Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2003-41

2003-05-19

Intelligent Packet Discard Policies for Improved TCP Queue
Management

Anshul Kantawala and Jonathan S. Turner

Recent studies have shown that suitably-designed packet discard policies can dramatically
improve the performance of fair queueing mechanisms in internet routers. The Queue State
Deficit Round Robin algorithm (QSDRR) preferentially discards from long queues, but in-
troduces hysteresis into the discard policy to minimize synchronization among TCP flows.
QSDRR provides higher throughput and much better fairness than simpler queueing mech-
anisms, such as Tail-Drop, RED and Blue. However, because QSDRR discards packets that have
previously been queued, it can signficantly increase the memory bandwidth require-ments of
high performance routers. In this paper, we explore alternatives to QSDRR that provide
comparable performance,... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Kantawala, Anshul and Turner, Jonathan S., "Intelligent Packet Discard Policies for Improved TCP Queue
Management" Report Number: WUCSE-2003-41 (2003). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1086

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1086?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1086

Intelligent Packet Discard Policies for Improved TCP Queue Management

Anshul Kantawala and Jonathan S. Turner

Complete Abstract:

Recent studies have shown that suitably-designed packet discard policies can dramatically improve the
performance of fair queueing mechanisms in internet routers. The Queue State Deficit Round Robin
algorithm (QSDRR) preferentially discards from long queues, but in-troduces hysteresis into the discard
policy to minimize synchronization among TCP flows. QSDRR provides higher throughput and much
better fairness than simpler queueing mech-anisms, such as Tail-Drop, RED and Blue. However, because
QSDRR discards packets that have previously been queued, it can signficantly increase the memory
bandwidth require-ments of high performance routers. In this paper, we explore alternatives to QSDRR
that provide comparable performance, while allowing packets to be discarded on arrival, saving memory
bandwidth. Using ns-2 simulations, we show that the revised algorithms can come close to matching the
performance of QSDRR and substantially outperform RED and Blue. Given a traffic mix of TCP flows with
different round-trip times, longer round-trip time flows achieve 80% of their fair-share using the revised
algorithms, compared to 40% under RED and Blue. We observe a similar improvement in fairness for long
multi-hop paths competing against short cross-traffic paths. We also show that these algorithms can
provide good performance, when each queue is shared among multiple flows.

https://openscholarship.wustl.edu/cse_research/1086?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1086?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2003-41

Intelligent Packet Discard Policies for Improved TCP Queue Management

Authors: Kantawala, Anshul; Turner, Jonathan

May 19, 2003

Abstract: Recent studies have shown that suitably-designed packet discard
policies can dramatically improve the performance of fair queueing
mechanisms in internet routers. The Queue State Deficit Round Robin
algorithm (QSDRR) preferentially discards from long queues, but
introduces hysteresis into the discard policy to minimize

synchronization among TCP flows. QSDRR provides higher throughput and
much better fairness than simpler queueing mechanisms, such as
Tail-Drop, RED and Blue. However, because QSDRR discards packets that
have previously been queued, it can signficantly increase the memory
bandwidth requirements of high performance routers. In this paper, we
explore alternatives to QSDRR that provide comparable performance,
while allowing packets to be discarded on arrival, saving memory
bandwidth. Using ns-2 simulations, we show that the revised algorithms
can come close to matching the performance of QSDRR and substantially

outperform RED and Blue. Given a traffic mix of TCP flows with
diffarent roniind-trin time< lnnner raiind-trin time flonwe achieve RN0A

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Intelligent Packet Discard Policiesfor
Impr oved TCP QueueManagement

AnshulKantavala
anshul@arl.wustl.edu
JonatharTurner
jst@arl.wustl.edu

WUCSE-2003-41

May 19,2003

Departmenbf ComputerScienceandEngineering
CampusBox 1045

WashingtorUniversity

OneBrookingsDrive

St. Louis, MO 63130-4899

Abstract

Recentstudieshave shavn thatsuitably-designegaclet discardpoliciescandramatically
improve the performancef fair queueingnechanism# internetrouters.The QueueState
Deficit RoundRobinalgorithm(QSDRR)preferentiallydiscarddfrom long queuesbut in-

troduceshysteresisnto thediscardpolicy to minimize synchronizatioramongTCP flows.

QSDRRprovideshigherthroughputandmuchbetterfairnesghansimplerqueueingmech-
anismssuchasTail-Drop, RED andBlue. However, becaus€ SDRRdiscardacletsthat
have previously beenqueued;t cansignficantlyincrease¢he memorybandwidthrequire-
mentsof high performanceouters. In this paper we explore alternatvesto QSDRRthat
provide comparablgerformancewhile allowing pacletsto bediscardedn arrival, saving

memorybandwidth.Usingns-2simulationswe shav thattherevisedalgorithmscancome
closeto matchingthe performancef QSDRRandsubstantiallyoutperformRED andBlue.
Given a traffic mix of TCP flows with differentround-trip times, longerround-triptime
flows achieve 80% of their fair-shareusingthe revisedalgorithms,comparedo 40% under
RED andBlue. We obsere a similar improvementin fairnessfor long multi-hop paths
competingagainsishortcross-trafic paths.We alsoshav thatthesealgorithmscanprovide
goodperformancewheneachqueues sharecamongmultiple flows.

Thiswork is supportedn partby DARPA GrantN660001-01-1-8930

Intelligent Packet Discard Policiesfor Impr oved TCP
QueueManagement

AnshulKantavalaandJonatharTurner
Departmenbf ComputerScienceandEngineering
Washingtorniversity
St. Louis, MO 63130
{anshul,jst @arl.wustl.edu

Abstract

Recentstudieshave shavn thatsuitably-designegaclet discardpoliciescandramatically
improve the performancef fair queueingmechanismi internetrouters.The QueueState
Deficit RoundRobinalgorithm(QSDRR)preferentiallydiscardsrom long queueshut in-

troduceshysteresisnto the discardpolicy to minimize synchronizatioramongTCP flows.

