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ABSTRACT OF THE DISSERTATION

A Rigorous Solution for Finite-State Inflow throughout the Flowfield
by
Zhongyang Fei
Doctor of Philosophy in Mechanical Engineering
Washington University in St. Louis, 2013

Professor David A. Peters

In this research, the Hseih/Duffy model is extended to all three velocity components
of inflow across the rotor disk in a mathematically rigorous way so that it can be used
to calculate the inflow below the rotor disk plane. This establishes a complete
dynamic inflow model for the entire flow field with finite state method. The
derivation is for the case of general skewed angle. The cost of the new method is that
one needs to compute the co-states of the inflow equations in the upper hemisphere
along with the normal states. Numerical comparisons with exact solutions for the z-
component of flow in axial and skewed angle flow demonstrate excellent correlation
with closed-form solutions. The simulations also illustrate that the model is valid at

both the frequency domain and the time domain.

Meanwhile, in order to accelerate the convergence, an optimization of even
terms is used to minimize the error in the axial component of the induced velocity in
the on and on/off disk region. A novel method for calculating associate Legendre
function of the second kind is also developed to solve the problem of divergence of

Qr (in) for large n with the iterative method. An application of the new model is

also conducted to compute inflow in the wake of a rotor with a finite number of

blades. The velocities are plotted at different distances from the rotor disk and are

Xiii



compared with the Glauert prediction for axial flow and wake swirl. In the finite-
state model, the angular momentum does not jump instantaneously across the disk,

but it does transition rapidly across the disk to correct Glauert value.

Xiv



Chapter 1 Introduction

During the past thirty years, finite-state inflow models have developed steadily and
moved from heuristic momentum-theory approximations to become rigorous
solutions to the potential flow equations in three dimensions. The finite-state method
is treated as an alternate method to the traditional vortex-lattice methods (VLM) or
the computational fluid dynamic (CFD) approach. However, compared to these
approaches, the finite-state method requires less computation and therefore can be
used for real time rotor wake analysis.

The states of the models which have been developed are, by definition,
unknowns in a set of first-order, ordinary differential equations—the coefficients of
which depend on the free-stream impingement angle, the flight speed, and the thrust.
The coefficients of the differential equations take the form of a mass matrix, a
damping matrix, and an influence-coefficient matrix. For the Peters-He and Peters-
Morillo models, these matrices are all in closed form, so they are easily assembled
and can be used efficiently and reliably. After many years of evolution, the current
model (Hsieh/Duffy model) has been developed such that one can compute all three
components of the induced flow in the upper hemisphere above the plane of the rotor
disk. However, the model is incapable of computing the induced flow in the
hemisphere below the rotor disk. The flow below the disk is required in many
applications—such as calculating the interaction of a rotor with external aerodynamic

surfaces or with another rotor.

The main purpose of this study is to extend the Hsieh/Duffy model such that it
can be used to compute induced flow below the plane of the rotor disk. This will
establish a complete, finite-state dynamic inflow model for the entire flow field.



1.1 Previous Work

In the early 1980s, based on Mangler’s actuator-disc theory, Ref. [1], Dale Pitt and
David Peters developed a linear, unsteady theory that relates the transient rotor loads
(thrust, roll moment and pitch moment) to the overall transient response of the rotor
induced flow field, which is known as the Pitt-Peters model now, Ref. [2]. The

perturbed induced inflow and the pressure distribution are defined as

A =2y +TAsin(7)+T A cos() (1.1)
P Zl: P"(vQy (ify)[Cr',n cos(my)+ Dy’ sin (mz/7)] (1.2)

where v, 1 and i are ellipsoidal coordinates defined in Appendix 1. P and Q.

are associated Legendre functions of the first and second kinds, and C." and D;" are

coefficients which are functions of time and are governed by a set of ordinary
differential equations. With the assumption of superposition of pressure, in which the
velocity field is derived from superimposing the unsteady pressure and static pressure
of the flow, they obtained a set of differential equations to obtain the dynamic inflow
derivatives for a helicopter rotor with an unsteady loading and induced flow

distribution. The equations are expressed as:

B[4 (G
[M]3 4, (+[L] 44 r=4-C, (1.3)
ﬂ’c ﬂ“c _CM

where [M | and [L] are apparent mass matrix and the dynamic inflow gain matrix,

respectively. They are defined as follows

128

— 0 0
157
16
[M ] 0 E 0 (1.4)
0 o 16
L 457 |



1 0 157 [1-sin(a)
2 64 \|1+sin(a)

4

1
[L]:V 0 1+sin(a) 0 (1.5)

157 |1-sin(a) 0 4
64 \1+sin(a) 1+sin(a)

where V is the flow velocity, and « is the skewed angle of the free streamline,

changing from 0" to 90'.

One can see from (1.3) that there are three states in this model, and each has a
physical meaning. They represent, respectively, uniform flow, a side-to-side gradient,
and a fore-to-aft gradient. The theory was verified experimentally, Ref. [3]. At
present, it is used in virtually every stability and handling quality application. The
limitation for the Pitt-Peters model is that it is a low-order approximation to the rotor
induced flow field with only one harmonic and one radial shape function for each
harmonic. Thus, the model is only the crudest wake description of uniform flow

since its lack of higher-harmonic terms of the flow field.

Due to the limitation of the Pitt-Peters model, researchers desired a higher-
harmonic theory which could be more accurate. In 1987, David Peters and Chengjian
He developed a higher-harmonic theory, which is known as the Peters-He generalized
dynamic wake model, Refs. [4] and [5]. The pressure distribution for the Peters-He
model was extended from Pitt’s pressure distribution to include higher harmonic
terms and arbitrary number of radial functions for each harmonic

1< S pm AM (3 mc — ms oi —
P=->% > BI(v)Q(im)| =" cos(my) + " sin(my7) | (1.6)
m=0 n=m+1,m+3,---

The inflow distribution is expanded to include an arbitrary number of
harmonics and radial functions, which is similar as the expression of the pressure

v, i i M[a?cos(m&ﬁﬂrﬁ“sin(mﬁ)] (1.7)

m=0 n=m+1,m+3,--- 14



where P"(v) and Q" (ir7) are associated normalized Legendre functions of the first

and second kind, respectively. (See Appendix 2)

Both Pitt and He began with the complete potential flow equations and then
assumed "superposition of pressures,” which implies that inflow modes with no
induced velocity on the rotor disk are neglected. As a result, the Peters-He model
takes the form

[M]{O;m}w[[c]‘l{a:}=%{r:‘°} (1.8)
WH&:}W[E]‘%@}=%{r;’5} (1.9)

where {&'} and {47} are the coefficients of the axial induced velocity component

on the disk, and {r;°} and {z]*} represent cosine and sine pressure coefficients.

n n

The matrix [M] is the apparent mass matrix; and [ [* | and [ C* | are the cosine and

sine influence coefficient matrices, respectively. These are all given in closed form.
The Peters-He model has been validated against wind-tunnel data, Ref. [5]. As a
mature dynamic inflow model, Peters-He model is widely used in many production
codes including FLIGHTLAB (Advanced Rotorcraft Technology), COPTER (Bell
Helicopter) and ONERA-DFVLR (European Community), etc, Ref. [6].

The Peters-He model contains only Legendre functions that have m+n=odd
which represents pressure discontinuities at the disk. As the result of discarding the
m+n=even terms, which are related to mass-sources, the Peters-He model cannot
describe the inflow distribution caused by mass-injection. Further, it treats only the

normal component of flow on the rotor disk.

Subsequent researchers have attempted to extend the Peters-He model to
include all components of flow throughout the field. In 1996, Wen-Ming Cao and
David Peters made an attempt to compute the flow off of the rotor disk as well as on

the disk, Ref. [7]. This work demonstrated that there must be a second set of wake



states (besides the He states) for flow off the rotor to be calculated; but it was not
known what these states should be.

In 2001, Jorge Morillo and David Peters addressed these issues and showed that
the extra states could be found rigorously (with no need for the limiting assumption
of superposition of pressures) by writing the velocity field as a gradient of velocity
potentials and by including the mass source terms in the expansions, so that the

m+n=odd termsand m+n=even terms are all included in the model, Ref. [6].

P=-3 3 [eroy +aroy] (1.10)
=y Y &V +orvwr | (1.11)
m=0 n=m+1

where @ and P are the pressure and velocity potentials. This set of functions was

also used by Pitt and He, but they only considered the odd functions and considered
them only for the normal component of velocity. With these definitions, Morillo and
Peters were able to use a Galerkin approach to obtain a closed-form set of equations
for all three components of the velocity potential—and thus of the velocity field
everywhere in the upper hemisphere (i.e., upstream hemisphere)—including the plane
of the rotor disk. The governing equations are obtained from this Galerkin procedure

in closed form and take the following form:

*

M far b [T M far} <[ 0°Jfere) (112)
(o [0 [E T [ (o} =[]} L1

where [D] is the damping matrix. All matrices are in closed form, and mass sources

are also allowed. The Peters-Morillo model gave excellent agreement with a class of
closed-form solutions for step response and frequency response above the rotor disk,
but convergence was slow due to ill-conditioned matrices. However, the Peters-
Morillo model could not treat non-zero flux mass sources, which are the fundamental

mass-source terms (the terms with m=n).



In 2005, Ke Yu and David Peters tried to develop an improved state-space
representation that included the non-zero mass flux forcing terms, Ref. [8]. They

extended the [D] matrix in the right-hand side to incorporate the mass source terms

into the governing equation

(M °}{a§}+([D°}cosZ—[C°}sin ;(){ar':‘} =[D° |{z} (1.14)
where [C] is a secondary damping matrix, y is the inflow angle, and [IZ_)} is the

extended matrix. However, they were unable to find the potential functions for

m=n and consequently still had not added the missing states. Despite the extended

[D] matrix, the model was still ill-conditioned and converged slowly.

Hsieh and Peters, Ref. [9], found the here-to-fore illusive potential functions for
m=n. The special case m=n=0 still involved a singularity, but they replaced the
infinite integral with an approximate solution for the infinite kinetic energy that
converged as the number of terms was increased. Later, Garcia-Duffy and Peters
incorporated these into a complete dynamic inflow model for all components of flow
in the upper hemisphere—and with good convergence, Ref. [10]. This model with

the m=n term will be referred to as the Hsieh/Duffy model.

All of these models are only valid for the flow on or above the plane of the
rotor disk. What remains, then, is to find a solution for the flow below the plane of
the rotor, and apply the new method to finite blade systems and find the inflow within

the wake region.

1.2 Objective and Approach

The aim of this research is to find a model to describe the velocity distribution below
the disk. Due to the constraints and limitation of Galerkin approach (that expansion
functions must satisfy all boundary conditions), the modified Peters- Morillo model
can only be used either on or above the rotor plane. This is because there are

discontinuities in the wake across vortex sheets which make it problematical to find a



valid expansion function for velocity in that region. Furthermore, the flow in the
wake is literally not potential flow so that no velocity potential exists. Here we will
overcome these obstacles by obtaining a closed-form expression for the flow below
the plane of the rotor disk in terms of velocities (and adjoint velocities) above the
plane.

In the work to be presented in this dissertation, we will start from the exact
solution and use the information above the disk to demonstrate by mathematical proof
that the complete flow everywhere in the flow field can be developed in closed form
from the flow in the upper hemisphere. The cost of this transaction is that one must
also compute the adjoint of the velocity (i.e., the co-states of the flow) in the upper
hemisphere. Once that is done, then the complete flow below the plane (including
inside of the rotor wake) follows directly. If the solution above the disk has

converged, then the solution below the disk is guaranteed to converge as well.

After getting the formula for the inflow model below the rotor disk, we will
validate the new method for both frequency responses and step responses for axial
flow, will compare with the analytical solution to make sure it could be used in both
frequency domain and time domain. And then will show the effectiveness of the
method for skewed angle flow and apply this method for finite blade system to
predict the wake region below the rotor disk. For large skew angels, there must be an
optimization of odd and even terms for Hsieh-Duffy model above the rotor disk.
Here, for the inflow below the rotor disk, we will similarly try to find the optimized

combination of odd and even terms to minimize the error within wake region.



