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Abstract

General purpose middleware has been shown effective in
meeting diverse functional requirements for a wide range
of distributed systems. Advanced middleware projects
have also supported single quality-of-service dimensions
such as real-time, fault tolerance, or small memory foot-
print. However, there is limited experience supporting
multiple quality-of-service dimensions in middleware to
meet the needs of special purpose applications. Even
though general purpose middleware can cover an en-
tire spectrum of functionality by supporting the union of
all features required by each application, this approach
breaks down for distributed real-time and embedded sys-
tems. For example, the breadth of features supported may
interfere with small memory footprint requirements.

In this paper, we describe experiments comparing
application-level and mechanism-level real-time perfor-
mance of a representative sensor-network application
running on three middleware alternatives: (1) a real-
time object request broker (ORB) for small-footprint net-
worked embedded sensor nodes, that we have named
nORB, (2) TAO, a robust and widely-used general-
purpose Real-Time CORBA ORB, and (3) ACE, the low-
level middleware framework upon which both nORB and
TAO are based. This paper makes two main contributions
to the state of the art in customized middleware for dis-
tributed real-time and embedded applications. First, we
present mechanism-level timing measurements for each
of the alternative middleware layers and compare them
to the observed performance of the sensor-network ap-
plication. Second, we provide a preliminary performance
model for the observed application timing behavior based
on the mechanism-level measurements in each case, and
suggest further potential performance optimizations that
we plan to study as future work.

Keywords: Real-Time Middleware, Distributed Em-
bedded Systems, Sensor-Actuator Networks.
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1 Introduction

General purpose middleware based on standards such as
CORBA, EJB, COM, and Java RMI now caters to the re-
quirements of a broad range of distributed applications
such as hot steel rolling mills, internet commerce, and
military command and control [1]. Different kinds of gen-
eral purpose middleware have thus become key enabling
technologies for a variety of distributed applications.

To meet the needs of diverse applications, general pur-
pose middleware has tended to support abreadthof fea-
tures, with severallayersof middleware commonly seen
in large-scale applications [1]. However, simply adding
features and layers is ill-suited for certain kinds of ap-
plications. As we have noted in previous work, features
are rarely innocuous in applications with requirements for
real-time performance or small memory footprint [2]. In-
stead, every feature of an application is likely to either
contribute to or detract from the application in those di-
mensions, and it is thus crucial to study the advantages
and disadvantages of each feature carefully.

For sensor-network applications, the focus of our re-
cent research on special-purpose middleware, there is a
fundamental tension between middleware solutions that
are (1) general to increase portability and reduce program-
ming cost and error rates, and (2) customized to provide
stringent quality-of-service assurances. TAO [3] seeks to
strike a balance between these two, with performance op-
timization and real-time assurance mechanisms provided
as first-class features. Similarly, nORB seeks to achieve
real-time performance that is similar to TAO, while reduc-
ing footprint significantly [2]. While it is clearly possible
to use ACE directly, our experiences developing the ver-
sions of our example sensor-network application for ACE,
TAO, and nORB, and then conducting the experiments re-
ported in this paper led to two key observations:

� Implementation was significantly more complex us-
ing ACE instead of TAO or nORB.

� The version with ACE was initiallylessefficient than
with TAO or nORB due to application of a sub-
optimal concurrency design pattern.
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Interestingly, the solution to the second problem was to
use TAO as an exemplar for which patterns to use, which
in turn resulted in the superior performance of the solution
using ACE reported in this paper.

The key benefits of developing applications based on
robust and pattern-rich ORB middleware are thus two-
fold. First, applications are simplified by abstraction and
encapsulation of low-level concurrency and communica-
tion details within the middleware. Second, performance
limitations resulting from potential mis-application of
strategic design patterns can be avoided through use of
middleware that correctly implements and applies neces-
sary patterns. Having explained why ORB middleware
is beneficial for distributed applications, we now turn
our attention to the primary focus of this paper: quan-
titative performance comparison and preliminary perfor-
mance modeling of a representative sensor-network ap-
plication implemented on ACE, TAO, and nORB.

This paper is structured as follows. Section 2 de-
scribes our example sensor-network application, imple-
mented as a distributed graph coloring algorithm using
asynchronous message passing between concurrent pro-
cesses. Section 3 describes the design of our experiments
to quantify application and middleware performance in a
realistic setting. Section 4 presents the results of our ex-
periments, and offers a preliminary performance model
based on analysis of those results. Section 5 describes
related work on special-purpose middleware. Finally,
Section 6 offers concluding remarks and describes future
work motivated by the results presented here.

