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The financial stock market turned out to rise and fall suddenly and sharply in recent

years, which means that volatility and uncertainty is very significant in market and measur-

ing the market risk accurately is of great importance. I collect the historical close price of

S&P 500 Financials Sector Index from January 19th 2011 to January 31st 2017, and use the

daily logarithm yield as time series data to build 2 ARMA models and 5 GARCH family

models using t-distribution. Then I calculate future 10 days’ relative VAR in 1-day horizon

under 99% confidence level based on the selected model. E-GARCH model also shows the

leverage effect of the time series, thus we know that the stock price is more sensitive to bad

news than good news.

Keywords: Financial Market Risk Management, GARCH Family Models, VAR(Value at

Risk), Early Warning, Leverage Effect
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Chapter 1

Introduction

1.1 Background

The price of securities always exhibits uncertainty and unpredictability due to its sub-

stantial volatility and high speculation. Since volatility and uncertainty are correlated to

risk directly, it is particularly important to describe and control risk in the market. Financial

markets changed rapidly from several aspects with the increasing globalization of the econ-

omy, particularly for those financial institutions. Financial derivatives came into being and

risk management and supervision have also been greatly strengthened. In order to measure

and manage risk more effectively, quantitive risk must be understood.

Risk includes several types: market risk, credit risk, liquidity risk, operational risk, legal

risk, accounting risk, information risk, and strategy risk. Market risk refers to the possible

impact of the unexpected changes of price and rate in the market on the investments or

operations. Markowitz (1952) proposed risk measurement model and use variance as an
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important measurement of risk tools. Sharpe (1964) and Lintner (1965)’s CAPM also treat

variance of yield rate as risk, but also found the limitations of this method. In the 1970s,

financial market emerged many new models and methodologies that make risk measurement

more accurate to numerical values. For instance, sensitivity methods and volatility methods

are introduced to supplement the traditional risk management and the insufficiency of the

normal distribution assumptions.

Among those various methods, VAR method is the mainstream one for financial insti-

tutions and regulators as the risk monitoring tool, which mainly examines the maximum

probable loss (MPL). Morgan (1995) first used the VAR method, which established risk

metrics on the RiskMetrics System and announced its VAR values.

The problem of VAR primarily refers to the variance of time series on price and rate,

and this then is actually a problem about heteroskedasticity. We can have many methods

like WLS to solve the problem of incremental heteroskedasticity, that is, the variance of

the random error term changes with the change of explanatory variable. However, the

interest rate, exchange rate, stock returns and some other financial time series exists the

heteroskedasticity that does not belong to the incremental hteroskedasticity.

This kind of time series has some properties. The variance of the process not only

changes with time, but also changes dramatically in some periods. It demonstrates volatility

clustering characteristics by time, that is, variance is relatively small in a certain period, while

it turns to be relatively large in another period. The value distribution exhibits leptokurtosis
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characteristics, that is, the probability near mean and tail is larger than normal distribution,

while the probability of the rest is smaller than normal distribution. Obviously the current

variance is related to the volatility of the previous period.

Engle (1982) proposed the ARCH (Auto Regressive Conditional Heteroskedasticity)

model to analyze the heteroscedasticity of the time series with these properties. In practice,

the ARCH model might have high moving average order, thereby increasing the difficulty

of parameter estimation and affecting the fitting accuracy. To solve this problem, Boller-

slev (1986) proposed the GARCH (Generalized ARCH) model, which adjusts the variance

of the error, and provides further analysis on volatility measurement and even prediction.

Furthermore, E-GARCH model proposed by Nelson (1991) describes the asymmetric effect

from different kind of news.

1.2 Outline

In this paper, I make an application to daily returns on the S&P 500 Financials Sector

Index as the data set to find the VAR among financial institutions in the market. The time

series includes the historical price and furthermore logarithmic yield from January 19th 2011

to January 31st 2017. This is a seven-year daily data, so we can analyze the recent seven

year stock market on the aspects of only financial institutions.

Here we can build some useful volatility models based on these seven-year historical

data and find a better one by comparisons. The GARCH models for financial stock return

3



in this paper would be based on the t-distribution hypothesis to estimate the VAR values,

since the normal distribution is not sufficient for these kinds of time series.

