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Abstract

Motivation: Pseudoknots have generally been excluded from
the prediction of RNA secondary structures due to the diffi-
culty in modeling and complexity in computing. Although
several dynamic programming algorithms exist for the predic-
tion of pseudoknots using thermodynamic approaches, they
are neither reliable nor efficient. On the other hand, compara-
tive methods are more reliable, but are often done in an ad hoc
manner and require expert intervention. Maximum weighted
matching (Tabaska et. al, Bioinformatics, 14:691-9, 1998), an
algorithm for pseudoknot prediction with comparative analy-
sis, suffers from low prediction accuracy in many cases. Here
we present an algorithm, iterative loop matching, for predict-
ing RNA secondary structures including pseudoknots reliably
and efficiently. The method can utilize either thermodynamic
or comparative information or both, thus is able to predict for
both aligned sequences and individual sequences.
Results: We have tested the algorithm on a number of RNA
families, including both structures with and without pseu-
doknots. Using 8–12 homologous sequences, the algorithm
correctly identifies more than 90% of base-pairs for short se-
quences and 80% overall. It correctly predicts nearly all pseu-
doknots. Furthermore, it produces very few spurious base-
pairs for sequences without pseudoknots. Comparisons show
that our algorithm is both more sensitive and more specific
than the maximum weighted matching method. In addition,
our algorithm has high prediction accuracy on individual se-
quences, comparable to the PKNOTS algorithm (Rivas &
Eddy, J Mol Biol, 285:2053-68, 1999), while using much less
computational resources.
Availability: The program has been implemented in
ANSI C and is freely available for academic use at
http://www.cse.wustl.edu/˜zhang/projects/rna/ilm/.
Contact:

	
jruan, zhang 
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1 Introduction

In addition to carrying genetic information from DNA to pro-
tein, RNA molecules play many important regulatory, cat-
alytic and structural roles in the cell. A complete understand-
ing of the functions of RNA molecules requires knowledge of
their three-dimensional structures. Since it is often difficult to
crystallize or obtain nuclear magnetic resonance (NMR) spec-
trum data for large RNA molecules to inspect their structures,
reliable prediction of RNA structures from their primary se-
quences is highly desirable.

Much work has been done on automated RNA secondary
structure predictions without pseudoknots. A secondary
structure without pseudoknots is a list of base-pairs that are
compatible with each other. Base-pair ( � ,  ) and ( � , � ) are said
to be compatible if they are either juxtaposed (e.g., ����������� , Figure 1A) or nested (e.g., ������������ , Figure 1B).
Otherwise they are called incompatible (e.g, ������������ ,
Figure 1C). Such an incompatible structure is known as a
pseudoknot. More complex pseudoknots may occur if three
or more base-pairs cross each other (Figure 1D). Whenever
two or more nested base-pairs are connected without any in-
terruption, they are said to form a helix. Also, consecutively
unpaired bases are called a loop. Most computational meth-

B CA D

Figure 1: Diagrammatic representation of different types of rela-
tionships between base-pairs. An arch represents a base-pair be-
tween the two end-points. A. Two base-pairs are juxtaposed. B. Two
base-pairs are nested. C. Two base-pairs cross each other, forming a
pseudoknot. D. Three base-pairs cross each another, forming three
pseudoknots.

ods for the prediction of RNA secondary structures can be
classified into three families: thermodynamic, comparative
and hybrid approaches.

Thermodynamic approaches (Zuker & Stiegler, 1981; Ho-
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facker et al., 1994) use dynamic programming to compute
the optimal secondary structure with globally minimal free
energy for a single RNA sequence based on a set of experi-
mentally determined energy parameters (Freier et al., 1986;
Mathews et al., 1999). Such methods have been successful in
predicting the secondary structures of relatively short RNA
sequences. However, several factors limit their accuracy.
First, thermodynamic approaches assume RNA structures are
in thermodynamic equilibria, independent of environmental
conditions. However, many RNAs in vivo may be bound to
protein factors that may alter their free energies. RNAs may
also be kinetically trapped in non-equilibrium states. Sec-
ond, energy models and parameters used by these approaches
are only approximations and may not be able to capture all
the details. Therefore, any method designed to find optimal
structures using such energy models is also an approximation.
Even with suboptimal structures taken into account (Zuker,
1989; McCaskill, 1990), the ability of these methods is still
limited.

When a number of homologous sequences are available,
comparative approaches are more reliable for determining
the secondary structure than thermodynamic approaches, and
have been used to establish the structures of most known RNA
families. These approaches compute a consensus structure on
a set of aligned RNA sequences by looking for covariance
evidence between each pair of bases. Quantitative measures
of covariance have been implemented in Chi-square statis-
tics (Chiu & Kolodziejczak, 1991) and mutual information
(Gutell et al., 1992). Gulko & Haussler (1996) and Akmaev
et al. (1999) also extended the approach to take into account
explicitly the phylogeny of the sequences and showed some
positive results. However, these methods also have draw-
backs. First, they typically require a very large collection
of aligned homologous sequences, which may not be always
available. Second, if some RNAs are conserved in both se-
quences, there will be very weak or no covariation, causing
the failure of comparative approaches. Third, these methods
assume that sequence alignments were performed according
to structure conservation rather than sequence conservation,
while structure alignment can hardly be done correctly with-
out knowing the structure.

The third family of methods, which have emerged recently,
combines the advantages of the first two (e.g. Luck et al.,
1999; Juan & Wilson, 1999; Hofacker et al., 2002). These
methods take both thermodynamic stability and sequence co-
variance into consideration and are able to produce positive
results on as few as three sequences.