Chapter 2 Inflow Theory Fundamentals

2.1 Fluid Dynamics Equations

The governing equations for Newtonian fluid are based on the basic conservation
laws, which include the conservation of mass, the conservation of momentum and the
conservation of energy. Each the conservation laws lead to one or a set of differential
equations. Together with the equation of states, one can describe the motion of
Newtonian fluid, Ref. [11]:

‘Z—fﬁ-(pﬁ):o (2.1)

St p(7,9)7, = —Ip+ Y (797 )+ (¥ (97, )+(V9)5 )+ o T (22)
p%m(ﬁﬁ)e:—pﬁ-z +V(kVT)+® (2.3)

p=p(pT) (2.4)

e=e(pT) (2.5)

where p is the fluid density, v, is the total velocity, p is the pressure, A and & are

the second viscosity coefficient and the dynamic viscosity respectively, f represents
the external forces, e is the internal energy per unit mass, k is the thermal

conductivity of the fluid, @ is the viscous dissipation function and T is temperature.

However, for a helicopter, it is reasonable to assume that the inflow at standard
atmospheric conditions is incompressible and inviscid around the actuator disk, Ref.
[11]. Since there are no significant body forces around an actuator disk, the equations
are reduced to the following potential flow equations

Ve, =0 (2.6)

ov L=\ =
pa—tt+,o(vt-V)vt =-Vp 2.7)



Here, we consider the linearized equations written as a perturbation of velocity

about the steady free-stream. The steady free-stream velocity is labeled V_. The
total velocity is represented by

v, =V, &+ 6V (2.8)
where £ is a unit vector that is along the free streamline and is skewed with respect
to positive z by an angel of y as shown in Figure 2- 1; and

SV = OV,i +6V, ] +0V,K (2.9)

2L 7 \I:
Figure 2-1 Coordinate system
Also, from the coordinates in Figure 2-1, we know that & can be expressed as
& =—sin(y)i +cos(y)k
where i, j and k are unit vectors in X, y and z directions, respectively.

Substitution of these equations into the momentum equations and continuous

equation, considering that V_ constant, gives linearized equations:

VeV =0 (2.10)

o6V oV -
N, —=-V 2.11
P pcoaf p (2.11)

To normalize the variables, all lengths are divided by the rotor radius R : and
the velocities are all divided by V_. Therefore, equations (2.10)-(2.11) in can be
rewritten as

Vel =0 (2.12)



NN Gp (2.13)
or o0&

where we have defined P as normalized pressure p/ pV?2, V as normalized induced

tV,

velocity 6v/V, and time as a reduced time 7, which is and where the

R °
Laplacian operator is redefined as the gradient with respect to nondimensional
coordinates. The boundary condition in the upper hemisphere is that velocity Vv must

be zero in all directions far upstream.

Suppose V can be represented by the gradient of some function, ¥, then we

may write

=V (2.14)

Then it is clear from equation (2.12) that ¥ will be a potential function and

<l

will satisfy Laplace’s equation
VeV¥ =0 (2.15)
Substitution of this velocity potential in equation (2.14) into equation (2.13),
followed by a divergence operation to the resultant equation, gives:

NV VIV _ o (216)
ot PE

Based on equation (2.15), the left hand side of equation (2.16) is equal to 0, so
if we define
d=P (2.17)
Then we know @ satisfies Laplace’s equation
VeVO =0 (2.18)
which implies that @ is also a potential function, as it is actually related to pressure,
so we call it pressure potential. Solution of equations (2.15) or (2.18) will yield a
family of functions in terms of which we may expand both ¥ and @.

10



2.2 Pressure Potentials

In order to write the equations, we expand the pressure in terms of potential functions
which satisfy Laplace equations. As discontinuities in pressure only occur across the
disk, we choose the solutions to Laplace equations in ellipsoidal coordinates to
reconstruct the pressures in the flow field. (See in Appendix 2) The pressure

potential then could be expressed as

@ (v,n,7)=P"(v)Qy (in)cos(my) (2.19)
O (v,n,w)=P" (v)Qy (in)sin(my) (2.20)
where v,  and i are the ellipsoidal coordinates defined in Appendix 1 and m

takes values from {0,1,2,3,4,...} and n is from {m,m+1,m+2,m+3,...}.

This choice not only satisfies the boundary conditions but also contains both
odd terms and even terms, which are capable for describing pressure discontinuities
and mass injections anywhere on the rotor disk. In the plane of the rotor disk but off

the disk v =0, the functions with m+n=odd (P" (v) are odd functions) are zero.
Form+n=even (P" (v) are even functions), the pressure potential has normal

derivatives on that plane. One can also see from Figure Al.1 that 0 <v <1 above the
disk while —1<v <0 below the disk. Since there is a jump in v across the disk, this

implies a jump in ®. On the disk, 77 =0 such that the m+n=o0dd potentials can be

used to describe a pressure jump of the system; and m+n =even potentials (which

have a discontinuity in slope) can be used to represent a mass source in the flow field.

The pressure can be expanded as a summation of all the pressure potential

terms as

P= —ii(r;mq);”‘: + D) (2.21)
m=0 n=m

The pressure drop and the injected mass across the disk could be expressed by

the flowing equations

11



AP =| Poyer P | o i i ( AL RER A (2.22)
A . S S mc mc ms ms
p—\2=[ﬁower Poper | o ZmZO m;z,...(r“ Oy + 70 ) (2.23)

where AP is the net pressure drop across the disk going from negative to positive z,
and Am is the net mass per unit time per unit area being injected into the flow field at
the disk.

2.3 Velocity Potentials

There are useful definitions of velocity potentials. One set are defined as the prime
potentials and the other set are derived potentials. In order to satisfy the upstream

boundary condition, the prime potentials are defined as
P = f @' cos(my)d& (2.24)
¥ = [ oPsin(m7)ds (2.25)
As we know lim Q" (i) =0, so it is guaranteed that the definition of the prime
n—>0

potential will satisfy the boundary condition that the velocity field far upstream from
the rotor is equal to zero. Then the flow velocities can be written as

V=YY (Ve Bver) (2.26)

m=0 n=m

Substitution of equations (2.24) and (2.25) into (2.26), noticing that ‘Pn : ‘i’?s,

@, and ®;° are only functions of nondimensional coordinates and & b", z™ (and

n?! ~n?

that the 7, are only functions of reduced time 7 ) gives:

/\

© a\Iij R o -
ZZ(V‘PW - Vé—ga?J:ZZ(V‘D?CT?C) (2.27)

m=0 n=m m=0 n=m
0 © abm a\Pms " © o .

ms —_n KM ms__ms 29
ZZ( o Y o b] 2.2 (Vorer) (2.28)
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There are no closed form expressions for these prime velocity potentials at
arbitrary skew angles. Therefore, one must do preprocessing to calculate the

gradients of W' at points in the flow field in order to calculate the velocity. This can
be accomplished by integration of the potentials along the streamlines, which is time
consuming.

The derived potentials, ‘i’?, are defined as the prime potentials for the special

case of axial flow. These can be found in closed form and thus avoid any numerical
integration for calculating the induced velocity components. Their disadvantage is

that the & derivative in the potential flow equations is more complicated for these.

Peters and Morillo found the derived potentials (for m = n) in the following form:

¥ =00, oo, (2.29)
where
o = ! (2.30)
KrT\/(Zn +1)(2n+3) (n+1) -m’ |
gl = ! n#m (2.31)
" K,:“\/(4n2 ~1)(n* -m?)
and
NCI
K" {Ej H (2.32)

n_ (n+m+1)1(n-m-1)!!
" (n+m)(n—m)n

(2.33)

This definition is only valid above the rotor disk (n>m). For the case when
m=n =0, Peters and Hsieh developed a formulation for the potentials in terms of an

alternate type of "Legendre function" with subscript greater than superscript:
1 =[on P () Qi (i7) + B () QR (in) Joos (mi) (239
=[P (v) Qs (im) + P (v) QL (i) Jsin (mi7) (2.35)

where

13



N
Qm4(in)= 0 1)W (2.37)
+7

Even here, however, the case for m=n=0 is singular. By solving the Laplace
equation with m=n=0 and then adding a line singularity (which is not obtainable
by separation of variables), Peters and Hsieh were able to find the m=n=0 derived

velocity potential as

\i’ﬁ:%v{l—ntan1(%)}—%|n|1+V|—%|”‘1+772‘+%|n|zmax| v>0  (2.39)

where Z__ is a large number representing the radius to which the & integral is taken.

max

When the potential is evaluated at infinity, the last term cancels the logarithmic

terms—so that the potential is zero at Z__, . Of course, this additional constant has no

effect on the velocity field because one needs only the gradients of the potential

functions to obtain velocity. This large number Z . will, however, affect the

Galerkin integrals to be derived in the following section so that this logarithmic
constant will need to be dealt with. (Derived velocity potentials are not defined

below the rotor plane.)

As the velocity potentials all satisfy Laplace’s equation, so the continuity
equation in (2.12) will be satisfied simultaneously. That means it is sufficient to
consider only the momentum equation as a governing equation for the velocity
expansion coefficients. Thus, to obtain a finite-state wake model is equivalent to

solve the problem of representing the momentum equations in finite-state form.

2.4 Galerkin Method

In order to transform the momentum equation into a set of ordinary differential
equations, the Galerkin Method is adopted here in which velocities are expanded in

terms of the prime potentials. (Derived potentials will be considered later.) The test
14



functions for the Galerkin method are chosen to be the same Laplace solutions that
are used as expansions for the pressure potentials. Since the velocity potentials are
only defined in the upper hemisphere, the integrations will be done in the upper
hemisphere, and all boundary conditions are matched. As the integration is only
considered over the upper hemisphere, the velocity solution will only be valid above
the disk.

After substitution of the proper expansions of pressure potentials, velocity
potentials, and the expression of velocity into the momentum equation, volume
integration is taken on both sides of the momentum equations. With the divergence
theorem, we can then transfer the volume integral into a surface integral, which
vanishes at r —» o« . By the method shown in Ref. [5], the surface integral in the
plane of the rotor is transformed to integrals on the rotor disk, itself, which have
closed-form representations. This leads to a set of ordinary differential equations.
The cosine and sine functions completely separate into two uncoupled sets during this
procedure. For the cosine parts, the Galerkin method gives:

R S N L (o) R S L A )
(el [F] gy | LoL, (oL &) [[o]

(2.39)

where

c a(D:C * Fyme e O ([* gyme
C ]ZMW(L O df)ds}mq’i e df)ds} (240)
(o)< [ s o e e

The sine components are similar to equation (2.39). Note that the subscript

notation “o” stands for the terms with m+n=o0dd and “e” is for the terms with

m+n=even . For the cosine terms, m=0,1,2,3,... and for the sine terms

m=12,3,..., since

15



O =P™ (v)Qr* (in)sin(my)

(2.42)

which implies that when m=0, ®° =0. In either the case of sine terms or cosine

terms, n=m,m+2,m+4,... or n=m+1m+3,m+5,... depending on the subscript

of the partition is “e” or “0”.

The [D] matrix is as follows for both cosine and sine case:

1
m
Djn ::___Eré%néim
n
j+r=odd; n-+m = odd
j+r=even; n-+m =even

25 |J(2i+1)(2n+1) s

Drr']n: nm - - —1 2
: ﬂ\/Hrf]nHJm (j+n+1)(j—n)
j+r=odd; n+m=even
j+r=even; n+m = odd

And the [E] matrix is given by
[Cr ] =xmrgy
[ =[x () X

(o] =[x = () X e
where
X =tan(y/2), I =min(r,m)
m sign(r—m)
" KK (2n+1) (2 +2)
r-+m=odd; j+r=odd; n-+m = odd
r+m=odd; j+r=even; n+m=even

j,ntl

n+j-2r

(D7 (2)y(2n+1)(2]+1)
" JHIHG (0 ) (G 2)[ (n- )1

r+m=even; j+r=odd; n+m = odd

16
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(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)



n+j-2r+2

(D) (8)y(2n+1)(2j+)
" A HIH (n+ ) (0 §+2)] (0 ) 1] (2.51)

r+m=even, j+r:even; n+m=even

3n+j+2m-2r

Frm_(—1) 2 (4)sign(r—m)\/(2n+1)(2j+1)

"R (e ) 20 ]

r+m=odd; j+r=odd; n+m=even (2.52)
r+m=odd; j+r=even; n-+m=odd
- E—
JHIH J(2n+1)(2+1)
j+m=even; j+r=odd; n-+m=even (2.53)
j+m=even; j+r=even; n-+m=odd

The potential for m=n=0, has a logarithmic term, so the integral for T" is
formally infinite for the case of m=r=n= j=0. However, based on Ref. [4], we

can express this integral as a finite series that approaches infinity as the number of
terms approaches infinity.

