and the dilation bounds based DT can be very conser-
vative. In the following sections we will show that sig-
nificantly tighter dilation bounds on sensing-covered
networks are achieved by greedy routing algorithms
such as GF when Rc/Rs becomes higher.

5. Greedy Forwarding

Greedy forwarding (GF) is an efficient, localized ad
hoc routing scheme employed in many existing geo-
graphic routing algorithms [13, 17, 30]. Under GF a
node makes routing decisions only based on the lo-
cations of its (one-hop) neighbors, thereby avoiding
the overhead of maintaining global topology informa-
tion. In each step a node forwards a packet to the
neighbor with the shortest Euclidean distance to the
destination [13, 17]. An alternative greedy forwarding
scheme [30] chooses the neighbor with the shortest pro-
jected distance to the destination on the straight line
joining the current node and the destination, where the
projected distance between two points i and j on line
AB is defined as the Euclidean distance between the
projections of i and j on AB.

However, a routing node might encounter a routing
void when it cannot find a neighbor that is closer (in
term of Euclidean or projected distance) to the des-
tination than itself. In such a case, the routing node
must drop the packet or enter a more complex recovery
modes [17,18,29] to route the packet around the rout-
ing void. In this section we prove GF always succeeds in
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sensing-covered networks when the double-range prop-
erty is satisfied. We further derive the upper bound on
the network dilation of sensing-covered networks un-
der GF.

Theorem 3. In a sensing-covered network, GF can al-
ways find a routing path between any two nodes. Further-
more, in each step (other than the last step arriving at
the destination), a node can always find a next-hop node
that is more than Rc − 2Rs closer (in terms of both Eu-
clidean and projected distance) to the destination than it-
self.

Rc-2Rs

Rc

Rs

si snab

w

w'

Figure 3: GF Always Finds a Next-hop Node

Proof. Let sn be the destination, and si be either the
source or an intermediate node on the GF routing path,
as shown in Fig. 3. If |sisn| ≤ Rc, the destination is
reached in one hop. If |sisn| > Rc, we find point a on
the line segment sisn such that |sia| = Rc − Rs. Since
Rc ≥ 2Rs, point a must be outside of the sensing cir-
cle of si. Since a is covered, there must be at least one
node, say w, inside the circle C(a, Rs).

We now prove the progress toward destination sn

(in terms of both Euclidean and projected distance) is
more than Rc − 2Rs by choosing w as the next hop
of si. Let point b be the intersection between line seg-
ment sisn and circle C(a, Rs) that is closest to si. Since
circle C(a, Rs) is internally tangent with the commu-
nication circle of node si, |sib| = Rc−2Rs. Clearly, the
maximal distance between point sn and any point on
or inside circle C(a, Rs) is |snb|. Since point w is in-
side C(a, Rs), |snw| < |snb|. Suppose w′ is the projec-

tion of node w on line segment sisn. We have:

|snsi| − |snw′| ≥ |snsi| − |snw| > |snsi| − |snb|
= |sib|
= Rc − 2Rs

≥ 0 (6)

From above relation, we can see that both the pro-
jected distance and Euclidean distance between node
w and destination sn is more than Rc − 2Rs shorter
than |sisn|. This leads to the conclusion that GF can
choose a next hop that is more than Rc−2Rs closer (in
terms of both projected and Euclidean distance) to the
destination than the current node. Since this holds for
every step (other than the last step arriving at the des-
tination), GF always can find a routing path between
any two nodes.

Theorem 3 establishes that the progress toward the
destination in each step of a GF routing path is lower-
bounded by Rc−2Rs. Therefore, the network length of
a GF routing path between a source and a destination
is upper-bounded.

Theorem 4. In a sensing-covered network, GF can al-
ways find a routing path between source u and destination

v no longer than
⌊

|uv|
Rc−2Rs

⌋

+ 1 hops.

