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ABSTRACT OF THE THESIS 

 Evaluating Neuroimaging Modalities in the A/T/N Framework: 

Single and Combined FDG-PET and T1-Weighted MRI for Alzheimer’s Diagnosis 

by 

Peiwang Liu 

Master of Science in Engineering Data Analytics and Statistics 

Washington University in St. Louis, 2024 

Professor Aristeidis Sotiras, Chair 

With the escalating prevalence of dementia, particularly Alzheimer's Disease (AD), the need for 

early and precise diagnostic techniques is rising. This study delves into the comparative efficacy 

of Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and T1-weighted Magnetic 

Resonance Imaging (MRI) in diagnosing AD, where the integration of multimodal models is 

becoming a trend. Leveraging data from the Alzheimer's Disease Neuroimaging Initiative 

(ADNI), we employed linear Support Vector Machines (SVM) to assess the diagnostic potential 

of these modalities, both individually and in combination, within the AD continuum. Our 

analysis, under the A/T/N framework's 'N' category, reveals that FDG-PET consistently 

outperforms T1w-MRI across various stages of cognitive impairment. Contrary to expectations 

and previous studies that suggested enhanced diagnostic accuracy through the fusion of 

neuroimaging modalities—including CSF markers—our findings do not demonstrate a 

significant improvement in diagnostic performance from combining FDG-PET and MRI data. 

This outcome aligns with Narazani et al. (2022), challenging the prevailing assumption about the 

added value of multimodal data fusion in AD diagnosis. Through the interpretation of activation 

maps, our study further elucidates the distinct yet complementary roles of FDG-PET and MRI in 

highlighting the pathological underpinnings of AD, contributing to a nuanced understanding of 
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neuroimaging biomarkers in clinical settings. Our research underscores the critical need for 

refined strategies in neuroimaging data integration, advocating for a more discerning application 

of single and multimodal approaches in the early detection of AD. 
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Chapter 1: Introduction 

Dementia commonly denotes a reduction in cognitive functions, encompassing memory, 

cognition, and linguistic abilities, to an extent where it significantly impacts daily functioning 

and may leave the patient completely disabled (Bhushan et al., 2018). It is approximated that 

currently more than 46.8 million individuals globally are experiencing dementia, and this figure 

is forecasted to rise to 74.7 million by 2030. Simultaneously, the expenses related to dementia 

care are anticipated to escalate from US$818 billion to US$2 trillion (APA, 2013). Since Alois 

Alzheimer pinpointed an aggressive type of dementia, now recognized as Alzheimer's disease, in 

the previous century, it has been acknowledged as the most common form of dementia in 

individuals above the age of 65 (Bhushan et al., 2018). Although no specific medications have 

been formulated to directly address the disease, early detection and the commencement of care 

management are vital (Borson et al., 2013). It is also imperative to distinguish Alzheimer's 

disease from other analogous conditions such as depression and delirium. 

Mounting proof proposes that the Alzheimer’s disease does not advance through distinct phases; 

instead, it is more comparable to a continuum, characterized as a smooth progression in which 

neighboring elements are not noticeably distinct from each other, with physiological changes 

occurring many years prior to clinical diagnosis (Aisen et al., 2017). Up to the present time, no 

direct causative and transitional mechanisms have been pinpointed between healthy individuals 

and patients; however, numerous risk factors have been correlated with the disease, 

encompassing age, genetics, and educational levels. Ongoing research has identified several 

histopathological features of Alzheimer's disease: the buildup of amyloid plaques, which are 

extracellular accumulations of Aβ protein; the development of neurofibrillary tangles (NFTs), 
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which are intraneuronal clusters of tau protein; and neurodegeneration, which is the gradual 

decline of neurons or their processes (Aisen et al., 2017). Notably, Aβ protein aggregation can 

precede any clinical indications of cognitive abnormalities and there is no distinct boundary 

between phases, as formerly defined in clinical contexts, but instead a continuous advancement 

as previously mentioned (Jack et al., 2010). The onset of the disease could be generally identified 

when the accumulation of Aβ protein becomes apparent, which can be detected through positron 

emission tomography (PET) scans or cerebrospinal fluid (CSF) analysis. There are seven 

principal AD biomarkers, which, according to the A/T/N system, are categorized into three 

binary groups reflecting the nature of the pathophysiology they measure: ‘A’ represents the value 

of an amyloid biomarker such as amyloid PET or CSF Aβ_42; ‘T’ is the value of a tau biomarker 

like CSF phosphorylated tau or tau PET; and ‘N’ signifies biomarkers of neurodegeneration or 

neuronal injury, which include [18F]-fluorodeoxyglucose–PET (FDG-PET), structural MRI, or 