4 "o 1
ro-| 2322 2.54
2-(%5L) (254

where N, is the largest harmonic number. In this way, the integral is finite for a

truncated approximation. This also allows a solution with a finite number of terms

that provides formal convergence to the exact answer.

2.5 Equations In Terms of Derived

Potentials

In the last section, a closed form representation of the dynamic equations is shown for
the velocity potential expansions in terms of prime potentials. However, since the
limitation of prime potential, we would like to write the velocity in terms of derived

potentials. In order to do this, we need to change variables which relate the two sets

17



of basis functions over the upper hemisphere. In particular, the total velocity
potential is could be written as

~m) T me m) 7 M me M me
{an } I:lP” ]:{an } {O-n q)n+1+gn q)nfl} (255)
When a Galerkin approach is applied to equation (2.55), then the following

relationship is found

far} =[] M Jfar) (2.56)

where
- o'’
(][5, | [ v o5
A similar transformation therefore exists between {Bn”‘} and {b:‘} that involves

[LS} and [MS}, which relates to sine coefficients. W.ith this transformation of

variables, the equation of motion for a skewed flow becomes

et [0 et -0 )) s
The equation in equation (2.58) is a closed form expression for all components
of the velocity above and on the rotor plane.

For the special case of axial flow (=0), | [* | and [ M° ] are equivalent. So

the momentum equation could be simplified as

*

[M°]{a§‘}+[D°]{a;“}=[D°]{r;“°} (2.59)
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Chapter 3 States and Mode Shapes

The Hsieh/Duffy model has never before been analyzed to find its modes and
eigenvalues. Therefore, before proceed to flow below the disk, we first perform such

an analysis.

3.1 Inflow Mode Shape Analysis

In order to study the characteristics of unsteady aerodynamics in forward flight, we
first consider the homogeneous equations for the inflow wake model. Then the
cosine and sine part of the homogenous motion equations could be reduced from

(2.58) to the following equations

*

(v J{arf+ [ ][] [me {ar} = {0} (3.)
(e J{br)[o° [T e J{br) = (o) (32)
If we assume the eigensolution to the homogenous equations (3.1) and (3.2) are

in the form of {g,}e~" and {¢, }e=", then in order to obtain all the eigenvalues ¢,

and £, one needs only to solve
‘[M°]’1[D°][E°]‘1[M°]—§C[|]‘=o (3.3)
[we) [0 feT M) -0 @)

As we know, each eigenvector can be multiplied by an arbitrary constant. For

the purposes of consistency, we normalize the eigenvectors so that the mode shapes

will be unique.

Typically, there are several ways of normalization, Ref. [12]. Below is the
methodology used in this dissertation. Since the procedure is quite similar, for either
cosine or sine modes, we demonstrate eigenvalues and normalization on only the

cosine modes. Suppose the mode shape is {¢C} , and the maximum absolute value of

all the ™ element in the eigenvector is defined as:
19



= x|t | (3.5)
Then scale this f™ element in the eigenvector to be 1, we will have normalized

eigenvector {4, | .

3.2 Results for Eigenvalues

In this section, we will show some results for eigenvalues first. For convenience in

comparing with [13], we will consider an 8-harmonic case first.

Ref. [13] considers the He model in which only n+m=o0dd terms are included

in the expansion. For a maximum harmonic of N, , there are (N, +1)(N ., +2)/2

sates in this model. For the Hsieh/Duffy model, on the other hand, all values of m
and n are considered; and, therefore, there are roughly twice the number of states.
For example, a case of 8 harmonics, the He model has 45 states (25 cosine and 20
sine). The Hsieh/Duffy model, however, has 94 states (52 cosine and 42 sine). This
is because the Hsieh/Duffy model has eigenvalues corresponding to mass sources.
For every harmonic, one of these mass-source eigenvalues becomes more and more

sluggish as the number of terms is increased and become static in the limit as N,

approaches infinity. These low-order eigen modes will not be shown on the plots.
Figure 3-1 presents the real parts of the cosine eigenvalues—versus skew
angle—for the case of 8 harmonics. This shows the heavy damping of dynamic
inflow modes. Figure 3-2 gives the imaginary parts of the eigenvalues. Note that
there is a set of critical skew angles at which two different real eigenvalues coalesce
with each other and split into a complex-conjugate pair—qgiving an imaginary part—
indicating an oscillating decay. The frequency generally increases with skew angle
but can also peak and start to diminish in some cases. The eigenvectors show that the

modes are highly coupled especially with larger skew angles.
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Eigenvalues (Re.)

.............................................................

i i i I i i
0 10 20 30 40 50 60 70 80 90
Skew angle 7 ()

Figure 3-1 Inflow eigenvalue vs. different skew angle (cos, real part)

Eigenvalues {Imag.)

Skew angle 7 (%)

Figure 3-2 Inflow eigenvalue vs. different skew angle (cos, imag. part)

For the sine modes, we follow the procedure for cosine part. The real and

imaginary parts of the first 24 eigenvalues are shown in Figure 3-3 and Figure 3-4.
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Even though there should be 50 states for both cosine and sine harmonics, some of
the eigenvalues are really small, which means the affections of such eigenvalues are
neglectable, so we omit these ones and choose the former ones to show. From Figure
3-1 to Figure 3-4, we can tell some eigenvalues coupled with others if the skew angle
is bigger than some specific values. As we know the smaller the real part is, the
quicker the influence will die out; the bigger the imaginary part is, the stronger the
oscillation could be. So from these four figures, we can tell that with y =0°, which
is axial flow case, the eigenvalues are uncoupled with each other, and there will be no
oscillations, but for the edgewise flow case, which means y =90°, the oscillation

will be the worst for all the skew angles.

Eigenvalues (Re.)

10 20 30 40 50 60 70 80 0
Skew angle 7 (*)

Figure 3-3 Inflow eigenvalue vs. different skew angle (sin, real. part)

The eigenvalue distribution completely determines the rotor dynamics. For
simplification, we only consider responses due to the eigenvalues for a helicopter in
climb—which implies the skew angle equals to 0. In axial flow, the harmonics are

uncoupled with each other, so we can calculate and record them separately. It is
known that [M°]:[E"], [Ms]:[l:s] while y =0°. Then Equations (3.3) and

(3.4) could be rewritten as
22



M) [o¢]-[1]=o0 (3.6)
\[Ms]_l[Ds]—é[']FO 37

10

Eigenvalues (Imag.)
[a7] w

N

60 70 80 90
Skew angle 7 (°)

Figure 3-4 Inflow eigenvalue vs. different skew angle (sin, imag. part)

We use the indices for coefficients a; and b to label the eigenvalues, then we

can compare the eigenvalues for the Peters-He model as listed in Table 3.1. The

eigenvalues for the Hsieh/Duffy model are listed in Table 3.2.

From Table 3.1 and Table 3.2, we can tell that the eigenvalues for sine part are
the same as the eigenvalues for the cosine part with the exclusion of m=0.

As the block for m=0 is uncoupled with other blocks for y =0, and [M 5}

and [DSJ are the same with [M°] and [D"] exclude m=0 terms, so the

eigenvalues are the same for the rest value of m. In the following, we calculate
eigenvalues for 12 Harmonic numbers, and the records for cosine part are shown in
Table 3.3 and Table 3.4.
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Table 3.1 Eigenvalues for Peters-He dynamic inflow model

(cos and sin parts, 8 Harmonics)

n cosine sine
m 0 1 2 3 4 2 3 4
0 -- -2.006 -- -5.125 - - - -
1 -- -- -3.453 -- -6.632 | -3.453 -- -6.632
2 - - — | -a768| - - | -4768 | -
3 - - - - | -6021 | - - | -6.021
4 -- - - -- -- -- -- --
Table 3.2 Eigenvalues for Hsieh/Duffy dynamic inflow model
(cos and sin parts, 8 Harmonics)
n cosine sine
m 0 1 2 3 4 2 3 4
0 -0.137 | -1.061 | -2.807 | -5.036 | -7.554 -- -- --
1 -- -0.970 | -2.842 | -5.178 | -7.673 | -0.970 | -2.842 | -5.178
2 -- -- -2.188 | -4.487 | -7.041 -- -2.188 | -4.487
3 -- -- -- -3.840 | -6.556 -- -- -3.840
4 - - - - | -5.106 | - - -

Comparing Table 3.1 and Table 3.3, we find that the eigenvalues change

slightly. This slight change is due to the fact that the number of radial terms in each

harmonic is limited by the highest harmonic of interest.

Therefore, changing

maximum N__. changes the number of expansion terms in each series. On the other

hand, a comparison of Table 3.2 and Table 3.4 shows that the lowest eigenvalues are

quite different. This is because that eigenvalue is tending to zero as N, approaches

infinity.
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Table 3.3 Eigenvalues for Peters-He dynamic inflow model
(cos parts, 12 Harmonics)

n cosine
0 1 2 3 4
0 -- -2.006 -- -5.125 --
1 -- -- -3.453 -- -6.627
2 -- -- -- -4.768 --
3 - - - - | -6.020
4 -- -- -- -- --

Table 3.4 Eigenvalues for Hsieh/Duffy dynamic inflow model
(cos part, 12 Harmonics)

n cosine
0 1 2 3 4
0 -0.098 | -0.783 | -2.172 | -4.065 | -6.288
1 -- -0.702 | -2.174 | -4.155 | -6.453
2 -- -- -1.696 | -3.634 | -5.888
3 -- -- -- -3.094 | -5.515
4 -- -- -- -- -4.288

The eigenvalues of Peters-He dynamic inflow model in hover follow a definite
pattern. By regression, we can find the distribution could be described by the

following equation:

=—+—n-""-m 3.8
¢ 16 16 48 (3:8)

3.3 Mode Shapes for Axial Flow

In this section, we will talk about the mode shapes for the Hsieh/Duffy model. In

order to identify each mode with different skew angles, we will calculate the
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eigenvectors first. Here, we only show the real parts the of mode shapes, the
imaginary parts could be obtained follow the same step. The mode shapes of the

inflow velocity for cosine harmonics will be defined as

V=3 [F0PrQy cos(mi7)] (3.9)

m=0 n=

Figure 3-5 The first mode shape of Hsieh/Duffy model

The lowest eigenvalue mode is shown in Figure 3-5, which is axisymmetric in
axial flow. There are no nodes in this mode, which makes it the fundamental mode.
Some induced flow mode shapes contour plots with node lines are shown in Figure 3-

6 to Figure 3-9 at some specific angles for cosine harmonics. Here we only choose

x=0°,30°,60°,90° to show what these mode shapes are like.
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Figure 3-6 Node lines of the 1% inflow mode shape

at y=0°,30°60°90° (cos part)

Figure 3-7 The 2" and 3" inflow mode shape

at y =0° (cos part)
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From Figure 3-5 to Figure 3-9, we can clearly see that the mode shapes are a
complete set of functions on the rotor disk and in the plane of the rotor. In contrast,
the He model of [13] gives only inflow on the rotor disk and thus is only a complete
set of functions on that space. This further implies that the Peters-He dynamic wake
model cannot be used to describe the inflow outside the disk, since no components of
mode shapes off the disk. For the Hsieh/Duffy model, the modes can be used as a set

of basis functions to describe the inflow space outside the rotor disk.
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Figure 3-8 The 2" and 3" coupled inflow mode shape

at y =30°,60°,90° (cos part)
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Figure 3-9 Node lines of the 50" inflow mode shape
at y=0°30°60°90° (cos part)

For the sine modes, we still follow the procedure for cosine part. Compared
with the cosine modes, we can obtain the induced flow mode shapes from the sine

equations of motion.

V=" 4rR"Qr sin(mi7) | (3.10)

m=0 n=m
Figure 3-10 to Figure 3-12 show the plots of 1%, 20", 40™ mode respectively at
typical skew angles for sine harmonics. Through the node line of the contour, we can

see the characteristic of each inflow velocity mode and how they affect each other.
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Figure 3-10 Node lines of the 1* inflow mode shape
at =0°,30°,60°,90° (sin part)

30



Figure 3-11 Node lines of the 20™ inflow mode shape
at y=0°,30°60°,90° (sin part)

Figure 3-12 Node lines of the 40™ inflow mode shape

at  =0°,30°,60°,90° (sin part)
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The time responses for both Hsieh/Duffy model and He model are shown in

Figure 3-13 compared with exact response at X=0.5,y =0,z =0 with 8 harmonics.