There are also methods that cannot be classified into any
of these three families. Among them, there are a few methods
which attempt to align and fold homologous sequences simul-
taneously (Sankoff, 1985; Gorodkin et al., 1997; Mathews &
Turner, 2002). They were only successful on short sequences
due to their high time and space complexity. Eddy & Durbin

(1994) and Sakakibara et al. (1994) introduced another fam-
ily of methods, using stochastic context free grammars, to it-
eratively align homologous sequences and find a consensus
structure for them.

An even more challenging task of RNA folding is the pre-
diction of pseudoknots. Pseudoknots are important structures
that occur in RNA and often have important functional roles
(Dam et al., 1992). The rising number of known pseudo-
knots has triggered the development of a specific pseudoknot
database (van Batenburg et al., 2001). However, relatively lit-
tle effort has been devoted to automated pseudoknot predic-
tion, partially due to the difficulty in modeling and the com-
plexity in computing. Despite the observation of certain types
of pseudoknots, there exists no definitive evidence of what
types of pseudoknots are legitimate. As proven by Lyngso &
Pedersen (2000b), it is NP-complete (Garey & Johnson, 1979)
to predict RNA secondary structures with pseudoknots by free
energy minimization in general. By restricting the types of
pseudoknots that may occur, several dynamic programming
algorithms have been developed recently, which run in poly-
nomial time and space (Rivas & Eddy, 1999; Uemura et al.,
1999; Lyngso & Pedersen, 2000a; Akutsu, 2000). However,
these methods still have very high time and space complex-
ity, typically ���! #"�$ to ���! &%�$ in time and ���! (')$ to ���! +*)$ in
space, making them impractical even for a few hundred bases
long sequences. Another dilemma for pseudoknot prediction
algorithms based on energy models is that there is little exper-
imentally determined thermodynamic data for pseudoknots.

The comparative approaches mentioned above, such as
those based on Chi-Square and mutual information, can also
be applied to the prediction of pseudoknots and are more prac-
tical and reliable than thermodynamic approaches. For exam-
ple, comparative analysis has revealed the existence of pseu-
doknots in prion protein mRNA (Barrette et al., 2001), eu-
karyotic small subunit ribosomal RNA (Wuyts et al., 2000),
tmRNA (Zwieb et al., 1999) and vertebrate telomerase RNA
(Chen et al., 2000). However, comparative analysis has typ-
ically been done in an ad hoc manner from an algorithmic
point of view. The only published algorithm we have found
that automates pseudoknot prediction by comparative anal-
ysis is the maximum weighted matching algorithm (MWM)
(Cary & Stormo, 1995; Tabaska et al., 1998). The MWM
algorithm takes as input a matrix of base-pairing scores, typi-
cally covariance scores, and computes an optimal structure al-
lowing all possible base-pairs. However, the MWM algorithm
is able to produce meaningful predictions only if the number
of homologous sequences is large enough and the alignment
is accurate so that covariance signals from their alignment are
sufficiently strong. It is vulnerable to noisy data and often re-
sults in many spurious base-pairs, since it allows many types
of unrealistic interactions to happen and does not take into
consideration that helices are the most frequent structural el-
ements of RNA structures.
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In this paper, we present an adapted dynamic programming
algorithm that is capable of predicting RNA secondary struc-
tures including pseudoknots. Our algorithm uses combined
thermodynamic and covariance information and does not de-
pend on any pseudoknot models, thus is able to detect any
type of pseudoknots. Unlike many other algorithms, it does
not attempt to compute theoretically optimal structures, but
rather gives a practical and reliable approximate solution for
this hard problem. We test the algorithm on a number of
RNA families with sequence lengths ranging from 35nt to
1542nt, including both structures with and without pseudo-
knots. The results show that our algorithm correctly identifies
more than 90% of base-pairs for short sequences ( � 300nt)
and approximately 80% on average for all sequences tested.
Furthermore, the algorithm correctly predicts all pseudoknots
except a 3bp pseudoknot in the longest sequence. It pro-
duces a very small number of false positive base-pairs on se-
quences without pseudoknot. The comparison with the max-
imum weighted matching algorithm (MWM) shows that our
algorithm is both more specific and sensitive. In addition, we
also apply the algorithm to individual sequences without us-
ing covariance information and compare its accuracy with an
algorithm based on free energy minimization, the PKNOTS
algorithm (Rivas & Eddy, 1999). Our algorithm exhibits an
accuracy comparable to that of the PKNOTS algorithm, while
having much lower time and space complexity.

2 Algorithms

Our algorithm is based on the loop matching algorithm
(Nussinov et al., 1978), which we will briefly describe first.
We then introduce a new algorithm, called the iterative loop
matching algorithm, to compute a secondary structure includ-
ing pseudoknots. We will also discuss the score matrix used
in our experiments and how the reliability of score matrix af-
fects the prediction accuracy.

2.1 Loop Matching (LM)

Given a matrix , , where ,-�!�/.01$ is the score for the � th
residue forming a base-pair with the  th residue, the loop
matching algorithm finds a best-score secondary structure
without pseudoknots. To reiterate, a secondary structure with-
out pseudoknots is a “nested” structure as shown in Figure 1A
and 1B, i.e., for any base-pair �2�/.34$ , if another base-pair �5�6.7�5$
has one end ( � ) falling between � and  , then the other end
( � ) must also be in this range. Thanks to this constraint, the
secondary structure of a long RNA sequence can be subdi-
vided into shorter pieces. This observation is the core of all
dynamic programming algorithms for RNA secondary struc-
ture prediction. The algorithm starts from calculating optimal
structures of short subsequences, and then uses the structures

of these short subsequences to construct optimal structures of
longer subsequences, until the whole sequence is included.
Formally, for any subsequence 8:9 �<;=; ?> , with �+@BA-�� , there
are only three possibilities: (i) � is single-stranded, (ii) � is
paired with  ; (iii) � is paired with some � , where �����C�D .
Thus the score of an optimal structure for subsequence 8:9 �/;=; E>
can be calculated by Equation 1.