CSF total tau (Jack et al., 2016; Aisen et al., 2017). To diagnose AD as early as possible, recent 

research has focused on identifying patients with cognitive impairment who have not yet 

progressed to severe dementia—such as those with mild cognitive impairment (MCI), a well-

defined clinical syndrome that carries a higher risk of progressing to AD dementia. Notably, a 

proportion of MCI patients remain stable for years or may even revert to normal cognitive 

functioning. (Grueso & Viejo-Sobera, 2021; Sperling et al., 2011; Ewers et al., 2011; Jack et al., 

2010). 

FDG-PET is used to assess a decline in synaptic function, and structural volumetric magnetic 

resonance imaging (MRI) measures changes in the brain's gray matter. Hence, FDG-PET and 

MRI have become popular biomarkers in ‘N’ group from A/T/N system in some research 

(Frisoni et al., 2013; Ewers et al., 2011; Narazani et al., 2022; Samper-González et al., 2018; 
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Zhang et al., 2011; Song et al., 2021; Grueso & Viejo-Sobera, 2021; Arya et al., 2023; Zhao et 

al., 2023; Zhou et al., 2019; Hinrichs et al., 2011; Chincarini et al., 2011; Mosconi et al., 2010; 

Kim et al., 2021; Ding et al., 2019). Some studies focus on a single modality, for instance, Kim 

et al. (2021) constructed a 2.5-D deep learning architecture using 291 submodules and three-axes 

FDG-PET images to classify amyloid PET positivity and negativity. Chincarini et al. (2011) 

sampled the brain at seven relatively small volumes centered on the medial temporal lobe (MTL) 

and two control regions, using intensity and textural MRI-based features, which were extracted 

using a Random Forest (RF) algorithm and then processed with a Support Vector Machine 

(SVM) classifier to predict AD conversion in MCI patients. Others have advocated combining 

multiple imaging modalities. Zhang et al. (2011) utilized a multiple-kernel SVM to combine 

three modalities of biomarkers (FDG-PET, MRI, and CSF) to differentiate between AD (or MCI) 

and healthy controls. Zhou et al. (2019) addressed the challenges of heterogeneous and 

incomplete multimodality data by constructing a stage-wise deep learning strategy that allowed 

the model to use the maximum amount of available data from each modality. Specifically, they 

learned latent representations for each modality in the first stage and then combined the higher-

level features from each modality in subsequent stages. In the final stage, they fused the learned 

joint latent features from the previous stage to learn the diagnostic labels. Both studies found that 

the performance of combined modalities surpassed that of single modalities (Zhou et al., 2019; 

Zhang et al., 2011). However, since the volume of brain structures typically decreases with age, 

it can be challenging to determine whether a person’s brain changes observed by MRI are within 

normal aging or indicative of disease, thus PET often provides greater discriminatory power, as 

supported by most studies (Song et al., 2021; Zhang et al., 2011; Arya et al., 2023; Grueso & 

Viejo-Sobera, 2021). This raises the question of why combining MRI and FDG-PET would be 
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beneficial. According to Narazani et al. (2022), no improvement was observed when combining 

FDG-PET and MRI imaging modalities with 3D ResNet. 

In this study, given that Narazani et al.'s (2022) experiments focused exclusively on deep 

learning architectures, while prior research often utilized SVM and various other machine 

learning techniques, we revisited the efficacy of using single modalities (MRI or FDG-PET) 

versus their combination through two distinct fusion methods with a linear SVM. Our findings, 

aligning with previous research, highlighted FDG-PET's significant superiority over T1w-MRI. 

