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ABSTRACT OF THE THESIS 

An Attention LSTM U-Net Model for Drosophila Melanogaster Heart Tube Segmentation  

by 

Xiangping Ouyang 

Master of Science in Computer Engineering  

Washington University in St. Louis, 2024 

Professor Chao Zhou, Chair  

 

Machine learning is commonly used in biomedical image analysis, as it allows automated image 

segmentation and identification that minimizes the need for tedious human involvement.  

Drosophila melanogaster is often used as a cardiac disease model, where optical coherence 

microscopy (OCM) is used to image and analyze its beating dynamics. As OCM often generates a 

large volume of images, automated image segmentation is necessary to quantify the heart beating 

efficiently. Our most recent heart segmentation model, FlyNet 2.0+, is a fully convolutional LSTM 

U-Net model [1]. However, the performance of the model diminishes in the presence of artifacts, 

such as image reflection and heart movement, resulting in time-consuming manual intervention 

for mask correction. Therefore, we developed the FlyNet 3.0 model with integrated attention gates 

in skip connections between each level of the LSTM U-Net model [2]. The attention model 

adaptively adjusts and automatically learns to focus on the target structure, the heart area. 

Compared to the previous model, Flynet 3.0 increases the prediction intersection over union (IOU) 

accuracy from 0.86 to 0.89 for images with reflection artifacts and from 0.81 to 0.89 for those 

depicting heart movement. Furthermore, we have expanded the functionalities of OCM analyses 

through automated and dynamic heart wall thickness measurements, which we have validated 

using a Drosophila model of cardiac hypertrophy.  
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Chapter 1: Introduction 

Drosophila melanogaster, or the fruit fly, is a powerful model organism for studying the 

developmental processes and biological mechanisms of human diseases. Approximately 75% of 

disease-causing genes in humans have been discovered to possess a homologous counterpart in 

this fruit fly [3,4]. The fruit fly's short life cycle makes it convenient for studying developmental 

processes, and during development, the heart tube resembles the human embryonic heart. 

Moreover, the Drosophila genome is fully sequenced, and the methods for manipulating the genes 

are well-established [5]. These characteristics make Drosophila melanogaster a perfect candidate 

for cardiac research. A significant number of cardiology studies have been done on Drosophila 

over the past 30 years, including exploring heartbeat characteristics [6,7], performing cardiac 

simulation [8,9], and building and analyzing the disease model [10–15]. 

Optical coherence microscopy (OCM) is chosen to image Drosophila's cardiac structure and 

function in vivo because it is a noninvasive imaging modality, so that no exogenous contrast agents 

are involved, and samples can be returned after being used. The principles of OCM are the same 

as optical coherence tomography (OCT), which relies on light coherence and interference to obtain 

a resulting image. OCM inherits the imaging ability of OCT and further extends its resolution. The 

resulting image from OCM has a high spatial resolution, which can image up to 1 mm in depth, 

and has a high temporal resolution to capture the beating dynamics.  

In the past decades, OCM has been used to study various characteristics of the Drosophila’s heart 

during different health conditions [16–18]. In most studies, the identifying and marking processes 

of the heart region were manually completed by human experts. As OCM quickly generates a large 

quantity of data for analysis of the Drosophila’s heart model in cardiac research, manually 
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performing heart segmentation on a large volume of OCM videos is time-consuming and laborious 

[8]. Therefore, the automatic image segmentation process is beneficial.  

Previously, our group developed multiple versions of the FlyNet models, aiming to develop an 

automated Drosophila’s heart segmentation algorithm that minimizes the need for human 

involvement. Through these models, we have created a trustworthy heart function analysis pipeline. 

Although these models performed well in most cases and achieved an impressive prediction speed, 

they performed poorly when imaging artifacts were presented, including normal movements in the 

larval stage and noisy light reflection during the imaging process. Therefore, we implemented an 

attention LSTM model, named FlyNet 3.0, which integrated attention gates into the skip 

connections between each level of the LSTM U-Net model to improve segmentation accuracy in 

the presence of common artifacts. Additionally, we developed an automated in vivo heart wall 

thickness measurement based on the prediction mask to expand the current characterization of the 

heart using OCM. Altogether, we aim to provide an image processing platform that reduces the 

need for manual segmentation, allowing for accurate rapid segmentation regardless of artifacts to 

facilitate heart morphology and functional characteristic assessments.   

Chapter 2 discusses more background about the OCT and OCM imaging systems, characteristics 

of Drosophila heart function and how it has been investigated using OCM, and previous work in 

automatic Drosophila heart segmentation. In Chapter 3, we introduce our novel FlyNet 3.0 model, 

including the dataset acquisition, dataset preparation, network structure, and other network settings, 

with a special focus on the newly added attention gate structure. The model’s prediction results 

are discussed in Chapter 4, which includes attention weight visualization, prediction results 

analysis, and comparison between diverse imaging qualities. The next chapter outlines the 

application of this model on in vivo heart wall thickness measurements. The thesis concludes with 
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a discussion of the model’s novelty and limitations in Chapter 6 followed by a conclusion and its 

future development in Chapter 7.  
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Chapter 2: Background 

In this section, we will review the background of optical coherence tomography (OCT) and optical 

coherence microscopy (OCM) imaging systems, and how they were employed in the research 

project. This section will also introduce the importance of automating Drosophila's heart 

segmentation in our cardiac research and the history of this automation process.   

2.1 Optical Coherence Tomography (OCT) 
In the development of medical imaging, it is beneficial to attempt to eliminate and substitute 

invasive methods that could create a negative impact on the examined object, while still acquiring 

useful images. To fill the need for noninvasive imaging that relies on endogenous contrast with 

high resolution, OCT was invented in 1991 by Fujimoto's group, which enabled researchers to 

obtain cross-sectional images of tissue by measuring the echo time delay and the magnitude of 

back-reflected light [19]. Figure 1 shows an example of the OCT system, which is subdivided into 

5 parts, the light source, the fiber coupler as the beam splitter, the reference arm, the sample arm, 

and the detector. The light emitted from the light source is guided to the fiber coupler and splits 

into the sample beam and the reference beam [20]. The reference beam travels to the mirror along 

the reference arm and directly reflects back to the fiber coupler, and the beam in the sample arm 

interacts with the backscatter of the sample. Both back-reflected lights combine and interfere with 

each other and are recorded by the detector. The resulting interference pattern is processed through 

a computer and generates a complete depth profile of the sample reflectivity called an axial scan 

or A-scan. A cross-sectional image or B-scan can be received by acquiring several A-scans at 

different transverse positions. Similarly, a three-dimensional data set or a 3D-OCT image can be 

acquired by performing repeated B-scans with a change in the Y direction. Figure 2 shows 

examples of A-scan, B-scan, and 3D-OCT scan. OCT's high resolution, noninvasive, and 
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noncontact imaging characteristics make OCT popular in many research fields including 

ophthalmology and cardiovascular research.  

