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ABSTRACT OF THE DISSERTATION

Optimal Control of Weakly Forced Nonlinear Oscillators

by

Isuru Sammana Dasanayake

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2013

Research Advisor: Professor Jr-Shin Li

Optimal control of nonlinear oscillatory systems poses numerous theoretical and com-

putational challenges. Motivated by applications in neuroscience, we develop tools

and methods to synthesize optimal controls for nonlinear oscillators described by re-

duced order dynamical systems. Control of neural oscillations by external stimuli

has a broad range of applications, ranging from design of oscillatory neurocomputers

to deep brain stimulation for Parkinsons disease. In this dissertation, we investigate

fundamental limits on how neuron spiking behavior can be altered by the use of an

external stimulus (control). Pontryagins maximum principle is employed to derive op-

timal controls that lead to desired spiking times of a neuron oscillator, which include

minimum-power and time-optimal controls. In particular, we consider practical con-

straints in such optimal control designs including a bound on the control amplitude

and the charge-balance constraint. The latter is important in neural stimulations used

to avoid from the undesirable effects caused by accumulation of electric charge due to

external stimuli. Furthermore, we extend the results in controlling a single neuron and

xiii



consider a neuron ensemble. We specifically, derive and synthesize time-optimal con-

trols that elicit simultaneous spikes for two neuron oscillators. Robust computational

methods based on homotopy perturbation techniques and pseudospectral approxima-

tions are developed and implemented to construct optimal controls for spiking and

synchronizing a neuron ensemble, for which analytical solutions are intractable. We

finally validate the optimal control strategies derived using the models of phase re-

duction by applying them to the corresponding original full state-space models. This

validation is largely missing in the literature. Moreover, the derived optimal controls

have been experimentally applied to control the synchronization of electrochemical

oscillators. The methodology developed in this dissertation work is not limited to the

control of neural oscillators and can be applied to a broad class of nonlinear oscillatory

systems that have smooth dynamics.
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Chapter 1

Introduction

Oscillation is a phenomenon that can be observed in various natural and engineered

complex systems. Control of oscillatory dynamics has numerous applications in differ-

ent fields ranging from systems biology to quantum physics. These complex systems

often require an optimal hierarchical organization and dynamical structure, such as

synchrony, for normal operation and are extensively studied in science and engi-

neering [123]. Examples include neural circuitry in the brain [132], sleep cycles and

metabolic chemical reaction systems in biology [48, 89, 30, 99], semiconductor lasers

in physics [34], and vibrating systems in mechanical engineering [5]. Cutting-edge

technologies in science and engineering rely on modeling, analyzing, controlling and

optimizing these increasingly complex dynamical systems. The complexity of these

systems has reached a level that is beyond human comprehension, and hence, existing

control theory has been pushed to the limits of its facility for analyzing and design-

ing these complicated dynamical systems. The large scale and nonlinearity of these

systems poses serious theoretical and computational challenges. Therefore, develop-

ment of new theoretical and computational methods that are capable of dealing with

these complex systems are essential in many of today’s practical applications such as

neurological treatment of Parkinson’s disease and epilepsy in neuroscience [3, 4, 117],

application of optimal waveforms for the entrainment of weakly forced oscillators that

maximize the locking range for a given frequency entrainment range in electrochem-

istry [50, 139], and control of the time-scale adjustment of the circadian systems to

light in biology [136].

In this dissertation, we focus on the optimal control of nonlinear oscillatory systems

motivated by emerging applications in neuroscience, electrochemistry, and biology.
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We capture the dynamics of nonlinear oscillators by the phase models and derive the

optimal inputs for driving them between desired initial and final conditions using the

optimal control theory. The dissertation is organized as follows. In Chapter 1, we

give some motivating applications for optimal control of neurological oscillators and a

brief introduction to oscillatory neurological systems. In the latter part of the chapter,

we present how phase models are constructed and reduced from full state-space dy-

namical models. In Chapter 2, we derive minimum-power controls for spiking neuron

oscillators, based on phase models, at specified time instances with both bounded and

unbounded controls. In Chapter 3 and 4, we derive charge-balanced minimum-power

and time-optimal controls for generic phase oscillators and present several examples

to validate our results. The charge-balanced constraint which eliminates the net

electrical charge accumulation due to external stimuli, is important in neurological

applications to avoid harmful side effects. In Chapter 5, we present more challenging

optimal control problems that involve both coupled and uncoupled ensembles of neu-

ron oscillators. We start with a two-neuron system and use geometric techniques to

synthesize optimal control inputs. We develop a robust computational method based

on homotopy perturbation [51] for construction of optimal controls that elicit simul-

taneous spiking of a neuron ensemble, which is analytically intractable. We compare

the derived optimal controls with pseudospectral method. Finally in Chapter 6, we

give concluding remarks for this work and point out some future research directions.

1.0.1 Motivating Remarks

Control of neurons by external current stimuli has received increased scientific atten-

tion in recent years for its wide range of applications, from the design of oscillatory

neurocomputers to Deep Brain Stimulation (DBS). In these applications efficient ma-

nipulation of the dynamics of neuron population such as synchrony and desynchrony

is compelling.
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Deep Brain Stimulation

DBS is a widely practiced therapeutical procedure for several neurological disor-

ders such as Parkinson’s disease, essential tremor, and dystonia [4, 87]. Involun-

tary tremors in head and limbs, which is caused by the pathological synchronization

of motor control neurons in the basal ganglia and thalamus regions, are common

symptoms in these diseases [18]. In DBS, a series of electrical pulses are applied

to inhibit pathological synchrony among these neurons through surgically implanted

electrodes [85, 93]. In recent years researchers have extensively studied the engineer-

ing problems in DBS, especially the problems related to synchronization and desyn-

chronization phenomena. For example, a system of noisy coupled phase oscillators

are studied, and a demand-controlled deep-brain double-pulse stimulation has been

suggested to desynchronize when synchronization occurs [128]. As an alternative ap-

proach, nonlinear delay feedback control has been used to achieve desynchronization

or synchronization for systems of globally coupled limit-cycle oscillators [69].

Motivated by DBS, we employ the control theory to investigate the optimal strategies

of controlling a neural population with the least possible side-effects. Power mini-

mization of the neurological stimulus is performed for several reasons and benefits.

Minimum energy is desired in all biological applications to minimize the effects to

sensitive biological organs. At the same time, utilization of the minimum-power sig-

nals can increase the battery lifetime of the neurological implant. Hence, it has a

huge advantage from the patient point of view. Patients do not want to go through

the regular surgeries to replace the batteries of the surgical implants, where as they

can use the same units for a longer time due to less power consumption.

Cardiac Pacemaker and Electrical Stimulators for Paralyzed Individuals

The cardiac pacemaker and electrical stimulators for generation of motion in paralyzed

individuals are other applications which employ electric pulses to stimulate nervous

tissues [61]. In cardiac pacemakers design, electric pulses are used to regulate a

patient’s heart rate [71, 72]. In these applications, neurons among a population are

considered as a single oscillator and an external stimulus is used to maintain its

3



periodic behavior in prescribed tolerance, where power and charge minimization of

the external stimulus is critical.

Neurocomputer

The study of thalamo-cortical systems suggests a new architecture for a neurocom-

puter that consists of oscillators having different frequencies and connected weakly via

a common medium forced by an external input [56]. This architecture can be synthe-

sized using voltage control oscillators, optical oscillators, and many other oscillatory

systems. The main difference in the neurocomputer over an ordinary computer is its

ability to perform simple nonlinear transformations in parallel. This feature enables it

to do tasks, such as pattern recognition, that cannot be done efficiently with ordinary

computers. Weak thalamic input, having appropriate frequencies in its power spec-

trum, can dynamically connect any two oscillators, including those that have different

frequencies and would be unlinked otherwise [56]. This property gives a mechanism

to construct a neurocomputer with required interconnections. Therefore the study

of the optimal control of a cluster of neurons gives a systematic way to synthesize

neurocomputers with required inter-connections.

Study of the optimal control of neural oscillators also reflect the role of intrinsic neural

dynamics in determining the time course of synaptic inputs to which a neuron is opti-

mally tuned to respond [90]. Therefore optimal currents of neural oscillators address

the question of how the dynamics of individual neurons determine the processing of

synaptic inputs to produce spikes.

Chemical Computing Devices

Similar to neurocomputers, new generation of chemical computing devices that mim-

ics the operation of human brain can be constructed with a network of electrochemical

oscillators. A fundamental question in constructing a chemical-computer is how to

bring individual chemical oscillators in a small network to a desired condition by global

control without destroying their local behavior. Since various network topologies are
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easy to construct with electrochemical oscillators, they can be used to experimentally

verify the optimal control strategies that we drive for the networks.

Circadian Systems

The design of optimal control on subsequent light exposure may provide a noninva-

sive method to control rhythms in physiology [89]. This method also can provide a

therapeutic approach to time related disorders such as insomnia and bipolar disorder.

Finding the optimal control (light schedule) for human circadian rhythm can enhance

protocols that are practiced in mitigating jet-lag and improving cognitive functions.

1.0.2 Literature Review of Neural Control

Modeling, analysis and control of neural dynamics have drawn significant attention

in scientific community around the world. The early work dates back to the early

1900’s, when Lapicque introduced a model for the frog nerve to compare the data he

obtained from frog nerve stimulation [77]. This model, based on a simple electrical

circuit, lay the foundation for later models of neurons and nervous systems [12]. In

the 1950’s Hodgkin and Huxley developed a mathematical description of the giant

squid axon [52], for which they received the Nobel prize in 1963. Followed by Hodgkin

and Huxley’s breakthrough discovery, many researchers have come up with different

descriptions for neural dynamics. Among them, the work done by Rose and Hind-

marsh [109], Fitzhugh and Nagumo [35, 98] and Morris and Lecar [92] are highly cited

in the scientific literature and greatly appreciated by the research community. Model

reduction techniques such as phase model reduction [86, 76, 11] have been developed

to further simplify these models especially when modeling populations of neurons.

These formulations of neurons as dynamical systems enable researchers to identify

neuron properties by systems theory. For example, properties such as stability and

the existence of periodic solutions for both single neuron oscillators and neural net-

works have been extensively studied. Also identification of the neural characteristics

to ensure asymptotically stable oscillations is made possible by exploring the lo-

cal stability of a homogeneous network of spiking neurons [40]. Phase models have
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been used to analyze the dynamics of coupled and uncoupled neurons. For exam-

ple, existence, stability, and degeneracy of solutions have been studied for a class of

permutation-symmetric globally-coupled phase oscillator networks on N-dimensional

tori [10]. Researchers have also perform a probabilistic analysis of repetitively-firing

neural populations’ responses to simple pulselike stimuli to compute the Phase Re-

sponse Curve (PRC) associated with various neuron models [11]. A generic three-

dimensional bursting neuron model was adapted to model central pattern generator

interneurons and slow and fast motoneurons in insect locomotory systems [41]. The

phase dynamics of weakly coupled Hodgkin-Huxley neurons that exhibit bistability

and out-of-phase locking have been used to show that excitatory coupling can result

in an effective inhibition [47]. Phase models have been used to investigate a chain of

weakly coupled oscillators and to identify the effects of local changes in frequencies,

coupling strengths, and different kind of anisotropy [73].

In recent years, control techniques have been applied to neural systems to perform

various tasks. Brain chaos has been controlled by suppressing unstable fixed points

in bursting neural networks, which increases the periodicity of the neural popula-

tion [117]. Scientists have converted chaotic orbits into desired periodic orbits by

using temporally programmed small controls to improve the systems performance

against some general classes of criteria [24]. Using multilinear feedback techniques,

researchers have controlled the individual phase relationship between coupled oscil-

lators [63]. The singular perturbation method and averaging theory have been used

to show the difficulty of achieving synchrony in type I neuron models, which have

strictly positive PRCs [28]. Optimal controls of neuronal spiking activity for neurons

receiving a class of random synaptic inputs and optimal variances are found for the

diffusion process approximating an integrate and fire model such as Hodgkin-Huxley

model [33]. The optimal variance obtained by this method sets the lowest possible

bound in controlling the stochasticity of neuronal activity [33]. The influence of the

spiking rate and the stimulus duration on noraderneric neurons has also been explored

[11]. Synchronization engineering techniques have been applied to tune complex dy-

namical structures in phase models of oscillators [69]. Optimal control theory such as

Euler-Lagrange equations has been applied for phase model dynamics to synthesize

minimum-power controls to change the rate of their periodic behavior [90].
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1.1 Neurological Oscillators

Neurons are biological cells that are capable of generating, transmitting and pro-

cessing electrical signals. There are about 1011 neurons in human brain that are

responsible for all of the brain functions such as vision, hearing and motor control.

Neurons exhibit short-lasting voltage spikes known as action potentials, which are

sensitive to external current stimuli [60]. The inter-spike time interval of a neuron

characterizes its properties and can be controlled by an external current stimuli. A

neuron often fires periodically when it is injected with a constant current [31]. Spiking

behavior of neurons are captured by various mathematical models. Here we present

two well-popular neuron models namely Hodgkin-Huxley and Morris-Lecar that we

used in our calculations. We choose the parameter values of these neuron models to

exhibit stable periodic motions.

1.1.1 Hodgkin-Huxley Model

The Hodgkin-Huxley model is a four dimensional system that describes the propaga-

tion and initiation of the action potential in squid axon [52]. The dynamics of the

Hodgkin-Huxley neuron are described by a set of differential equations

CV̇ − I = −gNah(V − VNa)m
3 − gk(V − VK)n

4 − gL(V − VL)

ṁ = am(V )(1−m)− bm(V )m

ḣ = ah(V )(1− h)− bh(V )h

ṅ = an(V )(1− n)− bn(V )n

am(V ) = 0.1(V + 40)/[1− exp(−(V + 40)/10)]

bm(V ) = 4 exp[−(V + 65)/18]

ah(V ) = 0.07 exp[−(V + 65)/20]

bh(V ) = 1/(1 + exp[−(V + 35)/10)]

an(V ) = 0.01(V + 55)/[1− exp(−(V + 55)/10)]

bn(V ) = 0.125 exp[−(V + 65)/80],
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where V, I and C are the membrane voltage, current and capacitance per unit area

respectively. Parameters gNa, gk and gl denote the potassium, sodium and leak con-

ductance per unite area, and VK , VNa and Vl denote the potassium, sodium and leak

reversal potentials respectively. Variablesm, h and n are called gating variables which

determine the propagation rate of the action potential. We choose the following pa-

rameter values for this system which give rise to stable periodic orbit.

VNa = 50 mV, Vk = −77 mV, vL = −54.4 mV,

gNa = 120 mS/cm2, gk = 36 mS/cm2, gL = 0.3 mS/cm2,

C = 1 µF/cm2, I = 10 µA/cm2.

1.1.2 Morris-Lecar Model

The Morris-Lecar model was originally proposed to capture the oscillating voltage

behavior of giant barnacle muscle fibers [92]. Over the past years this model has been

extensively studied and used as a standard model for representing many different

real neurons that are experimentally observable. The dynamics of the Morris-Lecar

neuron is described by

CV̇ − I = gCam∞(VCa − V ) + gKω(Vk − V ) + gL(VL − V )

ω̇ = φ(ω∞ − w)/τω(V )

m∞ = 0.5[1 + tanh((V − V1)/V2)]

ω∞ = 0.5[1 + tanh((V − V3)/V4)]

τω = 1/ cosh[(V − V3)/(2V4)],

where V and C represent the membrane voltage and conductance per unit area. I is

the applied current. Parameters gL, gCa and gK are the maximum or instantaneous

conductance value for leak, Ca, and K pathways respectively. VK , VCa and VL denotes

the potassium, sodium and leak reversal potentials and ω is the recovery variable,

which is almost equal to the normalized K ion conductance. Parameters m∞ and ω∞

are the faction of open Ca and K channels at steady state. V1 and V3 are potential

at which m∞ = ω∞ = 0.5 mV . V2 and V3 are the reciprocal of slope of voltage

dependence of m∞ and ω∞. The time constant for the K channel relaxation in

response to changes of voltage is given by τω. We consider the following parameter

8



values for our calculations in proceeding chapters.

φ = 0.5, Ib = 0.09 µA/cm2, VL = −0.01 mV,

v2 = 0.15 mV, V3 = 0.1 mV, v4 = 0.145 mV,

gCa = 1 mS/cm2, Vk = −0.7 mV, VL = −0.5 mV,

gk = 2 mS/cm2, gL = 0.5 mS/cm2, C = 1 µF/cm2.

1.2 Phase Models for Oscillatory Systems

In systems theory, a nonlinear oscillator is described by a set of ordinary differential

equations that have a stable periodic orbit. This system of equations can be reduced

to a single first order differential equation, which is valid, while the state of the full

system remains in a neighborhood of its unforced periodic orbit [11]. This reduction

allows us to represent the dynamics of a weakly forced oscillator by a single phase

variable that defines the evolution of the oscillation. Consider a time-invariant system

ẋ = f(x, I), where x(t) ∈ R
n is the state and I(t) ∈ R is the control, which has an

unforced stable attractive periodic orbit γ(t) = γ(t + T ) homeomorphic to a circle,

satisfying γ̇ = f(γ, 0). We can represent this system in a phase-reduced form as

θ̇ = f(θ) + Z(θ)I(t), (1.1)

where θ is the phase variable, f and Z are real-valued functions, and I(t) ∈ R is the

control [11, 60]. One complete oscillation of the system corresponds to θ ∈ [0, 2π).

The function f gives system’s baseline dynamics and Z is known as the PRC, which

describes the infinitesimal sensitivity of the phase to an external control input. In the

case of neural oscillators, I represents an external current stimulus and f is referred

to the instantaneous oscillation frequency in the absence of any external input, i.e.,

I = 0. Neuron spiking occurs when the oscillator evolves through one complete cycle.

As a convention, the occurrence of spikes takes place at θ = 2nπ, where n = 0, 1, 2, . . ..
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1.2.1 Phase Model Reduction of Nonlinear Oscillator

By definition, phase is an abstract variable used to define the evolution of the oscilla-

tion. Many types of physical, chemical, and biological oscillators can be described by

a phase dynamics. Generally, the phase of the neural oscillator is defined by the time

since the last spike. Phase map maps one period of the oscillation i.e.[0, T ) to the

interval [0, 2π). Figure 1.1 illustrates the phase map for the Hodgkin-Huxley neuron

model given in Section 1.1.1.
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Figure 1.1: (a) Periodic orbit of the Hodgkin-Huxley model, (b) Phase map of the
Hodgkin-Huxley model

1.2.2 Isochrons

The definition of the phase given in 1.2.1 works for oscillators when their state is in the

periodic orbit, but when controlling the oscillations, it is necessary to define the phase

of the oscillation in the neighborhood of the periodic orbit. This is done by defining

the isochrons. Isochrons characterize the points in the state-space which have same

asymptotic phase. We denote the isochron through a point x ∈ γ as N(x). Isochrons

are local invariant sections; that is, for a point y ∈ N(x), x(T, y) = y′ ∈ N(x).

The map y → y′ is a Poincare map for the limit cycle which takes time exactly T

to return. The existence of isochrons allows us to define the phase of any point in

10



the neighborhood of the limit cycle [31]. In practice isochrons are usually calculated

numerically.

1.2.3 Phase Response Curve

Phase response curve describes the infinitesimal sensitivity of the phase to an external

control input. This function can be calculated by applying weak stimulus to perturb

the state of the system at selected points on the periodic orbit. Application of a

stimulus at phase φ of a the oscillator perturb its vector field and assign a new phase

φ′. This new phase value can be calculated by using isochrons. For each phase φ at

which the stimulus is applied, we get a new phase φ′. The change of the phase at

each point as function of the phase, that the stimulus has been applied, is given by

∆(φ) = φ′ − φ.

This function defines the phase response curve or phase resetting curve. Typically,

for neurons, both in experiments and in numerical simulation, the phase change is

measured by the time of the next event. Suppose at phase φ, we give an external

stimulus which changes the time for the next spike form T to T ′. Then the PRC can

be defined as ∆(φ) = T ′ − T . Usually, phase is normalized to be in the range of 0 to

2π. Therefore, we multiply the PRC by factor 2π/T . Figure 1.2 and 1.3 shows the

numerically calculated PRCs for Hodgkin-Huxley and Morris-Lecar neuron models

given in Section 1.1.1 and 1.1.2. There exist some analytical methods to calculate

PRC developed By Kuramato and Malkins. It has been shown that the PRC is the

solution to the adjoint equation obtained from linearizing the state-space oscillatory

system in its periodic orbit[86].

1.2.4 Canonical Phase Models

In this section, we introduce both analytically derived and numerically calculated

phase models for some commonly used neural oscillatory models. These models are

used throughout the dissertation to synthesize different optimal control strategies.
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Figure 1.2: The Hodgkin Huxley PRC for the parameters given in Section 1.1.1

Sinusoidal Phase Model

Consider the nondimensionalized following system with sinusoidal PRC,

θ̇ = ω + zd sin θ · I(t), (1.2)

where ω is the natural oscillation frequency of the neuron and zd is a model-dependent

constant. The neuron described by this phase model spikes periodically with the

period T = 2π/ω in the absence of any external input, i.e., I(t) = 0. Note that this

type of PRC’s with both positive and negative regions can be obtained by periodic

orbits near the super critical Hopf bifurcation[11]. This type of bifurcation occurs for

Type II neuron models like the Fitzhugh-Nagumo model [64].

SNIPER Phase Model

The SNIPER PRC is derived for neurons near a SNIPER bifurcation (i.e., a saddle-

node bifurcation of a fixed point on a periodic orbit) which is found for Type I

neurons [28] like the Hindmarsh-Rose model [109]. Similar to sinusoidal phase model,

the SNIPER phase model is given by

θ̇ = ω + zd(1− cos θ)I(t). (1.3)
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Figure 1.3: The Morris-Lecar PRC for the parameters given in Section 1.1.2

where ω > 0 is the natural frequency of the oscillation and zd > 0 is a model-depended

constant.

