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This thesis presents a Field Programmable Gate Array (FPGA) based, high-
speed search system that is intended to perform simple data mining operations on
the data streaming from an off-the-shelf hard drive. This system includes the search
engine itself and a device that snoops the traffic on an ATAPI/IDE peripheral bus,
capturing data transmitted by a hard drive attached to the bus and forwarding that
data to the search engine. The search engine, which is an adaptation of the Smith-
Waterman local sequence alignment algorithm, can process search data at a rate of
100 MB/sec, with a query string up to 38 bytes long. The motivation for developing
this system is to move most of the processing burden in data mining applications

from the CPU to a level closer to the hard drive, while at the same time achieving



search throughput gains by taking advantage of the massive parallelism possible in
FPGA-based implementations. To demonstrate the magnitude of performance gain
that is possible, this thesis also includes the results of simple performance tests that
compare this system to traditional, CPU-based search applications like the UNIX tool
“orep.” The search engine and related components were developed and implemented
on the Field Programmable Port Extender (FPX), an FPGA-based component of the
Washington University Gigabit Switch (WUGS).
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Chapter 1

Introduction

1.1 Overview

Traditional, CPU-based Search Application
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Figure 1.1: Traditional Data-path between Hard Drive and Processor

The continued, explosive growth of hard drive capacity, which outstrips the
growth rate predicted by Moore’s Law, has engendered the desire to fill this new-
found space with meaningful data of a volume hitherto unimagined. This includes
large database projects such as the Human Genome Project, intensified informa-
tion retrieval activities by Intelligence services, digitization of printed paper-based
libraries, and so on. The non-trivial nature of these data naturally leads to the de-
sire to search them thoroughly, and as quickly as possible. However, the capability

to quickly transport such data from secondary storage to a processor for searching
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has not grown at nearly the same rate as hard drive capacity, and indeed lags sig-
nificantly behind the potential state of the art. Figure 1.1 conceptually illustrates
the traditional arrangement for attaching a hard drive to a processor for any sort of
data-mining application. No less than four levels of interconnect exist between the

data on the drive and the processor.
1. IDE peripheral bus (hard drive => drive controller)
2. PCI bus (controller -=> memory bus bridge)
3. Memory bus (bridge —> processor cache)
4. Cache bus (cache -> processor)

Each level adds its own overhead, i.e., control or wait states, latency in trans-
mission across the interconnect because of framing requirements, arbitration among
multiple bus nodes, and synchronization across clock domains. These elements of
overhead compound to create a bottleneck significant enough that a large majority
of the time required for any search application is spent while the processor waits for
data from the hard drive. Indeed, improvements are being made to all levels of inter-
connect illustrated in Figure 1.1, but yet the heterogenous nature of this data-path
still leads to a throughput that is less than ideal, as the data-path is only as fast as
its slowest segment.

A straightforward solution to this troublesome bottleneck is to bring the pro-
cessing element closer to the hard drive, i.e., to eliminate some of the levels of inter-
connect and make the path between the data and the processor shorter and faster.
This idea is not new, as it dates back to the experimental database machines of the
70’s [29]. More recently, this concept finds implementation in the Smart Disks de-
veloped by the University of Maryland [40], the University of California at Santa
Barbara [20] [40], and Carnegie-Mellon University [31]. What differs between these
various implementations is the amount of processing power placed near the disks,
ranging from small embedded microprocessors that are simply replicated as often
as necessary to provide the necessary computational power through parallelism, to
higher-class processors only a generation or two behind state of the art, which offload
a significant portion of the data-mining code from the CPU. Even outside academia
in the commercial sector, this concept is manifesting itself in the form of Network
Attached Storage Devices (NASDs) [31], where hard drives feature an on-board thin
network server, so that they can be attached directly to a Local Area Network (LAN).
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However, none of these implementations to date capitalizes on recent advances
in high speed Field-Programmable Gate Arrays (FPGAs), such that whatever com-
puting power that is placed near the disk is typically in the form of microprocessors
or Application-Specific Integrated Circuits (ASICs) and some amount of RAM. This
approach, while perhaps allowing the fast execution of a limited number of tasks,
places a restriction on the storage device’s versatility for on-board data reduction,
thus constraining its overall usefulness. In contrast, the prototype search system pre-
sented in this thesis is comprised of large (millions of gates) Xilinx FPGAs, which
may be programmed to perform arbitrary operations on the data at 32 bits wide, and
at clock speeds approaching 100 MHz. Furthermore, the decentralized architecture
of the FPGAs makes them ideal for operating on the data in a streaming fashion,
e.g., with a parallel bit-slice-based (or byte-slice-based) design, to provide a data
throughput high enough to handle the rates at which bits flow from hard drive read
heads.

Internal Data Rates of Fujitsu Hard Drives
120 T T T T
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100

MAN Series

90

80

60
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Figure 1.2: Internal Data Transfer Rates for Fujitsu Hard Drives [10]



4

As a demonstration of the trends for increasing hard drive speeds, Figure 1.2
plots the internal data transfer rates of Fujitsu hard drives against their introduction
dates. The internal data transfer rate is the speed at which the hard drive’s internal
components can deliver data to the chip that relays those data onto the peripheral
bus (i.e., the ATAPI/IDE or SCSI controller chip on the hard drive). This rate is
dependent on the rotational speed of the drive’s platters and on the speed of the
electronic components that process the bits streaming from the magnetic read head.
The trend apparent for the three most recent models of Fujitsu hard drives show a
yearly increase in internal data rate of approximately 30 MB/sec. This rate does not
follow a growth trend consistent with Moore’s Law, but it is still approaching the
aggregate throughput limit of the data-path illustrated in Figure 1.1. Furthermore,
the heterogeneous nature of the data-path in Figure 1.1 means the growth of its
effective throughput rate is difficult to characterize, although that growth frequently
falls well below Moore’s Law. By comparison, FPGA speeds have steadily followed
Moore’s Law over the past decade [8], making FGPAs quite suitable for processing
data in such an internal data-path of a hard drive.

Although the multiple levels of interconnect for the data-path shown in Fig-
ure 1.1 lead to a compounded overhead that drags down the effective throughput of
that data-path, those levels also provide multiple locations where an FPGA-based
search device could be placed, which each level still enjoying a throughput advantage
over CPU-based search applications. This thesis has so far discussed the possibility of
placing such a device inside the hard drive, as close to the storage medium as possible,
and Chapter 3 will present a search device that sits on the hard drive’s peripheral
bus (i.e., an ATAPI/IDE bus). However, other possible locations for a search device,
such as the PCI interconnection bus, or even the peripheral bus connecting multiple
hard drives in a Redundant Array of Inexpensive Drives (RAID), do exist, but they
are not discussed in this thesis.

For the prototype of the hardware-based search system described above, the
author made heavy use of Dr. John Lockwood’s Field-Programmable Port Exten-
der (FPX) [26], an FPGA-based device that sits between the switch fabric on the
Washington University Gigabit Switch (WUGS) [39] and a line-card. The FPX was
originally devised to allow arbitrary, user-programmable transformation of ATM cells

that traverse the WUGS, but for the purpose of this thesis, it simply provides a
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generic FPGA prototyping platform, with a 1.2 Gbit/sec? bidirectional data-path
(i.e., the WUGS switch fabric) to other FPXs. Thus, the prototype could be easily
specialized or reconfigured to suit nearly any application, and multiple FPXs could

be used in parallel if the gates required to implement the search logic exceeded the
number of CLBs on a single FPX.

1.2 Contributions

The top-level goal of the work presented in this thesis was to fabricate a functioning
FPGA-based search system out of the FPX/WUGS infrastructure available to the

author. This goal was decomposed into the following sub-tasks:

e Inject data from a hard drive into the WUGS switch fabric, for forwarding onto
an FPX

e Process the hard drive’s data in a fashion that exhibits parallelism impossible

with traditional, CPU-based search applications
e Develop and consolidate paths for control and search result reporting

e Demonstrate search performance gain of this search system

The first two tasks were realized as FPX modules, each programmed onto its
own FPX. The third was realized by building atop the extant control software for the
FPX and WUGS, to provide a streamlined interface to control functions specific to the
author’s implementation. The fourth goal was realized by measuring execution times
of traditional CPU-based search applications, both with timing functions internal to
the host workstation running the search applications, and with an external device
that monitors IDE bus traffic. These execution times, measured at two points in
the data-path illustrated in Figure 1.1, were then folded together to quantitatively
show where limitations in such a traditional hard drive-CPU data-path impede search
throughput.

The specific contributions made during the work of this thesis are listed below:

e IDE Bus Snooper FPX Module

! This thesis uses the following convention for quantifying data: GB = 10° bytes, MB = 10° bytes,
KB = 10 bytes, Gb = 10° bits, Mb = 108 bits, and Kb = 10? bits.
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- Deciphered the ATAPI/IDE Protocol [27] to design a state machine that

recognizes data bursts initiated by the hard drive

- Designed and built a custom PCB with voltage translation buffers to han-

dle voltage incompatibility between the FPX and the IDE peripheral bus

- Separated the Bus Snooper into two clock domains, to allow sampling of

the IDE bus signals at a higher frequency (increase sampling accuracy)

- Developed a control path, both for the hard drive being snooped and for
the Bus Snooper Module, that allowed data retrieved from hard drive over
both paths (i.e., through the IDE host controller and through the Snooper)

to be viewed side-by-side in real time
e Biological Computation (“BioComp”) FPX Module

- Developed a systolic array-based implementation of the Smith-Waterman

local sequence alignment algorithm [35] that was scalable up to the size of

the FPGA

- Implemented pipelining and parallelism to allow the BioComp Module to
accept search data at the full width of the FPX’s data-path

- Devised a scheme for extracting snapshots of the state of the systolic array
that doesn’t involve a fan-in arrangement that scales with the size of the
array

- Developed a Web-based interface to the BioComp module that allowed

users to submit runtime parameters and search queries, and then to view

the search results, all in real time
e Performance tests of traditional CPU-based search applications

- Developed a method for reliably measuring CPU execution time down to
sub-microsecond accuracy
- Devised an experiment method that avoids caching effects in the host work-

station’s secondary storage

- Devised a scheme for aligning the CPU execution time measurements made
on the host workstation with IDE bus activity measurements made by an

external device

- Implemented the core of the BioComp FPX Module as-is in software to

provide a direct point of performance comparison



1.3 Organization of This Thesis

Chapter 2 presents relevant background material to provide a helpful context to the
information contained in subsequent chapters. Specifically, this chapter outlines the

following topics:

e The Smith-Waterman local sequence alignment algorithm [35], and its typical

implementation in parallel hardware
e Recent work in hardware-based sequence alignment
e Recent work in hardware-based text searching
e The FPX/WUGS infrastructure and associated design environment

Chapter 3 details the author’s use of an FPX to snoop the traffic on an AT-
API/IDE [27] bus between a hard drive and its host controller, extracting the contents
of data bursts originating from the drive. This IDE Bus Snooper then repackages
those captured data into ATM cells, and injects them into the WUGS switch fabric
for forwarding onto a second FPX for processing and data reduction. The IDE Bus
Snooper is the first of two components of the high-speed search system presented in
this thesis.

Chapter 4 details the author’s use of a second FPX to perform simple search
applications on the data stream extracted from the IDE bus by the IDE Bus Snooper
FPX. The reprogrammable nature of the FPX allows the implementation of nearly
any stream-based search operation. For this thesis, the author implemented the
Smith-Waterman algorithm [35], a dynamic programming algorithm for local sequence
alignment. This algorithm is traditionally used for alignment of genomic and protein
sequences, i.e., biological computation. However, the author’s implementation, called
the BioComp Module, operates on data at the byte level, allowing this FPX module to
also perform inexact string matching directly on ASCII text. The BioComp Module
was designed with high search throughput in mind, and thus, by taking generous
advantage of the massive parallelism possible in FPGA-based implementations, it can
process search data at 100 MB/sec. The BioComp module is the second component
of the search system presented in this thesis.