 

Figure 1: Schematic of OCT Imaging System. Each OCT system contains five parts, the light source, the fiber coupler as the 

beam splitter, the reference arm, the sample arm, and the detector.  

 

 

Figure 2: Examples of axial scan (A-scan), cross-sectional image (B–scan), and three-dimensional data set (3D–OCT) [21]. A-

scan measures the backscattered intensity with respect to depth. Repeated A-scans at different transverse positions generate a B-

scan. A 3D-OCT is captured by performing a series of B-scans along the Y direction. 

OCT is mainly configured into two categories: Time-domain OCT (TD-OCT) and Fourier-domain 

OCT (FD-OCT). FD-OCT can be further separated into spectral-domain OCT (SD-OCT) [22] and 

swept-source OCT (SS-OCT) [23].  
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2.2.1  Time-domain OCT 
The first OCT developed by Fujimoto's group is a TD-OCT system with a block diagram shown 

in Figure 3. The echo time delay and the intensity of backscattered light from biological tissues 

are measured by constantly moving the reference mirror to match the depth of the sample. The 

light signals are captured through the detector, a photodiode, to extract the A-scan information 

along the z direction.   

 

Figure 3: Block diagram of the time-domain OCT system [24]. The reference mirror is persistently moving to capture A-scans 

along the z direction. 

2.2.2  Fourier-domain OCT 
However, manually moving the reference mirror is laborious and greatly reduces the imaging 

speed. Therefore, researchers invented FD-OCT to improve image speeds, sensitivity, and axial 

resolution [25]. The key idea for FD-OCT is to fix the reference mirror and capture the spectral 

information of the backscattered light from the tissue, which is extracted through the Fourier 

transform. There are two approaches to achieve this idea, which developed into the SD-OCT and 
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SS-OCT. Figure 4a shows the block diagram for the SD-OCT. The main innovation for SD-OCT 

is that it uses a spectrometer instead of the photodiode as the detector to receive signals with 

different wavelengths. Figure 4b shows the block diagram for the SS-OCT. The SS-OCT keeps 

the photodiode as the detector but changes the light source to a tunable swept laser to allow signals 

with different wavelengths ejected with respect to time. Therefore, in both cases, the signal 

intensity and the echo time delay can be directly measured without moving the reference mirror. 

Moreover, FD-OCT has higher sensitivity because its parallel detection enables all depth 

information acquired simultaneously and improves the signal-to-noise ratio.  

 
Figure 4: Block Diagrams of spectral-domain (SD-OCT) Imaging System and swept-source (SS-OCT) Imaging System [24]. A) 

The SD-OCT system contains the light source, the fiber coupler, the reference arm, the sample arm, and the spectrometer as the 

detector. B) The SS-OCT system keeps the photodiode from the TD-OCT system but changes the light source to a tunable laser 

that changes the source signal wavelength by time so that the signal can be directly measured without moving the reference 

mirror. 

 

In general, FD-OCT has a more stable mechanism because of its fixed reference mirror, faster 

imaging speed, and higher sensitivity compared to TD-OCT [26]. Various adaptations and 

extensions have been made to the OCT system to further utilize it in a variety of research scopes, 

such as optical coherence microscopy (OCM) [19].  
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2.2 Optical Coherence Microscopy (OCM) 
OCM is a well-established imaging modality that is modified based on OCT to provide a better 

transverse spatial resolution. OCM employs an objective lens with a greater numerical aperture 

compared to the conventional OCT, which enables high-resolution cellular imaging, sufficient to 

capture the beating dynamic of the fruit fly in this project. In our experiment, instead of monitoring 

the 3D-OCT images, we used OCM to scan repeated frames of the same cross-section over time. 

Figure 5a displays the OCM imaging system setup in our lab and Figure 5b shows the 

corresponding schematic.  

 

Figure 5: OCM Imaging System Setup and its Schematic. A) Experiment setup for OCM with LED light control of the sample. 

B) Experiment setup schematic for OCM, which includes a light source, fiber coupler, sample arm, reference arm, and 

spectrometer.  

Previous OCM studies have examined cardiac disease's morphological and functional effects on 

Drosophila’s cardiac function, as OCM enables in vivo, label-free, high spatiotemporal resolution 

imaging [16–18]. Since the Drosophila’s heart tube is located ~200𝜇m beneath its surface, the 

light beam of OCM does not greatly attenuate in the tissue. Also, OCM is a noninvasive and 

noncontact imaging modality that utilizes the endogenous contrast naturally provided by light 

backscattering from the tissue. Moreover, OCM can reach up to a single-micron resolution and 

support a frame rate over 100 Hz to capture the heart-beating dynamics. These characteristics make 

OCM a perfect imaging modality to capture Drosophila’s heart function. For example, in 2015, 
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Alex et al. utilized OCM to analyze the functional and morphological changes in the Drosophila 

heart throughout the entire post-embryonic lifecycle [27].  

2.3 Drosophila Cardiac Study 
The Drosophila heart is a valuable model for heart development due to its short life cycle, simple 

genome, well-established physiological processes and disease models, and similarities to the 

human embryonic heart [8]. The first cardiac study on Drosophila melanogaster was conducted 

30 years ago, claiming that “the gene tinman is required for specification of the heart and visceral 

muscles in Drosophila [28].” Since then, Drosophila cardiac research has continued to grow. For 

example, in 2009, Holmes used OCT with M-mode to study Drosophila’s cardiovascular dynamics, 

including end systolic diameter (ESD), end diastolic diameter (EDD), and percentage fractional 

shortening [29]. The paper also suggested Drosophila as an important cardiac model for human 

disease, including disturbances of heart rate, rhythm, remodeling, and contractile function. In the 

same year, Fink et al. developed a Drosophila heart analysis algorithm for functional parameter 

quantifications [30]. They created a semi-automated heartbeat analysis pipeline to detect and 

quantify the heart rate, diastolic and systolic indices, ESD, EDD, percentage fractional shortening, 

contraction wave velocity, and arrhythmia index in adult and larval flies.  

To monitor the heart function in real-time using OCM, we used M-mode images with repeated B-

scans showing a cross-section of the heart at the same location over time to capture heart motion. 

