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In this research, the Hseih/Duffy model is extended to all three velocity components 

of inflow across the rotor disk in a mathematically rigorous way so that it can be used 

to calculate the inflow below the rotor disk plane. This establishes a complete 

dynamic inflow model for the entire flow field with finite state method.  The 

derivation is for the case of general skewed angle.  The cost of the new method is that 

one needs to compute the co-states of the inflow equations in the upper hemisphere 

along with the normal states.  Numerical comparisons with exact solutions for the z-

component of flow in axial and skewed angle flow demonstrate excellent correlation 

with closed-form solutions.  The simulations also illustrate that the model is valid at 

both the frequency domain and the time domain. 

Meanwhile, in order to accelerate the convergence, an optimization of even 

terms is used to minimize the error in the axial component of the induced velocity in 

the on and on/off disk region.  A novel method for calculating associate Legendre 

function of the second kind is also developed to solve the  problem of divergence of 

 m
nQ i  for large   with the iterative method.  An application of the new model is 

also conducted to compute inflow in the wake of a rotor with a finite number of 

blades.  The velocities are plotted at different distances from the rotor disk and are 
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compared with the Glauert prediction for axial flow and wake swirl.  In the finite-

state model, the angular momentum does not jump instantaneously across the disk, 

but it does transition rapidly across the disk to correct Glauert value. 
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Chapter 1  Introduction 
During the past thirty years, finite-state inflow models have developed steadily and 

moved from heuristic momentum-theory approximations to become rigorous 

solutions to the potential flow equations in three dimensions.  The finite-state method 

is treated as an alternate method to the traditional vortex-lattice methods (VLM) or 

the computational fluid dynamic (CFD) approach.  However, compared to these 

approaches, the finite-state method requires less computation and therefore can be 

used for real time rotor wake analysis. 

The states of the models which have been developed are, by definition, 

unknowns in a set of first-order, ordinary differential equations––the coefficients of 

which depend on the free-stream impingement angle, the flight speed, and the thrust.  

The coefficients of the differential equations take the form of a mass matrix, a 

damping matrix, and an influence-coefficient matrix.  For the Peters-He and Peters-

Morillo models, these matrices are all in closed form, so they are easily assembled 

and can be used efficiently and reliably.  After many years of evolution, the current 

model (Hsieh/Duffy model) has been developed such that one can compute all three 

components of the induced flow in the upper hemisphere above the plane of the rotor 

disk.  However, the model is incapable of computing the induced flow in the 

hemisphere below the rotor disk.  The flow below the disk is required in many 

applications––such as calculating the interaction of a rotor with external aerodynamic 

surfaces or with another rotor. 

The main purpose of this study is to extend the Hsieh/Duffy model such that it 

can be used to compute induced flow below the plane of the rotor disk.  This will 

establish a complete, finite-state dynamic inflow model for the entire flow field. 
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1.1 Previous Work 
In the early 1980s, based on Mangler’s actuator-disc theory, Ref. [1], Dale Pitt and 

David Peters developed a linear, unsteady theory that relates the transient rotor loads 

(thrust, roll moment and pitch moment) to the overall transient response of the rotor 

induced flow field, which is known as the Pitt-Peters model now, Ref. [2].  The 

perturbed induced inflow and the pressure distribution are defined as 

   0 sin coss cr r                                              (1.1) 

       
1 3

0 1

cos sin
m

m m m m
n n n n

m n m

P P Q i C m D m   


  

                          (1.2) 

where  , 
 
and 

 
are ellipsoidal coordinates defined in Appendix 1.  m

nP  and m
nQ  

are associated Legendre functions of the first and second kinds, and m
nC  and m

nD  are 

coefficients which are functions of time and are governed by a set of ordinary 

differential equations. With the assumption of superposition of pressure, in which the 

velocity field is derived from superimposing the unsteady pressure and static pressure 

of the flow, they obtained a set of differential equations to obtain the dynamic inflow 

derivatives for a helicopter rotor with an unsteady loading and induced flow 

distribution.  The equations are expressed as: 

   
0 0

1
T

s s L

c c M

C

M L C

C

 
 
 




     
            
          

                                     (1.3) 

where  M  and  L  are apparent mass matrix and the dynamic inflow gain matrix, 

respectively.  They are defined as follows 

 

128
0 0

75
16

0 0
45

16
0 0

45

M







 
 
 
   
 
 
  

                                              (1.4) 
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 

 
 

 
 
   

1 sin1 15
0

2 64 1 sin

1 4
0 0

1 sin

1 sin15 4
0

64 1 sin 1 sin

L
V







 

  
 
 
   
 
 
 

   

                    (1.5) 

where V  is the flow velocity, and   is the skewed angle of the free streamline, 

changing from 0
 to 90

. 

One can see from (1.3) that there are three states in this model, and each has a 

physical meaning.  They represent, respectively, uniform flow, a side-to-side gradient, 

and a fore-to-aft gradient. The theory was verified experimentally, Ref. [3].  At 

present, it is used in virtually every stability and handling quality application.  The 

limitation for the Pitt-Peters model is that it is a low-order approximation to the rotor 

induced flow field with only one harmonic and one radial shape function for each 

harmonic.  Thus, the model is only the crudest wake description of uniform flow 

since its lack of higher-harmonic terms of the flow field.  

Due to the limitation of the Pitt-Peters model, researchers desired a higher-

harmonic theory which could be more accurate.  In 1987, David Peters and Chengjian 

He developed a higher-harmonic theory, which is known as the Peters-He generalized 

dynamic wake model, Refs. [4] and [5].  The pressure distribution for the Peters-He 

model was extended from Pitt’s pressure distribution to include higher harmonic 

terms and arbitrary number of radial functions for each harmonic 

       
0 1, 3,

1
cos sin

2
m m mc ms

n n n n
m n m m

P P Q i m m     
 

   

     


            (1.6) 

The inflow distribution is expanded to include an arbitrary number of 

harmonics and radial functions, which is similar as the expression of the pressure 

     
0 1, 3,

cos sin
m

n m m
z n n

m n m m

P
v m m


   



 

   

    


                     (1.7) 
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where  m
nP   and  m

nQ i  are associated normalized Legendre functions of the first 

and second kind, respectively.   (See Appendix 2) 

Both Pitt and He began with the complete potential flow equations and then 

assumed "superposition of pressures," which implies that inflow modes with no 

induced velocity on the rotor disk are neglected.  As a result, the Peters-He model 

takes the form 

      1 1

2
m c m mc
n n nM V L  



   


                                  (1.8) 

      1 1

2
m s m ms
n n nM V L  



   
                                  (1.9) 

where  m
n  and  m

n  
are the coefficients of the axial induced velocity component 

on the disk, and  mc
n  

and  ms
n  

represent cosine and sine pressure coefficients.  

The matrix  M
 
is the apparent mass matrix; and cL  


 
and sL  

  are the cosine and 

sine influence coefficient matrices, respectively.  These are all given in closed form.  

The Peters-He model has been validated against wind-tunnel data, Ref. [5].  As a 

mature dynamic inflow model, Peters-He model is widely used in many production 

codes including FLIGHTLAB (Advanced Rotorcraft Technology), COPTER (Bell 

Helicopter) and ONERA-DFVLR (European Community), etc, Ref. [6]. 

The Peters-He model contains only Legendre functions that have m n odd 
 

which represents pressure discontinuities at the disk.  As the result of discarding the 

m n even   terms, which are related to mass-sources, the Peters-He model cannot 

describe the inflow distribution caused by mass-injection.  Further, it treats only the 

normal component of flow on the rotor disk. 

Subsequent researchers have attempted to extend the Peters-He model to 

include all components of flow throughout the field.  In 1996, Wen-Ming Cao and 

David Peters made an attempt to compute the flow off of the rotor disk as well as on 

the disk, Ref. [7].  This work demonstrated that there must be a second set of wake 
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states (besides the He states) for flow off the rotor to be calculated; but it was not 

known what these states should be.   

In 2001, Jorge Morillo and David Peters addressed these issues and showed that 

the extra states could be found rigorously (with no need for the limiting assumption 

of superposition of pressures) by writing the velocity field as a gradient of velocity 

potentials and by including the mass source terms in the expansions, so that the 

m n odd   terms and m n even   terms are all included in the model, Ref. [6]. 

0 1

mc mc ms ms
n n n n

m n m

P  
 

  

                                              (1.10) 

0 1

ˆˆm mc m ms
n n n n

m n m

v a b
 

  

      
 

                                      
(1.11) 

where m
n  and m

n  are the pressure and velocity potentials.  This set of functions was 

also used by Pitt and He, but they only considered the odd functions and considered 

them only for the normal component of velocity.  With these definitions, Morillo and 

Peters were able to use a Galerkin approach to obtain a closed-form set of equations 

for all three components of the velocity potential––and thus of the velocity field 

everywhere in the upper hemisphere (i.e., upstream hemisphere)––including the plane 

of the rotor disk.  The governing equations are obtained from this Galerkin procedure 

in closed form and take the following form: 

     
*

1c m c c c m c mc
n n nM a D L M a D 


                 


                     
(1.12) 

     
*

1s m s s s m s ms
n n nM b D L M b D 


                 


                         
 (1.13) 

where  D  is the damping matrix.  All matrices are in closed form, and mass sources 

are also allowed.  The Peters-Morillo model gave excellent agreement with a class of 

closed-form solutions for step response and frequency response above the rotor disk, 

but convergence was slow due to ill-conditioned matrices.  However, the Peters-

Morillo model could not treat non-zero flux mass sources, which are the fundamental 

mass-source terms (the terms with m n ). 
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In 2005, Ke Yu and David Peters tried to develop an improved state-space 

representation that included the non-zero mass flux forcing terms, Ref. [8].  They 

extended the  D  matrix in the right-hand side to incorporate the mass source terms 

into the governing equation 

      
*

cos sinc m c c m c mc
n n nM a D C a D                                     (1.14) 

where  C  is a secondary damping matrix,   is the inflow angle, and D    is the 

extended matrix.  However, they were unable to find the potential functions for 

m n  and consequently still had not added the missing states.  Despite the extended 

 D  matrix, the model was still ill-conditioned and converged slowly. 

Hsieh and Peters, Ref. [9], found the here-to-fore illusive potential functions for 

m n .  The special case 0m n   still involved a singularity, but they replaced the 

infinite integral with an approximate solution for the infinite kinetic energy that 

converged as the number of terms was increased.  Later, Garcia-Duffy and Peters 

incorporated these into a complete dynamic inflow model for all components of flow 

in the upper hemisphere––and with good convergence, Ref. [10].  This model with 

the m n  term will be referred to as the Hsieh/Duffy model. 

All of these models are only valid for the flow on or above the plane of the 

rotor disk.  What remains, then, is to find a solution for the flow below the plane of 

the rotor, and apply the new method to finite blade systems and find the inflow within 

the wake region. 

1.2 Objective and Approach 
The aim of this research is to find a model to describe the velocity distribution below 

the disk.  Due to the constraints and limitation of Galerkin approach (that expansion 

functions must satisfy all boundary conditions), the modified Peters- Morillo model 

can only be used either on or above the rotor plane.  This is because there are 

discontinuities in the wake across vortex sheets which make it problematical to find a 
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valid expansion function for velocity in that region.  Furthermore, the flow in the 

wake is literally not potential flow so that no velocity potential exists.  Here we will 

overcome these obstacles by obtaining a closed-form expression for the flow below 

the plane of the rotor disk in terms of velocities (and adjoint velocities) above the 

plane. 