Chapter 5 details search performance tests conducted on a traditional work-

station like that illustrated in Figure 1.1, measuring the required time to complete
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searches of artificially generated datasets of varying size. The actual search appli-
cation chosen for these tests was the GNU string-matching program “grep,” both
for its widespread use among UNIX users, and for its simple-to-characterize, state
machine-based kernel. Also chosen was the author’s software implementation of the
Smith-Waterman algorithm [35], to provide more direct comparison with the search
performance of the BioComp FPX Module. The execution time for both search ap-
plications was measured, both in terms of CPU cycles elapsed and in terms of disk
activity observed on the hard drive’s peripheral bus. These timing measurements
are decomposed in Chapter 5 to illustrate where each search application suffered an
increase in execution time because it was idle waiting for data from the hard drive,
or because it relied on serialized execution on the workstation’s processor.

Chapter 6 then summarizes this thesis, restating the points presented in the
preceeding chapters, and the contributions outlined above. This Chapter also explains
avenues for future research and especially for possible improvement upon the work
presented in this thesis, both for the near future, and for versions of this search system
that migrate beyond the FPX/WUGS infrastructure.



Chapter 2

Background

2.1 Smith-Waterman Local Alignment Algorithm

The classic Smith-Waterman local alignment algorithm [35] is a dynamic program-
ming method used in biological computation which finds the best possible alignment
between two strings of characters, the pattern string p and the target string t. The
score of the alignment is judged by the gaps and mismatched characters that must
be tolerated to make the alignment. The pattern string p is understood to be the
search query argument, and the target string ¢ the database upon which the search is
performed, which is expected to be orders of magnitude larger than p. The range of
characters found in both strings depends on the nature of alignment that is sought;
for genome alignments, for example, the range would be the four DNA bases “ATCG”
(along with whatever wildcard characters are allowed), and for proteomic alignments,
the range would the be the approximately 20 amino acids (and wildcard characters).
Indeed, this alignment method can also find application with regular text searching,
where the range of characters could be those in the 8-bit ASCII character table or any
other arbitrary character set. Furthermore, given the ability of the Smith-Waterman
algorithm to find alignments that include gaps or mismatched characters, it lends
itself quite well to performing inexact searches on text, e.g., searches that account for
variations in spelling of the sought pattern string p.

Indeed, numerous algorithms and methods exist that are meant primarily for
inexact text string matching, most notably those algorithms that involve Regular
Expression matching. The decision to implement the the Smith-Waterman algorithm
so it could handle tasks in biological computation, i.e., DNA sequence alignment, and

generic text-string matching, was made since this would allow the implementation’s
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use in a range of potential search applications broader than those possible just for

inexact text-string matching.

tl t2 t3 t4 t5 c ] C tn
pl |d(1,1) d(1,2) d(1,3) d(1,4) d(1,5) ... d(@,) ... d(@,n)
p2 d(2,1) d2,2) d(2,3) d(2,4) d(2,5) ... d2,) ... d(2,n)
p3 |d(3,1) d(3,2) d(3,3) d(3,4) d(3,5) ... d@3,) ... d(3,n)
p4 |d4,1) d4,2) d(4,3)«d(4,4) d4,5) ... d@4,)) ... d4n)
p5 | d(5,1) d(5,2) d(5,3) d(5,4) d(5,5 ... d5,)) ... d5,n)
pi |d@i,1) d@,2) d@i,3) d@i,4) d@,5 ... d@j) ... d(n)
pm 1 d(m,1) d(m,2) dm,3) dm,4) d(m,5) ... d(m,j) ... d(m,n)

Figure 2.1: Dynamic Programming (DP) Matrix

The Smith-Waterman local alignment algorithm finds the best possible align-
ment between p and ¢ by arranging both strings along an axis of a 2-dimensional
matrix of size m x n, shown in Figure 2.1, where m is the length of the pattern string
p and n the length of the target string ¢. Each element d(i, ) in this matrix (called
the Dynamic Programming (DP) matrix) represents the score for the ith character
of p aligned with the jth character of t. This score is determined by the base cases

and recursion shown in Equations 2.1 through 2.4.

d(1,1) = B(L1) (2.1)
d(i,1) = max[A;d(i—1,1)+ A; B(i, 1)] (2.2)
d(1,7) = mazld(1,7 - 1)+ A; A; B(1,j)] (2:3)
d(i,j) = maz[d(i,j —1) + A;d(i —1,5) + A;d(i — 1,7 = 1) + B(i, )] (24)

A in Equations 2.1 through 2.4 is a user-defined constant representing the
single-character gap penalty (usually negative), and B(i, j) the scoring function de-

pendent on the characters p; and ¢;. In the implementation used for this thesis,
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the scoring function B(i, j) simply returns a user-defined constant (usually positive)
when the characters p; and t; match, and another constant (usually negative), when
the characters don’t match. Thus, these two constants, which shall be called Bj,aten
and Bjomatch, respectively, represent the single-character match score and mismatch
penalty that are used in calculating the overall alignment scores for p and ¢.

It should be noted the recurrence defined in Equations 2.1 through 2.4 is not
local with respect to both the target and pattern strings. Rather, the alignment is
local with respect to the target string, but global with respect to the pattern. That is,
the alignment scores computed by this recursion represent an alignment of the pattern
with the entire target string. By comparison, a recursion that is local for both the
pattern and the target strings could compute scores representing an alignment of the

pattern with a subset of the target string.

tl 12 t3 t4 t5 t6 t7 t8 9 t10 t11 t12 13 t14 t15

a a c g g a t g a g g g t a t

pl a 9 v\ 9 -9 -9 -9 9 -9 -9 9 -9 -9 -9 -9 9 -9
p2 t -9 0 . 0 -18 -18 -9 18 0 -9 0 -18 -18 0 -9 18
p3 c -9 -18 9,\ -9 27 -27 0 9 -9 -18 -9 -27 -18 -9 0
p4 g -9 -18 -9 18 0 -18 -18 9 0 0 -9 0 -18 -27 -18
p5 g -9 -18 -27 0 \27 9 -9 -9 0 9 9 0 -9 -27 -36
p6 a 9 0 -18 -18 9 361\18 0 0 -9 0 0 -9 0 -18
p7 a 9 18 0 -18 -9 18 2 9 9 -9 -18 -9 -9 0 -9
p8 t -9 0 9 -9 27 0 274 18 0 0 -18 -27 0 -18 9
p9 g -9 -18 -9 18 0 -18 9\36 1\18 9 9 -9 -18 -9 -9
p10 g -9 -18 -27 o 27 9 -9 18 271\ 27 18 18 0 -18 -18
pl1l g -9 -18 -27 -18 9 18 0 0 9 3636¢ 27 9 -9 27
pl2 t -9 -18 -27 -36 -9 0o 27 9 -9 18 27 Te— 361\18 0
p13 a 9 0 -18 -36 -27 0 9 18 18 0 9 18 18 45 27
pl4 t -9 0 -9 -27 -45 -18 9 0 9 9 -9 o 27 27 '\54

A = -18; B_match = 9; B_nomatch = -9 Alignment: T: AACGGA-TGAGGGTAT
P: ATCGGAATGG-G-TAT

Figure 2.2: Alignment Extraction by Tracing Back Through DP Matrix

An alignment occurs in the DP matrix when a particular element d(i, j) ex-
ceeds a user-defined constant, T'hreshold. This threshold can be used to specify the
number of characters and gaps (as both determined by the constants A, Byqicn, and
Biomater) that the desired alignment should have. The alignment can then be derived
by following the pointers between adjacent d(i, j) elements from the element that ex-
ceeded the threshold, back up to the first row, p;, or back to the first column, ¢, of the

DP matrix. A pointer for a particular d(i, j) element points back to the element west,



12
northwest, or north of it, that was selected by the max() function in Equation 2.4 in
calculating d(i, j). Figure 2.2 illustrates such a path taken along these pointers, to
find the alignment that resulted in the element d(14, 15) = 54. Each diagonal arrow
pointed toward an element d(i, j) represents an exact alignment of the characters p;
and ¢; in the final alignment. Each vertical arrow represents a gap inserted before
the character ¢; in the target ¢ to maximize alignment, and each horizontal arrow a
gap inserted before the character p; in the pattern p. Indeed, there may be multiple
possible paths of pointers to follow back up to the first row or column (as there are
in Figure 2.2), and this would represent multiple alignments that result in the same
value for the particular d(i, j) that exceeded threshold.

Asshown in Equation 2.4, and in the arrows radiating from d(4, 4) in Figure 2.1,
the value of the DP matrix element d(7, j) depends on only the matrix elements to the
west, northwest, and north of it (along with the characters p; and ¢; and the constants
A, Bmaten, and Bpomaten ). This is an important property of the Smith-Waterman
algorithm, since it enables a straightforward implementation in parallel hardware, in
that the matrix may be implemented as a systolic array of atomic processing elements
(PEs), where each PE is responsible for a single d(i,j) element. However, because
the length of the target string ¢, i.e., the dimension n, is expected to be significantly
larger than the length of the pattern string p, i.e., the dimension m, implementing
the entire DP matrix would likely require an impractical amount of hardware. Thus,
existing implementations typically involve some form of partitioning along the ¢ axis
(and possibly also the p axis), such that only a portion of the matrix is computed at
a time.

A simple form of such partitioning, similar in spirit to that described later in
this thesis, is to compute one column of the DP matrix at a time. Thus, only m PEs
are required, along with a register for each PE that stores the value of the matrix
element in the previous column (i.e., the element d(i,j — 1), if the current PE is
responsible for the element d(7,j)). Then, once the PE has computed the value of
d(i,7), it stores that value in its associated register (overwriting the value d(i, 7 — 1)),
to then be used in the computation of d(i,j + 1) in the next column). Figure 2.3
illustrates both the arrangement of PEs and associated registers, and the 2-part data-
flow for the computation. The left half of Figure 2.3 depicts the dependencies for each
PE, i.e., the values which each PE must take as input to compute the value d(i, ).
Note that each PE depends on the value computed by the PE above it (i.e., the value

d(i — 1,7)), and thus each PE must wait until the one above it has completed its
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[ ] t(+1)

pl v pl
d(1,j-1) F>{d(L)) ld(1,j-1) fe—d(L,)) |
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v
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d(m j-1) [—>|d(m.)) d(m,j-1) {¢—|d(m,j)
1. 2.

Figure 2.3: 2-Step Computation of DP Matrix Column, 1: Calculation (with data
dependencies shown), 2: Data moving

computation before starting its own computation. The right half then illustrates the
data movement that takes place once all PEs have finished computation, namely how
the d(i, j) value calculated by each PE is stored in its associated register (overwriting
the value d(i,j — 1)), and how the next target string character to be processed, ;44
(i.e., the next column of the DP matrix), is then shifted into the register at the top.
Indeed, because each PE is dependent on the result calculated by the PE above, an
optimized implementation of this form of partitioning would create a pipeline of the
PEs, m stages deep, to ensure completely parallel computation of the matrix column.
A match (i.e., a d(i, j) value that exceeds the user-defined Threshold) can be found
by adding a comparator to each PE, with the comparison result used to toggle a
match flag. For clarity, however, the components required for signalling matches are
not shown in Figure 2.3.

Another form of partitioning, perhaps more efficient than the one described
above, would have a single bottom-left to top-right diagonal of the DP matrix cal-
culated at each time. This method eliminates the need for the pipeline between the
PEs, since each PE would then not be dependent on the result calculated by the PE

above it. The reasons why this method was not chosen over the one in the preceeding
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paragraph are explained later in Chapter 4, which details the design of the biological
computation (“BioComp”) FPX module.

Such a hardware implementation as those described above is useful for perform-
ing a first pass at finding alignments of the pattern p in an exceedingly large target t,
since its running time is essentially just O(n), compared to O(m x n) for a software
implementation on a uniprocessor machine. However, because this implementation
only stores the values for two columns of the DP matrix at a time, it is not possible
to extract alignment information directly from the hardware. Rather, a workstation
observing the hardware can extract snapshots of the current column being calculated,
at periodic intervals, or when the match flag is set, reconstruct in software the DP
matrix between the current snapshot and the previous snapshot, and then extract
the actual alignment from that reconstructed portion of the matrix. If the number of
alignments of the pattern p in target ¢ is expected to be quite small (i.e., significantly
less than the ratio n/m), then the overhead required for such alignment extraction

shouldn’t outweigh the inherent speed advantage of the hardware implementation.