Proof. Let N be the network length of the GF rout-
ing path between u and v. The nodes on the path are
s0(u),s1 · · · sn−1,sn(v). From Theorem 3, we have

|s0sn| − |s1sn| > Rc − 2Rs

|s1sn| − |s2sn| > Rc − 2Rs

...

|sn−2sn| − |sn−1sn| > Rc − 2Rs

Summing all the equations above, we have:

|s0sn| − |sn−1sn| > (N − 1)(Rc − 2Rs)

Given |s0sn| = |uv|, we have:

N <
|uv| − |sn−1sn|

Rc − 2Rs

+ 1 (7)

<
|uv|

Rc − 2Rs

+ 1

Hence N ≤
⌊

|uv|
Rc−2Rs

⌋

+ 1

From Theorem 4 and (1), the network dilation of a
sensing-covered network G(V, E) under GF satisfies:

Dn(GF ) ≤ max
u,v∈V





⌊

|uv|
Rc−2Rs

⌋

+ 1
⌈

|uv|
Rc

⌉



 (8)
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The asymptotic bound on network dilation of
sensing-covered networks under GF can be com-
puted by ignoring the rounding and the constant term
1 in (8).

Corollary 2. The asymptotic network dilation of
sensing-covered networks under GF satisfies

D̃n(GF ) ≤ Rc

Rc − 2Rs

(9)

From (9), the upper bound on the network dilation
of sensing-covered networks under GF monotonically
decreases when Rc/Rs increases. The upper bound be-
comes lower than 2 when Rc/Rs > 4, and approaches
1 when Rc/Rs becomes very large. This result con-
firms our intuition that a sensing-covered network ap-
proaches an ideal network in terms of network length
when the communication range is significantly longer
than the sensing range.

However, the GF bound in (9) increases quickly to
infinity when Rc/Rs approaches 2. In the proof of The-
orem 3, when Rc approaches 2Rs, a forwarding node
si may be infinitely close to the intersection point be-
tween C(a, Rs) and sisn. Consequently, si may choose
a neighbor inside C(a, Rs) that makes infinitely small
progress toward the destination resulting in a long rout-
ing path. It has been shown in [14] that the network
length of a GF routing path between source u and des-

tination v is bounded by O(( |uv|
Rc

)2). From (1), we can
see that this result cannot lead to a constant upper
bound on the network dilation for a given range ra-
tio. Whether GF has a tighter analytical network dila-
tion bound when Rc/Rs is close to two is an open re-
search question left for future work.

6. Bounded Voronoi Greedy Forward-
ing (BVGF)

From Sections 5, we note that although GF has satis-
factory network dilation bound on sensing-covered net-
works when Rc/Rs � 2, the bound becomes very large
when Rc/Rs is close to two. In contrast, the analysis
based on Voronoi diagram leads to a satisfactory bound
when Rc/Rs is close to two, but this bound becomes
conservative when Rc/Rs � 2. These results moti-
vate us to develop a new routing algorithm, Bounded
Voronoi Greedy Forwarding (BVGF), that has satisfac-
tory analytical dilation bound for any Rc/Rs > 2 by
combining GF and Voronoi diagram.

6.1. The BVGF Algorithm

Similar to GF, BVGF is a localized algorithm that
makes greedy routing decisions based on one-hop

neighbor locations. When node i needs to for-
ward a packet, a neighbor j is eligible as the next hop
only if the line segment joining the source and the des-
tination of the packet intersects Vor(j) or coincides
with one of the boundaries of Vor(j). BVGF chooses
as the next hop the neighbor that has the shortest Eu-
clidean distance to the destination among all eligible
neighbors. When there are multiple eligible neigh-
bors that are closest to the destination, the routing
node randomly chooses one as the next hop. Fig. 4 illus-
trates four consecutive nodes (si ∼ si+3) on the BVGF
routing path from source u to destination v. The com-
munication circle of each node is also shown in the fig-
ure. We can see that a node’s next hop in a routing
path might not be adjacent with it in the Voronoi di-
agram (e.g., node si does not share a Voronoi edge
with node si+1). When Rc � Rs, this greedy for-
warding scheme allows BVGF to achieve a tighter
dilation bound than the DT bound that only con-
siders DT edges and does not vary with the range
ratio.