In the work to be presented in this dissertation, we will start from the exact 

solution and use the information above the disk to demonstrate by mathematical proof 

that the complete flow everywhere in the flow field can be developed in closed form 

from the flow in the upper hemisphere.  The cost of this transaction is that one must 

also compute the adjoint of the velocity (i.e., the co-states of the flow) in the upper 

hemisphere.  Once that is done, then the complete flow below the plane (including 

inside of the rotor wake) follows directly.  If the solution above the disk has 

converged, then the solution below the disk is guaranteed to converge as well.   

After getting the formula for the inflow model below the rotor disk, we will 

validate the new method for both frequency responses and step responses for axial 

flow, will compare with the analytical solution to make sure it could be used in both 

frequency domain and time domain.  And then will show the effectiveness of the 

method for skewed angle flow and apply this method for finite blade system to 

predict the wake region below the rotor disk.  For large skew angels, there must be an 

optimization of odd and even terms for Hsieh-Duffy model above the rotor disk.  

Here, for the inflow below the rotor disk, we will similarly try to find the optimized 

combination of odd and even terms to minimize the error within wake region. 
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Chapter 2 Inflow Theory Fundamentals 

2.1 Fluid Dynamics Equations 
The governing equations for Newtonian fluid are based on the basic conservation 

laws, which include the conservation of mass, the conservation of momentum and the 

conservation of energy.  Each the conservation laws lead to one or a set of differential 

equations.  Together with the equation of states, one can describe the motion of 

Newtonian fluid, Ref. [11]: 

  0tt

 
 



                                                   (2.1) 

        t
t t t t tp f

t

         
            



                         (2.2) 

   t t

e
e p k T

t
   

       


                                  (2.3) 

 ,p p T                                                      (2.4) 

 ,e e T                                                       (2.5) 

where   is the fluid density, t


 is the total velocity, p  is the pressure,   and   are 

the second viscosity coefficient and the dynamic viscosity respectively, f

 represents 

the external forces, e  is the internal energy per unit mass, k  is the thermal 

conductivity of the fluid,   is the viscous dissipation function and T  is temperature.  

However, for a helicopter, it is reasonable to assume that the inflow at standard 

atmospheric conditions is incompressible and inviscid around the actuator disk, Ref. 

[11].  Since there are no significant body forces around an actuator disk, the equations 

are reduced to the following potential flow equations  

0t 
                                                         (2.6) 

 t
t t p

t

   
   



   
                                          

(2.7) 
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v v
P

 
 

  
 

  
                                            (2.13) 

where we have defined P  as normalized pressure 2p V  , v


 as normalized induced 

velocity V 


 and time as a reduced time  , which is tV

R
  ; and where the 

Laplacian operator is redefined as the gradient with respect to nondimensional 

coordinates.  The boundary condition in the upper hemisphere is that velocity v


 must 

be zero in all directions far upstream. 

Suppose v


 can be represented by the gradient of some function,
 
 , then we 

may write 

v 


                                                   (2.14) 

Then it is clear from equation (2.12) that   will be a potential function and 

will satisfy Laplace’s equation 

0  
 
                                                  (2.15) 

Substitution of this velocity potential in equation (2.14) into equation (2.13), 

followed by a divergence operation to the resultant equation, gives: 

P
 

   
   

 

                                          (2.16) 

Based on equation (2.15), the left hand side of equation (2.16) is equal to 0, so 

if we define  

P                                                       (2.17) 

Then we know   satisfies Laplace’s equation 

0  
 
                                                   (2.18) 

which implies that   is also a potential function, as it is actually related to pressure, 

so we call it pressure potential.  Solution of equations (2.15) or (2.18) will yield a 

family of functions in terms of which we may expand both   and  . 
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2.2 Pressure Potentials 
In order to write the equations, we expand the pressure in terms of potential functions 

which satisfy Laplace equations.  As discontinuities in pressure only occur across the 

disk, we choose the solutions to Laplace equations in ellipsoidal coordinates to 

reconstruct the pressures in the flow field. (See in Appendix 2)  The pressure 

potential then could be expressed as 

       , , cosmc m m
n n nP Q i m                                (2.19) 

       , , sinms m m
n n nP Q i m                                 (2.20) 

where  ,   and   are the ellipsoidal coordinates defined in Appendix 1 and m  

takes values from  0,1, 2,3, 4,  and n  is from  , 1, 2, 3,m m m m    . 

This choice not only satisfies the boundary conditions but also contains both 

odd terms and even terms, which are capable for describing pressure discontinuities 

and mass injections anywhere on the rotor disk.  In the plane of the rotor disk but off 

the disk 0  , the functions with m n odd   (  m
nP 

 
are odd functions) are zero.  

For m n even   (  m
nP 

 
are even functions), the pressure potential has normal 

derivatives on that plane.  One can also see from Figure A1.1 that 0 1   above the 

disk while 1 0    below the disk.  Since there is a jump in   across the disk, this 

implies a jump in  .  On the disk, 0   such that the m n odd   potentials can be 

used to describe a pressure jump of the system; and m n even   potentials (which 

have a discontinuity in slope) can be used to represent a mass source in the flow field. 

The pressure can be expanded as a summation of all the pressure potential 

terms as 

 
0

mc mc ms ms
n n n n

m n m

P  
 

 

                                     (2.21) 

The pressure drop and the injected mass across the disk could be expressed by 

the flowing equations 
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 
0 0

0 1, 3,

2 mc mc ms ms
lower upper n n n n

m n m m

P P P
 

 
 

 
   

          


           (2.22) 

 
0 0

0 , 2,

2 mc mc ms ms
lower upper n n n n

m n m m

m
P P

V  
 



 

 
  

          



           (2.23) 

where P  is the net pressure drop across the disk going from negative to positive z , 

and m   is the net mass per unit time per unit area being injected into the flow field at 

the disk. 

2.3 Velocity Potentials 
There are useful definitions of velocity potentials.  One set are defined as the prime 

potentials and the other set are derived potentials.  In order to satisfy the upstream 

boundary condition, the prime potentials are defined as 

 cosmc m
n n m d


 


                                      (2.24) 

 sinms m
n n m d


 


                                      (2.25) 

As we know  lim 0m
nQ i





 , so it is guaranteed that the definition of the prime 

potential will satisfy the boundary condition that the velocity field far upstream from 

the rotor is equal to zero.  Then the flow velocities can be written as 

 
0

ˆˆm mc m ms
n n n n

m n m

v a b
 

 

   
 

                             (2.26) 

Substitution of equations (2.24) and (2.25) into (2.26), noticing that ˆ ,mc
n  

ˆ ,ms
n

mc
n  and ms

n  are only functions of nondimensional coordinates and ˆ ,m
na ˆ ,m

nb mc
n  (and 

that the ms
n are only functions of reduced time  ) gives: 

 
0 0

ˆ
ˆ

m mc
mc m mc mcn n
n n n n

m n m m n m

a
a 

 

   

   

  
      

 
  

                (2.27) 

 
0 0

ˆ
ˆ

m ms
ms m ms msn n
n n n n

m n m m n m

b
b 

 

   

   

  
       

 
  

                (2.28) 
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There are no closed form expressions for these prime velocity potentials at 

arbitrary skew angles.  Therefore, one must do preprocessing to calculate the 

gradients of m
n  at points in the flow field in order to calculate the velocity.  This can 

be accomplished by integration of the potentials along the streamlines, which is time 

consuming. 

The derived potentials, ˆ m
n , are defined as the prime potentials for the special 

case of axial flow.  These can be found in closed form and thus avoid any numerical 

integration for calculating the induced velocity components.  Their disadvantage is 

that the   derivative in the potential flow equations is more complicated for these.   

Peters and Morillo found the derived potentials (for m n ) in the following form: 

1 1
ˆ m m m m m

n n n n n                                           (2.29) 

where 

    2 2

1

2 1 2 3 1

m
n

m
nK n n n m

 
     

                     (2.30) 

  2 2 2

1

4 1

m
n

m
n

n m
K n n m

  
 

                         (2.31) 

and 

 1

2

n m

m m
n nK H




   
 

                                         (2.32) 

   
   

1 !! 1 !!

!! !!
m
n

n m n m
H

n m n m

   


 
                              (2.33) 

This definition is only valid above the rotor disk ( n m ).  For the case when 

0m n  , Peters and Hsieh developed a formulation for the potentials in terms of an 

alternate type of "Legendre function" with subscript greater than superscript: 

         1 1 1 1
ˆ cosmc m m m m m

m m m m m mP Q i P Q i m                             (2.34) 

         1 1 1 1
ˆ sinms m m m m m

m m m m m mP Q i P Q i m                             (2.35) 

where 
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   
 

 
 

   
     

2 2 11

1
0

12 !! 1 !2 12
1

! 1 !12 1 !!

m
nm nm

nm
m m

n

m m
P

n m n n mm


 

 

 




  
 

  
        (2.36) 

 
 

1
2 2

1

1

m
m mQ i


 


                                               (2.37) 

Even here, however, the case for 0m n   is singular.  By solving the Laplace 

equation with 0m n 
 
and then adding a line singularity (which is not obtainable 

by separation of variables),  Peters and Hsieh were able to find the 0m n   derived 

velocity potential as 

0 1 2
0 max

2 1 2 1 2ˆ 1 tan ln 1 ln 1 ln 0Z    
    

  
          

  
       (2.38) 

where maxZ  is a large number representing the radius to which the   integral is taken.  

When the potential is evaluated at infinity, the last term cancels the logarithmic 

terms––so that the potential is zero at maxZ .  Of course, this additional constant has no 

effect on the velocity field because one needs only the gradients of the potential 

functions to obtain velocity.  This large number maxZ  will, however, affect the 

Galerkin integrals to be derived in the following section so that this logarithmic 

constant will need to be dealt with.  (Derived velocity potentials are not defined 

below the rotor plane.) 

As the velocity potentials all satisfy Laplace’s equation, so the continuity 

equation in (2.12) will be satisfied simultaneously.  That means it is sufficient to 

consider only the momentum equation as a governing equation for the velocity 

expansion coefficients.  Thus, to obtain a finite-state wake model is equivalent to 

solve the problem of representing the momentum equations in finite-state form. 

2.4 Galerkin Method 
In order to transform the momentum equation into a set of ordinary differential 

equations, the Galerkin Method is adopted here in which velocities are expanded in 

terms of the prime potentials.  (Derived potentials will be considered later.)  The test 
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functions for the Galerkin method are chosen to be the same Laplace solutions that 

are used as expansions for the pressure potentials.  Since the velocity potentials are 

only defined in the upper hemisphere, the integrations will be done in the upper 

hemisphere, and all boundary conditions are matched.  As the integration is only 

considered over the upper hemisphere, the velocity solution will only be valid above 

the disk. 

After substitution of the proper expansions of pressure potentials, velocity 

potentials, and the expression of velocity into the momentum equation, volume 

integration is taken on both sides of the momentum equations.  With the divergence 

theorem, we can then transfer the volume integral into a surface integral, which 

vanishes at r  .  By the method shown in Ref. [5], the surface integral in the 

plane of the rotor is transformed to integrals on the rotor disk, itself, which have 

closed-form representations.  This leads to a set of ordinary differential equations.  

