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Chapter 6 Finite Blade Responses 
In this chapter, we apply the model to more practical examples in which pressure 

spikes from a finite number of blades are rotating around the azimuth at constant 

speed. 

6.1 Finite Blade Systems 
The fundamental fluid mechanics of the model is based on the potential-flow 

functions, and the detail of the theoretical derivation of this unsteady dynamic model 

is derived in Chapter 2 and Ref [6].   

In general, the induced velocity at the disk in terms of harmonics will be  

 
   
   

1 1

0 1 1

, , ,

m m mc m mc
n n n n n

m m ms m ms
m n m n n n n n

a
v r

b

  
  

  

   

   

    
 
      





                      (6.1) 

and the coefficients m
na  and m

nb  could be derived from the following governing 

differential equations 

   

   

* 1

* 1

c m c c c m c mc
n n n

s m s s s m s ms
n n n

M a D L M a D

M b D L M b D









                      
                                           

(6.2) 

where  

   
10 0

0
1

1
,

2

Q
c

n q n
q

L r dr   
 

                                      (6.3) 
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1
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Q
mc m
n q n q

q

L r dr m    
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     1

0
1

1
, sin

Q
ms m
n q n q

q

L r dr m    
 

                               (6.5) 

with  m
n 

 
the radial expansion functions  m

nP   , where 21r   .  

In order to predict the inflow below rotor disk for finite blade systems, it is 



 
 

90 

 

advantageous to rewrite the inflow model in the rotating systems. In order to do that, 

a reference blade needs to be selected first, and then the azimuthal position of any 

blade q  could be represented according to the reference blade 

ˆ ˆ
q q qt t                                                (6.6) 

where   is the position of the reference blade in the nonrotating system and  

 2
ˆ 1q q

Q

                                                    (6.7) 

Thus, for a case with constant blade loading, it is convenient to write the 

unsteady  m
n t  in terms of constant unsteady ˆm

n s. 
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Note further that Eq. (6.2) is in reduced time  , therefore, one needs to write 

   

   

cos cos

sin sin

m
mt

V R

m
mt

V R









 
   

 
   

                                       (6.9) 

6.2 Relationship between Different Systems 
For typical helicopter applications, the angle of the vortex sheets leaving the blade is 

small such that  cos 1  .  However, in cases for which there is significant inflow, 

Figure 6-1 and Figure 6-2 show how the induced flow of the actuator-disk model 

correlates to the flow on the actual vortex-system of the rotor.  On the actual rotor, 

the lift is perpendicular to the sheet creating a combination of axial and swirl velocity 
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6.3 Results for Axial Flow with Finite 

Blades 
The results will be presented with 2 blades and 0.8r   with axial flow only.  The 

three components of velocities for both the inflow above and below the rotor disk are 

given in the figures.  The model is truncated at 24 harmonics.  There is an optimum 

combination of even and odd harmonics for maximum accuracy, as illustrated in 

Chapter 4.  Here, we use the case of only odd terms and no even terms and do not 

pursue an optimum solution.  

Figure 6-3 to Figure 6-5 show the three velocity components of inflow versus 

time on the rotor disk at point 0.8r  , o0   in space, where the detection point 

actually locates.  The time 0t   represents the time at which the blades are parallel 

with x -axial, which is also 0y   axial.  Figure 6-3 to Figure 6-5 show z  component, 

  component, and r  component respectively.  In Figure 6-3, there is a doublet spike 

around 
2

t


  (or 
3

2
t


 ), which is due to the rotor blade passage.  The impulses in 

Figure 6-4 and Figure 6-5 are also caused by passing of blades.  

Figure 6-6 to Figure 6-8 show the inflow within the wake at one radus below 

the rotor disk at the point 0.8r  , o0  .  We can see zv , v  and rv  all have 

impulses at the vortex-sheet passage followed by oscillations between the passages.  

The average velocity for zv  is 0.3067, which is almost 1.73 times of the average 

velocity at the rotor disk ( 0.1772zv  ).  [This is not far enough downstream to reach 

the familiar factor of 2 increase in velocity.]  We can see spikes in Figure 6-5 and 

Figure 6-6, and the peaks of the spikes locate near 1t   since the phase shift for the 

spike should be the same as the depth within the wake region.   