2 Special Purpose Applications

Systems of distributed networked sensors are being used
in a variety of different applications ranging from tem-
perature monitoring to battlefield strategy planning [4].
Systems in this domain are characterized by the follow-
ing properties: (1) highly connected networks of (2) nu-
merous memory-constrained endsystems, with (3) strin-
gent timeliness requirements, and (4) support for adaptive
reconfiguration of computation and communication ele-
ments and their associated timeliness requirements. Sen-
sor networks thus challenge classical approaches to dis-
tributed computing and represent an active research area
with many open questions.

This section introduces a real-world sensor-networks
problem and distributed algorithmic approaches that have
been applied to solving that problem. It then describes the
resulting sensor-networks application we used in the mid-
dleware performance experiments described in Section 3.
Section 2.1 describes a real-world problem for power-
constrained sensor networks called ping node scheduling,
in which a suitable schedule of node communication (sim-
ilarly, for node on and off cycles) is determined. Sec-
tion 2.2 gives an overview of distributed constraint sat-
isfaction algorithms, and describes how the ping node
scheduling problem can be solved using a distributed
graph coloring algorithm. Finally, Section 2.3 describes
the DBA-color application used to implement distributed
graph coloring for ping node scheduling, including its sta-
ble sequence of computation and message passing steps
that is the basis of our experiments described in Section 3.

2.1 Ping Node Scheduling

Sensor network applications,e.g., for vibration damp-
ing [2], often need to schedule the limited computation
and communication resources in the network. For exam-
ple, to identify the current vibration mode of the structure,
a System Identificationcomponent in the vibration damp-
ing application would sendping data to sensor nodes lo-
cated on the structure to be damped, and would identify
the vibration mode based on the response data from the
sensor nodes. Since sensors and actuators run on lim-
ited energy resources, even in wired sensor networks as
described in [2], the number of responding nodes, called
ping nodes, should be as small as possible and still cover
the overall area to be monitored [5]. Moreover, the sig-
naling actions of two overlapping ping nodes should be
synchronized so that no interfering signals will be gen-
erated. The problem of finding a schedule for ping node
responses can be solved by constraint satisfaction tech-
niques [6]. In this paper, we use the problem of schedul-
ing the pinging activities of sensor network nodes to com-
pare the performance of our special purpose middleware
in to that of the general purpose TAO ORB.

2.2 Distributed Constraint Satisfaction

A Constraint Satisfaction Problem (CSP) [7] aims to find
consistent assignments of values to a set of variables,
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whose inter-dependencies represent the constraints of a
problem. For scalability reasons, distributed algorithms
are more effective than centralized ones in large sensor
networks, and it is thus desirable to apply a distributed
approach to constraint satisfaction problems such as ping
node scheduling. In a distributed CSP, variables and con-
straints are distributed among multiple nodes [8]. Dis-
tributed algorithms like thedistributed breakout[8] algo-
rithm (DBA) and its variations [6] have been shown to be
very effective for solving distributed constraint satisfac-
tion problems in sensor networks [6].

In particular, the ping node scheduling problem can be
formulated in terms of a well-known distributed CSP:dis-
tributed graph coloring[6]. In distributed graph coloring,
the goal is to find a valid color assignment for all ver-
tices of a graph, each an autonomous node in a distributed
network, and the constraint being that two adjacent ver-
tices (i.e., two vertices connected by an link) cannot be
assigned the same color. In the context of the ping node
scheduling problem, the network of sensors corresponds
to a graph, a sensor-actuator node corresponds to a ver-
tex in the graph, and connections between sensor-actuator
nodes are represented by edges in the graph. The time slot
scheduled for a ping node corresponds to a vertex color
assignment in the distributed graph coloring problem. The
example application used in our experiments described in
Section 3 applies a DBA [8] to solve thedistributed graph
coloringproblem, and is thus representative of sensor net-
work CSP applications more generally. We use the term
DBA-colorfor the algorithm used by our test application,
as described in Section 3.

2.3 DBA-color Application

Each Node represents a distributed vertex of the graph.
The sequence of events is as follows:

1. A NodeRegistry loads the graph from a file.

2. Nodes register with the NodeRegistry.

3. NodeRegistry returns neighbor data to each Node.

4. Nodes run DBA-color until a termination condition.

A group of 25 Node processes was executed on each
of the 4 machines and the NodeRegistry was executed
on one of the machines. A Node communicates with its
neighbors by sendingparameter messages. There are two

types ofparameter messages: (1) valuemessages, con-
taining the current color assignment of the sending node,
and (2) improvementmessages, containing the maximal
reduction in conflicts that could be achieved by a color
change at the sending Node.