FHGJILK5MON&P�QSR?T UVW VX
F:GJIZY\[�K2MON7]F:GJIZY\[�K2M:^�[�N_Y�`aGJIbK!MON7]cadfehg&i F:GJIZY�[jKlk�^m[fNnY�F:G!k:Y\[�K5MONYo`aGJILKbk1Nbp)K3qZkrKLI&stkas�M)u

v Vw
Vx
(1)

Let �zy �{�|}�~@�A)$ be the length of subsequence8:9 �/.0?> . Initially �a�2�<.7�b$�y ���!�/.7�C@�A�$�y ���j��y�a�2�<.7��@�������� ���a��������@�A)$�y�� for all � , where������� ���a������� is a parameter that describes the mini-
mum distance required between two paired bases (by default������� ���a��������y�� in our program). The algorithm it-
eratively computes the values of �a�2�/.l�+@��6|�A�$ for all � with
increasing � values. At the end of the algorithm, ���bAh.7�m$ is
the score of the optimal structure for sequence 8:9{AE;=; �C> . The
optimal structure can be obtained by tracing back the � ma-
trix. The computation and trace-back can be done in ���! �'�$
time and ���! (��$ space (Nussinov et al., 1978).

In the simplest case, ,-�2�<.04$Hy�A if the � th residue and the th residue can form a Waston-Crick or G-U base-pair, and
0 otherwise. The algorithm finds a secondary structure with
the maximal number of base-pairs in this case. We can also
assign a different score to each potential base-pair in a more
sophisticated way, e.g., by comparative analysis.

2.2 Iterative Loop Matching (ILM)

= +

P

H1

H2

Figure 2: A pseudoknot (   ) can be treated as two separate helices
( ¡ [ and ¡£¢ ) and can be identified by a two-iteration loop matching.
Assume ¡ [ is identified by the basic loop matching, then running
the loop matching algorithm on the remaining single-stranded bases
identifies the second helix, ¡£¢ .

We now extend the basic loop matching algorithm to sup-
port pseudoknots. The loop matching algorithm cannot han-
dle pseudoknots because it only allows compatible base-pairs.
Notice that a pseudoknot can be thought of interactions be-
tween two loop regions of a secondary structure, as illustrated
in Figure 2. Therefore we could run the loop matching algo-
rithm twice. First we run the loop matching algorithm to pre-
dict a secondary structure as usual. We then apply the loop
matching algorithm on the remaining single-stranded regions
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by hypothetically removing the paired bases. By doing this,
we may be able to identify base-pairs that belong to pseudo-
knots at this stage. Similarly, more complicated pseudoknots
such as the one in Figure 1D can be identified with more iter-
ations.

However, this idea often fails in practice. The bases that are
supposed to form pseudoknots may be involved in some false
positive base-pairs during the previous iteration of the loop
matching, which invalidates the efforts of further searching,
as shown and explained in Figure 3. To circumvent this prob-
lem, we use a least-commitment strategy. We run the loop
matching algorithm multiple times, each time we only accept
the base-pairs that appear to be the most reliable, e.g. with
the highest score. After each run of loop matching, the paired
bases were considered as if they were removed from the orig-
inal sequence, allowing the next iteration of loop matching to
identify otherwise pseudoknotted base-pairs. This modifica-
tion attempts to avoid possible false predictions from being
included. Figure 3 illustrates the idea. Suppose that a struc-
ture consists of two helices ��A and �m¤ , forming a pseudo-
knot, and �m� is a false helix that overlaps �m¤ . Since loop
matching can only predict compatible base-pairs, it will pick
either ��A and ��� together or ��¤ alone. Let ¥��2��$ be the
score of helix � . Assume that ¥��2��A�$(@�¥��5���h$�¦B¥��5�m¤E$ .
Also assume that ¥��2���1$a�§¥��2��A)$ and ¥~�5���h$���¥��2��¤E$ .
Loop matching would predict ��A correctly but would also in-
clude ��� , preventing ��¤ from being recognized, even though��� has a lower score than ��¤ . On the contrary, iterative loop
matching would only accept ��A in the first iteration, allowing�m¤ to be successfully identified in the next iteration.

= or

+

H1

H2

H3 H1 H3

H2

H1

Figure 3: Pseudoknots that can be correctly identified by the itera-
tive loop matching algorithm. ¡ [ and ¡£¢ are two true helices form-
ing a pseudoknot. ¡©¨ is a false helix overlapping ¡£¢ . Scores ( ª ) of
the helices satisfy ª G ¡ [fNnY ª G ¡©¨ N¬« ª G ¡£¢ N , ª G ¡©¨ Ns ª G ¡ [fN
and ª G ¡©¨ NHs ª G ¡£¢ N . Iterative loop matching will correctly pre-
dict ¡ [ in the first iteration and predict ¡£¢ in the second iteration.
In contrast, basic loop matching would pick ¡ [ and ¡©¨ together
since it gives a higher total score than selecting ¡£¢ alone. Then
even if we run loop matching again on the remaining single strand,¡£¢ cannot be correctly identified, since it conflicts with ¡©¨ .

The sketch of the algorithm is as follows:

1. Prepare a base-pairing score matrix ,®9¯Ah;{;  °>L9¯Ah;{;  °> from a
sequence or a sequence alignment, where ,-9 �5>L9 ?> is the
score for the � th base to pair with the  th base.