The cosine and sine functions completely separate into two uncoupled sets during this 

procedure.  For the cosine parts, the Galerkin method gives: 

 

 

   
   

 
 

   
   

 
 

*

, , , , , ,

*

, , , ,, ,

ˆ ˆ

ˆ
ˆ

c c c cc c m m mc
n n no o o e o o o e o o o eo o o

c c c cm mcc c
m n ne o e e e o e ee ee o e e n e

L L a aD D D D

aL L D D D Da





                                                            

 

     

 (2.39) 

where 

   0 0

rc
jc mc rc mc

n j n

s s

L d ds d ds
z z

 
                    

                   (2.40) 

rc mc
jc mc rc n

n j

s s

D ds ds
z z

                  
                              (2.41) 

The sine components are similar to equation (2.39).  Note that the subscript 

notation “ o ” stands for the terms with m n odd   and “ e ” is for the terms with 

m n even  .  For the cosine terms, 0,1,2,3,m    and for the sine terms 

1,2,3,m   , since 
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     sinms ms ms
n n nP Q i m                                    (2.42) 

which implies that when 0m  , 0ms
n  . In either the case of sine terms or cosine 

terms, , 2, 4,n m m m     or 1, 3, 5,n m m m      depending on the subscript 

of the partition is “ e ” or “ o ”. 

The  D  matrix is as follows for both cosine and sine case: 

1

;

;

rm
jn jn rmm

n

D
K

j r odd n m odd

j r even n m even

 

   
   

                                 (2.43) 

  
    

3 1

2
2 1 2 12

1
1

;

;

j n
rm nm
jn m m

n j

j n
D

j n j nH H

j r odd n m even

j r even n m odd




  
 

  

   
   

                 (2.44) 

And the L  
  matrix is given by 

0 0cm m m
jn jnL X    
                                          (2.45) 

 1
c lm r m rrm rm

jn jnL X X          
                          (2.46) 

 1
s lm r m rrm rm

jn jnL X X          
                          (2.47) 

where 

   tan 2 , min ,X l r m                               (2.48) 

 
   , 1
2 1 2 1

; ;

; ;

rm
jn j nm r

n j

sign r m

K K n j

r m odd j r odd n m odd

r m odd j r even n m even

 


 

 

     
     

                  (2.49) 

      
    

2

2

2

1 2 2 1 2 1

2 1

; ;

n j r

rm
jn m r

n j

n j

H H n j n j n j

r m even j r odd n m odd

 

  
 

      
     

                    (2.50) 
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      
    

2 2

2

22

1 8 2 1 2 1

2 1

; ;

n j r

rm
jn m r

n j

n j

H H n j n j n j

r m even j r even n m even



  

  
 

      
     

                   (2.51) 

        
    

3 2 2

2

2

1 4 2 1 2 1

2 1

; ;

; ;

n j m r

rm
jn m r

n j

sign r m n j

H H n j n j n j

r m odd j r odd n m even

r m odd j r even n m odd



  

   
 

      
     
     

               (2.52) 

   , 1

1

2 1 2 1

; ;

; ;

rm
jn j nm r

n jH H n j

j m even j r odd n m even

j m even j r even n m odd

  
 

     
     

                 (2.53) 

The potential for 0m n  , has a logarithmic term, so the integral for   is 

formally infinite for the case of 0m r n j    .  However, based on Ref. [4], we 

can express this integral as a finite series that approaches infinity as the number of 

terms approaches infinity.  

max
00
00 2

1

4 1 1

2

N

n n 

 
   

 
                                      (2.54) 

where maxN  is the largest harmonic number.  In this way, the integral is finite for a 

truncated approximation.  This also allows a solution with a finite number of terms 

that provides formal convergence to the exact answer.   

2.5 Equations in Terms of Derived 

Potentials 
In the last section, a closed form representation of the dynamic equations is shown for 

the velocity potential expansions in terms of prime potentials.  However, since the 

limitation of prime potential, we would like to write the velocity in terms of derived 

potentials.  In order to do this, we need to change variables which relate the two sets 
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of basis functions over the upper hemisphere.  In particular, the total velocity 

potential is could be written as 

     1 1ˆ
T Tm mc m m mc m mc

n n n n n n na a                                      (2.55) 

When a Galerkin approach is applied to equation (2.55), then the following 

relationship is found 

   1
ˆm c c m

n na L M a


      
                                          (2.56) 

where 

0

rc
jc c mc

n

s

M L ds
z

 
            

                                (2.57) 

A similar transformation therefore exists between  ˆm
nb  and  m

nb  that involves 

sL    
and sM   , which relates to sine coefficients.  With this transformation of 

variables, the equation of motion for a skewed flow becomes 

   
* 1c m c c c m c mc
n n nM a D L M a D 

                      
                (2.58) 

The equation in equation (2.58) is a closed form expression for all components 

of the velocity above and on the rotor plane. 

For the special case of axial flow ( 0  ), cL  


 
and cM    are equivalent.  So 

the momentum equation could be simplified as  

   
*

c m c m c mc
n n nM a D a D               

                     (2.59) 
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Chapter 3 States and Mode Shapes 
The Hsieh/Duffy model has never before been analyzed to find its modes and 

eigenvalues.  Therefore, before proceed to flow below the disk, we first perform such 

an analysis. 

3.1 Inflow Mode Shape Analysis 
In order to study the characteristics of unsteady aerodynamics in forward flight, we 

first consider the homogeneous equations for the inflow wake model.  Then the 

cosine and sine part of the homogenous motion equations could be reduced from 

(2.58) to the following equations 

     
*

1
0c m c c c m

n nM a D L M a


             


                                 
(3.1) 

     
*

1
0s m s s s m

n nM b D L M b


             


                            
(3.2) 

If we assume the eigensolution to the homogenous equations (3.1) and (3.2) are 

in the form of    c
c e 

 
and   s

s e  , then in order to obtain all the eigenvalues c  

and s , one needs only to solve  

 11
0c c c c

cM D L M I


              
                            (3.3) 

 11
0s s s s

sM D L M I


              
                           (3.4) 

As we know, each eigenvector can be multiplied by an arbitrary constant.  For 

the purposes of consistency, we normalize the eigenvectors so that the mode shapes 

will be unique. 

Typically, there are several ways of normalization, Ref. [12].  Below is the 

methodology used in this dissertation.  Since the procedure is quite similar, for either 

cosine or sine modes, we demonstrate eigenvalues and normalization on only the 

cosine modes.  Suppose the mode shape is  c , and the maximum absolute value of 

all the thf   element in the eigenvector is defined as: 
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 max max c f
                                               (3.5) 

Then scale this thf  element in the eigenvector to be 1, we will have normalized 

eigenvector  c .   

3.2 Results for Eigenvalues 
In this section, we will show some results for eigenvalues first.  For convenience in 

comparing with [13], we will consider an 8-harmonic case first.   

Ref. [13] considers the He model in which only n m odd   terms are included 

in the expansion. For a maximum harmonic of maxN , there are   max max1 2 2N N   

sates in this model.  For the Hsieh/Duffy model, on the other hand, all values of m  

and n  are considered; and, therefore, there are roughly twice the number of states.  

For example, a case of 8 harmonics, the He model has 45 states (25 cosine and 20 

sine).  The Hsieh/Duffy model, however, has 94 states (52 cosine and 42 sine).  This 

is because the Hsieh/Duffy model has eigenvalues corresponding to mass sources.  

For every harmonic, one of these mass-source eigenvalues becomes more and more 

sluggish as the number of terms is increased and become static in the limit as maxN  

approaches infinity.  These low-order eigen modes will not be shown on the plots. 

Figure 3-1 presents the real parts of the cosine eigenvalues––versus skew 

angle––for the case of 8 harmonics.  This shows the heavy damping of dynamic 

inflow modes.  Figure 3-2 gives the imaginary parts of the eigenvalues.  Note that 

there is a set of critical skew angles at which two different real eigenvalues coalesce 

with each other and split into a complex-conjugate pair––giving an imaginary part––

indicating an oscillating decay.  The frequency generally increases with skew angle 

but can also peak and start to diminish in some cases.  The eigenvectors show that the 

modes are highly coupled especially with larger skew angles. 
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Table 3.1 Eigenvalues for Peters-He dynamic inflow model 

(cos and sin parts, 8 Harmonics) 

      n 

m 

cosine sine 

0 1 2 3 4 2 3 4 

0 -- -2.006 -- -5.125 -- -- -- -- 

1 -- -- -3.453 -- -6.632 -3.453 -- -6.632 

2 -- -- -- -4.768 -- -- -4.768 -- 

3 -- -- -- -- -6.021 -- -- -6.021 

4 -- -- -- -- -- -- -- -- 

Table 3.2  Eigenvalues for Hsieh/Duffy dynamic inflow model 

(cos and sin parts, 8 Harmonics) 

         n 

m 

cosine sine 

0 1 2 3 4 2 3 4 

0 -0.137 -1.061 -2.807 -5.036 -7.554 -- -- -- 

1 -- -0.970 -2.842 -5.178 -7.673 -0.970 -2.842 -5.178 

2 -- -- -2.188 -4.487 -7.041 -- -2.188 -4.487 

3 -- -- -- -3.840 -6.556 -- -- -3.840 

4 -- -- -- -- -5.106 -- -- -- 

Comparing Table 3.1 and Table 3.3, we find that the eigenvalues change 

slightly.  This slight change is due to the fact that the number of radial terms in each 

harmonic is limited by the highest harmonic of interest.  Therefore, changing 

maximum maxN  changes the number of expansion terms in each series.  On the other 

hand, a comparison of Table 3.2 and Table 3.4 shows that the lowest eigenvalues are 

quite different.  This is because that eigenvalue is tending to zero as maxN  approaches 

infinity. 
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Table 3.3  Eigenvalues for Peters-He dynamic inflow model 

(cos parts, 12 Harmonics) 

       n 

m 

cosine 

0 1 2 3 4 

0 -- -2.006 -- -5.125 -- 

1 -- -- -3.453 -- -6.627 

2 -- -- -- -4.768 -- 

3 -- -- -- -- -6.020 

4 -- -- -- -- -- 

Table 3.4  Eigenvalues for Hsieh/Duffy dynamic inflow model 

(cos part, 12 Harmonics) 

  n  

m 

cosine 

0 1 2 3 4 

0 -0.098 -0.783 -2.172 -4.065 -6.288 

1 -- -0.702 -2.174 -4.155 -6.453 

2 -- -- -1.696 -3.634 -5.888 

3 -- -- -- -3.094 -5.515 

4 -- -- -- -- -4.288 

The eigenvalues of Peters-He dynamic inflow model in hover follow a definite 

pattern.  By regression, we can find the distribution could be described by the 

following equation: 

7 25 11

16 16 48
n m                                                (3.8) 

3.3 Mode Shapes for Axial Flow 
In this section, we will talk about the mode shapes for the Hsieh/Duffy model.  In 

order to identify each mode with different skew angles, we will calculate the 
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Chapter 4 Inflow Below the Disk 

4.1 Exact Solution for Frequency Responses 
The linearized potential flow equations can be written in nondimensional form as: 

v v
P

 
 

  
 

  
                                               (4.1) 

where equation (4.1) is the momentum equation, v


 is the local induced velocity 

vector,   is nondimensional reduced time,   is the stream-wise direction (positive 

downstream), and P  is the pressure field.  It is assumed that the velocities are 

expressed as the gradient of a potential function, thus ensuring continuity.  The 

derivation here is to show that, if one knows the velocity field in the upper 

hemisphere 0   (i.e., by the method of the previous section) then one can find the 

velocity in the lower hemisphere,
 

0  .  We begin with a derivation for the case of 

frequency response, and then Fourier Transform arguments will be used to extend the 

solution to the general time domain. 