2.2 Recent Work in Sequence Alignment

Recent work in implementing sequence alignment on parallel hardware has all in-
volved some variation or refinement of the Smith-Waterman algorithm [35] described
above, and all involved systolic arrays of parallel processing elements that compute
elements in the DP matrix. The target application for these implementations has
been typically DNA or protein sequence alignment, although adaptation of this al-
gorithm for generic text searching is possible. In fact, the next section describes two
such implementations generalized for text-searching, as does Chapter 4 of this thesis.
The hardware platforms chosen for these sequence alignment implementations varied;
2], [5], [11], [12], [14], and [15] present FPGA-based implementations, [13], [22], and
[34] present VLSI ASIC implementations, and [41] presents an implementation on a
proprietary reconfigurable hardware platform. However, all these implementations
shared similar choices of design and optimization, which divide them into two general
categories: those which had single-character edit costs (the values A, Bpaten, and
Bromaten described in the section above) hard-wired into their control circuitry, and
those which didn’t, letting the user specify the values as runtime parameters. The
implementations which fall in the first category are [2], [5], [12], [13], [14], [15], [22],
and [41]. Those which fall in the second category are [11] and [34].
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This is an important distinction, since the choice of using fixed single-character
edit costs derives from the original description of the Smith-Waterman algorithm in
[35]. Fixing these values means both the values of individual DP matrix elements,
and the difference in value between adjacent elements are bounded in range, which
allows significant optimization. Specifically, hardware required to store values of
DP matrix elements, as well as the hardware required for communication between
adjacent elements, may be reduced dramatically through minimal bit encoding. For
example, [14] only uses one bit to store edit distances in each matrix element. This
optimization allows designers to fit more processing elements per die or per FPGA,
and thus to achieve higher computational density. However, a drawback to this
optimization is that the fixed single-character edit costs constrain the usability of these
sequence alignment implementations. That is, the fixed edit costs chosen by designers
of sequence alignment hardware may be not be useful in all variations of sequence
alignment that molecular biologists wish to perform. Or, because the minimal bit
encoding scheme chosen for storing values of DP matrix elements constrains the range
of edit costs, there is an indirect limit on the length of sequences that may be aligned,
before overflow in edit cost calculation occurs.

The two implementations which let the user specify single-character edit costs
as runtime parameters, [11] and [34], realize this ability for runtime parameters dif-
ferently. [34], which is an ASIC implementation, stores the single-character edit costs
in on-chip SRAM. While making itself useful to a wider range of sequence alignment
applications in biological computation, this choice by [34] ultimately constrains its
search throughput to less than what the hardware could otherwise allow, since the
time required for edit cost computation is dominated by relatively slow SRAM ac-
cesses. [11], on the other hand, takes an approach very similar to that used in the
FPX BioComp module presented in Chapter 4. [11] is an implementation done on
the same Xilinx FPGA device as that used on the implementation in Chapter 4, and
it takes advantage of a proprietary feature the Xilinx device to modify the FPGA-
programmed circuit at runtime. That is, runtime parameters submitted by the user
modify the FPGA logic used for computing edit costs in [11], thereby enabling runtime
parametrization of single-character edit costs. The implementation in Chapter 4, on
the other hand, doesn’t involve any runtime reconfiguration of the FPGA, but it does
still offer the same capability by storing the single-character edit costs in registers

which the user may set at runtime.



16
2.3 Recent Work in Text-Searching

Recent work in implementing text searching on parallel hardware has followed two
general approaches: dynamic programming sequence alignment algorithms adapted
for generic string matching, and a hash-based approach which matches against a fi-
nite dictionary of keywords (or encodings thereof) stored in RAM. Both approaches
lend themselves to different applications in text searching; the dynamic programming
implementations lend themselves readily to searching for a single, arbitrary keyword
in large text databases, e.g., searching email records, while the hash-based implemen-
tations lend themselves to applications that look for a finite set of keywords in text
databases, e.g., spell-checking.

Recent work in adapting dynamic programming algorithms for text searching
includes [3] and [33]. Both articles describe implementations of very similar sequence
alignment algorithms: in [3] the Smith-Waterman algorithm [35], and in [33] the
“Wagner and Fisher” algorithm. Both implementations are done with a systolic array
of custom 8-bit processing elements on an ASIC. The 8-bit data-path allows both
implementations to compute alignment scores (also called edit distances) between
arbitrary strings of 8-bit characters, e.g., ASCII text characters. As with most of the
implementations of sequence alignment hardware described in the previous section, [3]
and [33] hard-code the single-character edit costs into the control circuitry, simplifying
the logic of the 8-bit processors, but limiting user configurability.

Recent work in implementing hashing functions in hardware includes [2] and
[5], which both describe an implementation of a keyword-searching engine on the
FPGA-based SPLASH 2 platform. However, instead of computing edit costs to find
inexact matches of the keywords, this implementation has its processing elements
compute hashes of each word in the input text. The hashes are then translated into
memory addresses and compared to a dictionary of keywords stored in RAM. If the
memory address is valid, then the word of input text that created the hash exists
in the dictionary, and a bit at that memory location is flipped. Indeed, this method
of keyword-searching differs quite dramatically in spirit from other methods based
on sequence alignment described this section, in that it can’t accommodate inexact
keyword matches, or at least if it can, in a very limited fashion.

A final note goes to [19], where two different keyword-searching methods (nei-
ther of which fall into the two general approaches mentioned above) were implemented

on the same FPGA to compare the search throughput achieved with each method.
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The first method was the Knuth, Morris, and Pratt (KMP) keyword-matching algo-
rithm, which guarantees the minimum number of single-character comparisons when
comparing two strings. The second method was a simple, “brute force, parallel com-
parator” that allowed multiple simultaneous character comparisons. Because of an
FPGA’s capacity for parallel computation, the authors of [19] found the simpler,
brute force comparator provided greater search throughput than the KMP keyword-
matching algorithm, which is optimized for execution on uniprocessor machines. This
article is mentioned as a demonstration of precedent, since Chapter 4 of this thesis
presents an FPGA implementation of the Smith-Waterman algorithm [35], that can
offer similar throughput gains in generic text and genome searching, over implemen-

tations optimized for uniprocessor machines.

2.4 FPX, WUGS and NCHARGE Overview

Figure 2.4: Field Programmable Port Extender (FPX) [24]
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The Field Programmable Port Extender (FPX) [24] [25] [26], shown in Fig-

ure 2.4, is an FPGA-based circuit board designed for use with the Washington Uni-
versity Gigabit Switch (WUGS) [39]. The WUGS is an experimental Asynchronous
Transfer Mode (ATM) switch developed at the Department of Computer Science in
Washington University. The FPX, which sits on a port on the WUGS switch fab-
ric, provides a reconfigurable hardware platform to perform arbitrary functions on
ATM cells passing through that port. While FPX was originally intended to per-
form networking applications on the traffic traversing the WUGS switch fabric (i.e.,
Fast IP Lookup, JPEG encoding, and DES encryption), this thesis focuses on us-
ing the FPX as a development platform for hardware-based searching of streaming
data. That is, the ATM traffic traversing the WUGS switch fabric is similar in speed
(1.2 Gb/sec) to the data that streams from the magnetic read head on a hard drive.
Thus, stream-searching applications developed on the FPX could easily be ported
to a conventional hard drive that has been augmented to send the data streaming
off its read head through reconfigurable hardware. However, this thesis only details
stream-searching applications, as developed on the FPX, and leaves the details of

porting such applications to an FPGA-augmented hard drive to further research.
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As depicted in Figure 2.5, the FPX features two FPGAs, the Reprogrammable

Application Device (RAD), which is available to the user to program as he wishes,
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and the Network Interface Device (NID), which is responsible for routing ATM traffic
to and from the RAD and for reprogramming the RAD. The features of the FPX
and even the RAD are quite manifold, but only those relevant to this thesis will
be discussed in detail, namely software development for RAD, the RADTEST inter-
face, and the NCHARGE control software, which manages the FPX from a remote

workstation.
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Figure 2.6: Logical Arrangement of FPX Components [24]

The RAD is a large Xilinx FPGA with (at last count) a 2-million logic gate
capacity, and is entirely available to the user to program as desired. Figure 2.6
illustrates the various interfaces between the RAD and other components on the FPX.
Of importance are the four data interfaces between the RAD and the NID, each 32 bits
wide, and the RADTEST1 and RADTEST?2 interfaces, which combined provide a 32-
bit interface between the RAD and an external device. The architecture of the FPX,
primarily the four data paths between the RAD and NIC, dictate that user-developed
applications programmed onto the RAD be contained in one of two independent
modules, where each module is responsible for a data path to and from the NID.

While this scheme allows for two independent applications to run on the RAD at
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a time, the nature of stream-searching applications developed for this thesis, where
search data would be submitted to the RAD from a remote source, and then search
results returned back to that remote source, rendered the second module unnecessary.
Thus, all FPX modules discussed in this thesis were developed under the assumption
that the second module slot would either be empty, or would contain a benign place
holder that requires negligible chip resources.

The basis of any RAD module is a finite state machine that handles data pass-
ing over the two 32-bit interfaces between it and the NID. Each of these interfaces
is a UTOPIA interface, with data formatted into ATM cells, such that this funda-
mental state machine is simply one that understands the ATM protocol. Each raw
ATM cell contains two 32-bit header words for every 12 32-bit data words, and so
this state machine spends most of the time forwarding ATM data between the two
NID interfaces (during which time, of course, a custom developed module would be
doing something meaningful with the data). If one treats the time and computation
resources dedicated to handling the ATM headers as negligible overhead, then one
can see how the RAD module is essentially confronted with continuous, streaming
data, 32 bits per clock tick. At 62.5 MHz clock frequency, the maximum supported
by the NID, this leads to a data throughput of 250 MB/sec.! For comparison, SCSI
hard drives currently support bus transfer speeds up to 80 MB /sec, allowing one to
immediately see the applicability of a stream-searching application developed on the
RAD FPGA, when ported over to an FPGA-augmented hard drive.

The RADTEST interface, shown at the top of Figure 2.6 as two 40-pin con-
nectors, allows the user to attach up to 32 pins of the RAD to an external device. As
originally envisioned, this interface lets the user route arbitrary signals in the RAD
module to external pins for observation on an oscilloscope or logic analyzer. How-
ever, the reconfigurable nature of the RAD means these 32 pins may also be used as
additional inputs to a RAD module. This is quite fortunate since the ATAPI/IDE
protocol defines 32 meaningful signals for the bus between IDE hard drives and their
hosts [27]. In fact, Chapter 3 details how the RADTEST interface was hi-jacked to
let the FPX snoop an IDE bus, and thus observe data outputted by the hard drive.

The final note on the FPX goes to NCHARGE [24] [36], the control soft-

ware which runs on a Linux or NetBSD workstation attached to a port of a WUGS

!The WUGS switch fabric supports a port-to-port speed of 1.2 Gb/sec. However, a NID at a
particular port could see a data throughput greater than 1.2 Gb/sec when more than one port is
sending traffic to it.
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populated with one or more FPXs. This software is responsible for downloading
FPGA bit files to to the FPX to program the RAD, setting up routing parameters
for the NID, and observing user-defined status messages from modules on the RAD.
Additional functionality, such as parsing test ATM cells to send to the FPX and
observing the results, is also available from NCHARGE, but the interface between
the workstation and the WUGS is constrained to 150 Mb/sec, limiting the useful-
ness of NCHARGE for routing large volumes of data between it and an FPX. Thus,
use of NCHARGE for the FPX modules described in this thesis is limited to testing
functionality, setting up runtime parameters (e.g., the search query for modules that

perform stream-searching), and viewing search results.
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Chapter 3

IDE Bus Snooper

3.1 Overview

The IDE Bus Snooper is an FPX whose RAD FPGA has been programmed to inter-
pret the ATAPI/IDE protocol [27], so that it can recognize data bursts initiated by
the hard drive ! attached to the IDE bus, capture the contents of those data bursts,
and then inject the data (encapsulated within ATM cells) into the WUGS switch
fabric for further processing. The FPX and WUGS were chosen as a development
platform for this device because they offer an environment with an array of 2-million
gate capacity FPGAs coupled together by a Gb/sec interconnection network. That
is, an FPX programmed as an IDE Bus Snooper can send its captured data over the
WUGS switch fabric to one or more FPXs, which have been programmed to search or
process the captured IDE data. Thus, the WUGS and FPX infrastructure lends itself
quite well to developing hardware-based search modules that are ultimately destined
for integration directly into a hard drive’s controller logic.