Theta Phase Model

The theta neuron phase model is defined by f(θ) = 1 + cos θ + (1 − cos θ)Ib and

g(θ) = (1 − cos θ), where Ib is the neuron baseline current [90]. If Ib > 0, then the

neuron spikes periodically with the period T0 = π/
√
Ib in the absence of any external

current I(t). When Ib ≤ 0, the neuron does not spike autonomously but it can be

fired by the use of an input I(t). Note that when Ib > 0, this neuron model can be

transformed to the SNIPER phase model by a coordinate transformation [90].

Hodgkin-Huxley Phase Model

For the set of parameter values given in Section 1.1.1, the Hodgkin-Huxley neuron

system exhibits periodic motion with natural frequency ω = 0.43 rad/ms. The phase

model of the Hodgkin-Huxley neuron model is given by

θ̇ = ω + Z(θ)I(t) (1.4)
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where ω is the natural frequency of the oscillation and the PRC, Z(θ) is given in

Figure 1.1.1.

Morris-Lecar Phase Model

Similar to Hodking-Huxley phase model, the phase model of the Morris-Lecar neuron

[92] is given by (1.4). It has the natural frequency of 0.283 rad/ms for the parameters

given in Section 1.1.2 and its PRC is depicted in Figure 1.3. It has been observed

through experiments that the PRC for an Aplysia motoneuron is extremely similar

to that of a Morris-Lecar PRC [38].
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Chapter 2

Minimum-Power Controls for

Spiking Neuron Oscillators

In this chapter, we study optimal control problems of spiking neurons whose dynamics

are described by a phase model. We design minimum-power current stimuli (controls)

that lead to targeted spiking times. In particular, we consider bounded control am-

plitude and characterize the range of possible spiking times determined by the bound

which can be chosen sufficiently small within the range that the phase model is valid.

We show that for a given bound, the corresponding feasible spiking times are opti-

mally achieved by piecewise continuous controls. We present analytic expressions with

numerical simulations of the minimum-power stimuli for several phase models. We

demonstrate the applicability of our method by experimentally verifying the derived

control laws with chemical oscillators.

2.1 Introduction

Control of neurons and hence the nervous system by external current stimuli (con-

trols) has received increased scientific attention in recent years for its wide range of

applications from deep brain stimulation to oscillatory neurocomputers [132, 101, 56].

Conventionally, neuron oscillators are represented by phase-reduced models, which

form a standard nonlinear system [11, 135]. Intensive studies using phase models

have been carried out, for example, on the investigation of the patterns of synchrony

that result from the type and architecture of coupling [3, 130] and on the response of

large groups of oscillators to external stimuli [90, 128], where the inputs to the neuron
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systems were initially defined and the dynamics of neural populations were analyzed

in detail.

Recently, control theoretic approaches have been employed to design external stimuli

that drive neurons to behave in a desired way. For example, a multilinear feedback

control technique has been used to control the individual phase relation between cou-

pled oscillators [63] and geometric control theory has been adopted to study control-

lability and optimal control of a network of neurons with different natural oscillation

frequencies [84]. There has been an increase in the demand for controlling not only

the collective behavior of a network of oscillators but also the behavior of each in-

dividual oscillator. It is feasible to change the spiking periods of oscillators or tune

the individual phase relationship between coupled oscillators by the use of electric

stimuli [117, 63]. Minimum-power stimuli that elicit spikes of a neuron at specified

times close to the natural spiking time were analyzed [90]. Optimal waveforms for the

entrainment of weakly forced oscillators that maximize the locking range have been

calculated, where first and second harmonics were used to approximate the phase

response curve (PRC) [49]. These optimal controls were found mainly based on the

calculus of variations, which restricts the optimal solutions to the class of smooth

controls and the bound of the control amplitude was not taken into account.

In this chapter, we apply techniques from optimal control theory to derive minimum-

power controls that spike a neuron at desired time instants. We consider bounded

control amplitude and fully characterize the range of feasible spiking times determined

by the bound. In particular, our optimal control strategies are general so that the

bound can be chosen sufficiently small within the range that the PRC is valid. The

design of such minimum-power stimuli to elicit spikes of neuron oscillators is also of

clinical importance, notably in deep brain stimulation therapy for Parkinson’s disease

and essential tremor [4], where mild stimulations are required. In addition, interest of

reducing the energy consumption in neurological implants such as cardiac pacemakers

makes such optimal designs imperative.

This chapter is organized as follows. In Section 1.2, we introduce the phase model

for spiking neurons and formulate the related optimal control problem. In Section

2.3, we derive minimum-power controls associated with specified spiking times in the

absence and presence of control amplitude constraints, in which various phase models,
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including sinusoidal PRC, SNIPER PRC, and Morris-Lecar PRC, are considered. In

addition, we present examples and simulations to demonstrate the resulting optimal

control strategies. Finally in Section 2.4, we experimentally apply the derived control

laws to chemical oscillators to change their frequency to desired value.

2.2 Optimal Control Problem Formulation

A periodically spiking or firing neuron can be considered as a periodic oscillator gov-

erned by the nonlinear dynamical equation of the form (1.1) This nonlinear dynamical

system is referred to as the phase model for the oscillation. The assumption that Z(θ)

vanishes only on isolated points and that f (θ) > 0 are made so that a full revolution

of the phase is possible. By convention, neuron spikes occur when θ = 2nπ, where

n ∈ N, e.g., θ = 0 or 2π. In the absence of any input I(t), the neuron spikes periodi-

cally with period T at its natural frequency, while the spiking time can be advanced

or delayed in a desired manner by an appropriate choice of I(t).

In this chapter, we study optimal design of neural inputs that lead to the spiking of

neurons at a specified time Tf after spiking at time t = 0. In particular, we find the

bounded stimulus that fires a neuron with minimum power, which is formulated as

the following optimal control problem,

min
I(t)

∫ Tf

0

I(t)2 dt (2.1)

s.t. θ̇ = f(θ) + Z(θ)I(t),

θ(0) = 0, θ(Tf ) = 2π

|I(t)| ≤ M, ∀ t ∈ [0, Tf ],

where M > 0 is the amplitude bound of the current stimulus I(t). Here, we consider

both hyper-polarizing and depolarizing inputs, i.e., I(t) can be positive or negative.

If Tf is equal to the natural spiking time, then no input is needed. We first investigate

the case when the control amplitude is unbounded, upon which the optimal control

with bounded amplitude can be constructed. Note that by applying the control I(t)

repetitively we can obtain 1:1 phase locking pattern with specified spiking time.
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2.3 Derivation of Minimum-Power Controls

We consider the minimum-power optimal control problem of spiking neurons as for-

mulated in (2.1) for various phase models including both models for type I and type

II neurons. Specifically, we examine the examples of sinusoidal PRC, SNIPER PRC,

and Morris-Lecar PRC.

2.3.1 Sinusoidal Phase Model

Consider the following system with sinusoidal PRC as described in Section 1.2.4,

θ̇ = ω + zd sin θ · I(t), (2.2)

where ω is the natural oscillation frequency of the neuron and zd is a model-dependent

constant.

Spiking Sinusoidal Neurons with Unbounded Controls

The optimal current profile can be derived by Pontryagin’s maximum principle [107,

121] (See Appendix A). Given the optimal control problem as in (2.1), we form the

control Hamiltonian

H = I2 + λ(ω + zd sin θ · I), (2.3)

where λ is the Lagrange multiplier. The necessary optimality conditions give

λ̇ = −∂H
∂θ

= −λzdI cos θ, (2.4)

and ∂H
∂I

= 2I + λzd sin θ = 0. Hence, the optimal current I satisfies

I = −1

2
λzd sin θ. (2.5)
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The optimal control problem is then transformed to a boundary value problem, which

characterizes the optimal trajectories of θ(t) and λ(t),

θ̇ = ω − z2dλ

2
sin2 θ, (2.6)

λ̇ =
z2dλ

2

2
sin θ cos θ, (2.7)

with boundary conditions θ(0) = 0 and θ(Tf ) = 2π while λ(0) and λ(Tf) are unspec-

ified.

Additionally, since the Hamiltonian is not explicitly dependent on time, the optimal

triple (λ, θ, I) satisfies H(λ, θ, I) = c, ∀ 0 ≤ t ≤ Tf , where c is a constant. Together

with (2.5), this yields

− z2d
4
sin2 θλ2 + ωλ = c. (2.8)

Since θ(0) = 0, c = ωλ0, where λ0 = λ(0), which is undetermined. The optimal

multiplier can be found by solving the above quadratic equation (2.8), which gives

λ =
2ω ± 2

√

ω2 − ωλ0z
2
d sin

2 θ

z2d sin
2 θ

, (2.9)

and then, from (2.6), the optimal trajectory of θ follows

θ̇ = ∓
√

ω2 − ωλ0z2d sin
2 θ. (2.10)

Integrating the equation (2.10), we find the spiking time Tf in terms of the initial

condition λ0,

Tf =

∫ 2π

0

1√
ω2−ωλ0z2d sin2 θ

dθ. (2.11)

Note that we choose the positive sign in (2.10), which corresponds to forward phase

evolution. Therefore, given a desired spiking time Tf of the neuron, the initial value,

λ0, corresponding to the optimal trajectory of the multiplier can be found via the

one-to-one relation in (2.11). Consequently, the optimal trajectories of θ and λ can

be easily computed by evolving (2.6) and (2.7) forward in time. Plugging (2.9) into

(2.5), we obtain the optimal feedback law for spiking the neuron at time Tf of the
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form

I∗ =
−ω +

√

ω2 − ωλ0z2d sin
2 θ

zd sin θ
, (2.12)

where λ0 is to be calculated according to (2.11).

The feasibility of spiking the neuron at a desired time Tf largely depends on the initial

value of the multiplier, λ0. It is not feasible to have a 2π revolution if λ0 ≥ ω/z2d.

This fact can be seen from Figure 2.1, where the system evolution defined by (2.6)

and (2.7) for zd = 1 rad/nC and ω = 1 rad/ms with respect to different λ0 values

(θ = 0 axis) is illustrated. When λ0 = 0, the spiking period is equal to the natural

spiking period, 2π/ω, and no external stimulus needs to be applied, i.e., I∗(t) = 0,

∀t ∈ [0, 2π/ω]. Tf is a monotonically increasing function of λ0 for fixed ω and zd and,

the average phase velocity decreases when λ0 increases, the spiking time Tf > 2π/ω

for λ0 > 0 and Tf < 2π/ω for λ0 < 0. Figure 2.2 shows variation of the spiking time

Tf with the λ0 corresponding to the optimal trajectories for different ω values with

zd = 1 rad/nC.
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Figure 2.1: Extremals of sinusoidal PRC model with zd = 1 rad/nC and ω = 1 rad/ms

The relation between the spiking time Tf and required minimum energy E =

min
∫ Tf

0
I2(t)dt is evident via a simple sensitivity analysis [13]. Since a small change
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Figure 2.2: Variation of the spiking time, Tf , with respect to the initial multiplier
value, λ0, leading to optimal trajectories, with different values of ω (rad/ms) and
zd = 1 rad/nC for sinusoidal PRC model.

in the initial condition, dθ, and a small change in the initial time, dt, result in a small

change in power according to dE = λ(t)dθ −H(t)dt, it follows that −∂E
∂t

= H = c =

ωλ0 [13]. This implies that E increases with initial time t for λ0 < 0 and decreases

for λ0 > 0. Since the increment of the initial time is equivalent to the decrement of

spiking time Tf , ∂E/∂Tf = ωλ0. Since λ0 < 0 (λ0 > 0) corresponds to Tf < 2π/ω

(Tf > 2π/ω), we see that the required minimum energy increases if we move away

from the natural spiking time.

The minimum-power stimulus I∗ as in (2.12) plotted with respect to time and the

phase for various spiking times Tf = 3, 5, 10, 12 ms with ω = 1 rad/ms and zd = 1

rad/nC are shown in Figure 2.3(a) and 2.3(b), respectively. The respective optimal

trajectories of λ(θ) and θ(t) for these spiking times are illustrated in Figure 2.4(a)

and 2.4(b).
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Figure 2.3: (a) Optimal control for spiking times Tf = 3, 5, 10, 12 ms for sinusoidal
PRC model with zd = 1 rad/nC and ω = 1 rad/ms, and (b) variation of the optimal
control with phase θ for the same spiking times.

Spiking Sinusoidal Neurons with Bounded Controls

In practice, the amplitude of stimuli in physical systems are limited and phase

models are valid for weak inputs, hence we consider spiking the sinusoidal neu-

ron with bounded control amplitude, namely, in the optimal control problem (2.1),

|I(t)| ≤M <∞ for all t ∈ [0, Tf ], where Tf is the desired spiking time. In this case,

there exists a range of feasible spiking periods depending on the value of M , in con-

trast to the previous case where any desired spiking time is feasible. We first observe

that given this boundM , the minimum time it takes to spike a neuron can be achieved

by choosing the control that keeps the phase velocity θ̇ maximum over t ∈ [0, Tf ].

Such a time-optimal control, for zd > 0, can be characterized by a switching, i.e.,

I∗Tmin =

{

M for 0 ≤ θ < π

−M for π ≤ θ < 2π
. (2.13)

Consequently, the spiking time with I∗Tmin for ω 6= zdM can be computed using (2.2)

and (2.13), which yields

TM
min = 2π

√

1

−z2
d
M2+ω2

− 4 tan−1 {zdM/
√

−z2
d
M2+ω2}√

−z2
d
M2+ω2

. (2.14)
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Figure 2.4: (a) Variation of the optimal multiplier, λ∗, with θ, and (b) optimal phase
trajectories following the optimal control for spiking times Tf = 3, 5, 10, 12 ms for
sinusoidal PRC model with zd = 1 rad/nC and ω = 1 rad/ms.

It follows that I∗, given in (2.12), is the minimum-power stimulus that spikes the

neuron at a desired spiking time Tf if |I∗| ≤ M for all t ∈ [0, Tf ]. However, there

exists a shortest possible spiking time by I∗ given the bound M .

Simple first and second order optimality conditions applied to (2.12) find that the

maximum value of I∗ occurs at θ = π/2 for λ0 < 0 and at θ = 3π/2 for λ0 > 0 (see

Figure.2.5(a)) . According to (2.11), λ0 = 0 corresponds to T = 2π/ω and λ0 < 0

(λ0 > 0) corresponds to T < 2π/ω (T > 2π/ω). Therefore, the λ0 for the shortest

spiking time with control I∗ satisfying |I∗(t)| ≤M can be calculated by substituting

I∗ = M and θ = π/2 to the equation (2.12), and then from (2.11) we obtain this

shortest spiking period T I∗

min.

T I∗

min =

∫ 2π

0

1
√

ω2 + zdM(zdM + 2ω) sin2(θ)
dθ. (2.15)

Since I∗ takes the maximum value at θ = 3π/2 for λ0 > 0, we have |I∗| ≤ (ω −
√

ω2 − ωλ0z
2
d)/zd, which leads to |I∗| < ω/zd ≤M for λ0 > 0. This implies that I∗ is

the minimum-power control for any desired spiking time Tf > 2π/ω when M ≥ ω/zd,

and hence for any spiking time Tf ≥ T I∗

min. Shorter spiking times Tf ∈ [TM
min, T

I∗

min)

are feasible but can not be achieved by I∗. Let Tf ∈ [TM
min, T

I∗

min), then there exist
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Figure 2.5: (a) An illustration of the optimal control I∗ with its maximum value oc-
curring at θ = π/2 for c > 0, which gives the shortest possible spiking time subject to
the control bound M . (b) An illustration of the case when I∗ > M with intersections
at θ1, θ2, θ3, and θ4.

two angles θ1 = sin−1[−2Mω/(zdM
2 + zdωλ0)] and θ2 = π − θ1 where I∗ meets the

bound M , illustrated in Figure 2.5(b). When θ ∈ (θ1, θ2), I
∗ > M and we take

I(θ) = M for θ ∈ [θ1, θ2]. The Hamiltonian of the system when θ ∈ [θ1, θ2] is, from

(2.3), H = M2 + λ(ω + zd sin θM). If the triple (λ, θ,M) is optimal, then H is a

constant, which gives λ = (H −M2)/(ω + zdM sin θ). This multiplier satisfies the

adjoint equation (2.4), and therefore I(θ) = M is optimal for θ ∈ [θ1, θ2]. Similarly,

by symmetry, I∗ < −M when θ ∈ [θ3, θ4], where θ3 = π + θ1 and θ4 = 2π − θ1, if

the desired spiking time T ∈ [TM
min, T

I∗

min). It can be easily shown by the same fashion

that I(θ) = −M is optimal in the interval θ ∈ [θ3, θ4]. Therefore, the minimum-power

optimal control that spikes the neuron at Tf ∈ [TM
min, T

I∗

min) can be characterized by

four switchings between I∗ and M as shown in (2.16).

Note that TM
min < T I∗

min. According to (2.2) when M ≥ ω/zd, arbitrarily large spiking

times can be achieved by making θ̇ arbitrary close to zero. Therefore we consider two

cases for M ≥ ω/zd and M < ω/zd.

Case I: M ≥ ω/zd. Since |I∗| < ω/zd ≤ M for λ0 > 0, I∗ is the minimum-power

control for any desired spiking time Tf > 2π/ω, and hence for any spiking time

Tf ≥ T I∗

min. Variation of the maximum value of the control I∗ with spiking time Tf
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Figure 2.6: Variation of the maximum value of I∗ with spiking time Tf for sinusoidal
PRC model with ω = 1 rad/ms and zd = 1 rad/nC.

for ω = 1 rad/ms and zd = 1 rad/nC is depicted in Figure 2.6. Shorter spiking times

Tf ∈ [TM
min, T

I∗

min) are feasible but, due to the boundM , can not be achieved by I∗ since

it requires a control with amplitude greater than M for some t ∈ [0, Tf ]. However,

these spiking times can be optimally achieved by applying controls switching between

I∗ and I∗Tmin.

The minimum-power optimal control that spikes the neuron at Tf ∈ [TM
min, T

I∗

min) is

characterized by four switchings between I∗ and M , i.e.,

I∗M,Tf<T =































I∗ 0 ≤ θ < θ1

M θ1 ≤ θ ≤ θ2

I∗ θ2 < θ < θ3

−M θ3 ≤ θ ≤ θ4

I∗ θ4 < θ ≤ 2π,

(2.16)
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in which θ1 = sin−1[−2Mω/(zdM
2 + zdωλ0)] and θ2 = π− θ1 are the phases where I

∗

meets the bound M , θ3 = π+ θ1 and θ4 = 2π− θ1. The initial value of the multiplier,

λ0, resulting in the optimal trajectory, can then be found according to the desired

Tf ∈ [TM
min, T

I∗

min) through the relation

Tf =

∫ θ1

0

4
√

ω2 − ωλ0z
2
d sin

2 θ
dθ +

∫ π
2

θ1

4

ω + zdM sin (θ)
dθ.
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Figure 2.7: (a) Variation of the spiking time Tf ∈ [TM
min, T

I∗

min) for sinusoidal PRC
model with initial multiplier value, λ0, for the bound of control amplitudeM = 2.5µA
(b) Minimum-power controls with (M = 2.5µA) and without a constraint on the
control amplitude of sinusoidal PRC model for Tf = 2.8 ms, zd = 1 rad/nC, and
ω = 1 rad/ms.

Figure 2.7(a) shows the relation between λ0 and Tf by I∗M,Tf<T for M = 2.5, zd = 1,

and ω = 1. From (2.14) the minimum possible spiking time with this control bound

M = 2.5µA is TM
min = 2.735 ms and from (2.15) the minimum spiking time by I∗ is

T I∗

min = 3.056 ms. Thus, in this example, any desired spiking time Tf > 3.056 ms

can be optimally achieved by I∗ whereas any Tf ∈ [2.735, 3.056) ms can be optimally

obtained by I∗M,Tf<T as in (2.16). Figure 2.7(b) illustrates the bounded and unbounded

optimal controls that fire the neuron at Tf = 2.8 ms, where I∗ is the minimum-power

stimulus when the control amplitude is not limited and I∗M,Tf<T is the minimum-power

stimulus when the boundM = 2.5µA. I∗ drives the neuron from θ(0) = 0 to θ(2.8) =

2π with 13.54 ×10−15A2s of energy whereas I∗M,Tf<T requires 14.13 ×10−15A2s .

Case II : M < ω/zd. In contrast with Case I in the previous section, achieving

arbitrarily large spiking times is not feasible with a bound M < ω/zd. In this case,
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the longest possible spiking time is achieved by

I∗Tmax =

{

−M for 0 ≤ θ < π,

M for π ≤ θ < 2π.

The spiking time of the neuron under this control is,

TM
max = 2π

√

1

−z2
d
M2+ω2

+
4 tan−1 {zdM/

√
−z2

d
M2+ω2}√

−z2
d
M2+ω2

, (2.17)

and the longest spiking time feasible with control I∗ is given by

T I∗

max =

∫ 2π

0

1
√

ω2 + zdM(zdM − 2ω) sin2(θ)
dθ. (2.18)

Then, by similar analysis for Case I, any spiking time Tf ∈ [TM
min, T

I∗

min) for a given

M < ω/zd can be achieved with the minimum-power control I∗M,Tf<T as given in

(2.16), any Tf ∈ [T I∗

min, T
I∗

max] can be achieved with minimum power by I∗ in (2.12),

and moreover any Tf ∈ (T I∗

max, T
M
max] can be obtained by switching between I∗ and

I∗max. The corresponding switching angles are θ5 = sin−1[2Mω/(zdM
2+ zdωλ0)], θ6 =

π − θ5, θ7 = π + θ5 and θ8 = 2π − θ5, and the minimum-power optimal control for

Tf ∈ (T I∗

max, T
M
max] is characterized by

I∗M,Tf>T =































I∗ 0 ≤ θ < θ5

−M θ5 ≤ θ ≤ θ6

I∗ θ6 < θ < θ7

M θ7 ≤ θ ≤ θ8

I∗ θ8 < θ ≤ 2π.