Then we are to estimate the variance and calculate the VAR value. We can also make

prediction on stock daily stock returns using mean value model and on VAR using volatility

model for a period in the future. And thus early warning can be made according to VAR

afterwards to help people reduce and control risk.
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Chapter 2

Methodology

2.1 VAR

2.1.1 Calculation

VAR, value at risk, is the maximum probable loss (MPL) of financial asset portfolio

given time horizon t and confidence level a when market is fluctuated normally. It can be

expressed as

Prob(∆P < −V aR) = 1− a.

Prob refers to the probability. P (t) is the price of an investment or asset in time t. ∆P

is the loss in the market during asset holding period t: ∆P = P (t + ∆t) − P (t). VAR is

the value in the risk condition with confidence level a. Thus the probability that the loss is

more than the value at risk is 1− a. No matter whether we have positive or negative return,

we treat VAR as a positive number for convenience expression here.
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In the general distribution, assuming that P0 is the initial value of the portfolio and the

R is the return on investment during the holding period t. Then the value of the portfolio

in the end period can be expressed as

P = P0(1 +R) = P0 + P0R.

Assuming that the expected return and volatility of the return rate R is µ and σ. If the

lowest value of the asset portfolio is

P ∗ = P0(1 +R∗) = P0 + P0R
∗,

then according to the definition of VAR, the maximum probable loss of asset portfolio over

period of time t under confidence level a can be defined as VAR relative to the mean value

of asset portfolio value (expected return), that is, the relative VAR is defined as

V ARR = E(P )− P ∗ = P0(1 + E(R))− P0(1 +R∗) = −P0(R
∗ − µ).

The minimum return here can be expressed as

R∗ = −ασ + µ,
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where α is the quantile value for confidence level a in standard normal distribution. And

the area on the left showing in the graph is equal to 1− a.

Plug this equation into the relative VAR equation above, and we have that

V ARR = −P0(R
∗ − µ) = P0ασ

√
∆t.

2.1.2 Element Selection

By definition we can see that the three elements of VAR are the choice of confidence

level, the distribution of assets and the choice of asset holding period of time. Since the

distribution of the asset is fixed when figuring the VAR of a certain asset, it is important to

select the left two elements to measuring the VAR: basic time interval and confidence level.

The longer the holding period, and the higher confidence level, the larger is the VAR

value. By contrast, the VAR value would be small if the time period is short and the confi-

dence level is low. The length of the time period is selected by comprehensively considering

the cost of frequent supervision. Some of the major commercial banks in the world select

the interval of 1 day, which means that they publish the daily VAR value of the assets. The

internal model of the Basel Committee selects the interval of 10 days and confidence level

of 99%, and then the minimum capital requirement to ensure regulatory purpose can be

obtained by multiplying the calculated VAR with a safety factor 3.
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When it comes to confidence level, we should consider the availability and adequacy

of historical data. The confidence level is set at the same time to balance the effectiveness

and reliability of the VAR value. If the confidence level is high, the probability of events for

which the loss exceeds the VAR value is reduced, and the demand for the number of data

observations will be high. The confidence level should not to be set too high if the number of

data observations is not enough. And if the confidence level is set too low, the effectiveness

and reliability of the VAR value would be reduced.

2.2 Time Series and ARIMA Model

The mean function of time series rt is defined as

µt = E(rt) =
∫ ∞
−∞

rft(r)dr.

The auto-covariance function is defined as the second moment product

γ(s, t) = cov(rs, rt) = E[(rs − µs)(rt − µt)],

for all s and t. Then a time series rt is said to be weakly stationary if (i) the mean value

function µt is constant and does not depend on time t, and (ii) the auto-covariance function

γr(s, t) depends on s and t only through their difference |s−t|, that is, γ(s, t) = γ(k, k+s−t).
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The auto-correlation function (ACF) is defined as

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
.

The partial auto-correlation function (PACF) of a stationary process rt, denoted φhh,

for h = 1, 2, ..., is

φ11 = corr(rt+1, rt)

φhh = corr(rt+h − r̂t+h, rt − r̂t), h ≥ 2.

And a time series zt is white noise series if it is a collection of uncorrelated random

variable zt with mean 0 and finite variance σ2
z , and γ(s, t) = cov(zs, zt) = 0, ifs 6= t.

The Autoregressive Integrated Moving Average Model (ARIMA) is proposed by Box

and Jenkins (1970). In ARIMA (p, d, q), p is the autoregressive term, d is the number of

times of difference that makes the time series become stationary, and q is the moving average

term.

After a certain times of difference, a time series would become stationary and we can

only fit ARMA model here. This is an ARMA(p,q) equation

rt = µ+
p∑
i=1

αirt−i +
q∑
i=1

βiεt−i + εt,

where rt is the time series variable and εt is the error term.