Initially, every Node picks a random color from a color
set of size equal to the diameter of the graph. For ex-
ample, the diameter of the 100-node mesh described in
Section 3.2 is 18. Each Node first sends its current color
to its neighbors. If two vertices connected by an edge
have the same color, then the constraint represented by
the edge is considered to be violated. After receiving in-
dividual colors from all its neighbors, each node computes
the extent of such violations locally and tries to minimize
violations by searching for a differentcandidatecolor as-
signment. It then sends animprovement, which is a mea-
sure of its maximum possible reduction in violations, to
its neighbors. After receiving improvements from all its
neighbors, a Node will only change its color to itscandi-
datecolor if its own locally computed improvement is the
maximum among all its neighbor Nodes. This sequence
of steps, called acycle, is repeated until all violations are
eliminated,i.e., a valid color assignment is found for ev-
ery Node. At this point, the algorithm is said to have
convergedand all Nodes terminate and output their final
colors. Figure 1 in Section 3.1 illustrates the message in-
teractions between a node and one of its neighbors in one
cycle of the DBA-color algorithm. The original DBA al-
gorithm is explained in detail in [8].

3 Experimental Evaluation

In this section we describe a set of experiments conducted
to quantify fine-grain middleware performance, and use
those results to construct a realistic model of observed be-
havior of the DBA-color application over different topo-
logical configurations. Section 3.1 first gives a detailed
description of the performance segments of interest in the
DBA-color application. Section 3.2 then describes the ex-
perimental platform used to conduct the experiments pre-
sented in this paper. Section 3.3 describes the comparison
metrics used to design the experiments and evaluate our
empirical results. Finally, Section 3.4 gives details of our
experimental methodology that help ensure our observa-
tions are consistent, reproducible, and relevant.
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3.1 Application Segments

Figure 1 illustrates the essential segments on each of two
connected nodes in the DBA-color algorithm, and shows
the messages exchanged between them. Each node per-
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Figure 1: DBA-color Timing Sequence

forms the following sequence of steps in each DBA-color
cycle:

1. it marshals itscolor value,

2. sends a color value message to each neighbor,

3. waits for color value messages from its neighbors,

4. receives each neighbor’s color value message,

5. looks up and dispatches each message’s method,

6. demarshals the color value from each message,

7. (algorithm segment) decides its best improve value,

8. marshals its newimprovevalue,

9. sends an improve value message to each neighbor,

10. waits for improve value messages from its neighbors,

11. receives each neighbor’s improve value message,

12. looks up and dispatches each message’s method,

13. demarshals the color value from each message, and

14. (algorithm segment) decides its new color value.

Figure 1 highlights the fact that while some steps are
synchronous within a process,i.e., steps 1, 5-8, and 12-
14, other steps are asynchronous,i.e., steps 2-4, 9-11.
Furthermore, as Figure 1 illustrates this asynchrony can
lead to variations in cycle times, both between and within
nodes.

Steps 3 and 10 are asynchronous due to network trans-
mission variability: this holds generally for distributed
systems with decoupled processing and communication,
except for those with explicit synchronization between
nodes. Steps 2, 4, 9, and 11 are also asynchronous in
our experiments due to reactive handling of multiple net-
work connections at each endsystem: with a thread-per-
connection architecture these steps could be made syn-
chronous, but that architecture may be infeasible in highly
connected large-scale sensor networks with stringent real-
time and embedded footprint constraints.

3.2 Experimental Platform

All experiments were conducted on a 4-machine cluster of
Pentium 4 2.53GHz CPUs, each with 512MB RAM run-
ning KURT Linux 2.4.18. In our experiments we used a
10x10 mesh of 100 nodes, a representative mid-scale sen-
sor network topology. To compare scalability of our re-
sults, we also ran our experiments with 4 fully connected
nodes, each on a separate machine and having the other 3
nodes as neighbors. Finally, we ran the same experiments
with 2 nodes, each on its own machine and with the other
node as its sole neighbor, to study fine-grain communica-
tion phasing effects between nodes.

3.3 Comparison Metrics

We used the following metrics to compare the perfor-
mance of DBA-color using ACE, TAO, and nORB.

Elapsed cycle times: The elapsed time for one cycle
of the DBA-color algorithm is the fundamental measure-
ment in our experiments. A node must wait for messages
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from all its neighbors in each cycle of the DBA-color al-
gorithm before it proceeds to the next cycle. Thus, a small
delay in one cycle of a node may be amplified and prop-
agated to its neighbors in the following cycles. This met-
ric’s sensitivity to delay proved very helpful for indentify-
ing performance variations between different middleware
mechanisms, and motivated various earlier optimizations
of nORB [2].