The key difference between GF and BVGF is that
BVGF only considers the neighbors whose Voronoi re-
gions intersect the line joining the source and the des-
tination. As we will show later in this section, this fea-
ture allows BVGF to have a tighter upper-bound on
network dilation in sensing-covered networks.

Si+1 Si+2

Si+3

vu Si

Figure 4: A Routing Path of BVGF

In BVGF, each node maintains a neighborhood ta-
ble. For each one-hop neighbor j, the neighborhood ta-
ble includes j′s location and the locations of the ver-
tices of Vor(j). For example, as illustrated in Fig. 4, for
one-hop neighbor si, node si+1 includes in its neigh-
borhood table the locations of si and the vertices of
Vor(si) (each vertex is denoted by a cross in the fig-
ure). To maintain the neighborhood table, each node
periodically broadcasts a beacon message that includes
its own location as well as the locations of the vertices
of its Voronoi region. Note each node can compute its
own Voronoi vertices based on its neighbor locations
because all Voronoi neighbors are within its communi-
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cation range (as proved in Lemma 2).
Assume the number of neighbors within a node’s

communication range is bounded by O(n). The com-
plexity incured by a node to compute the Voronoi dia-
gram of all its one-hop neighbors is O(n log n) [1]. Since
the number of vertices of the Voronoi region of a node
is bounded by O(n) [1], the total storage complexity of
a node’s neighborhood table is O(n2).

6.2. Network Dilation of BVGF

In this section, we analyze the network dilation of
BVGF. We first prove that BVGF can always find
a routing path between any two nodes in a sensing-
covered network (Theorem 5). We next show that a
BVGF routing path always lies in a Voronoi forward-
ing rectangle. We then derive the lower bound on the
projected progress in every step of a BVGF routing
path (Lemma 4). Since this lower bound is not tight
when Rc/Rs is close to two, we derive the lower bound
on the projected progress in two and four consecutive
steps in a BVGF routing path (Lemmas 7 and 8) based
on the non-adjacent advancing property. Finally we es-
tablish the asymptotic bounds of the network dilation
of sensing-covered networks under BVGF in Theorem
7.

In the rest of this section, to simplify our discus-
sion on the routing path from source u to destination
v, we assume node u is the origin and the straight line
joining u and v is the x-axis. The Voronoi forwarding
rectangle of nodes u and v refers to the rectangle de-
fined by the points (0, Rs), (0,−Rs), (|uv|,−Rs) and
(|uv|, Rs). Let x(a) and y(a) denote the x-coordinate
and y-coordinate of a point a, respectively. The pro-
jected progress pp(a, b) from node a to node b is de-
fined as the difference between their x-coordinates, i.e.,
pp(a, b) = x(b) − x(a).

Theorem 5. In a sensing-covered network, BVGF can
always successfully find a routing path between any two
nodes. Furthermore, the projected progress in each step
of a BVGF routing path is positive.

Proof. As illustrated in Fig. 5, node si is an interme-
diate node on the BVGF routing path from source u
to destination v. x-axis intersects Vor(si) or coincides
with one of the boundaries of Vor(si). Let point p be
the intersection between Vor(si) and the x-axis that is
closer to v (if x-axis coincides with one of the bound-
aries of Vor(si), we choose the vertex of Vor(si) that
is cloest to v as point p). There must exist a node w
such that Vor(si) and Vor(w) share the Voronoi edge
that hosts p and intersects the x-axis. The straight line
(denoted as dotted line in Fig. 5) where the Vornoi

Si+1 v

w

Pi

u si

Pi+1

a1

a2

p

Figure 5: BVGF Always Finds a Next-hop Node

edge lies on defines two half-planes Pi and Pi+1, and
si ∈ Pi, w ∈ Pi+1. From the definition of Voronoi di-
agram, any point in half-plane Pi+1 has a shorter dis-
tance to w than to si. Since v ∈ Pi+1, |wv| < |siv|. In
addition, since |siw| < 2Rs ≤ Rc (see Lemma 2) and
line segment uv intersects Vor(w) (or coincides with
one of the boundaries of Vor(w)), w is eligible to be the
next hop of si. That is, si can find at least one neigh-
bor (w) closer to the destination. This holds for ev-
ery node other than the destination and hence BVGF
can always find a routing path between the source and
the destination.