QSDRRprovideshigherthroughputandmuchbetterfairnesghansimplerqueueingmech-
anismssuchasTail-Drop, RED andBlue. However, becaus€)SDRRdiscardpacletsthat
have previously beenqueued,t cansignficantlyincreaseéhe memorybandwidthrequire-
mentsof high performanceouters. In this paper we explore alternatvesto QSDRRthat
provide comparablgerformancewhile allowing pacletsto bediscardedn arrival, saving

memorybandwidth.Usingns-2simulationswe shaw thattherevisedalgorithmscancome
closeto matchingthe performancef QSDRRandsubstantiallyoutperformRED andBlue.
Given a traffic mix of TCP flows with differentround-trip times, longerround-triptime
flows achieve 80% of theirfair-shareusingtherevisedalgorithms,comparedo 40% under
RED andBlue. We obsenre a similar improvementin fairnessfor long multi-hop paths
competingagainsshortcross-traic paths.We alsoshav thatthesealgorithmscanprovide
goodperformancewheneachqueues sharecamongmultiple flows.

1. Intr oduction

Backboneroutersin the Internetaretypically configuredwith buffersthatare several timestimes
largerthanthe productof thelink bandwidthandthetypical round-tripdelayonlong network paths.
Suchbufferscandelaypacletsfor asmuchashalf a secondduringcongestiorperiods.Whensuch
large queuescarry heary TCP traffic loads,andareservicedusingthe Tail-Drop policy, the large
gueuesemaincloseto full mostof thetime. Thus,evenif eachTCPflow is ableto obtainits share
of thelink bandwidth,the end-to-enddelayremainsvery high. This is exacerbatedor flows with

multiple hops,sincepacletsmay experiencehigh queueingdelaysat eachhop. This phenomenon
is well-knowvn andhasbeendiscussedy Hashen{1] andMorris [2], amongothers.

To addresshis issue researcherhave developedalternatve queueingalgorithmswhich try to
keepaveragequeuesizeslow, while still providing high throughputandlink utilization. The most
popularof theseis RandomEarly Discad or RED [3]. RED maintainsanexponentially-weighte
moving averageof the queudengthwhichis usedto detectcongestionTo make it operaterobustly
underwidely varying conditions,one must either dynamically adjustthe parametersr operate
usingrelatively large buffer sizes[4, 5]. RecentlyanotherqueueingalgorithmcalledBlue [6], was
proposedo improve upon RED. Blue adjustsits parameter@automaticallyin responsdo queue
overflow and underflav events. Although Blue doesimprove over RED in certainscenariosijts
parametersrealsosensitve to differentcongestiorconditionsandnetwork topologies.

In our previous study we investigatechow paclet schedulersising multiple queuescanim-
prove performancenver existing methods.Our goalis to find schedulershat satisfythe following
objecties:

¢ High throughputwhenbuffers are small This allows queueingdelaysto be keptlow.

¢ Insensitivityto opelating conditionsandtraffic. Thisreducegheneedto tuneparametersor
compromisen performance.

e Fair treatmentof different flows This shouldhold regardlessof differencesin round-trip
delayor numberof hopstraversed.

In [7, 8] we shav thatbothRED andBlue aredeficientin theserespectsBoth performfairly poorly
whenbuffer spaces limited to asmallfractionof theround-tripdelay

Anotherregularly obsered phenomenotior queueswith Tail-Drop is big swingsin the occu-
pang of the bottlenecKink queue.Oneof the main causedor this is the synchronizatiorof TCP
sourcegyoing throughthe bottlenecklink. Although RED andBlue try to alleviate the synchro-
nizationproblemby usingarandomdrop policy, they do not performwell with bufferswhich area
fractionof thebandwidth-delayproduct.Whenbuffersarevery small,evenwith arandomdroppol-
icy, thereis a high probabilitythatall flows suffer a paclet loss. However, with perflow queueing,
we canexplicity controlthe numberof flows thatsuffer a paclet lossandthussignificantlyreduce
synchronizatioramongflows. While perflow queueshave beenhistorically viewed astoo expen-
sive to implement,continuingtechnologyadvanceshave cut the coststo negligible levels. Indeed,
by enablingthe useof smallermemorysizesfor buffering paclets, perflow queuescanactually
reducecostsandat the sametime cut network queueingdelays.

In our prior work [7, 8], we proposedandevaluatedtwo differentpaclet droppingalgorithms:
ThroughputDRR (TDRR) and QSDRR.We found that thesealgorithmssignificantly outperform
RED, Blue andTail-Drop for bothlong-lived andshortburst TCP traffic. They alsoperformrea-
sonablywell whenmultiple flows sharea singlequeue.However, bothof theseapproacheseedthe
gueuedo beorderedby throughpubrlength.Also, policiesthatdroppacletsthathave alreadybeen
gueueccanrequiresignificantlymorememorybandwidththanpoliciesthatdroppacletson arrival.
In high performanceystemsmemorybandwidthcanbecomeakey limiting factor Thus,thefocus
of this paperis to investigatebuffer managemenalgorithmsthat canintelligently drop incoming

pacletsduring congestiorwithout maintaininganorderedist of queuesOur new algorithmsmeet
all of theobjectivesoutlinedabore andusingns-2simulationswe shawv thatthey deliver significant
performancamprovementsover the existing methods.We also shav thatthe resulsobtainedare
comparablgo what we canachiere using QSDRR,without wastingmemorybandwidthandthe
needto sortqueuesasedntheirlength.