Figure 3.1 illustrates how this connection between the IDE bus and the RAD
FPGA is made using 32 test pins available on the RAD FPGA, to observe the 16 IDE
data lines and the 15 relevant IDE control lines. Unfortunately, voltage incompatibil-
ity between the RAD FPGA, which has a 3.3V supply voltage, and the 5V IDE bus
required that a custom-built PCB with voltage translation buffers sit between the
FPGA and the IDE bus. A limitation of this voltage translation stage was that the
IDE Snooper could only passively observe events on the IDE bus, and not initiate bus

transactions itself. Although this did lead to a far simpler (and faster) state machine

!The drive used in these tests was a Seagate ST320414A 20 GB ATAPI/IDE hard drive, formatted
with an ext2 file-system.
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Figure 3.1: Block Diagram of IDE Snooper as FPX Module

in the IDE Snooper, it required that any control commands to the hard drive being
snooped be issued over a path separate from the IDE Bus Snooper. In context of
the development platform illustrated in this section, this control path was achieved
by having the host workstation (containing the IDE bus being snooped) mount a
file-system on that drive in normal fashion, and perform traditional read/write tasks

on that file-system.

3.2 RAD FPGA Module Design

A simplified, conceptual block diagram of the IDE Bus Snooper RAD Module is shown
in Figure 3.2, depicting the module’s major components and Finite State Machines
(FSMs). Of particular importance is the dual port RAM in the center of the diagram,
as this component comprises most of the interface between the IDE bus being snooped
and the UTOPIA bus to the NID. That is, the captured data from the IDE bus are
written into to one port of this RAM, and then read out the other port as words in an
ATM cell payload, with the RAM functioning as a ring buffer. The RAM is, however,
a ring buffer with asymmetrical ports, since the data words captured from the IDE
bus are 16 bits wide, while the data words written out to the NID as ATM payload
must be 32 bits wide. The three FSMs also shown in Figure 3.2 are responsible for
managing both ports of the RAM, to ensure no captured IDE data are lost during
their trip to the NID. The two counters shown in Figure 3.2 generate the read and
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write addresses for the dual port RAM, with the IDE Snooper FSM tracking the
difference between those addresses to monitor the ring buffer length.

The IDE Bus Snooper RAD Module operates with two clock domains, as il-
lustrated with the dashed line in Figure 3.2. This is done so that the write port
of the ring buffer and the IDE Ring Buffer FSM controlling it may run at a higher
frequencys, i.e., double that of the rest of the module. This allows the data and control
signals sampled from the IDE bus to be over-sampled to increase accuracy. At the
time of this writing, the primary clock frequency for the RAD was 62.5 MHz, making
the doubled frequency 125 MHz. As per Nyquist Sampling Theorem, this is at least
theoretically enough to reliably sample IDE bus signals up to 62.5 MHz, above the
50 MHz specified in [27].

3.2.1 FPX IDE Core Finite State Machine

The IDE Core Finite State Machine is responsible primarily for the UTOPIA interface
between the RAD and NID. This includes managing the following tasks:
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Figure 3.3: Abbreviated State Diagram for FPX IDE Core FSM

e Accept incoming ATM control cells from the NID, read relevant control param-

eters from their payload, and

the control response cells sent

write appropriate responses into the payload of
back to the NID.

e Encapsulate IDE data from the ring buffer into ATM cells and send them out

to the NID.

e Forward incoming ATM cells not destined for the RAD through the IDE Snooper

Module, back to the NID.

Figure 3.3 shows the abbreviated state diagram of the IDE Core FSM. This

diagram shows two separate circuits, which each handle one of the first two tasks

listed above. The left circuit, which has been abbreviated for clarity, handles incoming

control cells from the NID, as well as the control responses sent back to the NID. This

task includes extracting runtime parameters from the control cell payload, enabling or

disabling the IDE Snooper FSM if the control cell requests it, and, if the control cell
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is querying a runtime parameter, writing that value into the payload of the outgoing
control cell response. The right circuit in the state diagram in Figure 3.3 handles the
control of the IDE Snooper FSM and the forwarding of IDE data from the ring buffer
out to the NID. The right circuit also features a state, “IDECell pace,” for inserting
arbitrary wait periods between outgoing cells of IDE data. Pacing between outgoing
cells is necessary, since although the NID and the WUGS switch fabric can accept
cells as fast as the RAD can send them out, the device at the destination port for
these cells possibly could not. Specifically, the device that forwards ATM cells from
the WUGS switch fabric to a workstation for observation and debugging could only
accept cells at a small fraction of the switch fabric bandwidth.

More detail on the format and handling of control cells, as well as methods for
generating such cells and sending them to the FPX, are available in extant literature
on the NCHARGE control software in [4], [24], [25], and [36]. Table 3.1 gives a
synopsis of the control functions the IDE Core FSM provides to NCHARGE.

3.2.2 FPX IDE Snooper Finite State Machine

The IDE Snooper finite state machine is responsible for managing the read port of
the ring buffer shown in Figure 3.2, and for relaying enable/disable commands from
the IDE Core FSM to the IDE Ring Buffer FSM. Figure 3.4 depicts a simplified state
diagram for the IDE Snooper FSM, showing, primarily, the progression of states
involved in outputting 12 32-bit words of IDE data from the ring buffer to fill an
ATM cell. Much of the complexity of this state diagram stems from the logic that
guarantees the ring buffer only output IDE data, once it has at least enough to fill
an ATM cell. This logic can also be seen in the “Buffer Length” and “Data Ready”
signals in Figures 3.2 and 3.4, which are used to notify the IDE Snooper and IDE
Core FSMs, respectively, when enough IDE has been captured in the ring buffer.

3.2.3 FPX IDE Ring Buffer Finite State Machine

The final state machine in the IDE Bus Snooper RAD Module is the Ring Buffer
FSM, which monitors control signals on the IDE bus, and then enables the write port
of the ring buffer when an IDE data burst is detected. Figure 3.5 depicts a simplified
state diagram for the Ring Buffer FSM, showing the progression of states involved
in recognizing when a data burst on the IDE bus begins, and then in capturing each

16-bit data word once the burst is under way. A short note should be made about
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Table 3.1: NCHARGE Commands for IDE Bus Snooper Control Module
Enable and disable the IDE Snooper FSM (makes IDE Ring Buffer FSM
start or stop monitoring IDE bus events)

Tell the ring buffer (via the IDE Snooper FSM) to dump its contents out to
the NID

Set or query following runtime parameters:

e ATM Headers to place on cells with captured IDE data (specifies
destination in switch fabric)

e Pacing value, i.e., wait period to insert between each outgoing IDE data
cell

e Streaming mode, i.e., if the ring buffer should dump its contents as
soon it has enough IDE data to fill an ATM cell, or if it should wait
for a dump command

Query the following values:

e Current value of IDE control signals DSTROBE, HDMARDY,
DMARQ, DMACK, STOP

e Current ring buffer size
o Current write and read addresses

e Total number of ATM cells of IDE data sent out

this FSM’s interaction with other components in the IDE Bus Snooper module, since
many of those components are in a different clock domain. Specifically, all signals
shown in Figure 3.2 which cross the dashed line delimiting the two clock domains
must first pass through a stage of flops upon entering the new domain. This is done
to ensure that any logic in the IDE Bus Snooper module only operates on signals
synchronous to its respective clock, and, thus, that timing integrity is preserved.
Although the IDE bus has 15 control signals, the Ring Buffer FSM only needs
to monitor 5 signals to recognize a data burst that originates from the hard drive:
DMARQ, DMACK, HDMARDY, DSTROBE, and STOP. Of these 5 signals, the
most crucial control signal is DSTROBE, which acts as a double-edged data clock for

the duration of the burst. Figures 3.6 through 3.9 are timing diagrams extracted from
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Figure 3.4: State Diagram for IDE Snooper FSM

[27], which illustrate these signals during an IDE data burst. Most of the complexity
in the state diagram in Figure 3.5 is involved in finding the rising and falling edges
on DSTROBE once the burst is under way, and then enabling the write port of the
ring buffer to capture the value of the 16 IDE data lines at that moment. Because
the IDE bus is not synchronized to the FPX in any way, this actually proves to be a
difficult process when setup and hold times given in [27] are taken into account. To
boost the sampling accuracy of this process, the captured IDE data first pass through
a 2-stage buffer, shown in Figure 3.2. This buffer lets the Ring Buffer FSM select
from three versions of the sampled IDE data value, i.e., from the current clock cycle

and the two previous, depending on which best aligns with the edge on DSTROBE.
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Figure 3.5: State Diagram for IDE Ring Buffer FSM

An ideal version of this component of the Snooper would have included an
asynchronous circuit driven just by the DSTROBE signal, thus guaranteeing syn-
chronization with the IDE data bursts, but as the architecture of the RAD FPGA
does not allow logic to be triggered by a dual-edged clock such as DSTROBE, this
ideal version was not implementable. As explained below, this detail unfortunately
ended up preventing the Snooper from actually reaching its maximum theoretical

transfer rate.

3.3 Physical Design

The physical connection between the hard drive being snooped and the RAD occurs
over the two 40-pin RADTEST connectors on the FPX, which are shown in Fig-
ure 2.5. These two connectors, which together provide 32 signal lines to the RAD,
were originally intended by the FPX designers to provide external taps to arbitrary

signals inside the RAD, for debugging with a logic analyzer. However, the since the
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[/O buffers in the RAD FPGA can be reconfigured to operate as output, input, or
bidirectional buffers, these 32 signal lines happened to provide enough inputs to the
RAD to let it completely sample the IDE bus. Thus, the FPX board could essentially
be used as-is to tap into an IDE bus and snoop its traffic.

However, a non-trivial detail that arose during the design of the Bus Snooper
was the voltage incompatibility between the 3.3V input buffers on the RAD and the
5V IDE bus. This incompatibility led to the design and fabrication of a custom PCB
to hold voltage translation buffers, which would sit between the IDE bus and the
FPX. Figure 3.10 shows the annotated mask for this custom PCB. The red colored
regions represent areas on the top layer of the PCB where metal was left, the blue
regions where metal was left on the bottom layer. The 40-pin connector in the center
of the board is for the IDE bus ribbon cable, with a breakout pattern for the 31
relevant IDE signals shown in the traces that fan out on each side of this connector.
Because all signals tapped from the IDE bus are sampled passively, all signals pass

through the same series of components on the voltage translation board, allowing
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Figure 3.7: Timing Diagram for Data Burst Under Way from IDE Hard Drive [27]

it to be divided into roughly symmetrical quadrants, with 8 or 7 IDE signals each.
The two lower quadrants handle the 16 IDE data lines, and two upper quadrants the
15 relevant IDE control lines. The components which the IDE signals pass through
for voltage conversion (shown in a left-right progression if viewed on the right half
of the board in Figure 3.10) are a 16-pin DIP for in-line termination resistors, a
10-pin strip for pull-up/pull-down resistors, the 5V-3.3V voltage translation buffers
themselves (20-pin DIPs), and finally one of the two 40-pin RADTEST connectors.
The termination and pull-up/pull-down resistors were ultimately removed or shorted,
since they proved to be unnecessary. That is, although these resistors are explicity
required in the ATAPI/IDE specification [27], this PCB was not intended for actually
initiating any IDE bus transactions (meaning it would never drive current into the
IDE bus). Thus, the high input impedance of the voltage translation buffers turned
out to be enough to electrically isolate the PCB from the IDE bus. Indeed, this
electrical isolation has been empirically verified for IDE bus speeds up to 50 MHz,
which was the upper speed limit defined in [27] as of this writing.