9



2.3 GARCH Family Model

2.3.1 ARCH

If a stationary random variable rt can be expressed as an AR(p) form

rt = µ+
p∑
i=1

αirt−i + εt

and the time series of its random error term εt can be given as

εt = σtzt

where zt is white noise series with zero mean and unit variance, the variance of the random

error term is the expectation of the square error term

V ar(εt) = E[ε2t ]− (E[εt])
2 = E[ε2t ]

and the variance can be described by the q-order lags of the square error term

σ2
t = α0 + α1ε

2
t−1 + ...+ αqε

2
t−q,

where α0 > 0, αi ≥ 0, i = 1, 2, ..., q and 0 ≤ α1 + α2 + ...+ αq < 1 for stationary condition of

time series. We say εt follows q-order ARCH process and is denoted as εt ∼ ARCH(q). We

10



can use this ARCH model to estimate the variance of rt by

V ar(rt) = V ar(εt) = σ2
t .

There are several reasons to use ARCH family models to estimate the variance for risk

management. We can assess how much the risk of the assets’ holdings or transactions is

brought to the revenue by predicting the amount of change in rt or εt. The confidence

interval of rt, which changes over time, can be predicted. The correct estimation of the

conditional heteroskedasticity can make the estimation of the regression parameter more

accurate.

2.3.2 ARCH Effect Hypothesis-Testing

Whether or not an autoregressive conditional heteroskedasticity (ARCH effect) exists

in the error term of the mean equation should be tested. We can use ARCH-LM test here.

Its null hypothesis is that the squared residuals series are not auto-correlated and there is

no ARCH effect, while the alternative hypothesis is that the variance of the error term is

not a constant and there exists an ARCH effect:

H0 : α1 = α2 = ... = αq = 0

H1 : α1, α2, ..., αq not all zero.

11



Under null hypothesis, the OLS estimators are efficient, while the OLS estimators become

inefficient in the case of the alternative hypothesis.

This are the steps to do this LM test: ε̂t
2 can be obtained by regressing rt. Then regress

ε̂t
2 with its q-order lags. Now R2 is obtained from this new regression and use this one to

construct the statistic LM = TR2, where T is the sample size of the new regression.

Under the null hypothesis, LM = TR2 ∼ χ2
(q). If LM < χ2

α(q), the null hypothesis would

not be rejected. And if LM > χ2
α(q), it should be rejected.

2.3.3 GARCH

The ARCH(q) model is a distributed lag model for σ2
t . To avoid too many lag terms,

we can use the methods of adding the lag terms of σ2
t , which utilizes the concept of Recall

Reversibility.

The model is called generalized autoregressive conditional heteroskedasticity (GARCH)

σ2
t = ω+

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j,

denoted as GARCH(p,q), where ω > 0, αi ≥ 0, i = 1, 2, ..., q, βj ≥ 0, j = 1, 2, ..., p, and

0 ≤ ∑q
i=1 αi +

∑p
j=1 βj < 1. Here p and q are orders of the lag and αi and βj are parameters

of the model.εt−i are ARCH terms and εt−j are GARCH terms.

12



2.3.4 E-GARCH

Since the historical data is in the form of a square to affect the future volatility in

the GARCH model, the rise and fall of the asset have same impact on future volatility.

However, empirical analysis shows that the good news or bad news for financial asset has

different qualitative effect on volatility result. This asymmetric impact from different kind

of news on stock volatility is called the leverage effect.

E-GARCH, derived from the GARCH model, is to explain the leverage effect. In order

to explain it, the symmetry function “square” should be abandoned, and the historical data

could affect future volatility via an asymmetric function. However, the asymmetric function

may break the rationality of the GARCH model, that is, the future volatility may be negative.

The solution is to use the logarithm of volatility instead of simple volatility, and then the

variance could be guaranteed as positive in the E-GARCH model.

The form of the E-GARCH model is

ln(σ2
t ) = ω +

q∑
i=1

αi
|εt−i|+ γiεt−i

σt−i
+

p∑
j=1

βiln(σ2
t−i)

or in Nelson form

ln(σ2
t ) = ω +

q∑
i=1

αi
εt−i
σt−i

+
q∑
i=1

γi(|
εt−i
σt−i
| − µ) +

p∑
j=1

λjln(σ2
t−j),

13



where
∑∞
j=1 α

2
i <∞. µ is expectation of | εt

σt
|, ln(σ2

t−j) are log GARCH terms, | εt−i

σt−i
| − µ are

ARCH terms, and εt−i

σt−i
are terms to describe the difference of good or bad information.