Therestof thepapetis organizedasfollows. Section? discussetheimplementatiordravbacks
of QSDRRandTDRR. Section3 describeshenew paclet dropmethodsnvestigatechere.Section
4 documentghe configurationsisedfor the simulationsandthe parametersisedfor evaluatingour
algorithms. Section5 compareghe performanceesultsof the proposeddynamicthresholdmulti-
gueuealgorithmsagainstQSDRR,RED, Blue and Tail-Drop for both long-lived and short burst
TCPtraffic andSection6 concludeshe paper

2. Memory Bandwidth Issues

Buffer managememoliciessuchasQSDRRand TDRR have somedravbacksfor hardwareimple-
mentation.Two significantissueghataffect hardwareperformancere:

1. Memory bandwidth wastage
Whenbuffers arefull, QSDRRdropsa paclet from the currentdrop queue(the methodfor
choosingthe drop queueis elaboratedn [7]). Similarly, TDRR picks the queuewith the
currenthighestexponentiallyweightedthroughput.In mostcasesthis will leadto a paclet
alreadyin memorybeing chosento be dropped. This leadsto higher memorybandwidth
requirementssincethe bandwidthusedto write pacletsthatarelaterdroppeds wasted.

2. Queuelength sorting
All thepreviously studiedDRR algorithmsin [7] needto find thelongestqueugthedefinition
of thelongestqueuevariesaccordingto the paclet droppingpolicy) for discardinga paclet
during congestion.This resultsin a large overheadduring congestionsinceeachincoming
paclet would potentially trigger a new searchfor the currentlongestqueue. One way to
reducethis overheads to usemorecomplex datastructuresvhich reducethetime to find the
longestqueue However, thisaddscompleity andcostto ary hardwareimplementation.

3. Algorithms

Giventheabore issuesegardingimplementatiorof paclet drop policiessuchasDRR, TDRR and
QSDRR,we proposea new paclet drop policy basedon adynamicthreshold.Theoriginalideafor

this algorithmis presentedn [9]. In [9], the authorsproposea memorybandwidthefficient buffer

sharingpolicy amongdifferent outputportsin a sharedmemory paclet switch. This algorithm
makes paclet drop decisionsbasedonly on the lengthof the incoming paclet’s destinationqueue
andthetotal amountof free buffer space An incomingpaclet, destinedor queuei is discardedf

Qi(t) > a x F(t) 1)

whereF (t) is thecurrentfree buffer space.

1. Dynamic ThresholdDRR (DTDRR)

In ourfirst policy, we adaptedhe abore buffer managememolicy for useasapacletdiscard
policy for DRR paclet scheduling Thus,anincomingpaclet destinedor queuei is dropped
if thecurrentqueudengthexceedsx timesthefreebuffer spaceln all our simulationresults,
we seta to 2 for evaluatingthis policy. Although this algorithm performedvery well for

shortburst TCP flows andreasonablyizedbuffers (1000 pacletsor more),we found thatit

did not performaswell asQSDRRfor long-lived TCP traffic andvery small buffers (200to

400paclets).

2. Discard State DRR (DSDRR)

W <- 10% of nunber of queues
Wiz <- 50% of nunber of queues

Enqueue:
Di scard packet destined for queue i
if any of the following conditions is true
1. Q;(t) is marked for discard
2. Qi(t) >axF(t) and
(number of queues with discard bit set < W)
Then mark Q;(t) for discard
3. Fit)=0
Then set overflow bit
El se
Enqueue packet

Dequeue:
If Q;(t) becones enpty, dicard bit is cleared

Every tine period T
If overflow bit is set
If W < Whas
W <- W+2
El se
I f nunber of queues in discard < W
W <- nunber of discard queues + 1

Figurel: Algorithm for DSDRR

Takingacuefrom QSDRR we addsomehysteresiso thebasicDTDRR policy whichleadsto
DSDRR.Theideais similarto QSDRR.In DSDRR,oncewe startdiscardingrom aparticular
queuewe markit with a discardbit. Subsequenpacletsdestinedfor a queuemarked with
a discardbit are discardedregardlessof the queuelength. The discardbit is clearedwhen

thequeuebecomeempty We foundthat, althoughthis policy helpedin desynchronizinghe
TCPflows, it marked too mary queuedor discardandthussufferedfrom poorthroughput.
To alleviatethis problem,we addedanothemparameteri¥/. Thisis anadaptve parametethat
limits thenumberof queuesnarkedfor discard.Everytime periodT’, if thebuffer overflows,
W isincreasedy 2. If thereis no overflow in the lasttime periodandthe numberof queues
marked for discardis lessthanW, W is setto onemorethanthe currentnumberof discard
gqueues.Thus,whena particularqueueexceedghethresholdasdescribedn equationi, it is
markedfor discardonly if thetotal numberof discardqueuess lessthanW. Also, incoming
pacletsareonly droppedf thequeuds alreadymarkedfor discardor if thequeuesxceedghe
thresholdandthetotal numberof discardqueuess lessthanW. We foundthatthe policy is
notsensitve to theinitial valueof W andwe initially setW to 10% of the numberof queues
(flows) for all our simulationexperimentsandwe limit W to amaximumvalueof 50% of the
numberof queues.Also, « is setto 0.1 andT is setto 1 secondfor our simulationruns. A
detaileddescriptionof this algorithmis presentedn Figurel.

4. Simulation Environment

In orderto evaluatethe performancef DRR, TDRR andQSDRR,we rananumberof experiments
using ns-2. In this paper we investigatethe performanceof our algorithmsfor both long-lived
andshort-lved TCP connections.Long-lived TCP flows stay actie for the entire durationof the
simulation.We emulateshort-lved TCP flows usingon-off TCP sources.The on-phasemodelsan
active TCPflow sendingdata,while theoff-phasemodelgheinter-arrival time betweerconnections.
To effectively comparethe times taken to serviceeachburst underdifferent algorithms,we fix
the datatransferredoer connection(during the on-phasg to 256 paclets (384 KB). Theidle time
betweerburstsis exponentiallydistributedwith a meanof 2 seconds.