Mechanism-level timing: As Section 3.1 describes and
Figure 1 illustrates, timing analysis in distributed concur-
rent systems such as the DBA-color application must con-
sider both synchronous and asynchronous intervals. In
particular, it is essential to measure synchronous intervals
to ensure jitter is tightly bounded, and also to detect more
egregious problems such as deadlock or large head-of-line
blocking effects.

Measuring asynchronous intervals is also important,
though it is reasonable to expect the bounds on those
intervals to be less strict than the synchronous bounds.
In particular, the timing of asynchronous intervals may
also shed light on larger-scale performance issues, such
as the message buffering issue Section 4.5 describes. We
therefore measure time bounds oneachof the segments
enumerated in Section 3.1 and shown in Figure 1, for
fine-grain comparison of mechanism-level performance
in ACE, TAO and nORB.

3.4 Experimental Methodology

To develop a mechanism-level model for the differences
in performance between ACE, TAO, and nORB imple-
mentations of the DBA-Color algorithm described in [2],
we performed experiments with simple graphs of 2 and 4
nodes respectively, in addition to the full 100-node config-
uration studied in [2]. We introduced timingcheckpoints
for measuring the time spent on each of the fundamental
steps described in Section 3.1, to construct a detailed tim-
ing profile of each segment along the end-to-end messag-
ing path for ACE, TAO, and nORB.We used two timers in
each node for these experiments:
� an application-level timer to measure the time taken

for one application-level cycle, and

� a mechanism-level timer to measure the time taken
for the different stages of the middleware layer.

The following paragraphs describe our approach to each
of several crucial issues, which we addressed to ensure
accuracy and reproducibility of our results.

Application-level Instrumentation: We used each
node’s application-level timer to measure each applica-
tion cycleas described in Section 3.1. Immediately be-
fore a node started to send messages to its neighbors,
its application-level timer was started, along with its
mechanism-level timer for the first middleware segment.
Specifically, both timers were started in each node just be-
fore themarshalstage commenced at the beginning of the
timeline shown in Figure 1. The application-level timer
was stopped and restarted after each complete application
cycle. To achieve full timing coverage across all cycles
with no intervening gaps, we stopped the application-level
timer just before starting it.

Mechanism-level Instrumentation: At each
mechanism-level checkpoint,i.e., between each of
the segments shown in Figure 1, the mechanism-level
timer was stopped, the elapsed time logged in-memory
and the timer was started again. As with the application-
level timer, we stopped, measured and started the
mechanism-level timer contiguously in our measure-
ments, thus ensuring that we did not leave any gaps in
the mechanism-level measurements. Hence we ensured
reasonably full accounting of the time spent during an
entire application-level cycle.

To further verify that our timing measurements offered
full coverage, we computed the total time taken for a cy-
cle based on summation of the individual measurements
and compared these results to the actual observed cy-
cle time measurements. We verified that those two re-
sults matched closely, which indicated that our timing
measurements offered reasonably full accounting. We
also tagged each of the mechanism-level measurements
with a segment identifier, so that related sequences of
mechanism-level measurements could be correlated with
the overall application-level measurements. This helped
immensely in pinpointing the cause of middleware be-
havior causing higher cycle times in TAO, as described
in Section 4.5.

Timer operations were all inline and used pre-allocated
memory to avoid instrumentation overhead interfering
significantly with actual system performance. Figure 2
in Section 4.2 shows performance of the 100 node con-
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figuration with full timer instrumentation, which is nearly
indistinguishable from the similar plot without instrumen-
tation originally presented in [2]. This result indicates that
the effect of instrumentation was minimal, as designed.

Scale of Experiments: We conducted identical experi-
ments with the DBA-color application using ACE, TAO,
and nORB, and across several different node configura-
tions. The first, using only two nodes on two separate
machines was designed to minimize the coupling between
nodes, with each node having only a single neighbor and
with contention both minimal and limited to only the net-
work resource. The second node configuration used four
nodes, each again on its own machine, but with three
neighbors each. Finally, we ran the original 10 by 10
hundred node mesh, with 25 nodes running on each of 4
machines as described in Section 3.2. The point of vary-
ing the node configurations was to isolate factors of node
interaction and resource contention in forming a prelimi-
nary performance model for DBA-color running on ACE,
TAO, and nORB. To avoid misinterpreting artifacts of net-
work, platform or other experimental noise, we repeated
each experiment over roughly 500,000 cycles of the DBA-
color algorithm, producing consistent and repeatable dis-
tributions of measured timing.