Figure 6-9 to Figure 6-11 are about the inflow two radii below the rotor disk at 

0.8r  , o0  .  The average velocity of z  component is 0.3390, which is 1.91 times 



 
 

93 

 

of the average velocity at the rotor disk.  This is very close to the well know result 

from momentum theory and could be treated as fully developed.  We notice that rv  is 

decreasing along the streamline, from -0.1853 ( 0z  ), -0.0277 ( 1z  ) to -0.0075 

( 2z  ).  This variation could be used to describe the fact that the wake region is 

contracting. 

In order to analysis the effect of blades, we now introduce zv  and v , which are 

the velocities between blade passages in the z  direction and   direction, 

respectively.  Suppose w  is the velocity downstream.  We can predict what zv  and 

v  should be (based on translational and angular momentum theory) since the total 

velocity must be perpendicular to the vortex sheet.  By the comparing of a real 

physical rotor system (shown in Figure 6-1) and actuator disk construct (shown in 

Figure 6-2), we can relate the velocities in these two figures, yielding the expressions 

   *sin *cosv w    and  2*sinzv w  .  For the case 0.8r  , 

  0.1tan 0.8
wR

r   , which means 7.1   . So that we can calculated 0.006zv   

and 0.044v  .  Here from numerical integrations, we have 0.0093zv   and 

0.0564v  .  Even though the result we have here for w  is not the final converged 

value, we can still tell the evaluate values for zv  and v  are close enough.  This 

further means we can use the result in actuator disk theory to predict the angular 

momentum in real systems. 

Figure 6-12 shows the changing of v  along the free streamline with 0.8 radius 

away from the center.  We can tell from the figure that at one radius above the disk 

( 1z   ), v  is almost 0; on the disk, the value is 0.0284 compared with 0.0564 far 

away from the rotor disk ( 2z  ).  These numerical results are consistent with the 

Glauert prediction that full angular momentum just below the disk is twice the 

angular momentum at the disk.  The angular velocity increases as the flow 

approaches the disk and passes through it.  The figure shows close agreement with 
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Chapter 7  Summary, Conclusions and 

Future Work 
In the first part of this work, the eigenvalues and mode shapes of finite-state 

inflow models have been studied by eigen-analysis. The visualizing of mode shapes 

provides us a better understanding of the rotor wake mechanism.  The eigen-analysis 

also shows the inflow harmonics are highly coupled at larger wake skew angles.  The 

structure of the mode shapes outside the rotor disk enables Hsieh/Duffy inflow model 

to describe the velocity distribution outside the disk.  The eigenvalues of Peters-He 

model change slightly and converge quickly with the number of expansion terms, and 

an easy way to estimate these eigenvalues is also established.  A formula for 

estimating the eigenvalues in axial flow is shown by regressive method.   Though 

Hsieh/Duffy model converges much more quickly than Peters-He model, it exacts 

this added accuracy at the cost of twice as many states and with a system that is not as 

well-conditioned as the He model. 

In the second part of this work, finite-state inflow models have now been 

extended such that the flow can be computed anywhere in the flow field for any wake 

skew angle.  The methodology is developed in a mathematically rigorous way from 

the potential flow equations.  Comparison with convolution results (axial flow and 

skewed angle flow) demonstrates exact correspondence with closed-form solutions 

for both time responses and frequency responses.  The cost of the operation is the cost 

of computing the co-states for the adjoint velocity.   

After extending the model from above the rotor disk to below the rotor disk, to 

make the model converge as quickly and accurately as possible within wake region 

becomes another problem that needs to be solved.  An extensive convergence analysis 

is performed with the new model below the rotor disk with 20 harmonics, and it is 

concluded that there would be a different combination for odd and even terms with 

different skew angles to optimize the on-disk and the on/off disk velocity profile.  In 

order to satisfy the requirements of real simulation systems, we find that to keep 9 
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even terms at m=0 harmonics works nearly for all skew angles and at both on disk 

and on/off disk region.  If the optimum values for even terms are included in the 

solution with 20 harmonics odd terms, it is observed that the co-state method is 

virtually exact for axial flow and introduces a smaller than 15.0% error for big skew 

angle ( o75  ) with on disk error.  At the same time, a new scheme for Legendre 

function of the second kind  m
nQ i

 
is derived to solve the divergence with large  . 

With the optimized model and well converged Legendre function, a more robust 

result with quick convergence rate is displayed compared with the convolution result.  