We comparedthe performanceover a varied setof network configurationsandtraffic mixes
which aredescribedoelov. In all our experimentswe usedTCP sourceswith 1500byte paclets
andthedatacollecteds overa 100secondcsimulationintenal. We ranexperimentaisingTCPReno
and TCP Tahoeandobtainedsimilar resultsfor both; hence we only shav the resultsusing TCP
RenosourcesFor eachof theconfigurationsyevariedthebottleneckjueuesizefrom a100paclets
to 20,000paclets. 20,000pacletsrepresents half-secondouffer which is a commonbuffer size
deplgedin currentcommerciarouters.We ranseveralsimulationgo determinghebestparameter
valuesfor RED andBIlue for our simulationervironment,to ensurea fair comparisoragainstour
multi-queuebasedalgorithms. In all our configurationsbelow, the accesdinks are 10 Mb/s for
long-lived TCP flows and 100 Mb/s for short-lived (on-of) TCP flows. Sincethe bottleneck-link
bandwidthis 500 Mb/s, if all long-lived TCP flows sendat the maximumrate, the overloadratio
is 2:1. For the short-lved TCP sourcesa maximumrate of 100 Mb/s is neededo congestthe
bottlenecKink.

4.1. Single Bottleneck Link

The network configurationfor this setof experimentsis shavn in Figure2. {Si,Ss,...Sny} are
the TCP sourcesconnectedo the bottlenecklink. The destinationsnamed{D;, Ds,...Dy }, are

10 Mb/s

500 Mb/s

50ms

Figure2: SingleBottleneckLink Network Configuration

directly connectedo therouterR,. N is 100for long-lived TCP flows and500for short-lved TCP
flows. All the TCP sourcesare startedsimultaneousiyto simulatea worst-casescenariowhereby
TCPsourcesaresynchronizedn the network. In eachof the configurationsthe delayshavn is the
one-way link delay Thus,round-triptime (RTT) over alink is twice thelink delayvalue.

4.2. Multiple Roundtrip-time Configuration

@ 10 Mb/s

500 Mb/s

0.5ms

10 Mb/s
20ms

Figure3: Multiple Roundtrip-timeNetwork Configuration

Thenetwork configuratiorfor this setof experimentss shavn in Figure3. This configurations
usedto evaluatethe performancef thedifferentqueuemanagememoliciesgiventwo setsof TCP
flows with widely varying round-triptimesover the samebottlenecklink. The sourceconnection
setupis similar to the single-bottleneclconfiguration,exceptfor the accesdink delaysfor each
sourceandthetotal numberof sourcesHalf of the TCP sourceshave their link delaysetto 20ms,

andthe otherhalf have their link delayto 100 ms. For this configuration,N is 50 for long-lived
flows and500for short-lived flows.

4.3.Multi-Hop Path Configuration

500 Mb/s 500 Mb/s

50ms

10 Mb/s
0.5ms

Figure4: Multi-Hop Path Network Configuration

Thenetwork configuratiorfor this setof experimentds shavn in Figure4. In this configuration,
wehave N TCPsourcedraversingthreebottleneclinks andterminatingat Rs. In addition,oneach
link, thereareanothemM TCP sourcesactingascross-trdic. We usethis configurationto evaluate
the performanceof the differentqueuemanagemenpoliciesfor multi-hop TCP flows competing
with shorterone-hopcross-trdic flows. N is 50 for long-lived flows and500for short-lived flows.

5. Results

We now presenthe evaluationof our DTDRR andDSDRR policiesin comparisorwith QSDRR,
Blue, RED andTail-Drop. We comparethe queuemanagemeroliciesusingthe averagegoodput
of all TCPflows asapercentagef its fair-shareasthemetric. We alsoshav thevariancen goodput
for asingle-bottleneckink underthedifferentpolicies. Thevariancein goodputds a metricof the
fairnessof the algorithm;lower varianceimplies betterfairness.For all our graphswe concentrate
onthegoodputsobtainedwhile varyingthe buffer sizefrom 100 pacletsto 5000paclets. Sinceour
bottlenecklink speeds 500 Mb/s, this translatego a variationof buffer time from 2.4 msto 120
ms. In all our simulationswe noticedthatall thepoliciesbehaedin asimilarfashionpastthe 5000
paclet buffer size.

5.1. Single-BottleneckLink

For this experiment,the single bottlenecklink configurationis used. For the long-lived TCP flow
casewe usel00TCP Renosourcesandfor the shortburst TCP scenariowe use5000n-of TCP
Renosources.

Long-lived TCP flows

0.15

TailDrop
3

0.1 r RED

0.05

Standard Deviation/Fair Share

DSDRRE— QSDRR
DTDRR Ea—]
0 \ \ \ \
0 1000 2000 3000 4000 5000

Buffer Size (pkts)

Figure5: Standarddeviation relative to fair-sharefor long-lived TCP Renoflows over a single-
bottlenecKink

100

90

80 I

Fair Share (%)

@®—@DTDRR

70 =—mDSDRR |
4—@QSDRR
A—ABlue
+—+RED

——% Tail Drop

60 I I I I
0 1000 2000 3000 4000 5000

Buffer Size (pkts)

Figure6: Fair shareperformancdor long-lived TCP Renoflows over a singlebottleneckink

Figure5 shaws theratio of the goodputstandardieviation of the TCP Renoflows to thefair share
bandwidthfor all algorithmswhile varyingthe buffer size. Evenat higherbuffer sizes the goodput
standardieviationunderDTDRR andDSDRRIs very smallandtheratioto thefair sharebandwidth
is lessthan0.025whichis equialentto thestandardieviation ratio of QSDRR.RED exhibits about
10 timesthe variancecomparedo DSDRR and DTDRR, while Blue exhibits about5 timesthe
variance.Overall, we obsenre thatthe goodputstandarddeviation is betweer2% — 4% of thefair

sharebandwidthfor the DSDRR and DTDRR policies comparedo 6% for Blue, 10% for RED

and12% for Tail-Drop. Thus,even for a single-bottleneckink, we obsere thatthe DSDRRand
DTDRR policiesoffer muchbetterfairnessto a setof TCP flows andareequialentin fairnesso

QSDRR.