The λ0 resulting in the optimal trajectory by I∗M,Tf>T can be calculated according to

the given Tf ∈ (T I∗

max, T
M
max] via the relation

Tf =

∫ θ5

0

4√
ω2−ωλ0z2d sin2 θ

dθ +

∫ π
2

θ5

4

ω − zdM sin θ
dθ.

Figure 2.8(a) shows the relation between λ0 and Tf by I∗M,Tf>T for M = 0.55µA,

zd = 1 rad/nC, and ω = 1 rad/ms. From (2.17) the maximum possible spiking time
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Figure 2.8: (a) Variation of the spiking time Tf ∈ (T I∗

max, T
M
max] with the initial value of

the multiplier, λ0, for sinusoidal PRC model when M = 0.55µA. (b) Minimum-power
controls with (M = 0.55µA) and without a constraint on the control amplitude for
sinusoidal PRC model with Tf = 10 ms, zd = 1 rad/nC, and ω = 1 rad/ms.

with M = 0.55µA is TM
max = 10.312 ms and from (2.18) the maximum spiking time

feasible by I∗ is T I∗

max = 9.006 ms. Therefore, in this example, any desired spiking

time Tf ∈ (9.006, 10.312] ms can be obtained with minimum power by the use of

I∗M,Tf>T . Figure 2.8(b) illustrates the bounded and unbounded optimal controls that

spike the neuron at Tf = 10 ms, where I∗ is the minimum-power stimulus when the

control amplitude is not limited and I∗M,Tf>T is the minimum-power stimulus when

M = 0.55µA. I∗ drives the neuron from θ(0) = 0 to θ(10) = 2π with 2.193×10−15A2s

of energy whereas I∗M,Tf>T requires 2.327×10−15A2s .

A summary of the optimal (minimum-power) spiking scenarios for a prescribed spiking

time of the neuron governed by the sinusoidal phase model (2.2) is illustrated in Figure

2.9 and 2.10.

2.3.2 SNIPER Phase Model

We now consider the SNIPER phase model as in Section 1.2.4, in which f(θ) = ω

and Z(θ) = zd(1− cos θ), where zd > 0 and ω > 0. That is,

θ̇ = ω + zd(1− cos θ)I(t). (2.19)
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The minimum-power stimuli for spiking neurons modeled by this phase model can be

easily derived with analogous analysis described previously in 2.3.1

Spiking SNIPER Neurons with Unbounded Controls

Employing the maximum principle as in A, the minimum-power stimulus that spikes

the SNIPER neuron at a desired time Tf can be derived and given by

I∗ =
−ω +

√

ω2 − ωλ0z2d(1− cos θ)2

zd(1− cos θ)
, (2.20)

where λ0 corresponding to the optimal trajectory is determined through the integral

relation with Tf ,

Tf =

∫ 2π

0

1
√

ω2 − ωλ0z2d(1− cos θ)2
dθ.
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Figure 2.11: (a) Optimal controls for various spiking times Tf = 3, 5, 10, 12 ms, and
(b) variation of I∗ with phase θ for SNIPER PRC model with zd = 1 rad/nC and
ω = 1 rad/ms.

The minimum-power stimuli I∗ plotted with respect to time and phase for various

spiking times Tf = 3, 5, 10, 12 ms with parameter values zd=1 rad/nC and ω = 1

rad/ms are illustrated in Figure 2.11(a) and 2.11(b), respectively. The corresponding

optimal trajectories of λ(θ) and θ(t) for these spiking times are displayed in Figure

2.12(a) and 2.12(b).

Spiking SNIPER Neurons with Bounded Controls

When the amplitude of the available stimulus is limited, i.e., |I(t)| ≤M , the control

that achieves the shortest spiking time for the SNIPER phase model is given by

I∗Tmin =M > 0 for 0 ≤ θ ≤ 2π, since 1− cos θ ≥ 0 for all θ ∈ [0, 2π]. As a result, the

shortest possible spiking time with this control is TM
min = 2π/

√
ω2 + 2zdωM . Also,

the shortest spiking time achieved by the control I∗ in (2.20) given the bound M is

given by

T I∗

min =

∫ 2π

0

1
√

ω2 + zdM(zdM + ω)(1− cos θ)2
dθ. (2.21)

Similar to the sinusoidal PRC case, the longest possible spiking time of the neuron

varies with the control bound M . If M ≥ ω/(2zd), an arbitrarily large spiking time

is achievable, however, if M < ω/(2zd) there exists a maximum spiking time.
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Figure 2.12: (a) Variation of the optimal multiplier, λ∗, with θ, and (b) optimal phase
trajectories following I∗ for spiking times Tf = 3, 5, 10, 12 ms for SNIPER PRC model
with zd = 1 rad/nC and ω = 1 rad/ms.

Case I: M ≥ ω/(2zd). Any spiking time Tf ∈ [T I∗

min,∞) is possible with control I∗

but a shorter spiking time Tf ∈ [TM
min, T

I∗

min) requires switching between I∗ and I∗Tmin,

which is characterized by two switchings,

I∗M,Tf<T =











I∗, 0 ≤ θ < θ1

M, θ1 ≤ θ ≤ 2π − θ1

I∗, 2π − θ1 < θ ≤ 2π

(2.22)

where θ1 = cos−1 [1 + 2ωM/(zdM
2 + zdωλ0)]. The initial value λ0 which results in

the optimal trajectory is given by,

Tf =

∫ θ1

0

2√
ω2−ωλ0z2d(1−cos θ)2

dθ +

∫ π

θ1

2

ω+zdM(1−cos θ)
dθ.

Figure 2.13(a) illustrates the relation between λ0 and Tf ∈ [TM
min, T

I∗

min) by I∗M,Tf<T

for M = 2µA, zd = 1 rad/nC, and ω = 1 rad/ms. In this case, the shortest feasible

spiking time is TM
min = 2.09 ms and the shortest with the control I∗ is T I∗

min = 3.18

ms. Any spiking time in the interval (2.09, 3.18] ms is achievable by I∗M,Tf<T in (2.22)

with minimum-power. Figure 2.13(b) illustrates the unbounded and bounded, with

M = 2µA, optimal stimuli that fire the neuron at Tf = 3 ms with minimum-power.
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Figure 2.13: (a) Variation of the spiking time Tf ∈ [Tmin, T
′
min) with the initial

multiplier value, λ0, for SNIPER PRC model when M = 2µA. (b) Minimum-power
controls with (M = 2µA) and without a constraint on the control amplitude for
SNIPER PRC model with Tf = 3 ms, zd = 1 rad/nC, and ω = 1 rad/ms.

Case II: M < ω/(2zd). In this case there exists a longest possible spiking time

(i.e., TM
max) which is achieved by I∗max = −M for all θ ∈ [0, 2π]. TM

max is given by

2π/
√
ω2 − 2zdωM . The longest spiking time feasible with the control I∗ as in (2.20)

is given by

T I∗

max =

∫ 2π

0

1
√

ω2 + zdM(zdM − 2ω)(1− cos θ)2
dθ.

Therefore, any spiking time Tf ∈ [TM
min, T

I∗

min) for a givenM < ω/(2zd) can be achieved

with the minimum-power control I∗M,Tf<T as given in (2.22), any Tf ∈ [T I∗

min, T
I∗

max] can

be achieved with minimum power by I∗ in (2.20), and moreover any Tf ∈ (T I∗

max, T
M
max]

can be obtained by switching between I∗ and I∗max, that is,

I∗M,Tf>T =











I∗, 0 ≤ θ < θ2

−M, θ2 ≤ θ ≤ 2π − θ2

I∗, 2π − θ2 < θ < 2π

where θ2 = cos−1 [1− 2ωM/(zdM
2 + zdωλ0)]. The λ0 associated with the optimal

trajectory is determined via the relation with the desired spiking time Tf ,

Tf =

∫ θ1

0

2√
ω2−ωλ0z2d(1−cos θ)2

dθ +

∫ π

θ1

2

ω−zdM(1−cos θ)
dθ.
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Figure 2.14(a) illustrates the relation between λ0 and Tf ∈ (T I∗

max, T
M
max] by I

∗
M,Tf>T

for M = 0.3µA, zd = 1 rad/nC, and ω = 1 rad/ms. In this case, the longest feasible

spiking time is TM
max = 9.935 ms and the longest with the control I∗ is T I∗

max = 8.596

ms. The unbounded and bounded, with M = 0.3µA, optimal stimuli that fire the

neuron at Tf = 9.8 ms with minimum-power are illustrated in Figure 2.14(b).

A summary of the optimal (minimum-power) spiking scenarios for a prescribed spiking

time of the neuron governed by the SNIPER PRC model in (2.19) can be illustrated

analogously to Figure 2.9 and 2.10 for M ≥ ω/(2zd) and M < ω/(2zd), respectively.
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Figure 2.14: (a) Variation of the spiking time Tf ∈ (T ′
max, Tmax] with the initial

multiplier value, λ0, for SNIPER PRC model when M = 0.3µA. (b) Minimum-power
controls with (M = 0.3µA) and without a constraint on the control amplitude for
SNIPER PRC model with Tf = 9.8 ms, zd = 1 rad/nC, and ω = 1 rad/ms.

Many of experimentally determined PRC’s for real neurons are not of sinusoidal or

SNIPER, which are approximations arising from the study of mathematical models

of neuron oscillators close to certain bifurcations. In the following, we apply the

derived optimal control strategies to the Morris-Lecar PRC. Previous work has shown

that the PRC for an Aplysia motoneuron, which can be experimentally observed, is

extremely similar to that of a Morris-Lecar neuron [38]. As a result, we find minimum-

power stimuli for Morris-Lecar neuron with 1 cm2 membrane area to demonstrate the

applicability and generality of our analytic method to practical PRC’s.
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2.3.3 Morris-Lecar Phase Model

The phase model of the Morris-Lecar neuron, described in Section 1.2.4, is given by

θ̇ = ω + Z(θ)I(t) (2.23)

where ω is the natural frequency of the oscillation and the PRC, Z(θ), for the system

and parameters described in Section 1.1.2 is shown in Figure 1.3, calculated by XPP

[29]. It has the natural period T = 22.211 ms and natural frequency ω = 0.283

rad/ms. We can calculate the optimal controls for different spiking times following

the same procedure as we explained sinusoidal PRC and SNIPER PRC in Section

2.3.1 and 2.3.2. Figure 2.15(a) and 2.15(b) show the optimal current stimuli without

an amplitude constraint and the corresponding trajectories for various desired spiking

times that are shorter, close, and longer than the natural spiking time.

With a bounded control amplitude, the feasible range of spiking times is limited. Fig-

ure 2.16 shows the variation of the minimum and maximum spiking time with control

amplitude bound. According to the Figure 2.16 the possible range is [19.623, 26.268]

ms for the bound M = 0.01µA. Figure 2.17(a) and 2.17(b) illustrate the unbound

and bounded (M = 0.01µA) minimum-power controls for the spiking times Tf = 20

ms and 25.5 ms that are shorter and longer than the natural spiking time, respectively.
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Figure 2.15: (a) Optimal currents for various spiking times Tf = 17, 22, 27 ms for
the Morris-Lecar PRC, and (b) corresponding phase trajectories under the optimal
current stimuli.
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Figure 2.16: Variation of the minimum and maximum spiking time with control
amplitude bound for Morris-Lecar PRC.

2.4 Minimum-Power Control for Electrochemical

Oscillators

To experimentally verify the theoretical results developed in this chapter, we use an

electrochemical oscillator to emulate the neuron spiking behavior.

The apparatus that we use in the experiment consists of a nickel and a platinum elec-

trode that are submerged in sulfuric acid, as illustrated in Figure 2.18. The voltage

difference between the two electrodes is controlled by a potentiostat and the control

signal is superimposed on the constant voltage through a Labview interface. When

constant voltage is applied between the two electrodes, the nickel wire undergoes

a dissolution process which produces oscillating currents in the circuit [78]. These

currents can be effectively controlled by the super imposed external voltage signal

which effects the dissolution rate of the system. This system exhibits rich dynamical
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Figure 2.17: (a) Unbounded and bounded minimum-power controls for Tf = 20.0
ms, and (b) Unbounded and bounded minimum-power controls for Tf = 25.5 ms for
Morris-Lecar neuron with M = 0.01µA.

behavior including smooth, relaxational and chaotic oscillators [78, 134]. The phase

response curve of the system has been obtained by applying narrow weak pulses at

different phases to perturb the system in its limit cycle. Then the measured phase

difference due to the pulsing is used to construct the phase response curve as a func-

tion of the phase at which the pulses are received. Close to the Hopf bifurcation

point, where oscillations start when increasing the potentiostat voltage, the experi-

mentally observed phase response curve is nearly sinusoidal (see Figure 2.19). For

the voltages further away from the Hopf bifurcation point, the current waveform is

more relaxational and the phase response curve exhibits higher harmonics.

2.4.1 Experimental Procedures and Results

We demonstrate that the phase of the nickel-sulfuric electrochemical oscillator de-

scribed in Section 2.4 can be controlled to obtain current spikes at a given time

instance Tf . We use the phase equation in the form of (2.23) to capture the transient

dynamics of the oscillator in a quantitative manner. One experimental difficulty in

the application of derived optimal control laws for an electrochemical oscillator is the

lack of system information at the initial phase. This initial phase encodes the starting

time of the open loop control signal. This problem has been solved by the application

of a sinusoidal signal before the optimal control signal to entrain the system to a
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Figure 2.18: Schematic diagram of experimental setup

steady state. At the entrained state, the phase of the oscillator is slaved to the phase

of the sinusoidal forcing signal. At any given time, the phase of the control signal is

known, and in the entrainment state, the phase of the oscillator is approximately π

rads apart from the control signal. This procedure gives a systematic way to estimate

the phase of the oscillator which is not directly observable. The control signal can

be conveniently switched from the sinusoidal entrainment signal to optimal control

signal at the time when the phase of the forcing sinusoidal signal is equal to zero.

This way, the optimal control signal can be start at the phase π of the oscillator and

then, by repeating the control, we can obtain the spiking train with a desired spiking

time.

The experiments thus will performed as follows.

1. First the the natural frequency of the system is measured and the phase response

curve is constructed by the pulsing method.

2. Given the phase response curve Z(θ), natural frequency ω, and the target spik-

ing time Tf we calculate the optimal control using a Matlab code.

3. Sinusoidal forcing signal with amplitude roughly the same as the optimal signal

is applied for 20 cycles to entrained the system.
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Figure 2.19: Phase response curve for Nickel-Sulfuric electro chemical oscillator with
external voltage 1.1 V, R = 1 kΩ

4. After 20 cycles of sinusoidal forcing, at the π phase of the oscillator, the optimal

control has been applied and continued for another ten cycles.

5. Through out step 3 and 4, the current of the electrochemical reaction is recorded

by a LabView setup; and for data processing purposes we record the applied

voltage signal as well.

Two target frequencies ωf = 2π/Tf , which are 10% lower and higher than the natural

frequency, have been tested with the optimal controls for nickel-sulfuric oscillator and

results are depicted in Figure 2.20 and 2.21. In these figures the black horizontal line

indicates the point where the optimal control starts, and as we expected, the controls

turn the frequencies of the oscillation to the desired value almost immediately.

2.5 Conclusion

In this chapter, we studied various phase-reduced models that describe the dynamics

of neuron systems. We considered the design of minimum-power stimuli for spiking a

neuron at a specified time instant that is different from the natural spiking time. We
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Figure 2.20: Frequency detuning from natural frequency ω = 0.454 rad/s to target
frequency 0.9ω = 0.401 rad/s of the nickel-sulfuric electro chemical oscillator.
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Figure 2.21: Frequency detuning from natural frequency ω = 0.454 rad/s to target
frequency 0.9ω = 0.5 rad/s of the nickel-sulfuric electro chemical oscillator.
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formulated this as an optimal control problem and investigated both cases when the

control amplitude is unbounded and bounded, for which we found analytic expressions

of optimal feedback control laws. In particular for the bounded control case, we

characterized the range of possible spiking periods in terms of the control bound. The

bound can be chosen sufficiently small within the range that the PRC of a neuron is

valid. We illustrated that our method can be applied not only to ideal mathematical

models of neuron oscillators but also to experimentally observed PRC’s, such as that

of an Aplysia motoneuron. The derived feasible spiking range for Morris-Lecar phase

model has shown a great qualitatively agreement with experimental results of Aplysia

motoneuron [57]. We experimentally verified the derived control laws for a nickel-

sulfuric oscillator which has similar phase dynamics compared to neural phase models.

The methodology derived in this chapter can be directly applied to design minimum-

power control for steering any type of nonlinear oscillators that can be as in Section

1.2 between desired states. In addition practical design constraints such as the charge-

balance constraint, can be readily incorporated into this framework, which is of clinical

importance as in the DBS for Parkinson’s disease [94]. This addition is considered in

Chapter 3 and 4. Although one-dimensional phase models are reasonably accurate

to describe the dynamics of neurons, studying higher dimensional models is essential

for more accurate computation of optimal neural inputs.
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Chapter 3

Charge-Balanced Time-Optimal

Controls for Spiking Neuron

Oscillators

In this chapter, we investigate the fundamental limits on how the inter-spike time of

a neuron oscillator can be perturbed by the application of a bounded external control

input (a current stimulus) with zero net electric charge accumulation. We use phase

models to study the dynamics of neurons and derive charge-balanced controls that

achieve the minimum and maximum inter-spike times for a given bound on the control

amplitude. Our derivation is valid for any arbitrary shape of the phase response curve

and for any value of the given control amplitude bound. In addition, we characterize

the change in the structures of the charge-balanced time-optimal controls with the

allowable control amplitude. We demonstrate the applicability of the derived optimal

control laws by applying them to mathematically ideal and experimentally observed

neuron phase models, including the widely-studied Hodgkin-Huxley phase model,

and by verifying them with the corresponding original full state-space models. This

work addresses a fundamental problem in the field of neural control and provides a

theoretical investigation to the optimal control of oscillatory systems.

3.1 Introduction

Neurons exhibit short-lasting voltage spikes known as action potentials, which are

sensitive to external current stimuli [60]. The inter-spike time interval of a neuron
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characterizes its properties and can be controlled by use of external stimuli. The

ability to control neuron spiking activities is fundamental to theoretical neuroscience,

and the concept of effective control of such neurological behavior has led to the

development of innovative therapeutic procedures [117, 4] for neurological disorders

including deep brain stimulation (DBS) for Parkinson’s disease and essential tremor

[85, 96], where electrical pulses are used to inhibit pathological synchrony among

neuron populations. In such neurological treatments and other applications such as

the design of artificial cardiac pacemakers [100], it is of clinical importance to avoid

long and strong electrical pulses in order to prevent the tissue from damage, as well as

to maintain zero net electric charge accumulation over each stimulation cycle in order

to suppress undesirable side effects. High levels of electric charge accumulation may

trigger irreversible electrochemical reactions resulting in damage of neural tissues and

corrosion of electrodes [88].

Motivated by these practical needs, in this chapter we study the design of time-optimal

controls for spiking neurons, which lead to the minimum and maximum inter-spike

times and remain charge-balanced. We study the dynamics of neuron oscillators

through phase models which are simplified yet accurate models that capture essen-

tial overall properties of an oscillating neuron [60, 11], and which form a standard

nonlinear control system that characterizes the evolution of an oscillating system by

a single variable, namely, the phase. Phase models are conventionally used to inves-

tigate the synchronization patterns and study the dynamical responses of oscillators

where the inputs to the oscillatory systems are initially defined [11, 3, 128]. Recently,

control-theoretic approaches, including calculus of variations and the maximum prin-

ciple, have been employed to design external stimuli for optimal manipulation of the

dynamic behavior of neuron oscillators. These include the design of minimum-power

controls for spiking a single neuron at specified time instances [90, 21, 23], optimal

waveforms for entrainment of neuron ensembles [140, 139, 49], and open-loop controls

for establishing and maintaining a desired phase configuration, such as anti-phase

for two coupled neuron oscillators [122]. Work on considering stochastic effects to

neuron systems such as the optimal control of neuronal spiking activity receiving a

class of random synaptic inputs has also been investigated [33]. In addition, control-

lability of an ensemble of uncoupled neurons was explored for various mathematically

ideal phase models, where an effective computational optimal control method based

on pseudospectral approximations was employed to construct optimal controls that
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elicit simultaneous spikes of a neuron ensemble [84, 80]. The derivation of time-

optimal and spike timing controls for spiking neurons has been attempted for limited

classes of control functions [95, 18], however, a complete characterization of the opti-

mal solutions has not been provided, and an analytical and systematic approach for

synthesizing the time-optimal controls has been missing.

In this chapter, we derive charge-balanced time-optimal controls for a given bound

on the control amplitude and fully characterize the possible range of neuron spiking

times determined by such optimal controls. Employing techniques from the optimal

control theory, we are able to reveal different structures of the time-optimal controls

that vary with the allowable bound of the control amplitude. Moreover, we validate

these controls derived according to phase models by applying them to the corre-

sponding original full state-space neuron models. As a demonstration, the validation

is performed using the Hodgkin-Huxley equations [52], where the spiking behavior

of the state-space model shows great qualitative agreement with that of the phase

model and which demonstrates the applicability of our theoretical results based on the

phase model. Such an important validation, which is largely lacking in the literature,

allows us to explore the fundamental limits of the phase model as an approximation

of state-space models.