We can figure out that both models work well for step responses. But Hsieh/Duffy
model is much better, since it converges much quicker than He model, as the
eigenvalues for Hsieh/Duffy model are much smaller than those in He model.
However, the Hsieh/Duffy model exacts this added accuracy at the cost of twice as

many states and with a system that is not as well-conditioned as the He model.
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Figure 3-13 Step responses with different models
for 7/ (8 harmonics at x=0.5,y=0,2=0)
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Chapter 4 Inflow Below the Disk

4.1 Exact Solution for Frequency Responses

The linearized potential flow equations can be written in nondimensional form as:
N N -
—+—=-VP (4.1)
or o0&

where equation (4.1) is the momentum equation, V is the local induced velocity

vector, 7 is nondimensional reduced time, & is the stream-wise direction (positive

downstream), and P is the pressure field. It is assumed that the velocities are
expressed as the gradient of a potential function, thus ensuring continuity. The
derivation here is to show that, if one knows the velocity field in the upper

hemisphere £ <0 (i.e., by the method of the previous section) then one can find the
velocity in the lower hemisphere, £>0. We begin with a derivation for the case of

frequency response, and then Fourier Transform arguments will be used to extend the

solution to the general time domain.

The solution for simple harmonic excitation is found from a complex harmonic
balance applied to the momentum equation. We express the velocity as the real part

of a complex quantity.
V(X y,2,7)=0(xY,z)e" 4.2)
where & (x,y,z) isacomplex number and it is implicitly assumed that one takes only

the real part of the right-hand side. Further assume that the complex pressure field P
can be written as the summation of terms that includes both pressure discontinuities

and mass injections:

(x,y,2,7)= ii[ "oy (v,1, W)]ei“” = Pe'" 4.3)

m=0 n=m
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where @' are a complete set of potential functions with discontinuities across the

disk, and terms with m+n odd represent pressure discontinues across the disk and

terms with m-+n even represent mass sources at the disk.

To obtain a closed-form frequency response, one can expand o into real and
imaginary parts.
O(Xx,y,z)=0(x,Yy,2)+iW(X,Yy,2) (4.4)
Substitution of equations (4.2) and (4.4) into equation (4.1) gives

ou(x,Y,2) Vi oW(x,Y,2)
e o0&

One can collect the real and imaginary parts of the equation to give expressions

io[U(x,y,z2)+iW(xy,2) ]+ =-VP (4.5)

for the real and imaginary parts of the flow.

—ou+ M - 5p (4.6)
0¢
ol+—=0 4.7
o (4.7)
Solving for U from equation (4.7) and substituting it back into equation (4.6),
we have

2=
IW | =P (4.8)

g

Similarly, solving for w from equation (4.6) and substituting it back into the

derivative of equation (4.7) gives us

2—
9 a=-25p (4.9)
o0& o0&
A Laplace transform in & of equations (4.9) and (4.10) yields
-~ S g
U(s)=- VP (s 4.10
(5) =~ VP (s) (4.10)
W (s) =———VP(s) (4.12)
s* + 0’ '
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where W (s) is the Laplace transform of W, U (s) is the Laplace transform of G and

VP (s) is the Laplace transform of VP .

Based on the convolution inverse of a Laplace transformation, we have
. o )
u (C(), XO! yO’éZO) = _J._oocoslia)(éro _§)i|vp (§)d§
. ﬁfo . —
W(a), Xgs yo’égo) = J_wSIn [a)(ﬁo —f)]VP (gt)df

Note that the only boundary condition on the flow is that the flow approach

(4.12)

zero far upstream (& =—). Thus, the lower limits are set at —o. The physical
meaning of equation (4.12) is that, to obtain the exact solution, one must integrate the
gradient of the pressure field along a streamline from far upstream down to the point
within the flow field for which that component of velocity is desired. For the real

part of the flow, the integral includes the kernel cos[a)(go—f)], and for the

imaginary part it includes the kernel sin[ o(& —&)]. Note that, for axial flow, &£ =1z.

The above approach is not tractable for use in practical rotor calculations.
However, it is useful to have both as a way to determine an "exact" numerical
solution against which to compare finite-state solutions (and this has been done in
previous work) and as the theoretical basis for an exact time-domain solution. Thus,
the utility of equation (4.12) is in its usefulness in a proof of how to find the flow

below the disk, as will be outlined below.

4.2 Adjoint-states

In the derivation of the next section, we first define the adjoint velocity above the
rotor disk which will be used to find the velocity below the disk. Thus, in this section,
we demonstrate how to find the velocity and the adjoint velocity from Morillo’s
modified model, Ref. [6]. The momentum equation for a skewed flow in the Morillo

derived potentials is:

(e [0 [T [ e} (0o} (413



Here, we only consider the case of a harmonic cosine pressure input; the sine
part can be found by a similar procedure. Suppose the unknowns are expressed in
complex notation as the real part of a substitute problem where the barred quantities

are cosine and sine coefficients.
" =(ay +ib")e" =a) cos(wr)-b"sin(wr) (4.14)
¢ =7, cos(wr) (4.15)
For the sake of the derivation to follow, we also define tilda-quantities as the
barred quantities multiplied by cosine and sine.
ar =a’" cos(wr);b" =—b,"sin (o) (4.16)
It follows that a)" =& + Bnm . Substitution of equations (4.14), (4.15) and (4.16)
into (4.13) yields
~o|M° |{a'}sin(o7) -0 M° |{b]"| cos(ar)
s[o ][] [Me]{ar cos(wr)-[ D[] [Me] (B} sin(wr)  (417)
=[ D° {77} cos(er)
As equation (4.17) should be satisfied at any time, so the coefficients for cosine

and sin terms at both size of the equation should be equal. Collecting the coefficients

for cosine and sin terms, we have

cos: - M°]{B}+[ D[] [M]{ar} = [0 ]{z")
sin:—o[M* {7}~ D°] M* |{b"

n

(4.18)

which are equivalent to

Jiie oo [ Jl) [0} e

[M°]{a;“}+[o°][[°]‘l[w|C]{B:‘}={0} (4.20)

We substitute (4.20) into the following adjoint equation
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[ o] [ far
=-[D ][] M b} sin(we)+[ D] [E ] [Me]{ar}cos(wr)  (421)
[0 T [

And substituting (4.19) into the same adjoint equation
T o] e i)
:a)[M°]{5nm}COS(a)r)—[Dc][l:c}il[MC}{b:’}sin(a)r)

][L] [M ]{bm}sm a)r) (4.22)

-[p ][L

c ~ 71! c m c mc

=[o°][C ] [me]{ar}-[o i }

We then construct the adjoint to the momentum equation by subtracting

equation (4.22) from (4.21), we have

{A } At =[ D¢ |{z} (4.23)
where AT ={a"}—{b"} ={ay" | cos(wr)+{b }sin(wr).

We can then define the tilda quantities in terms of regular and adjoint variables.

far} = ({ar) +{ar))

i 1 (4.24)
{or} =5 ({arf-{ar})
As we already know that
V(r,&,g,r):(iiﬁnmﬁ‘i’m(v 7771/7)”?,25 Ve (v, w)je“‘”
m=0 n=m m=0 (4 25)



Then we can define the adjoint (or conjugate) velocity as

?(r,y?,é,r):(iianm?‘i’;“(v,n,W)—iiZw:Bnm?‘i’ v, '/’)j
m=0 n=m m=0 n=m (4.26)

0

>3 AV (v )

m=0 n=m

4.3 Velocity below Disk

Assume that one knows the solution of the frequency response outlined above by
some method (such as the finite-state method) but in the upper hemisphere only. We
now wish to show how that solution can be used to find the solution for the complex

velocity in the lower hemisphere. In order to simplify the derivation to follow, we

define the following quantities for —o <&, <0. (Thus, they are defined only above

the disk.)
C(@, %) Yo, &) = J' cos(w& VP (£)dé w2
S(@ %, Y0, &) = _[ sin(@& VP (£)dé |
Not that, for the special case zj =1, and all other m=r,n= j, ;' =0, we can

write from equation (4.27) with no loss of generality.
é(a) ro"//o’go) (a) Xo’yo’égo '[ COS a)f)VCD (§)d§
~ (4.28)
S(a) rm‘/’m?o) (a) X1 Yo1 S0 Z_I Sm a)é)V(D (§)d§

where X, =-r,cosy, and Yy,=rsiny, . We rewrite G(w,x,Y,¢&) and
W(@, Xy, ¥o:&y) S

U(w, 1, 7,,&)=—cos(w&) ﬁcos WE)VP(E)dE - sm(a)fo)f;sin(wf)?ﬁ(é)dé
=0s(&,) ) C (@, %y, Yo, & ) +5IN(0E,) S (@, %, Yo, &, )
W(w, 1,7y, & ) =sin(wé, J: cos(w& VP (&)d¢& —cos(wé I sin(w&)VP (£)dé
=—sin(w&,)C (@, %, Yo, & ) +€0s( &) S (@, %y, Yo, &)
(4.29)

The induced velocity above the disk is then
38



V(.. &, 7) =0 (0,1, &, )cos(w7) —W(w, 1,17y, &, )sin(wr)
=cos(wé&, ) C (@, 1, 17,, & ) cos(wr)+sin (&) S (@, 1, 17, & ) cos(wr)
+sin(w&,)C (@, 1,7, &, )sin(@7)
—cos(w&,)S (@, 1,17, & )sin(wr)

(4.30)
which is equivalent to

V(1,8 7)=cos| o(7 - &) |C(@,1,,17,.&) -sin[ w(r - &) |S (@.1,,1,.&,)

(4.31)
In preparation for the solution of the flow below the disk, we now need to

compute C and S from the finite-state solution above the disk. Since the Morillo
states are complex for a frequency response, they are broken into real and imaginary

parts @" and b™. This gives:

= ( ) (a) ro’Wo’fo)"‘S'n(wégo) (a) ro"//o’fo)
Wa)ro’l//O'%Zo :ZZ V77‘//)

=—sin(w&,)C (o, 1,7y, & ) +0s(wé&,)) S (0,1, 17, &, )

(4.32)

where v,n,i7 is the ellipsoidal coordinate location of r,,i7,,& ; and W™ is the

derived Morillo velocity potential.

Therefore, Equation (4.32) allows us to express the C and S integrals in terms
of the known finite-state result.

ar Cos(a)cfo)@‘i—‘: (v,n,tﬁ)—iZBnm sin (a)fo)ﬁ‘i’nm (vin.7)

M
M

Cﬁ:(a)’ r011/70"50):

m

\é
=1
]
3
i
o
>
]
3

a7 sin (&, ) VP (v,n,7)+ 3 S b cos (s, ) VT (v, 7)

M
M

§(a” ro"/70’§o):

il
o
>
I

3
3
I

o
>
I

3

(4.33)

The above are valid above the disk plane which is for —o <&, <0. However,

below the disk, where & >0, we must integrate equation (4.28) from upstream down
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to the disk of the rotor plane and then below the plane. For simplicity, we will
assume the single term P =-®', where ®' =P/ (v)Q](in)cos(ry). Since any

pressure can be represented as a sum of these, as in equation (4.3), this assumption
poses no restriction on generality. The below-plane result is:

U(,1, %, &)
= [ cos[w(& ~&) o) (£)d
= cos(a)fo)fwcos(a)f)ﬁcbrj (§)d§+sin(a)§~0)fmsin(a)§)?q)} (&)de
+c0s (&, ) J‘é’cos a)g)@d)r.(§)d§+sin(a).fo)j&’sin(a)f)?q)rj(f)df
= c0s(w&,)C (@, 1,,1,,0)+sin(wé&,) S (@, 1,,%,,0)
+cos(wé, IO cos(wE VD' (£)dé +sin(ws,) Ij"sin(wf)ﬁ@}(g)d.f
W(w, 1, Wo &)
=—[*sin[w(&,-&) o5 (£)dg
=—sin(wé,) [ cos(wf)Va](&)dé +cos(ws,) [ sin(ws Ve (£)ds
—sin (&) F"cos WE VD' (E)dE +cos( &) f%in(mf)?d)}(f)dé
=—sin(w&,)C (o, 1, i7,,0)+cos(wé, ) S (,1,,i7,,0)
—sin (¢, IO cos (& VO (£)dé +cos(wé, IO sin(@& VO (£)dé

(4.34)
where the integrals are broken into two parts: one from downstream infinity to the
disk, and one from the disk to the desired point below the disk. However, due to the
symmetries in the system, we can write the integral segments below the disk in terms

of integral segments above the disk. Thus, for &, >0:

J;7 cos(@2)V; (£)dE = (<) [ cos(we )V (¢)de
:(‘1>j+l[c(w 70:0)~C (@117,

ijSi”(waCDrj(i)df j sin (Vo' (£)d&
Z(—l)’[s(w 0 76,0) =S (.5, 01—,

(4.35)

(¢
S
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The reasons for the form of equation (4.35) are as follows. First, with the

exception of sign, the downstream streamline emanating from ry,y, is identical in
functionality to the upstream streamline emanating from r,,y, (where v, =y, + 7).
The differences in sign are due to the following

a) For r+ j odd, the pressure potential is of opposite sign above and below the

disk, whereas the gradient of pressure is the same sign above and below the

disk. For r+ j even, the opposite is true. Since the integrals involve gradient

of pressure, there is a factor of (~1)"'"
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3 .-
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v N ~
: N b N \
X l\ bRy .
i :\
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‘,—‘— v a
.- £®
20
v Z

Figure 4-1 3-D Perspective of Co-states

b) The fact that 7, is on the opposite side of disk as i, implies that every i
along the upstream streamline will differ by z from y along the downstream

streamline. Therefore, the sin(ry) and cos(ri) terms in @} will yield a

factor of (-1)".
Consequently, we have a total sign change for the cosine integral of:

Sign _ (_1)r+j+1(_1)r _ (_1)2r+j+1 _ (_1)j+1 (436)
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An extra (1) appears in the sine integral because sin(w¢)=-sin(-w¢) .