Figure6 illustratestheaveragefair-sharebandwidthpercentageecevedby the TCPRenoflows
usingdifferentbuffer sizes.For this configuration,we noticethatthe performancainderDTDRR
is comparabldo Tail-Drop for all buffer sizes. However, DSDRR delivers performancewhich is

2600 T T T T 2.2

2400 -

N

A—ABlue
+—+RED
s— Tail Drop

QSDRR

2200 -

g
©
T

2000

g
o
T

1800 r,

Mean Goodput (Kb/s)
Mean Burst Completion Time (s)

14 QSDRR

1600 +—+RED §
#—— Tail Drop
>
1400 ‘ ‘ ‘ ‘ 12 ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Buffer Size (pkts) Buffer Size (pkts)
(a) MeanGoodput (b) MeanBurstCompletionTime

Figure7: Performancef shortburst TCP flows over a singlebottlenecKink

very closeto QSDRRand outperformsRED and Tail-Drop, especiallyfor small buffer sizes,i.e.
under500paclets.ltis interestingo notethatevenatalarge buffer sizeof 5000paclets,all policies
significantlyoutperformBlue, including Tail-Drop.

Short burst TCP flows

Figure 7(a) shavs the meangoodputachiered by the TCP flows and Figure 7(b) shavs the mean
burst completiontimesfor the flows over a single bottlenecklink configuration. Goodputis the
amountof actualdatatransmittedexcluding retransmissionand duplicates.We noticethat Blue,
RED andTail-Drop have almostexactly the sameperformancen termsof meangoodputachieved
andburstcompletiontimesfor all buffer sizes,whereaghe DTDRR andDSDRR policiesare uni-

formly better For buffer sizeslessthan 2000 paclets, DTDRR and DSDRR exhibit about10%

bettergoodputperformanceover Blue, RED and Tail-Drop. However, it is interestingto notethat
DTDRR is almost30% betterthanthe non-DRR policies at a buffer size of 5000 pacletsandis
very closeto QSDRR.DSDRRdoesnot performaswell at higherbuffer sizesdueto its aggressie
droppingthresholdand keepingqueuesn discardstate. At smallerbuffer sizes(2000 paclets or
less),DSDRR performsvery well and almostexactly matcheshe performanceof QSDRR.The
resultsaresimilarfor the burstcompletiontimes.

5.2. Multiple Round-Trip Time Configuration

In this configurationwe againusea single bottlenecKink, but half the TCP sourceshave a40 ms
RTT whereaghe otherhalf have a200msRTT. For long-lived TCP flows, we use100 TCP Reno
sourcesandfor shortburst TCP flows, we use1000on-of TCP Renosources.

Long-lived TCP flows

Figure8 shavstheaveragefair-sharegoodputreceved by TCPflows usingthedifferentalgorithms.
As shawvn in Figure 8(a), both RED andBlue allow the 40 ms RTT flows to usealmost50% more

10

160 T T T T 100

—A

140 - ®—@DTDRR 80 -

m—& DSDRR
—#QSDRR
A—ABlue
+—+RED
*—% Tail Drop

®—®DTDRR
B—8DSDRR
4—#QSDRR
A—ABlue
+—+RED

*—% Tail Drop

120 60

Fair Share (%)
Fair Share (%)

100 - 40

80

I I I I 20 I I I I
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Buffer Size (pkts) Buffer Size (pkts)
(a) Flows with RTT =40ms (b) Flowswith RTT =200ms

Figure8: Fair shareperformanceof differentRTT long-lived TCP flows over a single bottleneck
link

bandwidththan their fair share. Tail-Drop also allows the 40 ms RTT flows to use more than
their fair shareof the bandwidthfor buffer sizessmallerthan1000paclets. Boththe DTDRR and
DSDRR policiesexhibit muchbetterperformanceallowing only 10% extra bandwidthto be used
by the40msRTT flows. Both RED andBlue discriminateagainsiongerRTT flows, aswe obsere
in Figure8(b),the200msRTT flows achieve only about40% of theirfair-sharebandwidthwhereas
usingthe DTDRR andDSDRRpolicies,200msRTT flows areableto achieve almost90% of their
fair-share.

At avery small buffer size of 100 paclets,200msRTT flows usingDTDRR andDSDRRget
about40% of their fair-share. However, at this buffer size,whenall the flows are active, thereis
only onepaclet per flow that canbe buffered. This causeghe poor performanceof DTDRR and
DSDRR,sinceit becomesvery difficult to single out flows that are usingmore bandwidth. Even
with thislimitation, whenwe move to 400paclets,bothDTDRR andDSDRRsignificantlyimprove
their performanceand200 ms RTT flows achieve about80% of their fair-sharebandwidthon the
average.Although QSDRRis betterat a buffer sizeof 200 paclets, at all buffer sizesgreaterthan
that,bothDTDRR andDSDRRareableto matchthe performancef QSDRR.

Short burst TCP flows

Figure 9(a) shaws the ratios of the goodputsobtainedby 200 ms round-triptime flows over the
goodputsf the 40 msround-triptime flows for the multiple RTT configuration.In this configura-
tion, for buffer sizesgreatethana 800paclets, DTDRR andDSDRRoutperformBlue andRED by
morethan100%. Althoughthe performancemprovementat smallerbuffer sizesis notasdramatic,
DTDRR andDSDRRstill outperformRED andBlue significantly Theratio of goodputss usedto
illustratethe fairnessof eachalgorithm. The closertheratiois to one,the betterthe algorithmis in
deliveringfair-shareto differentround-triptime flows. In this case gvenTail-Drop performssignif-
icantly betterthanBlue andRED, shaving thatfor short-lvedflows with differentround-triptimes,

11

1 5
n
=
k=]
0 0.8 QSDRR il o |4
é DTDRR 5' I 4
i DSDRR x
[Q
H E
= TailDrop — | =
E 0.6 E Blue
S 3 B
o 1] A
I =
° 8
5] T = RED.
x RED — 2 T
2 04 B a 2L i
3 4
8 Blue Tail Drop L
DTDRR DSDRR
QSRR ———
0.2 I I I I 1 . . L .
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Buffer Size (pkts) Buffer Size (pkts)
(a) GoodputRatios(200msflows/40msflows) (b) Burst Completion Time Ratios (200ms
flows/40msflows)