Furthermore, we observed no significant enhancement in model performance when combining 

FDG-PET and T1w-MRI as inputs. 
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Chapter 2: Methods 

2.1 Datasets and Data Preprocessing 
Data for this study were sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

database, accessible at https://adni.loni.usc.edu. The ADNI dataset was lunched in 2003 by the 

National Institute on Aging, the National Institute of Biomedical imaging and Bioengineering, 

the Food and Drug Administration, private pharmaceutical companies and non-profit 

organizations with a 5-year public private partnership. With the purpose of exploring the 

potential of multimodality data, including neuroimaging, clinical, biological, and genetic 

biomarkers to diagnose AD and its early status. Using the advanced search utility, we procured a 

total of 1012 Fluorodeoxyglucose (FDG) positron emission tomography (PET) scans, collected 

between September 22, 2005, and January 4, 2022. These FDG scans, characterized by the 

descriptor ‘Coreg, Avg, Std Img and Vox Siz, Uniform Resolution’, were acquired in 

Neuroimaging Informatics Technology Initiative (NIfTI) format. For each participant with FDG 

data, we employed the same search methodology to obtain the most contemporaneous T1-

weighted (T1w) magnetic resonance imaging (MRI) data, with a maximum allowable interval of 

365 days between the FDG and T1w scans. This approach yielded an equivalent dataset of 1012 

T1w scans (Table 1) . Initially in Digital Imaging and Communications in Medicine (DICOM) 

format, these T1w images were converted to NIfTI format using the dcm2niix tool. We then 

standardized the orientation of all NIfTI images to right-posterior-inferior using AFNI’s 

3d_resample tool. 

The subsequent image processing workflow involved several key steps. First, we performed bias 

field correction in the T1w images using Advanced Normalization Tools (ANTs) 

N4BiasFieldCorrection. This was followed by the generation of nonlinear warps using ANTs' 

https://adni.loni.usc.edu./
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antsRegistrationSyNQuick and antsApplyTransforms tools, which allowed for the rigid-body co-

registration of FDG to T1w images using 4dfp t4_resolve. Subsequent normalization of the FDG 

standardized uptake value ratio (SUVR) was performed relative to the pons and cerebellar 

vermis regions, as delineated by FreeSurfer. This comprehensive process of registration, 

warping, and the application of inverse transformations enabled the accurate alignment of FDG 

data to the MNI152 atlas. For high-resolution warping, atlas-registered binary masks were 

applied to exclude FDG voxels outside the brain. 

In the final processing stage for T1w data, we utilized ANTs to calculate the Jacobian 

determinants and performed intracranial volume (ICV) correction on all T1w data by 

normalizing the maps with estimated ICV values derived from the T1w data. To optimize 

classification, normalized values were scaled to a 0-1 range to mitigate the impact of excessively 

small magnitudes. After completing the registration and normalization processes, we applied 

grey matter masks to all datasets. These masks were generated using FSL's FAST (FMRIB's 

Automated Segmentation Tool) from segmented grey matter in the T1w images. By applying 

these masks to both the FDG PET and T1w datasets, we ensured that subsequent analyses were 

specifically focused on grey matter regions. 

2.2 Experimental Setup 
In this research, we conducted a series of binary classification experiments to assess the 

diagnostic capabilities of two neuroimaging modalities: [18F]-fluorodeoxyglucose (FDG) 

positron emission tomography (PET) and T1-weighted magnetic resonance imaging (MRI) in 

Alzheimer's Disease (AD).  

Our experimental design is centered around four pairs of group comparisons, with criteria 

clinical dementia rating (CDR) and Amyloid status: 
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Comparative analyses were carried out between the CDR=0, Amyloid-negative group 

(Cognitively unimpaired) and each of the other three groups: CDR=0, Amyloid-positive 

(Preclinical); CDR=0.5, Amyloid-positive (MCI); and CDR>0.5, Amyloid-positive (AD 

Dementia). 

Additionally, a specific binary classification was conducted between the CDR>0.5, Amyloid-

positive (AD Dementia) group and the CDR=0.5, Amyloid-positive group (MCI). 

For each of these four group pairs, we conducted four distinct experiments for analysis: two 

baseline experiments using each modality independently, and two fusion experiments with 

combined modalities —early fusion and late fusion, as detailed later. This quadripartite 

experiments for each group pair, involving both FDG-PET and T1w-MRI data, leads to a 

comprehensive set of sixteen experiments.  