Figure 6 shows an example of the cropped OCM image of the Drosophila heart in both cross-

sectional view and M-mode image. Several cardiac research projects are going on in parallel in 

our lab, including optogenetics projects that use light to control heart rhythm and the TREX project 

that uses Drosophila as a high throughput and a simpler model of disease, and each of them 

produces plenty of frames that need to be segmented and analyzed. A frame rate of 125 Hz was 
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applied to capture the beating dynamics of the heart. Different number frames were recorded for 

different developmental stages. In general, we obtained 2000 frames for larvae and early pupae 

and 4000 frames for adult flies.   

 

Figure 6: Example Resized OCM Image and M-mode Image. The M-mode image was acquired by repeatedly requiring the cross-

section of the heart at the same location over time to capture motion.   

2.4 Previous Drosophila Melanogaster Heart Tube 

Segmentation Model 
In the early studies of examining the morphological and functional effects of cardiac disease on 

Drosophila’s cardiac function, human experts needed to identify the heart region manually or by 

using various image segmentation techniques, such as pacing pulses, measuring the dimensions of 

the heart chamber in each frame using custom-written MATLAB codes, and applying the magic 

wand algorithm to perform heart characteristic analysis [18,27,31,32]. However, these methods 

fail to offer a swift and comprehensive characterization of both the structure and function of the 

heart, and a great amount of human involvement is demanded. The large amounts of cross-

sectional beating heat images time rapidly generated by the OCM further motivate and underscore 

the need for advancing automated segmentation techniques for the efficient assessment of heart 

function.  

Over the past few decades, various object detection and image segmentation techniques have been 

employed to semi-automatically detect the Drosophila’s heart region in the OCM images, such as 

thresholding [33], Markov random field [34], region growing [35], active contour [36], edge 
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detection [37], and clustering [38]. However, the issue of automatically attaining both high 

segmentation accuracy and universality remains challenging.  

As the deep neural network (DNN) continues to demonstrate success across diverse computer 

vision tasks, researchers are excitingly exploring and deploying various DNN architectures for 

segmenting biomedical images. Among these, the fully convolutional network stands out as one 

of the most successful DNNs for semantic segmentation [39]. In 2018, Duan et al. introduced a 

highly accurate model for identifying and marking the heart region of Drosophila in cross-

sectional images [40]. This model utilized a fully convolutional U-Net architecture, featuring a U-

shaped network structure and convolutional layers for both down-sampling and up-sampling. This 

model, named FlyNet 1.0, achieved an intersection over union (IOU) accuracy of 86%. In 2020, 

Dong et al. enhanced the FlyNet architecture to version 2.0 by incorporating convolutional long 

short-term memory (LSTM) to enable accurate 3D segmentation [41]. LSTM is an artificial 

recurrent neural network with feedback connections between time sequences [42]. FlyNet 2.0 

utilizes both spatial and temporal information to improve segmentation performance, resulting in 

an improved IOU accuracy of 92%. In 2023, Fishman et al. optimized the FlyNet model with better 

hardware and GPU utilization [1]. The encoder blocks start with spatiotemporal encoders and are 

followed by spatial encoders. The spatiotemporal encode block keeps the LSTM 2D convolution 

layer to capture temporal information. The spatial encoders are encapsulated in a time-distributed 

layer to enable parallel computing to frame without temporal dependencies. The decoder block has 

no LSTM layer and therefore operates in parallel across all time slices. With using an Nvidia RTX 

3090 GPU, FlyNet 2.0+ reaches an average IOU accuracy of 93%.   



 

 

12 

Chapter 3: Methods 

This section will introduce the methods we used to gather, process, and analyze the Drosophila 

OCM dataset. This project was a teamwork collaboration with lab mates from Z-lab and the 

work has been published and available at [43].  

3.1 Data Acquisition 
The dataset used in this research project was acquired and developed based on the publication by 

Fishman et al. [1]. Therefore, most of the raw images were collected by the lab for the use of other 

projects. Extra images were gathered to ensure enough diversity in the dataset. Figure 7 shows the 

developmental stages of Drosophila melanogaster. Our experiments are most interested in flies at 

larva, early pupa, and adult developmental stages. To collect the data, samples were mounted onto 

a glass slide, in which double-sided tape was used for each larval and pupal sample, and rubber 

cement was used for adult flies to stabilize their wings to the slide. The glass slide was placed in 

the sample holder of the OCM system. In our experiment, we used the customized OCM system 

described in Figure 5 with a central wavelength of 850nm and a bandwidth of ~175 nm from a 

broadband light source, achieving a ~3.3  𝜇m axial resolution in tissue. With a 10x objective lens, 

reaching a lateral resolution of ~2.8 𝜇m, and a frame rate of 125 Hz, the system provides us with 

a high spatiotemporal resolution imaging platform. Figure 8a shows the example of an adult fly 

mounted on the glass slide, and a zoomed-in view of the fly under a stereo microscope is displayed 

in Figure 8b. During the imaging process, we chose to image the largest heart segmentation in the 

heart tube, which is the A7 segment of the heart in larval and early pupal flies and the A1 segment 

for adult flies, as Figure 9 shows.  
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Figure 7: Developmental Stages for Drosophila Melanogaster [44]. 

 

Figure 8: Example of Adult Fly being Stabled on Glass Slide. A) Adult fly mounted on the glass slide by rubber cement. B) 

Zoomed in on the adult fly under the microscope. 

 

Figure 9: Schematic Representation of Drosophila Heart Metamorphosis on larva and adult flies [31]. The yellow section 

represents the heart tube of the fruit fly, and the red arrow points to the largest cross-sectional heart area we chose to image under 

the OCM system.  

3.2 Data Preparation  
To generate a model that is generalizable for automatic image segmentation, we prepared a dataset 

of a wide range of genotypes, involving disease models and optogenetic pacing data at different 

developmental stages, consisting of larva, early pupa, and adult Drosophila [3,32,45]. We 
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additionally collected a set of images with different degrees of image artifacts, including reflection 

and movement artifacts, for different developmental stages and added them on top of the existing 

dataset for training. All the datasets were manually assigned to one of the three categories: 

“reflection”, “movement”, and “normal.” As Figure 10 shows, “Normal” images present a clear 

and well-defined heart region present throughout the whole video. Images with reflection artifacts 

were categorized according to the extent to which the artifact passes through or blocks part of the 

heart region. As Figure 11 shows, the orange arrow points to the vertical white reflection passing 

through the right side of the heart. Figure 12 shows an example from the “Movement” category. 

“Movement” sets contain images with the heart region moving positions occasionally within the 

frame, which are dominated by larval samples. The example demonstrates a change in heart 

position ~1s apart.  