We now prove the projected progress in each step of
a BVGF routing path is positive. We discuss two cases.
1) If si chooses w as the next hop on the BVGF rout-
ing path, from the definition of Voronoi diagram, si

and w lies to the left and the right of the perpendicu-
lar bisector of line segment siw, respectively. Therefore,
x(si) < x(p) < x(w) and hence the projected progress
between si and w is positive. 2) If si chooses node si+1

(which is different from w) as the next hop, we can con-
struct a consecutive path (along the x-axis) consisting
of the nodes si, a0(w), a1 · · · am, si+1 such that any
two adjacent nodes on the path share a Voronoi edge
that intersects the x-axis, as illustrated in Fig. 5. Sim-
ilarly to case 1), we can prove:

x(si) < x(a0) < · · · < x(am) < x(si+1)

Hence the projected progress between the consecutive
nodes si and si+1 on the BVGF routing path is posi-
tive.

BVGF always forwards a packet to a node whose
Voronoi region is intersected by the straight line joining
the source and the destination. From Lemma 1, every
Voronoi region in a sensing-covered network is within a
sensing circle. Therefore, every node on a BVGF rout-
ing path lies in a bounded region. Specifically, we have
the following Lemma.
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Lemma 3. The BVGF routing path from node u to node
v lies in the Voronoi forwarding rectangle of nodes u and
v.

si

w
2Rs

u v

u1

u2 v1

v2

Figure 6: Voronoi Forwarding Rectangle

Proof. As illustrated in Fig. 6, si is an intermediate
node on the BVGF routing path between u and v. Let
point w be one of the intersections between the x-axis
and Vor(si) (if x-axis coincides with one of the bound-
aries of Vor(si), choose a vertex on the boundary as
point w). From Lemma 1, node si covers point w, and
hence |siw| < Rs. We have |y(si)| ≤ |siw| < Rs. Fur-
thermore, from Theorem 5, 0 < |x(si)| < |uv|. Thus,
si lies in the Voronoi forwarding rectangle of nodes u
and v.

In a sensing-covered network, the greedy nature of
BVGF ensures that a node chooses a next hop that has
the shortest distance to the destination among all eligi-
ble neighbors. On the other hand, according to Lemma
3, the next-hop node must fall in the Voronoi forward-
ing rectangle. These results allow us to derive a lower
bound on the progress of every step in a BVGF rout-
ing path.

Lemma 4 (One-step Advance Lemma). In a
sensing-covered network, the projected progress in each
step of a BVGF routing path is more than ∆1, where
∆1 = max(0,

√

R2
c − 2RcRs − Rs).

Proof. As illustrated in Fig. 7, si is an intermediate
node on the BVGF routing path between source u and
destination v. Let point s′i be the projection of si on the
x-axis. From Lemma 3, sis

′
i < Rs. Let point d be the

point on the x-axis such that |sid| = Rc−Rs. According
to Lemma 1, there must exist a node, w, which covers
point d and d ∈Vor(w). Clearly w lies in circle C(d, Rs).
Since d is on the x-axis and d ∈Vor(w), x-axis inter-
sects Vor(w). Furthermore, since circle C(d, Rs) is in-
ternally tangent with the communication circle of node
si, node w is within the communication range of node
si. Therefore node si can at least choose node w as the
next hop. Let c be the intersection between C(d, Rs)

Rc

Rs

u vdc

si

2Rs

w

w'si'