The solution for simple harmonic excitation is found from a complex harmonic 

balance applied to the momentum equation.  We express the velocity as the real part 

of a complex quantity. 

   , , , , , iv x y z x y z e   
                                     (4.2) 

where  , ,x y z  is a complex number and it is implicitly assumed that one takes only 

the real part of the right-hand side.  Further assume that the complex pressure field P  

can be written as the summation of terms that includes both pressure discontinuities 

and mass injections: 

   
0

, , , , ,m m i i
n n

m n m

P x y z e Pe     
 

 

                          (4.3) 
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where m
n  are a complete set of potential functions with discontinuities across the 

disk, and terms with m n  odd represent pressure discontinues across the disk and 

terms with m n  even represent mass sources at the disk.  

To obtain a closed-form frequency response, one can expand 


 into real and 

imaginary parts. 

     , , , , , ,x y z u x y z iw x y z  
  

                                  (4.4) 

Substitution of equations (4.2) and (4.4) into equation (4.1) gives 

       , , , ,
, , , ,

u x y z w x y z
i u x y z iw x y z i P

 
  

           

   
               (4.5)  

One can collect the real and imaginary parts of the equation to give expressions 

for the real and imaginary parts of the flow. 

u
w P




   


 
                                              (4.6) 

0
w

u



 



                                                   (4.7) 

Solving for u


 from equation (4.7) and substituting it back into equation (4.6), 

we have 

2
2

2

w
w P 




  


 
                                           (4.8) 

Similarly, solving for w


 from equation (4.6) and substituting it back into the 

derivative of equation (4.7) gives us 

2
2

2

u
u P

 
 

   
 

 
                                       (4.9) 

A Laplace transform in   of equations (4.9) and (4.10) yields  

   2 2

s
U s P s

s 
  



 
                                   (4.10) 

   2 2
W s P s

s




 


 
                                     (4.11) 
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where  W s


 is the Laplace transform of w


,  U s


 is the Laplace transform of u


 and 

 P s


 is the Laplace transform of P


. 

Based on the convolution inverse of a Laplace transformation, we have 

     

     

0

0

0 0 0 0

0 0 0 0

, , , cos

, , , sin

u x y P d

w x y P d





      

      





     

    






                     (4.12)  

Note that the only boundary condition on the flow is that the flow approach 

zero far upstream (   ).  Thus, the lower limits are set at  .  The physical 

meaning of equation (4.12) is that, to obtain the exact solution, one must integrate the 

gradient of the pressure field along a streamline from far upstream down to the point 

within the flow field for which that component of velocity is desired.  For the real 

part of the flow, the integral includes the kernel  0cos      , and for the 

imaginary part it includes the kernel  0sin      .  Note that, for axial flow, z  .   

The above approach is not tractable for use in practical rotor calculations.  

However, it is useful to have both as a way to determine an "exact" numerical 

solution against which to compare finite-state solutions (and this has been done in 

previous work) and as the theoretical basis for an exact time-domain solution.  Thus, 

the utility of equation (4.12) is in its usefulness in a proof of how to find the flow 

below the disk, as will be outlined below. 

4.2 Adjoint-states 
In the derivation of the next section, we first define the adjoint velocity above the 

rotor disk which will be used to find the velocity below the disk.  Thus, in this section, 

we demonstrate how to find the velocity and the adjoint velocity from Morillo’s 

modified model, Ref. [6].  The momentum equation for a skewed flow in the Morillo 

derived potentials is: 

   
* 1c m c c c m c mc
n n nM a D L M a D 

                     
                     (4.13) 
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Here, we only consider the case of a harmonic cosine pressure input; the sine 

part can be found by a similar procedure.  Suppose the unknowns are expressed in 

complex notation as the real part of a substitute problem where the barred quantities 

are cosine and sine coefficients. 

     cos sinm m m i m m
n n n n na a ib e a b     

                     
 (4.14) 

 cosmc m
n n                                                  (4.15) 

For the sake of the derivation to follow, we also define tilda-quantities as the 

barred quantities multiplied by cosine and sine. 

   cos ; sinm m m m
n n n na a b b                                  (4.16) 

It follows that m m m
n n na a b   .  Substitution of equations (4.14), (4.15) and (4.16) 

into (4.13) yields 

       

       
   

1 1

sin cos

cos sin

cos

c m c m
n n

c c c m c c c m
n n

c m
n

M a M b

D L M a D L M b

D

   

 

 

 

       

                     
   

           (4.17) 

As equation (4.17) should be satisfied at any time, so the coefficients for cosine 

and sin terms at both size of the equation should be equal.  Collecting the coefficients 

for cosine and sin terms, we have 

      
     

1

1

cos :

sin : 0

c m c c m c mc
n n n

c m c c c m
n n

M b D L M a D

M a D L M b

 







              

              




                (4.18) 

which are equivalent to 

   
*

1c m c c c m c mc
n n nM b D L M a D 

 
                  

 
                       (4.19) 

   
* 1

0c m c c c m
n nM a D L M b

                 
                           (4.20) 

We substitute (4.20) into the following adjoint equation 
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 

       

 

* 1

1 1

1

sin cos

c mc c c c mc
n n

c c c m c c c m
n n

c c c m
n

M a D L M a

D L M b D L M a

D L M a

 



 



                 

                      

         

 

 



      (4.21) 

And substituting (4.19) into the same adjoint equation 

 

       

       

   

    

*
1

1

1

1

1

cos sin

cos cos

sin

c m c c c m
n n

c m c c c m
n n

c c c m c m
n n

c c c m
n

c c c m c m
n n

M b D L M b

M b D L M b

D L M a D

D L M b

D L M a D

  

  















 
              

 

             

             

         

             

 







  

   

   

1

1

cos

sinc c c m
n

c c c m c mc
n n

D L M b

D L M a D











         

             





           (4.22) 

We then construct the adjoint to the momentum equation by subtracting 

equation (4.22) from (4.21), we have  

   
* 1c m c c c m c mc
n n nM D L M D 

                        
                     (4.23) 

where            cos sinm m m m m
n n n n na b a b      . 

We can then define the tilda quantities in terms of regular and adjoint variables. 

      
      

1

2
1

2

m m m
n n n

m m m
n n n

a a

b a

  

  




                                        (4.24)  

As we already know that  

     

 

0 0

0

ˆ ˆ, , , , , , ,

ˆ , ,

m m m m i
n n n n

m n m m n m

m mc
n n

m n m

v r a v i b v e

a v

      

 

   

   

 

 

     
 

 

 



 


       (4.25) 
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Then we can define the adjoint (or conjugate) velocity as  

     

 

0 0

0

ˆ ˆ, , , , , , ,

ˆ , ,

m m m m i
n n n n

m n m m n m

m mc
n n

m n m

v r a v i b v e

v

      

 

   

   

 

 

     
 

  

 



 


      (4.26) 

4.3 Velocity below Disk 
Assume that one knows the solution of the frequency response outlined above by 

some method (such as the finite-state method) but in the upper hemisphere only.  We 

now wish to show how that solution can be used to find the solution for the complex 

velocity in the lower hemisphere.  In order to simplify the derivation to follow, we 

define the following quantities for 0 0   .  (Thus, they are defined only above 

the disk.) 

     

     

0

0

0 0 0

0 0 0

, , , cos

, , , sin

C x y P d

S x y P d





    

    





  

  




 

                              (4.27) 

Not that, for the special case 1r
j  , and all other ,m r n j  , 0m

n  , we can 

write from equation (4.27) with no loss of generality.  

       

       

0

0

0 0 0 0 0 0

0 0 0 0 0 0

, , , , , , cos

, , , , , , sin

r
j

r
j

C r C x y d

S r S x y d





       

       





   

   




  

                  (4.28) 

where 0 0 0cosx r    and 0 0 0siny r  .  We rewrite  0 0 0, , ,u x y 
 and 

 0 0 0, , ,w x y 
 as 

             
       

             
       

0 0

0 0

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0

, , , cos cos sin sin

cos , , , sin , , ,

, , , sin cos cos sin

sin , , , cos , , ,

u r P d P d

C x y S x y

w r P d P d

C x y S x y

 

 

          

     

          

     

 

 

    

 

   

  

 

 

 

 

     

(4.29) 

The induced velocity above the disk is then 
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         
           

     
     

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

, , , , , , cos , , , sin

cos , , , cos sin , , , cos

sin , , , sin

cos , , , sin

v r u r w r

C r S r

C r

S r

          

         

    

    

 

 





  
 




   

 

(4.30) 

which is equivalent to 

         0 0 0 0 0 0 0 0 0 0 0, , , cos , , , sin , , ,v r C r S r                       
 

 

  (4.31) 

In preparation for the solution of the flow below the disk, we now need to 

compute C


 and S


 from the finite-state solution above the disk.  Since the Morillo 

states are complex for a frequency response, they are broken into real and imaginary 

parts m
na  and m

nb .  This gives: 

   

       

   

       

0 0 0
0

0 0 0 0 0 0 0 0

0 0 0
0

0 0 0 0 0 0 0 0

ˆ, , , , ,

cos , , , sin , , ,

ˆ, , , , ,

sin , , , cos , , ,

m m
n n

m n m

m m
n n

m n m

u r a

C r S r

w r b

C r S r

     

       

     

       

 

 

 

 

 

 

 

  







 



 

      (4.32) 

where , ,    is the ellipsoidal coordinate location of 0 0 0, ,r   ; and ˆ m
n  is the 

derived Morillo velocity potential. 

Therefore, Equation (4.32) allows us to express the C


 and S


 integrals in terms 

of the known finite-state result. 

         

         

0 0 0 0 0
0 0

0 0 0 0 0
0 0

ˆ ˆ, , , cos , , sin , ,

ˆ ˆ, , , sin , , cos , ,

m m m m
n n n n

m n m m n m

m m m m
n n n n

m n m m n m

C r a b

S r a b

          

          

   

   

   

   

   

   

 

 

  

      

(4.33) 

The above are valid above the disk plane which is for 0 0   .  However, 

below the disk, where 0 0  , we must integrate equation (4.28) from upstream down 
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to the disk of the rotor plane and then below the plane.  For simplicity, we will 

assume the single term r
jP   , where      cosr r r

j j jP Q i r    .  Since any 

pressure can be represented as a sum of these, as in equation (4.3), this assumption 

poses no restriction on generality.  The below-plane result is: 

 

   

           

           
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 
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 

  


 
 







 

 
 


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0 0
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
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 
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0 0
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j d

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

 

                      (4.34) 

where the integrals are broken into two parts: one from downstream infinity to the 

disk, and one from the disk to the desired point below the disk.  However, due to the 

symmetries in the system, we can write the integral segments below the disk in terms 

of integral segments above the disk.  Thus, for 0 0  :   
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     

   
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 

 

 

 
 

 

 
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           (4.35) 
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An extra  1
 
appears in the sine integral because    sin sin    .  