This chapter is organized as follows. In Section 3.2, we consider the time-optimal con-

trol of a general phase oscillator and derive the charge-balanced minimum-time and

maximum-time controls with constrained control amplitude by using the Pontrya-

gin’s maximum principle [107]. In Section 3.3, we apply the derived optimal control

strategies to both mathematically ideal and experimentally observed phase models,

including the well-known SNIPER [11], Hodgkin-Huxley, and Morris-Lecar [92] phase

models, and present the simulated optimal solutions. In Section 3.4, we validate the

obtained optimal controls through the Hodgkin-Huxley model.
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3.2 Charge-Balanced Time-Optimal Control

Recall that, the dynamics of a periodically spiking neuron oscillator can be described

by a phase model of the form [11]

dθ

dt
= ω + Z(θ)I(t), (3.1)

where θ denotes the phase of the oscillation, ω > 0 is neuron’s natural oscillation

frequency, and I(t) ∈ R is the external current stimulus (control) that is applied

to perturb the phase dynamics of the neuron. The real-valued function Z(θ) is the

phase response curve (PRC) that characterizes the infinitesimal change of the phase

to an external control input. Conventionally, the neuron is said to spike when its

phase θ = 2nπ, where n ∈ N. In the absence of any input I(t), the neuron spikes

periodically at its natural frequency, while the spiking time may be advanced or

delayed in a desired manner by the application of an appropriate weak control.

3.2.1 Charge-Balanced Minimum-Time Control

The optimal design of controls that lead to the minimum inter-spiking time of a

neuron subject to a given bound on the control amplitude and the charge-balance

constraint can be formulated as a time-optimal steering problem of the form

min
I(t)

T,

s.t. θ̇ = ω + Z(θ)I(t),

ṗ = I(t), (3.2)

|I(t)| ≤M, ∀ t ∈ [0, T ],

θ(0) = 0, θ(T ) = 2π,

p(0) = 0, p(T ) = 0,

where T is the inter-spiking time required that we wish to minimize and M > 0 is

the bound of the control amplitude. The constraints involving the time-dependent

variable p(t) are equivalent to the charge-balance constraint, i.e., p(t) =
∫ t

0
I(σ)dσ = 0
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with p(0) = p(T ) = 0, guaranteeing that the charge accumulated over a spiking cycle

is zero. Note that the consideration of bounded controls is of fundamental importance

since the phase reduction is no longer valid when the control exceeds a level that can

be considered weak.

Derivation of the Charge-Balanced Minimum-Time Control:

The Hamiltonian of the optimal control problem as in (3.2) is given by

H = λ0 + λ1(ω + Z(θ)I) + λ2I (3.3)

where λ0 ≥ 0, λ1, and λ2 are Lagrange multipliers associated with the Lagrangian,

system dynamics, and the charge-balance constraint, respectively. According to the

optimality conditions of the maximum principle (see A.2), the adjoint variables λ1 and

λ2 must satisfy the time-varying equations λ̇1 = −∂H
∂θ

and λ̇2 = −∂H
∂p

, respectively,

which yields

λ̇1 = −λ1I ∂Z(θ)
∂θ

, (3.4)

λ̇2 = 0, (3.5)

and hence λ2 is a constant. Since the Hamiltonian H is not explicitly dependent on

time and the terminal time is free, we have H ≡ 0, ∀ t ∈ [0, T ], along the optimal

trajectory from the maximum principle.

It is straightforward to see from a rearrangement of (3.3), H = λ0+ λ1ω+ (λ1Z(θ) +

λ2)I, that the control

I∗min =

{

M, φ < 0

−M, φ ≥ 0
(3.6)

minimizes the Hamiltonian H , where

φ = λ1Z + λ2 (3.7)

is called the switching function. Hence, according to the maximum principle, I∗min is

a candidate of the optimal solution to the problem as in (3.2), provided φ = 0 for

a nonzero time period does not occur. This type of controls is known as bang-bang
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controls, which takes only the extremals of the control set, e.g., −M or M in this

case. The switching between −M and M occurs at φ = 0 and the challenge is to

calculate the values of the multipliers λ1 and λ2, which define the function φ and thus

the optimal control sequence.

An alternative candidate of the minimum-time control may exist. If φ ≡ 0 for some

non-zero time interval S = [τ1, τ2], then its derivatives φ̇, φ̈, etc., will also be equal

to zero over S. In this case, the bang-bang control (3.6) may not be optimal. Such a

control that forces the switching function φ and all of its derivatives to vanish over a

time period is known as a singular control [6], and it can be calculated according to

the following fashion. When φ = 0, φ̇ = 0, φ̈ = 0, . . ., for a given time interval S, we

have

φ = λ1Z + λ2 = 0 (3.8)

and then, by substituting from (3.1), (3.4), and (3.5), the function φ̇ is given by

φ̇ = λ1ω
∂Z

∂θ
= 0 (3.9)

which yields ∂Z
∂θ

= 0 because ω > 0 and λ1 6= 0. The latter is due to the non-triviality

condition of the maximum principle, i.e., (λ0, λ1, λ2) 6= 0, since λ2 = 0 if λ1 = 0 from

(3.8), which leads to λ0 = 0 from (3.3) as H ≡ 0. Therefore, λ1 6= 0 holds along the

optimal trajectory and ∂Z
∂θ

= 0 defines a singular trajectory, i.e., the trajectory of the

system following a singular control. As in the calculation of φ̇, the second derivative

φ̈ can be obtained using (3.1) and ∂Z
∂θ

= 0 to get

φ̈ = λ1ω
∂2Z

∂θ2
(ω + ZI). (3.10)

It is clear from (3.10) that if ∂2Z
∂θ2

6= 0, the control that makes φ̈ = 0 is given by

Is = −ω/Z. In the case when ∂2Z
∂θ2

= 0, we need to calculate
...
φ in order to get the

singular control Is. However, no matter how many derivatives are used, the singular

control is given by the same form, Is = −ω/Z.

If a singular trajectory exists, then one must examine whether it is “fast” or “slow”

compared to the bang-bang trajectory in order to determine the minimum-time con-

trol. Suppose that the singular control Is = −ω/Z is admissible over a nonzero time

interval S = [τ1, τ2]. Then, from (3.1) the phase velocity is equal to zero, i.e., θ̇ ≡ 0,
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over S by the application of Is. This implies that the singular trajectory is slower

than any feasible trajectory along which θ̇ ≥ 0 over S. Therefore, the charge-balanced

control that spikes neurons in minimum time is of the bang-bang form.

Computation and Synthesis of the Charge-Balanced Minimum-Time Con-

trol:

Because the minimum spiking time of the neuron system as in (3.1) is achieved by a

bang-bang control, it remains to calculate the switching points in order to synthesize

this time-optimal control. Since φ = 0 holds at the switching points, according to

(3.8), these points are defined via the inverse function of the PRC,

θs = Z−1

(

−λ2
λ1

)

. (3.11)

In addition, with the Hamiltonian condition H ≡ 0, the value of the multiplier λ1

is given by λ1 = −λ0

ω
at these switching points. Without loss of generality, we let

λ0 = 1, which leads to λ1 = − 1
ω
. Applying this to (3.11) results in

θs = Z−1(α) = Z−1 (λ2ω) , (3.12)

where λ2 and ω are both constants. Let Z−1(α) have n solutions in the interval (0, 2π)

given by θ1, θ2, . . . θn, and define θ0 = 0 and θn+1 = 2π. Then, if we start with the

control I =M , the charge-balance constraint gives rise to the condition

0 =

∫ T

0

I(t)dt =

i=n
∑

i=0

∫ θi+1

θi

(−1)iM

ω + (−1)iZ(θ)M
dθ (3.13)

and the total time T under this bang-bang control is represented by

T =

i=n
∑

i=0

∫ θi+1

θi

1

ω + (−1)iZ(θ)M
dθ. (3.14)

Equation (3.13) together with the switching conditions Z(θi) = α for i = 1, 2, . . . n

define n+1 equations of n+1 variables, {θ1, θ2, . . . θn, α}. This system of equations can

be solved to get the set of optimal switching angles, denoted as SM , and the constant

47



α. Similarly, if we start with the control I = −M , by substituting M with −M in

(3.13) we obtain the other set of solutions, denoted as S−M . The bang-bang control,

determined by the set of switching angles, which results in the shorter spiking time

is the charge-balanced minimum-time control, while the opposite case is a candidate

for the charge-balanced maximum-time control.

Alternatively, given the two sets of switching angles, the optimal switching sequence

can be determined by computing φ̇ at the switching points. We denote the vector

fields corresponding to the constant bang controls I(t) ≡ −M and I(t) ≡ M by

X = ω −MZ and Y = ω +MZ, respectively, and call the respective trajectories

corresponding to them as X- and Y - trajectories. A concatenation of an X-trajectory

followed by a Y -trajectory is denoted by XY , while the concatenation in the reverse

order is denoted by Y X . If φ̇ < 0 at a switching point, then the X to Y switch is

optimal according to the switching law (3.6), and similarly if φ̇ > 0, then the Y to X

switch is optimal. Since λ1 = −1/ω at the switching points, we have

φ̇ = λ1ω
∂Z

∂θ
= −∂Z

∂θ
. (3.15)

Therefore, the value of ∂Z
∂θ

at the switching points defines the switching type. If
∂Z
∂θ
> 0, an X to Y switch is optimal and if ∂Z

∂θ
< 0, a Y to X switch is optimal.

3.2.2 Charge-Balanced Maximum-Time Control

(CaseI: Bang-Bang Control)

When the control amplitude is limited by M < min
{
∣

∣

ω
Z(θ)

∣

∣ : θ ∈ [0, 2π)
}

, singular

controls are not admissible since Is = −ω/Z as shown in Section 3.2.1. Therefore,

the maximum-time control is given by the bang-bang form

I∗max =

{

−M, φ ≤ 0

M, φ > 0.
(3.16)

where φ is defined as in (3.7). The optimal switching sequence is determined between

SM and S−M , whichever results in longer spiking time. Another way to determine the
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optimal switching sequence is by evaluating ∂Z
∂θ

at the switching points as described

in Section 3.2.1. When ∂Z
∂θ

> 0 at a switching point, a Y to X switch is optimal,

while when ∂Z
∂θ
< 0, an X to Y switch is optimal.

(CaseII: Bang-Singular-Bang Control)

When singular controls are admissible, that is, when M ≥ min
{
∣

∣

ω
Z(θ)

∣

∣ : θ ∈ [0, 2π)
}

,

the maximum-time control is a combination of bang and singular controls (see the

examples in Section 3.3.1 and 3.3.2). The procedure of the optimal control synthesis

is to choose a bang control that drives the system to a singular trajectory (a system

trajectory following a singular control), staying on that trajectory, and then exiting

at the point from which a bang control can steer the system to the desired terminal

state. Examples involving the construction of charge-balanced minimum-time and

maximum-time optimal controls are illustrated in Section 3.3.

3.3 Examples

We now apply the derived optimal control strategies to several commonly-used phase

models characterized by various PRC’s, including mathematically ideal and experi-

mentally observed phase models. These examples demonstrate the applicability of

our optimal control methods to manipulate neuron dynamics. We emphasize that

these optimal controls are designed with respect to a given bound of the control am-

plitude, so that they can be made practical and satisfy the weak forcing assumption

in the phase model.

3.3.1 SNIPER Phase Model

The SNIPER phase model is characterized by a type I PRC and is of the form [11]

θ̇ = ω + zd (1− cos θ)I, (3.17)
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where ω is the natural oscillation frequency of the neuron, zd is a model-dependent

constant, and I is the external stimulus.

Before calculating the minimum- and maximum-time spiking controls for the SNIPER

phase model, we first examine the existence of singular trajectories. Recall from (3.9)

that the singular trajectory is defined by ∂Z
∂θ

= 0, which yields

zd sin θ = 0.

Therefore, there exist three possible singular trajectories (in this case singular points),

θ = 0, θ = π, and θ = 2π. The points θ = 0 and θ = 2π are infeasible singular points,

at which the nonzero phase velocity, θ̇ = ω, immediately forces the system away

from these points, Hence, θs = π is the only possible singular point, and the singular

control I = −ω/Z(θs) = −ω/(2zd) yields θ̇ = 0 at θs, making the system stay at θs.

Charge-Balanced Minimum-Time Control for SNIPER Phase Model:

Since the charge-balanced minimum-time control takes the bang-bang form as shown

in Section 3.2.1, the switching points are given from (3.12) by

θs = cos−1

{

1− ωλ2
zd

}

. (3.18)

The cosine function has two solutions in [0, 2π) and thus there are two switching

points θ1 = γ and θ2 = 2π−γ with γ ∈ [0, π). Because λ1 = −1/ω for both switching

points and the derivative of the switching function φ̇ = −zd sin θ < 0 for θ ∈ (0, π),

if a switch occurs on the interval (0, π), it will be X to Y . Reversely, if a switch

occurs on (π, 2π), then it will be Y to X because φ̇ > 0 for θ ∈ (π, 2π). It follows

that an XYX trajectory is optimal for achieving the minimum inter-spike time. The

parameter γ that defines the switching points is calculated using the charge-balance

constraint as in (3.13) by solving R(M, γ) = 0, where

R(M, γ) =

∫ γ

0

−M
ω − zd(1− cos θ)M

dθ +

∫ π

γ

M

ω + zd(1− cos θ)M
dθ. (3.19)
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Figure 3.1: The charge-balanced minimum-time control and the corresponding phase
trajectory for the SNIPER phase model with zd = 1, ω = 1, and M = 0.7.

Then, the optimal control is given by

I∗min =











−M, 0 ≤ θ < θ1,

M, θ1 ≤ θ ≤ θ2,

−M, θ2 < θ ≤ 2π,

(3.20)

and by following (3.14) the time required to spike the neuron, namely, to reach θ = 2π,

is given by

T =

∫ γ

0

4

ω − zd(1− cos θ)M
dθ. (3.21)

Figure 3.1 shows the charge-balanced minimum-time control and the corresponding

phase trajectory for the SNIPER phase model with zd = 1, ω = 1, and M = 0.7.

Charge-Balanced Maximum-Time Control for SNIPER Phase Model:

There are two control scenarios for maximizing the spiking time of a SNIPER neuron

depending on the control amplitude.

(Case I: M < ω
2zd

) If the bound of the control amplitude M < | ω
Z(θ)

| = | ω
zd(1−cos θ)

| <
ω
2zd

, then there exist no admissible singular controls and the maximum-time control
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Figure 3.2: The charge-balanced maximum-time control and the corresponding phase
trajectory for the SNIPER phase model with zd = 1, ω = 1, andM = 0.4 < ω

2zd
= 0.5.

takes the bang-bang form as described in Section 3.2.2. In this case, there are two

switches and the Y XY trajectory is optimal. The maximum-time control is given by

I∗max =











M, 0 ≤ θ < θ1,

−M, θ1 ≤ θ ≤ θ2,

M, θ2 < θ ≤ 2π,

(3.22)

where θ1 = β, θ2 = 2π−β, and the parameter β is obtained by solving R(−M,β) = 0

as defined in (3.19). Figure 3.2 illustrates the charge-balanced maximum-time control

and the corresponding phase trajectory for the SNIPER phase model with zd = 1,

ω = 1, and M = 0.4 < ω
2zd

= 0.5.

(Case II:M ≥ ω
2zd

) In this case, the system can be driven along the singular trajectory

which is optimal (slower than the bang control), and the maximum-time control takes

the bang-singular-bang form. Because, for example, when θ ∈ (0, π), the derivative of

the switching function φ̇ = −zd sin θ < 0, and then the Y X trajectory is a candidate

for optimality if a switch occurs. However, following an X-trajectory with I = −M ≤
−ω
2zd

, the singular point θ = π is unreachable. Hence, switching in the interval (0, π)
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is not allowed, and the Y -trajectory is optimal for θ ∈ [0, π). The same reasoning

applies for the regime θ ∈ (π, 2π], where Y -trajectory again is optimal. As a result,

the optimal control is of the “Y -singular-Y ” form given by

I∗max =











M, 0 ≤ θ < π,

− ω
2zd
, θ = π,

M, π < θ ≤ 2π.

(3.23)

Because θ̇ = 0 holds along the singular trajectory (in this case the singular point

θs = π), the time duration over which the system stays on it is calculated according

to the charge-balance constraint. Let t1 and t2 denote the times for which the first

bang control and the singular control are applied, respectively. Since t1 is the time

that the system takes to reach θs = π by a Y -trajectory, we have

t1 =

∫ π

0

1

ω + zd(1− cos θ)M
dθ. (3.24)

By symmetry, the amount of time that the system takes following a Y -trajectory from

θ = π to θ = 2π is also t1. Then, t2 is given by

t2 =
4Mzdt1
ω

in order to fulfill the charge-balance constraint. Now the charge-balanced maximum-

time control can be stated in terms of time as

I∗max =











M, 0 ≤ t < t1,

− ω
2zd
, t1 ≤ t ≤ t1 + t2,

M, t1 + t2 < t ≤ t2 + 2t1.

(3.25)

Figure 3.3 shows the maximum-time charge-balanced control and the corresponding

phase trajectory for the SNIPER phase model with zd = 1, ω = 1, and M = 0.7 ≥
ω
2zd

= 0.5.

In the following, we demonstrate the robustness of our analytical method to construct

optimal controls for spiking neurons of arbitrary practical PRCs through the Hodgkin-

Huxley and Morris-Lecar phase models.
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Figure 3.3: The maximum-time charge-balanced control and corresponding phase
trajectory for the SNIPER phase model with zd = 1, ω = 1, and M = 0.7.

i 1 2 3 4 5 6 7 8
ai 0.09176 0.07462 0.03807 0.02425 0.01747 0.006474 0.002752 0.0008111
bi 1.002 1.996 3.002 0.5 3.747 3.747 6.228 7.651
ci 2.609 -1.605 0.7233 0.5148 3.552 -0.7648 0.6429 -4.726

Table 3.1: The coefficients of the equation (3.26) for the Hodgkin-Huxley PRC.

3.3.2 Hodgkin-Huxley Phase Model

For the set of parameter values given in Section 1.1.1, the Hodgkin-Huxley system

exhibits periodic motion with natural frequency ω = 0.43 rad/ms. Its PRC and

the first and second derivatives of the PRC are depicted in Figure 3.4. To proceed

the calculations, we approximate the numerically obtained PRC with eight harmonic

terms given by

Z(θ) =
8
∑

i=1

ai sin(biθ + ci), (3.26)

where the coefficients ai, bi and ci are obtained by least squares fit and given in Table

3.1. In this case, there are two possible singular points, θs,1 = 3.34 and θs,2 = 4.58,

satisfying ∂Z(θ)/∂θ = 0. The charge-balanced minimum-time control, which is of the
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Figure 3.4: The Hodgkin-Huxley PRC Z(θ) and its derivatives, dZ
dθ

and d2Z
dθ2

Y XY form, and the resulting phase trajectory for the control amplitude bound M =

0.7µAcm−2 are shown in Figure 3.5. The charge-balanced maximum-time controls

can take the bang-bang or the bang-sigular-bang form depending on the bound M .

The cases for M = 0.7µAcm−2 and M = 3.0µAcm−2 are illustrated in Figures 3.6

and 3.7 respectively. The derivations of these optimal controls are given in following

sections.

Charge-Balanced Minimum-Time Control for Hodgkin-Huxley Phase Model

The Hodgkin-Huxley PRC given in Figure 3.4 has at most two singular trajectories

(points), θs,1 = 3.34 and θs,2 = 4.58, calculated by the condition ∂Z(θ)
∂θ

= 0. According

to the shape of this PRC, there exist at most two switching points satisfying Z(θ) =

α, where α is a constant defined in (3.12). Since the minimum-time control takes

the bang-bang form as shown in Section 3.2.1, it requires to calculate the switching

points and determine the type of the switching at these points for the optimal control

synthesis. At the switching points, φ̇ = −∂Z/∂θ is given by (3.15), and hence a Y

to X switch may occur in the region R1 = [0, θs,1] or R3 = [θs,2, 2π], and an X to Y

switch may occur in R2 = [θs,1, θs,2]. This implies that bang-bang controls with one

switch, such as the XY or Y X form, are not feasible solutions because these controls
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will violate the charge-balance constraint. Consequently, the optimal control has two

switching points, and the candidate is either a Y XY trajectory with one switch in

the interval R1 and one in R2, or an XYX trajectory with one switch in R2 and

one in R3. We can further simplify the possible intervals of switching by observing

the shape of the PRC. The Hodgkin-Huxley PRC depicted in 3.4 has three zeros at

θr,1 = 0, θr,2 = 3.86, and θr,3 = 2π. Therefore, for an optimal Y XY trajectory the

first and the second switch will occur in [0, θs,1] and [θs,1, θr,2], respectively, and for

an optimal XYX trajectory, they will occur in [θr,2, θs,2] and [θs,2, 2π], respectively.

The minimum-time control is then selected between these two. Note that for a given

bound M , it may not be possible to have both XYX and Y XY solutions. For

example, if the bound is M = 0.7, then the only feasible optimal solution is Y XY .

In this case, the two switching points θ1 and θ2 can be calculated through

0 =

∫ θ1

0

M

ω +MZ(θ)
dθ +

∫ θ2

θ1

−M
ω −MZ(θ)

dθ +

∫ 2π

θ2

M

ω +MZ(θ)
dθ, (3.27)

Z(θ1) = Z(θ2), (3.28)

and the control is then given by

I∗min =











M, 0 ≤ θ ≤ θ1,

−M, θ1 < θ < θ2,

M, θ2 ≤ θ ≤ 2π.

Charge-Balanced Maximum-Time Control for Hodgkin-Huxley Phase Model

In the case of the maximum-time control, the two singular points, θs,1 and θs,2, are can-

didates for the optimal trajectory because they are slower than the bang trajectories

as proved in Section 3.3.1. Letting θ̇ = 0 in (3.1), we find the controls that keep the

trajectory at the singular points are Is,1 = − ω
Z(θs,1)

= 3.50 and Is,2 = − ω
Z(θs,2)

= −2.15.