Figure9: Performancef shortburst TCP flows over a multiple round-triptime configuration

Blue andRED cannotdeliver goodfair-sharingof the bottleneckbandwidth.Figure9(b) shavs the
ratiosof burstcompletiontimesof the 200 msround-triptime flows overthe 40 msround-triptime
flows. In this case,DTDRR and DSDRRremaincloseto onefor buffer sizesgreaterthan 1000
(which is theidealfairness) whereasBlue hasthe worst performancewith the 200 msround-trip
time flows taking almostthreetimesthetime to completea burstcomparedo the 40 msround-trip
time flows, evenfor 5000paclet buffers. Also, their performancés only 10 — 20% worsethanQS-
DRR for smallbuffer sizes.At abuffer sizeof 5000,DTDRR andDSDRRmatchthe performance
of QSDRR.

5.3. Multi-Hop Path Configuration

In this configurationend-to-endl CP Renoflows go over threehopsandhave anoverall round-trip
time of 300ms. Thecross-trdic on eachhopconsistsof TCP Renoflows with around-triptime of

100ms (onehop). For long-lived TCP flows, we use50 end-to-encand50 cross-trdic TCP Reno
sourceson eachlink andfor shortburst TCP flows, we use500 end-to-endand 500 cross-trdic

on-of TCPRenosourcesn eachlink.

Long-lived TCP flows

FigurelOillustratestheaveragefair-sharegoodputrecevedby eachsetof flows. For this configura-
tion, DTDRR andDSDRRprovide almosttwice the goodputof RED andTail Drop andfour times
the goodputprovided by Blue for end-to-endlows. As shawvn in Figure 10(a), end-to-endlows
achieve nearly80% of their fair-shareunderDSDRRand70% underDTDRR. UnderRED andTail

Drop, they canachieve only 40% of their fair shareeven at a buffer size of 5000 paclets. Using
DTDRR andDSDRR,evenfor thesmallestuffer size,their fair-shareis betterthanRED, but once
thebuffer sizeincreases$o 400 paclets,their performanceémprovessignificantlyandthey allow the

12

100 T T T T 160

I— .
QSDRR— ¥ RED

80 DSDRR— %é
Tail Drop

DIORR— ¢ 140 L Blue R

60 -

L ; RED————— DSDRR
:&:ﬁ//&/’ Tail Drop 120 -

A A, O, 000 DTDRR
20

Blue —— 3

Fair Share (%)
Fair Share (%)

/0

40

QSDRR—— 4

. . I I . . . I
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Buffer Size (pkts) Buffer Size (pkts)
(a) End-to-endTraffic (b) CrossTraffic

Figure10: Fair Shareperformancef long-lived TCP flows over a multi-hop pathconfiguration

end-to-endlows to achieve closeto 80% of their fair share.We noticethatin this configuration,
DSDRR’sperformances very closeto QSDRR.AlthoughDTDRR’s performancaes slightly worse
thanDSDRRand QSDRR (about10%) for buffer sizesgreaterthana 1000 paclets, it is still 1.5
timesthe performancerovidedby RED.

For this multi-hop configuration the end-to-endlows facea probability of paclet lossat each
hop underRED andBlue. Dueto congestiorcausedy the cross-trdic, RED andBlue will ran-
domly drop pacletsat eachhop. Althoughthe cross-trdic flows will have a greatemprobability of
being picked for a drop, the end-to-endflows also experiencerandomdroppingand thus achiere
very poorgoodput.For Blue, thisis furtherexacerbatedsincedueto the high loadfrom the cross-
traffic flows, the discardprobability remainshigh at eachhop. This increaseshe probability of an
end-to-endlow facingpaclet dropsat eachhopandthusfurtherreducingthe goodput.

Figure10(b) shavs the averagegoodputfor the cross-trdic flows attachedo router R;. For
DTDRRandDSDRR,thecross-traic takesuptheslackin thelink andconsumesaboutl15—120%
of its fair-sharebandwidth.For bothRED andTail Drop, thelink utilization is lower andalthough
the end-to-endlows consumeonly about40% of their fair-share the cross-trafic flows consume
150% of theirfair-shareandthusleave about5% unutilized.Cross-trdic flows underBlue consume
aboutl120 — 140% of theirfair-share Jeaving 20 — 30% unutilized.

Short burst TCP flows

Figurell(a)shavstheratiosof thegoodputsachieved by theend-to-endlows overthecross-trdic
flows for the multi-hop pathconfiguration.In this configurationwe seethatthe non-DRRpolicies
performvery poorly, allowing the end-to-endflows a mere30% of the goodputachieved by the
cross-trdic flows. Onthe otherhand,DTDRR andDSDRR outperformthe non-DRRpoliciesby
20 — 30% for buffer sizeslessthan 600 paclets. For buffer sizesbetween600 and5000 paclets,
DTDRR outperformsnon-DRR policies by about50% and closely matchesthe performanceof
QSDRR.We noticethat DSDRRunderperform®TDRR and QSDRRfor buffer sizesbelov 5000

13

0.6 ‘ ‘ ‘ ‘ 5
c 3
E
& 05 - S 4P
] QSDRR ’ 3
§ DTDRR _g Reo |
‘f; c Blue — |
T 04} DSDRR S 3 Tail Drop
2 2
° g
.% ailD O DSDRR
ail Drop -

S Bluie —4 Z DTDRR &“
2 03 rRED— T o 2+ QSDRR
S T
3
o

0.2 ‘ ‘ ‘ ‘ 1 ‘ ‘ ‘ ‘

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Buffer Size (pkts) Buffer Size (pkts)
(a) Goodput Ratios (end-to-endflows/cross-tréfc (b) Burst Completion Time Ratios (end-to-end
flows) flows/cross-trdfc flows)

Figurell: Performancef shortburst TCP flows over a multi-hop pathconfiguration

paclets, but still outperformsnon-DRRpoliciesby 20 — 50%. DTDRR andDSDRRarealmost2
timesbetterthanthenon-DRRpoliciesfor a buffer sizeof 5000paclets.