4 Empirical Results

In this section we present our experimental results and
analyze them using each of the metrics described in Sec-
tion 3.3. Section 4.1 first presents a discussion of over-
all performance results. Section 4.2 then describes ob-
served cycle times. Section 4.3 presents marshaling re-
sults. Section 4.4 examines lookup and dispatching per-
formance. Section 4.5 discusses measured asynchronous
wait times. Finally, Section 4.6 offers a preliminary per-
formance model based on the other results presented in
this section.

4.1 Overall Performance Results

Table 1 shows the mean and median performance val-
ues for the application cycle times and individual seg-
ments, for each implementation running in 100, 4, or 2
nodes. Of particular interest is that even with the TAO op-
timization described in Section 4.5, the mean and median

application cycle times for nORB show a slight perfor-
mance improvement over TAO. Furthermore, this effect is
weaker with more nodes and stronger with fewer nodes.
This effect correlates most strongly with differences in the
mean and median wait times, which also show larger dif-
ferences with fewer nodes, and smaller differences with
more nodes. Section 4.5 discusses the implications of
these wait time results in detail.

ACE performs better on average (both mean and me-
dian) than either nORB or TAO in overall cycle times,
marshaling, send, and wait times. TAO’s highly optimized
receive mechanism outperforms those for both ACE and
nORB. TAO’s lookup and dispatch mechanisms are sim-
ilarly optimized and outperform nORB: the implemen-
tation using ACE does not perform these functions but
rather demarshals directly from the socket receive. Fi-
nally, demarshaling and algorithm segment times are neg-
ligible due to the relative simplicity of these mechanisms.
We now turn our attention from average performance val-
ues to detailed performancedistributionsin the rest of this
section.

4.2 Cycle Times

Figure 2 shows the distribution of measured cycle times
over�500,000 cycles of the DBA-color algorithm using
ACE, nORB and TAO, up to a 25 msec limit that includes
98% of all samples in each case. These measurements
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were taken with the additional timing instrumentation in

6



Configuration application marshal send wait receive lookup and demarshal algorithm
cycle dispatch segment

ACE: 100 nodes 6928 / 6978 4 / 5 40 / 5 906 / 534 11 / 9 0 / 0 1 / 0 1 / 0
nORB: 100 nodes 13015 / 13210 13 / 10 75 / 7 1703 / 1190 12 / 11 15 / 12 0 / 0 1 / 1

TAO: 100 nodes 13687 / 12667 18 / 9 90 / 7 1764 / 788 9 / 7 12 / 20 0 / 0 1 / 1
ACE: 4 nodes 228 / 227 5 / 3 6 / 3 16 / 16 10 / 9 0 / 0 1 / 0 0 / 0

nORB: 4 nodes 385 / 384 11 / 11 8 / 5 15 / 16 9 / 6 17 / 15 0 / 0 0 / 0
TAO: 4 nodes 411 / 410 11 / 9 8 / 7 29 / 20 9 / 8 7 / 4 0 / 0 0 / 0
ACE: 2 nodes 128 / 128 2 / 2 3 / 1 51 / 52 5 / 5 0 / 0 1 / 1 0 / 0

nORB: 2 nodes 190 / 189 13 / 16 5 / 5 52 / 52 6 / 6 15 / 13 0 / 0 0 / 0
TAO: 2 nodes 165 / 164 12 / 12 5 / 5 50 / 46 7 / 5 4 / 4 0 / 0 0 / 0

Table 1: Mean/Median Timing of Application Cycle and Middleware Mechanisms (in�sec)

place for each of the middleware mechanism segments
shown in Table 1. As noted previously in Section 3.4,
the shapes and locations of the curves for each of the
configurations is similar to those reported in our previ-
ous measurements without the fine-grain instrumentation
in place [2]. These results thus give evidence that our in-
strumentation of the middleware had only a limited effect
on the performance of the system overall.

Furthermore, the shapes of the distributions are regu-
lar and consistent, with a narrower distribution for ACE
falling to the left of the wider distributions for nORB and
TAO, with the nORB distribution shifted slightly to the
left compared to the TAO distribution. The distributions
shown in Figure 2 thus reinforce the impressions of over-
all performance gleaned from Table 1.