 

Figure 10: OCM Image of Adult Example from "Normal" Category in Cross-section view. 

 

 

Figure 11: OCM Image of Early Pupa Example from "Reflection" Category in Cross-section view. The orange arrow points to a 

vertical white reflection artifact that cuts off the right side of the heart.  
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Figure 12: OCM Images of Larva Example from "Movement" Category. The top is an M-mode image acquired from the OCM 

imaging system. The bottom are cross-sectional images of the orange frames with a time change of ~1s. In the example, the heart 

moves to a different position within the same frame position.  

Overall, we gathered 710,000 frames of OCM images, which included 198,000 reflection frames, 

48,000 movement frames, and 464,000 normal frames, as shown in Table 1. To train the neural 

network model, we randomly split the dataset into three sets: 60% for training, 5% for validation, 

and 35% for testing. 

Table 1: Fly Heart OCM Videos Dataset 

  Larva  Early Pupa  Adult  Total  # Frames  

Reflection  15  17  35  67  198,000  

Movement  12  0  0  12  48,000  

Normal  30  35  102  167  464,000  

Total  57  52  137  246  710,000  

 

To predict a mask, the raw 128 x 701 pixel full-size images were cropped and resized into a 128 x 

128 pixel image using the first neural network to identify the general heart region of the video. 

The resulting image was fed into our FlyNet 3.0 model for precise heart segmentation.  

3.3 General Network Structure 
Figure 13 presents a comprehensive overview of the proposed heart region segmentation network. 

We utilized the general structure of the FlyNet 2.0+ model, which consists of four convolution 

levels and three skip connections bridging the corresponding encoder and decoder blocks, and built 

the FlyNet 3.0 model by including the attention gate at each skip connection, as shown in red in 
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Figure 13 [1].  Inside each convolution block, there are two pairs of long short-term memory 

(LSTM) convolution layers, batch normalization (BN) layers, and Leaky rectified linear unit 

(ReLU) activation layers. Each LSTM 2D convolution layer from the encoder captures the spatial 

and temporal information of the input image. The skip connection passed the information to the 

decoder blocks and contributed to the final prediction. Under this model, we treated all the 

information as equally important and contributed to the final prediction at the same level. However, 

the spatial information containing the heart region needed to be further emphasized. Therefore, we 

added the attention gates on the skip connection to assign attention weight to each pixel, 

emphasizing the importance of these features. Figure 13B shows the inside structure of the newly 

added attention gates, which takes the skip connection signal as the horizontal dashed purple input 

“x”, the gating signal from the previous layer as the vertical dashed pink input “g,” and the output 

the weighted signal “s” into the skip connection. The attention model adaptively adjusted and 

automatically learned to focus on the target structure, the heart region. To locate the heart area 

precisely, the model placed more weight on the pixels containing the salient features of the heart, 

like the heart area and the heart boundary, and less weight on irrelevant regions, like the 

background tissues, in the input images.  
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Figure 13: The Flynet 3.0 Model Architecture [43]. A) There are four encoders and three decoder blocks, followed by a sigmoid 

layer. Each block contains two groups of 2D convolutional layers with a kernel size of 5x5, shown in blue, a batch normalization 

layer in yellow, and a ReLU activation function in yellow. The numbers shown below each block denote the number of filters for 

each group. The encoder blocks include a spatiotemporal encoder, in which the 2D convolutional layer is wrapped with an LSTM 

layer, followed by spatial encoding blocks, in which the 2D convolutional layer is encapsulated in a time-distributed wrapper. 

Similarly, all the decoders are spatial decoders, except for the last one, which is a spatiotemporal decoder. The gray solid arrow 

represents a 2D max-pooling layer with a pool size of 2x2. The green solid arrow represents a 2D transposed convolutional layer 

with a kernel size of 2x2 and a stride of 2. The purple dashed arrow indicates where a skip connection occurs. The pink dashed 

arrow stands for the gating signal. The gating signal and the skip connections are copied to the attention gate, shown in the red 

cylinder, and the output concatenates to the next layer. The last layer is a 3D convolutional layer with a kernel size of 1x1x1, 

followed by a sigmoid activation function. B) Detailed structure of the attention gate. The input g is from the gating signal, x is 

from the skip connection, and the output s is copied to the input of the corresponding decoder. 

In summary, FlyNet 3.0 takes in a resized OCM video as the input to the model and outputs a 

binary image of the heart region mask, as shown in Figure 14. The FlyNet 3.0 model was 

implemented in Python and the code is publicly available on GitHub [46].  
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Figure 14: FlyNet 3.0 Input and Output. The input to the FlyNet model is a grayscale resized OCM video, and the model predicts 

and outputs a binary mask of the heart region.  

 

3.4 Model Training and Evaluation  
To create the model with the best segmentation performance of the Drosophila heart, we trained 

the FlyNet 3.0 model using the Adam optimizer with a learning rate of 0.0001. The loss function 

was chosen as the Log-Cosh Dice Loss function, which was developed from the Dice Coefficient. 

The Dice Coefficient follows:     

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2(𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑎𝑟𝑒𝑎 ∩ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑎𝑟𝑒𝑎)

𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑎𝑟𝑒𝑎+𝑔𝑟𝑜𝑢𝑛𝑑 𝑎𝑟𝑒𝑎
,                           (1) 

where predict area is the sum of the area from the predicted mask from the FlyNet 3.0 model and 

ground area is the sum of the ground-truth mask area. The purpose of the Dice Coefficient is to 

optimize the segmented area to the ground truth as closely as possible [47]. However, the non-

convex nature of the Dice Coefficient can potentially lead to failure when attaining optimal 

outcomes, because the result may not reach convergence. Inspired by the Lovsz-Softmax loss 

function, researchers developed the Log-Cosh approach [48]:  

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,   (2) 

𝐿𝑙𝑐−𝑑𝑐𝑒 = log [cosh(𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠)].               (3) 

To evaluate the accuracy of the attention model in generating the 2D mask over times of the heart 

from the resized input image, we chose to use the IOU as the evaluation criteria to compare the 
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predicted mask with the ground truth mask. IOU is calculated as the intersection region of the 

predicted mask and the ground-truth mask over the union region of the two masks, as shown below:  

𝐼𝑂𝑈 =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑎𝑟𝑒𝑎 ∩ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑎𝑟𝑒𝑎

𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑎𝑟𝑒𝑎 ∪ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑎𝑟𝑒𝑎
.              (4) 

The model was trained for 80 epochs with 193 steps per iteration and a batch size of 32. We 

monitored the change in learning performance throughout the epochs, after the loss value reached 

stability, and determined the best model based on the lowest loss value and the highest IOU over 

the full validation dataset. The model was trained and predicted using TensorFlow 2.10.1 and 

Python 3.7.4 on a workstation equipped with an NVIDIA GeForce RTX 3090 card.  