2. Run the basic loop matching algorithm using matrix ,
and trace back to get a base-pair list � .

3. Identify all helices in � and combine helices separated
by small internal loops or bulges. If no helix is identified,
go to step 7.

4. Assign a score to each helix by summing up scores of its
constitutive base-pairs. Pick helix � that has the highest
score, merge � into the base-pair list 8 to be reported.

5. “Remove” positions of � from the initial sequence. Up-
date the score matrix , accordingly.

6. Repeat step 2–5 until no remaining sequence.

7. Report base-pair list 8 and terminate.

The method to prepare a score matrix from a single se-
quence or a sequence alignment will be discussed in sec-
tion 2.4. Notice that at step 5, updating score matrix , in
most cases simply means to remove rows and columns corre-
sponding to bases that have been paired, or, alternatively, set
their values to zero. However, this is rather inefficient in terms
of running time. A better solution is to use an array ± to
keep track of the indices of remaining single-stranded bases
and run the basic loop matching algorithm to compute the
scores only for the positions remaining in ± . Furthermore,
notice that not all elements of � need to be re-computed in
every iteration. Suppose that a previous iteration has selected
a base-pair (² , ³ ). Then the subsequent iteration needs only
to re-compute ���!�/.34$ if � and  are separated by either ² or ³ ,
i.e., ���m²´�� or �¬��³S�� . This is illustrated by Figure 4.

A

B

C

(p, q)

D

1 N
1

N

Figure 4: Three triangle areas of the matrix do not need to be re-
computed in each iteration. Suppose that a base-pair

G�µ¶KL·�N
, with·Cs¸µ

, is selected and deleted in one iteration. The optimal score
of a subsequence ¹º ILK5Mj» , with

[´¼�Ias½M�s�·
, does not depend

on bases whose indices are greater than
·
, so it will not change in

the next iteration. Therefore all entries in area A of the score matrix
need not to be re-computed. Similarly, entries in triangle areas B and
C need not to be re-computed as well.

Another issue worth mentioning is that after removing
a sequence segment, two previously separated bases may
be brought together. Thus the initialization step needs to
be modified accordingly. Define virtual distance of two
bases to be the distance between them after paired bases
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F�¾3G2¿ º I!»!K7¿ º Mj»ÀN(P
UVVVVVW VVVVVX
FHG2¿ º I!»!K<¿ º Mj»=N7K if

¿ º Mj»¶s®µ or
¿ º IJ»¶«m· or

µ�st¿ º IJ»¶st¿ º Mj»°sm·E]Á K
if
M:^®IrY\[:stÂ�Ã&Ä:Ä   Ã&ÅHÆ©Ç�È ¡ ]

Q~R?T U VW VX
F ¾ G2¿ º IZY\[<»!Kl¿ º Mj»ÀN7]F ¾ G2¿ º IZY\[<»!Kl¿ º M�^�[7»=N_Y�`�G2¿ º IJ»2K7¿ º Mj»!]cad�ehg&i F ¾ G2¿ º IZY�[7»!K7¿ º k�^�[<»=N¶YmF ¾ G2¿ º koY�[7»2K7¿ º Mj»=NYo`�G2¿ º I!»!K7¿ º k?»=NbpOKLqrkZKLI+s�kSs�M�u

v Vw
Vx otherwise.

(2)

in the middle of them have been removed, i.e., the dis-
tance between their indices in ± . An additional param-
eter, Éa������� �Ê�a�m����� , describes the minimum vir-
tual distance required between two paired bases after the
first iteration. Two bases with virtual distances less thanÉa������� �Ê�a�m����� are not allowed to form a base-pair,
thus ���5±�9 �3>3./±�9 E>!$y�� if &|��f@-A���É�������� ���a������� .
The default value of É�������� ���a������� is set to be the
same as ������� ���a������� , which is equal to 3 in our pro-
gram.

The recursion for re-computing � is shown as Equation 2,
where ±�9 �3> is the � th remaining unpaired base, and ² and ³ ,
with ²Ë�z³ , are two end-points of the helix selected in the
previous iteration. Note that if , needs to be completely re-
computed at step 5, � also has to be completely re-computed
and thus the above recursion cannot reuse an entry even if it
represents a base-pair separated by ² or ³ . In the first iteration
of ILM, where ±�9 �5>~y�� and ² and ³ are not defined, the
recursion is reduced to be equivalent to Equation 1.

The worst case complexity of the algorithm can be easily
determined. The basic loop matching algorithm, which takes���! ' $ in time and ���! (�)$ in space, is repeated Ì times, whereÌ is the total number of helices predicted by the algorithm.
Since ÌÎÍ�Ï�<Ð , where � is the minimal helix length required,
the worst case time complexity is ���2 * $ . However, the av-
erage case complexity is close to ���! ' $ since Ì is typically
small and sequence length  will be reduced after each iter-
ation. Furthermore, generally the � matrix needs to be only
partially re-computed in each iteration, making the algorithm
more efficient. The space complexity remains ���! ��)$ .
2.3 Suboptimality

One fundamental difference between ILM and many other
pseudoknot prediction algorithms is that ILM does not at-
tempt to find the theoretically optimal structure. Since the
total score of a structure can be considered as a measure of its
probability among a structure ensemble, we usually prefer an
algorithm to compute a structure with the highest score. The
LM algorithm computes such a structure with the constraint
that base-pairs must be compatible with each other. If we
loosen this constraint, in the extreme case we have the maxi-
mum weighted matching (MWM) algorithm (Cary & Stormo,
1995; Tabaska et al., 1998) which allows all types of base-
pairs. One of the most severe problems of MWM is that it

allows a much larger degree of freedom than real structures.
As a result, MWM often introduces many spurious base-pairs.
Between LM and MWM are algorithms that compute optimal
structures with restricted pseudoknot models (e.g. Rivas &
Eddy, 1999; Uemura et al., 1999; Lyngso & Pedersen, 2000a;
Akutsu, 2000). However, none of these models has been gen-
erally agreed. In contrast, without assuming any pseudoknot
model, the ILM algorithm sacrifices the optimality to prefer
long helices over arbitrarily crossed lone base-pairs.