Finally, the co-state model is applied to finite blade systems to study the inflow 

within the wake region.  A relationship between real systems and actuator disk 

systems is established for further study.  The spikes are appeared in the normal and 

azimuth velocity responses for the rotating system, which are due to the rotor blade 

passage.  These results are consistent with Glauert predictions about angular 

momentum in rotary wing systems, and could be used to predict the swirl velocity in 

the real systems.  The velocity is r direction is decreasing along the streamline, which 

could be used to describe the contracting of the wake region in rotary wing systems. 

Once the theory has been developed, several areas and applications are natural 

for the extension of the work.  The most direct line of work that could be developed 

from the theory is to use it to calculate the drags with fuselage, which would need the 

inflow within wake region.  Another direct of the applications would use it to 

calculate the inflow for parallel rotors systems (the configuration used in Sikorsky 

X2), side to side rotors systems (Karman helicopters), even the inflow for tandem 

systems (Chinook CH42).   

For the development of theory, our model is for the flows that are linearized 

about V , which could only work for cruise conditions.  It will break down when the 

helicopter works in hover conditions since V  goes to 0, which makes the equations 

singular.  So it is necessary to derive a nonlinear version of the co-state method below 

the rotor disk.  In the derivation of the model, we only consider potential inflow 
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without mass injection, how to complete and extend this theory across the rotor disk 

to treat with mass injections is still an open problem.  Duffy shows how to generalize 

the inflow above the disk to nonlinear, and the same approach could be used here.  

However, below the rotor disk there must be an analysis of wake contraction.  This is 

left to future researches. 
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Appendix 1.  Coordinate System 

The ellipsoidal coordinate system  , ,    is defined as 

 2 21 1 cosx      
                                     

(A1.1) 

 2 21 1 siny     
                                      

(A1.2) 

z                                                         (A1.3) 

where the coordinates ,   and   are restricted to the following range 

1 1                                                        (A1.4) 

0                                                      (A1.5) 

0 2                                                     (A1.6) 

Figure A1.1 shows the ellipsoidal coordinate system viewed in the xz  plane.  

The surfaces for  constant are hyperboloids and the surfaces for   constant are 

ellipsoids.  For the special case, 0   represents the flat circular plane, and is anti-

symmetric along the plane which contains the 0   circular plane.   is the azimuth 

angle measured from the negative x  axis, with counterclockwise direction viewed 

along the positive z  axis.   

The non-dimensional radial position with the ellipsoidal coordinates could be 

obtained from equations (A1.1) and (A1.2), which is, 

  2 2 2 2 2 2 2 21 1r x y z          
                       

(A1.7) 

Similarly, from equation (A1.1), (A1.2) and (A1.3), the ellipsoidal coordinates 

,   and   can be expressed in terms of ,x y  and z as 

   2 21 1 4
2

sign z
S S z


    

                          
(A1.8) 

 2 21
1 1 4

2
S S z     

                                
(A1.9) 
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1tan
y

x
     

                                            
(A1.10) 

where 

2 2 2S x y z                                            (A1.11) 

 

 

 

Figure A1.1  Ellipsoidal coordinate system  
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Appendix 2. Normalized Associated 

Legendre Functions 
In the ellipsoidal coordinate system defined in Appendix 1, the Laplace's equation 

takes the form 

     
  

2 2

2 2

2 2
1 1 0

1 1

 
 

      

                                 

(A2.1) 

Using the principle of separation of variables to solve equation (A2.1), the 

Laplace equation is expressed by a multiplication of three separated parts which are 

only functions of ,   and   respectively.  

       1 2 3, ,        
                                  

(A2.2) 

Applying equation (A2.2) to equation (A2.1), the Laplace equation can be 

separated into the following three equations 

2
23

32
0

d
m

d


  
                                               

(A2.3) 

   
2

2 1
12

1 1 0
1

dd m
n n

d d


  
                                   

(A2.4) 

   
2

2 2
22

1 1 0
1

dd m
n n

d d


  
  

                                
(A2.5) 

where m  and n  are the constant of separation.  

Equations (A2.4) and (A2.5) are Legendre's associated differential equations, 

and the solutions to which are the associated Legendre Functions of the first kind and 

the second kind (  m
nP  ,  m

nP i ,  m
nQ   and  m

nQ i ).  Since  m
nP i  and  m

nQ   

will yield an infinite pressure in the flow field, so they are omitted.  