Thus, the terms (—1)j+1 and (—1)j appear in the last lines of equation (4.35). We
then have from equations (4.34) and (4.35) that the U and w for &, >0 are:
U(w, 1. &)
= 0s(5,){C (0,17, 0)+ (-1) [ € (0,117, 0) - C (@, 17,5, ||
+5in (05 ){S (0,15, 7,0)+(-1)' [ § (@.1,7,0) S (0.5, 70, &) ]}
W(w, 1,7y, &)
= —sin(w, {6 0,13,73,0)+(-1)" [ € (@,1,17,0) - C (@, 117, -%,) |}
+008 (0% ){S (.1, 7,0) +(-1)' [ S (,1,17,0) =S (@, 1,170, -5 |}

(4.37)

Note that the above terms from the integrals below the disk are rewritten in

terms of integrals above the disk (i.e., the terms with (—1)j or (—1)"+1 which are
functions of 7, rather than of y,). These mirror the y, terms with the exception

that the C terms are multiplied by (~1)'"" while the S terms are multiplied by (1)’

As a result of these sign differences, when we put the complex below-disk velocity

from equation (4.37) back into the time domain—as was done for the above-disk
velocity in equation (4.30)—the terms involving sin[a)(r—fo)] are of the opposite
sign from those in equation (4.31).
V(. 075.6.7)
=cos| w(r-&)|C(a,1,,7,.&)-sin[ o(r-&) S (@.1,,7,.&)
+(—1)j+1{cos[a)(r—§0)]é(w 7, 0)+sin[ o(7- &) |S (a, ro,wo,o)}
—(—1)”1{cos[a)(r—§0)] (0,1, ) +sin[ @(7 - &) ]S (o, ro,:/70,—§o)}
(4.38)

From equation (4.38), one can write the general, time-domain version of the

induced flow below the rotor disk.
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v(r011/70’§017):V(rovl;o’ovf_é:o)+V*(ro"ﬂo’o’f_‘:go)_V*(ro’Wo’_go’T) (4.39)

where V" is (—1)"+l times the velocity that would be obtained from the adjoint

equations (i.e., the equations with a negative sign on the time derivatives). This
equation (4.39) is the fundamental result of this derivation and represents the general
form of the velocity below the disk in the time domain and/or frequency domain. As

shown in Figure 4-1, V(r,,%,,&,,7) is the velocity below the rotor disk at point a
along the streamline; V(r,,17,,0,7—&;) is the velocity at point b where the free
streamline intersect the rotor plane; v*(ro,wo,o,r—go) is the adjoint velocity at point
¢ which is centro-symmetric to point b; V' (r,,17,,—¢&,,7) is the adjoint velocity at
point d which is centro-symmetric to point a. In other words, it is:
V' (r,7.&,7)=(-1)""[dcos(wr)+Wsin(wr)]
=(—1)”1\?(r,z/7,§,r)

where V is defined in (4.26) as conjugate velocity.

(4.40)

The reason that equation (4.38) can be generalized to equation (4.39) is that any
general time-domain solution can be expressed as a Fourier Transform in terms of
frequency components. Since equation (4.38) is true for any frequency in the

transform, then it is true in general for the inverse transform when written in terms of

V' as in equation (4.39). In the general time-domain solution, V" is defined as the
solution to the adjoint equations—i.e., the solution of the differential equations in

which the time derivative terms are multiplied by (-1). In addition, this adjoint
velocity is defined for the condition in which each forcing function in those time-
domain equations—i.e., each 7" () in equation (4.3)—is multiplied by (—1)"+l in

the forcing functions of the adjoint equations, which is exactly as the following

equation:
[ [T el ) o]

Then the conjugate velocity could be expressed as
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V(rw, &)= iiZW\i’? (V,7,%) (4.42)

It should be noted that the solution in equation (4.39) does not include the jump
in velocity across the actuator disk due to the mass sources. The purpose of this
dissertation is strictly to present the potential flow solution.

4.4 Results for Axial Flow

Axial flow results are shown here to illustrate the effectiveness of the new method.
Results include both step-response solutions and frequency-response solutions for a
variety of pressure loadings; and the results are compared with closed-form solutions
above the disk, in the plane of the disk, and below the plane of the disk (both in the
wake and outside of the wake). Several example correlations are given in the figures
appended to this abstract.

Figure 4-2 to Figure 4-7 show the real and imaginary part of the z component
of flow (perpendicular to the disk plane in the direction of the free-stream) for a

frequency-response of the pressure field. Each set gives the real part and imaginary
part of the response (i.e., the cos(wz) and sin(w7) coefficients). Velocity is plotted
on a plane one rotor radius below the rotor disk z=1 (£ =1) where the rotor wake is

the region —-1< x<1.

Figure 4-2 and Figure 4-3 are for an elliptical pressure oscillation, and Figure
4-4 and Figure 4-5 are for oscillations of a cyclic pressure distribution. Velocity
distributions are shown for both static pressure (w=0) and for dynamic pressure
(w=4). Even though there are several kinks in the exact velocity responses for

dynamic pressure, our co-state method can still match these kinks very well.

Figure 4-6 and Figure 4-9 give the normal velocity versus z both at x, =0.5
(i.e., on a streamline passing through the disk at r; =0.5) and at the point x, =1.2
(i.e., a streamline that is outside of the disk, passing through r, =1.2). Figure 4-6 and

Figure 4-7 are for an elliptical pressure distribution, while Figure 4-8 and Figure 4-9
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are for a cyclic pressure distribution. Negative & is upstream (above the disk) and
positive & is downstream (below the plane of the disk). For all these figures, the

velocity begin oscillating while £ is bigger than 0. X, =0.5 is within the wake, and

X, =1.2 is outside the wake region.

Figure 4-10 to Figure 4-13 show the results for comparisons of the co-state
method with even terms equal to odd terms against results for no even terms for a

large skew angle ( ¥ =75°). The blue solid lines in each figure are obtained with the

whole matrix, which contains both even and odd terms, while the red dash lines are
based on odd terms only. Figure 4-10 and Figure 4-11 are for static pressure (w=0),
and the results from both methods are almost exact with the results from convolution
method. Figure 4-12 and Figure 4-13 are for dynamic pressure (@ =4), however, the
results with even terms are much more accurate than the results with only odd terms

on the disk region.

Figure 4-14 and Figure 4-15 are responses to a step input in elliptical pressure
versus time within and without wake region. Figure 4-14 is velocity at a point one
radius below the disk and 0.5 radii from the center, and Figure 4-15 is also at one
radius below the disk, but 1.2 radii from the center. Figure 4-16 and Figure 4-17 are
step responses for cyclic pressure distribution at one radius below the rotor disk, and
Figure 4-16 is within the wake (x=0.5) and Figure 4-17 is outside the wake
(x=0.5).

Figure 4-18 and Figure 4-19 are velocities versus streamline location at a
reduced time of =1 at 0.5 radii from the center and 1.2 radii from the center
respectively. Figure 4-20 and Figure 4-21 are snapshots for the responses for a cyclic
pressure at fixed time 7 =1 within and without wake region. The figures reveal the

establishing process of the inflow blow the rotor disk.

Since at the time 7 =1 the wake region is not fully developed, we will take a

snapshot of 7 =10 to see what a fully developed wake region would be like. Figure
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4-22 and Figure 4-23 are velocities along streamline at a reduced time of 7 =10 at
0.5 radii away from center for elliptical and cyclic pressure distribution. From Figure
4-22 we can tell that the velocity at the rotor disk (which is £=0) is around 1.49,
and the fully velocity value is around 2.96 (at £=5). The numerical result is
consistent with the well know conclusion from momentum theory for rotary wing
systems that the induced velocity in the far wake is as twice as the velocity at the
rotor disk. The same thing for Figure 4-23, which is with —1.18 at the rotor disk and
—2.37 in the far wake (at £ =5).

For all the figures, an exact solution is compared to the finite state solution with
20 regular states (10 odd and 10 even functions) and 20 co-states. One can see that
the agreement is virtually exact. For the frequency response, even the discontinuity
in slope at the wake edge is found correctly. For the step response, the convection of
the start-up system downstream is also found correctly—both in and out of the wake.

In Morrilo’s desperation, he showed that the velocity also converges upstream (& <0

and no co-states required); while the present results show that, with the co-states, the

velocity also converges below the plane of the rotor disk (& >0) both inside and

outside of the wake.

The cost of completing the inflow theory is adding more states to calculate the
additional information. For a case in which one is interested in four harmonics of the
flow (along with the appropriate number of radial expansion terms), the He model
(with only odd functions) would require 15 inflow states for the normal flow on the
disk (for both cosine and sine terms). In order to compute all components of the flow
above the disk, one must add the even functions, which increases the number of states
to 30. In order to compute the flow below the disk, one must additionally compute

the adjoint velocity field from another 30 co-states (60 states in all).

One point of importance is that, once the original states are found, the co-states
often follow in a trivial manner. For frequency response, the adjoint is just the

complex conjugate of the complex velocity field; and for a step response, each co-
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state is a constant minus the original state. Even for general cases, the solution of the
co-states always involves less numerical effort than the computation of the states
themselves. In particular, the co-states are only needed for past time, with the range
of past time equal to the depth into the wake for which the solution is desired. This

can be seen in equation (4.39) in which the flow at a point &, depends on the co-
states at the time at which that flow particle was at the rotor disk, 7—¢&,. Assuming
one has saved the forcing functions from that duration of past time and then
multiplies each z; by (—l)”l, then the computation of the co-states involves solution

of a set of linear equations uncoupled from the rest of the rotorcraft simulation. This
makes the computation very straightforward. Furthermore, since the linear adjoint
equations are unstable, one time marches backwards from the present time back to
7 —¢&, with zero initial conditions at the present time. It can be shown that equation

(4.39) cancels the homogeneous part of the adjoint solution, so that the initial

conditions on this computation are irrelevant.
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4.5 Results for Skewed Angle Flow

Results will now be presented to show velocity fields as obtained by the new
methodology below the rotor disk for skewed angle. Here, only the z component of
skewed flow are presented for a variety of pressure loadings; and the results are
compared with closed-form convolution solutions in the frequency domain below the
plane of the disk both in the wake and outside of the wake.

Two skewed angles, y =30° and =75, and two frequencies, =0 and

w =4, are considered for the velocity perpendicular to the disk plane in the direction
of the free-stream. Velocity is plotted on a plane one rotor radius below the rotor disk

& =1 where the rotor wake is the region 1< x, <1.