Although ILM does not guarantee optimality, it ensures to
compute a structure whose score is at least no less than the
score of that predicted by the basic loop matching algorithm.
We now give a proof to validate this claim. Let 8�Ñ/ÒnÓ denote
the score of the structure computed by ILM, and let 8:ÒnÓ de-
note the score of the structure computed by the LM algorithm.

Proposition 1 8&Ñ/ÒnÓ�Ô�86Ò_Ó .

Proof We prove it by induction. 8 Ñ/ÒnÓ is computed by mul-
tiple iterations of LM. Let ¥~�5�m$ be the score of helix � ,
which is the sum of the scores of its constitutive base-pairs.
Let Õ_Ö× be the  th helix predicted in the � th iteration. Helices
are ranked decreasingly by their scores. Note that the algo-
rithm selects the helix with the highest score, i.e., Õ#ÖØ , for the� th iteration. Let ���!�b$ be the total score of selected base-pairs
after � iterations. Let ���2�L$ be the total score of all base-pairs
predicted in the � th iteration. Assume that ILM will terminate
after Ì iterations when no helix is identified. By definition,

���!�b$Ùy ¥~�3Õ ØØ�$&@D¥~�3Õ � Ø�$+@��j���O@�¥��5Õ Ö Øf$y ���!�(|¸A)$+@�¥��3Õ Ö Ø $�. and���!�b$Ùy ¥~�3Õ Ö Ø $&@D¥~�3Õ Ö� $+@��j���O@�¥��5Õ Ö× $�;
Note that ���!ÌÎ|BA)$Syz���!Ì´$~yz8 Ñ/ÒnÓ .<���bA)$~yz8 ÒnÓ and���!Ì´$Êy�� . Let 8:�!�b$¬yÚ���!�(|¸A)$+@��D�!�b$ . Then

8:�lA�$Ùy ���2�1$+@����lA�$¬yB8 ÒnÓ , and8:�!Ì´$Ùy ���!ÌÛ|�A�$(@����2ÌC$¬y����2ÌÛ|�A�$¬yÚ8 Ñ<Ò_Ó ;
Hence, to prove 8 Ñ/ÒnÓ Ô�8 Ò_Ó , we only need to prove 8H�!�°@A�$�¦�8:�!�b$�.bÜ¶�/.�A�ÍD���¸Ì�|¸A .

8H�!�°@ÚA�$#|�8:�2�L$Ùy ���2�°@ÚA�$#|\���!�b$+@D¥~�3Õ Ö Ø $y ���2�°@ÚA�$#|��2���2�L$�|t¥��5Õ Ö Ø $7$
Since �D�!�b$ and ���2��@CA)$ are computed on the same sequence,
except that the subsequence corresponding to Õ Ö Ø has been re-
moved before computing the latter, it must satisfy ���!�?@�A)$�Ô
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���2�L$¬|�¥~�3ÕnÖØ $ . Hence 8H�!�&@�A�$�Ô½8:�2�b$�.LÜ°�/.�AaÍB�:��ÌÝ|�A ,
which concludes that 8 Ñ<Ò_Ó Ô�8 Ò_Ó .

Several observations of the algorithm from the proof help
to extend the ILM algorithm while retaining the suboptimal-
ity property. First, Õ6ÖØ can be any helix predicted in the � th
iteration, not necessarily the one with the highest score. We
prefer to choose the helix with the highest reliability to reduce
the risk of predicting false base-pairs in the early stages. Al-
though in most cases a higher score indeed indicates higher
reliability, this may not be always true, as to be discussed in
section 2.4. Second, if the algorithm is terminated early after� iterations ( ����Ì ), and all base-pairs predicted in the � th it-
eration are accepted, the total score of the predicted structure
is 8H�!�b$ . 8H�!�b$CÔ�86ÒnÓ since 8:�2�L$ is monotonically increas-
ing. By doing so, some spurious pseudoknots may be filtrated
since they tend to have low scores. Finally, more than one he-
lix may be selected in each iteration. The number of helices
selected in each iteration controls the granularity of the algo-
rithm. The smaller the number, the less is the chance to miss
pseudoknots, but the more spurious base-pairs the algorithm
may introduce. In the extreme case if all base-pairs predicted
in each iteration are accepted, we get the algorithm discussed
at the beginning of section 2.2. These extensions are not used
in the implementation of the algorithm by default.

2.4 Base-Pairing Score Matrix

The base-pairing score matrix can be obtained from a variety
of sources of evidence or their combinations. Generally, for
aligned sequences it can be obtained from the combination
of energy scores and covariance scores, while for individual
sequences only energy scores are available.

A number of score matrices have been previously con-
structed based on an alignment of multiple homologous se-
quences (Cary & Stormo, 1995; Luck et al., 1999; Juan &
Wilson, 1999; Hofacker et al., 2002). In our implementa-
tion of ILM we used the sum of mutual information and helix
plot scores as suggested by Tabaska et al. (1998), which is
essentially a combination of covariance and thermodynamic
scores. Another type of combinatorial score matrix based on
average thermodynamic scores (Luck et al., 1999) was also
tested (data not shown). We found that the combination of
mutual information and helix plot is faster to compute and
has comparable prediction accuracy. Here we briefly describe
the calculation of mutual information and helix plot scores.
Readers are referred to Cary & Stormo (1995) and Tabaska
et al. (1998) for more details.