Since the right hand side is the logarithm of σ2
t , σ

2
t would hold positive no matter

whether the right hand side is positive or negative.

The term of εt−i

σt−i
is standardized new information. When there is good or bad news

for asset, the term of εt−i

σt−i
shows as positive or negative respectively. Although the absolute

value of positive and negative news is the same, the EGARCH model can distinguish the

different effects of positive and negative news on the volatility.
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Chapter 3

Data Analysis

3.1 Data Collection

I chose the historical close price of S&P 500 Financials Sector index with an investment

horizon of 1 day as the origin data to apply for the risk testing methodology.

The data are collected from S&P Dow Jones Indices website1. This index contains the

companies included in the S&P 500 that are classified as members of the global industry

classification system financial sector, which includes 3 industry groups: Banks, Diversified

Financials and Insurance.

The historical time series data of stock price covers a period of 7 years from January

19th 2011 to January 31st 2017, which has 1519 observations. Obviously the time series is

not stationary. First-order differenced data can be derived from this original data by using

1https://us.spindices.com/indices/equity/sp-500-financials-sector
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the natural logarithmic yield to be the variable of the volatility models:

rt = lnPt − lnPt−1,

where Pt is the stock price in time t. rt is the stock return rate, which can be simply denoted

as log yield.

3.2 Descriptive Statistics and Time Series Tests

The mean of the log yield is 0.0003609178. Its median is 0.000845984. The standard

deviation is 0.01292466. Its skewness is -0.4055435, less than zero, illustrating a long left

tail. The minimum value -0.1051823 is larger than the maximum 0.07889818 in absolute

value. This roughly gives an information that the number of positive profit is more than the

loss one, but the extent of loss might be greater than that of profit.

The kurtosis is 6.765386, larger than 3 in normal distribution, which demonstrates that

the log yield exhibits leptokurtosis characteristic. We can notice this in the histogram in

Figure 3.1. Jarque-Bera statistic (JB = n−df
6

(S2 + (K−3)2
4

)) is 2938.5 with p-value 0.0000.

Thus we can reject the null hypothesis of its normal distribution under 95% confidence level.

We may consider to build the model using a t-distribution later.

Based on the time series plot of S&P 500 Financials Sector index’s logarithmic yield

in Figure 3.2, we can observe that the variance of the log yield not only changes through

16



Table 3.1: S&P 500 Financials Sector Log Yield Descriptive Statistics

Mean Std. Dev. Kurtosis Skewness Jarque-Bera
0.0003609178 0.01292466 6.765386 -0.4055435 2938.5

Figure 3.1: S&P 500 Financials Sector Log Yield Histogram

17



Figure 3.2: S&P 500 Financials Sector Logarithmic Yield Time Series Plot

the time, but also changes very dramatically through the time. There exists a volatility

clustering feature in this plot: the variances are small in some period (e.g. observations

500-1100), while the variances are sometimes quite large (e.g. observations 100-300 and

1100-1400).

Thus the log yield time series might have ARCH effect and some further statistical tests

on the data need to be taken before we build models.

The first test for time series is to see whether the data are stationary or not. Here I use

the Augmented-Dickey-Fuller Unit Root Test. The null hypothesis is that the time series

has a unit root and is not stationary, while the alternative hypothesis is that it does not

have a unit root and is stationary. Here the ADF statistic of log yield series is -10.977 with

its p-value smaller than 0.01. Thus the null hypothesis that the time series is non-stationary

would be rejected under 95% confidence level.
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The second test is to see whether it is a white noise process. We can do Box-Ljung test,

which is a test about overall randomness. The Box-Ljung test statistic is

Q = n(n+ 2)
h∑
k=1

p̂k
2

n− k
,

which follows χ2(h) in significance level α. We can see whether the autocorrelations of time

series are different from zero via Box-Ljung test. The null hypothesis is that the series is

independently distributed, while the alternative hypothesis is that it is not independently

distributed and has serial correlation. Here the Box-Ljung test result of log yield is χ2

= 57.038, df = 7.3258, p-value = 8.485e-10. Thus the null hypothesis that p̂1
2 = p̂2

2 =

... = p̂n
2 = 0 would be rejected under 95% confidence level. The variables might not be

independent.