For the results labeled "Co-State Method" (i.e., with the adjoint variables used
to compute the velocities), we set the maximum harmonic number to 10. Figure 4-24
to Figure 4-31 show the real and imaginary parts for a frequency-response of a

pressure field with different skew angles. Figure 4-24 through Figure 4-27 show the
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frequency response to the first collective pressure input, ®?. In Figures Figure 4-24
and Figure 4-26, there are no imaginary parts in the solution since they are for the
responses of static pressure (w=0). In Figure 4-24 and Figure 4-25 ( y =30°), the
co-state method gives excellent convergence both on-disk and off disk; however, in
Figure 4-26 and Figure 4-27 (y =75°), the convergence of the co-state method is

slow and with oscillations. This is typical also of the convergence on the disk, and
will be discussed shortly.

Figure 4-28 through Figure 4-31 are for oscillations of a cyclic pressure
distribution, @} . Figure 4-28 and Figure 4-30 give the static pressure (@=0)
responses, and Figure 4-29 and Figure 4-31 give the velocity distributions for
dynamic pressure (@ =4). Again, we can see that the results for small skew angle
x =30° is essentially exact, but for large skew angle y =75°, it is still good but not

completely converged. The convergence is better for this cyclic response than it was
for collective pressure response. In general, the convergence of the lowest collective

mode is always the slowest.

Figure 4-32 through Figure 4-35 are responses to an elliptical pressure
oscillation with different skewed angle. The normal component of velocity is given
versus & all at x,=0.5 (i.e., on a streamline passing through the disk at r, =0.5).
Figure 4-32 and Figure 4-34 are with @ =0, so no imaginary parts are displayed. We
can see good agreement between the closed form solutions and the co-state method

within the streamline cylinder which contains the rotor disk.

Figure 4-36 through Figure 4-39 are responses to a cyclic pressure distribution

with different skewed angle. Normal velocity is given versus & with @=4. Here,
velocities are shown both inside and outside of wake region. Again, for small skew
angle (y =30°), we have almost the identical results as from convolution. For large

skew angle (y =75°), the result along a streamline within the cylinder (X, =0.5) is

virtually exact, Figure 4-38; but for X, =1.2 (outside of the rotor disk), a small error
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occurs, Figure 4-39. This follows directly from the corresponding error on the rotor

disk in the Peters-Morrilo model with y =75° (See Ref. [6]).

The error on the disk with the Morillo model has been shown to converge the
best when fewer even terms are included as the skew angle increases). In fact, the
optimum is such that—when all even terms are eliminated at 90° skew angle—the He
result with no even terms is exact. It would therefore seem that the adjoint method
could also be improved by an optimization of even potential functions with skew
angle. (Presently even terms equal odd.)

Figure 4-40 through Figure 4-43, show comparisons of the co-state method

with even terms equal to odd terms against results for no even terms for a large skew
angle (y =75"). The blue solid lines in each figure are obtained with odd terms only,

and the red dash lines are based on the whole matrix, which contains both even and
odd terms. From these figures, one can tell that the results obtained from the co-state
method with only odd terms are more accurate than the ones with both odd and even
terms for big skewed angles. Combined with Figure 4-10 through Figure 4-13 for
axial flow, one will know that there should be an optimized even terms for different
skewed angles. This verifies the findings of Morillo that the number of even terms

should be optimized on the basis of skew angle.
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4.6 Validation against Experimental Data

It will be helpful to review some former results that correlate the theory with real

experimental data from rotary wing systems.

In Ref. [15], the results from Peters-He model were compared with the
experimental data from the laser Doppler velocimetry (LDV) measurements
conducted in the AEROTECH. A two-bladed Bell 212 teetering tail rotor is used for
the test. It compares induced velocity at z=0.04, which is slightly above the rotor

disk, with different radical positions vs. special position.

Figure 4-44 and Figure 4-45 show the comparisons of azimuthal variations in
inflow velocity at T=0.765 and T=0.824. Excellent agreement can be seen
everywhere on the flowfield with the exception of the size of the doublet spike due to
the blade passage. The reason for smaller spikes predicted by the model than in the
experimental data is that the model is truncated to 24 harmonics. When more
harmonics are added, the computed spikes increase, but the lift will stay the same

since the inflow at the center of the doublet remains the same.

Figure 4-46 shows the results with dynamic pitch for a collective mode. The

comparison is good except the spikes near the blade passage again.
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A recent study on a coaxial rotor in hover with finite state models also reveals
the correlation between the finite state models and the experimental data, Ref [16]. In
Fig. 4-47, the Galerkin model predictions of axial and radial flow velocities at various
axial locations from the lower rotor for a separation distance of 0.1D are compared
with PIV data from the experiment. Positive z values represent axial locations below
the lower rotor and negative z values represent axial locations above the lower rotor.
From this figure, we can tell that the predictions of flow velocities from the Galerkin
method based inflow model correlate well both qualitatively and quantitatively with

experimental data.

In Figs 4-48 and 4-49, the thrust coefficient and torque predictions for coaxial
rotor configuration as a function of separation distance are compared with
experimental data for the extended Peters-He inflow model and the Galerkin method
based inflow model respectively. Both methods correlate well with the experimental

thrust measurements over the range of separation distances.
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Figure 4-47 Comparisons of predicted axial and radial induced velocities at various
axial locations with P1V data for a coaxial rotor configuration of 0.1D separation
distance. (The lower rotor is located at z =0 with positive z below the lower rotor
and negative z above it.)
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Chapter 5 More Accurate Model

5.1 Optimization for Even Terms

As discussed in former chapters, the convergence of the co-state method can be
optimized by use of fewer even terms than odd terms, with the optimum ratio a
function of skew angle within the wake below the rotor disk. The convergence of the
results will be determined by comparing the results from convolution with the results

obtained by the co-state method. The error norm is defined as

, '[rrf (v, —v, )" dr

E) =2k
(E) J'rrf vZdr

(5.1)

where v, is the inflow distribution from convolution method and v, is the result from
the co-state method. Here, two kinds of error norms are defined, one is for the on

disk region only (r, =-1;r, =1), and the other one for on/off disk region (r,=-2;

r, =2) atan azimuth angle y .

In order to determine the number of even terms included in the solution, we will
use the table method in Ref [14]. There are four different ways to specify the even
terms: 1) by indicating the number of harmonics, m; 2) by indicating the number for

the highest power of r; 3) by indicating the number of terms for the zeroth harmonics;

or 4) by indicating the index of the highest subscript, n of the @ term. The

relationships of different expressions are as follow:

highest power of r=m (5.2)

terms @ zeroth harmonics=|nt(hIgheSt pcz)wer of r)+1 (5.3)
m+210dd term

Index of highest subscripts={ " S} (5.4)
m;even terms

77



where Int(x) is a function that rounds the elements of x the nearest integer towards

ZEro.

5.2 New Formulation for Q" (in)

Another important aspect of obtaining a converged result is a robust way to compute

Qr (in). From Appendix 2, we know that, the associate Legendre function of the

second kind satisfy the following equation

d 2 d(jr:n m2 _ AM _
E{(Hn ) in }LH]Z n(n+1)}Qn =0 (5.5)

Then for large 77, we just assume that Q" (i) could be written in series as

follows

)

q+2p
n

Qm:i+ A
n q 77%2

n

A,
nq+4

+...+

(5.6)

Then based on the form of Q7" (i), we have

0Qr Az
d_ﬂ:_r%_(r+2)%—(r+4)%—...—(r+2p)nq+2p+1 (5.7)

And we have the second derivative of Q" (ir7) could be represented by

d2qQr
i~ :q(q+1)nf§2+(q+2)(q+3)n’j§4+(q+4)(q+5)77’j36+...
A (5.8)
+(Q+2p)(q+2p+1)nq+zﬁ+z
We also know
1 11 4 1101 1)1 1.1 1.
1472 7 1+i _772 AT _772 A A (5.9)

Then substitute (5.6), (5.7), (5.8), (5.9) into (5.5), suppose Y = l, then we have
n
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q(q+1) A" +(a+2)(q+3) A Y™ +(q+4)(q+5) A Y +...
q(q+1)AY +(g+2)(q+3)AY" +(q+4)(q+5) A Y +...
—20A Y —2(q+2) A Y2 —2(q+4) A YT — ..

+[m2(1f2 ~Y'+Y* 4. )-n(n +1)}(Aqu + A YT AT )
=0

(5.10)

As Y is positive for any n (77 is positive), then the coefficient for Y* should

be zero in order to satisfy (5.10), which means

The coefficient of Y9 :
q(aq+1)AY*—29A Y —n(n+1)A Y =0

(5.11)

which requires q(q—-1)=n(n+1), as n could be any integer that bigger than zero,

which means g=n+1.
The coefficient of Y%*2:

q(a+1) A Y2 +(q+2)(q+3) A Y2 =2(q+2) A X"+ m*A Y
—n(n+1)A Y =0

which is
_ q(q+1)+m?
A (n D) +2(a+2)-(9+2)(q+3) "
Substitute g =n+1, then we have
~ (n+1)(n+2)+m? ~ (n+1)(n+2)+m’
A i 2(n3)_(ne3)nid) 0 2(2nsz) ¥

Then by the same procedure, we know that the coefficient of Y%**

(q+2)(q+3) A Y +(q+4)(q+5) A Y™ -2(q+4) A Y
+m?A Y —m A YT —n(n+1) A Y™ =0

Express A, with A;, we have

_ m? +[mz+(n+3)(n+4)][m2+(n+1)(n+2)]
* | 4(2n+5) 8(2n+3)(2n+5)
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Follow the same steps, we can derive more coefficients, with which the

calculation for Q™ could be more accurate.

5.3 Results with Optimized Model

The model we use here is truncated with 20 harmonics. The errors for z component

are given in the figures. These results are all obtained at & =1.

Figure 5-1 and Figure 5-2 show the error norm in the axial flow component of
induced velocity in axial flow at w=4 for a pressure distribution ®,. From Figure
5-1, we can tell that by adding two even terms, the error norm is reduced dramatically,
from its original value of 26.0% down to 10.0%. The error will keep reducing with

the even term increasing, which means the more even terms in this case, the smaller

the error norm will be. The minimum error will be obtained while we include 9 even
terms. For the on/off disk error, which is —2<Xx, <2, we can observe almost the

same phenomena that the error goes from a very big number (42.9%) with no even

terms straightly down to 0.3% when even terms with 9 at the index is included.

Figure 5-2 is the error norm for the first cyclic pressure distribution @ at

frequency w=4, which shows a similar result for ®;. In this case, only 2 even

terms are enough to reduce the on-disk error to about 1%. The on/off disk error goes

from 30% to 0.3% when 10 even terms are included for m=0 harmonics.

The analysis for axial flow cases reveals that choosing proper number of even
terms may dramatically decrease the error norm for different pressure distributions. It
will be helpful to analyze the behavior of the convergence for steeper skew angels to
find what numbers should be chosen for different cases. In order to find a proper

pattern description for even terms, we will do the same analysis for skew angle

¥ =30%and y=75°.
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Figure 5-3 shows the on disk and on/off disk errors when the input is ®! at a

frequency w=4. In this case, maximum error is 22.7%, also with no even terms and
the minimum error is 0.6% with 9 even terms involved in the solution. In this case,
the maximum error and minimum error are both smaller than what show in axial flow.
It is indicated that error introduced by the Peters-He model decreases as the skew
angle increases. The on/off disk error has a similar behavior. The almost same
phenomena for cyclic pressure distribution under small skew angles is shown in
Figure 5-4. The difference is that the minimum error is with 11 even terms, which

odd terms equal to the even terms.

Figure 5-5 and Figure 5-6 are error norms for elliptical pressure distribution and
cyclic distribution with deep skew angles, ¥ =75°. In both figures, we can tell that

the model converges slowly. In Figure 5-5, without even terms, the error is 14.0%,
meanwhile the error is 32.0% with 2 even terms. The error with a small number of
even terms included in the solution is lower than the one obtained with a large
number of even terms. However, with adding more even terms, the error is tending to
get smaller. With 9 even terms, the error is 14.5%, though not the minimum point, it
is only slightly bigger than the result without even terms. For on/off disk error, it is
obvious that more even terms make the error smaller till the number reaches 8. In
Figure 5-6, the minimum on disk error will be 7.4% with 10 even terms compared to
a small bigger error 8.2% without even terms. For the on/off disk error, it goes from

55% without even terms monotonically down to 21.1% with 10 even terms.