Figure11(b)shaws theratiosof burstcompletiontimesof the end-to-endlows over the cross-
traffic flows. DTDRR performsalmostaswell as QSDRRandbeatsthe non-DRRpoliciesby at
leastafactorof two. DSDRRalsoperformsreasonablyvell achiering burstcompletiontime ratios
of abouta factorof 1.5 betterthanthe non-DRRpolicies. Eventhoughthe end-to-endraffic flows
overthreebottlenecKinks comparedo justonebottleneck-linkfor the cross-trdic flows, DTDRR
and DSDRRareableto achieve a burst completiontime ratio neartwo for a buffer size of 5000
paclets. At the samebuffer size,the non-DRRpoliciesachieve fairly poorratiosrangingfrom 3.5
to4.0.

Overall, we noticethatDTDRR matchegheperformancef QSDRRfor shortburst TCPtraffic
while DSDRRmatcheghe performanceof QSDRRfor long-lived TCPtraffic. Although,DSDRR
is notasgoodasDTDRR for shortburstTCPflows, it still significantlyoutperformsRED, Blue and
Tail-Drop for all configurationsandtraffic mixes.

5.4. Scalability Issues

Onedrawvbackwith afair-queueingpolicy suchasDTDRR or DSDRRIis thatwe needto maintain
a separateueuefor eachactie flow. Sinceeachqueuerequiresa certainamountof memoryfor
thelinked list headerusedto implementthe queue thereis a limit on the numberof queueghat
a router can support. In the worst-casetheremight be as mary asone queuefor every paclet
stored. Sincelist headersare generallymuch smallerthanthe pacletsthemseles, the severity of
the memoryimpactof multiple queuess intrinsically limited. Ontheotherhand,sincelist headers
are typically storedin more expensve SRAM, while the paclets are storedin DRAM, thereis

14

100 0.20

Single-Bottleneck Link Configuration

@—@Single - DTDRR
> =—m Single - DSDRR
4—@RTT - DTDRR
A—ARTT - DSDRR
»— Path - DTDRR
*—% Path - DSDRR

80

Multiple Round-trip Time Configuration
(200ms RTT flows)

|

Multi-Hop Path Configuration
(End-to-end flows)

Fair Share (%)
(=2}
o

©®—@Single - DTDRR
m—® Single - DSDRR
4—@RTT - DTDRR
A—ARTT - DSDRR
*—=x Path - DTDRR
*—% Path - DSDRR

Standard Deviation/Fair Share

L 0.00 :
1 10 100 1 10 100

Number of Buckets Number of Buckets
(a) Fair SharePercentage (b) StandardDeviation in goodputrelative to fair-
sharebandwidth

Figure 12: Performanceof DTDRR and DSDRR for a buffer size of 1000 paclets, with varying
numberof buckets

somelegitimate concernaboutthe costassociatedvith usinglarge numbersof queues.Oneway
to reducetheimpactof thisissueis to allow multiple flows to sharea singlequeue.While this can
reducethe performancéenefitsobseredin the previoussectionsjt maybeappropriateo tradeoff

performanceagainsicost,at leastto someextent. To addresghis issue,we ran seseral simulations
evaluatingthe effectsof meiging multiple flows into asinglequeue Figure12illustratesthe effects
of varying the numberof queues.The sourcesarelong-lived TCP Renoflows andthe total buffer

spacds fixedat 1000paclets.

Figurel2(a)illustratesthe effect on the goodputreceved by eachflow underdifferentnumbers
of queuesFor the multiple round-triptime configurationandthe multi-hop pathconfigurationwe
shav the goodputfor the 200ms RTT (longer RTT) flows and the end-to-endmulti-hop) flows
respectrely. In boththeseconfigurationsthe abore mentionedlows arethe oneswhich receve a
muchlower goodputcomparedo theirfair shareunderexisting policiessuchasRED, Blue andTail
Drop. We obsere thatthe effect of increasinghe numberof buckets producegdiminishingreturns
oncewe go pastl0 buckets. In fact, thereis only a marginal increasen the goodputrecevedwhen
we gofrom 10 bucketsto 100buckets. Sinceat eachbottlenecHink therearea 100 TCPflows, this
impliesthatour algorithmsarescalableandcanperformvery well evenwith one-tenththe number
of queuessflows.

We alsopresenthestandardieviationin goodputrecevedby eachflow for differentnumbersof
gueuesn Figurel2(b). Theresultsarepresente@saratio of thestandardieviationto thefair share
bandwidthto betterillustratethe measureof the standarddeviation. We noticethat changingthe
numberof queuesioesnot have a significantimpacton the standarddeviation of the goodputsand
thuswe do not loseary fairnessby usingfewer queuesrelative to the numberof flows. Also, the
overall standarddeviation is belav 15% of the fair sharegoodputfor all our multi-queuepolicies,
regardlesof the numberof queues.

15

Queue in Discard State (s)

0.02
0

0.3

ean

Queue in Discard State (s)

20 40 60 80
TCP Source

(2) DSDRR

100

02 r

0% 1

234 Mean

TCP Source

(b) QSDRR

Figure13: Distribution of queuediscardtimesfor DSDRRandQSDRR

5.5.Short-Term Fairness

OneconcernregardingpoliciessuchasDSDRRandQSDRRIs thatsincethey mark certainqueues
for discard,TCPflows mappedo thosequeuesvould suffer from short-termunfairnessdueto loss
of throughput.In this sectionwe addresshis concerrby quantifyingthis unfairnessusingthetime

spentby aqueuen discardstateasa metric.