All OCM videos were assumed to contain the whole heart region within the frame, and it was 

contained and continuous in each frame of the OCM cross-sectional view images. Therefore, we 

applied postprocessing steps on the predicted mask to improve the segmentation accuracy by 

keeping the largest connected component and smoothing the boundary. All results for both FlyNet 

2.0+ and FlyNet 3.0 are shown with post-processed images in this report.  

3.5 Attention Gate Structure 
Figure 13B shows the structure of the attention gate, which computes the attention weight for the 

input feature, x. The attention weight aims to identify the significant image region and determine 

the focal area [49]. The attention gate inputs two parameters: input x from the skip connection and 

the gating signal g from upsampling of the previous block. The attention weight is a single scalar 

weight vector calculated for each pixel vector at each frame. The output of the attention gate is the 

element-wise multiplication between the input feature mapping and the calculated attention weight, 

which ranges from 0 to 1.  
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To calculate the attention weight, we first need to capture the characteristics of the skip connection 

input and the gating signal through the convolutional and BN layers, with a kernel size of 2x2 for 

the convolutional layers and a kernel size of 1x1 for the BN layers. The next step is to add the 

result from the gating signal to the result from the skip connection. Adding the gating signal’s 

characteristics helps determine the focal region of the attention weight. Then, the ReLU activation 

function is applied to the pixel-wise summation to bring non-linearity into the model to introduce 

complexity [48]. Another linear transformation was applied to the result by passing the signals 

through an additional convolutional and BN layer with a kernel size of 1x1. This would output the 

initial attention weight coefficient of the input as follows:  

𝑞𝑎𝑡𝑡(𝑥, 𝑔) = Φ𝑞{𝜎1[Φ𝑥(𝑥) + Φ𝑔(𝑔)]},       (5) 

where 𝛷𝑥 and 𝛷𝑔 are the convolutional and BN layers for inputs x and g respectively, 𝜎1 is the 

ReLU activation function, and 𝛷𝑞 represents the last convolutional and BN layers for the initial 

model after passing through the first activation function.  

The coefficient needs to be rescaled between 0 and 1 by applying an activation function before 

applying the initial attention weight coefficient to the input x: 

𝛼 = 𝜎2[𝑞𝑎𝑡𝑡(𝑥, 𝑔)],     (6) 

where 𝜎2 is the sigmoid activation function.  

Lastly, the attention weight, 𝛼, is applied to and rescales the input features, x, as follows: 

𝑠 = 𝛼𝑥.            (7) 

The result, 𝑠, will be used as the new skip connection signal feeding to the next block.  
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Adding the gating characteristics also eliminates noisy and unrelated responses from the skip 

connections, because the gating signal is determined based on pertinent information extracted from 

the previous prediction layer. Furthermore, only filtering neuronal activations and element-wise 

multiplication were performed prior to the merge operations of the attention gate, ensuring all 

features extracted are retained. All the operations in the attention gates are linearly transformed 

without introducing any spatial modifications, making them a suitable complement to the LSTM 

model we previously employed.  

3.6 Statistical Analysis 
We performed the statistical analysis using a two-sided student’s t-test. The results were 

considered significant when p<0.05. 
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Chapter 4: Results 

This section presents the experimental results of testing the model and attention weight 

visualization to help understand the model mechanism. Several segmentation result comparisons 

were made to demonstrate the improvement of our model.   

4.1 Attention Weight Visualization  
To facilitate a better understanding of the training process and the attention gate algorithm, the 

attention weight vector obtained from different training epochs was visualized in Figure 15. The 

demo ground-truth image shown on the left covers a red ground-truth mask on its corresponding 

grayscale resized image. The rest of the images are the visualization of the attention weight vector 

with respect to different training epochs. All the weight vectors represented in the heatmap were 

normalized to the attention weight of the whole video. In the heatmap, a red pixel in the 

visualization indicates high intensity in weight, in contrast to a blue pixel. In the beginning epochs, 

the broad distribution of the heatmap generated at the 3rd epoch indicates a uniform distribution 

of the attention weight over the entire image frame, and the attention weight passes through 

features at all locations. Then, the attention weight gradually learned and focused on the pattern of 

the heart region, like the heart area or the heart boundary, depending on the area of the heart. 

Figure 15A and Figure 15B-C have shown example images for both scenarios. If the heart’s area 

is relatively large along all the frames in a resized OCM video, as shown in Figure 15A, the 

attention weight gradually focuses on the heart region and penalizes the rest of the background 

pixels by giving them low intensities. On the other hand, if an obvious variation in the size of the 

heart region occurs between the systolic and diastolic phases, as shown in Figure 15B-C, the 

attention weight uses the empty surrounding region of the heart bordered by tissues around the 

heart region in the larval body to help to locate the heart position.  
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When the evaluation criteria reached stability, the best training model was determined based on 

the lowest loss value. In this experiment, the model reaches an optimal focus on the heart region 

around the 47th epoch. Further training of the model does not help with refining the model weights 

to capture additional useful information about the heart region. When comparing attention weight 

between the 47th epoch to the later epochs, such as epochs 47 and 63 found in Figure 15, the 

attention weight demonstrates a higher intensity in the surrounding heart region in the 63rd epoch 

compared to epoch 47. The model also overtrained and produced an attention weight with a larger 

spread throughout the frame, indicating less focus around the heart region. In contrast, the attention 

weight at the 47th epoch provided a rough outline of the heart, which is gradually refined at finer 

resolution at coarser scales. This is proven in Figure 15D when the filtered-out low-intensity pixels 

of the optimal attention weight overlap the resized image.   
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Figure 15: Attention weight visualization [43]. A) Example of the attention weight learning process on adult fly images over a 

range of epochs. B) and C) Attention weight learning process on the same fly larva images over the same range of epochs of systolic 

and diastolic phases, respectively. D) Resized input image to the model and the corresponding optimized attention weight. After 

overlapping them and filtering out the low-intensity region, the ideal attention weight is focused on the heart area.  

4.2 Test Results 
To reach an objective evaluation, a variety of datasets were tested on our model, including images 

with no artifacts presented (normal), images with reflection artifacts intersecting the heart region 

(reflection), and images in which the heart moves horizontally or vertically during the frame 

sequence (movement). The average IOU results for both FlyNet 2.0+ and FlyNet 3.0 in each 

category and the overall performance, with the use of the same testing dataset, were demonstrated 

in Table 2. The overall performance increased from 88% to 92%, and improvements in accuracy 
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happened in all the categories. The ‘movement’ group showed the largest enhancement, with the 

accuracy raised from 81% to 89%.  