2.3 Linear Support Vector Machines 
Support Vector Machines (SVM) were used in all sixteen experiments, it classifies data into 

distinct groups (e.g., baseline/control), by identifying a hyperplane that maximizes the margin 

between these groups. In the context of Linear SVM, the chosen hyperplane is explicitly linear, 

ensuring a straightforward and consistent separation between the two classes in the high-

dimensional space. Once trained, the SVM model employs this hyperplane as a decision 

boundary: data points on one side would be classified into one group, while those on the opposite 

side would be categorized into the other. 

In the context of neuroimaging data, an image with 𝐷 voxels is transformed into a vector whose 

𝑑𝑡ℎ component corresponds to the intensity value at the 𝑑𝑡ℎ voxel in the image. 

The Linear SVM optimization problem can be mathematically represented as follows: 
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{𝑤∗, 𝑏∗} = arg min
𝑤,𝑏,ξ

1

2
|𝑤|2 + 𝐶 ∑ ξ𝑖

𝑚

𝑖=1

  

(1)  

subj. to: 

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − ξ𝑖  ∀𝑖 = 1, … , 𝑚 

ξ𝑖 ≥ 0 ∀𝑖 = 1, … , 𝑚 

Where w is the weight vector defining the orientation of the hyperplane, b is the bias term that 

determines the position of the hyperplane, C is the regularization parameter controlling the trade-

off between maximizing the margin and minimizing classification error, ξi are slack variables 

allowing for misclassification or representing the distance of correctly classified points from the 

margin boundary for each data point xi,  yi is the label of the data point xi, either +1 or -1, 

indicating its class. 

 

Figure 1: Visual representation of Support Vector Machine 
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The weight vector w∗ and bias b∗ together determine the optimal hyperplane in the format w∗x +

 b∗. The position and orientation of this hyperplane in the high-dimensional space is influenced 

by the neuroimaging data. For any new data point xnew, its classification is based on the sign of 

w∗xnew +  b∗. If the result is positive, the data point belongs to one class, and if it's negative, it 

belongs to the other class. 

2.4 Training Strategy 

2.4.1 Nested Cross-Validation (NCV) 
The integral part of our methods was the Nested Cross-Validation (NCV). This structure served a 

dual purpose: to better estimate the model's performance while simultaneously optimizing the 

hyperparameters. 

Essentially, the Nested Cross-Validation (NCV) operates in a layered manner. The entire dataset 

is first divided by the outer loop, where one portion is designated for training the model and 

another for testing its generalization. Within each fold of this outer division, the inner cross-

validation further splits the training data for hyperparameter tuning. Its primary task is to 

determine the hyperparameters could generate the best performance for the model. By running 

multiple iterations on these subsets of the training data, it identifies which hyperparameter 

configurations yield the best results according to the predefined evaluation metric. Upon 

determining these optimal settings in the inner loop, they are applied to train the model on the 

full dataset portion provided by the current fold of the outer loop to estimate the model’s 

performance. This layered approach ensures robust evaluation and optimization of the model 

while preventing overfitting to the training data. 

Within this study's NCV framework, the outer loop, configured with 5 folds, primarily evaluated 

the model's generalization capabilities on the dataset. The inner loop, consisting of 3 folds, was 
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tailored to fine-tune hyperparameter C as presented in Eq. (1). We utilized the Grid Search 

method over the search space [1, 0.1, 0.01, 0.001, 0.0001], with the Area Under the Receiver 

Operating Characteristic Curve (AUC) as the evaluation metric. 

2.4.2 Addressing the Class Imbalance 

There is class imbalance exist in the dataset which frequently pose challenges in machine 

learning tasks, potentially skewing model performance. To decrease the influence of this 

imbalance, we employed Stratified K-Fold Cross-Validation for both inner and outer cross-

validation stages. Additionally, we modified SVM model setting to make sure the SVM was 

trained with class weights that inversely reflect the class frequencies. This approach ensures that 

the model treats each class instance with equal importance, thereby mitigating biases that could 

favor predictions towards the majority class. 