Mutual information score. Assume that we are given a mul-
tiple sequence alignment of � sequences. Let Þ Ö �!ßt$ be the
frequency of base ß at aligned position � and let Þ Ö × �2ßmàS$ be
the frequency of finding ß at position � and à at position  .
The mutual information score between positions � and  , ± Ö × ,

is calculated as:

± Ö × yâáã�ä å Þ Ö ×+æ{çhè Þ Ö × �!ßmà~$Þ Ö �!ß�$7Þ × �2àS$
Helix plot scores. For each sequence in a multiple align-

ment, a score matrix is formed by assigning a score to each
cell of the matrix based on whether the two bases correspond-
ing to the cell can form a Waston-Crick or G-U base-pair.
Other types of base-pairs or gaps receive penalty scores. The
matrix is then scanned and base-pairs that may form long he-
lices are given bonus scores. Individual score matrices for
the sequences in the alignment are finally averaged to yield a
single score matrix.

In practice, mutual information scores are usually multi-
plied by a constant factor to be converted to integers. Mu-
tual information and helix plot scores are summed together to
generate the final score matrix to be used by ILM. Different
weights can be optionally assigned to individual matrices to
give preferences. One may assign a higher weight to the he-
lix plot score when the number of sequences is small or vice
versa, since the mutual information score works the best with
a large number of sequences.

For a single sequence, a meaningful score matrix can be ob-
tained by the partition function algorithm (McCaskill, 1990)
which computes the base-pairing probability of each possi-
ble base-pair. Since pseudoknots are often represented as al-
ternative foldings in this matrix, they may be identified by
the ILM algorithm. A drawback of this matrix is that it may
only be able to provide information for pseudoknots consist-
ing of two (groups of) helices of similar lengths due to the
following reason. The probability of a possible base-pair is
inversely proportional to the exponential of the free energy of
a structure containing this base-pair. If two incompatible he-
lices have significantly different lengths, including the shorter
one may result in significantly higher free energy than includ-
ing the longer one, causing the probability of each base-pair
of the shorter helix to be much lower than that of the longer
one. This weak signal may be lost easily due to noises. As a
remedy, we compute a new score matrix at the beginning of
each iteration, i.e., base-pairing probabilities are re-computed
in each iteration after accepted base-pairs are removed from
the sequence. This slows down the overall computation by a
constant factor since each calculation of the partition function
takes ���2 +')$ time.

It is worth discussing whether a higher score indeed indi-
cates that the helix is more likely to be a correct one. This
is generally true for scores derived from covariance analy-
sis since they have statistical meanings. However, for scores
derived from energy data, this measurement is inherently ill-
defined due to the uncertainty of energy parameters and ap-
proximations made in the energy models of secondary struc-
tures. It has been reported that very small changes in the en-
ergy parameters sometimes cause drastic changes in the pre-
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dicted structures (Zuker et al., 1991). Nevertheless, several
energy-based algorithms have successfully predicted pseu-
doknots for individual sequences. Considering the lack of
proper energy parameters and models for pseudoknots, we
suspect that the success of these algorithms are probably due
to the fact that there are not many competing alternative he-
lices in the test sequences and thus it is relatively easy to
correctly identify the true ones. If this is the case, then our
algorithm may also be able to predict them correctly, which
is one of the main motivations for applying our algorithm to
individual sequences.

3 Results

We now present some prediction results from our new al-
gorithm. We compare our algorithm with the maximum
weighted matching algorithm (MWM) (Tabaska et al., 1998)
and the PKNOTS algorithm (Rivas & Eddy, 1999), both of
which were implemented by the original authors. We choose
these two algorithms since both are well-developed algo-
rithms in their respective categories. MWM is the only pub-
lished algorithm we found for predicting optimal pseudoknot-
ted structures using comparative analysis. PKNOTS is the
only dynamic programming algorithm that fully exploits the
standard RNA secondary structure thermodynamic models,
and has pseudoknot prediction accuracy on short sequences.

We carried out two sets of experiments separately. First,
we compared our algorithm and the MWM algorithm on a
set of aligned homologous sequences, using combined helix
plot and mutual information scores. We then tested all three
algorithms, MWM, PKNOTS and ILM, on a set of individual
sequences, using partition function scores.

Five sets of aligned sequences were used, including 16S
rRNA, 5S rRNA, srpRNA, tmRNA and telomerase RNA. In-
dividual sequences were taken from HIV-1-RT Virus, TYMV
RNA, TMV RNA, HDV ribozyme RNA, and anti-genomic
HDV ribozyme RNA. Except 5S rRNA, all sequences are
known to contain at least one pseudoknot. Table 1 lists some
information about the test sequences and their structures. Se-
quences and their structures were retrieved from academic lit-
eratures or publicly accessible databases listed in Table 1 cap-
tion.

Prediction accuracy is measured by both sensitivity and
specificity. Let �a� be the expected number of base-pairs
in a reference structure, ��� the number of correctly pre-
dicted base-pairs (true prediction), and é�� the number of
predicted base-pairs that do not exist in the reference struc-
ture (false prediction). Following Baldi et al. (2000), sen-
sitivity is defined as ����êO�a� and specificity is defined as����êZ�!���S@�é��a$ . There is a trade-off between these two types
of measurement. In RNA structure prediction, we are gener-
ally more interested in sensitivity, i.e., how many true base-

pairs are identified. However, too many false positive base-
pairs are also not desirable as it would be very hard to deter-
mine the structure given many spurious base-pairs. To reflect
this requirement, we measure the percentage of correctly pre-
dicted base-pairs ( �aë�� ), defined as �aë��Ëy�A��E��ìH����êO��� ,
to indicate the prediction sensitivity. We also define the pre-
diction accuracy í�ëËy�A��E�~ì�����êr�5�a��@Dé��a$ , to combine
both sensitivity and specificity.