Table 2: Comparative Test Results for FlyNet 3.0 and 2.0+ 

Average IOU Normal Reflection  Movement  Overall* 

FlyNet 3.0 0.93 0.89 0.89 0.92 

FlyNet 2.0+ 0.91 0.86 0.81 0.88 

* “Overall” = 67% Normal Frames + 24% Reflection Frames + 9% Movement Frames 

4.2.1  Normal 
Images with no obvious artifacts were categorized into the normal dataset. The prediction result 

from the normal group remains excellent from the FlyNet 2.0+ model to the FlyNet 3.0 model. 

Figure 16A shows an example of resized images and heart mask combined images of the heart on 

the left and the overlapping comparison image between the ground truth and both prediction 

models in a cross-sectional view on the right column. All the ground truth masks are shown in red, 

prediction masks from both models are in green, and the yellow region represents the overlapping 

area between the ground truth and prediction results. An almost yellow-covered overlapping image 

indicates a high accuracy in segmenting the mask region from the OCM image. Figure 16B shows 

the M-mode image of the ground truth mask and both overlayed comparison masks overlayed on 

the M-mode resize image. The heart movement was clearly captured. The heart regions of the 

overlapping images in both Figure 16A-B were almost completely overridden by yellow, which 

represents an accurate automatic heart segmentation. This example image has an accuracy of 96% 

for the FlyNet 3.0 model and 95% for the FlyNet 2.0+ model.  

The precise result for both models is further confirmed by the IOU traces shown in Figure 16C, 

where IOU remains close to 100%, with some periodic oscillation due to the smaller area in systole. 

Figure 16D further compares the overall IOU for samples in the ‘normal’ group. The statistical 
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analysis result further proves that FlyNet 3.0 improves segmentation accuracy by 2% over FlyNet 

2.0+.  

 

Figure 16: Flynet 3.0 performance on normal group example [47]. A) Cross-sectional comparison of the ground truth mask (red) 

and prediction results (green) from FlyNet 2.0+ and FlyNet 3.0. The overlap between the two masks is shown in yellow. B) M-

mode images comparison of ground truth masks (red) and prediction results (green) from FlyNet 2.0+ and FlyNet 3.0. The 

overlap between the two masks is shown in yellow. C) IOU comparison of FlyNet 2.0+ and FlyNet 3.0 for the example shown in 

A-B. D) Group comparison between FlyNet 2.0+ and FlyNet 3.0, *** p<0.001. 

4.2.2  Reflection 
One common artifact in optical images is light reflection from noisy parts of the sample. Figure 

17A shows an example from the “reflection” group in the cross-sectional view, including the 

combined resized OCM and heart mask images on the left column and overlapping comparison 

images of the ground truth mask and prediction models. The corresponding M-model images are 

shown in Figure 17B. The blue arrow indicates where the reflection occurs, which appears as 

vertical and horizontal white lines in the cross-section. By looking at the overlapping image 

produced by FlyNet 2.0+ in cross-section, we can easily point out the red area next to the small 

yellow overlapping region. The M-mode image further demonstrates the misclassification region 

for the entire image, where the presence of the artifact reduces the size of the FlyNet 2.0+ predicted 

mask, especially in the systolic phases. These red pixels indicate an inaccurate prediction of the 

mask area due to the presence of a reflection artifact. The mask overlayed images show FlyNet 

  
  

 
  
 
  

  
  

 
  
 
  
 

  

 
  
 
 
 
  
  
  

       

      

   

     
 

  

  
   

         

  

  

  

  

   

  
 
  
 
 

        

  
 
  
 
 

  

 

   
             

         

  
 
  
 
 

  

 

   

     



 

 

27 

2.0+ falsely treats the reflection artifacts as the heart boundary. With the attention model added to 

FlyNet, the prediction mask from the FlyNet 3.0 model covers the entire heart region, and the 

yellow area from the overlapping image accurately represents the precise prediction result of the 

FlyNet 3.0 model. Both almost yellow-covered overlayed images from the bottom row of Figure 

17A-B indicate high fidelity between the ground truth and predicted masks.  

Figure 17C further confirms this result by showing the IOU trace for this example dataset. The 

IOU drops down to 0 in some systolic phases in FlyNet 2.0+ due to the reflection artifact causing 

the model to be unable to recognize any of the heart areas. In contrast, the IOU performance for 

FlyNet 3.0 remains close to 100% for the entire image. Figure 17D compares the overall 

performance of the two models for the entire ‘reflection’ group, where FlyNet 3.0 improves IOU 

over FlyNet 2.0+ by 3%.  

 

Figure 17: Flynet 3.0 performance on reflection group example [43]. A) Cross-sectional comparison of the ground truth mask (red) 

and prediction results (green) from FlyNet 2.0+ and FlyNet 3.0. The overlap between the two masks is shown in yellow. Reflection 

artifacts are indicated in the region by the white arrow. B) M-mode images comparison of ground truth masks (red) and prediction 

results (green) from FlyNet 2.0+ and FlyNet 3.0. The overlap between the two masks is shown in yellow. An example reflection 

artifact is indicated by the blue arrow. C) IOU comparison of FlyNet 2.0+ and FlyNet 3.0 for the example shown in A-B. D) Group 

comparison between FlyNet 2.0+ and FlyNet 3.0, * p<0.05.  
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4.2.3  Movement 
When Drosophila melanogaster is in the larval stage, it can move its position from time to time. 

This creates the movement artifacts shown in this category. Figure 18 shows an example from the 

‘movement’ group. The cross-sectional view OCM image shown in Figure 18A is selected from 

the frame soon after the movement occurs. The heart region changes position within the frame in 

seconds due to movement. When resizing an image to 128x128 for prediction, the resized image 

has a fixed cropped region and must contain the whole heart for the duration of the recording. Thus, 

the resulting resized images in the movement dataset do not focus as tightly on the heart region, 

as the region the heart occupies during the recording is large. FlyNet 2.0+ performs poorly with 

smaller and less centered heart regions, which leads to a high potential of experiencing lower 

accuracy for identifying the mask using the FlyNet 2.0+ model. The additional green area in the 

overlap image from the FlyNet 2.0+ prediction, which cannot be removed by post-processing due 

to it being connected to the true heart region, points out the misidentification area for causing a 

low IOU value for this frame. By adding the attention gate to the model, this area is less likely to 

be recognized by our FlyNet 3.0 model. By looking at the M-Mode overlap images shown in 