2.4.3 Fusion Strategies 

We conducted two sets of experiments employing distinct fusion strategies to validate our 

findings further. For early fusion, MRI and FDG data were combined by concatenating them 

before being passed to the Linear SVM, harnessing the Sparse Random Projection technique to 

ensure consistent dimensionalities with non-fusion cases. In the context of late fusion, our 

approach involves employing an optimized weighting scheme derived from the best Area Under 

the Curve (AUC) values obtained from individual T1w-MRI and FDG-PET models. Specifically, 

we initiate the process by training two Support Vector Machine (SVM) models on distinct 

models originating from FDG-PET and MRI modalities. Subsequently, when presented with a 

new testing sample, each model generates a prediction for it. Finally, we aggregate all 

predictions based on selected weight to reach a consensus decision on the classification of the 

new testing sample.  
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2.5 Evaluation Scheme 
We assessed the model's efficacy utilizing metrics such as accuracy, PPV, NPV, sensitivity, 

specificity, F1 score, and Receiver Operating Characteristics (ROC) and Area Under the ROC 

Curve (AUC). The determination of 95% CIs was facilitated through the Bootstrap method. This 

method resampled results from each cross-validation split with replacement 1,000 times to 

simulate different scenarios. For each resampled dataset, our performance metric was calculated 

using the predictions and corresponding ground truth values. The confidence interval was then 

derived from the 2.5th and 97.5th percentiles of the resulting score distribution, providing an 

estimate of the metric's variability without assuming a specific underlying distribution. The 

DeLong test (1988) was enlisted for comparative statistical evaluations. 

 

 

Figure 2: Confusion Matrix 

2.5.1 Evaluation Matrix 

Accuracy calculated as (TP+TN)/(TP+TN+FN+FP) (Fig. 2), represents the proportion of true 

results (both true positives and true negatives) among the total number of cases examined. It 

gives a quick snapshot of the model's overall performance but may not always reflect the 

effectiveness of the model in datasets with imbalanced classes. 



 12 

PPV calculated as TP/(TP+FP) (Fig. 2), also known as precision. PPV is the ratio of true positive 

results to all positive results reported by the model, indicating the likelihood that a positive 

classification is correct. 

NPV calculated as TN/(TN+FN) (Fig. 2). Similar to PPV, NPV is the ratio of true negative 

results to all negative results reported by the model, reflecting the probability that a negative 

classification is accurate. 

Sensitivity calculated as TP/(TP+FN) (Fig. 2), also known as recall, measures the proportion of 

actual positives correctly identified by the model, highlighting its ability to detect positive cases. 

Specificity calculated as TN/(TN+FP) (Fig. 2), assesses the proportion of actual negatives that 

are correctly identified, indicating the model's efficacy in recognizing negative cases. 

F-1 score calculated as 2*(PPV*Sensitivity)/(PPV+Sensitivity), is the harmonic mean of 

precision (PPV) and sensitivity (recall), providing a single metric that balances both values, 

particularly useful for imbalanced datasets. 

The ROC curve is a graphical plot that illustrates the diagnostic ability of a binary classifier 

system as its discrimination threshold is varied. The AUC represents the degree to which the 

model is capable of distinguishing between classes, with an AUC of 1 indicating perfect 

prediction and an AUC of 0.5 suggesting no discriminative power. 

2.6 Interpretation Methods 
In the interpretation of our SVM models, the weight vector 𝑤, may not accurately represent the 

neural sources of data. To obtain meaningful patterns, we compute the activation patterns 𝐴 

using the formula: 
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𝐴 =  𝐶𝑜𝑣[𝑥(𝑛), 𝑠̂(𝑛)] 

(2)  

In this equation, 𝑥(𝑛) denotes the preprocessed neuroimaging data vector, and 𝑠̂(𝑛) is the 

predicted label vector corresponding to the data. The covariance between the data and the labels, 

as described by Haufe et al. (2014), provides a correction to the Support Vector Machine 

weights, yielding activation patterns 𝐴 that are more representative of the underlying neural 

activity.  

To validate the significance of these activation patterns, we implemented permutation testing. 

This involves systematically shuffling the labels and recalculating the activation patterns for 

1000 iterations. Each permuted set's activation pattern is then compared to the original, 

unshuffled activation pattern. The comparison yields p-values for each feature, reflecting the 

likelihood that the observed activation is due to chance. These p-values inform the statistical 

significance of the weights, enhancing the robustness of the activation maps derived from the 

model. 

To underscore the efficacy of our approach in enhancing SVM weight interpretability, we 

conducted a comparative analysis through three additional experiments, each tailored to derive 

activation maps via distinct methodologies: 

(1) Direct application of unaltered SVM weights, assessing their intrinsic representational 

capacity 

(2) Augmentation of raw SVM weights with the mentioned permutation testing 
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(3) Derivation of activation patterns using the methodology proposed above by Haufe et al. 