There exist three cases when constructing maximum-time controls according to M

and thus to the feasibility of Is,1 and Is,2.
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Figure 3.5: The charge-balanced minimum-time control and the corresponding phase
trajectory for the Hodgkin-Huxley phase model with respect to the bound on the
control amplitude M = 0.7 µAcm−2.

(Case I: M < |Is,2|) In this case, both the singular points θs,1 and θs,2 are infeasi-

ble. Therefore, the optimal control is bang-bang and is in fact the opposite of the

minimum-time control described above. Similar to the minimum-time case, we can

calculate the corresponding XYX and Y XY solutions and choose the maximum time

achieved between these scenarios. For example, consider the bound M = 0.7, then

the only solution is XYX and the two switching points are calculated by substituting

M with −M in (3.27) and solving (3.27) and (3.28). The optimal bang-bang control

is then given by

I∗max =











−M, 0 ≤ θ < θ1,

M, θ1 ≤ θ ≤ θ2,

−M, θ2 < θ ≤ 2π.

(Case II: |Is,2| ≤ M < |Is,1|) In this case, θs,2 is the only feasible singular trajectory

(point) generated by the singular control Is,2 = −2.15 < 0. Because there are only

two switching points allowed in the optimal trajectory, this together with the fact

that Is,2 is of negative charge forces the optimal control to take the “Y -singular-Y ”
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Figure 3.6: The charge-balanced maximum-time controls and the corresponding phase
trajectories for M = 0.7 µAcm−2

form given by

I∗max =











M, 0 ≤ θ < θs,2,

Is,2, θ = θs,2,

M, θs,2 < θ ≤ 2π.

Similar to the SNIPER phase model described in Section 3.3.1, the time it takes to

reach the singular point is given by,

t1 =

∫ θs,2

0

1

ω + Z(θ)M
dθ

and the time required to reach the target point 2π from the point θs,2 is

t3 =

∫ 2π

θs,2

1

ω + Z(θ)M
dθ.

The time during which the trajectory stays on θs,2 is determined by the charge-balance

constraint and is given by

t2 =

∣

∣

∣

∣

(t1 + t3)M

Is,2

∣

∣

∣

∣

.
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Figure 3.7: The charge-balanced maximum-time controls and the corresponding phase
trajectories for M = 3.0 µAcm−2.

Now, the optimal control can be stated in terms of time as

I∗max =











M, 0 ≤ t < t1,

Is,2, t1 ≤ t ≤ t1 + t2,

M, t1 + t2 < t ≤ t1 + t2 + t3.

(3.29)

(Case III: |Is,1| ≤ M) In this case, staying on either singular point is possible by using

an appropriate control. Furthermore, since the two singular controls have opposite

signs, the charge-balance constraint can be preserved by staying for an appropriate

time period at each singular point. As a result, the spiking time can be arbitrarily

delayed, which may not be of practical interest due to the requirement of relatively

high amplitude.

3.3.3 Morris-Lecar Phase Model

We consider a Morris-Lecar system with parameter values given in Section 1.1.2,

which has a natural frequency ω = 0.283 rad/ms. The PRC is approximated by
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.

(3.26) with the coefficients shown in 3.2 is illustrated, with its derivatives, in Figure

3.8.

i 1 2 3 4 5 6 7 8
ai 5.137 5.773 0.7703 1.065 0.8143 0.1028 0.09711 0.0698
bi 0.4356 0.7105 2.185 3.09 3.362 4.876 5.829 6.525
ci 1.005 -1.474 0.6535 1.238 3.585 2.154 2.375 3.446

Table 3.2: The coefficients of the equation (3.26) for the Morris-Lecar PRC

Three examples are made to show the different structures of the optimal controls

that are associated with various values of the control amplitude M for the Morris-

Lecar phase model. The charge-balanced minimum-time control and the resulting

phase trajectory for M = 0.01 µAcm−2 are given in Figure 3.9. The charge-balanced

maximum-time controls and the respective trajectories subject toM = 0.005 µAcm−2

and M = 0.04 µAcm−2 are given in Figures 3.10 and 3.11, respectively. The deriva-

tions of these optimal controls follow a similar procedure presented in Section 3.3.2.
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Figure 3.9: The charge-balanced minimum-time control and the corresponding phase
trajectory for the Morris-Lecar phase model with respect to the bound on the control
amplitude M = 0.01 µAcm−2
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Figure 3.10: show the charge-balanced maximum-time controls and the correspond-
ing phase trajectories with M = 0.005 µAcm−2
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Figure 3.11: show the charge-balanced maximum-time controls and the corresponding
phase trajectories with M = 0.04 µAcm−2, respectively.

3.4 Validation of Phase Model Reduction to Full

State-Space Model

Because phase models of importance to applications are reductions of original higher

dimensional state-space systems, we explore in this section the extent to which con-

trols synthesized using the former can achieve the desired objectives when applied

to the latter. This will provide insight into the limits of the model reduction with

respect to control synthesis, and allow the relationship to be calibrated for practical

applications where the weak forcing assumption must be relaxed. Such an important

validation is largely lacking in the literature.

We validate our optimal control strategies derived based on the phase models with

the corresponding original state-space models. Specifically, we consider the Hodgkin-

Huxley model. Note that an analytical derivation of the optimal controls directly

from the state-space models is in general intractable and computationally expensive.

A validation of the minimum and maximum spiking times with respect to the bound

on the control amplitude is depicted in Figure 3.12, where the feasible spiking times

are indicated as the shaded area. Each asterisk point on this graph represents the
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Figure 3.12: A characterization of the realizable spiking times with respect to the
bound on the control amplitude, M ∈ [0, 2.5], for the Hodgkin-Huxley phase model.
The shaded region indicates the feasible spiking range resulting from the minimum-
and maximum-time controls. Those minimum times (left to the natural spiking time
T0 = 14.6 ms) are obtained by Y XY controls and maximum-times (right to T0) are
obtained by XYX , Y XY and Y -singular-Y controls depending on M .

Hodgkin-Huxley neuron spiking time achieved by a particular form of the optimal

control. The points correspond to minimum spiking times, which are less than the

natural spiking time T0 = 14.64 ms, are obtained by Y XY controls, whereas the

points correspond to maximum spiking times may be obtained by three structurally

different controls, i.e., XYX , Y XY , and Y -singular-Y controls. This figure illus-

trates the limits on possible spiking times of the Hodgkin-Huxley model, which is

important to the design of practical control inputs. For example, in Chapter 4 we use

the knowledge of the feasible spiking range when characterizing the minimum power

controls.

The optimal controls derived based on the Hodgkin-Huxley phase model, shown in

3.5 and 3.6, are applied to the full Hodgkin-Huxley model, and a repeated application

of such controls results in the desired spiking trains as displayed in 3.13 and 3.15.

The respective minimum and maximum spiking times induced from these optimal

controls subject to the amplitude bound M = 0.7 µAcm−2 are 13.5 ms and 16.37 ms

in the phase model and 13.65 ms and 17.13 ms in the full state-space model. Such an

inconsistence is due to the model reduction, however, the resulting spiking behavior

of the full Hodgkin-Huxley model shows great qualitative agreement with that of the
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Figure 3.13: Uncontrolled and controlled spiking trains for minimum time with am-
plitude M = 0.7 µAcm−2 of Hodgkin-Huxley neuron.
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Figure 3.14: Uncontrolled and controlled spiking trains for maximum time with am-
plitude M = 0.7 µAcm−2 of Hodgkin-Huxley neuron.
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Figure 3.15: Application of derived optimal controls according to phase models to
full Hodgkin-Huxley model

phase model. The variation of the absolute errors between the actual and designed

spiking times is shown in 3.16, where the spiking behavior predicted based on the

phase model matches better the full state-space model towards the weak forcing

region.

3.5 Conclusion

In this chapter, we investigated time-optimal controls for phase models of spiking

neuron oscillators. In particular, we derived charge-balanced controls that lead to

the minimum and the maximum inter-spike time of a neuron for a given bound on

the control amplitude. We showed that such optimal controls involve bang-bang and

bang-singular-bang structures depending on the allowable control amplitude. Al-

though the amplitude level of weak forcing in the phase model is not practically
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Figure 3.16: The absolute error in the spiking time when applying the charge-balanced
time-optimal controls derived based on the Hodgkin-Huxley phase model to its full
state-space model. The bound of the control amplitude is indicated as the color bar.

quantifiable and can be greatly dependent on the dynamics of the system, our op-

timal control solutions were constructed for an arbitrary choice of bounds on the

control amplitude, which accounts for this practical issue. We apply the derived op-

timal spike timing controls to commonly-used phase models of oscillatory neurons

to demonstrate their applicability to neuroscience. The methodology presented in

this chapter is general and can be applied not only to oscillatory neuron systems,

but also to any oscillating system that can be represented by phase models including

biological, chemical, electrical, and mechanical oscillators.

The theoretical results of this work characterize the fundamental limits on neuron

spiking times that can be achieved by the use of a charge-balanced bounded external

input, and have potential impact on the improvement and development of innovative

therapeutic procedures for neurological disorders.
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Chapter 4

Charge-Balanced Minimum-Power

Controls for Spiking Neuron

Oscillators

In this chapter, we study the optimal control of phase models for spiking neuron

oscillators. We focus on the design of minimum-power current stimuli that elicit spikes

in neurons at desired times. We furthermore take the charge-balance constraint into

account because in practice undesirable side effects may occur due to the accumulation

of electric charge resulting from external stimuli. Charge-balanced minimum-power

controls are derived for a general phase model using the maximum principle, where

the cases with unbounded and bounded control amplitude are examined. The latter

is of practical importance since phase models are more accurate for weak forcing.

The developed optimal control strategies are then applied to both mathematically

ideal and experimentally observed phase models to demonstrate their applicability,

including the phase model for the widely studied Hodgkin-Huxley equations.

4.1 Introduction

The electrical activity of the nervous system and its ability to respond to external

electrical signals have been long-standing subjects of active research. The resulting

insights have led to the innovation of therapeutic procedures for a wide variety of

neurological disorders. Deep brain stimulation is one such method, in which elec-

trical pulses are applied to inhibit pathological synchrony among the neurons [85]
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and is clinically approved in many countries for the treatment of Parkinson’s disease,

essential tremor, and Dystonia [4, 87]. The cardiac pace maker is another example

in medical practices that employs electric pulses to stimulate nervous tissues in or-

der to regulate a patient’s heart rate [71, 72]. In these and many other neurological

applications, the use of low power electrical stimuli is desired because, for example,

high power stimuli are harmful to biological tissues and the reduction of power con-

sumption in a neurological implant is essential in order to reduce its size and lengthen

its lifetime. In addition, it is of clinical importance to ensure that any external in-

puts, e.g., currents, applied to stimulate neurons are charge-balanced. That is, the

net amount of the electric charge injected into a neuron over one oscillation cycle

should be kept zero, because high levels of the charge accumulation may trigger irre-

versible electro-chemical reactions, resulting in damage of neural tissues and corrosion

of electrodes [88].

Many mathematical models have been developed to capture periodic activities of neu-

ron oscillators [52, 109, 92, 130] and a well established example is the phase model

that we explained in Section 1.2, which quantifies the asymptotic phase shift of an

oscillator due to an infinitesimal perturbation of its state [11]. A phase model accu-

rately approximates the behavior of the corresponding full state-space system in the

neighborhood of its periodic orbit [60]. Due to their simplicity, phase models are very

popular for modeling and analyzing the dynamics of neuron oscillators. For exam-

ple, synchronization patterns resulting from the dynamics of an arbitrary network of

oscillators with weak coupling have been analyzed based on phase models [3, 128].

In these studies, the inputs to the oscillatory systems were initially defined, and the

dynamical responses of neuron populations were analyzed in detail. Recently, as an

alternative objective, control and dynamical systems approaches have been used to

manipulate neural activities in a desired way. For instance, minimum-power controls

for spiking neurons at specified time instances were derived for some mathematically

ideal phase models [21, 90] and charge-balanced controls were calculated using a nu-

merical shooting method [95]. In addition, controllability of a network of neurons

described by phase models has also been investigated [84].

In this chapter, we consider a general phase model and derive charge-balanced minimum-

power controls for spiking a neuron oscillator at a desired time instance different from

its natural spiking time. Both cases of unbounded and bounded control amplitude
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are examined. The latter is of fundamental and practical importance because there

exist physical limitations on medical equipment and safety margins for neural tissues

and, more importantly, phase models are valid under weak forcing. We show that the

bounded optimal control has switching characteristics synthesized by the unbounded

optimal control and the given control bound. The developed optimal control strate-

gies are then applied to both mathematically ideal and experimentally observed PRCs

to demonstrate their applicability. Moreover, we apply the optimal controls derived

from phase reduced models to the corresponding full state-space models to verify the

consistency of these models through the reduction and demonstrate the robustness

of our optimal control techniques. Such an important validation is missing in the

literature.

This chapter is organized as follows. In Section 4.2, we present the optimal control

problem of spiking a general phase oscillator. We find the charge-balanced minimum-

power control for a prescribed spiking time with and without a constraint on the

control amplitude by using the maximum principle [7]. In Section 4.3, we apply

the derived optimal control strategies to several commonly-used phase models and

present the optimal solutions and numerical simulations. In particular, we calcu-

late optimal controls for experimentally observed PRCs including Morris-Lecar and

Hodgkin-Huxley PRCs. Note that, although the theory presented in this work is mo-

tivated by neurological applications, it can be applied to broader class of oscillating

systems that can be represented by phase models.

4.2 Optimal Control Problem Formulation

We consider spiking a neuron at a prescribed time with a minimum-power stim-

ulus and, furthermore, intend to find a charge-balanced one in order to minimize

the side-effects cause by the accumulation of electric charge. The design of such

charge-balanced minimum-power current stimuli for spiking neurons gives rise to a
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constrained optimal steering problem for a single-input nonlinear system of the form

min
I(t)

∫ T

0

I(t)2dt,

s.t. θ̇ = f(θ) + g(θ)I(t), (4.1)

ṗ = I(t),

θ(0) = 0, θ(T ) = 2π,

p(0) = 0, p(T ) = 0, |I(t)| ≤M,

where M ∈ R
+ defines the bound of the control amplitude, and the time-dependent

variable p(t) =
∫ t

0
I(σ)dσ, with boundary conditions p(0) = p(T ) = 0, is introduced

to accommodate the charge-balance constraint. In the following, we first consider the

case of an unbounded control and then extend the result to the case when the control

is bounded. In chapter 2, we considered some specific phase models and designed

minimum-power stimuli that alter the neuron spiking time to a desired value without

the charge-balance constraint. In this chapter, we generalize our method to general

phase model given by θ̇ = f(θ)+g(θ)I(t) and introduce the charge-balance constraint

into the optimal control problem. Consideration of charge-balance constraint signif-

icantly alter the previous optimal control problem by adding an extra dimension to

the system. We were able to analytically find the minimum-power control for this

two-dimensional nonlinear system by adopting the Pontryagin’s maximum principle.

4.2.1 Derivation of Charge-Balanced Minimum-Power Con-

trols

Relaxing the amplitude constraint with |I(t)| <∞, we apply the maximum principle,

as given in Appendix A, to characterize the extremal trajectories. The Hamiltonian

of the optimal control problem presented in Section 4.2 is given by

H = λ0I
2 + λ(f(θ) + g(θ)I) + µI, (4.2)

where λ0, λ, and µ are Lagrange multipliers associated with the Lagrangian, system

dynamics, and the charge-balance constraint, respectively. Here we consider normal

extremals which are found by taking λ0 6= 0. Note that more specific abnormal
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extremals found by letting λ0 = 0 can be analyzed according to the expressions and

properties of the functions f and g. Our derivations here are made for the general

phase model, and therefore these extraordinary cases are omitted. Therefore, without

loss of generality, we let λ0 = 1. The optimality condition from the maximum principle

demands that ∂H
∂I

= 0 along the optimal trajectory, which yields

I = −λg(θ) + µ

2
. (4.3)

The adjoint variables λ and µ are solutions to the time-varying differential equations

λ̇ = −∂H
∂θ

and µ̇ = −∂H
∂p

. Together with (4.3) these equations can be written as

λ̇ =− λ
∂f(θ)

∂θ
+
λ(λg + µ)

2

∂g(θ)

∂θ
, (4.4)

µ̇ =0, (4.5)

which implies that µ is a constant. In addition, since the Hamiltonian is not explicitly

dependent on time, H is a constant along the optimal trajectory. Hence, we letH = c,

∀ t ∈ [0, T ]. This can be seen from the transversality condition of the maximum

principle.

It follows that the optimal multiplier λ can be found from (4.2) by substituting (4.3)

for I. Then, solving for λ yields

λ =
−µg + 2f ± 2

√

f 2 − gµf − g2c

g2
. (4.6)

Here we will choose the negative square root because the positive case corresponds

to a backward evaluation of the phase, which would invalidate the phase model. The

phase velocity equation along the optimal trajectory can then be found by using (4.6),

(4.3), and (4.1), resulting in

θ̇ =
√

f 2 − gµf − g2c. (4.7)
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In addition, substituting (4.6) into (4.3) gives rise to the optimal control I∗ in terms

of the two constants µ and c,

I∗ =
−f +

√

f 2 − gµf − g2c

g
. (4.8)

For a given spiking time T , the constants c and µ can be determined from (4.7)

by separation of variables together with the charge-balance constraint written as
∫ 2π

0
I∗(θ)

θ̇
dθ = 0, which yields

T =

∫ 2π

0

1
√

f 2 − gµf − g2c
dθ, (4.9)

and

∫ 2π

0

−f +
√

f 2 − gµf − g2c

g
√

f 2 − gµf − g2c
dθ = 0. (4.10)

Now the optimal control is completely classified by (4.8), because the constants µ

and c can be found from (4.9) and (4.10) for any specified spiking time T .

Remark 1 In the absence of the charge-balance constraint, corresponding to µ = 0,

it is sufficient to characterize the optimal control by (4.8) and (4.9).

4.2.2 Charge-Balanced Minimum-Power Control with Con-

strained Amplitude

In practice, the feasible amplitude of the stimulus is limited, and phase models are

valid only for weak forcing. Therefore, spiking neurons with controls of bounded

amplitude is of practical importance. In this case where we assume that |I| ≤ M ,

∀ t ∈ [0, T ], the minimum and maximum possible spiking times for a neuron system

can be determined according to the procedure in [23, 22]. It is easy to see that

for a given bound M > 0, the minimum spiking time without the charge-balanced
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constraint is achieved by

I∗Tmin
=

{

M, g(θ) ≥ 0

−M, g(θ) < 0,
(4.11)

which keeps the phase velocity at its maximum. The minimum spiking time for a

given value of M , denoted by TM
min, is then given by

TM
min =

∫

θ∈A

1

f(θ) + g(θ)M
dθ +

∫

θ∈B

1

f(θ)− g(θ)M
dθ, (4.12)

where A = {θ| g(θ) ≥ 0, 0 ≤ θ ≤ 2π} and B = {θ| g(θ) < 0, 0 ≤ θ ≤ 2π}. Symmetric

to the minimum spiking time, the maximum spiking time, denoted TM
max, for the

bound M can be found by applying the opposite control −I∗Tmin
, for M < min{| f(θ)

g(θ)
| :

θ ∈ [0, 2π)}, and it is given by TM
max = T−M

min . Note that, theoretically, arbitrarily

large spiking times are achievable if the bound M ≥ min{| f(θ)
g(θ)

| : θ ∈ [0, 2π)}. The

derivation of the minimum and maximum spiking times with both charge-balance and

amplitude bound constraints is more involved and can be done according to [23, 22].

It is obvious that if |I∗(θ)| ≤ M , ∀ θ ∈ [0, 2π), then the amplitude constraint is

inactive and I∗ as in (4.8) is the charge-balanced minimum-power control. While

|I∗| > M for some θ ∈ [0, 2π), it is sufficient to consider the case when I∗ > M because

the case I∗ < −M is symmetric. Suppose that I∗ > M for θ ∈ (θ1, θ2) ⊂ [0, 2π),

we now show that the bang control I = M is optimal for θ ∈ [θ1, θ2]. Since the

Hamiltonian (4.2) is a convex function of I, I = M is then the minimizer when

I∗ > M for θ ∈ [θ1, θ2]. In this case, we have, from (4.2), the Lagrange multiplier

λ =
c−M2 − µM

f(θ) +Mg(θ)
, (4.13)

which satisfies the adjoint equation (4.4), and hence I(θ) = M is optimal for θ ∈
[θ1, θ2]. Similarly, the same approach can be used to show that I = −M is optimal on

the interval over which I∗ < −M . Therefore, the charge-balanced minimum-power
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control with limited control amplitude M is of the form with switching characteristic

I∗M(θ) =











−M, I∗(θ) < −M
I∗(θ), −M ≤ I∗(θ) ≤M

M, I(θ)∗ > M.

(4.14)

The switching phases θi, θj ∈ [0, 2π) such that I∗(θi) = −M and I∗(θj) = M can be

computed (see the examples in Section 4.3) and the required parameter values µ and

c can be calculated according to the specified spiking time and the charge-balance

constraint from the equations

T =

∫ 2π

0

1

f(θ) + g(θ)I∗M
dθ (4.15)

and

0 =

∫ 2π

0

I∗M
f(θ) + g(θ)I∗M

dθ. (4.16)

Remark 2 Since the Hamiltonian has a linear term with respect to control I, it is

possible to have admissible singular trajectories with sufficiently large control ampli-

tudes. Such complicated scenarios are discussed for specific f and g functions in

following Sections.