Figure 7: One-step Projected Progress of BVGF

and x-axis that is closest to u. Let w′ be the projec-
tion of w on the x-axis. The projected progress between
si and w is:

|s′iw′| > |s′ic|
= |s′id| − Rs

=
√

|sid|2 − |sis′i|2 − Rs

>
√

(Rc − Rs)2 − R2
s − Rs

=
√

R2
c − 2RcRs − Rs

|s′iw′| ≤ 0 whe Rc/Rs ≤ 1+
√

2. From Theorem 5, pro-
jected progress made by BVGF in each step is positive.
Therefore, the lower bound on the projected progress
in each step is max(0,

√

R2
c − 2RcRs − Rs).

From Lemma 4, we can see that the lower bound
on the projected progress between any two nodes in a
BVGF routing path approaches zero when Rc/Rs ≤
1 +

√
2. We ask the question whether there is a tighter

lower bound in such a case.
Consider two non-adjacent nodes i and j on a BVGF

routing path. The Euclidean distance between them
must be longer than Rc because otherwise BVGF
would have chosen j as the next hop of i which contra-
dicts the assumption that i and j are non-adjacent on
the routing path. We refer to this property of BVGF
as the non-adjacent advancing property. We have the
following Lemma (the detailed proof is similar to the
proof of Theorem 2 and omitted due to the space lim-
itation) 4.

Lemma 5 (Non-adjacent Advancing Property).
In a sensing-covered network, the Euclidean distance be-

4 Similarly, GF also can be shown to have this property.
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tween any two non-adjacent nodes on a BVGF routing
path is longer than Rc.

The non-adjacent advancing property, combined
with the fact that a BVGF routing path always lies
in the Voronoi forwarding rectangle, leads to the in-
tuition that the projected progress toward the des-
tination made by BVGF in two consecutive steps
is lower-bounded. Specifically, we have the follow-
ing Lemma that establishes a tighter bound on the pro-
jected progress of BVGF than Lemma 4 when Rc/Rs

is small.

Lemma 6. In a sensing-covered network, the projected
progress between any two non-adjacent nodes i and j on
a BVGF routing path is more than:

√

R2
c − R2

s if i, j on the same side of the x-axis
√

R2
c − 4R2

s if i, j on different sides of the x-axis

Proof. Let s0(u),s1 · · · sn−1,sn(v) be the consecutive
nodes on the BVGF routing path between source u and
destination v. From Lemma 5, |sisi+k | > Rc (k > 1).
Fig. 8(a) and (b) illustrate the two cases where si and
si+k are on the same or different sides of the x-axis, re-
spectively. Both si and si+k lie in the Voronoi forward-
ing rectangle of nodes u and v (dotted box in the fig-
ure). When si and si+k are on the same side of the
x-axis, we have

|y(si+k) − y(si)| < Rs

The projected progress between si+k and si satisfies:

x(si+k) − x(si) =
√

|sisi+k |2 − (y(si+k) − y(si))2

>
√

R2
c − R2

s

Similarly, when si and si+k are on different sides of
the x-axis as shown in Fig. 8(b), we can prove that
the projected progress between them is more than
√

R2
c − 4R2

s.

From Lemma 6, we can see that the worst-case pro-
jected progress in two consecutive steps on a BVGF
routing path occurs when the non-adjacent nodes on
the two steps are on the different sides of the x-axis.
We have the following Lemma (proof is omitted due to
the space limitation).

Lemma 7 (Two-step Advance Lemma). In a
sensing-covered network, the projected progress in two
consecutive steps on a BVGF routing path is more than
∆2, where ∆2 =

√

R2
c − 4R2

s.

si

s i+k

s0 sn
x(si) x(si+k)

|y(si)-y(si+k)| Rs

Rs

s i

s i+k

s0 sn
x(si)

x(si+k)|y(si)-y(si+k)| Rs

Rs

(a)

(b)

Figure 8: Projected Progress of Two Non-adjacent
Nodes

Combining the different cases of non-adjacent node
locations, we can derive the lower bound on the pro-
jected progress made by BVGF in four consecutive
steps.