Autocorrelation also can be seen in the ACF and PACF chart in Figure 3.3. It is shown

in the chart that several coefficients of autocorrelation and partial autocorrelation are larger

than confidence interval. So there exists significant autocorrelations. Therefore, we need to

consider ARMA model to build the mean equation later.
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Figure 3.3: S&P 500 Financials Sector Log Yield ACF and PACF

(a) ACF (b) PACF

3.3 Model Setup

3.3.1 ARMA Model

Since both ACF and PACF have tails and do not actually truncated after a certain lag,

I consider a mixed ARMA model would be better to fit the mean model for stock return

rate.

Using Akaike’s Information Criterion (AIC = 2p − 2log(L)) to find the ARMA model

in R automatically, we could get ARIMA(2,0,1) with minimum AIC -8929.25. Similarly

we can find another ARIMA(1,0,1) model by using Bayes Information Criterion (BIC =

plog(n)− 2log(L)) with minimum BIC -8914.49. The penalty for bigger parameters of BIC

is more strict than AIC. Both of these two models could be considered to build GARCH

model, and we could choose one according to the result of GARCH model fit.

ARMA Model 1 (AIC):

rt = −0.9042rt−1 − 0.0268rt−2 + 0.8075εt−1 + εt

20



ARMA Model 2 (BIC):

rt = −0.8536rt−1 + 0.7726εt−1 + εt

Figure 3.4 is the plot of ARMA(2,1) model with predicted future return plot for 30

days using ARMA(2,1) under 85% and 95% confidence level. It shows that the stock yield

is around mean zero with variances, which is reasonable for economic meaning. However,

obviously this forecast is too rough to provide any more valid information since the variance

hold unchanged during the predicted time.

ARCH effect should be tested since we can roughly find there is significant heteroskedas-

ticity for this time series in Figure 3.4. We use ARCH-LM test here, which is stated before

in 2.3.2. The result is that the LM statistic is 316.05 with p-value less than 2.2e-16. Thus

the null hypothesis of no ARCH effect is rejected under 95% confidence level. I would build

GARCH family models to find more efficient estimators.

Figure 3.4: ARMA Forecast Plot
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Table 3.2: ARCH(q) Log Likelihood and AIC
Model q df Log Likelihood AIC
ARCH(1) 1 2 4654.143 -6.118688
ARCH(2) 2 3 4706.392 -6.186165
ARCH(3) 3 4 4726.472 -6.211286
ARCH(4) 4 5 4733.214 -6.218847
ARCH(5) 5 6 4739.571 -6.225900
ARCH(6) 6 7 4745.285 -6.232106
ARCH(7) 7 8 4747.802 -6.234104
ARCH(8) 8 9 4753.363 -6.240110
ARCH(9) 9 10 4754.665 -6.240507
ARCH(10) 10 11 4755.007 -6.239641

3.3.2 GARCH Family Model

I use residuals of both ARMA(2,1) and ARMA(1,1) fit the GARCH family models.

The results with ARMA(2,1) are mainly better than the ARMA(1,1) one. Thus I treat

ARMA(2,1) as the default choice to fit GARCH family models here. And I will also mention

ARMA(1,1) when it turns to be a better choice.

As for the ARCH(q) models, ARCH orders and parameters could be selected by AIC

criterion. I fit 10 ARCH models to the residuals in total, and then calculate the log likelihood

and AIC for each models. The result is shown in Table 3.2. ARCH(9) has minimum AIC

-6.240507 during these 10 ARCH models and but the coefficient of the ninth lag term is

significant under 95% confidence level. Therefore, ARCH(8) with second minimum AIC is the

selected model for ARCH one. As for GARCH(p,q) models, 4 models may be considered at

first: GARCH(1,1), GARCH(2,1), GARCH(1,2) and GARCH(2,2). Since the two coefficients
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of ARCH terms in GARCH(1,2) and GARCH(2,2) are not significant, GARCH(1,1) and

GARCH(2,1) are selected.

Similarly the coefficients in E-GARCH(2,1) are not all significant, thus it reduced to

be E-GARCH(1,1). However, the coefficients in E-GARCH(1,2) are significant when it uses

ARMA(1,1) model as mean equation.

Here are all the models discussed to be considered above using t-distribution.