4.3 Marshaling

Figure 3 shows the Marshaling times for ACE, TAO, and
nORB configurations with 100 nodes. The distributions
shown in Figure 3 reinforce the overall impression we
get from Table 1, but also show an interesting tail to the
right for both nORB and TAO. We can see that the over-
head of marshaling a request and writing it to the con-
nection are very similar for nORB and TAO, which is an
expected result because both nORB and TAO use ACE’s
Common Data Representation (CDR) class to marshal
their requests. Marshaling in the ACE implementation of
DBA-color outperforms that for both nORB and TAO, for
two reasons. First, the ACE implementation only mar-
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Figure 3: Marshaling Times: 100 Nodes

shals each message once, whereas nORB and TAO mar-
shal both the message header and message body. Sec-
ond, the ACE implementation only constructs one mes-
sage, even if it will be sent to multiple neighbors. The
results shown in Figure 3 thus correlate strongly with our
understanding of the underlying marshaling mechanisms
in ACE, TAO, and nORB.

4.4 Lookup and Dispatching

Figure 4 shows the times for servant lookup and method
dispatching on the server side in TAO and nORB, run-
ning on 4 nodes. We show this case in detail because it
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Figure 4: Lookup and Dispatching Times: 4 Nodes

reflected the greatest difference in lookup and dispatch-
ing times between nORB and TAO, as shown in Table 1.
Times for ACE are not shown in Figure 4, as ACE does
not perform lookup or dispatching and the times measured
were negligible as expected, which Table 1 also indicates.

4.5 Wait Times

Finally, Figure 5 shows the wait time distributions
for TAO with 2-nodes, first with theSYNCNONE
messaging policy, and then with the better-suited
SYNCTRANSPORTpolicy. SYNCNONEwas originally
used by the TAO DBA-color implementation because its
use was intended to improve message throughput. How-
ever, our experiments showed that for lightly loaded net-
works with stringent performance requirements, TAO’s
defaultSYNCTRANSPORTpolicy is strongly preferred.
We first identified the need to use theSYNCTRANSPORT
policy instead ofSYNCNONEin TAO during our per-
formance experiments using 2 nodes. Because we had
tagged the individual timing data with ids for the segments
being measured, we were able to observe that reasonably
frequent cases of ORB-level message buffering were oc-
curring for TAO with 2 nodes. We then examined the code
path in TAO and identified the mechanism configured by
theSYNCNONEpolicy as the cause of the observed mes-
sage delays.

It is of particular interest that although the use of
SYNCTRANSPORTsignificantly reduced long wait times
in the implementation using TAO, it did not eliminate
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Figure 5: TAO Wait Times: 2 Nodes

them entirely. Combined with the absence of this effect
in the implementation using nORB, this suggests the pos-
sibility that the reduced message size in nORB may be
a contributor to achieving consistently shorter wait times
by avoiding multiple sends associated with message frag-
mentation. This question clearly frames an important next
direction in our research.

4.6 A Preliminary Performance Model

From the results in this section, we can infer a reasonably
consistent model for the performance observed in [2] and
reproduced in the experimental results presented so far in
this section. We conclude our analysis of experimental
results by summarizing the relative contributions of each
kind of middleware segment and offering a plausible ex-
planation for any crucial differences in performance of
that segment between ACE, TAO or nORB.

Application Cycle: The time taken by each algorithm
cycle affects the total time the algorithm takes to con-
verge. As illustrated in Figure 1, the application cycle
stage is influenced by each of the middleware-level stages,
as we explain in detail below. Because of the topology of
the 100-node graph, a delay in any of these middleware-
level stages has a potential ripple-effect, which then may
increase the delay experienced in the wait stage and as
a result the overall cycle time may be impacted signifi-
cantly.
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Marshal: When a remote call is made, the application
data is marshaled to a common on-the-wire format. All
three implementations use the CDR format to marshal the
data. In the case of ACE, since the data formats are de-
cided at design time, no extra information is needed to
identify the destination object in the server or the associ-
ated method on the destination object. On the contrary,
TAO and nORB needs header information to identify the
appropriate target object and its method.

Marshaling may cause a significant amount of overhead
if performed repeatedly. In the DBA-color application,
marshaling may be performed multiple times in one cycle
based on the topology of the graph. For example, for the
fully connected 4-node graph, this would be done 6 times
per cycle at each node: once for each of the 3 neighbors
for the color and improvement messages. For TAO and
ACE, this amounts to doing the marshaling all the 6 times,
whereas for ACE, the marshaling can be done once and
then the marshaled data sent to all the neighbors. This
forms one of the most significant sources of overhead for
the Color-DBA implementations using TAO and nORB,
when compared to the implementation using ACE.

Send: This stage measures the time incurred to send the
byte stream assembled from the previous stage. This is the
time it takes to hand over a byte stream buffer from the
application buffers to the OS kernel buffers. The length
of the byte stream buffer determines the amount of time it
takes in this stage. TAO and nORB takes more time in this
stage compared to ACE because of the header information
sent with each request.