Thus, the terms   1
1

j  and  1
j  appear in the last lines of equation (4.35).  We 

then have from equations (4.34) and (4.35) that the u


 and w


 for 0 0 
 are: 
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 (4.37) 

Note that the above terms from the integrals below the disk are rewritten in 

terms of integrals above the disk (i.e., the terms with  1
j  or   1

1
j

 
which are 

functions of 0  rather than of 0 ).  These mirror the 0  terms with the exception 

that the C


 terms are multiplied by   1
1

j  while the S


 terms are multiplied by  1
j .  

As a result of these sign differences, when we put the complex below-disk velocity 

from equation (4.37) back into the time domain––as was done for the above-disk 

velocity in equation (4.30)––the terms involving  0sin       are of the opposite 

sign from those in equation  (4.31).   
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(4.38) 

From equation (4.38), one can write the general, time-domain version of the 

induced flow below the rotor disk. 
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       * *
0 0 0 0 0 0 0 0 0 0 0 0, , , , , 0, , ,0, , , ,v r v r v r v r                

          (4.39)

where *v


 is   1
1

j  times the velocity that would be obtained from the adjoint 

equations (i.e., the equations with a negative sign on the time derivatives).  This 

equation (4.39) is the fundamental result of this derivation and represents the general 

form of the velocity below the disk in the time domain and/or frequency domain.  As 

shown in Figure 4-1,  0 0 0, , ,v r   
 is the velocity below the rotor disk at point a 

along the streamline;  0 0 0, , 0,v r   
 is the velocity at point b where the free 

streamline intersect the rotor plane;  *
0 0 0, , 0,v r      is the adjoint velocity at point 

c which is centro-symmetric to point b;  *
0 0 0, , ,v r   

   is the adjoint velocity at 

point d which is centro-symmetric to point a.  In other words, it is: 

       
   

1*
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    
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  

                          (4.40) 

where v


 is defined in (4.26) as conjugate velocity. 

The reason that equation (4.38) can be generalized to equation (4.39) is that any 

general time-domain solution can be expressed as a Fourier Transform in terms of 

frequency components.  Since equation (4.38) is true for any frequency in the 

transform, then it is true in general for the inverse transform when written in terms of 

*v


 as in equation (4.39).  In the general time-domain solution, *v


 is defined as the 

solution to the adjoint equations––i.e., the solution of the differential equations in 

which the time derivative terms are multiplied by  1 .  In addition, this adjoint 

velocity is defined for the condition in which each forcing function in those time-

domain equations––i.e., each  m
n   in equation  (4.3)––is multiplied by   1

1
n  in 

the forcing functions of the adjoint equations,  which is exactly as the following 

equation: 

     
* 1 11c m c c c m c mc
n n n

nM D L M D 
 
 
 
 
 
 
 
 
 

                         







           

(4.41) 

Then the conjugate velocity could be expressed as 
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   *
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ˆ, , , , ,m mc
n n

m n m

v r v    
 

 

  


                         (4.42) 

It should be noted that the solution in equation (4.39) does not include the jump 

in velocity across the actuator disk due to the mass sources.  The purpose of this 

dissertation is strictly to present the potential flow solution. 

4.4 Results for Axial Flow 
Axial flow results are shown here to illustrate the effectiveness of the new method.  

Results include both step-response solutions and frequency-response solutions for a 

variety of pressure loadings; and the results are compared with closed-form solutions 

above the disk, in the plane of the disk, and below the plane of the disk (both in the 

wake and outside of the wake).  Several example correlations are given in the figures 

appended to this abstract.   

Figure 4-2 to Figure 4-7 show the real and imaginary part of the z  component 

of flow (perpendicular to the disk plane in the direction of the free-stream) for a 

frequency-response of the pressure field.  Each set gives the real part and imaginary 

part of the response (i.e., the  cos   and  sin   coefficients).  Velocity is plotted 

on a plane one rotor radius below the rotor disk 1z   ( 1  ) where the rotor wake is 

the region 1 1x   .   

Figure 4-2  and Figure 4-3 are for an elliptical pressure oscillation, and Figure 

4-4 and Figure 4-5 are for oscillations of a cyclic pressure distribution.  Velocity 

distributions are shown for both static pressure ( 0  ) and for dynamic pressure 

( 4  ).  Even though there are several kinks in the exact velocity responses for 

dynamic pressure, our co-state method can still match these kinks very well. 

Figure 4-6 and Figure 4-9 give the normal velocity versus z  both at 0 0.5x   

(i.e., on a streamline passing through the disk at 0 0.5r  ) and at the point 0 1.2x   

(i.e., a streamline that is outside of the disk, passing through 0 1.2r  ).  Figure 4-6 and 

Figure 4-7 are for an elliptical pressure distribution, while Figure 4-8 and Figure 4-9 
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are for a cyclic pressure distribution.  Negative   is upstream (above the disk) and 

positive   is downstream (below the plane of the disk).  For all these figures, the 

velocity begin oscillating while   is bigger than 0. 0 0.5x   is within the wake, and 

0 1.2x   is outside the wake region.  

Figure 4-10 to Figure 4-13 show the results for comparisons of the co-state 

method with even terms equal to odd terms against results for no even terms for a 

large skew angle ( 75  ).  The blue solid lines in each figure are obtained with the 

whole matrix, which contains both even and odd terms, while the red dash lines are 

based on odd terms only.  Figure 4-10 and Figure 4-11 are for static pressure ( 0  ), 

and the results from both methods are almost exact with the results from convolution 

method.  Figure 4-12 and Figure 4-13 are for dynamic pressure ( 4  ), however, the 

results with even terms are much more accurate than the results with only odd terms 

on the disk region. 

Figure 4-14 and Figure 4-15 are responses to a step input in elliptical pressure 

versus time within and without wake region.  Figure 4-14 is velocity at a point one 

radius below the disk and 0.5 radii from the center, and Figure 4-15 is also at one 

radius below the disk, but 1.2 radii from the center.  Figure 4-16 and Figure 4-17 are 

step responses for cyclic pressure distribution at one radius below the rotor disk, and 

Figure 4-16 is within the wake ( 0.5x  ) and Figure 4-17 is outside the wake 

( 0.5x  ). 

Figure 4-18 and Figure 4-19 are velocities versus streamline location at a 

reduced time of 1   at 0.5 radii from the center and 1.2 radii from the center 

respectively.  Figure 4-20 and Figure 4-21 are snapshots for the responses for a cyclic 

pressure at fixed time 1   within and without wake region.  The figures reveal the 

establishing process of the inflow blow the rotor disk.    

Since at the time 1   the wake region is not fully developed, we will take a 

snapshot of 10   to see what a fully developed wake region would be like.  Figure 
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4-22 and Figure 4-23 are velocities along streamline at a reduced time of 10   at 

0.5 radii away from center for elliptical and cyclic pressure distribution.  From Figure 

4-22 we can tell that the velocity at the rotor disk (which is 0  )  is around 1.49, 

and the fully velocity value is around  2.96 (at 5  ).  The numerical result is 

consistent with the well know conclusion from momentum theory for rotary wing 

systems that the induced velocity in the far wake is as twice as the velocity at the 

rotor disk.  The same thing for Figure 4-23, which is with 1.18  at the rotor disk and   

2.37  in the far wake (at 5  ). 

For all the figures, an exact solution is compared to the finite state solution with 

20 regular states (10 odd and 10 even functions) and 20 co-states.  One can see that 

the agreement is virtually exact.  For the frequency response, even the discontinuity 

in slope at the wake edge is found correctly.  For the step response, the convection of 

the start-up system downstream is also found correctly––both in and out of the wake.  

In Morrilo’s desperation, he showed that the velocity also converges upstream ( 0   

and no co-states required); while the present results show that, with the co-states, the 

velocity also converges below the plane of the rotor disk ( 0  ) both inside and 

outside of the wake.   

The cost of completing the inflow theory is adding more states to calculate the 

additional information.  For a case in which one is interested in four harmonics of the 

flow (along with the appropriate number of radial expansion terms), the He model 

(with only odd functions) would require 15 inflow states for the normal flow on the 

disk (for both cosine and sine terms).  In order to compute all components of the flow 

above the disk, one must add the even functions, which increases the number of states 

to 30.  In order to compute the flow below the disk, one must additionally compute 

the adjoint velocity field from another 30 co-states (60 states in all). 

One point of importance is that, once the original states are found, the co-states 

often follow in a trivial manner.  For frequency response, the adjoint is just the 

complex conjugate of the complex velocity field; and for a step response, each co-
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frequency response to the first collective pressure input, 0
1 .  In Figures Figure 4-24 

and Figure 4-26, there are no imaginary parts in the solution since they are for the 

responses of static pressure ( 0  ).  In Figure 4-24 and Figure 4-25 ( o30  ), the 

co-state method gives excellent convergence both on-disk and off disk; however, in 

Figure 4-26 and Figure 4-27 ( o75  ), the convergence of the co-state method is 

slow and with oscillations.  This is typical also of the convergence on the disk, and 

will be discussed shortly. 

Figure 4-28 through Figure 4-31 are for oscillations of a cyclic pressure 

distribution, 1
2 .  Figure 4-28 and Figure 4-30 give the static pressure ( 0  ) 

responses, and Figure 4-29 and Figure 4-31 give the velocity distributions for 

dynamic pressure ( 4  ).  Again, we can see that the results for small skew angle 

o30   is essentially exact, but for large skew angle o75  ,  it is still good but not 

completely converged.  The convergence is better for this cyclic response than it was 

for collective pressure response.  In general, the convergence of the lowest collective 

mode is always the slowest.  

Figure 4-32 through Figure 4-35 are responses to an elliptical pressure 

oscillation with different skewed angle.  The normal component of velocity is given 

versus 
 
all at 0 0.5x   (i.e., on a streamline passing through the disk at 0 0.5r  ). 

Figure 4-32 and Figure 4-34 are with 0  , so no imaginary parts are displayed.  We 

can see good agreement between the closed form solutions and the co-state method 

within the streamline cylinder which contains the rotor disk. 

Figure 4-36 through Figure 4-39 are responses to a cyclic pressure distribution 

with different skewed angle.  Normal velocity is given versus   with 4  .  Here, 

velocities are shown both inside and outside of wake region.  Again, for small skew 

angle ( o30  ), we have almost the identical results as from convolution.  For large 

skew angle ( o75  ), the result along a streamline within the cylinder ( 0 0.5x  ) is 

virtually exact, Figure 4-38; but for 0 1.2x   (outside of the rotor disk), a small error 
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occurs, Figure 4-39.  This follows directly from the corresponding error on the rotor 

disk in the Peters-Morrilo model with o75   (See Ref. [6]).  

The error on the disk with the Morillo model has been shown to converge the 

best when fewer even terms are included as the skew angle increases).  In fact, the 

optimum is such that––when all even terms are eliminated at 90º skew angle––the He 

result with no even terms is exact.  It would therefore seem that the adjoint method 

could also be improved by an optimization of even potential functions with skew 

angle.  (Presently even terms equal odd.) 