3.1 Prediction Accuracy Using Aligned Se-
quences

In the first set of experiments, where we compared MWM and
ILM, we generated a score matrix from each sequence align-
ment (5S rRNA, SRP RNA, tmRNA, Telomerase RNA and
16S rRNA) using a combination of the mutual information
(MI) and helix plot (HP) score as described in section 2.4.
MI and HP scores are weighted with a ratio of 1:3 for align-
ments with less than 10 sequences and 1:1 in all other cases.
Different ratios were chosen simply because MI, being a sta-
tistical measure, tends to be less reliable for a small number of
sequences. We then run the ILM and the MWM algorithms
respectively using the score matrix to produce a consensus
structure, which was aligned back to the reference sequence
to remove gaps. The predicted structure was compared to the
reference structure to measure prediction quality. The results
are listed in Table 2.

With 8 to 12 homologous sequences, our method correctly
identified more than 90% of the base-pairs for short sequences
( � 300nt), and 80.0% on average (computed as the number
of correctly predicted base-pairs for all sequences divided by
the total number of base-pairs in reference structures). In con-
trast, MWM identified 60–85% base-pairs for short sequences
and 59.2% on average. ILM correctly predicted all pseu-
doknots for aligned sequences except 16S rRNA, for which
a long-range pseudoknot of length 3bp was missed, while
MWM missed a pseudoknot in tmRNA and both pseudoknots
in 16S rRNA. The most striking result is perhaps on tmRNA,
which contains a total of four pseudoknots. With as few as 8
sequences, ILM successfully identified all four pseudoknots
and 11 of its 12 helices. ILM is also more specific in predict-
ing only true positive base-pairs and outperforms MWM by
a factor of 2 in terms of prediction accuracy. Base-pairs pre-
dicted by MWM are often discontinuous and thus it is up to
the user’s discernment to determine whether some scattered
base-pairs are indeed a part of a helix. When sequences are
relatively long, such as 16S rRNA, our method showed a dras-
tic improvement over MWM. The result on 5S rRNA shows
that our algorithm is also superior to the MWM algorithm
when no pseudoknot exists in the real structure, where our
method produced very few spurious base-pairs, whereas al-
most half of the base-pairs predicted by the MWM algorithm
do not exist in the reference structure.
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Table 1: Sequences used in the experiments

RNA NSEQ Reference Structure
Organism L(nt) EP EHLX EK

5S rRNA 12 Escherichia coli 120 40 5 0
SRP RNA 12 Bacillus subtilis 271 78 14 1
Telomerase RNA 9 Homo sapiens 210 50 5 1
tmRNA 8 Escherichia coli 362 106 12 4
16S rRNA 10 Escherichia coli 1542 478 67 2
HIV-1-RT 1 - 35 11 2 1
TYMV 1 - 86 24 5 1
TMV-3’-up 1 - 84 25 6 3
TMV-3’-down 1 - 105 34 6 2
HDV 1 - 87 28 4 1
Anti-HDV 1 - 91 24 4 1
NSEQ: Number of sequences used. L: Sequence length. EP: Expected number of base-pairs. EHLX: Expected number of helices. EK:
Expected number of pseudoknots. Only helices with length

« ¢ are counted. Sequence alignment and structure were obtained from the
following sources: 5S rRNA and 16S rRNA, Cannone et al. (2002), SRP RNA, Gorodkin et al. (2001), Telomerase RNA, Chen et al. (2000),
tmRNA, Knudsen et al. (2001). HIV-1-RT, Tuerk et al. (1992), TYMV, Rietveld et al. (1982), TMV, van Belkum et al. (1985), HDV and
anti-genomic HDV, Ferre-D’Amare et al. (1998).

Table 2: Summary of prediction results on aligned RNA sequences.

RNA MWM ILM���©�2�aë��a$ í�ë î ���©�2�aë��a$ í�ë î
5S rRNA 32 (80.0) 50.8 0/0 38 (95.0) 90.5 0/0
SRP RNA 68 (87.2) 40.4 1/1 76 (97.4) 74.5 1/1
Telomerase RNA 29 (58.0) 24.0 1/1 45 (90.0) 60.0 1/1
tmRNA 73 (68.9) 35.8 3/4 93 (87.7) 69.9 4/4
16S rRNA 243 (50.8) 24.9 0/2 351 (73.4) 54.7 1/2È   = number of correctly predicted base-pairs.  Hïo  Pð[ Á�Á~ñ È  ¬ò Å   . óoï P�[ Á�Á�ñ È  ¬ò G!Å   Y�ô   N . õ = (number of correctly
predicted pseudoknots) / (expected number of pseudoknots).

Å   = expected number of base-pairs in the reference structure.
ô   = number

of predicted base-pairs that do not exist in the reference structure.