For the purpose of this research, the associated Legendre functions of the first 

and second kind are normalized as 
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   
1

m
m nm

n m
n

P
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In this research, numerical codes are developed to compute all the required 

values of  m
nP   and  m

nQ i  based on the following recurrence relations 
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where m
nK  is defined by equation (A2.6).   
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A2.2. Area Integrals 
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Appendix 3.  Exact Solution to a Step 

Response in Axial Flow 

Based on the momentum equations, for axial flow ( 0  ) with a free-stream velocity 

V  the momentum equation could be written  

z zv v P

z z
  

  
                                            

(A3.1) 

where P  is the pressure and zv  is velocity field.  If we only consider a step input, 

   P z u  , with zero initial conditions, then the particular solution for                            

(A3.1)  is clear,  

v P                                                      (A3.2) 

The homogeneous solution is any function of z  , defined as ( )f z  .  Thus, 

outside the wake, we have  

 , ( ) ( )zv z f z P z   
                                   

(A3.3) 

For zero initial condition, it requires 

 ,0 ( ) ( ) 0zv z f z P z  
                                  

(A3.4) 

Then it is easily known that  

( ) ( )f z P z                                               (A3.5) 

Inside the wake, we have a similar formulation of the total solution  

 
0

, ( ) ( ),
1 1z

z
v z g z P z

x


 

 
                            

(A3.6) 

where ( )g z   is any homogeneous solution to equation (A3.7).  However, there is 

no initial condition since no wake at 0  .  A boundary condition at the disk should 

be included at this case.   

Typically, based on momentum inflow theory, the inflow region could be 

divided into 2 parts, the region above the disk (A in Figure A3.1) and the wake region 

(B in Figure A3.1).  As the flow could be caused by potential differences or mass 
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flow changes at the disk, the boundary conditions for each case may differ, so we 

need to deal with it separately.  

If the inflow is caused by pressure difference across the rotor disk, the velocity 

should be continuous across the disk and the pressure will satisfy (0 ) (0 )P P  

(positive at 0z  , negative at 0z  ). 

From (A3.3) and (A3.5), we know that the velocity at 0z   is 

   0 , (0 )zv P P    
                                   

(A3.7)
 

However, from (A3.6) for  0z   inside the wake, we have 

 0 , ( ) (0 )zv g P    
                                   

(A3.8) 

As for pressure difference, there is no velocity jump across the disk, so 

   0 , 0 ,z zv v  
                                          

(A3.9) 

which means 

   0 , ( ) (0 ) (0 )zv g P P P         
                    

(A3.10) 

Combining  (A3.8) and (A3.10), we will have 

 ( ) 2 (0 )g P P     
                                    

(A3.11) 

Thus for pressure difference across the rotor disk, the velocity inside the wake 

satisfy  

   , ( ) 2 (0 )zv z P z P z P     
                          

(A3.12) 

However, for the case of mass injection, we know that the pressure is 

continuous across the disk, so that (0 ) (0 )P P  .  But there is a velocity difference 

between the both sides of the rotor , which is 2 (0 )P 
 

   0 , 2 (0 ) 0 ,z zv P v    
                            

(A3.13) 

From (A3.8), we know for  0z   inside the wake 



 
 

 

i

 

Then w

Inside 

Above

injection, the

we can obtai

the wake fo

e all, we c

e flow inside

zv

in ( )g   fro

(g 

or mass injec

 ,zv z 

an conclud

e the wake w

 ,zv z 

Figure A3.1

 

110 

0 , (g   

om (A3.13) a

 ) P   

ction, we hav

  P z  

e that, for 

will have the

  P z  

1  Momentum
 

) (0 )P  
 

and (A3.14)

 2 (0 )P 
  

ve  

( ) 2P z P 

both press

e following f

( ) 2P z P 

m theory flo

                   

as  

                   

(0 )P 
           

sure differen

format 

(0 )P 
           

ow 

          
(A3.1

          
(A3.1

          
(A3.1

nce and ma

          
(A3.1

 

14) 

15) 

16) 

ass 

17) 



 
 

111 

 

Appendix 4.  Adjoint velocity for a Step 

Response in Axial Flow 
From Peters-Morrilo model, in order to obtain the time response by Galerkin method, 

we need to write the momentum equation as 

   
* 1c m c c c m c mc
n n nM a D L M a D 

                        



                 

(A4.1) 

and time-marching from o  to f  with a time step  .   