Model 1 ARMA(2,1)+ARCH(8):

rt = 8.614× 10−5 + 0.8511rt−1 + 0.03732rt−2 − 0.9187εt−1 + εt

σ2
t = 3.62× 10−5 + 0.1032ε2t−1 + 0.2171ε2t−2 + 0.1228ε2t−3 + 0.0572ε2t−4 + 0.0752ε2t−5 +

0.1146ε2t−6 + 0.0247ε2t−7 + 0.0827ε2t−8

Model 2 ARMA(2,1)+GARCH(1,1):

rt = 9.49× 10−5 + 0.8381rt−1 + 0.0389rt−2 − 0.913εt−1 + εt

σ2
t = 5.799× 10−6 + 0.1536ε2t−1 + 0.8144σ2

t−1

Model 3 ARMA(2,1)+GARCH(2,1):

rt = 1.598× 10−3 − 0.9898rt−1 − 0.0551rt−2 + 0.9175εt−1 + εt

σ2
t = 7.936× 10−6 + 0.09984ε2t−1 + 0.09845ε2t−2 + 0.7577σ2

t−1

Model 4 ARMA(2,1)+E-GARCH(1,1):

rt = 4.37× 10−4 − 0.9789rt−1 − 0.0426rt−2 + 0.9184εt−1 + εt
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lnσ2
t = −0.4263− 0.1563(|εt−1|+ 0.2417εt−1)/σt−1 + 0.9533 lnσ2

t−1

Model 5 ARMA(1,1)+E-GARCH(1,2):

rt = 0.000447− 0.0256rt−1 − 0.0358εt−1 + εt

lnσ2
t = −0.4124− 0.1488(|εt−1|+ 0.23135εt−1)/σt−1 + lnσ2

t−1 − 0.0452 lnσ2
t−2

Except for coefficients of the fourth and seventh lag terms in model 1, all the coeffi-

cients in GARCH family models shown above are significant under 95% confidence level.

This means that all the coefficients in conditional variance models are significant. And it

demonstrates that the stock return rate time series rt has significant volatility clustering,

which is the same result as discussion in descriptive statistics part.

The variance of error term in stock yield mean model can be described by past squared

error term and past squared variance itself with lags by parameters shown above. All the

ARCH coefficients of ARCH and GARCH models are larger than 0, which illustrates that

external effects would intensify system volatility. The GARCH coefficients (0.8144, 0.7577

and 0.9533) are all close to 1, reflecting the long-term memory of the system. The sum of

ARCH coefficient and GARCH coefficient is smaller than 1 for each model, thereby satisfying

the condition of GARCH family models stated in methodology part. Thus we know these

models’ processes are stationary, and the impact of past volatility on the future is gradually

decaying. Further discussion about the coefficients of E-GARCH would be covered in 3.5

part.
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Table 3.3: Box-Ljung Test and ARCH-LM Test

Test
Box-Ljung Test (lag12) ARCH-LM Test (lag 24)

Q Statistic p-value LM Statistic p-value

Model 1 ARCH(8) 13.662 0.3228 12.854 0.9685

Model 2 GARCH(1,1) 15.981 0.1921 25.665 0.3704

Model 3 GARCH(2,1) 13.045 0.3658 21.960 0.5817

Model 4 E-GARCH(1,1) 11.281 0.5050 23.567 0.4866

Model 4 E-GARCH(1,2) 12.832 0.3814 23.491 0.4910

Now we need to do the tests to check whether the standardized residuals of those models

have ARCH effect right now. Figure 3.5 shows the standardized residuals time series plots,

their QQ-plots, and their ACF figures.

There is no obvious volatility clustering phenomenon in standard residuals plot from a

to (a) to (e) in Figure 3.5. The points almost lie on the x = y lines in the QQ-plots, thus it is

reasonable to build model using t-distribution. Two E-GARCH models have better QQ-plot

of t-distribution than that of other three models. Except for Model 5 E-GARCH(1,2), the

coefficients of autocorrelation roughly stand inside the confidence interval in ACF figures

from (k) to (o).

In order to check their independence and ARCH effect, Ljung-Box test and ARCH-LM

test need to be taken. The results are shown in Table 3.3.
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Figure 3.5: Standardized Residuals of GARCH Family Models

(a) Model 1 ARCH(6) Std Res Plot

(b) Model 2 GARCH(1,1) Std Res Plot

(c) Model 3 GARCH(2,1) Std Res Plot

(d) Model 4 E-GARCH(1,1) Std Res Plot

(e) Model 5 E-GARCH(1,2) Std Res Plot
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(f) Model 1 ARCH(8) Std Res
QQ-Plot