3.2 Prediction Accuracy Using Individual Se-
quences

The second set of experiments was carried on a set of sin-
gle sequences to compare MWM, PKNOTS and ILM. The
partition function algorithm implemented in the Vienna RNA
package (Hofacker et al., 1994) was used to prepare the score
matrix to be fed to ILM and MWM. ILM can be run with or
without the option of computing new score matrices in the al-
gorithm as discussed in section 2.4. The prediction results for
PKNOTS were obtained from Rivas (2003). The results are
listed in Table 3. With the option of re-computing score ma-
trices, ILM and PKNOTS exhibit similar prediction accuracy
and are both better than MWM. ILM correctly identified all
base-pairs except for TMV-3’-end, missed a pseudoknot for
both upstream and downstream sequence. PKNOTS missed
all three pseudoknots for TMV-3’-end upstream and a short
helix for HDV, but was otherwise almost perfect. Without the
option of re-computing score matrices, ILM showed similar
sensitivity to MWM. Both were unable to identify pseudo-
knots in TMV-3’-end and anti-HDV, although ILM showed

better prediction specificity (data for ILM not shown). A
careful inspection of the partition function score matrices of
TMV-3’-end and anti-HDV revealed that the signals for the
existence of the pseudoknots were very weak in these cases,
thus any algorithm based on them without the option of re-
computing was doomed to fail.

3.3 CPU Time and Memory Usage

Table 4 lists the CPU time and memory usage for each algo-
rithm. All experiments were conducted on a machine with
an AMD 1600MHz processor and 2 GB RAM. The running
time for the MWM and ILM programs include the time for the
preparation of score matrices from partition function. Unlike
the PKNOTS which takes 102 hours of CPU time and 1.2GB
of memory to fold a 210nt sequence, ILM and MWM require
moderate CPU time and memory. ILM and MWM take less
than 10 and 5 MB of memory and less than 10 and 2 min-
utes, respectively, to fold a 1542nt sequence. Although the
worst-case time complexity for the ILM algorithm is ���! * $ ,
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Table 3: Summary of prediction results on individual RNA sequences.

RNA MWM PKNOTS ILM���©�5�aë��a$ í�ë î ���©�2�aë��a$ í�ë î ���©�5�aë��a$ í�ë î
HIV-1-RT 11 (100) 84.6 1/1 11 (100) 100 1/1 11 (100) 100 1/1
TYMV 24 (100) 85.7 1/1 24 (100) 92.3 1/1 24 (100) 92.3 1/1
TMV-3’-up 13 (52.0) 33.3 0/3 13 (52.0) 39.4 0/3 20 (80.0) 58.8 2/3
TMV-3’-down 24 (70.6) 47.0 0/2 33 (97.0) 97.0 2/2 26 (76.5) 60.5 1/2
HDV 26 (92.8) 70.3 1/1 24 (85.7) 66.7 1/1 28 (100) 82.4 1/1
Anti-HDV 17 (70.8) 39.5 0/1 23 (95.8) 67.6 1/1 24 (100) 72.7 1/1È   ,  Hïo  , óoï and õ are defined in Table 2

Table 4: Comparison of CPU time and memory usage for each algorithm

Sequence MWM PKNOTS ILM
Length(nt) CPU time Memory CPU time Memory CPU time Memory
86 0.04 sec 448 KB 16.4 min 40 MB 0.05 sec 468 KB
105 0.07 sec 460 KB 65.3 min 86 MB 0.08 sec 484 KB
210 0.4 sec 532 KB 102 hour 1.2 GB 0.5 sec 620 KB
362 1.7 sec 532 KB – – 2.9 sec 972 KB
1542 1.9 min 5.0 MB – – 8.4 min 9.8 MB
Running time of the MWM and the ILM algorithm include the preparation of the score matrix using partition function algorithm implemented
in the Vienna RNA package by Hofacker et al. (1994). Memory usage includes both data and code.

in practice we observed average case time complexity close
to ���! ' $ , slightly slower than the MWM algorithm.

4 Discussion

In this paper we presented a reliable and efficient algorithm
for RNA secondary structure prediction with pseudoknots,
based on the combination of thermodynamic and compara-
tive approaches. Prior to this work, automated prediction
of RNA secondary structure with pseudoknots has not been
very successful in practical use. Thermodynamic approaches
based on minimum free energy are theoretically important for
finding optimal structures, however they typically have very
high time and memory complexity, making them impractical
even for a few hundred bases long sequences. Yet, due to
the lack of proper models and energy parameters, their results
are often not satisfactory even for short sequences. Compar-
ative approaches are more reliable on detecting pseudoknot
structures, but are typically done in an ad hoc manner. The
only published algorithm that we are aware of, the maximum
weighted matching algorithm, is able to produce meaningful
predictions only if the number of homologous sequences is
large so that covariance signals are sufficiently strong. This
algorithm is vulnerable to noisy data such as misalignment,
since it allows many types of unrealistic interactions to hap-
pen and does not take into consideration that helices are the
most frequent structural elements of RNA structures.

By combining the advantages of both thermodynamic and
comparative approaches, our method is able to efficiently and

reliably predict RNA secondary structures including pseudo-
knots, using only a few sequences. Although our method
does not compute a theoretically optimal structure, it sacri-
fices some optimality in exchange for forming stable helices.
It turns out that this compromise significantly improves the
overall prediction accuracy, especially in cases where the ev-
idence is relatively weak for methods such as MWM to pro-
duce reliable predictions using unrestricted models.

Our algorithm can also be applied to individual sequences
where no covariance information is available. Our algorithm
has slightly better prediction accuracy than PKNOTS on the
tested sequences. The objective of the test is not to convince
readers that our algorithm is able to reliably predict pseudo-
knotted structures using thermodynamic information alone.
What we can conclude is that PKNOTS or similar algorithms,
being much more complex and resource demanding than our
algorithm, do not necessarily produce more accurate predic-
tions. Despite their theoretical importance for finding optimal
thermodynamic structures, such energy-based algorithms are
intrinsically limited by the approximations of energy models
and the uncertainty in energy parameters.

Finally, due to the high prediction accuracy and low re-
quirement on computational resources, we believe that the
new algorithm can be used as a desktop tool for the predic-
tion of RNA secondary structures with pseudoknots.
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