From the above figures, we can tell that the for different skew angles, the model
may require different even terms to minimize the errors, and with small skew angels,
more even terms are needed, and for big skew angels, less even terms should be
included. However, for big skew angles, there is still a comparable small error norm
with even terms. For real simulation system, the helicopter may change fly status
quite often and it will be much more convenient and practical if we can choose a fix
number for even terms instead of choosing it as a variable of skew angles while we

can still have a relative small error. By comparing, we found that limit the number of
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even terms to 9 for m=0 harmonics works well for almost all cases without losing too
much accuracy. And the on/off disk error also benefits from this chosen based on the

error curve shown in the figures.

We would also show the results from the optimized co-state method and the co-
state method with odd terms equivalent to even terms compared with convolution
result. Figure 5-7 compares the frequency responses for the first elliptical pressure
distribution. In this figure, we can tell that the optimized method not only did well at

on rotor disk region, but also at off disk region. The isolation around x, =—-1.5 is
because of the error in computation of Q" (in7) for large 7, which is also mentioned

in Ref. [17]. Figure 5-8 compares the frequency responses of the first cyclic pressure

distribution.

In order to minimize these errors and make the calculation for Q" (ir7) more
accurate and robust, we develop a new scheme for calculating Q™ (ir7). In Figure 5-9,
it is displayed of a comparison QZ, (ir7) (since it is the worst case for 20 harmonics)
by different methods. ng(in) will blow up around 77=1.08 with the iterative

method in Ref. [17]. Here, we will switch to our new method at 77 =1 and maintain
the part with 77 <1 from the recursive method. We can see from the figure, after the

switch at 7 =1, our method still converges well.

Based on the new scheme for Q™ (i), we can go deeper within the flow field

without blowing up and losing accuracy. Figure 5-10 shows the result of comparison

with different schemes for Q" (ir7) with the optimized co-state method for elliptical
pressure distribution. It could be seen that for X, <0, the result with old scheme
diverges, however, the result with the new scheme for (jr:"(in) keeps the inflow

distribution follow the convolution result. Figure 5-11 is the comparison of the

optimized scheme with different formula for Q" (in) for cyclic pressure distribution.

Even though the osculation is not as strong as what displays in Figure 5-10 with the
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old recursive method to calculate Q;' (ir7), with the new formula for Q[ (i), the

result behaves much better.
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Chapter 6 Finite Blade Responses

In this chapter, we apply the model to more practical examples in which pressure
spikes from a finite number of blades are rotating around the azimuth at constant

speed.

6.1 Finite Blade Systems

The fundamental fluid mechanics of the model is based on the potential-flow
functions, and the detail of the theoretical derivation of this unsteady dynamic model
is derived in Chapter 2 and Ref [6].

In general, the induced velocity at the disk in terms of harmonics will be
{a;”( o)V (oren, + 7o), )

6.1
+bm( )V( mq)ms +c (Dms) ( )

n+1
and the coefficients a; and b could be derived from the following governing
differential equations

[ {ar [0 ][0T [ fer)

mc

Il
O
3}
L1
—~—
N
=]
——

e o e o e
where
g YL (e () ©3)
ziqimq ro o) (v) dr cos (my, ) (64)
= 2SI sl &

with ¢ (v) the radial expansion functions P," (v)/v, wherer =+1-v7 .

In order to predict the inflow below rotor disk for finite blade systems, it is
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advantageous to rewrite the inflow model in the rotating systems. In order to do that,

a reference blade needs to be selected first, and then the azimuthal position of any

blade w, could be represented according to the reference blade

w, =+, =t +y, (6.6)
where 7 is the position of the reference blade in the nonrotating system and
- 27[
q-1 (6.7)
=3 (a1

Thus, for a case with constant blade loading, it is convenient to write the

unsteady 7, (T) in terms of constant unsteady 7's.

c=A0c:_zJ' rr)¢0

¢ =7,° cos(mt')— 7, sin(mt) (6.8)
" =7y sin(mt)+ 7, cos(mt)
where
18

e =;ZJ':Lq (r.z)y (v)dr cos(my, )

q=1

e :—ZJ‘ (r.z ) (v)drsin(mg, )

Note further that Eq. (6.2) IS in reduced time 7, therefore, one needs to write

cos(mt) =cos {\%}
sin(mf):sin{%}
6.2 Relationship between Different Systems

(6.9)

For typical helicopter applications, the angle of the vortex sheets leaving the blade is

small such that cos(¢)=1. However, in cases for which there is significant inflow,

Figure 6-1 and Figure 6-2 show how the induced flow of the actuator-disk model
correlates to the flow on the actual vortex-system of the rotor. On the actual rotor,

the lift is perpendicular to the sheet creating a combination of axial and swirl velocity
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that gives an induced velocity along the same direction as the lift, as shown in Figure
6-1. This tilted lift is applied perpendicular to the actuator disk as shown in Figure 6-
2. The average induced flow perpendicular to the disk is w which corresponds to the

tilted inflow vector of the true rotor system.
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Figure 6-1 Inflow veloctity components  Figure 6-2 Inflow veloctity components
for physical rotor for actuator disk construct

Interestingly, although the actuator disk can create no net angular momentum
(and thus no net swirl velocity), results show that there is positive angular momentum
between the momentum sheets and then negative angular momentum within the
sheets—which appears as an impulse in velocity along the sheet. If that velocity is
subtracted from w, the resultant flow has a component of angular velocity normal to
the sheet that is identical to the Glauert prediction of what the angular velocity must
be, as shown in Figure 6-1. Thus, the results from the actuator disk theory can be
used directly on the true rotor by tilting the velocity vector between the momentum

sheets by the appropriate angle, ¢, as postulated in Ref. [18]. The result is a

rigorously exact solution for both axial velocity and swirl velocity.
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6.3 Results for Axial Flow with Finite
Blades

The results will be presented with 2 blades and r =0.8 with axial flow only. The
three components of velocities for both the inflow above and below the rotor disk are
given in the figures. The model is truncated at 24 harmonics. There is an optimum
combination of even and odd harmonics for maximum accuracy, as illustrated in
Chapter 4. Here, we use the case of only odd terms and no even terms and do not

pursue an optimum solution.

Figure 6-3 to Figure 6-5 show the three velocity components of inflow versus
time on the rotor disk at point r =0.8, w =0° in space, where the detection point
actually locates. The time t =0 represents the time at which the blades are parallel
with x -axial, which is also y =0 axial. Figure 6-3 to Figure 6-5 show z component,

w component, and r component respectively. In Figure 6-3, there is a doublet spike
around t =% (or t_=37”), which is due to the rotor blade passage. The impulses in
Figure 6-4 and Figure 6-5 are also caused by passing of blades.

Figure 6-6 to Figure 6-8 show the inflow within the wake at one radus below
the rotor disk at the point r=0.8, y=0°. We can see v,, v, and v, all have
impulses at the vortex-sheet passage followed by oscillations between the passages.
The average velocity for v, is 0.3067, which is almost 1.73 times of the average
velocity at the rotor disk (v, =0.1772). [This is not far enough downstream to reach

the familiar factor of 2 increase in velocity.] We can see spikes in Figure 6-5 and
Figure 6-6, and the peaks of the spikes locate near t =1 since the phase shift for the

spike should be the same as the depth within the wake region.

Figure 6-9 to Figure 6-11 are about the inflow two radii below the rotor disk at

r=0.8, w =0°. The average velocity of z component is 0.3390, which is 1.91 times
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of the average velocity at the rotor disk. This is very close to the well know result

from momentum theory and could be treated as fully developed. We notice that v, is

decreasing along the streamline, from -0.1853 (z=0), -0.0277 (z=1) to -0.0075
(z=2). This variation could be used to describe the fact that the wake region is
contracting.

In order to analysis the effect of blades, we now introduce V, and vV, , which are
the velocities between blade passages in the z direction and y direction,
respectively. Suppose w is the velocity downstream. We can predict what V, and
v, should be (based on translational and angular momentum theory) since the total

velocity must be perpendicular to the vortex sheet. By the comparing of a real
physical rotor system (shown in Figure 6-1) and actuator disk construct (shown in

Figure 6-2), we can relate the velocities in these two figures, yielding the expressions

V, =w*sin(p)*cos(p) and ¥, =w*sin’(¢p) . For the case r=08 ,
tan ()= WF% =0. 0.8+ Which means ¢ =7.1°. So that we can calculated V, =0.006

and vV, =0.044 . Here from numerical integrations, we have V,=0.0093 and
v, =0.0564. Even though the result we have here for w is not the final converged
value, we can still tell the evaluate values for V, and V,, are close enough. This

further means we can use the result in actuator disk theory to predict the angular

momentum in real systems.

Figure 6-12 shows the changing of v, along the free streamline with 0.8 radius

away from the center. We can tell from the figure that at one radius above the disk
(z=-1), v, is almost O; on the disk, the value is 0.0284 compared with 0.0564 far

away from the rotor disk (z=2). These numerical results are consistent with the
Glauert prediction that full angular momentum just below the disk is twice the
angular momentum at the disk. The angular velocity increases as the flow

approaches the disk and passes through it. The figure shows close agreement with
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the Glauert prediction of “no angular momentum above the disk, and full momentum
just below the disk that does not change through the wake”.
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Chapter 7 Summary, Conclusions and
Future Work

In the first part of this work, the eigenvalues and mode shapes of finite-state
inflow models have been studied by eigen-analysis. The visualizing of mode shapes
provides us a better understanding of the rotor wake mechanism. The eigen-analysis
also shows the inflow harmonics are highly coupled at larger wake skew angles. The
structure of the mode shapes outside the rotor disk enables Hsieh/Duffy inflow model
to describe the velocity distribution outside the disk. The eigenvalues of Peters-He
model change slightly and converge quickly with the number of expansion terms, and
an easy way to estimate these eigenvalues is also established. A formula for
estimating the eigenvalues in axial flow is shown by regressive method. Though
Hsieh/Duffy model converges much more quickly than Peters-He model, it exacts
this added accuracy at the cost of twice as many states and with a system that is not as

well-conditioned as the He model.

In the second part of this work, finite-state inflow models have now been
extended such that the flow can be computed anywhere in the flow field for any wake
skew angle. The methodology is developed in a mathematically rigorous way from
the potential flow equations. Comparison with convolution results (axial flow and
skewed angle flow) demonstrates exact correspondence with closed-form solutions
for both time responses and frequency responses. The cost of the operation is the cost

of computing the co-states for the adjoint velocity.

After extending the model from above the rotor disk to below the rotor disk, to
make the model converge as quickly and accurately as possible within wake region
becomes another problem that needs to be solved. An extensive convergence analysis
is performed with the new model below the rotor disk with 20 harmonics, and it is
concluded that there would be a different combination for odd and even terms with
different skew angles to optimize the on-disk and the on/off disk velocity profile. In

order to satisfy the requirements of real simulation systems, we find that to keep 9
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even terms at m=0 harmonics works nearly for all skew angles and at both on disk
and on/off disk region. If the optimum values for even terms are included in the
solution with 20 harmonics odd terms, it is observed that the co-state method is

virtually exact for axial flow and introduces a smaller than 15.0% error for big skew
angle (y =75") with on disk error. At the same time, a new scheme for Legendre
function of the second kind Q" (ir7) is derived to solve the divergence with large 7.

With the optimized model and well converged Legendre function, a more robust

result with quick convergence rate is displayed compared with the convolution result.

Finally, the co-state model is applied to finite blade systems to study the inflow
within the wake region. A relationship between real systems and actuator disk
systems is established for further study. The spikes are appeared in the normal and
azimuth velocity responses for the rotating system, which are due to the rotor blade
passage. These results are consistent with Glauert predictions about angular
momentum in rotary wing systems, and could be used to predict the swirl velocity in
the real systems. The velocity is r direction is decreasing along the streamline, which
could be used to describe the contracting of the wake region in rotary wing systems.

Once the theory has been developed, several areas and applications are natural
for the extension of the work. The most direct line of work that could be developed
from the theory is to use it to calculate the drags with fuselage, which would need the
inflow within wake region. Another direct of the applications would use it to
calculate the inflow for parallel rotors systems (the configuration used in Sikorsky
X2), side to side rotors systems (Karman helicopters), even the inflow for tandem
systems (Chinook CH42).