(g) Model 2 GARCH(1,1) Std
Res QQ-Plot

(h) Model 3 GARCH(2,1) Std
Res QQ-Plot

(i) Model 4 E-GARCH(1,1)
Std Res QQ-Plot

(j) Model 5 E-GARCH(1,2)
Std Res QQ-Plot

(k) Model 1 ARCH(8) Std Res
ACF

(l) Model 2 GARCH(1,1) Std
Res ACF

(m) Model 3 GARCH(2,1) Std
Res ACF
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(n) Model 4 E-GARCH(1,1)
Std Res ACF

(o) Model 5 E-GARCH(1,2)
Std Res ACF

Since the p-values of Q statistics of Ljung-Box tests are all larger than 0.05, the null

hypothesis that the series is independently distributed would not be rejected under 95% con-

fidence level. The p-values of LM statistics are also larger than 0.05, and the null hypothesis

that there is no autoregressive conditional heteroskedasticity would not be rejected under

95% confidence level.

Among those five models, the first ARCH model has 8 parameters that make the model

still not simple enough. It’s better to focus more on the latter four models. We could use

Akaike Information Criterion to select a better model for further analysis. We could also

select model using method of mean square error (MSE) by comparing the fitted value of the

models with the original series data:

MSE =
SSE

n
=

1

n

n∑
i=1

(yi − ŷi)2.

The results of AIC and MSE are shown in Table 3.4. Model 3 GARCH(2,1) has lowest

fitted value mean square error, while Model 4 E-GARCH(1,1) has lowest AIC.
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Table 3.4: GARCH Family Models’ AIC and Fitted MSE

Model AIC Fitted MSE

Model 1 ARCH(8) -6.2405 0.0001651355

Model 2 GARCH(1,1) -6.2448 0.0001651969

Model 3 GARCH(2,1) -6.2420 0.0001640247

Model 4 E-GARCH(1,1) -6.2588 0.0001641403

Model 5 E-GARCH(1,2) -6.2580 0.0001652685

Comprehensively considering the best QQ-plot, the lowest AIC, a relatively small MSE

and also its economic leverage meaning, Model 4 E-GARCH(1,1) is a good choice. But also

Model 3 GARCH(2,1) is a good one here, due to the good diagnose result and the lowest

MSE. I would use GARCH(2,1) to make prediction and forecasts for stock market while

using E-GARCH(1,1) to discuss about leverage and the effect of new information in stock

market.

3.4 VAR Calculation and Early Warning

According to the definition of VAR, the minimum return rate is

R∗ = −ασ + µ
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and the relative VAR is

V ARR = −P0(R
∗ − µ) = P0ασ

√
∆t.

Table 3.5 is the VAR calculation for 10 days head based on prediction from Model 2

GARCH(2,1) at 99% confidence level in 1-day horizon. I also provide the real world rate and

price from testing sample for comparison, but the VAR is still calculated by the prediction

one rather than the real one. The actual days would be from February 1st 2017(day 1) to

February 14th 2017(day10) with totally 10 working days in financial market.

This means that 14.02 dollars as value at risk are predicted to be the maximum probable

loss in day 1 with initial price 390.08 dollars for 1 volume in 1-day horizon at 99% confidence

level. Similarly 14.25 dollars are the second day’s value at risk with initial price 390.65

dollars for 1 volume in 1-day horizon at 99% confidence level, and so on as the other days

left.

We can also use this method to predict more future VAR to provide quantitative in-

formation for risk management and company strategy. How this would produce real world

economic significance and make sense for risk management? We see that there exits volatil-

ity clustering in the historical log yield time series. This means that the violent fluctuation

and huge volatility did not turn up suddenly without any signals. They came into being

gradually in the market. Thus we conclude that there would be any corresponding signals

before huge volatility and ruined loss, for example, some extremely low rate of return. Thus
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Table 3.5: Future 10 days’ Relative VAR at 99% level in 1-Day Horizon

Day Predict
Rate

Predict
Price

Predict
Sigma

VAR

0 0.0010528 390.0802411 0.0099253 N/A

1 0.0014499 390.6458194 0.0096956 14.02172

2 0.0010438 391.0535576 0.0098384 14.24887

3 0.0010261 391.4548009 0.0099748 14.46149

4 0.0009954 391.8444682 0.010105 14.66529

5 0.0009691 392.2241966 0.0102294 14.86061

6 0.0009458 392.5951625 0.0103485 15.0482

7 0.0009253 392.9584175 0.0104625 15.22836

8 0.0009072 393.3148898 0.0105716 15.40139

9 0.0008912 393.6653997 0.0106762 15.56789

10 0.0008771 394.0106718 0.0107764 15.72801

institutions could use these signals to predict value at risk and make corresponding risk

management afterwards.