Unfortunately, limitations of the hardware used to implement the Bus Snooper,
especially issues with synchronization with the IDE bus, prevent it from working
perfectly. Specifically, the FPGA architecture of the RAD only allows logic sensitive
to single-edged clocks, meaning an asynchronous circuit driven by dual-edge data
clock DSTROBE couldn’t be implemented. Thus, the Snooper has yet to work reliably
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at the 50 MHz IDE bus speed mentioned above. In addition, the hard drive itself
proved unable to sustain a data throughput above 40.5 MB/sec. Nevertheless, the
Snooper hardware in its current state does work reliably at lower IDE bus speeds.
Since the Snooper was constructed for experimentation and proof of concept, these
limitations imposed by the development and testing environment are acceptable to the
author. Later versions of this hardware, of course, will overcome these imperfections,

but that is outside the scope of this thesis.
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Chapter 4

Sequence Alignment on the FPX

4.1 Overview
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Figure 4.1: FPX as Testbed for Hardware-based Searching
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As explained in Chapter 2, the FPX [26] and WUGS [39] infrastructure pro-
vides an excellent testbed for developing and implementing stream-searching applica-

tions in hardware. The Smith-Waterman local alignment algorithm [35], which was

also explained in Chapter 2, was chosen as an example search application to illustrate

the advantages of using the FPX for such development, because the algorithm lends

itself quite well to optimization through parallelism and pipelining. This chapter will

detail the design and implementation of an FPX module, the BioComp Module, that
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is based on the Smith-Waterman algorithm. The following sections will present the
architecture of the BioComp module, detailing its internal components, with a spe-
cial emphasis on the systolic array in the module’s core that computes the DP matrix
elements. A final section will also present a simple, Web-based user interface for the
BioComp module that runs on top of the FPX control software NCHARGE [24].
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Figure 4.2: Diagram of BioComp Internal Components

Figure 4.2 shows a block diagram of the three internal components of the
BioComp FPX module: the Sequence Matcher containing the systolic array, the
Control Module, and the Snapshot Manager.! The Control Module at left receives
incoming cells from the NID, processes control cells to extract runtime parameters,
and routes the payload of target data cells to the Sequence Matcher. In addition,
the Control Module oversees the operation of the Sequence Matcher and Snapshot
Manager, supplying each with runtime parameters extracted from control cells. The
Snapshot Manager at top right handles the extraction of snapshots of the systolic
array and match results from the Sequence Matcher, and then packages those data

into ATM cells for transmission out to the NID. The Sequence Matcher at bottom

!The Control Module and Snapshot Manager are derived from the designs of Maggie Qiong Zhang
and Brian Bruggeman, respectively, done in context of the Spring 2002 Course EE563.
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right contains the systolic array of processing elements which compute DP matrix
values and evaluate potential matches.

A unique feature of this implementation of the Smith-Waterman algorithm,
compared to those mentioned in Chapter 2, is that the BioComp Module accepts pa-
rameters like the gap penalty A, single-character match/mismatch weightings Bi,ascn
and Bpomaten, and the search pattern itself, as runtime parameters that are stored in
registers among the computation logic. Many of the other implementations mentioned
Chapter 2 either have these parameters hard-coded into their computation logic, lim-
iting those implementations’ applicability, or store them in banks of RAM, causing
memory bandwidth limits to constrain the implementations’ speed of operation.

The data-path across the BioComp module progresses from left to right as seen
in Figure 4.2. Incoming ATM cells from the NID enter the Control Module over the
32-bit signal “d_mod_in.” If the cells are target data cells, the Control Module routes
the cells’ 32-bit payload words into the Sequence Matcher over the signal “base_4x,”
and enables the Matcher’s array by asserting “base_en”. Match results are reported
back to the user by the Snapshot Manager, which sends a snapshot of the current
state of the systolic array, along with a match flag, out to the NID over the signal
“d_out_mod,” for eventual routing onto the user’s host workstation. A snapshot
consists of the values in the systolic array’s fourth column, which is shifted out of the
Sequence Matcher row by row over the signal “shift_out.” The match flag indicates
whether the Sequence Matcher found a match in the target data it has processed since
the last snapshot was made. Snapshots would need to extracted from the array and
transmitted back to the host workstation in regular intervals, to permit the user to
track the progress of the BioComp Module across incoming target data. To obtain the
exact alignment that triggered the match flag, the user must take the array columns
outputted in the snapshots before and after that match occurred and regenerate the
DP matrix between those columns. From there, the user can follow the alignment
extraction procedure outlined in Chapter 2.

At the time of this writing, the synthesized BioComp module occupies 99
percent of the gates on the RAD, a Xilinx XCV2000E-6 device. This is with the
systolic array instantiated out to 38 rows. The maximum simulated clock frequency
of the synthesized module is 27 MHz, and the module has been tested to 25 MHz in
actual hardware. Nevertheless, at 25 MHz the module can sustain a search throughput
of 100 million target characters per second, or 100 MB/s. This throughput exceeds the
40.5 MB /sec at which IDE Snooper module, described in Chapter 3, could potentially
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capture IDE data and forward them onto the WUGS switch fabric. However, this
limitation is actually imposed by the hard drive attached to the IDE bus, as the
ATAPI/IDE specification [27] lists the maximum throughput of the IDE bus itself as
100 MB/s.

4.2 Sequence Matcher Core

The BioComp module was designed to accept incoming target data at 32 bits per
clock cycle, i.e., the full width of the data-path between the RAD and the NID,
meaning the Sequence Matcher must accept data 4 bytes at a time. The example
hardware implementation of the Smith-Waterman algorithm shown in Figure 2.3,
by comparison, would only accept target data one character at a time. Thus, the
Matcher’s systolic array must compute 4 columns of the DP matrix at a time, as
depicted in Figure 4.3. This is roughly equivalent to 4 instances of the column in
Figure 2.3 running in parallel, except that computation of each row in the Sequence
Matcher’s array is pipelined to reduce the number of logic stages to traverse in each

clock cycle.
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Figure 4.3: Block Diagram of Systolic Array
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Figure 4.3 shows a conceptual block diagram of the systolic array contained
within the Sequence Matcher. At top of the array is a 32-bit register which accepts a
group of 4 target characters from the Control Module on each clock cycle. To the left
of the array’s lowest order column are 8-bit registers holding the pattern characters,
with each character aligned to a row of the array. The longest pattern which the
array can accept is simply that with the same number of characters as the array has
rows, i.e., a pattern m characters long. As explained below, this value m is actually
parametrized, making the Sequence Matcher’s systolic array scalable up to the gate
capacity of the RAD FPGA.

A width of 16 bits was chosen for all elements in the systolic array, including
for the parameters A, B,,atch, Bnomaten, and the match threshold. Since the target
and pattern characters only affect the value of B(i, ), i.e., whether it is Bjazen Or
Biomaten, the width of the target and pattern characters is independent of the width of
elements in the array. To allow the BioComp Module to operate directly on bytes, e.g.,
8-bit ASCII characters, a width of 8 bits was thus chosen for the target and pattern
characters. Although the BioComp Module is intended to operate on streaming target
data, i.e., such that the length of the target string can be effectively infinite, the signed
16-bit arithmetic of systolic array can indirectly impose a limit. That is, given a long
enough target string sparsely populated by pattern characters, successive additions of
the negative values Byomaten Or A can lead to underflow in an element of the the array,
resulting in a false match result. The converse is also true, i.e., given a long enough
target string densely populated by characters in the pattern, where the pattern is
comprised of the same character, successive additions of the positive value B,,.tcn can
lead to overflow, causing a false non-match result. The first case is possible when the
character set of the target is largely disjoint from that of the pattern, and the second
case is considered trivial.

The 16-bit signals between each row illustrate the data dependencies between
elements in adjacent rows, namely that computation of each element’s value depends
on the values of the element’s North and Northwest neighbors in the row above.
These would correspond to the values d(i —1, 7) and d(i — 1, j — 1) from Equation 2.4,
respectively. Because of these dependencies, the rows of the array must be computed
in pipelined fashion, with each group of 4 target characters cascading down the array,
one row per clock cycle. Note that each row actually has is own 32-bit register for

holding target characters; Figure 4.3 only depicts that of the top row for clarity.
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Also note the Northwest signal must wrap around at the end columns, as the row-
wise pipelining means the Northwest neighbor of the lowest-order row element is the
highest-order element in the row above.

Snapshot data are extracted from the array via the “shift_out” signal to the
right of the array’s highest-order column, with the signal’s branch that extends up to
the top row turning that column into a large rotate register. This arrangement lets
the array return to its original state once the snapshot extraction is complete, and
thus resume computation where it left off.

An unusual feature of this implementation of the Smith-Waterman algorithm
is that it computes the DP matrix in columns rather than in the more customary
diagonals. This design decision was made because of the requirement that the array
accept 4 target characters per clock cycle, meaning each row must perform a cal-
culation that is essentially Equation 2.4 nested to 4 levels deep. The column-wise
organization, along with the row-wise pipelining, allows the logic necessary for this
calculation to be contained completely within each row, simplifying the array’s scal-
ability to the extent that one need only add additional rows to accommodate larger
patterns. Indeed, in the VHDL source code for the BioComp module, the length of
the array is parametrized, with only the gate count of the RAD FPGA limiting the
number of rows that may be instantiated. Patterns longer than the limit imposed
by the size of the FPGA could be accommodated by vertically chaining multiple in-
stances of the array together, i.e., by chaining several FPXs together, and partitioning
the pattern string across the chain. This, however, is beyond the scope of this thesis

and is left to future research.

4.2.1 Pipelined Systolic Array Row

Figure 4.4 shows a single, 4-element row of the Sequence Matcher’s systolic array
in greater detail, enumerating the different logic blocks that perform the alignment
score computation. As with Figure 4.3, the 32-bit registers necessary for cascading
the target characters from row to row are not shown for clarity. A prominent feature
of Figure 4.4 is the three pipeline stages above the 16-bit registers that store each
row element’s value. This pipeline is actually in addition to the row-wise pipelining
mentioned in the previous section, and is necessary because data dependencies be-

tween adjacent elements make the task of computing a row of 4 elements in parallel
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Figure 4.4: Block Diagram of Pipelined Array Row

non-trivial. Indeed, the logic required to do this computation in parallel is quite sim-

ilar in spirit to that found in carry-lookahead adders, in that redundant logic must

be added to avoid

propagation delays that increase with the input width.

maz|d(i—1,0) + A;d(i, —1) + A; B(4,0) + d(i — 1, —1)] (4.1)
max([d(i—1,1) + A;d(i — 1,0) + 24; d(i, —1) + 2A;

B(i,0) +d(i —1,—1) + A: B(i,1) + d(i — 1,0)] (4.2)
max(d(i—1,2) + A;d(i — 1,1) + 24;d(i — 1,0) + 34;

d(i, —1) + 34; B(i,0) + d(i — 1, —1) + 24;

B(i—1,1) +d(i — 1,0) + A;

B(i—1,2) +d(i —1,1)] (4.3)
mazx[d(i—1,3) + A;d(i — 1,2) + 2A;d(i — 1,1) 4 24;

d(i — 1,0) + 34;d(i, —1) + 44; B(,0) + d(i — 1, —1) + 34;



A1
B(i—1,1)+d(i — 1,0) + 24; B(i — 1,2) + d(i — 1,1) + A;
B(i—1,3) +d(i — 1,2)] (4.4)

Equations 4.1 through 4.4 above show the 4-level nested calculation based
on Equation 2.4 for row i, with the additive term A grouped and with the nested
maximum operations flattened. Note that the term d(i — 1, —1), i.e., the Northwest
input for the lowest-order row element, would actually be d(i — 1, 3), with the wrap-
around of that signal between rows shown in Figure 4.3. Also note the term d(i, —1),
i.e., the West input, would actually be d(i, 3), with the wrap-around shown for the
signal “West0_in” in Figure 4.4. Of particular interest is the increasing number of
inputs to the maximum function with the higher order row elements. For example,
the calculation for d(i, 3) would require the maximum to be computed across 9 terms,
which themselves are sums of yet more terms.

Implementing equations 4.1 through 4.4 as-is in hardware would produce a
speed optimal circuit for computing the row elements’ values. Operations with more
than 2 inputs, e.g., the 9-input maximum, would be best implemented with a balanced
binary tree of 2-input maximum operations on an FPGA, because of its architectural
constraints. This would yield a maximum operation 4-stages deep for the term d(i, 3),
plus an additional 2 stages for the additions, assuming no 3-input adders are available,
and assuming the values B(i,0), B(i, 1), B(i,2), B(i,3), 2A, 3A, and 4A are pre-
computed. However, because of the space requirements of this speed optimal circuit,
it was not implemented as-is in the systolic array. Rather, a compromise between

speed and space optimization was sought, as explained below.