For the development of theory, our model is for the flows that are linearized

about V_, which could only work for cruise conditions. It will break down when the
helicopter works in hover conditions since V_ goes to 0, which makes the equations

singular. So it is necessary to derive a nonlinear version of the co-state method below

the rotor disk. In the derivation of the model, we only consider potential inflow
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without mass injection, how to complete and extend this theory across the rotor disk
to treat with mass injections is still an open problem. Duffy shows how to generalize
the inflow above the disk to nonlinear, and the same approach could be used here.

However, below the rotor disk there must be an analysis of wake contraction. This is
left to future researches.
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Appendix 1. Coordinate System

The ellipsoidal coordinate system (v,7,i) is defined as
X =—V1-v?{1+7* cos(y) (A1.1)
y =v1-v*{1+7° sin(y) (A1.2)

Z=-vn (A1.3)

where the coordinates v,7 and y are restricted to the following range

~1<v<1 (Al.4)
0<y<ow (A1.5)
0<y<2r (A1.6)

Figure Al1.1 shows the ellipsoidal coordinate system viewed in the xz plane.

The surfaces for v =constant are hyperboloids and the surfaces for 7 =constant are
ellipsoids. For the special case, 77 =0 represents the flat circular plane, and 1is anti-
symmetric along the plane which contains the 7=0 circular plane. ¥ is the azimuth

angle measured from the negative X axis, with counterclockwise direction viewed

along the positive z axis.

The non-dimensional radial position with the ellipsoidal coordinates could be
obtained from equations (Al1.1) and (Al1.2), which is,

T2 =xt+y*+ 2% =(L+7°)(1-v*)+v*n° (AL.7)
Similarly, from equation (Al.1), (Al.2) and (A1.3), the ellipsoidal coordinates

v,n and ¥ can be expressed in terms of X,y and z as

—sign(z) = [z \2 2
V=—2\/1_s +(5-1) +4z (AL.8)
1 |z T 1\ 2
77=_2_\/s ~1+(S-1) +4z (AL.9)
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7 =tan™ (_—yj (AL.10)

where

S=x*+y*+7° (A1.11)

Figure A1.1 Ellipsoidal coordinate system
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Appendix 2. Normalized Associated

Legendre Functions

In the ellipsoidal coordinate system defined in Appendix 1, the Laplace's equation
takes the form

8{(1”2)82} a{(“ﬂz)aﬂ a[ () aﬂ—o (A2.1)

—_— —_— —_— +_ —_—
ov ov | on on] oy |(1-v*)(1+n*) 0w
Using the principle of separation of variables to solve equation (A2.1), the

Laplace equation is expressed by a multiplication of three separated parts which are

only functions of v,7 and ¥ respectively.

O(v,1,7) =, (v)D, (1) D4 (%) (A2.2)
Applying equation (A2.2) to equation (A2.1), the Laplace equation can be
separated into the following three equations

2
?j% +m’d, =0 (A2.3)
d ,\ dd m®
E{(l—v ) dvl} {_1_‘/2 +n(n+1)}D1:0 (A2.4)
d do m?
%[(1“72) dnz}{lﬂf —n(n +1)}CD2 =0 (A2.5)

wherem and n are the constant of separation.
Equations (A2.4) and (A2.5) are Legendre's associated differential equations,

and the solutions to which are the associated Legendre Functions of the first kind and

the second kind (P," (v), P,"(iv), Qr () and Q7' (ir)). Since R (iv) and Q' ()

n

will yield an infinite pressure in the flow field, so they are omitted.

For the purpose of this research, the associated Legendre functions of the first

and second kind are normalized as
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Py =(-1)" i Eqv) (A2.6)
Ph
AMm _ Qr:n('ﬂ)
where
m\ _ (Y pm 2 1 (n+m)!
(pn) :IO(P” (V)) dv:2n+1§n—m;! (A2.8)
Z 1 m+n+1 | n+1(n+m—1)!!’ M1 = even
Q' (i0)= 0 (n-m)t (A2.9)
" m+n+l /. n+1(n+m_1)!!
(_1) (') W m+n = odd

In this research, numerical codes are developed to compute all the required

values of P (v) and Q" (ir7) based on the following recurrence relations

|3nT1(V)=\/(2n+3)2(2n+1) l:vlsnm(v)_ %ﬁr‘ml(v)} (A2.1)

(n+1)" —m?

(n-m+1)(n-m)-,
ﬁ”Tl(V)zJ<n+fff>2+m)J ns T e
H1-v2\2n+1P™ (v)

St () 1 (2n+1)(n+m) -, . (n—m) LB (s
) W{\/(an)(nerﬂ)P“( ) \/(n+m+1)(n—m) R )]

(A2.3)
Qr, (in) =Qr, (i) - (2n+1)K'nQy (in) (A2.4)
Q™ (in) = ﬁ[@?_l(in)—(n—m)@n@?(in)] (A25)
where
Ko = (ETW H (A2.6)
2
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(n+m-1)(n-m-1)N

Ho' = (n+m)!(n—m)! (A2.7)
A\ = (n)(n-2)(n—4)...(2) for neven
(") {(”)(n 2)(n-4)...(1) for n odd (A2.8)

(0)1=1, (-1)1=1 (=2)!=co0, (-3)N=-1
In order to calculate to the derivation of P"(v) and Q" (i), the recurrence

relations for are given by

) - [ om0
(1—1/2)@ = \/(n +m+1)(n- m)\/l—v2 P™(v)-mvP"(v) (A2.10)

(1+772)de77”7 { Q" (i) +(n+1)7Q" (in) (A2.11)

(l+77 ) 1+77

T(in)+mnQy (in)  (A2.12)

where K is defined by equation (A2.6).

A2.1. Orthogonality Integrals

d;,,, h+m=odd, j+m=odd
j:l?ﬂm(V)lsnm( Jdv=45,, n+m=even, j+m=even (A2.13)

Uf, n+m=even, j+m=odd

o_ [HPJ(2i+1)(2n+1) e
Vi = HY (j+n+1)(j_n)(_1) (A2.14)
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A2.2. Area Integrals

Afh, j+m=odd,n+m=odd
Iolsnm(\/)F_’jm(v)vdv= G, j+m=even,n+m=even

Dif, j+m=odd,n+m=even

where AE?,, GE?] and D?} are defined as:

o2 eneD(2i+) E
in \/H:‘H;n (n+j+2)(n+j)((j_n)2 _1)

n+j—2m

mym - (2m2_n2_j2_n—j)(_1) 2 ;
JHTHE T ) s (=37 -1)

J#0n=0;m=0

1 1 .

. — _ ,J=ntl

D} = H'H; \/(21+1)(2n+1)
0,j#n+l
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Appendix 3. Exact Solution to a Step

Response in Axial Flow

Based on the momentum equations, for axial flow ( y =0) with a free-stream velocity
V_ the momentum equation could be written

Ny Ny P

— A3.1
or 0oz 0z ( )

where P is the pressure and v, is velocity field. If we only consider a step input,

P(z)u(z) , with zero initial conditions, then the particular solution for
(A3.1) isclear,

v=—P (A3.2)

The homogeneous solution is any function of z—7, defined as f(z—7). Thus,

outside the wake, we have

V,(z,7)=f(z—7)-P(2) (A3.3)
For zero initial condition, it requires
V;(2,0)=f(z2)-P(2) =0 (A3.4)
Then it is easily known that
f(z)=P(z) (A3.5)
Inside the wake, we have a similar formulation of the total solution
v, (2,7)=g(z-17)-P(2), {_2:(:1 (A3.6)

where g(z—7) is any homogeneous solution to equation (A3.7). However, there is
no initial condition since no wake at 7=0. A boundary condition at the disk should
be included at this case.

Typically, based on momentum inflow theory, the inflow region could be
divided into 2 parts, the region above the disk (A in Figure A3.1) and the wake region
(B in Figure A3.1). As the flow could be caused by potential differences or mass
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flow changes at the disk, the boundary conditions for each case may differ, so we
need to deal with it separately.

If the inflow is caused by pressure difference across the rotor disk, the velocity

should be continuous across the disk and the pressure will satisfy P(0")=—-P(07)

(positive at z=0", negative at z=07).

From (A3.3) and (A3.5), we know that the velocity at z=0"is

v, (0_,r) = P(—r)— P(0)

(A3.7)
However, from (A3.6) for z=0" inside the wake, we have
v, (o+,r) - g(~r)—P(0") (A3.8)
As for pressure difference, there is no velocity jump across the disk, so
v, (07,7) = v, (07 ) (A3.9)
which means
v, (O+,r)=g(—z')—P(0+)= P(-z)-P(07) (A3.10)
Combining (A3.8) and (A3.10), we will have
g(-7)=P(-7)+2P(0") (A3.11)

Thus for pressure difference across the rotor disk, the velocity inside the wake
satisfy

V,(2,7)=P(z-7)-P(z)+2P(0") (A3.12)
However, for the case of mass injection, we know that the pressure is

continuous across the disk, so that P(0*) = P(07). But there is a velocity difference

between the both sides of the rotor , which is 2P(0")

v, (O_,T)+2P(O+) v, (O+,r)

(A3.13)
From (A3.8), we know for z=0" inside the wake
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v, (o+,r) — g(=7)-P(0") (A3.14)
Then we can obtain g(—7) from (A3.13) and (A3.14) as
g(-7)=P(-7)+2P(0") (A3.15)
Inside the wake for mass injection, we have
V,(z2,7)=P(z-7)-P(2)+2P(0") (A3.16)

Above all, we can conclude that, for both pressure difference and mass

injection, the flow inside the wake will have the following format

v, (2,7)=P(z-7)-P(z2)+2P(0") (A3.17)

\ wake slipstream

A B

ao:f’/,_’,

Figure A3.1 Momentum theory flow
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Appendix 4. Adjoint velocity for a Step

Response in Axial Flow

From Peters-Morrilo model, in order to obtain the time response by Galerkin method,

we need to write the momentum equation as

e (o E) o) [o] s
and time-marching from 7, to 7y with a time step Ar.
Then the changing of velocity potentials could be represented by
fal (7)) = [{a,q“ (7o)} { (22)} - {7 (1 )}} (A4.2)
The velocity between 7, and 7; could be obtained by substituting the value of

an' at that specific time into equations (A4.1). For r<rz,, we just assume
{a (1)} ={0}.

Here we need to extend the momentum equation in Peters-Morrilo’s model to

describe the velocity field for time responses based on the co-states method. First we
need to define the co-states A, to calculate the adjoint velocity, which satisfies the

following equation

N SN IO

For the adjoint velocity coefficient, if time is between 7, to z¢ , then
A (r)z{rrTC}, which means it is equivalent to the forcing function. However, if

7 <7,, there will be no forcing functions in equation (A4.3), we need to time-
marching backward from 7z, to z, with a step Azto the following homogeneous

equation
111



[MC}{A%}*[D‘:J[E‘?1[M°J{A2“}={0} (A0
Then the changing of adjoint velocity potentials before z, could be

(A7) =[ (A7 (7o)} AT (7o)} AR (7o) (A4.5)

Even though the differential equations are unstable while time goes forward, it
will decay to zero when time goes backward. From section 3.3, we know that the

velocity below the rotor disk could be expressed as
V(1 W0, &, 7) =V (1), ,,0,7 =& ) +V (1,,17,,0,7= &) =V (1,175, —&,,7)  (A4.6)
So that means we need to time marching A} backwards from 7 to 7—&,

where &, is the depth needed in wake along the free streamline.
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Appendix 5. Table Method

In order to calculate the induced flow using Hsieh-Duffy model, it is required to
truncate the number of harmonics and the number of radial shape. The number of
harmonics is chosen based on the highest dynamic frequency of interest, and the
choice of the number for radial shape functions using in each harmonics was based on
a mathematically consistent hierarchy way, which is shown in Table A5.1. The
number of radial shape function for m+n=even is equal to the number for
m+n=odd , which is the result of adding up each one of the terms included for each

harmonic.

Table A5.1 Choice for the Number of Spatial Modes (n+m=odd)

Highest m Total
power of 0 1 > 3 2 3 5 5 3 Inflow
r States
0 1 1
1 1 1 3
2 2 1 1 6
3 2 2 1 1 10
4 3 2 2 1 1 15
5 3 3 2 2 1 1 21
6 4 3 3 2 2 1 1 28
7 4 4 3 3 2 2 1 1 36
8 5) 4 4 3 3 2 2 1 1 45
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