Tablel: Discardqueuetime statistics

DSDRR(s) | QSDRR(s)
Maximum 0.0964 0.2792
Minimum 0.0353 0.0160
Average 0.0658 0.0749
Std. Dev. 0.0085 0.0449

For our evaluation,we usethe single-bottleneckink configurationwith 100 long-lived TCP
Renoflows anda buffer sizeof a 1000paclets. Figure 13 illustratesthe distribution of thetime in
discardstatefor eachqueueunderDSDRRandQSDRRfor the simulationrun. For aqueuei, each
pointin the graphdenoteghe time in secondghatit wasin discad-modeduring the simulation
run. We notethatthisis notthecumulatve time thequeusds in discardmodeduringthesimulation,
but the individual durationswhenit is markedfor discard.In the caseof DSDRR,this impliesthat
during eachof thesetime durations,queue;i’s discardbit wassetandall receved pacletsdestined
for queuei weredropped.For QSDRR,this meanghatduring eachof thesetime durations gueue
1 wasthedrop-queue Tablel summarizeshestaticsof the queuediscardtimes.

Fromthe graphsandthetable,we noticethatunderDSDRR,queuegemainin discardmodes
for only about66 msontheaverageand96 msin theworstcase.Sincethe RTT for theflowsis 100

16

ms, the unfair treatmenif TCP flows lastsfor a very shorttime (lessthanoneRTT period). Also,
we notethat DSDRRis actually betterthan QSDRRIin termsof short-termfairnessto individual
TCPflows.

6. Conclusion

This paperhasdemonstratedechniqueghat can be usedto intelligently drop paclets on arrival
during congestiorperiods.In previouswork, we shaved that QSDRRprovideshigherthroughput
and much betterfairnessthan simpler queueingmechanismssuchas Tail-Drop, RED and Blue.
Becausdt providesexcellentperformanceevenwhenbuffersaremuchsmallerthanthebandwidth-
delay product,it also can substantiallyreducedelaysalong congestedaths. However, because
QSDRRdiscardgacletsthathave previously beenqueuedit cansignficantlyincreasehememory
bandwidthrequirementsof high performancerouters. In this paper we presentedTDRR and
DSDRRasalternatvesto QSDRRthatprovide comparablgerformancewhile allowing pacletsto
bediscardeddnarrival, saving memorybandwidth.

Throughextensve simulationswe shaved that DTDRR andDSDRRsignificantlyoutperform
RED, Blue andTail-Drop for variousconfigurationsandtraffic mixesin boththe averagegoodput
for eachflow andthe variancein goodputsandthe performancdor bothlong-lived andshortburst
TCPflows is very closeto thatof QSDRR.We alsoshav thatthesealgorithmscan provide good
performancewheneachqueueis sharedamongmultiple flows, andwe shav thatthe hysteresisn
the paclet discardpolicy for DSDRRhaslittle effectonshort-ternfairness.

References

[1] E.Hashem,“Analysis of randomdropfor gatevay congestiorcontrol”, Tech.Rep.LCS TR-
465, Laboratoryfor ComputerScienceMIT, 1989.

[2] RobertMorris, “ScalableTCP CongestiorControl”, in IEEE INFOCOM200Q March2000.

[3] S.Floyd andV. Jacobson,“RandomEarly DetectionGatevaysfor CongestionAvoidance”,
IEEE/ACM Transaction®n Networking vol. 1, no.4, pp.397-413 Aug. 1993.

[4] S.Doran,“RED ExperienceandDifferentialQueueing”,NanogMeeting,Junel998.

[5] C.VillamizarandC. Song,“High Performancd CPin ANSNET”, ComputerCommunication
Review, vol. 24,n0.5, pp.45—-60,0ct. 1994.

[6] W. Feng,D. Kandlur, D. SahaandK. Shin,“Blue: A New Classof Active QueueManagement
Algorithms”, Tech.Rep.CSE-TR-387-99University of Michigan, Apr. 1999.

[7] Anshul Kantavala and JonathanTurner “Efficient QueueManagemenbf TCP Flows”, in
SPECTS002 July 2002.

[8] AnshulKantawalaandJonathanTurner “QueueManagementor Short-Lved TCP Flows in
BackboneRouters”,in High-Speed\etworkingSymposiumEEE Globecomn02, Nov. 2002.

17

[9] A. ChoudhuryandE. Hahne,“Dynamic QueuelengthThresholddor Shared-Memoryaclket
Switches”, IEEE/ACM Transactionson Networking vol. 6, no. 2, pp. 130-140Apr. 1998.

	Intelligent Packet Discard Policies for Improved TCP Queue Management
	Recommended Citation
	Intelligent Packet Discard Policies for Improved TCP Queue Management

	tmp.1471023011.pdf.pbw6j

	Abstract: Abstract: Recent studies have shown that suitably-designed packet discard

policies can dramatically improve the performance of fair queueing

mechanisms in internet routers. The Queue State Deficit Round Robin

algorithm (QSDRR) preferentially discards from long queues, but

introduces hysteresis into the discard policy to minimize

synchronization among TCP flows. QSDRR provides higher throughput and

much better fairness than simpler queueing mechanisms, such as

Tail-Drop, RED and Blue. However, because QSDRR discards packets that

have previously been queued, it can signficantly increase the memory

bandwidth requirements of high performance routers. In this paper, we

explore alternatives to QSDRR that provide comparable performance,

while allowing packets to be discarded on arrival, saving memory

bandwidth. Using ns-2 simulations, we show that the revised algorithms

can come close to matching the performance of QSDRR and substantially

outperform RED and Blue. Given a traffic mix of TCP flows with

different round-trip times, longer round-trip time flows achieve 80%

of their fair-share using the revised algorithms, compared to 40%

under RED and Blue. We observe a similar improvement in fairness for

long multi-hop paths competing against short cross-traffic paths. We

also show that these algorithms can provide good performance, when

each queue is shared among multiple flows.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: May 19, 2003
	Author: Authors: Kantawala, Anshul; Turner, Jonathan
	Title: Intelligent Packet Discard Policies for Improved TCP Queue Management
	ReportNumber: 2003-41
	DepartmentName: Department of Computer Science & Engineering