F €.

d(i,0) = max[maz[d(i—1,0);d(i, —1)] +A; B(i,0) + d(i — 1, —1)] (4.5)

d(i,1) = maz[maz[F+2A;G+ A;d(i — 1)+ A]; B(i, 1) +d(i — 1,0)] (4.6)
K J

d(i,2) = maz[mazx[H+ A; 1+ A;d(i —1,2) + Al; B(i,2) +d(i — 1,1)] (4.7)
d(i,3) = max[max[K+ A;J+ A;d(i — 1,3) + A]; B(3,3) + d(i — 1,2)] (4.8)

Equations 4.5 through 4.8 now show the expressions 4.1 through 4.4 re-

organized to pick out common factors, and to reduce the final max operation to
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2 terms. Of particular interest are the terms F, H, and K, which are all re-
sults of 2 or 3-input maximum operations. Because these terms occur more than
once, and each time only with a constant A, 24, or 34 added, the result of each
maximum operation (in terms of which of the inputs is selected as the maximum)
would be the same across each equation. That is, if the result of the operation
F = maz[d(i — 1,0);d(i — 1, —1)] is that the first of the two terms is greater, then
the result of F'+ A = max[d(i —1,0) + A;d(i — 1, —1) + A] would be the same. Thus,
when implementing the circuit that performs these maximum operations, one may
save space by implementing all occurrences of F', F + A, F' + 2A, etc. with a single
comparator and then several multiplexers. Indeed, this is precisely the optimization
implemented in the computational logic of each row in the systolic array, specifically
for the terms F', H, and K. The tradeoff for this grouping of common factors is that
more stages of logic are required than for the speed optimal circuit described above,
increasing propagation delay. For the development of the BioComp module, both
speed and space constraints were considered with equal weight, leading to a design
with both speed and space optimizations blended.

A final note on the Sequence Matcher goes to the 3-stage pipelining of the the
per-row calculation illustrated in Figure 4.4. As alluded to earlier, the terms 2A,
3A, and 4A are pre-computed, although not in the pipeline shown above since the
parameter A is loaded into the Sequence Matcher several cycles before the systolic
array would be enabled by the Control Module. The first stage of the pipeline accepts
the 4 incoming target characters ¢y through ¢3 and compares them with the pattern
character p; to calculate B(7,0), B(i, 1), B(i,2), and B(i,3), which are then stored in
registers between the first and second pipeline stages. The second stage then performs
all calculation to reduce the remaining input values to 8 16-bit terms, namely the
inputs to the 4 maximum operations shown in Equations 4.1 through 4.4, and stores
the terms in additional pipeline registers. The third stage performs these remaining 4
maximum operations to obtain the final values for the row elements, and stores these
values in the registers labeled “Cell0” through “Cell3” in Figure 4.4.

The critical path which dictates the maximum clock frequency of the BioComp
Module is in the second pipeline stage shown in Figure 4.4. This path follows the
logic in that stage which computes the inputs to the 4 maximum operations shown
in Equations 4.1 through 4.4. The differential between the propagation delay along
this path and that along any other path in the BioComp Module is great enough

that small modifications made elsewhere in the module have no effect on the overall
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critical path. For example, reducing the width of the target and pattern inputs of the
systolic array to 2 bits per character, i.e., for an optimized encoding of DNA bases,
would indeed save gates in the RAD. However, since the second pipeline stage only
involves 16-bit arithmetic, regardless of the width of the target and pattern inputs,

it would not improve the critical path.

4.3 Control and Match Reporting

4.3.1 BioComp Control Module

The primary task of the BioComp Control Module is to accept and process ATM
control cells sent to the FPX by the NCHARGE software running on the user’s host
workstation. This entails extracting runtime parameters from those cells’ payload, re-
placing the parameters with control acknowledgements, and controlling the Sequence
Matcher and Snapshot Manager based on commands embedded in the control cells.
More detail on the format and handling of control cells, as well as methods for gen-
erating such cells and sending them to the FPX, are available in extant literature on
the NCHARGE control software in [4], [24], [25], and [36]. Table 4.1 gives a synopsis
of the control functions the Control Module provides to NCHARGE.

Because of the scalability of of the Sequence Matcher’s systolic array, the Pat-
tern which the user submits via NCHARGE control cells may be of varying length.
Since the NCHARGE control cell format only allows fixed-width fields, the Pattern
is submitted to the Control Module in 32-bit segments, with an additional field spec-
ifying the segments’ order. The Pattern length specification is necessary when the
user submits a Pattern that is shorter than the length of the systolic array. That is,
for short Patterns, the Sequence Matcher should only monitor match results from a
subset of its array’s rows to prevent reporting possible false matches.

The Snapshot Period specifies the number of target characters that pass before
the Control Module tells the Snapshot Manager to output a snapshot of the systolic
array. Since the Sequence Matcher must halt computation for a snapshot to be
extracted from it, thereby adding overhead and decreasing the BioComp module’s
target data throughput, ideal values for the Snapshot Period would be quite large,

e.g., of the order 10° or greater.



44

Table 4.1: NCHARGE Commands for BioComp Control Module
Set or query following runtime parameters:

e Match Threshold

e Gap Penalty A

e Single-character match weighting Biasch

e Single-character non-match weighting Bomaten
e Length of submitted Pattern

e 32-bit segment of Pattern and segment number
e ATM VCI on incoming target data cells

e ATM Headers to place on outgoing cells with snapshot data (specifies
destination in switch fabric)

e Snapshot Period

Tell the Control Module to begin listening for incoming target data cells

Tell the Control Module to ignore incoming target data cells, i.e., pass them
through

Reset the systolic array and all runtime parameters

Figure 4.5 shows an abbreviated state diagram for the Control Module. Two
circuits make up the the diagram, one for processing incoming control cells and an-
other for routing target data from incoming data cells to the Sequence Matcher. Each
state in the data cell circuit monitors a count of target characters that have passed,
comparing the count to the Snapshot Period. Omnce that period has elapsed, the
Control Module tells the Snapshot Manager to begin extracting a snapshot. As the
incoming data can not stop immediately because of limitations of the data-path be-
tween the RAD and NID, a waiting period must elapse before it is safe to disable the
systolic array. This is explained in more detail in the following section.

Figure 4.6 shows the format of incoming target data cells. In the interest
of optimizing data throughput, the target cells have as bare a format as the ATM
specification will allow, i.e., two 32-bit headers and twelve 32-bit payload words. This



45

Reset_|=0/
soc_biocomp_int<=0 ; tca_mod_in<=0
snapshot<=0 ; base_en<=0 ; start<=0
{data_biocomp _int,base4x,pattern,pattern_num
pattern_length, threshold, b_match, b_nomatch, a,
snapshot_seq, snapshot_count,snapshot_period
snapshot_head1, snapshot_head2} <=0

soc_in=1 & data cell
tca_biocomp_int=1&start=1/

Reset_|=1/
soc_biocomp_int<=soc_in
tca_mod_in<=tca_biocomp_int

soc_biocomp_int<=0
tca_mod_in<=tca_biocomp_int
data_biocomp_int<=0

data_biocomp_int<=d_mod_in

soc_in=0 OR

Start=0 / base_en<=0

Pad_Data_Cell
Start=1/

snapshot<=0

(soc_in=1 & no control cell) OR
(soc_in=1 & control cell &
tca_biocomp_int=0) OR start=0/
soc_biocomp_int<=soc_in
tca_mod_in<=tca_biocomp_int
data_biocomp_int<=d_mod_in
base_en<=0 ; snapshot<=0

soc_in=1 &
tca_biocomp_int=1
control cell &/
soc_hiocomp_int<=1
tca_mod_in<=tca_biocomp_int
data_biocomp_int<=d_mod_in

(null) /
soc_biocomp_int<=soc_in

Process Control Cell:
Read OpCode and control
params from cell.
Set values: start, pattern,
pattern_length, threshold,
b_nomatch, b_match, a,
shapshot_period, snapshot_head1,
snapshot_head?2.
Write controlacks to cell.
(nult) /
soc_biocomp_int<=soc_in
tca_mod_in<=tca_biocomp_int
data_biocomp_int<=d_mod_in

base_en<=0
snapshot<=0

2

Data_Celll

Start=1/
base_en<=1; base4x<=d_mod_in
if (snapshot_count >=snaphost_period)
etc.

<

[

Data_Cell12

(null) /
base_en<=1; base4x<=d_mod_in
if (snapshot_count >=snaphost_period)
then { snapshot<=1;
snapshot_count -= snapshot_period ;
snapshot_seq += 1}
else { snapshot_count += 4; snapshot<=0 }

Figure 4.5: State Diagram for Control Module

still leaves a 14 percent overhead, although that is imposed solely by the switch fabric

of the WUGS itself.

4.3.2 BioComp Snapshot Manager

The Snapshot Manager handles the extraction of snapshot data and match results

from the Sequence Matcher, and packages those data into ATM cells to send back

to the user’s host workstation. Figure 4.7 shows the state diagram for the Snapshot

Manager.

Much of the complexity of the state diagram results from the variable

length of the systolic array, and that the snapshot data must be formatted into

fixed-length ATM cells for transmission back to the host workstation. If a single
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Target Data Cell

ATM Header 1
ATM Header 2
Data Word 0
Data Word 1
Data Word 2
Data Word 3
Data Word 4
Data Word 5
Data Word 6
Data Word 7
Data Word 8

Data Word 11

32bits

Figure 4.6: BioComp Target Data ATM Cell

snapshot doesn’t fit in a single ATM cell, then the Snapshot Manager must output a
group of consecutive ATM cells for each snapshot, with those cells’ format depicted
in Figure 4.8.

A non-trivial detail of the format of the snapshot ATM cells shown in Figure 4.8
is that the row element values of the systolic array are given in descending order, which
is an artifact of the arrangement of the “shift_out” signal of the Sequence Matcher
shown in Figure 4.3. That is, the first snapshot cell will contain the row element values
starting with the highest-order row, i.e., Row m — 1 for a systolic array instantiated
out to m rows, then Row m — 1, and so on until Row 0. Besides the 16-bit element
values extracted as a snapshot from the systolic array, the Snapshot Manager also

outputs the following values in the first ATM cell of snapshot data:

e Snapshot sequence number, indicating which snapshot period this is
e Delta value

e Match indicator

The Delta value measures the number of target characters that still enter the
Sequence Matcher after the Control Module has instructed the Snapshot Manager
to make a snapshot. That is, once the Control Module observes that a snapshot

period has elapsed and activates the Snapshot Manager, the Snapshot Manager halts



Reset_|=0/
soc_out_mod<=0;
tca_biocomp_int<=0
d_mod_out<=0 ; shift<=0
waitcounter<=0 ; EoD<=0
shift_count<=0 ; match_found<=0

Reset_|=1/ @

soc_out_mod<=soc_biocomp _int
tca_biocomp_int <= tca_out_mod
d_out_mod <= data_biocomp_int

Snapshot=0 OR (Snapshot=1 &
tca_out_mod=0) /
soc_out_mod<=soc_biocomp_int
tca_biocomp_int <= tca_out_mod
d_out_mod <= data_biocomp_int
shift<=0

WaitCounter < WaitLength/
WaitCounter ++

(null) / Soc_mod_out <=1
d_out_mod <= snapshot_head

(null)/ Soc_mod_out <=0
d_out_mod <= snapshot_head?|

(null) /
d_out_mod <= snapshot_seq

(null) /
d_out_mod <= snapshot_count

(null) / shift <= 1; EoD <=0
d_out_mod <= match_found
shift_count<=0

Snapshot=1 &tca_out_mod=1 &|
soc_hiocomp_int=0/
WaitCounter<=0
tca_biocomp_int<=0

WaitCounter = WaitLength/
WaitCounter <=0

EoD=1/

d_out_mod <= shift_out

if (shift_count < shift_length)

etc.

(nully /
d_out_mod <= shift_out
if (shift_count < shift_length)
{ data_out <= shift_out ;
shift_count++ ; shift<=1}
else { match_found <=0 ;
shift<=0;EoD<=1;
d_out_mod <=0}

EoD=0/
d_out_mod <

gth)

ft_count < shift_len

shift_out

if (shi

etc.