Figure 18B, the dense green areas in the FlyNet 2.0+ row indicate it struggles in this scenario and 

continues the pattern of recognizing additional areas that are not part of the heart region. The white 

arrows point to approximately when the heart movement starts and ends. Heart movement 

diminishes the contribution of the LSTM model, resulting in poor prediction accuracy. The Flynet 

3.0 model aims to overcome this issue by placing more attention on the heart region, making it 

more likely to identify the heart region correctly. Therefore, the overlapping mask in the M-mode 

for FlyNet 3.0 shows a mainly yellow area, with a few areas of green, indicating a more accurate 

prediction.  
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These observations and explanations are further proven graphically in Figure 18C, where the IOU 

plot for FlyNet 2.0+ has more discontinuities than the plot for FlyNet 3.0. The IOU per frame 

remains around 100% for FlyNet 3.0 except for a few, but the IOU changes dramatically for FlyNet 

2.0+ after the change in heart position. Overall statistical results for the movement group, shown 

in Figure 18D, indicate that FlyNet 3.0 significantly improves performance over FlyNet 2.0+ by 

4%. 

 

Figure 18: Flynet 3.0 performance on reflection group example [43]. A) Cross-sectional comparison of the ground truth mask (red) 

and prediction results (green) from FlyNet 2.0+ and FlyNet 3.0 during a period of movement. The overlap between the two masks 

is shown in yellow. B) M-mode images comparison of ground truth masks (red) and prediction results (green) from FlyNet 2.0+ 

and FlyNet 3.0. The overlap between the two masks is shown in yellow. Areas with movement are indicated by the white arrow. 

C) IOU comparison of FlyNet 2.0+ and FlyNet 3.0 for the example shown in A-B. D) Group comparison between FlyNet 2.0+ and 

FlyNet 3.0, * p<0.05. 
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Chapter 5: Application – In vivo Heart Wall 

Thickness Measurements 

In addition to training a robust model that accurately identifies the heart region while mitigating 

the influence of artifacts, we aim to create a more comprehensive package for analyzing both 

morphological and dynamic features of the Drosophila heartbeat and ultimately contribute to 

cardiac research. Our previous FlyNet models have enabled many useful phenotyping tools, 

including automatic analysis of the characteristics of heart rate, fractional shortening, and heart 

areas. In our updated model, given a more accurate prediction, we propose an additional tool for 

measuring the heart wall thickness in vivo.  

5.1 Methods 
Figures 19A-F show the calculation examples of a larval sample. To measure the thickness of the 

heart wall, we begin with an accurate prediction mask on the raw OCM image. After receiving the 

128x128 pixel resized image of the heart region, the first step is to crop the raw OCM image 

according to the resize parameters generated by the resize network. Then, we resize the predicted 

mask according to the same parameters to match the size of the cropped OCM image. This step is 

critical in keeping the precision of heart wall thickness measurement. Then, we rescale both the 

cropped OCM image and the resized mask according to the pixel-to-micron ratio, which was found 

by imaging a USAF target with the same scan settings. Therefore, we can directly measure the 

thickness along the heart wall in the image to get the result, as each pixel in the rescaled image 

represents one micron. 

All the images demonstrated in Figure 19 are rescaled to their physical distance representation. 

We are most interested in the heart wall thickness during the systolic and diastolic stages. Figures 
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19A, 19C, and 19E show example measurement procedures during the systolic stage, and Figures 

19B, 19D, and 19F from the diastolic stage. The end-systolic and end-diastolic measuring points 

are identified by the peaks and valleys calculated through the heart area measurement over time. 

Figures 19A-B show the scaled combined images in the systolic and diastolic phases respectively, 

with the OCM image in greyscale and the prediction mask of the heart in red. It is critical to know 

the position of the heart wall precisely. Luckily, we can retrieve this information based on the heart 

boundary of the predicted mask. The pink curves outlined in Figure 19C-D depict the relative 

position of the heart wall. Then, we smooth out the curve to decrease the effect brought by the 

sharpness of the predicted heart. For each pixel position along the smoothed curve of the heart 

boundary, we drew a line perpendicular to the heart wall to obtain the OCM intensity along the 

line. The exampled two neighboring red dots in Figure 19C-D are used to determine the slope of 

the green point of interest, which results in the blue direction. We allow the step for all the pixels 

along the pink curve except for those that border other tissues in the body. We choose to exclude 

those points because there are only a minority of them per frame in the video and it is hard to 

accurately differentiate the heart wall computationally for these points. Points are also excluded if 

artifacts are presented in the image that may reduce the imaging quality of the heart wall. Since 

other tissues near the heart and artifacts have different abilities to reflect light, we apply 

thresholding, prominence, peak detection, and other methods to determine the bad points 

automatically. For each frame, after obtaining the intensity measurement along the perpendicular 

direction for all the selected points along the heart boundary, we align all the measurement profiles 

and average them. This results in the blue curve in Figure 19E-F. We employed the full-width at 

half-maximum (FWHM) method to measure and determine the heart wall thickness, as shown in 

the green line segment of Figure 19E-F. Therefore, to optimize the alignment and averaging 
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algorithm, we use the center position of the FWHM measurement as the reference to align them 

together in a single frame. The averaging of the intensity distribution along all the points in a single 

frame produces a trace that follows the Gaussian distribution. These steps are repeated for all the 

frames, and the FWHM values are recorded accordingly. In this example, the resulting average 

heart wall thickness during systole is ~13.0 µm, and ~10.5 µm during diastole, which is ~2.4 µm 

in difference on average, which aligns with the hypothesis that the heart wall is thicker during 

systole than diastole in general.  

 

Figure 19: Larval heart wall thickness calculation example [43]. The left column is the systolic measurement data, and the right 

column is the diastolic. A) and B) Combined OCT and heart segmentation image; C) and D) Heart wall boundary and 

perpendicular trace example along the boundary to measure the heart wall thickness; E) and F) Averaged intensities for all the 

points along the boundary in C) and D) respectively, with the corresponding FWHM values.  

5.2 Algorithm Validation  

5.2.1  Dataset 
We utilized the OCM dataset of a Drosophila model of cardiac hypertrophy published by 

Migunova et al. in 2023 to verify the heart wall thickness measurements algorithm [50]. Here, 

CRISPR technology was used to create Drosophila models that developed heart hypertrophy and 
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systolic dysfunction. For this study, we acquired OCM videos of n=34 heart-specific knockouts of 

RNase Z, tinC-Cas9>RNZKO, and n=16 control, tinC-Cas9>gZ+ for in vivo heart wall thickness 

analysis. The tinC-Cas9>RNZKO larvae were expected to have a thicker heart wall hypertrophy 

compared to the tinC-Cas9>gZ+.  