Lemma 8 (Four-step Advance Lemma). In a
sensing-covered network, the projected progress in four
consecutive steps of a BVGF routing path is more than
∆4, where

∆4 =

{

√

R2
c − R2

s (2 ≤ Rc/Rs ≤
√

5)
√

4R2
c − 16R2

s (Rc/Rs >
√

5)

Proof. Let s0(u),s1 · · · sn−1,sn(v) be the consecutive
nodes on the BVGF routing path between source u and
destination v. si, si+2 and si+4 are three non-adjacent
nodes on the path. Without loss of generality, let si

lie above the x-axis. Fig. 9(a)(b)(c)(d) show all possi-
ble configurations of si, si+2 and si+4 (the dotted boxes
denote the Voronoi forwarding rectangles). We now de-
rive the lower bound on the projected progress between
si and si+4.

1).When si and si+4 lie on different sides of the
x-axis, as illustrated in Fig. 9(a)(b), the projected
progress δab between si and si+4 is the sum of the pro-
jected progress between si and si+2 and the projected
progress between si+2 and si+4. From Lemmas 6 :

δab =
√

R2
c − R2

s +
√

R2
c − 4R2

s

2).When si and si+4 lie on the same side of the
x-axis, as shown in Fig. 9(c)(d), from Lemma 6, the
projected progress between them is more than δcd =
√

R2
c − R2

s . On the other hand, the projected progress
can be computed as the sum of the projected progress
between si and si+2 and the projected progress be-
tween si+2 and si+4, i.e., δc = 2

√

R2
c − 4R2

s as shown
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in Fig. 9(c) or δd = 2
√

R2
c − R2

s as shown in Fig. 9(d).
Since δd > δc, the max{δcd, δc} is the lower bound on
the projected progress between si and si+4 when they
lie on the same side of the x-axis.

Summarizing the cases 1) and 2), the lower bound
on the projected progress in four consecutive steps on
a BVGF routing path is

∆4 = min{δab, max{δcd, δc}}

From the relation between δab, δcd and δc, ∆4 can
be transformed to the result of the theorem.

Rs

Rs

s i

s i+2

s i+4

s0 sn

Rs

Rs

s i

s i+2
s i+4

s0 sn

(c)

(a)

Rs

Rs

s i s i+2
s i+4

s0 sn

Rs

Rs

s i s i+2

s i+4

s0 sn

(d)

(b)

Figure 9: Projected Progress in Four Consecutive Steps

When Rc/Rs is small, the network is relatively
sparse. Although the one-step projected progress ap-
proaches zero as shown in Lemma 4 in such a case, in-
terestingly, Lemmas 7 and 8 show that the projected
progress toward the destination made by BVGF in
two or four consecutive steps is lower-bounded. On
the other hand, when Rc � Rs, the sensing coverage
of the network can result in a high density of nodes
in the communication range of a routing node and
hence the projected progress of BVGF in each step ap-
proaches Rc. In such a case the lower bound estab-
lished in Lemma 4 is tighter than the lower bounds es-
tablished in Lemmas 7-8.

Using Lemmas 4, 7 and 8, we now derive the up-
per bound on the network length of the BVGF routing

path between any two nodes in a sensing-covered net-
work.

Theorem 6. In a sensing-covered network,
The BVGF routing path between any two nodes
u and v is no longer than ∆ hops, where

∆ = min
{⌈

|uv|
∆1

⌉

, 2
⌊

|uv|
∆2

⌋

+ 1, 4
⌊

|uv|
∆4

⌋

+ 3
}

.