(null) /
d_out_mod <= shift_out
if (shift_count < shift_length)

(null) / Soc_mod_out <=0
d_out_mod <= snapshot_head2

(null) / Soc_mod_out <=1
d_out_mod <= snapshot_headl

EoD=0/
d_out_mod <= shift_out
if (shift_count < shift_length)

etc.

Figure 4.7: State Diagram for Snapshot Manager
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incoming target data cells by asserting the back-pressure signal “tca_biocomp_int,”

shown in Figure 4.2, which then propagates through the Control Module back to
the NID. Since ATM cells moving between the RAD and NID must be transmitted

whole, the effect of the back-pressure signal would not be seen until the current

incoming target data cell, and potentially another, had completely passed. Thus

the Delta value, which is simply the value of the Control Module’s target character

counter once incoming data has stopped, would be needed by the user to correctly

reconstruct the DP matrix from snapshot data. That is, the user would calculate the

column number, j, of the snapshot data as shown in Equation 4.9, which may then be
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1st Snapshot Cell Proceeding Snapshot Cell(s)
ATM Header 1 ATM Header 1 ATM Header 1
ATM Header 2 ATM Header 2 ATM Header 2
Snapshot Sequence # Unused Cell 22 Unused Cell 10
Snapshot Delta Unused Cell 21 Unused Cell 9
Match Found Flag Unused Cell 20 Unused Cell 8
Unused Cell 31 Unused Cell 19 Unused Cell 7
Unused Cell 30 Unused Cell 18 Unused Cell 6
Unused Cell 29 Unused Cell 17 Unused Cell 5
Unused Cell 28 Unused Cell 16 Unused Cell 4
Unused Cell 27 Unused Cell 15 Unused Cell 3
Unused Cell 26 Unused Cell 14 Unused Cell 2
. Unused Cell 1
Unused Cell O
Unused | Cell 23 Unused | Cell 11 Unused

-
16bits 16bits

Figure 4.8: BioComp Snapshot ATM Cell Format, for a 32-row Array

substituted for the value j shown in Equation 2.4 for reconstructing the DP matrix.
j = Snapshot Sequence Number x Snapshot Period + Delta (4.9)

To minimize the complexity of the Snapshot Manager’s state machine, it simply
the waits the maximum number of cycles that may elapse before the the back-pressure
signal “tca_biocomp_int” would take effect, 17 cycles. In addition, because the Snap-
shot Manager can not begin extracting from the Sequence Matcher until all pipeline
stages of the of the systolic array are idle, an additional wait period of m + 3 cycles
is required, where m is the number of array rows. This makes the wait time after a
snapshot period has elapsed m + 20 cycles. Furthermore, the time required to then
extract the snapshot data and transmit them back to the NID would be ml—;‘ﬂ x 1446
cycles, where the additional 6 cycles is the time required for the de-asserted back-
pressure signal “d_biocomp_int” to reach the NID and take effect. This makes the
total overhead introduced by each snapshot "’1—;31 X 14 +m + 26 clock cycles, hence
the suggestion above to make the Snapshot Period parameter quite large. A larger
Snapshot Period value does, however, increase the off-line computation required to
reconstruct the DP matrix between consecutive snapshots for alignment extraction.

Nevertheless, if the hit rate of the Pattern being sought is expected to be low, this
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off-line computation would be negligible compared to the prospect of constructing

the DP matrix for the entire Target string off-line.

4.3.3 Web-based Interface to BioComp

BioComp Initialization
Flease select the port &, stack &, and modile #,
Fort Number: [5 ] Stack Level: [0 =] Mod Number: 27

Initialization Successful,
i_’lick here to gtart EioComp L istening
Click here to begin sending data

¢ Set Match Parameters (all mumbers are base 10)

Threshold [50
A, gap penalty 18
B for match [9
B for nonmatch F9
Inbound Drata VCI on FPX [124
Outbound Snapshot VICT on FPX [144
Sending VI on fpx2 [145
Recelving VI on fpz2 [155
Snapshot Period 200
Paftern Length |52

Fattern (allowrable characters ATCG, other chars ignored)
PTEG&TCGATEG&TEGﬁTCGﬁTEGGTEGhTCG

Figure 4.9: BioComp Web Interface, Initialization

Figures 4.9 and 4.10 are screen-shots made of a Web-based interface designed to
run on top of the NCHARGE FPX control software, to provide live demonstrations
of BioComp Module’s operation. HTML forms allow the user to submit runtime
parameters to the BioComp module (Figure 4.9) from a Web browser, and to submit
target data and then view the outputted snapshots (Figure 4.10).2 This interface
makes extensive use of the existing NCHARGE software (which indeed already has a
Web interface of its own), and the motivation for its development was to dramatically

tighten the development cycle for the BioComp module.

2The software which parses raw snapshot data into the tabular, human-readable form shown in
Figure 4.10 was written by Brian Bruggeman in the context of the Spring 2002 course EE563.
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Send Data |
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Figure 4.10: BioComp Web Interface, Search Results
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Chapter 5

Performance Comparisons

5.1 Overview

A crucial part of any presentation of high-speed search system is a direct, side-by-
side comparison with the traditional search methods this search system is meant to
replace. Thus, this chapter presents performance data collected for traditional CPU-
based search applications, and points out specifically where the the performance of
these applications suffers from constraints not present in the search system discussed
in this thesis. As mentioned in the thesis outline in Chapter 1, the two CPU-based

search applications selected for these performance test are as follows.

e GNU string-matching tool “grep,” version 2.4.2, freely available at http://gnu.org

e The author’'s C++ implementation of the Smith-Waterman algorithm, meant
to imitate input and output of the Sequence Matcher core of the BioComp FPX
Module (Chapter 4)

The relevant configuration of the host workstation on which the tests were

performed is as follows:

e SMP workstation with two Intel Pentium-III 933 MHz processors *
e 512 MB RDRAM

e Redhat Linux version 7.2 operating system

L¢grep” and the Smith-Waterman implementation were not compiled for multi-processing, thus
their execution time on this machine would be comparable to that on a uniprocessor machine.
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e Promise TX-2 ATAPI/IDE controller

e Seagate ST320414A 20 GB ATAPI/IDE hard drive, formatted with an ext2
file-system

e IDE bus also fitted with an Innotec Design, Inc. ID620a bus analyzer

The two major hurdles to collecting performance data on this workstation
were the precision of execution time measurements derived from the workstation’s
real-time clock, and the lack of synchronization of such execution time measurements
with the IDE bus activity measurements gleaned by the bus analyzer. Both hur-
dles were overcome with relatively straightforward work-arounds. Specifically, the
precision of execution time measurements, which would have been limited to millisec-
onds if derived from the workstation’s real-time clock, were instead derived from the
RDTSC cycle counter proprietary to the Pentium-series processors [18]. This enabled
timing measurements with sub-microsecond precision. The synchronization between
these measurements and the bus analyzer data (made all the more important by the
dramatically increased precision) was then achieved by framing each individual ex-
periment run with a 2-second delay. This allowed the portions of the bus analyzer
data relevant to each experiment run to be easily located, and then grouped with
that run’s execution time measurement.

The experiment runs themselves all used sets of artificially generated search
data files of increasing size. The use of separate files, as opposed to consecutive
executions with the same input file, was necessary to prevent caching operations
in the operating system and the hard drive itself from affecting the performance
measurements. That is, the data files in each experiment run were read after any
cached copies of them stored on the hard drive itself or in RAM had been cleared,
and no data file was read more than once during a run. Thus, the data files came
streaming directly off the hard drive’s platters, preventing read cache, pre-fetching,
or similar operations from affecting the measured execution time. The increasing size
of the input files also allowed the execution time measurements to be plotted against
file sizes, with the derivative of the resulting trend line yielding a sec/byte search
throughput value. This throughput value could then be compared directly against
those of other CPU-based applications, or against that of the BioComp FPX Module
to obtain a quantitative performance gain. An ideal search throughput value, where
processing time of the search application did not affect the throughput, but where
the inherent limitations of the hard drive-CPU data-path shown in Figure 1.1 did
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have an effect, was obtained with the Linux tool “hdparm.” This ideal throughput
value was shown by the bus analyzer to be 40.5 MB/s, which is ideal because there
was actually no searching done. That is, “hdparm” simply read an arbitrary portion
of the hard drive’s contents to test its throughput.

The input files used in all performance tests were ASCII text files containing
128-byte strings of characters delimited by a new-line character. The portions of
the input files that were not matches planted by the author were populated with
a single character. The files ranged in size from approximately 10 KB to 200 MB,
although performance tests involving large numbers of planted matches started with
larger input files to accommodate one planted match per line. The input files were
generated and written to an ext2 file-system stored on the hard drive being tested.
During each performance test, the only activity between the IDE controller and the
hard drive was that relevant to mounting the file-system and reading the input files.
Nothing else was written to or read from the hard drive during the tests. Furthermore,
the input files were generated and written to the hard drive in the same order in which
they would be read during a performance test. This improved the probability that
the input files for a particular test would be written to a roughly contiguous area on

the hard drive’s platters, and thus minimize variation in the hard drive’s access time.

5.2 Grep Performance Tests

The UNIX tool “grep” is a popular string-matching application whose character-
matching kernel is implemented as a state machine to optimize its execution time,
i.e. by streamlining operations such as register copying, single-character comparisons,
and conditional branching. As a result, “grep” can exhibit O(n) execution time,
where n is the size of the input data to be searched. Nevertheless, “grep” is still an
application designed for uniprocessor machines, meaning it will introduce overhead
in processing time. Since “grep” only reports which lines of the input data contain
the specified search query, “grep” can skip portions of the input data that don’t need
to be processed. For example, given a query string m characters long, if the mth
to last character in a line of input does not match the first character of the query,
“orep” will skip ahead to the next line. The author, however, sought to prevent such
optimization, as it takes advantage of the capability for random access to the input
data, and would invalidate any performance comparisons of “grep” with stream-based

hardware search devices like the BioComp Module.
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Although “grep” can perform inexact string-matching, e.g., with wildcards and

regular expressions, the performance tests conducted for this thesis only covered the

less complex operation of exact string-matching. This means the search throughput

results shown in this section represent an upper limit on “grep’s” performance, and

that “grep’s” optimized state machine should only need to perform a minimal number

of signal-character comparisons, i.e., O(n) for an input file n bytes large.

5.2.1 Execution Time vs. Number of Matches

Execution Time (sec)

IN

w

grep execution time vs. number of matches, 10 char query

* — 300 matches, est. rate 3.3982e+07 bytes/sec
X — 200 matches, est. rate 3.3954e+07 bytes/sec
+ - 100 matches, est. rate 3.6381e+07 bytes/sec
0 - 50 matches, est. rate 3.3973e+07 bytes/sec
A - 1 match, est. rate 3.6549e+07 bytes/sec

0.5 1 15 2 25
Input File Size (bytes) % 10°

Figure 5.1: “grep” execution times vs. number matches

Figure 5.1 shows “grep’s” execution time on an array of input files plotted

against the files’ size. The multiple lines represent performance tests with different

numbers of matches to the search query planted in each file. To ensure that grep’s

state machine only encountered matches or partial matches at the points where the
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author planted matches, the remaining portions of the input files were populated with
a single character not equal to the first character of the search query. Since grep only
seeks the first match on each line of the input file, the matches were planted one to a
line, positioned at the end of the line, thus ensuring that “grep” processed every byte
of the input files. For each performance test an approximation of “grep’s” byte/sec
throughput was calculated using linear regression. Those throughput values are listed

in Figure 5.1.
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Figure 5.2: “grep” IDE throughput vs. number matches
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Figure 5.2% shows IDE bus throughput measurements made by the bus analyzer
during the performance tests shown in Figure 5.1. The throughput for each data
point was calculated by dividing the number bytes that traversed the IDE bus in
each “grep” execution by the total time duration of the IDE activity observed during
that execution. Figure 5.2 also lists the weighted average throughput values for
each performance test, where the input files’ sizes were used for weighting. These
throughput values correspond roughly with the estimated throughput values listed
in Figure 5.1. The correspondence, however, is not exact due to the lack of perfect
synchronization between the IDE bus events monitored by the bus analyzer and the
“orep” execution time measurements. Furthermore, block granularity of the input
data, i.e., at the file-system’s level and at the physical level on the hard drive’s
platters, ensured that the amount of input data that traversed the IDE bus during
each “grep” execution was usually greater than the size of the input file. This artifact
has a minimal effect on the average throughput values because of the weightings used,
but it is still present.