Figure 4-40 through Figure 4-43, show comparisons of the co-state method 

with even terms equal to odd terms against results for no even terms for a large skew 

angle ( o75  ).  The blue solid lines in each figure are obtained with odd terms only, 

and the red dash lines are based on the whole matrix, which contains both even and 

odd terms.  From these figures, one can tell that the results obtained from the co-state 

method with only odd terms are more accurate than the ones with both odd and even 

terms for big skewed angles.  Combined with Figure 4-10 through Figure 4-13 for 

axial flow, one will know that there should be an optimized even terms for different 

skewed angles.  This verifies the findings of Morillo that the number of even terms 

should be optimized on the basis of skew angle. 
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4.6 Validation against Experimental Data 
It will be helpful to review some former results that correlate the theory with real 

experimental data from rotary wing systems.    

In Ref. [15], the results from Peters-He model were compared with the 

experimental data from the laser Doppler velocimetry (LDV) measurements 

conducted in the AEROTECH.  A two-bladed Bell 212 teetering tail rotor is used for 

the test.  It compares induced velocity at 0.04z  , which is slightly above the rotor 

disk, with different radical positions vs. special position. 

Figure 4-44 and Figure 4-45 show the comparisons of azimuthal variations in 

inflow velocity at 0.765r   and 0.824r  .  Excellent agreement can be seen 

everywhere on the flowfield with the exception of the size of the doublet spike due to 

the blade passage.  The reason for smaller spikes predicted by the model than in the 

experimental data is that the model is truncated to 24 harmonics.  When more 

harmonics are added, the computed spikes increase, but the lift will stay the same 

since the inflow at the center of the doublet remains the same.  

Figure 4-46 shows the results with dynamic pitch for a collective mode.  The 

comparison is good except the spikes near the blade passage again. 



 
 

 

 

Figure 4- 

spatia

Figure 4-4

spatia

44  Compari

al position of

45  Compari

al position of

isons of calc

f reference b

isons of calc

f reference b

72 

culated inflow

blade: 2M 

culated inflow

blade: 2M 

w with meas

24 , 0.76r 

w with meas

24 , 0.82r 

sured data at

65 ; 0.9a 

sured data at

24 ; 0.9a 

 

t o45   vs

, o4   

 

t o45   vs

, o4   

s 

s 



 
 

 

t

F

a

w

t

F

m

e

r

e

b

t

Figure 4-4
sp

A rece

the correlatio

Fig. 4-47, th

axial locatio

with PIV da

the lower ro

From this fig

method base

experimenta

In Fig

rotor config

experimenta

based inflow

thrust measu

46  Compari
atial position

ent study on

on between 

he Galerkin m

ons from the

ta from the e

otor and nega

gure, we can

ed inflow m

al data. 

s 4-48 and 4

guration as

al data for th

w model resp

urements ove

isons of calc
n of referenc

4 

n a coaxial ro

the finite sta

model predic

e lower rotor

experiment. 

ative z  valu

n tell that th

model correla

4-49, the thr

 a functio

he extended 

pectively.  B

er the range 

73 

culated inflow
ce blade: M

o o4 1 cos4 t

otor in hove

ate models an

ctions of axi

r for a separ

 Positive z

es represent 

e prediction

ate well both

rust coefficie

n of separ

Peters-He in

Both method

of separatio

w with meas
24M  , 0r 

o52t   

er with finite

and the exper

ial and radial

ration distan

values repre

t axial locati

ns of flow ve

h qualitative

ent and torq

ration dista

nflow model

ds correlate w

n distances.

sured data at
0.765 ; a 

e state mode

rimental data

l flow veloc

nce of 0.1D 

esent axial lo

ons above th

elocities from

ely and quan

que predictio

ance are co

l and the Ga

well with the

 

t o45   vs
0.9 , 

els also reve

a, Ref [16].  

ities at vario

are compar

ocations belo

he lower rot

m the Galerk

ntitatively w

ons for coax

ompared w

alerkin meth

e experimen

s 

als 

In 

ous 

red 

ow 

or.  

kin 

ith 

xial 

with 

hod 

ntal 



 
 

 

 

 

 

 

Figure 4-47
axial locat

distance.  (

7  Compariso
tions with PI
The lower ro

ons of predic
IV data for a
otor is locate

and n

74 

cted axial an
a coaxial rot
ed at 0z   w
egative z  ab

 

 

 

 

 

nd radial ind
tor configura
with positive
bove it.) 

duced velocit
ation of 0.1D
e z  below th

 

ties at variou
D  separation
he lower roto

us 
n 
or 



 
 

 

Figure 4-48  Comparisoons of thrust 
He inflow

75 

 

 

 

and torque p
w model wit

 

 

 

 

 

 

 

 

 

 

  
predictions u
th test data 

using the ext

 

tended Peterrs-



 
 

 

 

Figure 4-449  Comparisons of thrus
based infl

 

76 

 

 

 

 

 

st and torque
ow model w

 

e predictions
with test data

s using Gale
a 

 

erkin methodd 



 
 

77 

 

Chapter 5 More Accurate Model 

5.1 Optimization for Even Terms 
As discussed in former chapters, the convergence of the co-state method can be 

optimized by use of fewer even terms than odd terms, with the optimum ratio a 

function of skew angle within the wake below the rotor disk.  The convergence of the 

results will be determined by comparing the results from convolution with the results 

obtained by the co-state method.  The error norm is defined as 

  
 

0

0

2

1 22

2
1

f

f

r

r

r

r

v v dr
E

v dr




                                           

(5.1) 

where 1v  is the inflow distribution from convolution method and 2v  is the result from 

the co-state method.  Here, two kinds of error norms are defined, one is for the on 

disk region only ( 0 1r   ; 1fr  ), and the other one for on/off disk region ( 0 2r   ;

2fr  ) at an azimuth angle  .  

In order to determine the number of even terms included in the solution, we will 

use the table method in Ref [14].  There are four different ways to specify the even 

terms: 1) by indicating the number of harmonics, m; 2) by indicating the number for 

the highest power of r; 3) by indicating the number of terms for the zeroth harmonics; 

or 4) by indicating the index of the highest subscript, n  of the m
n  term.  The 

relationships of different expressions are as follow: 

highest power of r m                                               (5.2) 

@ 1
2

highest power of r
terms zeroth harmonics Int    

 
               (5.3) 

1;

;

m odd terms
Index of highest subscripts

m even terms

 
  
 

                       (5.4) 



 
 

78 

 

where  Int x  is a function that rounds the elements of  x  the nearest integer towards 

zero. 

5.2 New Formulation for  m
nQ i  

Another important aspect of obtaining a converged result is a robust way to compute 

 m
nQ i .  From Appendix 2, we know that, the associate Legendre function of the 

second kind satisfy the following equation 

   
2

2
2

1 1 0
1

m
mn
n

dQd m
n n Q

d d


  
   

         
                             (5.5) 

Then for large  , we just assume that  m
nQ i  could be written in series as 

follows 

20 2 4
2 4 2

pm
n q q q q p

AA A A
Q

                                              (5.6) 

Then based on the form of  m
nQ i , we have 

      20 2 4
1 3 5 2 1

2 4 2
m

pn
q q q q p

AdQ A A A
r r r r p

d                
         

(5.7) 

And we have the second derivative of  m
nQ i  could be represented by 

        

  

2
0 2 4

2 2 4 6

2

2 2

1 2 3 4 5

2 2 1

m
n

r q q

p

q p

d Q A A A
q q q q q q

d

A
q p q p

   



  

 

        

   



         

(5.8) 

We also know 

2 2 2 2 4 6 2 4 6 8

2

1 1 1 1 1 1 1 1 1 1 1
1

11 1         


 
   
                 
 

 

       

(5.9) 

Then substitute (5.6), (5.7), (5.8), (5.9) into (5.5), suppose 
1


  , then we have 
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 

           

(5.10) 

As   is positive for any   (  is positive), then the coefficient for  q  should 

be zero in order to satisfy (5.10), which means 

The coefficient of q : 

   0 0 01 2 1 0q q qq q A qA n n A                                   (5.11) 

which requires    1 1q q n n   ,  as n  could be any integer that bigger than zero, 

which means 1q n  . 

The coefficient of 2q : 

      
 
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           
(5.12) 

which is  

 
      
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1 2 2 2 3

q q m
A A

n n q q q

 
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                                    
(5.13) 

Substitute 1q n  , then we have 

  
      

  
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(5.14) 

Then by the same procedure, we know that the coefficient of 4q : 

       
 

4 4 4
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2 4 2 4 4
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(5.15) 

Express 4A  with 0A , we have  

 
     

  

2 22

4 0
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(5.16) 
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Follow the same steps, we can derive more coefficients, with which the 

calculation for m
nQ  could be more accurate.   

5.3 Results with Optimized Model 
The model we use here is truncated with 20 harmonics.  The errors for z component 

are given in the figures.  These results are all obtained at 1  . 

Figure 5-1 and Figure 5-2 show the error norm in the axial flow component of 

induced velocity in axial flow at 4   for a pressure distribution 0
1 .  From Figure 

5-1, we can tell that by adding two even terms, the error norm is reduced dramatically, 

from its original value of 26.0% down to 10.0%.  The error will keep reducing with 

the even term increasing, which means the more even terms in this case, the smaller 

the error norm will be.  The minimum error will be obtained while we include 9 even 

terms.  For the on/off disk error, which is 02 2x   , we can observe almost the 

same phenomena that the error goes from a very big number (42.9%) with no even 

terms straightly down to 0.3% when even terms with 9 at the index is included. 

Figure 5-2 is the error norm for the first cyclic pressure distribution 1
2  at 

frequency 4  , which shows a similar result for 0
1 .  In this case, only 2 even 

terms are enough to reduce the on-disk error to about 1%.  The on/off disk error goes 

from 30% to 0.3% when 10 even terms are included for m=0 harmonics. 

The analysis for axial flow cases reveals that choosing proper number of even 

terms may dramatically decrease the error norm for different pressure distributions.  It 

will be helpful to analyze the behavior of the convergence for steeper skew angels to 

find what numbers should be chosen for different cases.  In order to find a proper 

pattern description for even terms, we will do the same analysis for skew angle 

o30   and o75  . 
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Figure 5-3 shows the on disk and on/off disk errors when the input is 0
1  at a 

frequency 4  .  In this case, maximum error is 22.7%, also with no even terms and 

the minimum error is 0.6% with 9 even terms involved in the solution.  In this case, 

the maximum error and minimum error are both smaller than what show in axial flow.  

It is indicated that error introduced by the Peters-He model decreases as the skew 

angle increases.  The on/off disk error has a similar behavior.  The almost same 

phenomena for cyclic pressure distribution under small skew angles is shown in 

Figure 5-4.  The difference is that the minimum error is with 11 even terms, which 

odd terms equal to the even terms.  