4.3 Examples

We now apply our optimal control strategies to several commonly-used phase mod-

els characterized by various PRCs, including mathematically ideal models, such as

SNIPER PRC, sinusoidal PRC, and theta neuron model, as well as more realistic

phase models such as Hodgkin-Huxley and Morris-Lecar PRCs. These mathemat-

ically ideal phase models are approximations to full state-space models at certain

bifurcation points, whereas Hodgkin-Huxley and Morris-Lecar phase models are ob-

tained numerically by perturbing their periodic orbits using unit impulses.
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4.3.1 SNIPER Phase Model

The SNIPER phase model as given in Section 1.2.4 is characterized by a type I PRC

and is of the form [11],

θ̇ = ω + zd(1− cos θ)I, (4.17)

where ω is the natural oscillation frequency of the system, zd is a model-dependent

constant, and I is the external stimulus. Neurons described by this phase model spike

periodically with the natural period T0 = 2π/ω in the absence of any external input.

Unbounded Control for SNIPER Phase Model

Substituting f = ω and g = zd(1 − cos θ) into (4.8), (4.9), and (4.10), the optimal

control for spiking a neuron modeled by the SNIPER phase model at time T satisfying

the charge-balance constraint is given by,

I∗ =
−ω +

√

ω2 − µωzd(1− cos θ)− cz2d(1− cos θ)2

zd(1− cos θ)
, (4.18)

where the constants c and µ can be obtained by simultaneously solving

T =

∫ 2π

0

1
√

ω2 − µωzd(1− cos θ)− cz2d(1− cos θ)2
dθ, (4.19)

∫ 2π

0

−ω +
√

ω2 − µωzd(1− cos θ)− cz2d(1− cos θ)2

zd(1− cos θ)
√

ω2 − µωzd(1− cos θ)− cz2d(1− cos θ)2
dθ = 0. (4.20)

We use a simple example to demonstrate these results. Consider a neuron with the

natural oscillation frequency ω = 1 and take zd = 1, then the optimal controls with

and without the charge-balance constraint for the desired spiking times T = 5.3 and

T = 7.8, smaller and greater, respectively, than the natural spiking time T0 = 2π

are shown in Figure 4.1. The corresponding optimal phase trajectories are depicted

in Figure 4.2. Note that optimal controls without considering the charge-balance

constraint are obtained by taking µ = 0 in (4.18), and in this case we only need to

calculate the constant c using (4.19).
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Figure 4.1: Unbounded optimal controls with and without the charge-balance con-
straint for spiking a SNIPER neuron with ω = 1 and zd = 1 at T = 5.3 T = 7.8

Remark 3 Consider the case of abnormal extremals for the SNIPER phase model,

where the multiplier λ0 = 0. Then, the Hamiltonian as in (4.2) is given by H =

λω + λzd(1 − cos θ)I + µI, and the optimality condition of the maximum principle

gives
∂H

∂I
= λzd(1− cos θ) + µ = 0. (4.21)

Differentiating this equation with respect to time, we obtain

λzd(sin θ)θ̇ + λ̇zd(1− cos θ) + µ̇ = 0. (4.22)

Adjoint equation for abnormal trajectories are given by,

λ̇ =− zdλ sin θI, (4.23)

µ̇ =0, (4.24)

and substituting (4.17), (4.23), and (4.24) into (4.22) for θ̇, λ̇, and µ̇, respectively,

yields

ωλzd sin θ = 0. (4.25)

Abnormal extremals must satisfy (4.25), and it is clear that (4.25) holds only when

λ ≡ 0 if θ 6= 0, π, 2π. This leads to µ ≡ 0 from (4.21), which, together with λ ≡
0, violates the nontriviality condition of the maximum principle. Therefore, only

75



0 1 2 3 4 5 6 7 7.8
0

π/2

π

3π/2

2π

Time (t)

P
ha

se
 (θ)

 

 

T=5.3 without charge balance
T=7.8 without charge balance
T=5.3 with charge balance
T=7.8 with charge balance

Figure 4.2: The optimal charge-balanced phase trajectories for SNIPER neuron with
ω = 1 and zd = 1 at T = 5.3 T = 7.8.

abnormal trajectories are (in this case abnormal points), θ = 0, θ = π, and θ =

2π. The points θ = 0 and θ = 2π are infeasible abnormal points, at which the

nonzero phase velocity, θ̇ = ω, immediately forces the system away from these points,

Hence, θab = π is the only possible abnormal point, and the control u = −ω/Z(θab) =
−ω/(2zd) yields θ̇ = 0 at θab, making the system stay at θab. Since θ̇ab = 0, this point

is not a candidate for optimality when decreasing the spiking time, but this trajectory

is particularly interested when increasing the spiking time with bounded controls where

it can be used to define the absolute maximum spiking time with the charged-balance

constraint.

Bounded Control for SNIPER Phase Model

Having an amplitude constraint |I(t)| ≤M , ∀ t ∈ [0, T ], the minimum and maximum

possible spiking times are limited as described in Section 4.2.2 and they can explicitly

calculated by the procedures described in Chapter 3 [23, 22]. For infeasible spiking

times, there exist no simultaneous solutions to (4.15) and (4.16), which give valid c

and µ values. Given a bound of control amplitude M , the bounded charge-balanced

minimum-power control for spiking a SNIPER neuron to achieve a desired feasible

spiking time can be constructed according to (4.14), (4.15) and (4.16) with f = ω

and g = zd(1 − cos θ). More specifically, for example, consider spiking the SNIPER
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neuron with ω = 1 and zd = 1 at T = 5.3 subject to M = 0.4. It is clear from Figure

4.1 that the spiking time T = 5.3 is not feasible by the unbounded charge-balanced

optimal control I∗ since I∗ > M for some time interval. This overshoot implies the

existence of two switching points θ1 and θ2 at which I∗ = M . This together with

(4.15) and (4.16) allow us to calculate the values of θ1, θ2, c, and µ by solving the

following equations simultaneously,

M =
−ω +∆(θ1)

zd(1− cos θ1)
,

M =
−ω +∆(θ2)

zd(1− cos θ2)
,

T =

∫ θ1

0

1

∆(θ)
dθ +

∫ θ2

θ1

1

ω + zd(1− cos θ)M
dθ +

∫ 2π

θ2

1

∆(θ)
dθ,

0 =

∫ θ1

0

−ω +∆(θ)

zd(1− cos θ)∆(θ)
dθ +

∫ θ2

θ1

M

ω + zd(1− cos θ)M
dθ +

∫ 2π

θ2

−ω +∆(θ)

zd(1− cos θ)∆(θ)
dθ,

where, ∆(θ) =
√

ω2 − µωzd(1− cos θ)− cz2d(1− cos θ)2. We found θ1 = 2.686, θ2 =

3.597, c = −0.968, and µ = 0.733, and the optimal control I∗M is given by

I∗M(θ) =















−ω+∆(θ)
zd(1−cos θ)

, 0 ≤ θ ≤ θ1

M, θ1 ≤ θ ≤ θ2
−ω+∆(θ)
zd(1−cos θ)

, θ2 ≤ θ ≤ 2π,

(4.26)

which is depicted in Figure 4.3 as a function of time. Figure 4.3 also illustrates

bounded charge-balanced minimum-power controls for spiking this SNIPER neuron

at other spiking times that are greater and smaller than its natural spiking period

T0 = 2π. There are three structurally different controls presented, which have four,

two, and zero switches, depending on the desired spiking time.

Remark 4 For a fixed control amplitude bound M > 0, when we increase the spiking

time, the minimum-power controls presented in Section 4.3.1 converge to the time-

optimal controls given in Section 3.3.1 [23, 22]. For control amplitudes M > ω/(2zd)

the singular trajectory given in Section 3.3.1 [23, 22] coincides with the abnormal

trajectory described in Remark 3.
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Figure 4.3: Optimal charge-balanced controls of minimum power given the control
bound M = 0.4 for spiking a SNIPER neuron with ω = 1 and zd = 1 at T =
5.2, 5.3, 6.0, 7.0, 7.8, 8.2.

Remark 5 Observe from (4.8) that for the canonical type II PRC, the sinusoidal

phase model characterized by g(θ) = zd sin θ and f(θ) = ω [11], I∗(θ) is anti-

symmetric around θ = π, namely, I∗(θ) = −I∗(θ+π) for 0 ≤ θ ≤ π, when the charge-

balance constraint is not considered, i.e., µ = 0. Therefore, the minimum-power con-

trol for the sinusoidal phase model is automatically charge-balanced, and thus from

(4.8) with µ = 0 the optimal control is given by I∗ = (−ω+
√

ω2 − cz2d sin
2 θ)/(zd sin θ),

where c is specified by the desired spiking time T =
∫ 2π

0
(
√

ω2 − cz2d sin
2 θ)−1dθ. More

detailed optimal control analysis for the sinusoidal phase model can be found in Section

2.3.1 [21].

4.3.2 Theta Neuron Phase Model

Recall from the Section 1.2.4, the theta neuron phase model is defined by f(θ) =

1 + cos θ + (1 − cos θ)Ib and g(θ) = (1 − cos θ), where Ib is known as the neuron

baseline current [90]. Here we focus on the case of Ib < 0. Similar to previous case,

the unbounded and bounded charge-balanced minimum-power controls can be directly

calculated by employing (4.8), (4.9), and (4.10), or (4.14), (4.15), and (4.16) in Section

4.2, respectively. Optimal controls for spiking a theta neuron with Ib = −0.25 and

M = 1 are shown in Figure 4.4.
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Figure 4.4: Optimal charge-balanced controls with bound M = 1.0 and for theta
neuron model (with Ib = −0.25) to elicit spikes at T = 4.7, 6.0, 7.5, 10.0.

The above phase models, though commonly used, are ideal mathematical models

of neuron oscillators. We now apply our optimal control strategies to models with

experimentally observed PRC’s, such as Hodgkin-Huxley and Morris-Lecar phase

models, to demonstrate their applicability and generality.

4.3.3 Morris-Lecar Phase Model

The Morris-Lecar model has been extensively studied and used as a standard model

for representing many different real neurons. The phase model of the Morris-Lecar

neuron is given by

θ̇ = ω + Z(θ)I(t), (4.27)

where ω is the natural oscillation frequency and Z(θ) represents the PRC that can

be calculated numerically from the ODE system by the software package XPP [29].

For the set of parameter values given in Section 1.1.2, the natural frequency ωML =

0.28 rad/ms and the PRC is depicted in Figure 1.3. The charge-balanced minimum-

power controls that elicit spikes for this phase model at various times are shown in

Figure 4.5. Note that a truncated Fourier series is used as the Z function, which

accurately approximate the PRC shown in Figure 1.3. We consider six different cases
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for which the optimal controls have zero, two, and four switchings for spiking times

that are longer and shorter than the natural spiking time, T0 = 2π/ωML = 22.20 ms.
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Figure 4.5: Optimal charge-balanced controls of minimum power for spiking a Morris-
Lecar neuron at T = 20.5, 20.7, 21.0, 23.5, 24.1, 24.3ms given the control bound M =
0.01 µAcm−2.

4.3.4 Hodgkin-Huxley Phase Model and Phase Model Vali-

dation

The phase model for the Hodkin-Huxley neuron oscillator is also of the form as in

(4.27). For the set of parameter values given in Section 1.1.1, the system has a natural

frequency ωHH= 0.43 rad/ms and its PRC is displayed in Figure 1.2. The charge-

balanced minimum-power controls that elicit spikes at different time instances are

shown in Figure 4.6.

Phase model reduction characterizes the dynamics of the underlying oscillating sys-

tems, where some of the state variables, but not all, can be observed. There is a

fundamental need to explore the limits of the phase-reduced model as an approxi-

mation to the original oscillating system, because this important validation is largely

lacking in the literature. The optimal controls for phase models presented so far in

this work alter the spiking times of an oscillator during the course of one oscilla-

tory cycle, so that a desired spike train can be constructed by repeating the control
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Figure 4.6: Optimal charge-balanced controls of minimum power for spiking a
Hodgkin-Huxley neuron at T = 13.2, 13.5, 14.0, 16.0, 16.5, 16.9 ms given the control
bound M = 1.0 µAcm−2.
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Figure 4.7: Uncontrolled and controlled spiking trains of Hodgkin-Huxley model with
natural spiking time T0 = 14.64 ms. The desired spiking time T = 1.05T0 = 15.37 ms

input. We now apply the optimal controls derived according to the scalar Hodgkin-

Huxley phase model to its full state-space model, which is a system of four differential

equations as shown in section 1.1.1. The spike trains obtained by repeated applica-

tion of the optimal controls and the uncontrolled train spiking at the natural period,

T0 = 2π/ωHH = 14.64 ms, are illustrated in Figure 4.3.4 and 4.3.4. We present the

cases for producing inter-spike times T = 15.37ms and T = 13.91ms that are respec-

tively 5% longer and shorter than the natural period subject to the control amplitude

bound M = 1 µAcm−2. It is seen that the corresponding optimal control delays the

spiking time to 15.39 ms in the first case and advances it to 14.02 ms in the second
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Figure 4.8: Uncontrolled and controlled spiking trains of Hodgkin-Huxley model with
natural spiking time T0 = 14.64 ms.The desired spiking time T = 0.95T0 = 13.91 ms.

case in the full state-space model. These results demonstrate accurate approxima-

tions of phase reduced models to the full state-space systems under the weak forcing

assumption. The variation of the absolute errors between the actual and designed

spiking times is shown in Figure 4.9, where the spiking behavior predicted based on

the phase model matches better the full state-space model towards the weak forcing

region.

4.4 Conclusion

In this chapter, we considered the optimal control of phase models of neuron oscilla-

tors. We derived charge-balanced minimum-power current stimuli that elicit spikes

of neurons at desired time instances for the cases of unbounded and bounded con-

trol amplitude. In particular, we showed that for the bounded case the optimal

control has switching characteristics synthesized by the unbounded optimal control

and the control bound. We implemented the resulting analytical optimal controls

to various commonly used phase models, including mathematically ideal and exper-

imentally observed models, to demonstrate their applicability. We then applied the

optimal controls derived according to the phase-reduced model of Hodgkin-Huxley to

the corresponding full state-space system to validate the approximation of the phase

model under weak forcing. The theory presented in this work can be applied not

only to neuron oscillators but also to any oscillating systems that can be represented

using similar model reduction techniques such as biological, chemical, electrical, and

mechanical oscillators.
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minimum-power controls derived based on the Hodgkin-Huxley phase model to its full
state-space model. The bound of the control amplitude is indicated as the color bar.

The theoretical results presented in this chapter characterize the fundamental limit of

how the dynamics of neurons can be perturbed by the use of external inputs. Alterna-

tively, they provide an insight into how the neuron dynamics determine the synaptic

input necessary for eliciting spikes, which facilitates the development of optimal stim-

uli for neurological treatments such as deep brain stimulation for Parkinson’s disease.

The extension of this work to the optimal control of networks of neuron oscillators

is of fundamental and practical importance. Our recent work has shown that an en-

semble of uncoupled neurons is controllable, and that the minimum-power controls

that spike a network of heterogeneous neurons can be found by using a multidimen-

sional pseudospectral method [84, 80]. We extend this work to investigate the optimal

control of an ensemble of neurons in Chapter 5 where we consider both coupled and

uncoupled neural systems.
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Chapter 5

Control of Neuron Ensembles

Oscillation is a phenomenon that occurs in many natural, social, and engineered

systems. Control of population of oscillatory systems is motivated by a wide range

of applications in neuroscience from neurological treatment of Parkinson’s disease to

the design of neurocomputers. In this chapter, we study the optimal control of an

ensemble of neuron oscillators described by phase models. In particular, by employing

Pontryagin’s maximum principle, we analytically derive optimal controls for a two-

neuron system and analyze the applicability of the derived controls to an ensemble

of systems. Finally, we present a robust computational method for optimal control

of spiking neurons based on homotopy perturbation techniques. This method is not

limited to neural oscillators and can be applied generally to a broad class of nonlinear

oscillatory systems that can be represented by phase model dynamics.

5.1 Introduction

Natural and engineered systems that consist of ensembles of isolated or interacting

nonlinear dynamical components often exhibit complexities that are beyond human

comprehension. Such systems, moreover, are often tremendously large which poses

serious theoretical and computational challenges to modeling, guiding, controlling, or

optimizing them. Developing optimal external waveforms or forcing signals that steer

complex systems to desired dynamical conditions is of fundamental and practical im-

portance in neuroscience [50, 69]. Minimum-power external stimuli that synchronize

or desynchronize a network of coupled or uncoupled neurons is imperative for a wide

84



range of applications from neurological treatment of Parkinson’s disease and epilepsy

[3, 4, 117] to the design of neurocomputers [55, 54].

Various phase model-based control theoretic techniques have been proposed to design

external inputs that drive oscillators to behave in a desired way or to form cer-

tain synchronization patterns. These include multi-linear feedback control methods

for controlling individual phase relations between coupled oscillators [63] and phase

model-based feedback approaches for efficient control of synchronization patterns

in oscillator ensembles [69, 111, 138]. These synchronization engineering methods,

though effective, do not explicitly address optimality in the control design process.

In this chapter, we generalize our work on optimal control of a single neuron [21, 20, 23]

to consider the control and synchronization of a collection of neuron oscillators. In

particular, we investigate the fundamental properties and develop optimal controls for

the synchronization of such types of large-scale neuron systems. In Section 5.2, we for-

mulate optimal control of spiking neurons as steering problems and derive analytical

tools to construct minimum-power and time-optimal controls for two-neuron systems.

Furthermore, in Section 5.3 we implement the homotopy perturbation method to find

the optimal controls for two-neuron system and extend the method for an ensemble

of neurons. Note that the derived methods are universal to the control of general

nonlinear oscillators whose dynamics can be described by phase models.

5.2 Optimal Control of Neuron Ensembles

Practical applications demand minimum-power or time-optimal controls that form

certain synchronization patterns for a population of oscillators, which gives rise to an

optimal steering problem,

min J = ϕ(T,Θ(T )) +

∫ T

0

L(Θ(t), I(t))dt

s.t. Θ̇(t) = f(Θ) + Z(Θ)I(t) (5.1)

Θ(0) = Θ0, Θ(T ) = Θd
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where Θ ∈ R
n, I ∈ R, and ϕ : R×R

n → R denotes the terminal cost. L : Rn ×R →
R denotes the running cost, and f, Z : R

n → R
n are Lipschitz continuous (over

the respective domains) with respect to their arguments. For spiking a neuronal

population, for example, the goal is to drive the system from the initial state, Θ0 =

0, to a final state Θd = (2m1π, 2m2π, . . . , 2mnπ)
′, where mi ∈ Z

+, i = 1, . . . , n.

Steering problems of this kind have been well studied, in particular, in the context

of nonholonomic motion planning and sub-Riemannian geodesic problems [115, 91].

This class of optimal control problems in principle can be attempted by the maximum

principle. However, in most cases, they are analytically intractable, especially when

the system is of high dimension, e.g., greater than three. In the following, we start

with two-neuron systems and develop a robust computational method for solving the

challenging optimal control problems of steering an ensemble of neurons.

5.2.1 Time-Optimal Control of Uncoupled Two Neuron Os-

cillators

Spiking a neuron in minimum time, subject to a given control amplitude, can be

solved in a straightforward manner. Consider the phase model of a single neuron as

in
dθ

dt
= f(θ) + Z(θ)I(t). (5.2)

It is easy to see that for a given control bound M > 0, the minimum spiking time is

achieved by the bang-bang control

I∗t =

{

M, Z(θ) ≥ 0

−M, Z(θ) < 0,
(5.3)

which keeps the phase velocity, θ̇, at its maximum. The minimum spiking time with

respect to the control bound M , denoted by TM
min, is then given by

TM
min =

∫

θ∈A

1

f(θ) + Z(θ)M
dθ +

∫

θ∈B

1

f(θ)− Z(θ)M
dθ, (5.4)
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where the sets A and B are defined as

A = {θ| Z(θ) ≥ 0, 0 ≤ θ ≤ 2π} ,
B = {θ| Z(θ) < 0, 0 ≤ θ ≤ 2π} .

Time-optimal control of spiking two neurons is more involved, and can be formulated

as in (5.1) with ϕ(T,Θ(T )) = 0 and L(Θ(t), I(t)) = 1. As an example, we consider

two theta neurons, where the dynamics are given by

f =

[

f1

f2

]

=

[

α1 + β1 cos θ1

α2 + β2 cos θ2

]

, Z =

[

Z1

Z2

]

=

[

1− cos θ1

1− cos θ2

]

. (5.5)

Our objective is to drive this two-neuron system from the initial state Θ0 = (0, 0)′

to the desired final state Θd = (2m1π, 2m2π)
′ in minimum time, where m1, m2 ∈ Z

+.

The Hamiltonian for this optimal control problem is given by

H = λ0 + 〈λ, f + ZI〉, (5.6)

where λ0 ∈ R and λ ∈ R
2 are the multipliers that correspond to the Lagrangian and

the system dynamics, respectively, and 〈 , 〉 denotes a scalar product in the Euclidean

space E
2.

Proposition 1 The minimum-time control that spikes two theta neurons simultane-

ously is bang-bang.

Proof. The Hamiltonian in (5.6) is minimized by the control,

I(t) =

{

M for φ(t) < 0,

−M for φ(t) > 0,
(5.7)

where φ is the switching function defined by φ = 〈λ, Z〉. If there exists no non-zero

time interval over which φ ≡ 0, then the optimal control is given by the bang-bang

form as in (5.7), where the control switchings are defined at φ = 0. We show by

contradiction that maintaining φ = 0 is not possible for any non-zero time interval.
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Suppose that φ(t) = 0 for some non-zero time interval, t ∈ [τ1, τ2]. Then we have

φ =〈λ, Z〉 = 0, (5.8)

φ̇ =〈λ, [f, Z] 〉 = 0, (5.9)

where [f, Z] denotes the Lie bracket of the vector fields f and Z. According to (5.8)

and (5.9), λ is perpendicular to both vectors Z and [f, Z], where

[f, Z] =
∂Z

∂θ
f − ∂f

∂θ
Z =

[

2 sin θ1

2 sin θ2

]

.