Wait: This stage accounts for the idle time in a node,
while it is waiting for messages from its neighbors. This
time is influenced by the other stages, the distributed na-
ture of the algorithm, and the topology of the graph. The
wait time is also sensitive to delays in network. The
implementation using ACE shows the least delay in this
stage, because of the lower time spent in the other stages.

We observed a potentially interesting property of
the wait times in the 2 node TAO configuration using
SYNCNONE. Once a delay was set up, it was possible
for the two nodes to lock into a fairly stable and syn-
chronous pattern of message exchange, resulting in per-
sistently long wait times. In the larger graphs this ef-
fect was not observed, and we speculate that some elas-
ticity property due to the relative degrees of freedom of

the nodes in the 100 node, 4 node, and 2 node networks
is involved. We intend to study these kinds of effects in
greater depth as future work.

Receive: Upon receipt of a message byte stream from
a client, the server tries to read a header, which contains
the total length of the payload. The payload in turn con-
sists of the marshaled request header and application data
sent from the client. Based on the information in the
header, the request is assembled. In this stage, a very
small amount of demarshaling is involved - demarshaling
the header information. Since all three implementations
do this and the observed times are uniformly small, this
stage has little effect on the overall cycle time.

Lookup and Dispatch: Once a request is completely
assembled by the previous stage, the request is parsed to
dispatch the method to the appropriate server-side imple-
mentation object. This involves demarshaling the request
header, looking up the servant object using the object key
embedded in the request header, looking up the method to
be called on the servant object and then making the upcall
on to the skeleton object, which finally dispatches the data
to the implementation.

The Color-DBA ACE implementation knows the target
object of the incoming call at design time and hence does
not go through the stage of lookup and dispatch, whereas
in TAO and nORB this has to be done for each and ev-
ery remote call on the server. This is a significant source
of overhead and is one of the reasons for the lower cycle
times observed for the implementation using ACE. For
one remote call, this might not pose a significant over-
head. But, as shown in Figure 1, this happens two times
the number of neighbors in each cycle on each node. Fur-
thermore, this effect increases the delay on each node as
it waits to get data from its neighbors.

Demarshal: The time spent in this stage is the time
taken by the skeleton to demarshal the application data
payload from the incoming CDR stream, which contains
the marshaled payload sent by the client. This does not
include the time taken to demarshal the header and re-
quest header, since that time is included in theLookup
and Dispatchstage. Since the ACE, TAO and nORB im-
plementations use the ACE CDR stream classes, the time
taken to demarshal is the same for all of them, since the
application message structure is the same across all the
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three implementations. We observed that the time taken
is very small (sub-�sec) and hence has very little effect on
the overall performance.

Algorithm Segment: After the target has been identi-
fied, the method encoded in the request is called on that
object. This stage is solely determined by the application
logic. In the Color-DBA application, each node evaluates
the current color assignments locally and searches for a
better assignment which would reduce the amount of vio-
lations in the coloring rules. The steps performed in this
stage are both simple and exactly the same for the three
implementations, and hence have relatively little effect on
the overall performance.

5 Related Work

In this section we note special purpose middleware
projects that address similar challenges to those in our
work, and describe related work on fine-grain middleware
performance evaluation.

Embedded and Real-Time Middleware: As described
in our previous work [2], three main projects are closely
related to our work on nORB: MicroQoSCORBA, Ubiq-
uitous CORBA, and e*ORB. MicroQoSCORBA is a mid-
dleware research project at Washington State University,
focusing on middleware footprint reduction through case-
tool customization of middleware features for highly con-
strained embedded systems.

Ubiquitous CORBA projects such as LegORB and the
CORBA specialization of the Universally Interoperable
Core (UIC) focus on a metaprogramming approach to
DOC middleware. The key difference with our work is
that the UIC containsmeta-levelabstractions that differ-
ent middleware paradigms,e.g., CORBA, must special-
ize, while ACE, TAO, and nORB are concretebase-level
frameworks.

e*ORB is a commercial CORBA ORB developed for
embedded systems, especially in the Telecom domain.
Although the e*ORB web pages claim that e*ORB is the
smallest and fastest CORBA ORB, they do not show the
kinds of detailed performance comparisons,in the con-
text of a specific application, as we have presented here.
We plan to expand on the set of fine-grained empirical
comparisons presented in this paper, to include e*ORB in

our future studies of special purpose middleware perfor-
mance.