Figure 5-5 and Figure 5-6 are error norms for elliptical pressure distribution and 

cyclic distribution with deep skew angles, o75  .  In both figures, we can tell that 

the model converges slowly.  In Figure 5-5, without even terms, the error is 14.0%, 

meanwhile the error is 32.0% with 2 even terms.  The error with a small number of 

even terms included in the solution is lower than the one obtained with a large 

number of even terms.  However, with adding more even terms, the error is tending to 

get smaller.  With 9 even terms, the error is 14.5%, though not the minimum point, it 

is only slightly bigger than the result without even terms.  For on/off disk error, it is 

obvious that more even terms make the error smaller till the number reaches 8.  In 

Figure 5-6, the minimum on disk error will be 7.4% with 10 even terms compared to 

a small bigger error 8.2% without even terms.  For the on/off disk error, it goes from 

55% without even terms monotonically down to 21.1% with 10 even terms.   

From the above figures, we can tell that the for different skew angles, the model 

may require different even terms to minimize the errors, and with small skew angels, 

more even terms are needed, and for big skew angels, less even terms should be 

included.  However, for big skew angles, there is still a comparable small error norm 

with even terms.  For real simulation system, the helicopter may change fly status 

quite often and it will be much more convenient and practical if we can choose a fix 

number for even terms instead of choosing it as a variable of skew angles while we 

can still have a relative small error.  By comparing, we found that limit the number of 
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even terms to 9 for m=0 harmonics works well for almost all cases without losing too 

much accuracy.  And the on/off disk error also benefits from this chosen based on the 

error curve shown in the figures. 

We would also show the results from the optimized co-state method and the co-

state method with odd terms equivalent to even terms compared with convolution 

result.  Figure 5-7 compares the frequency responses for the first elliptical pressure 

distribution.  In this figure, we can tell that the optimized method not only did well at 

on rotor disk region, but also at off disk region.  The isolation around 0 1.5x    is 

because of the error in computation of  m
nQ i  for large  , which is also mentioned 

in Ref. [17].  Figure 5-8 compares the frequency responses of the first cyclic pressure 

distribution. 

In order to minimize these errors and make the calculation for  m
nQ i  more 

accurate and robust, we develop a new scheme for calculating  m
nQ i .  In Figure 5-9, 

it is displayed of a comparison  0
20Q i  (since it is the worst case for 20 harmonics) 

by different methods.   0
20Q i  will blow up around 1.08   with the iterative 

method in Ref. [17].  Here, we will switch to our new method at 1   and maintain 

the part with 1   from the recursive method.  We can see from the figure, after the 

switch at 1  , our method still converges well. 

Based on the new scheme for  m
nQ i , we can go deeper within the flow field 

without blowing up and losing accuracy.  Figure 5-10 shows the result of comparison 

with different schemes for  m
nQ i  with the optimized co-state method for elliptical 

pressure distribution.  It could be seen that for 0 0x  , the result with old scheme 

diverges, however, the result with the new scheme for  m
nQ i  keeps the inflow 

distribution follow the convolution result.  Figure 5-11 is the comparison of the 

optimized scheme with different formula for  m
nQ i  for cyclic pressure distribution.  

Even though the osculation is not as strong as what displays in Figure 5-10 with the 
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Chapter 6 Finite Blade Responses 
In this chapter, we apply the model to more practical examples in which pressure 

spikes from a finite number of blades are rotating around the azimuth at constant 

speed. 

6.1 Finite Blade Systems 
The fundamental fluid mechanics of the model is based on the potential-flow 

functions, and the detail of the theoretical derivation of this unsteady dynamic model 

is derived in Chapter 2 and Ref [6].   

In general, the induced velocity at the disk in terms of harmonics will be  

 
   
   

1 1

0 1 1

, , ,

m m mc m mc
n n n n n

m m ms m ms
m n m n n n n n

a
v r

b

  
  

  

   

   

    
 
      





                      (6.1) 

and the coefficients m
na  and m

nb  could be derived from the following governing 

differential equations 

   

   

* 1

* 1

c m c c c m c mc
n n n

s m s s s m s ms
n n n

M a D L M a D

M b D L M b D









                      
                                           

(6.2) 

where  

   
10 0

0
1

1
,

2

Q
c

n q n
q

L r dr   
 

                                      (6.3) 

     1

0
1

1
, cos

Q
mc m
n q n q

q

L r dr m    
 

                              (6.4) 

     1

0
1

1
, sin

Q
ms m
n q n q

q

L r dr m    
 

                               (6.5) 

with  m
n 

 
the radial expansion functions  m

nP   , where 21r   .  

In order to predict the inflow below rotor disk for finite blade systems, it is 
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advantageous to rewrite the inflow model in the rotating systems. In order to do that, 

a reference blade needs to be selected first, and then the azimuthal position of any 

blade q  could be represented according to the reference blade 

ˆ ˆ
q q qt t                                                (6.6) 

where   is the position of the reference blade in the nonrotating system and  

 2
ˆ 1q q

Q

                                                    (6.7) 

Thus, for a case with constant blade loading, it is convenient to write the 

unsteady  m
n t  in terms of constant unsteady ˆm

n s. 
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where 
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Note further that Eq. (6.2) is in reduced time  , therefore, one needs to write 

   

   

cos cos

sin sin

m
mt

V R

m
mt

V R









 
   

 
   

                                       (6.9) 

6.2 Relationship between Different Systems 
For typical helicopter applications, the angle of the vortex sheets leaving the blade is 

small such that  cos 1  .  However, in cases for which there is significant inflow, 

Figure 6-1 and Figure 6-2 show how the induced flow of the actuator-disk model 

correlates to the flow on the actual vortex-system of the rotor.  On the actual rotor, 

the lift is perpendicular to the sheet creating a combination of axial and swirl velocity 
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6.3 Results for Axial Flow with Finite 

Blades 
The results will be presented with 2 blades and 0.8r   with axial flow only.  The 

three components of velocities for both the inflow above and below the rotor disk are 

given in the figures.  The model is truncated at 24 harmonics.  There is an optimum 

combination of even and odd harmonics for maximum accuracy, as illustrated in 

Chapter 4.  Here, we use the case of only odd terms and no even terms and do not 

pursue an optimum solution.  

Figure 6-3 to Figure 6-5 show the three velocity components of inflow versus 

time on the rotor disk at point 0.8r  , o0   in space, where the detection point 

actually locates.  The time 0t   represents the time at which the blades are parallel 

with x -axial, which is also 0y   axial.  Figure 6-3 to Figure 6-5 show z  component, 

  component, and r  component respectively.  In Figure 6-3, there is a doublet spike 

around 
2

t


  (or 
3

2
t


 ), which is due to the rotor blade passage.  The impulses in 

Figure 6-4 and Figure 6-5 are also caused by passing of blades.  

Figure 6-6 to Figure 6-8 show the inflow within the wake at one radus below 

the rotor disk at the point 0.8r  , o0  .  We can see zv , v  and rv  all have 

impulses at the vortex-sheet passage followed by oscillations between the passages.  

The average velocity for zv  is 0.3067, which is almost 1.73 times of the average 

velocity at the rotor disk ( 0.1772zv  ).  [This is not far enough downstream to reach 

the familiar factor of 2 increase in velocity.]  We can see spikes in Figure 6-5 and 

Figure 6-6, and the peaks of the spikes locate near 1t   since the phase shift for the 

spike should be the same as the depth within the wake region.   

Figure 6-9 to Figure 6-11 are about the inflow two radii below the rotor disk at 

0.8r  , o0  .  The average velocity of z  component is 0.3390, which is 1.91 times 
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of the average velocity at the rotor disk.  This is very close to the well know result 

from momentum theory and could be treated as fully developed.  We notice that rv  is 

decreasing along the streamline, from -0.1853 ( 0z  ), -0.0277 ( 1z  ) to -0.0075 

( 2z  ).  This variation could be used to describe the fact that the wake region is 

contracting. 

In order to analysis the effect of blades, we now introduce zv  and v , which are 

the velocities between blade passages in the z  direction and   direction, 

respectively.  Suppose w  is the velocity downstream.  We can predict what zv  and 

v  should be (based on translational and angular momentum theory) since the total 

velocity must be perpendicular to the vortex sheet.  By the comparing of a real 

physical rotor system (shown in Figure 6-1) and actuator disk construct (shown in 

Figure 6-2), we can relate the velocities in these two figures, yielding the expressions 

   *sin *cosv w    and  2*sinzv w  .  For the case 0.8r  , 

  0.1tan 0.8
wR

r   , which means 7.1   . So that we can calculated 0.006zv   

and 0.044v  .  Here from numerical integrations, we have 0.0093zv   and 

0.0564v  .  Even though the result we have here for w  is not the final converged 

value, we can still tell the evaluate values for zv  and v  are close enough.  This 

further means we can use the result in actuator disk theory to predict the angular 

momentum in real systems. 

Figure 6-12 shows the changing of v  along the free streamline with 0.8 radius 

away from the center.  We can tell from the figure that at one radius above the disk 

( 1z   ), v  is almost 0; on the disk, the value is 0.0284 compared with 0.0564 far 

away from the rotor disk ( 2z  ).  These numerical results are consistent with the 

Glauert prediction that full angular momentum just below the disk is twice the 

angular momentum at the disk.  The angular velocity increases as the flow 

approaches the disk and passes through it.  The figure shows close agreement with 
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Chapter 7  Summary, Conclusions and 

Future Work 
In the first part of this work, the eigenvalues and mode shapes of finite-state 

inflow models have been studied by eigen-analysis. The visualizing of mode shapes 

provides us a better understanding of the rotor wake mechanism.  The eigen-analysis 

also shows the inflow harmonics are highly coupled at larger wake skew angles.  The 

structure of the mode shapes outside the rotor disk enables Hsieh/Duffy inflow model 

to describe the velocity distribution outside the disk.  The eigenvalues of Peters-He 

model change slightly and converge quickly with the number of expansion terms, and 

an easy way to estimate these eigenvalues is also established.  A formula for 

estimating the eigenvalues in axial flow is shown by regressive method.   Though 

Hsieh/Duffy model converges much more quickly than Peters-He model, it exacts 

this added accuracy at the cost of twice as many states and with a system that is not as 

well-conditioned as the He model. 

In the second part of this work, finite-state inflow models have now been 

extended such that the flow can be computed anywhere in the flow field for any wake 

skew angle.  The methodology is developed in a mathematically rigorous way from 

the potential flow equations.  Comparison with convolution results (axial flow and 

skewed angle flow) demonstrates exact correspondence with closed-form solutions 

for both time responses and frequency responses.  The cost of the operation is the cost 

of computing the co-states for the adjoint velocity.   

After extending the model from above the rotor disk to below the rotor disk, to 

make the model converge as quickly and accurately as possible within wake region 

becomes another problem that needs to be solved.  An extensive convergence analysis 

is performed with the new model below the rotor disk with 20 harmonics, and it is 

concluded that there would be a different combination for odd and even terms with 

different skew angles to optimize the on-disk and the on/off disk velocity profile.  In 

order to satisfy the requirements of real simulation systems, we find that to keep 9 
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even terms at m=0 harmonics works nearly for all skew angles and at both on disk 

and on/off disk region.  If the optimum values for even terms are included in the 

solution with 20 harmonics odd terms, it is observed that the co-state method is 

virtually exact for axial flow and introduces a smaller than 15.0% error for big skew 

angle ( o75  ) with on disk error.  At the same time, a new scheme for Legendre 

function of the second kind  m
nQ i

 
is derived to solve the divergence with large  . 