Then the changing of velocity potentials could be represented by 

           1, , ,m m m m
n n o n n fa a a a       


                      

(A4.2) 

The velocity between o  and f  could be obtained by substituting the value of 

m
na  at that specific time into equations (A4.1). For o  , we just assume 

    0m
na   . 

    Here we need to extend the momentum equation in Peters-Morrilo’s model to 

describe the velocity field for time responses based on the co-states method.  First we 

need to define the co-states m
n  to calculate the adjoint velocity, which satisfies the 

following equation 

   
* 1c m c c c m c mc
n n nM D L M D 

                           



              

(A4.3) 

For the adjoint velocity coefficient, if time is between o  to f , then 

   m mc
n n   , which means it is equivalent to the forcing function.  However, if 

o  , there will be no forcing functions in equation (A4.3), we need to time-

marching backward from o  to p  with a step  to the following homogeneous 

equation 
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   
* 1

0c m c c c m
n nM D L M

                       



                     

(A4.4) 

Then the changing of adjoint velocity potentials before o  could be 

           1, , ,m m m m
n n p n p n o          


                 

(A4.5) 

Even though the differential equations are unstable while time goes forward, it 

will decay to zero when time goes backward.  From section 3.3, we know that the 

velocity below the rotor disk could be expressed as 

       * *
0 0 0 0 0 0 0 0 0 0 0 0, , , , ,0, , ,0, , , ,v r v r v r v r                

    
   

(A4.6) 

So that means we need to time marching m
n  backwards from   to 0  , 

where 0  is the depth needed in wake along the free streamline.  
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Appendix 5.  Table Method 
In order to calculate the induced flow using Hsieh-Duffy model, it is required to 

truncate the number of harmonics and the number of radial shape.  The number of 

harmonics is chosen based on the highest dynamic frequency of interest, and the 

choice of the number for radial shape functions using in each harmonics was based on 

a mathematically consistent hierarchy way, which is shown in Table A5.1.  The 

number of radial shape function for m n even   is equal to the number for 

m n odd  , which is the result of adding up each one of the terms included for each 

harmonic.  

 

Table A5.1  Choice for the Number of Spatial Modes (n+m=odd) 

Highest 

power of 

r  

m Total 

Inflow 

States 
0 1 2 3 4 5 6 7 8 

0 1         1 

1 1 1        3 

2 2 1 1       6 

3 2 2 1 1      10 

4 3 2 2 1 1     15 

5 3 3 2 2 1 1    21 

6 4 3 3 2 2 1 1   28 

7 4 4 3 3 2 2 1 1  36 

8 5 4 4 3 3 2 2 1 1 45 

 



 
 

114 

 

References 
1. Joglekar, M. and Loewy, R. “An Actuator-Disc Analysis of Helicopter Wake 

Geometry and the Corresponding Blade Responses,” USAAU-LABS Technical 

Report 69-66, 1970. 

2. Pitt, Dale. M. and Peters, David A., “Theoretical Prediction of Dynamic-Inflow 

Derivatives,” Vertica, Vol. 5, No. 1, March 1981, pp. 21-34. 

3. Gaonkar, Gopal H. and Peters, David A., “Effectiveness of Current Dynamic-

Inflow Models in Hover and Forward Flight,” Journal of the American 

Helicopter Society, Vol. 31, No. 2, April 1986, pp. 47-57. 

4. Peters, David A., Boyd, David Doug, and He, Cheng Jian, “A Finite-State 

Induced-Flow Model for Rotors in Hover and Forward Flight,” Journal of the 

American Helicopter Society, Vol. 34, No. 4, October 1989, pp. 5-17. 

5. Peters, David A. and He, Cheng Jian, “Correlation of Measured Induced 

Velocities with a Finite-State Wake Model,” Journal of the American Helicopter 

Society, Vol. 36, No. 3, July 1991, pp. 59-70. 

6. Morillo, Jorge and Peters, David A., “Velocity Field above a Rotor Disk by a 

New Dynamic Inflow Model,” Journal of Aircraft, Vol. 39, No. 5, September-

October 2002, pp. 731-738. 