Middleware Performance Measurement: The work
most strongly related to that presented in this paper
is the original series of projects measuring, modeling,
and optimizing performance in TAO and other CORBA
ORBs. For example, detailed studies of IIOP protocol
performance and TAO’s optimized protocol engine are
described in [9]. We leveraged the ACE CDR classes
and other optimized mechanisms employed by TAO for
nORB, and conducted the similarly detailed experiments
reported here, to ensure nORB achieved comparable per-
formance to TAO while offering a reduced ORB footprint.

nORB’s concurrency, locking, and memory architec-
ture is very simple due to the domain for which it was
designed. While real-time performance is a key concern,
the ORB core experiments here covered most of the space
of current design concerns. However, as we add planned
features such as hybrid static/dynamic scheduling, we will
need to conduct further experiments to ensure appropriate
real-time concurrency, memory management, and locking
patterns are applied as in TAO [10].

6 Conclusions

In this paper we have shown that the development of spe-
cial purpose middleware requires careful observation and
analysis of experimental results during the development
process. We have presented a methodology for com-
bined application and middleware mechanism-level per-
formance analysis. Special optimizations such as reduced
message sizes may not be achievable through purely
COTS standard middleware, but may be available in par-
ticular implementations. In addition, discoveringwhich
settings and features are best for an application requires
both careful designa priori, followed by empirical mea-
surement and possible design refactoring. It is therefore
important to adopt an iterative approach to middleware
development that takes current application requirements
and experimental results into consideration. In this paper
we have thus further emphasized the importance of care-
ful empirical measurement within the context of a repre-
sentative application,as an essential tool for the develop-
ment of special purpose middleware itself.
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The rest of this section is structured as follows. Sec-
tion 6.1 presents key observations stemming from our re-
sults, and makes recommendations to leverage those ob-
servations. Section 6.2 then describes future work to fol-
low up on new questions raised in this work.

6.1 Observations and Recommendations

Observation: Redundant Marshaling – A node sends
the same application level messages to its neighbors. Us-
ing a standard ORB data path causes the same data to
be marshaled repeatedly, which is not only unnecessary
but also increases the application cycle time, adversely af-
fecting the timeliness of the application. The DBA-color
implementation using ACE uses application-level knowl-
edge and optimizes this.

Recommendation: Optimize Marshaling – Using ap-
plication knowledge, an ORB could be configured to pre-
marshal data using some form of memoization at the stub
level. Another option would be to apply the principle of
group communication and use a group Inter-ORB pro-
tocol to achieve this. This would be very useful in sen-
sor network applications where neighborhood communi-
cation is the highly preferred and sometimes only avail-
able mode of communication.

Observation: Time Complexity for Lookup – TAO
performs better than nORB and provides bounded be-
havior using strategies like perfect hashing for operation
lookup. Currently, nORB uses a linear search for oper-
ation lookup. This was done based on the assumption
that there are only a few objects registered on the server
expecting remote calls. But this search strategy could
adversely affect delay sensitive applications like Color-
DBA, which exhibits a ripple-effect in the overall cycle
time.

Recommendation: Use Hashing Techniques– Us-
ing hash-based searching for operations is recommended,
since this makes the lookup more bounded.

Observation: Large Header Size – The size of the
header plays a significant role in the time it takes to mar-
shal and demarshal. In applications where the payload
size is small, this could become a bottleneck and alterna-
tives such as payload aggregation or header minimization
should be pursued.

Recommendation: Minimize Header Fields – Fine
tuning the contents of the header based on the applica-
tion may be necessary in some embedded systems. This
technique can significantly optimize the marshaling, un-
marshaling and sending of messages between endsystems,
especially when message traffic is heavy.

6.2 Future Work

We plan to conduct the following areas of future research
that were suggested by the results presented in this paper.

Marshaling Optimization: There are several differ-
ent candidate mechanisms to avoid redundant marshaling
when the same data is sent to different neighbors. Of
these, we are planning to investigate memoization, mul-
ticast, and Group IORs.

Communication Models: We plan to investigate com-
munication models other than the oneway communication
model that we have used in our experiments here, for ex-
ample using the TAO Event Service and AMI framework.
It would be useful to analyze how the application proper-
ties affect the performance with each of these additional
inter-node communication models.

Operation Lookup: Relatively slower operation dis-
patches were observed for nORB in our experimental re-
sults, which we would like investigate further. We will try
to identify the causes of this, and mitigate them to reduce
temporal overhead as much as possible without incurring
excessive spatial overhead or programming model com-
plexity.

Configurability: We plan to investigate further the rela-
tionships between timeliness, footprint, and feature sets in
nORB. Ideally, it should be possible to configure the ORB
selectively at design time as well as run-time, to achieve
maximal performance in terms of both time and space.

Jitter: From Table 1, we infer that the jitter for the send
stage is relatively higher for the 100 node experiment than
for the other two. We plan to investigate the cause of this
jitter.
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