5.2.2  Results 
To validate our algorithms, we characterized the heart wall thickness of tinC-Cas9>gZ+ and tinC-

Cas9>RNZKO larvae from our previous study using this method, where the heart wall thickness 

measurements were performed by manually measuring the transverse histological sections [50]. 

The average heart wall thickness was measured at the end-diastolic phase and the end-systolic 

phase separately for the two larvae genotypes, as Figure 20 shows. For both end-diastolic and end-

systolic phases, tinC-Cas9>RNZKO larvae exhibited a significant increase in cardiac wall thickness 

compared to those of tinC-Cas9>gZ+ control (p<0.05). The histology analysis of the larvae dataset 

indicates an average heart wall thickness of ~4.3 µm for tinC-Cas9>gZ+ and ~7.2 µm for tinC-

Cas9>RNZKO. Though our measurements are larger than the histology measurement, the results 

are still consistent with the findings of the original publication, where histologic treatment of tissue 

may cause shrinkage, explaining the discrepancy in measurements [50].   



 

 

34 

 

Figure 20: Heart wall thickness quantification measurement [43]. Quantification of heart wall thickness measurements in between 

a cardiac hypertrophy model (tinC-Cas9>RNZKO) and control (tinC-Cas9>gZ+). Error bars indicate the mean ±s.e.m. * p<0.05, 

*** p<0.001, **** p<0.0001. 
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Chapter 6: Discussion 

Our customized FlyNet 3.0 segmentation network leverages the attention mechanism to capture 

and concentrate on characteristics of the Drosophila heart region in the cross-sectional OCM 

videos, aiming to minimize the need for human supervision and interference. In contrast to FlyNet 

2.0+, FlyNet 3.0 improved the design of the neural network structure by seamlessly integrating 

attention gates into the skip connections at every level of the LSTM U-Net model. The attention 

mechanism, introduced by Bahdanau et al. in 2015 [49], enables the autonomous learning of the 

objective features through attention gates, by focusing on the characteristics of target structures 

without the need for additional supervision. The incorporation of attention gates effectively 

elevates the model sensitivity and accuracy of dense label predictions without imposing significant 

computational overhead [2]. This improvement is achieved by introducing the attention weight 

vector and suppressing feature activations in irrelevant regions, thereby accentuating the important 

features of the heart region. FlyNet 3.0 takes in these advantages and further improves the 

prediction performance, especially for images with artifacts, because the heart region demands 

special attention for accurate localization. Models trained with attention blocks self-learn to 

progressively focus on the Drosophila heart region, resulting in enhanced segmentation accuracy 

for fly heart OCM videos.   

The high segmentation accuracy allows Flynet 3.0 to increase its ability in automatic cardiac 

analysis by introducing the ability to measure the heart wall thickness dynamically in vivo. 

Although our model (Figure 20) showed the same measurement trend as in the source publication, 

the measurement numbers for histology and in vivo OCM imaging are quite different. The 

histological measurements of the average heart wall thickness present a difference of ~3 µm 

between the tinC-Cas9>RNZKO and tinC-Cas9>gZ+ larvae, whereas our OCM measurements 
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differ by ~1 µm during the same systolic and diastolic phases. Additionally, our calculated result 

from in vivo imaging was greater than the histological measurement. This difference originates 

from the degree of sample or tissue processing required for each method. Tissue distortion or 

artifacts could occur for a histological measurement because tissues must be fixed, paraffin-

embedded, thinly sliced, and stained. Using OCM as a method to noninvasively image and measure 

the heart wall thickness is dynamic and vividly shows the change in heart wall thickness at each 

point in the cardiac cycle, providing a comparison between systolic and diastolic heart wall 

thicknesses. The heart wall is thicker in the systolic measurement, as the tissue is contracted, and 

thinner in the diastolic measurement, as the tissue is expanded.   

Although FlyNet 3.0 has demonstrated significant improvements compared to FlyNet 2.0+, 

especially for images with artifacts, there are still some limitations. First, our model assumes all 

the images contain the whole heart region throughout the entire video. Therefore, datasets 

containing the heart moving out of frame, most common in the larval stage, or the heart region 

completely covered by reflections cannot be used. Repeated collections are recommended to 

decrease the occurrence of these situations. Next, for a dataset to be used, human experts must be 

able to identify the heart region to verify the quality of the segmentation. Additionally, adding the 

attention gate module also slightly increases the computational cost and requires more GPU 

resources, as it introduces the attention weight parameters to the model.  

For using the proposed method to calculate the heart wall thickness, the heart wall is required to 

be differentiated from surrounding tissues in most places. Frames are excluded if the calculated 

thickness is outside of a stable range, defined as within a standard deviation of the mean, or below 

a certain degree of prominence, which helps exclude misleading measurements where the heart is 

in contact with other tissue or experiencing strong artifacts and a valid measurement cannot be 



 

 

37 

performed. Additionally, image rescaling from pixels to physical distance in microns introduces a 

pixelation effect, where all pixelwise measurements must be rounded to an integer pixel.  

In future work, more training datasets of fly OCM videos with more accurate masks and different 

image qualities, including artifacts in different development stages, can be added to further boost 

the segmentation accuracy. In addition, other model structures, such as the transformer U-Net, may 

provide even faster image processing and utilize long-range dependencies among pixels in the 

input image, potentially advancing the overall performance of the segmentation model [51–53].  
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Chapter 7: Conclusion 

We have proposed an LSTM attention model, FlyNet 3.0, designed to segment the cross-section 

heart region of the Drosophila melanogaster more accurately in OCM videos. Evolved from the 

earlier versions of FlyNet, FlyNet 3.0 incorporates a learning attention mechanism to focus on 

image features extracted from the heart region. The new model was tested on a diverse Drosophila 

heart OCM video dataset, varying in image quality, developmental stage, and heart rhythmicity. 

FlyNet 3.0 demonstrated notable improvements in segmentation as measured by IOU accuracy, 

particularly in scenarios involving artifacts. It achieved an average accuracy of 89% for images 

with reflection artifacts and 89% for those depicting occasional heart movement. These refined 

segmentation results enable the accurate and efficient calculation of heart wall thickness, ensuring 

reliable performance in cardiac analysis. In conclusion, FlyNet 3.0 produces more accurate masks 

that reduce the need for manual correction for the heart region. Combined with the new in vivo 

heart wall thickness measurement algorithm, it will make cardiac disease analysis in Drosophila 

more comprehensive, as demonstrated with the RNase Z model of cardiac hypertrophy.  
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