(2014), excluding the permutation testing phase.  

To facilitate a standardized comparison across these methods, we adjusted the resulting metrics 

to conform to a 'smaller is better' paradigm. Hence, p-values yielded by permutation testing were 

directly interpreted, whereas outcomes obtained without permutation were converted via 

subtraction from unity, ensuring a uniform metric indicating the reliability of the activation 

patterns across all experimental conditions. 
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Chapter 3: Results 

3.1 Data Summary 
The dataset used in this study includes 1,012 participants segmented by CDR scores and amyloid 

status. There is data imbalance exists, with the CDR = 0.5, Amyloid + group having the highest 

number of subjects (n = 458), while the CDR > 0.5, Amyloid + group is the smallest (n = 151). 

Regarding age, the variation across groups is minimal, with all groups having a mean age within 

a close range of approximately 73 to 75 years. The gender distribution exhibits a discrepancy; the 

CDR = 0, Amyloid + group has the highest percentage of females (62.9%), in contrast to the 

CDR = 0.5, Amyloid + group, which has the lowest (44.3%) (Table 1). 

 

Table 1: Demographics and clinical characteristics of study participants 

3.2 Comparative Performance Analysis of Neuroimaging 

Modalities and Fusion Strategies in AD Diagnosis 
In the comparative analysis across different diagnostic groups, the result indicated that the 

contrast between CDR = 0, Amyloid-negative (Cognitively Unimpaired) and CDR > 0.5, 

Amyloid-positive (AD Dementia) groups yielded the most robust diagnostic outcomes, with 

AUC values ranging from 0.967 to 0.992. Conversely, the comparison between CDR = 0, 

Amyloid-negative (Cognitively Unimpaired) and CDR = 0, Amyloid-positive (Preclinical) 

groups produced the least discriminative results, with AUC values ranging from 0.549 to 0.628 

(Table 2 and Figure 3). These findings align with our hypothesis that greater clinical stage 

differences would lead to more distinct diagnostic results. 
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Figure 3: ROC curve analysis of neuroimaging modalities across different diagnostic groups 

Analyzing the performance within each comparative pair, FDG-PET consistently outperformed 

T1w-MRI in terms of AUC, specifically, p-values correlated with the AUC comparisons were 

P<0.001 for the first pair, P=0.003 for the second, P<0.001 for the third, and P=0.1 for the 

fourth, corresponding sequentially with the experiments listed in Table 2 from top to bottom. 

With regards to fusion techniques, early fusion generally resulted in intermediate AUC 

performance between FDG-PET and T1w-MRI modalities, except the group CDR = 0.5, 

Amyloid-positive (MCI) versus CDR > 0.5 (AD Dementia), suggesting that mere combination 

and dimensionality reduction of multimodal data may not necessarily yield improved diagnostic 

performance. 

Late fusion, on the other hand, either maintained or slightly improved AUC performance 

(0.992/0.992, 0.833/0.822, 0.845/0.845, 0.628/0.612; Table 2). However, statistical analysis 

revealed no significant differences between the models applied in most experiments (P=0.86, 

0.03, 0.29, 0.11). Within each late fusion model, FDG-PET input model had higher weights than 
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T1-weighted MRI input model across the board: 0.664 versus 0.336, 0.64 versus 0.36, 0.86 

versus 0.14, and 0.568 versus 0.432, respectively, corresponding sequentially with the 

experiments listed in Table 2 from top to bottom. It must also be considered that the late fusion 

technique inherently always optimizes for the best AUC result by combining individual modality 

outcomes, which could introduce a bias in favor of those models demonstrating superior 

individual performance. 

 

Table 2: Comparative diagnostic performance metrics across imaging modalities and fusion 

techniques. In each experiment, the group with less severe dementia (indicated by a lower 
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Clinical Dementia Rating, or CDR) was designated as the negative class. In cases where the 

CDR values were equivalent, the group without amyloid pathology was assigned as the negative 

class. F1 score would show in sequence negative class/positive class 

 
 

 

3.3 Activation maps derivation methodologies comparison 

results and activation maps  
With the comparison of four Activation maps derivation methodologies (Figure 4), the direct 

application of unmodified SVM weights and the activation patterns derived via Haufe et al.'s 

(2014) methodology without permutation testing both yielded few results on the activation maps. 