7. Peters, David A. and Cao, Wenming, “Off-Rotor Induced Flow by a Finite-State 

Wake Model,” 37th AIAA SDM Conference, Salt Lake City, April 15-17, 1996, 

Paper No. 96-1550. 

8. Yu, Ke and Peters, David A., “Nonlinear Three-Dimensional State-Space 

Modeling of Ground Effect with a Dynamic Flow Field,” Journal of the 

American Helicopter Society, Vol. 50, No. 3, July 2005, pp. 259-268. 

9. Hsieh, Antonio, A Complete Finite-State Model for Rotors in Axial Flow, Master 

of Science Thesis, Washington University in St. Louis, August 2006. 

10. Peters, David A., Hsieh, Antonio, and Garcia-Duffy, Cristina, “A Complete 

Finite-State Inflow Theory from the Potential Flow Equations,” Given as the 

Keynote Lecture and included in the Proceedings of the 3rd International Basic 

Research Conference on Rotorcraft Technology, Nanjing, China, Oct. 14-16, 



 
 

115 

 

2009. 

11. Currie, I.G., Fundamental Mechanics of Fluids, 2nd Edition, McGraw Hill, United 

States of America, 1993, p.31. 

12. Craig, Roy R. and Kurdila, Andrew J., “Fundamentals of structural dynamics,” 

2nd edition, John Wiley & Sons, United States of America, 2006. 

13. Wang, Yi-Ren and Peters, David A., “The lifting rotor inflow mode shapes and 

blade flapping vibration system eigen-analysis,” Computer methods in applied 

mechanics and engineering, Vol. 134, 1996, pp. 91-105. 

14. Morillo, Jorge and Peters, David, “Convergence of Complete Finite-State Inflow 

Model of A Rotor Flowfield,” the 28th European Rotorcraft Forum, Bristol, 

England, 2002. 

15. Su, Ay, Yoo, Kyung M. and Peters, David A., “Extension and Validation of an 

Unsteady Wake Model for Rotors,” Journal of Aircraft, Vol. 29, No. 3, May-June, 

1992. 

16. Prasad, J.V.R., Nowak, Margon, and Xin Hong, “Finite State Inflow Models for a 

Coaxial Rotor in Hover,” the 38th European Rotorcraft Forum, Amsterdan, 

Netherlands, 2012. 

17. Morillo, Jorge, “A Fully Three-Dimensional Unsteady Rotor Inflow Model 

Developed in Closed Form from a Galerkin Approach,” Doctor of Science 

Dissertation, Washington University, December 2001. 

18. Makinen, Stephen M., Applying Dynamic Wake Modes to Large Swirl Velocities 

for Optimal Propellers, Doctor of Science Thesis, Washington University, May 

2005. 

 

 

  



 
 

116 

 

Vita 

Zhongyang Fei 

Degrees Ph.D., Mechanical Engineering, Washington University in St Louis, May 2013 

M.S., Aerospace Engineering, Washington University in St Louis, May 2011 

M.S., Control Science & Engineering, Harbin Institute of Technology, July 2009 

B.S., Control Science & Engineering, Harbin Institute of Technology, July 2007 

 

Professional American Helicopter Society (AHS) 

American Institute of Aeronautics and Astronautics (AIAA) 

Publications Zhongyang Fei and David Peters. Applications of Generalized Dynamic Wake 

Theory of the Flow in a Rotor Wake. Proceedings of the 69th Annual Forum of the 

American Helicopter Society, 2013. 

Zhongyang Fei and David Peters. Inflow below the Rotor Disk for Skewed Flow by 

the Finite-state, Adjoint Method. The 38th European Rotorcraft Forum, Amsterdam, 

2012. 

Zhongyang Fei and David Peters. Eigenvalues and Mode Shapes for the Complete 

Rotor Dynamic-Wake Model. The 30th AIAA Applied Aerodynamics conference, 

New Orleans, Louisiana, 2012. 

Zhongyang Fei and David Peters. A Rigorous Solution for Finite-state Inflow 

throughout the Flowfield. The 30th AIAA Applied Aerodynamics conference, New 

Orleans, Louisiana, 2012. 

Xi Rong, David Peters and Zhongyang Fei. Optimum Pitch Settings and RPM for 

Tethered, Yawed Wind Turbines. Proceedings of the 30th ASME Wind Energy 

Symposium and 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee, 

2012. 

 