The variation in search throughput values listed in Figures 5.1 and 5.2 does not
follow the variation in the number of matches planted in the input files. Furthermore,
since this variation between the individual performance tests is consistent in both
figures, i.e., the performance tests fall into the same groupings in each figure, the

variation is mostly likely that of the hard drive’s access time.

5.2.2 Execution Time vs. Query Length

Figure 5.3 shows “grep’s” execution time on an array of input files plotted against
the files’ size. The multiple lines represent performance tests with query strings
of different lengths. The query strings were composed of non-repeating characters,
with the first character being unequal to the single character that populated the
rest of the input files. The estimated throughput values were computed in the same
fashion as in Figure 5.1, and the planted matches were positioned in the input files
in the same fashion as for the performances tests shown in Figures 5.1 and 5.2.

The “false matches” mentioned in the title of Figure 5.3 indicate that the planted

2The sharp drop in throughput seen in the curve for the performance test with 100 matches
planted in each input file is a result of the fact the author did not have complete control of the IDE
bus. That is, bus events unrelated to the performance tests could occur during the tests themselves,
obscuring the bus throughput data the author sought to extract. That is what happened with this
particular data point, but since the input file affected is relatively small (30 MB), the impact of this
artifact is small.
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matches actually do not match the query string exactly. Rather, they differ at the
last character. This arrangement causes “grep” to not skip any bytes in the input
files through the optimization mentioned above, while at the same time preventing
any match-reporting subroutines which “grep” would otherwise run from affecting

the execution time measurements.

grep execution time vs. query length, 300 false matches
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Figure 5.3: “grep” execution times vs. query length

Figure 5.4 shows the IDE throughput measured by the bus analyzer during
the performance tests shown in Figure 5.3. The weighted average throughput values
were computed in the same fashion as in Figure 5.2.

As with Figures 5.1 and 5.2, the variation in execution time and IDE bus
throughput evident between individual performance test in Figures 5.3 and 5.4 is
not consistent with the varying query string length. This implies that query string

length, like the number of matches, does not have a noticeable effect on “grep’s”
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Figure 5.4: “grep” IDE throughput vs. query length

execution time. This is to be expected for an optimized string-matching application
which minimizes the number of single-character comparisons to O(n) for an input file
of O(n) characters. Furthermore, the bifurcation of data points is consistent in both
Figures 5.3 and 5.4, once again suggesting this variation in execution time and IDE
throughput results from the varying access time of the hard drive.

What is also evident in Figures 5.2 and 5.4 is that even with an optimized
number of single-character comparisons, “grep” still can not reach the ideal IDE
bus throughput observed with the “hdparm” utility. This implies “grep’s” search
throughput is indeed CPU-limited, and likely representative of the upper limit on
exact string-matching throughput possible on a traditional workstation like that il-

lustrated in Figure 1.1.
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5.3 Smith-Waterman Performance Tests

This section presents the results of performance tests run on the author’s C++4 imple-
mentation of the Smith-Waterman algorithm, as a function of pattern length (and,
thus, systolic array length). The Smith-Waterman implementation, dubbed “bio-
comp,” is trivial, in that the algorithm has been implemented as-is, i.e. with O(m xn)
execution time for a target of size n and a pattern of size m, and it mimics the input
and output characteristics of the BioComp FPX Module. Nevertheless, these per-
formance results illustrate quantitatively the performance gain the BioComp Module
enjoys through parallelism. “biocomp” was implemented such that the composition
of the target and pattern string (and the resulting number of matches) would not
alter any conditional branching during execution, thus making the specified pattern
string and composition of the input file irrelevant to the performance results. For
consistency, however, the Snapshot Period was set to 1 MB for all tests, making the
overhead processing time required to parse each snapshot negligible compared to the
total execution time.

Figure 5.5 shows “biocomp’s” execution time on an array of input files plotted
against the files’ size. The multiple lines represent performance tests with patterns
strings of different lengths. The estimated throughput values were computed in the
same fashion as in Figure 5.1.

Figure 5.6 shows the IDE throughput measured by the bus analyzer during
the performance tests shown in Figure 5.5. The weighted average throughput values
were computed in the same fashion as in Figure 5.2.

What is strikingly evident in Figures 5.5 and 5.6 is the dramatic dependency
of “biocomp’s” execution time on the pattern string length. This is hardly a surprise,
as the O(m x n) execution time makes the two values inversely related.

Computing a regression line over the estimated search throughput values from
Figure 5.5 versus the inverse of the pattern string lengths yields a slope of 1.716 x
107 [(target bytes/sec) x (pattern bytes)], with the intercept 3.572 x 10° (target
bytes/sec). This regression line is plotted in Figure 5.7. By this metric, the software
implementation “biocomp” would exhibit a search throughput of 8.088 x 10° target
bytes/sec for a 38-character pattern string (i.e., the maximum pattern length for the
BioComp FPX Module). This gives the BioComp Module, which has a constant
search throughput of 100 MB /sec, a performance gain of 124 over its software imple-

mentation. (This gain is neglecting the 40.5 MB/sec limitation imposed by the hard
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Figure 5.5: Smith-Waterman execution times vs. pattern length

drive itself, mentioned in Chapter 3, which would reduce the gain to 50.1.) Indeed,
given the inverse relationship of “biocomp’s” execution time to the pattern string

length, this gain would only increase with larger pattern strings.

5.4 Conclusion

This section has presented performance results for two string-matching applications
intended for traditional, uniprocessor workstations. The two applications were the
string-matching tool “grep” and the author’s direct implementation of the Smith-
Waterman algorithm, “biocomp.” Both applications, especially “biocomp,” exhibited
a CPU-dependent bottleneck on search throughput that limited their search through-
put. “grep,” for example, reached approximately 90 percent (Figure 5.1) of the ideal
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throughput obtained with “hdparm.” “biocomp,” on the other hand, ended up being

out-performed by its hardware twin by up to a factor of 124.
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Chapter 6

Conclusion and Future Work

6.1 Overview

This thesis has presented the design and performance results of an FPGA-based, high-
speed search system that implements the Smith-Waterman local sequence alignment
algorithm [35]. The motivation for designing and building this system was to demon-
strate the magnitude of search performance gain possible by implementing simple,
stream-searching algorithms on an FPGA, and then by placing that FPGA at a level
much closer than the CPU to the hard drive storing the target data. This system
was implemented on the FPX [26], an FPGA-based component of the WUGS [39],
because the FPX and WUGS provided a platform where large FPGAs could access

a shared data-path over a gigabit/sec interconnection network.

6.2 Contributions

The top-level goal of the work presented in this thesis was to fabricate a functioning
FPGA-based search system out of the FPX/WUGS infrastructure available to the

author. This goal was decomposed into the following sub-tasks:

e Inject data from a hard drive into the WUGS switch fabric, for forwarding onto
an FPX

e Process the hard drive’s data in a fashion that exhibits parallelism impossible

with traditional, CPU-based search applications

e Develop and consolidate paths for control and search result reporting
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e Demonstrate search performance gain of this search system

The first two tasks were realized as FPX modules, each programmed onto its
own FPX. The third was realized by building atop the extant control software for the
FPX and WUGS, to provide a streamlined interface to control functions specific to the
author’s implementation. The fourth goal was realized by measuring execution times
of traditional CPU-based search applications, both with timing functions internal to
the host workstation running the search applications, and with an external device
that monitors IDE bus traffic. These execution times, measured at two points in
the data-path illustrated in Figure 1.1, were then folded together to quantitatively
show where limitations in such a traditional hard drive-CPU data-path impede search
throughput.

The specific contributions made during the work of this thesis are listed below:
e IDE Bus Snooper FPX Module

- Deciphered the ATAPI/IDE Protocol [27] to design a state machine that

recognizes data bursts initiated by the hard drive

- Designed and built a custom PCB with voltage translation buffers to han-

dle voltage incompatibility between the FPX and the IDE peripheral bus

- Separated the Bus Snooper into two clock domains, to allow sampling of

the IDE bus signals at a higher frequency (increase sampling accuracy)

- Developed a control path, both of for the hard drive being snooped and
for the Bus Snooper Module, that allowed data retrieved from hard drive
over both paths (i.e., through the IDE host controller and through the

Snooper) to be viewed side-by-side in real time
e Biological Computation (“BioComp”) FPX Module

- Developed a systolic array-based implementation of the Smith-Waterman
local sequence alignment algorithm [35] that was scalable up to the size of
the FPGA

- Implemented pipelining and parallelism to allow the BioComp Module to
accept search data at the full width of the FPX’s data-path

- Devised a scheme for extracting snapshots of the state of the systolic array
that doesn’t involve a fan-in arrangement that scales with the size of the

array
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- Developed a Web-based interface to the BioComp module that allowed
users to submit runtime parameters and search queries, and then to view

the search results, all in real time
e Performance tests of traditional CPU-based search applications

- Developed a method for reliably measuring CPU execution time down to

sub-microsecond accuracy

- Devised an experiment method that avoids caching effects in the host work-

station’s secondary storage

- Devised a scheme for aligning the CPU execution time measurements made
on the host workstation with IDE bus activity measurements made by an

external device

- Implemented the core of the BioComp FPX Module as-is in software to

provide a direct point of performance comparison

6.3 Summary

The search system includes two primary components, the IDE Bus Snooper and the
BioComp Module, each of which were programmed onto an FPX’s RAD, a Xilinx
XCV2000E-6 device with a 2-million gate capacity. The IDE Bus Snooper monitors
the traffic of an IDE bus connected to the RAD’s test pins by deciphering the AT-
API/IDE protocol [27] to extract the contents of data bursts from an IDE hard drive.
A second FPX with the BioComp Module then receives the captured IDE data over
the WUGS’s interconnection network and performs Smith-Waterman local sequence
alignment, searching for patterns up to 38 characters long. The BioComp Module
was simulated at a maximum clock frequency of 27 MHz, resulting in a target data
throughput of 108 MB/sec, and it was tested in hardware at 25 MHz, with a data
throughput of 100 MB/s. The IDE Snooper was simulated and tested in hardware
at the clock frequency 62.5 MHz, with an on-chip clock doubler in the RAD allowing
the Snooper to sample the IDE bus at 125 MHz. Although this would theoretically
allow the Snooper to sample the IDE bus at its maximum speed of 50 MHz (100
MB/s data transfer rate), limitations imposed by the architecture of the RAD pre-
vent this transfer rate from actually being attained. Furthermore, the IDE hard drive

itself is unable to output data faster than 40.5 MB/sec. Nevertheless, performance
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tests conducted for this thesis show that the search system would out-perform a di-
rect software implementation of the Smith-Waterman algorithm by a factor of 50.1.
Neglecting the 40.5 MB/sec limitation of the hard drive and assuming data can be
delivered to the BioComp Module at its maximum search throughput of 100 MB /sec,
this gain becomes 124. These gains are possible because the search system takes
advantage of the massive parallelism possible in FPGA designs, and because it sits
at a level much closer to the hard drive. Thus, this system serves as a worthwhile
testbed for data-searching devices meant to bypass the /O bottleneck between the
CPU and secondary storage.

6.4 Future Work

Avenues do exist for further improving the performance of this FPGA-based, high-
speed search system, even within the limitations of the FPX/WUGS infrastructure.
For example, the custom, hand-assembled PCB used by the IDE Bus Snooper for
voltage translation could be replaced with a professionally fabricated device (with
better impedance control) that synchronizes the IDE bus signals to the RAD’s clock.
The computation logic in the rows of the BioComp Module’s systolic array could be
more efficiently balanced across its pipeline stages to increase the module’s maximum
clock frequency. In addition, the BioComp Module’s state machines could be modified
to allow multiple FPX’s programmed with the module to operate in parallel, and
thus, accommodate search patterns longer than 38 characters. Future versions of
this search system that migrate beyond the FPX/WUGS architecture would promise
even greater search performance gain. That is, the FPGA programmed with the
BioComp module (or any other search application) could be placed within the hard
drive itself, in the data-path between the drive’s read head and its interface to the host
controller. Besides eliminating inefficient interfaces like the voltage translation stage
of the IDE Bus Snooper, this arrangement would introduce an additional dimension
of parallelism, in that the search system could be replicated for each read head in the
hard drive.
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