With the optimized model and well converged Legendre function, a more robust 

result with quick convergence rate is displayed compared with the convolution result.  

Finally, the co-state model is applied to finite blade systems to study the inflow 

within the wake region.  A relationship between real systems and actuator disk 

systems is established for further study.  The spikes are appeared in the normal and 

azimuth velocity responses for the rotating system, which are due to the rotor blade 

passage.  These results are consistent with Glauert predictions about angular 

momentum in rotary wing systems, and could be used to predict the swirl velocity in 

the real systems.  The velocity is r direction is decreasing along the streamline, which 

could be used to describe the contracting of the wake region in rotary wing systems. 

Once the theory has been developed, several areas and applications are natural 

for the extension of the work.  The most direct line of work that could be developed 

from the theory is to use it to calculate the drags with fuselage, which would need the 

inflow within wake region.  Another direct of the applications would use it to 

calculate the inflow for parallel rotors systems (the configuration used in Sikorsky 

X2), side to side rotors systems (Karman helicopters), even the inflow for tandem 

systems (Chinook CH42).   

For the development of theory, our model is for the flows that are linearized 

about V , which could only work for cruise conditions.  It will break down when the 

helicopter works in hover conditions since V  goes to 0, which makes the equations 

singular.  So it is necessary to derive a nonlinear version of the co-state method below 

the rotor disk.  In the derivation of the model, we only consider potential inflow 
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without mass injection, how to complete and extend this theory across the rotor disk 

to treat with mass injections is still an open problem.  Duffy shows how to generalize 

the inflow above the disk to nonlinear, and the same approach could be used here.  

However, below the rotor disk there must be an analysis of wake contraction.  This is 

left to future researches. 
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Appendix 1.  Coordinate System 

The ellipsoidal coordinate system  , ,    is defined as 

 2 21 1 cosx      
                                     

(A1.1) 

 2 21 1 siny     
                                      

(A1.2) 

z                                                         (A1.3) 

where the coordinates ,   and   are restricted to the following range 

1 1                                                        (A1.4) 

0                                                      (A1.5) 

0 2                                                     (A1.6) 

Figure A1.1 shows the ellipsoidal coordinate system viewed in the xz  plane.  

The surfaces for  constant are hyperboloids and the surfaces for   constant are 

ellipsoids.  For the special case, 0   represents the flat circular plane, and is anti-

symmetric along the plane which contains the 0   circular plane.   is the azimuth 

angle measured from the negative x  axis, with counterclockwise direction viewed 

along the positive z  axis.   

The non-dimensional radial position with the ellipsoidal coordinates could be 

obtained from equations (A1.1) and (A1.2), which is, 

  2 2 2 2 2 2 2 21 1r x y z          
                       

(A1.7) 

Similarly, from equation (A1.1), (A1.2) and (A1.3), the ellipsoidal coordinates 

,   and   can be expressed in terms of ,x y  and z as 

   2 21 1 4
2

sign z
S S z


    

                          
(A1.8) 

 2 21
1 1 4

2
S S z     

                                
(A1.9) 
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1tan
y

x
     

                                            
(A1.10) 

where 

2 2 2S x y z                                            (A1.11) 

 

 

 

Figure A1.1  Ellipsoidal coordinate system  
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Appendix 2. Normalized Associated 

Legendre Functions 
In the ellipsoidal coordinate system defined in Appendix 1, the Laplace's equation 

takes the form 

     
  

2 2

2 2

2 2
1 1 0

1 1

 
 

      

                                 

(A2.1) 

Using the principle of separation of variables to solve equation (A2.1), the 

Laplace equation is expressed by a multiplication of three separated parts which are 

only functions of ,   and   respectively.  

       1 2 3, ,        
                                  

(A2.2) 

Applying equation (A2.2) to equation (A2.1), the Laplace equation can be 

separated into the following three equations 

2
23

32
0

d
m

d


  
                                               

(A2.3) 

   
2

2 1
12

1 1 0
1

dd m
n n

d d


  
                                   

(A2.4) 

   
2

2 2
22

1 1 0
1

dd m
n n

d d


  
  

                                
(A2.5) 

where m  and n  are the constant of separation.  

Equations (A2.4) and (A2.5) are Legendre's associated differential equations, 

and the solutions to which are the associated Legendre Functions of the first kind and 

the second kind (  m
nP  ,  m

nP i ,  m
nQ   and  m

nQ i ).  Since  m
nP i  and  m

nQ   

will yield an infinite pressure in the flow field, so they are omitted.  

For the purpose of this research, the associated Legendre functions of the first 

and second kind are normalized as 
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(A2.7) 

where 
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(A2.8) 

 
     

 

     
 

1 1

1 1

1 !!
1 ,

2 !!
0

1 !!
1 ,

!!

m n n

m
n

m n n

n m
i m n even

n m
Q i

n m
i m n odd

n m

   

  

 
    
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(A2.9) 

In this research, numerical codes are developed to compute all the required 

values of  m
nP   and  m

nQ i  based on the following recurrence relations 

    
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  

                 

(A2.1) 
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(A2.2) 

    
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       
(A2.3) 

       1 1 2 1m m m m
n n n nQ i Q i n K Q i      

                          
(A2.4) 

       1
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                     

(A2.5) 

where 

 1

2

n m
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n nK H


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   
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(A2.6) 
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In order to calculate to the derivation of  m
nP   and  m

nQ i , the recurrence 

relations for  are given by 
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(A2.12) 

where m
nK  is defined by equation (A2.6).   

A2.1. Orthogonality Integrals 
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A2.2. Area Integrals 
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where m
jnA , m

jnG  and m
jnD  are defined as: 
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Appendix 3.  Exact Solution to a Step 

Response in Axial Flow 

Based on the momentum equations, for axial flow ( 0  ) with a free-stream velocity 

V  the momentum equation could be written  

z zv v P

z z
  

  
                                            

(A3.1) 

where P  is the pressure and zv  is velocity field.  If we only consider a step input, 

   P z u  , with zero initial conditions, then the particular solution for                            

(A3.1)  is clear,  

v P                                                      (A3.2) 

The homogeneous solution is any function of z  , defined as ( )f z  .  Thus, 

outside the wake, we have  

 , ( ) ( )zv z f z P z   
                                   

(A3.3) 

For zero initial condition, it requires 

 ,0 ( ) ( ) 0zv z f z P z  
                                  

(A3.4) 

Then it is easily known that  

( ) ( )f z P z                                               (A3.5) 

Inside the wake, we have a similar formulation of the total solution  

 
0

, ( ) ( ),
1 1z

z
v z g z P z

x


 

 
                            

(A3.6) 

where ( )g z   is any homogeneous solution to equation (A3.7).  However, there is 

no initial condition since no wake at 0  .  A boundary condition at the disk should 

be included at this case.   

Typically, based on momentum inflow theory, the inflow region could be 

divided into 2 parts, the region above the disk (A in Figure A3.1) and the wake region 

(B in Figure A3.1).  As the flow could be caused by potential differences or mass 
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flow changes at the disk, the boundary conditions for each case may differ, so we 

need to deal with it separately.  

If the inflow is caused by pressure difference across the rotor disk, the velocity 

should be continuous across the disk and the pressure will satisfy (0 ) (0 )P P  

(positive at 0z  , negative at 0z  ). 

From (A3.3) and (A3.5), we know that the velocity at 0z   is 

   0 , (0 )zv P P    
                                   

(A3.7)
 

However, from (A3.6) for  0z   inside the wake, we have 

 0 , ( ) (0 )zv g P    
                                   

(A3.8) 

As for pressure difference, there is no velocity jump across the disk, so 

   0 , 0 ,z zv v  
                                          

(A3.9) 

which means 

   0 , ( ) (0 ) (0 )zv g P P P         
                    

(A3.10) 

Combining  (A3.8) and (A3.10), we will have 

 ( ) 2 (0 )g P P     
                                    

(A3.11) 

Thus for pressure difference across the rotor disk, the velocity inside the wake 

satisfy  

   , ( ) 2 (0 )zv z P z P z P     
                          

(A3.12) 

However, for the case of mass injection, we know that the pressure is 

continuous across the disk, so that (0 ) (0 )P P  .  But there is a velocity difference 

between the both sides of the rotor , which is 2 (0 )P 
 

   0 , 2 (0 ) 0 ,z zv P v    
                            

(A3.13) 

From (A3.8), we know for  0z   inside the wake 
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Appendix 4.  Adjoint velocity for a Step 

Response in Axial Flow 
From Peters-Morrilo model, in order to obtain the time response by Galerkin method, 

we need to write the momentum equation as 

   
* 1c m c c c m c mc
n n nM a D L M a D 

                        



                 

(A4.1) 

and time-marching from o  to f  with a time step  .   

Then the changing of velocity potentials could be represented by 

           1, , ,m m m m
n n o n n fa a a a       


                      

(A4.2) 

The velocity between o  and f  could be obtained by substituting the value of 

m
na  at that specific time into equations (A4.1). For o  , we just assume 

    0m
na   . 

    Here we need to extend the momentum equation in Peters-Morrilo’s model to 

describe the velocity field for time responses based on the co-states method.  First we 

need to define the co-states m
n  to calculate the adjoint velocity, which satisfies the 

following equation 

   
* 1c m c c c m c mc
n n nM D L M D 

                           



              

(A4.3) 

For the adjoint velocity coefficient, if time is between o  to f , then 

   m mc
n n   , which means it is equivalent to the forcing function.  However, if 

o  , there will be no forcing functions in equation (A4.3), we need to time-

marching backward from o  to p  with a step  to the following homogeneous 

equation 
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   
* 1

0c m c c c m
n nM D L M

                       



                     

(A4.4) 

Then the changing of adjoint velocity potentials before o  could be 

           1, , ,m m m m
n n p n p n o          


                 

(A4.5) 

Even though the differential equations are unstable while time goes forward, it 

will decay to zero when time goes backward.  From section 3.3, we know that the 

velocity below the rotor disk could be expressed as 

       * *
0 0 0 0 0 0 0 0 0 0 0 0, , , , ,0, , ,0, , , ,v r v r v r v r                

    
   

(A4.6) 

So that means we need to time marching m
n  backwards from   to 0  , 

where 0  is the depth needed in wake along the free streamline.  
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Appendix 5.  Table Method 
In order to calculate the induced flow using Hsieh-Duffy model, it is required to 

truncate the number of harmonics and the number of radial shape.  The number of 

harmonics is chosen based on the highest dynamic frequency of interest, and the 

choice of the number for radial shape functions using in each harmonics was based on 

a mathematically consistent hierarchy way, which is shown in Table A5.1.  The 

number of radial shape function for m n even   is equal to the number for 

m n odd  , which is the result of adding up each one of the terms included for each 

harmonic.  

 

Table A5.1  Choice for the Number of Spatial Modes (n+m=odd) 

Highest 

power of 

r  

m Total 

Inflow 

States 
0 1 2 3 4 5 6 7 8 

0 1         1 

1 1 1        3 

2 2 1 1       6 

3 2 2 1 1      10 

4 3 2 2 1 1     15 

5 3 3 2 2 1 1    21 

6 4 3 3 2 2 1 1   28 

7 4 4 3 3 2 2 1 1  36 

8 5 4 4 3 3 2 2 1 1 45 
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