Since λ 6= 0 by the non-triviality condition of the maximum principle, Z and [f, Z]

are linearly dependent on t ∈ [τ1, τ2]. One can easily show that these two vectors

are linearly dependent either when θ1 = 2nπ and θ2 ∈ R, θ1 ∈ R and θ2 = 2nπ, or

θ1 = θ2 + 2nπ and θ2 ∈ R, where n ∈ Z. These three families of lines represent the

possible paths in the state-space where φ can vanish for some non-trivial time-interval.

Now we show that these are not feasible phase trajectories that can be generated by

a control. Suppose that (θ1(τ), θ2(τ)) = (2nπ, α) for some τ > 0 and for some n ∈ Z,

where α ∈ R. We then have θ̇1(τ) = 2 6= 0, irrespective of any control input. Hence,

the system immediately deviates from the line θ1 = 2nπ. The same reasoning can be

used for showing the case of θ2 = 2nπ.

Similarly, if (θ1(τ), θ2(τ)) = (α+ 2nπ, α) for some τ > 0 and for some n ∈ Z, for the

system to remain on the line (θ1(t), θ2(t)) = (θ2 +2nπ, θ2), requires that θ̇1(t) = θ̇2(t)

for t > τ . However, this occurs only when θ1 = 2mπ and θ2 = 2(n + m)π, where

m ∈ Z, since θ̇1 − θ̇2 = (I1 − I2)(1− cos θ1). Furthermore, staying on these points is

impossible with any control inputs since for θ1(τ) = 2mπ and θ2(τ) = 2(n+m)π, the

phase velocities are θ̇1(τ) = θ̇2(τ) = 2, which immediately forces the system away from

these points. Therefore, the system cannot be driven along the path (θ2 + 2nπ, θ2).

This analysis concludes that φ = 0 and φ̇ = 0 do not hold simultaneously over a

non-trivial time interval. �

Now, we construct the bang-bang structure for time-optimal control of this two-

neuron system and, without loss of generality, let λ0 = 1.
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Definition 1 We denote the vector fields corresponding to the constant bang controls

I(t) ≡ −M and I(t) ≡ M by X = f −MZ and Y = f +MZ, respectively, and call

the respective corresponding trajectories X- and Y - trajectories. The concatenation of

an X-trajectory followed by a Y -trajectory is denoted by XY , while the concatenation

in the reverse order is denoted by Y X.

Due to the bang-bang nature of the time-optimal control for this system, it is sufficient

for us to calculate the time between consecutive switches, and then the first switching

time can be determined by the end point constraint. The inter-switching time can be

calculated following the procedure described in [124, 125, 120].

Let p and q be consecutive switching points, and let pq be a Y -trajectory. Without

loss of generality, we assume that this trajectory passes through p at time 0 and is at

q at time τ . Since p and q are switching points, the corresponding multipliers vanish

against the control vector field Z at those points, i.e.,

〈λ(0), Z(p)〉 = 〈λ(τ), Z(q)〉 = 0. (5.10)

Assuming that the coordinate of p = (θ1, θ2)
′, our goal is to calculate the switching

time, τ , in terms of θ1 and θ2. In order to achieve this, we need to compute what

the relation 〈λ(τ), Z(q)〉 = 0 implies at time 0. This can be obtained by moving the

vector Z(q) along the Y -trajectory backward from q to p through the pushforward of

the solution ω(t) of the variational equation along the Y -trajectory with the terminal

condition ω(τ) = Z(q) at time τ . We denote by etY (p) the value of the Y -trajectory

at time t that starts at the point p at time 0 and by (e−tY )∗ the backward evolution

under the variational equation. Then we have

ω(0) = (e−τY )∗ ω(τ) = (e−τY )∗ Z(q) = (e−τY )∗ Z(e
τY (p)) = (e−τY )∗ Z e

τY (p).

Since the “adjoint equation” of the maximum principle is precisely the adjoint equa-

tion to the variational equation, it follows that the function t 7→ 〈λ(t), ω(t)〉 is constant
along the Y -trajectory. Therefore, 〈λ(τ), Z(q)〉 = 0 also implies that

〈λ(0), ω(0)〉 = 〈λ(0), (e−τY )∗ Z e
τY (p)〉 = 0. (5.11)

89



Since λ(0) 6= 0, we know from (5.10) and (5.11) that the two vectors Z(p) and

(e−τY )∗ Z e
τY (p) are linearly dependent. It follows that

γZ(p) = (e−τY )∗ Z e
τY (p), (5.12)

where γ is a constant. We make use of the well-known Campbell-Baker-Hausdorff

formula [58] to expand (e−τY )∗ Z e
τY (p), that is,

(e−τY )∗ Z e
τY (p) = eτadY (Z) =

∞
∑

n=0

τn

n!
adnY Z.

A straightforward computation of Lie brackets gives

adY Z = [Y, Z] = [f +MZ,Z] = [f, Z] = 2

[

sin θ1

sin θ2

]

,

ad2Y Z = [Y, [Y, Z]] = 2(f − AZ),

where A = diag {2(α1 − 2 +M), 2(α2 − 2 +M)}, and furthermore

ad2n+1
Y Z = (−1)n2n(A+MI)n[f, Z],

ad2n+2
Y Z = (−1)n2n+1(A+MI)n(f −AZ).

Consequently, we have

eτadY Z =Z +
∞
∑

n=0

τ 2n+1

(2n+ 1)!
(−1)n2n(A +MI)n[f, Z]

+
∞
∑

n=0

τ 2n+2

(2n+ 2)!
(−1)n2n+1(A+MI)n(f −AZ),

which is further simplified to

eτadY Z =

[

h(α1, β1, θ1,M, τ)

h(α2, β2, θ2,M, τ)

]

,
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where

h(αi, βi, θi,M, τ) =
M − βi − (αi +M) cos θi

2(αi − 1 +M)
cos(2τ

√

αi − 1 +M)

+
αi +M − (M − βi) cos θi

2(αi − 1 +M)
+

sin θi√
αi − 1 +M

sin(2τ
√

αi − 1 +M).

This together with (5.12) yields

(1− cos θ2)h(α1, β1, θ1,M, τ) = (1− cos θ1)h(α2, β2, θ2,M, τ). (5.13)

This equation characterizes the inter-switching along the Y -trajectory; that is, the

next switching time τ can be calculated given the previous switching point (θ1, θ2)

for the system evolving along the Y -trajectory. Similarly, the inter-switching along

the X-trajectory can be calculated by substituting −M for M in (5.13).

Note that the solution to (5.13) is not unique, and some of the solutions may not

be optimal, but these can be discarded in a systematic way. The idea is to identify

those possible switching points calculated from (5.13) with φ = 0 that also have the

appropriate sign for φ̇. We focus on the case where f and Z are linearly independent,

since the case for those being linearly dependent restricts the state space to the curve

(α1 + β1 cos θ1)(1− cos θ2) = (α2 + β2 cos θ2)(1− cos θ1).

If f and Z are linearly independent, then [f, Z] can be written as [f, Z] = k1f + k2Z,

where

k1 =
2 sin θ1(1− cos θ2)− 2 sin θ2(1− cos θ1)

(α1 + β1 cos θ1)(1− cos θ2)− (α2 + β2 cos θ2)(1− cos θ1)
,

k2 =
2 sin θ1(α1 + β1 cos θ1)− 2 sin θ2(α2 + β2 cos θ2)

(α1 + β1 cos θ1)(1− cos θ2)− (α2 + β2 cos θ2)(1− cos θ1)
.

As a result, we can write φ̇ = 〈λ, [f, Z]〉 = k1〈λ, f〉 + k2〈λ, Z〉. Since we know that

at switching points φ = 〈λ, Z〉 = 0, the Hamiltonian, as in (5.6), H = 0 and the

choice of λ0 = 1 makes 〈λ, f〉 = −1. Therefore, at these points, we have φ̇ = −k1,
and the type of switching can be determined according to the sign of the function

k1. If k1 > 0, then it is an X to Y switch since φ̇ < 0, and hence φ changes its sign

from positive to negative passing through the switching point, which corresponds to
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switching the control from −M toM as in (5.7). Similarly, if k1 < 0, then it is a Y to

X switch. Therefore the next switching time will be the minimum non-zero solution

to the equation (5.13) that satisfies the above rule. For example, suppose that the

system is following a Y -trajectory starting with a switching point pi = (θi1, θ
i
2)

′. The

possible inter-switching times {τi,j}, j = 1, . . . , n, with τi,1 < τi,2 < . . . < τi,n can

then be calculated according to (5.13) based on pi. Thus, the next switching point

is pr = (θr1, θ
r
2)

′ = eτi,rY (pi), τi,r = min{τi,1, . . . , τi,n}, such that k1(θ
r
1, θ

r
2) < 0, which

corresponds to an Y to X switch.

Now in order to synthesize a time-optimal control, it remains to compute the first

switching time and switching point, since the consequent switching sequence can be

constructed thereafter based on the procedure described above. Given an initial state

Θ0 = (0, 0)′, the first switching time and point p1 will be determined according to

the target state. For example, Θd = (2m1π, 2m2π)
′, where m1, m2 ∈ Z

+, in such

a way that the optimal trajectory follows a bang-bang control derived based on p1

and it will reach Θd. Under this construction, we may end up with a finite number

of feasible trajectories starting with either an X- or Y -trajectory, which reach the

desired terminal state. The minimum time trajectory is then selected among them.

Figure 5.1 illustrates an example of driving two theta neurons time-optimally from

(0, 0)′ to (2π, 4π)′ with the control bound M = 0.5, where the natural frequencies

of the oscillators are ω1 = 1.1 (I1 = 0.3) and ω2 = 1.9 (I2 = 0.9), corresponding to

α1 = 1.3, β1 = 0.7 and α2 = 1.9, β2 = 0.1. In this example, the time-optimal control

has two switches at t = 1.87 and t = 3.56, and the minimum time is 5.61.

5.2.2 Simultaneous Control of Neuron Oscillators

The complexity of deriving optimal controls for higher dimensional systems, i.e., more

than two neurons, grows rapidly and it makes sense to find out how the control of two

neurons relates to the control of many. If the trajectories of neurons with different

frequencies have no crossings following a common control input, then the control

designed for any two neurons guarantees to bound trajectories of all the neurons with

frequencies within the range of these two nominal neurons. The trajectories of the
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Figure 5.1: (a) Time optimal control for two theta neuron system with I1 = 0.3 (α1 =
1.3, β1 = 0.7) and I2 = 0.9 (α2 = 1.9, β2 = 0.1) to reach (2π, 4π) with the control
bounded by M = 0.5 and (b) corresponding trajectories. The gray and white regions
represent where k1 is negative and positive, respectively.

two nominal neurons can then be thought of as the envelope of these other neuron

trajectories. We now show that this is indeed the case.

Lemma 1 The trajectories of any two theta neurons with positive baseline currents

following a common control input have no crossing points.

Proof. Consider two theta neurons modeled by

θ̇1 = (1 + I1) + (1− I1) cos θ1 + (1− cos θ1)I, θ1(0) = 0, (5.14)

θ̇2 = (1 + I2) + (1− I2) cos θ2 + (1− cos θ2)I, θ2(0) = 0, (5.15)

with positive baseline currents, I1, I2 > 0, and assume that ω1 < ω2, which implies

I1 < I2 since Ii =
ω2
i

4
, i = 1, 2. In the absence of any control input, namely, I = 0, it

is obvious that θ1(t) < θ2(t) for all t > 0 since I1 < I2. Suppose that θ1(t) < θ2(t) for

t ∈ (0, τ), and that these two phase trajectories meet at time τ , i.e., θ1(τ) = θ2(τ).

Then, we have θ̇1(τ) − θ̇2(τ) = (I1 − I2)(1 − cos(θ1(τ))) ≤ 0, and the equality holds

only when the neurons spike at time τ , i.e., θ1(τ) = θ2(τ) = 2nπ, n ∈ Z
+. As a

result, θ1(τ
+) < θ2(τ

+), because θ1(τ) = θ2(τ) and θ̇1(τ) < θ̇2(τ), and hence there

exist no crossings between the two trajectories θ1(t) and θ2(t). �

Note that the same result as Lemma 1 holds and can be shown in the same fashion for

both sinusoidal and SNIPER phase models, as described in Section 2.3.1 and 2.3.2,
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when the model-dependent constant z1 > z2 if ω1 < ω2, which is in general the case.

For example, in the SNIPER phase model, z conventionally takes the form z = 2/ω

[11].

This critical observation extremely simplifies the design of external stimuli for spiking

a neuron ensemble with different oscillation frequencies, based on the design for two

neurons with extremal frequencies over this ensemble. We illustrate this important

result by designing optimal controls for two sinusoidal neurons, employing the Leg-

endre pseudospectral method [80], which we outlined in Appendix B. The Legendre

pseudospectral method permits a flexible framework to optimize, based on a very

general cost functional subject to general constraints. We demonstrate this by solv-

ing the optimal control problem given in (5.1) by relaxing the terminal constraint

Θ(T ) = Θd. We choose

J = α‖Θd −Θ(T )‖2 + β

∫ T

0

I2(t)dt, (5.16)

which minimizes the terminal error and input power scaled by the constants α and

β. This scaling provides a tunable parameter that determines the trade-off between

performance and input power. Figure 5.2 shows the optimized controls and corre-

sponding trajectories for sinusoidal neuron models for α = 1, β = 0.1, T = 2π, and ω

belongs to [1.0, 1.1]. In this optimization, the controls are optimized over the two neu-

ron systems with extremal frequencies, whose trajectories form an envelope, bounding

the trajectories of other frequencies in between. We are able to design compensating

controls for the entire frequency band solely by considering these upper and lower

bounding frequencies. The controlled (black) and uncontrolled (gray) state trajecto-

ries clearly show the improvement in simultaneous spiking of the ensemble of neurons.

In this case, the inclusion of the minimum power term in the cost function serves to

regularize the control against high amplitude values, which makes the derived control

easy to implement in practice.

This design principle greatly reduces the complexity of finding controls to spike a

large number of neurons. Although the optimal control for two neurons is in general

not optimal for the others, this method produces a close approximation of the optimal

control.
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Figure 5.2: (a) The control and (b) state trajectories of the sinusoidal phase model
(for α = 1, β = 0.1, T = 2π in (5.16)) which is optimized for ω ∈ [1.0, 1.1]. The gray
states correspond to uncontrolled state trajectories, and provide a comparison for the
synchrony improvement provided by the compensating optimized ensemble control.

5.3 Homotopy Perturbation Method for Optimal

Control of Neuron Ensembles

As we proceed to consider the synthesis of controls for neuron ensembles, mainly due

to the large scale of the system, the analytic methods used for smaller number of

neurons become intractable to use. As a result, developing computational methods

to calculate optimal inputs for ensembles of neurons is of particular practical interest.

Furthermore, finding an iterative optimization-free technique, that minimizes reliance

on numerical optimization is compelling in order to broaden the scope and scale of the

complex neural oscillator networks to which optimal control can be applied. However,

implementing semi-analytical methods for the control of phase models is challenging

[36], and the difficulty of achieving synchrony in certain neuron models using singular

perturbations and averaging theory has been indicated [28]
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A promising alternative to singular perturbation is the homotopy perturbation method

(HPM) [51], which was introduced as a powerful technique for solving nonlinear

boundary value problems (BVPs), and has been applied in diverse fields. Perturba-

tion theory is applied to construct a topological homotopy that continuously deforms

the solution to an initial problem into the solution of a desired BVP. This approach

overcomes several limitations of singular perturbation techniques, which require the

existence of a parameter that can be perturbed in a small neighborhood of its nominal

value without disturbing the structure of the BVP. When multiple parameters exist,

the convergence of solutions at successive singular perturbation orders is highly de-

pendent on the choice of the perturbed parameter. As a result, an appropriate choice

of singular parameter can lead to fast convergence, whereas other choices can end in

failure. The validity of solutions obtained with singular perturbation techniques de-

pends on the magnitude of the perturbation parameter, and in most cases, solutions

are valid only for sufficiently small values. These requirements have restricted the

application of traditional perturbation methods to BVPs with obvious small param-

eters. In contrast, the HPM does not require an inherent small parameter, and can

be applied to a broader class of problems including, in particular, the optimal control

of neuron models.

Using the (HPM), the solution to a nonlinear boundary value problem (BVP) can be

obtained by using successive approximations. The procedure results in a homotopy

defined for an embedding parameter that deforms the solution of an initial linear

problem to the solution of the given nonlinear problem [51]. To fix the idea, we recall

the definition of a homotopy.

Definition 2 (Homotopy) Two mappings f, g : X → Y between the topological spaces

X and Y are called homotopic if there exists a family of continuous mappings hp :

X → Y that depend continuously on a parameter p ∈ [0, 1] such that h0 = f , h1 = g

[133].

Starting from a partial solution, the method produces successive approximations that

approach the solution of the BVP that satisfy the boundary conditions for all values

of the embedding parameter. Consider a general boundary value problem given by

ẋ = f(x), g(x(0), x(T )) = 0, (5.17)

96



where x ∈ R
n, f : Rn → R

n, g : R2n → R
n and t ∈ [0, T ]. In general, the function

f(x) can be separated into linear and nonlinear terms of the form f(x) = Ax+N(x),

where A ∈ R
n×n, and the dynamics in (5.17) can be expressed as

L(x) +NL(x) = 0, (5.18)

where L(x) = Ax − ẋ and NL(x) denote the grouped linear and nonlinear terms

with respect to the variable x. We then implicitly define a homotopy that deforms

the solution xinit, which may be arbitrary as long as the boundary conditions are

satisfied, into the solution x̄ to the full problem by

hp(x) = (1− p)(L(x)− L(xinit)) + p(L(x) +NL(x)) = 0. (5.19)

Here p ∈ [0, 1] is an embedding parameter, and xinit is the solution to the initial

linear problem that satisfies the boundary conditions. When p = 0, equation (5.19)

simplifies to

h0(x) = L(x)− L(xinit) = 0,

while at p = 1 equation (5.19) satisfies

h1(x) = L(x) +NL(x) = 0.

The intention is to obtain a homotopy hp such that when p transitions from 0 to 1, the

solution x to the boundary value problem deforms continuously from initial solution

xinit to exact solution x̄, and the function L(x)−L(xinit) is transformed continuously

to L(x) +NL(x). To construct such an hp, we choose the embedding parameter p as

a perturbation parameter and expand the solution to the equation (5.18) in terms of

its power series with respect to p, which is given by

x =
∞
∑

i=0

x̄ip
i. (5.20)

Because the homotopy map converges to the BVP at p = 1, the desired solution

x̄ = lim
p→1

x =

∞
∑

i=0

x̄i (5.21)
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can be obtained by letting p = 1. As in the case of singular perturbation, the terms

x̄i in the solution of form (5.21) to the appropriate BVP are obtained by iteratively

solving a sequence of ordinary differential equations corresponding to coefficients of

increasing orders of the embedding parameter p. Specifically, the coefficients of p0

are obtained from L(x̄0) = L(xinit), the coefficients of p1 are derived from L(x̄1) +

L(xinit) +NL(x̄0) = 0, and the coefficients for subsequent orders pn follow from

L(x̄n) =
−1

(n− 1)!

∂n−1

∂pn−1
NL

(

n−1
∑

i=1

x̄ip
i

)
∣

∣

∣

∣

∣

p=0

. (5.22)

5.3.1 Minimum-Power Control of an Uncoupled Two-Neuron

System

The design of the minimum-power stimuli to elicit simultaneous spikes of neurons

is of clinical importance. Example applications include deep brain stimulation for

a variety of neurological disorders and neurological implants of cardiac pacemakers,

where mild stimulations and low energy consumption are required [4, 87]. In this

section, we present the minimum-power control synthesis for a two-neuron system.

This synthesis is begun by formulating the optimal control problem as in (5.1) with

ϕ(T,Θ(T )) = 0 and L(Θ(t), I(t)) = I(t)2. As an example, we consider two sinusoidal

phase models, where the dynamics are given by

f(Θ) =

[

f1

f2

]

=

[

ω1

ω2

]

, Z(Θ) =

[

Z1

Z2

]

=

[

zd1 sin θ1

zd2 sin θ2

]

.

where ω1 and ω2 are the natural frequencies of the two neurons, and z1 and z2 are

model-dependent constants. Our objective is to drive this two-neuron system from the

initial state Θ0 = (0, 0)′ to the desired final state Θd = (2m1π, 2m2π)
′ with minimum

power, where m1, m2 ∈ Z
+. The Hamiltonian for this optimal control problem is

given by

H = I2(t) + λ1(ω1 + zd1I sin θ1) + λ2(ω2 + zd2I sin θ2),

where λ1 ∈ R, and λ2 ∈ R are Lagrange multipliers that correspond to the system

dynamics. We apply the maximum principle to transfer this problem to a two point

boundary values problem. From the minimum condition of the maximum principle,
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∂H
∂I

= 0, the optimal control I satisfies

I = −1

2
(zd1λ1 sin θ1 − zd2λ2 sin θ2) . (5.23)

By substituting (5.23) into the dynamics and the adjoint equations, λ̇1 = − ∂H
∂θ1
, λ̇2 =

− ∂H
∂θ2

, the optimal control problem can be transferred to a boundary value problem

of the following form.