Figure 3.6 is the plot of early warning for low stock yield in history. We could see

some points are under the VAR curve, shown as red points, before some huge volatility.

They would be the signals and early warning for crisis. However, the accuracy of the early

warning by model is not good in stationary period, for example from observation 700 to

1100. Thus the early warning by this model has more economic meaning in non-stationary

volatility period.
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Figure 3.6: VAR Historical Plot with Early Warning

3.5 Leverage Effect and News Impact Curve

As stated before, the impact of same unit of bad news on stock volatility is often greater

than the impact of good news. When the bad news decrease the asset price in one period,

thereby reducing the capital invested in the new business, the debt-to-capital ratio would

rise, which leads to an increase in the variance risk of the company’s expected return. In

addition, the asymmetry also has a significant effect on the assets return and stock market

return covariance-to-variance ratio. Therefore, we need to also consider the leverage effect

using E-GARCH model to describe the asymmetry.

Particularly in the Model 4 E-GARCH(1,1) with ARMA(2,1), we have variance equation

in Nelson form:

ln(σ2
t ) = −0.55103− 0.03778

εt−1
σt−1

− 0.1563(| εt−1
σt−1
| − 0.798) + 0.9533ln(σ2

t−1).
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The coefficient of εt−1

σt−1
is -0.03778 and is significant. This term describe the difference between

good and bad news. Thus it can be concluded that the model has significant leverage effect.

We take the observation 1519 (January 31st 2017) as an example. When the news

is good and assuming ε1518/σ1518 = 1, ln(σ2
1519)) = 0.000092. When the news is bad and

assuming ε1518/σ1518 = −1, ln(σ2
1519)) = 0.0001356. There is a large difference between the

two variances, which shows that the bad news has more influence on volatility than the good

news.

It is also very obvious to see the asymmetry on news impact curve in Figure 3.7. The

stock yield is steep when information term is less than zero with bad news or negative shocks.

The stock yield is relatively gentle and stationary when the information term is greater than

zero with good news or positive shocks. This means stock price is more sensitive to bad

news, and it also coincides with the phenomenon that stock price rises slowly but falls very

quickly. It performs in the time series that the volatility in the falling direction is larger than

that of rising direction. Thus the anti-risk ability in financial market should be strengthened

for risk management.
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Figure 3.7: News Impact Curve
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Chapter 4

Conclusion

The financial stock market turned out to rise and fall suddenly and sharply in recent

years, which means that the volatility and uncertainty is very significant in market and

measuring the market risk accurately is of great importance. This paper uses the historical

price of S&P 500 Financials Sector Index from January 19th 2011 to January 31st 2017 as

the original time series data, and find the logarithm yield as daily returns to build 2 ARMA

and 5 GARCH family models using t-distribution. Then I calculate future 10 days’ relative

VAR in 1-day horizon under 99% confidence level based on the selected model GARCH(2,1)

with ARMA(2,1). According to the results, we could make conclusion as follows.

First, since the log yield time series reject the normality assumption and ARMA models

have ARCH effect, we need to build the GARCH family models to find variance of the error

term in mean equation for further analysis. It is obvious that there exists volatility clustering

feature in log yield time series and they are auto-correlated. And ARMA models also have

ARCH effect that the estimation would not consistent and efficient enough. Thus I build
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5 GARCH family models using t-distribution to solve this problem. All the models remove

ARCH effect of time series under 95% confidence level.

Second, I select GARCH(2,1) model to make prediction of stock yield and stock price

among 5 GARCH family models according to significance of coefficients, tests on standard-

ized residuals, and MSE between historical data and fitted value.

Third, I calculate future 10 days’ relative VAR in 1-day horizon under 99% confidence

level based on the selected model GARCH(2,1) with ARMA(2,1) as the quantitative risk

measuring method. I also plot the historical VAR in time series and treat the returns that

lower than the minimum return of VAR as the signal of early warning for crisis. The early

warning is particularly effective in non-stationary volatility period, while the accuracy turn

to be not good enough in stationary period. Institutions and Investors could make risk

management and investment strategies with VAR signals during volatility period.

Finally, there is asymmetry on news impact curve derived through E-GARCH(1,1) with

ARMA(1,1) model, which means that the log yield series have leverage effect. Thus it can

be concluded that the impact of same unit of bad news on stock volatility is greater than

the impact of good news in this financial market.
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