This underscores the critical role of permutation procedures in enhancing interpretability. Upon 

integrating raw SVM weights with permutation testing, the resultant activation maps exhibited a 

proliferation of noise points in contrast to the refined patterns obtained through the Haufe et al. 

(2014) methodology coupled with permutation testing. Consequently, these results unequivocally 

demonstrate that the application of the Haufe er al.’s (2014) transformation in conjunction with 

permutation testing confers superior performance in discerning meaningful and concise 

activation patterns. 
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Figure 4: Comparison Between Haufe (2014) Covariance Adjustment Method with other 

activation maps derivation methods. The results are derived from experiments with the CDR = 0, 

amyloid- and CDR > 0.5, amyloid+ groups, using T1-weighted MRI as the input modality. 

The activation maps from above experiments' SVM models (Figure 5) provide a visual 

representation of the underlying brain changes. T1w-MRI captures structural brain changes, 

notably hippocampal atrophy, which correlate with the memory deficits observed in early AD 

stages. FDG-PET, in contrast, detects functional changes such as decreased glucose metabolism 

in the temporal regions, often preceding the structural alterations visible on MRI. Together, these 

weights underscore and are consistent with the prior knowledge that T1-weighted MRI and 

FDG-PET modalities complement each other in providing a comprehensive understanding of 

Alzheimer's Disease pathology. 
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Figure 5: Activation maps for experiments with T1w-MRI and FDG-PET modalities. 
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Chapter 4: Discussion 

We conducted four groups of experiments comparing different CDR values with positive or 

negative amyloid status. We utilized various imaging modalities as input, such as single modality 

(FDG-PET, T1w-MRI only) and multi-modal approaches (early fusion and late fusion). 

Consistent with state-of-the-art researches, our results demonstrate that under single modality 

cases, using the PET modality consistently outperforms the T1w-MRI modality. Contrary to the 

findings of Samper-González et al. (2018), our study did not observe an enhancement in AUC 

using multi-modality data across all SVM models, regardless of the fusion technique employed. 

This aligns with the findings of Narazani et al. (2022). However, we did observe improvements 

in the NPV (Negative Predictive Value) and specificity of the models, highlighting the potential 

of multimodal data fusion to enhance the accuracy of ruling out diseases in future applications. 

However, there are limitations within our experimental pipeline that must be acknowledged. 

Firstly, the performance of the late fusion technique we used is highly contingent on the choice 

of performance metrics. In these experiments, we selected the AUC value as the performance 

metric to determine the optimal weights for combining two modalities, potentially introducing 

bias and inaccuracy into the late fusion results when comparing other performance metrics. 

Secondly, the late fusion technique employed differs from the multi-kernel method used by 

Samper-González et al. (2018), which involves training on multiple kernels before combining 

and normalizing them to derive the final prediction. This divergence in methodology could also 

contribute to the observed discrepancy wherein multi-modality imaging data input models did 

not surpass the performance of single-modality input models. 
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Moreover, while most activation maps align with our a priori hypotheses, we observed an 

anomalous activation map in the cognitively unimpaired and MCI group using FDG-PET input. 

This group displayed a notably dense cluster of activation points, indicating almost the whole 

brain contribute to the classification results. Given that this was an isolated observation and other 

experiments using the same data set yielded normal behavior, we can tentatively rule out data set 

issues. Further investigation is needed to understand the underlying cause of this anomaly. 
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Chapter 5: Conclusion 

In this study, we sought to further compare the classification power of utilizing either single or 

combined PET and MRI imaging data under the A/T/N framework’s "N" category in linear 

SVM. We conducted sixteen experiments across four different groups, differentiated by Clinical 

Dementia Rating (CDR) values and amyloid status (positive or negative). Our results 

consistently showed that FDG-PET outperformed T1w-MRI in scenarios where a single 

modality was used. However, with the two fusion techniques we employed, combining 

multimodalities did not improve the general performance of the models. There are still some 

limitations and areas for future work. The late fusion techniques we used are easily biased by the 

performance metrics selected for choosing weights. Multi-kernel SVM or other fusion techniques 

might offer more effective strategies and could potentially improve performance. Furthermore, 

the abnormal activation maps we observed need further exploration. 
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