θ̇1 = ω1 −
z2d1λ1
2

sin2 θ1 −
zd1zd2λ2

2
sin θ1 sin θ2, (5.24)

θ̇2 = ω2 −
z2d2λ2
2

sin2 θ2 −
zd2zd1λ1

2
sin θ2 sin θ1, (5.25)

λ̇1 =
z2d1λ

2
1

2
sin θ1 cos θ1 +

zd1zd2λ1λ2
2

cos θ1 sin θ2, (5.26)

λ̇2 =
z2d2λ

2
2

2
sin θ2 cos θ2 +

zd2zd1λ2λ1
2

cos θ2 sin θ1, (5.27)

where

θ1(0) = 0, θ1(T ) = 2m1π

θ2(0) = 0, θ2(T ) = 2m2π.

Now we apply the homotopy perturbation method to solve the boundary value prob-

lem. First, we simplify the equations (5.24),(5.25),(5.26) and (5.27) by trigonometric

relations and then define the homotopy map as

hp(θ1, θ2, λ1, λ2) =(1− p)(L(θ1, θ2, λ1, λ2)− L(θ1,init, θ2,init, λ1,init, λ2,init))

+ p(L(θ1, θ2, λ1, λ2) +NL(θ1, θ2, λ1, λ2)) = 0, (5.28)

where the linear and nonlinear part of the problem is defined by,

L(θ1, θ2, λ1, λ2) =
[

θ̇1 +
z2
d1

λ1

4
, θ̇2 +

z2
d2
λ2

4
, λ̇1, λ̇2

]T
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and

NL(θ1, θ2, λ1, λ2) =













−ω1 − z2
d1

λ1 cos 2θ1
4

+ zd1zd2λ2 cos(θ1−θ2)
4

− zd1zd2λ1 cos(θ1+θ2)
4

−ω2 − z2
d2

λ2 cos 2θ2
4

+ zd2zd1λ1 cos(θ2−θ1)
4

− zd2zd1λ2 cos(θ1+θ2)
4

−z2
d1

λ2
1
sin(2θ1)

4
− zd1zd2λ1λ2 sin(θ1+θ2)

4
+ zd1zd2λ1λ2 sin(θ1−θ2)

4

−z2
d2

λ2
2 sin(2θ2)

4
− zd2zd1λ2λ1 sin(θ2+θ1)

4
+ zd2zd1λ2λ1 sin(θ2−θ1)

4













.

We substitute the variables θ1, θ2, λ1, and λ2 in the homotopy map hp(θ1, θ2, λ1, λ2) =

0, with respective power series expansions:

θ1 =

∞
∑

i=0

θ̄1,ip
i, θ2 =

∞
∑

j=0

θ̄2,jp
j , λ1 =

∞
∑

k=0

λ̄1,kp
k, λ2 =

∞
∑

l=0

λ̄2,lp
l,

and compare the powers of the p to determine the coefficients, θ̄1,i, θ̄2,i, λ̄1,i and λ̄2,i.

For practical purposes, we truncate this infinite series at the N th power of p and

implement a recursive relation to calculate the coefficients. The coefficients of the

zeroth power terms of p are obtained by the equation,

L(θ̄1,0, θ̄2,0, λ̄1,0, λ̄2,0) = L(θ1,init, θ2,init, λ1,init, λ2,init), (5.29)

which shows the zeroth power coefficients are equal to the initial solution. We can

freely choose the initial solution in such a way to satisfy the boundary conditions.

The first order coefficients of p are obtained by solving,

L(θ̄1,1, θ̄2,1, λ̄1,1, λ̄2,1) + L(θ1,init, θ2,init, λ1,init, λ2,init) +NL(θ̄1,0, θ̄2,0, λ̄1,0, λ̄2,0) = 0,

(5.30)

and the higher orders coefficients are given by,

L(θ̄1,n, θ̄2,n, λ̄1,n, λ̄2,n)=
−1

(n− 1)!

∂n−1NL

(

n−1
∑

i=0

θ̄1,ip
i,

n−1
∑

j=0

θ̄2,jp
j ,

n−1
∑

k=0

λ̄1,kp
k,

n−1
∑

l=0

λ̄2,lp
l

)

∂pn−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p=0

(5.31)
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Figure 5.3: (a) The θ1, θ2 and (b) λ1, λ2 trajectories for boundary value problem
calculated from homotopy perturbation method.

where n ≥ 2. This way we can calculate all the coefficients of the power series

expansion for all four variables and the approximate solution is given by,

θ̄1 =

N
∑

i=0

θ̄1,i, θ̄2 =

N
∑

j=0

θ̄2,j , λ̄1 =

N
∑

k=0

λ̄1,k, λ̄2 =

N
∑

l=0

λ̄2,l.

The approximate solution has to satisfy the initial conditions θ̄1(0) = 0, θ̄2(0) = 0 and

the terminal conditions θ̄1(T ) = 2m1π, θ̄2(T ) = 2m2π at each order of p. Therefore,

we force the values of θ̄1,i and θ̄2,j to zero, at the initial time for all i, j, and at the

final time for i, j ≥ 1. The value of the the coefficients θ̄1,0(T ) and θ̄2,0(T ) are chosen

to be 2m1π and 2m2π respectively to satisfy the final value:

θ̄1,i(0) = 0 ∀i, θ̄2,j(0) = 0 ∀j,

θ̄1,0(T ) = 2m1π, θ̄2,0(T ) = 2m2π, θ̄1,i(T ) = 0 ∀i ≥ 1, θ̄2,j(T ) = 0 ∀j ≥ 1.

For an example, consider the case where ω1 = 1, ω2 = 2, zd1 = 1, zd2 = 1, m1 = 1,

m2 = 2 and T = 5. We choose the initial solutions to be θ1,init = 2m1πt/T, θ2,init =

2m2πt/T, λ1,init = 0, and λ2,init = 0; and follow the above given procedure to calcu-

late the approximate solution. Figures 5.3(a) and 5.3(b) illustrate the approximate

solutions of θ1, θ2 and λ1, λ2, if we consider up to seventh order of p. Note that by

increasing the order of approximation N , we can improve the approximate solution

to be arbitrarily close to the real solution.
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Figure 5.4: Minimum-power optimal control calculated from the homotopy pertur-
bation method for a two-neuron system where the neurons spike simultaneously at
T = 5.
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Figure 5.5: (a) Homotopy trajectory and the system trajectory under the derived
optimal control for state θ1 and (b) for state θ2

With approximate solutions to the variable θ1, θ2, λ1, and λ2, we calculate the optimal

control according to the equation (5.23) and it is depicted in Figure 5.4. In order

to validate the derived control, we apply it back to the original system and then

evolve the system forward in time. The resulted trajectories together with homotopy

trajectories for state θ1 and θ2 are depicted in Figures 5.5(a) and 5.5(b) respectively.

Homotopy trajectories and actual system trajectories under the optimal control show

strong similarities, and the differences between these two kind of trajectories reduce

with the order of approximation N .
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Figure 5.6: Minimum-power optimal control calculated using the homotopy pertur-
bation method for the coupled two-neuron system with simultaneous spikes at T = 5.

5.3.2 Minimum-Power Control of a Coupled Two-Neuron

System

Similar to Section 5.3.1, the minimum-power control of coupled neurons also can be

formulated as an optimal steering problem as given in (5.1) with ϕ(T,Θ(T )) = 0 and

L(Θ(t), I(t)) = I(t)2. We model the dynamics of coupled neurons using the following

Kuramoto-like system [76]:

f(Θ) =

[

f1

f2

]

=

[

ω1 + α1,2 sin(θ2 − θ1)

ω2 + α2,1 sin(θ1 − θ2)

]

, Z(Θ) =

[

Z1

Z2

]

=

[

zd1 sin θ1

zd2 sin θ2

]

.

where α1,2 and α2,1 denote the strength of coupling between the two neurons. Our

objective is to drive this coupled two-neuron system from the initial state Θ0 =

(0, 0)′ to the desired final state Θd = (2m1π, 2m2π)
′ with minimum power, where

m1, m2 ∈ Z
+. As in Section 5.3.1, we also use the homotopy perturbation method

to solve this problem, and the result is give in Figure 5.6 for the parameter values

ω1 = 1, ω2 = 1.1, α1,2 = 0.1, α1,1 = −0.1, zd1 = 1, zd2 = 1, m1 = 1, m2 = 2 and

T = 5. Figure 5.7(a) and 5.7(b) illustrate the resulting trajectories for θ1 and θ2,

where blue, red, and brown trajectories represent the system trajectory under the

derived control, the homotopy trajectory and the reference trajectory without the

control, respectively.
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Figure 5.7: Homotopy trajectory, system trajectory under the derived optimal control,
and the uncontrolled reference trajectory (a) for state θ1 and (b) for state θ2.

5.3.3 Minimum-Power Control of a Neuron Ensemble

In Figure 5.8, we demonstrate the flexibility of the homotopy perturbation method

to drive multiple sinusoidal neurons to desired targets. In particular we seek to si-

multaneously spike five frequencies with widely dispersed frequency values at a time

T different from their natural period. In this figure, we consider the frequencies

(ω1, ω2, ω3, ω4, ω5) = (1, 2, 3, 4, 5) and design the unbounded controls to drive these

systems to (2π, 4π, 6π, 8π, 10π), respectively, at a time T = 2π − 0.5. Controls for

minimum energy (α = 0, β = 1) transfer can be designed where the state trajectories

and spike sequence follow the same general pattern. The spike train shows that the

controls are able to advance the firing of each neuron so that all five spike simultane-

ously at the desired terminal time. Note that in this example, we just use the order

approximation N = 4 and calculate the first five terms of the power series expansion.

This same example also can be solved in similar fashion using pseudospectral method.

In Figures 5.9(a) and 5.9(b) we present results obtained from the pseudospectral

method, which shows strong agreement with results obtained by the homotopy per-

turbation method in Figures 5.8(a) and 5.8(b).
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Figure 5.8: (a) The controls of a sinusoidal PRC neuron model driving five frequencies,
(ω1, ω2, ω3, ω4, ω5) = (1, 2, 3, 4, 5), to the desired targets θ(T ) = (2π, 4π, 6π, 8π, 10π)
when T = 2π− 0.5 and (b) their state trajectories obtained obtained form homotopy
perturbation technique.
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Figure 5.9: (a) The controls of a sinusoidal PRC neuron model driving five frequencies,
(ω1, ω2, ω3, ω4, ω5) = (1, 2, 3, 4, 5), to the desired targets θ(T ) = (2π, 4π, 6π, 8π, 10π)
when T = 2π − 0.5 and (b) their state trajectories

5.4 Conclusion

In this Chapter, we considered the optimal control of a heterogenous neuron ensem-

ble described by phase models. In particular, the synthesis of minimum-power and

time-optimal controls that achieve coordinated spiking in neuron ensembles was de-

scribed. The ability to manipulate phase oscillators is of theoretical significance in

neuroscience, and is of practical importance for the development of therapeutic pro-

cedures such as deep brain stimulation for clinical treatment of Parkinson’s disease

and epilepsy. Our technique can be used to control oscillating systems that arise in

diverse fields including biology, chemistry, semiconductor electronics, and mechanical

vibrating systems.
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Chapter 6

Conclusion

In this dissertation we study a series of optimal control problems involving nonlin-

ear oscillators. We represent the dynamics of oscillators by their phase models and

derive the optimal control laws that optimize various given cost functionals. The

methodologies presented in the dissertation are generic for all oscillatory systems

whose dynamics can be described by phase models. Our work has broad impact on

various areas, where the ability to manipulate dynamic structures such as synchro-

nization, is fundamental. These include the control of voltage-controlled phase-lock

loops in electrical engineering, suppression of vibrations in mechanical systems, con-

trol of circadian rhythms in biological systems, and formation of social groups in

social networks. In the past, researchers have used phase models to perform quali-

tative analyses of the oscillatory systems, however there are only a handful of works

on quantitative control. Our novel contribution in this dissertation is to establish

a control-theoretic framework that provides analytically and numerically tractable

methods for optimal control of weakly forced nonlinear oscillators.

We design minimum-power controls that lead to a desired spiking time of neuron os-

cillators. We consider a bound on the control amplitude and characterize the range of

possible spiking times determined by this bound. We show that, for a given bound,

the corresponding feasible spiking times are optimally achieved by piecewise con-

tinuous controls. We test these bounded controls in the full state-space model to

quantitatively verify and illustrate the weak forcing assumption. We present analyti-

cal expressions with numerical simulations of the minimum-power stimuli for several

phase models including the sinusoidal, SNIPER, and Morris-Lecar phase models. We

106



demonstrate the practicality and applicability of our method by successful experi-

mental realizations of the derived optimal controls in electrochemical oscillators.

In addition, we derive charge-balanced minimum-power as well as charge-balanced

time-optimal controls. The latter determines the minimum and maximum spiking

time of a neuron oscillator. The derived optimal controls are applied to both math-

ematically ideal and experimentally observed phase models. This work addresses a

fundamental problem in the field of neural control and provides a theoretical investi-

gation of the optimal controls of oscillatory systems subject to a constrained control

set. We develop a systematic computation procedure for the synthesis of these op-

timal controls and completely characterize the different structures of these controls

with respect to the allowable bound on the control amplitude. Our consideration of

bounded controls is of fundamental importance because the phase model reduction

is valid for weak forcing. These optimal control designs have potential impact on

the improvement and development of innovative therapeutic procedures for neuro-

logical disorders, where accumulation of electrical charge has undesirable side effects.

The qualitative performance that we observed from the controls derived from the

phase models when applying them to the underlying full state-space models is highly

promising in practical applications such as clinical therapy.

Furthermore, we investigate the optimal control of a neuron ensemble. The optimal

control of a single neuron system studied in this work provides a guide line that enables

us to study optimal control of spiking neuron populations. Our recent work proved the

controllability of a neural population described by phase models [84]. It assures the

existence of a control law that causes simultaneous spikes of a network of neurons.

We examine the optimal control of an ensemble of coupled and uncoupled neuron

oscillators that have variation in the frequency. We analytically derive the time-

optimal control for spiking two neuron oscillators and propose an optimization-free

and iterative computational method based on homotopy perturbation techniques to

construct optimal controls for spiking neuron ensemble. This computational method

is not only robust to optimal control problems of neuron oscillators, but also applicable

to solve a broad class of optimal control problems, such as optimal control of nuclear

spin dynamics in nuclear magnetic resonance spectroscopy and imaging. The derived

methods by this dissertation work are universal to any nonlinear oscillator whose

dynamics can be described by phase models.
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Appendix A

Pontryagin’s Maximum Principle

A.1 General Form of the Maximum Principle

The maximum principle[116, 107] was developed by a group of mathematicians,

namely L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, in

the 1950s. In this section, we briefly summarize the Maximum principle and relevant

definitions. Consider the optimal control problem in the following form.

min J(u) =

∫ T

t0

L(t, x(s), u(s))ds+ ϕ(x(T ), T )

s.t. ẋ = f(t, x, u)

ψ(T, x(T )) = 0.

(A.1)

where x ∈ M is the state of the system and u ∈ U is the control variable. Note

that open and connected M ⊂ R
n and U ⊂ R

m are used to denote the state-space

and control set, respectively. The variable t is used to denote time and t0 and T

correspond to the initial and the final times. Function L : R×M ×U → R is known

as the Lagrangian, and the integral of it gives the running cost for the objective.

Function ϕ : Rn+1 → R defines the terminal cost. The dynamics of the system is

given by the function f : R×M ×U → R
n. We assume the time-varying vector field

defined by function f is continuous in (t, x, u), and differentiable in x for fixed (t, u).

We also assume that the partial derivatives of f are exist and are continuous in all

variables. The terminal set is given by k− dimensional embedded submanifold N in

R×M . More specifically, N is given by N = {(t, x) ∈ R×M : ψ(t, x) = 0}.
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Definition 3 The control hamiltonian H of the above given optimal control problem

is defined as

H(t, λ0, λ, x, u) = λ0L(t, x, u) + λf(t, x, u),

where

H : R× [0,∞]× (Rn)× R
n × R

m → R.

Theorem 1 (Pontryagin’s Maximum Principle)[116, 107] Let (x∗, u∗) be a

controlled trajectory defined over the interval [t0, T ], and suppose the control u∗ is

piecewise continuous. If (x∗, u∗) is optimal, then there exist a constant λ0 ≥ 0 and

a co-vector λ : [t0, T ] → (Rn)∗, the so-called adjoint variable, such that the following

conditions are satisfied:

1. Nontriviality of the multipliers: (λ0, λ(t)) 6= 0 ∀ t ∈ [t0, T ].

2. Adjoint equation: the adjoint variable λ is a solution to the time-varying linear

differential equation

λ̇(t) = −λ0Lx(t, x∗(s), u∗(s))− λ(t){x(t, x∗(s), u∗(s)).

3. Minimum Condition: every where in [t0, T ], we have that

H(t, λ0, λ(t), x∗(t), u∗(t) = min
u∈U

H(t, λ0, λ(t), x∗(t), u(t)).

If the Lagrangian L and the dynamics f are continuously differentiable in t,

then the function

h : t→ H(t, λ0, λ(t), x∗(t), u∗(t))

is continuously differentiable with derivative given by

ḣ(t) =
dh

dt
(t) =

∂H

∂t
(t, λ0, λ(t), x∗(t), u∗(t)).

4. Transversality condition: at the endpoint of the controlled trajectory, the covec-

tor

(H + λ0ϕt,−λ + λ0ϕx).
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is orthogonal to the terminal constant N, i.e. there exists a multiplier ν ∈
(Rn+1−k)∗ such that

H + λ0ϕt + νDtψ = 0, λ = λ0ϕx + νDxψ at (T, x∗(T ))

A.2 Maximum Principle for Time-Optimal Con-

trol Problems

Theorem 2 (Time-Optimal Control [107]) Let (x∗(t), u∗(t)) be a time-optimal

controlled trajectory that transfers the initial condition x(0) = x0 into the terminal

state x(T ) = xT . Then, it is a necessary condition for optimality that there exist a

constant λ0 ≥ 0 and a nonzero, absolutely continuous row vector function λ(t) such

that:

1. λ satisfies the so-called adjoint equation

λ̇(t) = −∂H
∂x

(λ0, λ(t), x∗(t), u∗(t)).

2. For 0 ≤ t ≤ T the function u 7→ H(λ0, λ(t), x∗(t), u) attains its minimum over

the control set U at u = u∗(t).

3. H(λ0, λ(t), x∗(t), u∗(t)) ≡ 0.
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Appendix B

Computation of Optimal Controls

for a Neuron Ensemble By a

Pseudospectral Method

The pseudospectral method is a spectral collocation method originally developed to

solve partial differential equations, and has recently been adapted to solve optimal

control problems [110, 82, 113, 83, 43, 27]. In this approach, the differential equations

that relate the states and the controls are discretized at specific collocation nodes,

which result in a discrete optimization problem. All continuous-time functions are

rescaled to the time domain of [-1,1] and expanded by an orthogonal polynomial basis

based on a set of selected quadrature nodes [27]. Here, we use the Legendre-Gauss-

Lobatto(LGL) nodes and can then write the N th order interpolating approximations

of the state and control functions

Θ(t) ≈ INΘ(t) =

N
∑

k=0

Θ̄kℓk(t), (B.1)

u(t) ≈ INu(t) =
N
∑

k=0

ūkℓk(t),

where

ℓk(t) =
N
∏

i=0,i 6=k

t− ti
tk − ti

, k = 0, 1, . . . , N,
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are the Lagrange polynomials with ℓk(ti) = δki, which is the Kronecker delta function.

The derivative of INΘ(t) at the LGL node tj , j = 0, 1, . . . , N , is given by

d

dt
INΘ(tj) =

N
∑

k=0

Θ̄k ℓ̇k(tj) =
N
∑

k=0

DjkΘ̄k,

where Djk are elements of the constant (N + 1)× (N + 1) differentiation matrix

Djk =























LN (tj )

LN (tk)
1

tj−tk
j 6= k

−N(N+1)
4

j = k = 0
N(N+1)

4
j = k = N

0 otherwise.

The integral cost functional of the optimal control problem as in (5.1) can be accu-

rately approximated by the Gauss-Lobatto integration rule. Thus, the pseudospectral

discretization of the optimal control problem (5.1) gives rise to a finite-dimensional

constrained nonlinear minimization problem of the form,

min ϕ(T, Θ̄N) +
T

2

N
∑

j=0

L(Θ̄j, ūj)wj

s.t.
N
∑

k=0

DjkΘ̄k =
T

2

[

f(Θ̄j) + ūj Z(Θ̄j)
]

, (B.2)

Θ̄0 = 0,

Θ̄N = Θd, ∀ j ∈ {0, 1, . . . , N},

where Θd = (2m1π, 2m2π, . . . , 2mnπ)
′, mi ∈ Z

+, i = 1, . . . , n, is the target state and

wj are the LGL weights given by

wj =
2

N(N + 1)

1

(LN(tj))2
,

in which LN is the N th order Legendre polynomial. This type of constrained nonlinear

programs are straightforward to implement and can be solved with many of the

commercially available nonlinear solves. We implement it in the AMPL language

[39] and use a third party nonlinear programming solver, KNITRO [14], to solve

this optimization problem. Note that the Legendre pseudospectral method also can
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be used as a direct method to verify the previously presented analytical results in

Chapters 2,3,4 and 5.

Remark 6 (Extension to an infinite ensemble of neuron systems) The pseu-

dospectral method can be extended to discretize optimal control problems related to

infinite collection of neurons, for example a population of neurons with the frequency

distribution over a closed interval, ω ∈ [ωa, ωb] ⊂ R
+. In such a case, the parameter-

ized state trajectory can be approximated by a two-dimensional interpolating polyno-

mial, namely, Θ(t, ω) ≈ IN×Nω
Θ(t, ω), according to the LGL nodes in the time t and

the parameter ω. Similar to having only a finite number of neurons, the dynamics of

the state can be expressed as an algebraic constraint in the nonlinear program and a

corresponding minimization problem can be constructed accordingly [113].
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