Proof. Let N be network length of the BVGF routing
path between nodes u and v. From Lemmas 4, 7 and
8, we have

N ≤
⌈ |uv|

∆1

⌉

(10)

N ≤ 2

⌊ |uv|
∆2

⌋

+ 1 (11)

N ≤ 4

⌊ |uv|
∆4

⌋

+ 3 (12)

From (10)-(12), we have

N ≤ min

{⌈ |uv|
∆1

⌉

, 2

⌊ |uv|
∆2

⌋

+ 1, 4

⌊ |uv|
∆4

⌋

+ 3

}

From Theorem 6 and (1),the network dilation of a
sensing-covered network G(V, E) under BVGF satis-
fies:

Dn(BV GF ) ≤ max
u,v∈V

∆
⌈

|uv|
Rc

⌉ (13)

where ∆ is defined in Theorem 6. The asymptotic
bound on network dilation of sensing-covered networks
under BVGF can be computed by ignoring the round-
ing and the constant terms in (13).

Theorem 7. The asymptotic network dilation of a
sensing-covered network under BVGF satisfies

D̃n(BV GF )≤



































4Rc√
R2

c
−R2

s

(2 ≤ Rc/Rs ≤
√

5)

2Rc√
R2

c
−4R2

s

(
√

5 < Rc/Rs ≤ 3.8)

Rc√
R2

c
−2RcRs−Rs

(Rc/Rs > 3.8)

7. Summary of Analysis on Network Di-
lations

In this section we summarize the network dilation
bounds derived in previous sections. Fig. 10 shows the
DT-based dilation bound and the asymptotic dilation
bounds of GF and BVGF under different range ra-
tios, as well as the simulation results that will be dis-
cussed in Section 8. The curve “BVGF Asymptotic
Bound” shows the asymptotic bound on the network
dilation of BVGF established in Theorem 7. We can
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see the asymptotic bound of BVGF is competitive for
all range ratios no smaller than two. The asymptotic

bound of BVGF gets the worst-case value 8
√

3
3 ≈ 4.62

when Rc/Rs = 2. That is, in a sensing-covered net-
work that has the double range property, BVGF can
always find a routing path between any two nodes u

and v within 4.62
⌈

|uv|
Rc

⌉

hops.

The asymptotic network dilation bound of GF in-
creases quickly with the range ratio and approaches
infinity when Rc/Rs is close to two. Whether there is
a tighter bound for GF in such a case is an impor-
tant open research question.

When Rc/Rs >∼ 3.5, the asymptotic network dila-
tions of GF and BVGF are very similar because the net-
work topology is denser and both algorithms can find
very short routing paths. We can see the network dila-
tion bound based on DT is significantly higher than the
bounds of BVGF and GF when Rc/Rs becomes larger
than ∼ 2.5, because the analysis based on DT only con-
siders DT edges (which have been shown to be shorter
than 2Rs in Lemma 2) and becomes conservative when
the communication range is much larger than the sens-
ing range.

We should note that the network dilation of a
sensing-covered network is upper-bounded by the min-
imum of the DT bound, the GF bound and the BVGF
bound, because the network dilation is defined based
on shortest paths.

8. Simulation Results

In this section we present our simulation results. The
purpose of the simulations is twofold. First, we com-
pare the network dilations of GF and BVGF routing
algorithms under different range ratios. Second, we in-
vestigate the tightness of the theoretical bounds we es-
tablished in previous sections.

The simulation is written in C++. There is no
packet loss due to transmission collisions in our sim-
ulation environments. 1000 nodes are randomly dis-
tributed in a 500m × 500m region. All simulations
in this section are performed in sensing-covered net-
work topologies produced by the Coverage Configura-
tion Protocol (CCP) [33]. CCP maintains a set of ac-
tive nodes to provide sensing coverage to the deploy-
ment region and redundant nodes are turned off for
energy conservation. All nodes have the same sensing
range of 20m. We vary Rc to measure the network and
Euclidean dilations of GF and BVGF under different
range ratios. As discussed in Section 5, GF refers to
two routing schemes, i.e., a node chooses as the next
hop a neighbor that has the shortest Euclidean or pro-
jected distance to the destination. Since the simulation

results of the two schemes are very similar, only Eu-
clidean distance based results are presented in this sec-
tion.

The results presented in this section are averages of
five runs on different network topologies produced by
CCP. In each round, a packet is sent from each node to
every other node in the network. As expected, 100% of
the packets are delivered by both algorithms. The net-
work and Euclidean lengths are logged for each com-
munication. The network and Euclidean dilations are
then computed using (1) and (2), respectively. To dis-
tinguish the dilations computed from the simulation
results from the dilation bounds we derived in previ-
ous sections, we refer to the dilations obtained from the
simulations as measured dilations. We should note that
the measured dilations characterize the average-case
performance of the routing algorithms in the particu-
lar network topologies used in our experiments, which
may differ from the worst-case bounds for any possi-
ble sensing-covered network topologies we derived in
previous sections.
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Figure 10: Network Dilations

From Fig. 10, we can see the measured dilations of
GF and BVGF remain close to each other. Both GF
and BVGF have very low dilations (smaller than two)
in all range ratios no smaller than two. This result
shows that both GF and BVGF can find short rout-
ing paths in sensing-covered networks. When Rc/Rs in-
creases, the measured dilations of both algorithms ap-
proach their asymptotic bounds. When Rc/Rs is close
to 2, however, the difference between the asymptotic
bounds and the corresponding measurement becomes
wider. This is because the measured dilations are ob-
tained from the average-case network topologies and
the worst-case scenarios from which the upper bounds
on network dilations are derived are rare when the net-
work is less dense.
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Due to the rounding errors in deriving the asymp-
totic dilation bounds (Corollary 2 and Theorem 7), the
measured network dilations are slightly higher than the
asymptotic bounds for both algorithms when Rc/Rs >
6, as shown in Fig. 10. This is because when Rc be-
comes large, the routing paths chosen by both the al-
gorithms become short and the effect of rounding in the
calculation of network dilations becomes significant.

The result also indicates that the measured network
dilation of GF is significantly lower than the asymp-
totic bound presented in this paper. Whether GF has
a tighter network dilation bound is an open question
that requires future work.
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Figure 11: Euclidean Dilations

Fig. 11 shows the Euclidean dilations of GF and
BVGF. BVGF outperforms GF for all range ratios.
This is due to the fact BVGF always forwards a packet
along a path inside the Voronoi forwarding rectangle.
As mentioned in Section 3, the low Euclidean dilation
may lead to potential energy savings in wireless com-
munication.

The simulation results have shown that the proposed
BVGF algorithm performs similarly with GF in aver-
age cases and has lower Euclidean dilation. In addition,
the upper bounds on the network dilations of BVGF
and GF established in previous sections are tight when
Rc/Rs is large.

9. Conclusion

Our results lead to several important insights on the
design of sensor networks. First, our analysis and sim-
ulation show that simple greedy geographic routing
algorithms may be highly efficient in sensing-covered
networks. Both the asymptotic bound and measured
network dilations of BVGF and GF drop below 2.5
when the network’s range ratio reaches 3.5. Moreover,

the asymptotic network dilation bound of BVGF re-
mains below 4.62 for any range ratio no smaller than 2.
Our results also indicate that the redundant nodes can
be turned off without significant increase in network
length as long as the remaining active nodes maintain
sensing coverage. Therefore, our analysis justifies cov-
erage maintenance protocols [31, 33, 35] that conserve
energy by scheduling nodes to sleep. Finally, our dila-
tion bounds enable a source node to efficiently compute
an upper-bound on the network length of its routing
path based on the location of the destination. This ca-
pability can be useful to real-time communication pro-
tocols that require bounded routing paths to achieve
predictable end-to-end communication delays.

In the future, we will generalize our analysis to
sensing-covered networks without the double range
property. Further analysis is also needed on the net-
work dilations of GF when the range ratio approaches
2. Another important research area is to extend our
analysis to handle probabilistic sensing and communi-
cation models.
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