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ABSTRACT OF THE THESIS

Capturing Higher-order Relationships through Information Decomposition

by

Aobo Lyu

Master of Science in Systems Science & Mathematics

Washington University in St. Louis, 2024

Professor Andrew Clark, Chair

Mutual information between two random variables is a well-studied notion, whose under-

standing is fairly complete. Mutual information between one random variable and a pair

of other random variables, however, is a far more involved notion. Specifically, Shannon’s

mutual information does not capture fine-grained interactions between those three variables,

resulting in limited insights in complex systems. To capture these fine-grained higher-order

interactions among variables, Williams and Beer proposed a framework called Partial Infor-

mation Decomposition (PID) to decompose this mutual information to information atoms,

called unique, redundant, and synergistic, and proposed several operational axioms that these

atoms must satisfy. This conceptual framework provides a potential data-driven approach to

reveal higher-order relationships between multiple source variables and a target variable, but

still faces many problems, such as incomplete numerical calculations and restricted decom-

position scales (multivariable mutual information). In this report, we introduce two works

completed in the past semesters, in which one solved numerical calculations problem and

another further expanded it to the system scale (whole entropy). In this way, we have the

opportunity to implement data-driven methods to reveal higher-order interactions.

The first work is an explicit formula for Partial Information Decomposition. In spite of

numerous efforts, a general formula that satisfies all the axioms of PID has yet to be found.

vi



Inspired by Judea Pearl’s do-calculus, we resolve this open problem by introducing the do-

operation, an operation over the variable system which sets a certain marginal to a desired

value, which is distinct from any existing approaches. Using this operation, we provide

the first explicit formula for calculating the information atoms so that Williams and Beer’s

axioms are satisfied, as well as additional properties from subsequent studies in the field.

The second work is a framework called System Information Decomposition. Diverging from

the PID framework, which concentrates on the directional interactions from an array of

source variables to a single target variable, we introduce a novel framework termed System

Information Decomposition (SID). By proving all the information atoms are symmetric, the

framework can further decompose the whole entropy of the system to capture all interactions

among variables. This positions SID as a promising framework with the potential to foster a

deeper understanding of higher-order relationships within complex systems across disciplines.
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Chapter 1

Introduction

Since its inception by Claude Shannon [31], mutual information has remained a pivotal mea-

sure in information theory, which finds extensive applications across multiple other domains.

Extending mutual information to multivariate systems has attracted significant academic

interest, but no widely agreed upon generalization exists to date. For instance, the so-called

interaction information [35] emerged in 1960 as an equivalent notion for mutual informa-

tion in multivariate systems, and yet, it provides negative values in many common systems,

contradicting Shannon’s viewpoint of information measures as nonnegative quantities.

Arguably the simplest multivariate setting in which Shannon’s mutual information fails to

capture the full complexity of the system is that of a three variable system, with two source

variables, and one target variable. Mutual information between the source variables and

the target variables does not provide insights about how the source variables influence the

target variable. Specifically, in various points of the probability space the value of the target

variable might be computable either:

(a) exclusively from one source variable (but not the other);

(b) either one of the source variables; or

(c) both variables jointly (but not separately).

In 2010 William and Beer [37] proposed to formalize the above fine-grained interactions in a

three variable system using an axiomatic approach they called Partial Information Decom-

position (PID). They proposed decomposing said mutual information to four constituent

ingredients called information atoms, which capture the above possible interactions between

the variables:
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(a) two unique information atoms, one for each source variable, which capture the infor-

mation each source variable implies about the target variable, that cannot be inferred from

the other; (b) one redundant information atom, which captures the information that can

inferred about the target variable from either one of the source variables; and (c) one syn-

ergistic information atom, which captures the information that can be inferred about the

target variable from both source variables jointly, but not individually.

Ref. [37] proposed a set of axioms that the above information atoms should satisfy in order to

provide said insights, and follow-up works in the field identified several additional properties

[17, 23, 22, 33]. Yet, in spite of extensive efforts [10, 16, 3, 14, 4], a comprehensive definition

of information atoms which satisfies all these axioms and properties is yet to be found.

In spite of limited understanding of the information atoms, PID has already found multi-

ple applications in various fields. As a simple example [1, Fig. 2.1], one can imagine the

two source variables being education level and gender, and the target variable being annual

income. An exact formula for computing the information atoms would shed insightful infor-

mation about the extent to which annual income is a result of education level, gender, either

one, or both.

Beyond this simple example, PID has broad applications in a wide range of fields. In brain

network analysis, PID (or similar ideas) has been instrumental in measuring correlations

between neurons [30] and understanding complex neuronal interactions in cognitive processes

[34]. For privacy and fairness studies, the synergistic concept provides insights about data

disclosure mechanisms [27, 13]. In the field of causality, information decomposition can be

used to distinguish and quantify the occurrence of causal emergence [29], and more.

In Chapter 3, we introduce the work of Explicit Formula for Partial Information De-

composition that satisfies all of Williams and Beer’s axioms, as well as several additional

desired properties. We do so by introducing the do-operation, which is inspired by similar

concepts in the field of causal analysis [25, 26, 15]. Intuitively, based on the understanding

that unique information is “ideal conditional mutual information,” our method first adjusts

the entire probability distribution by using the do-operation in order to make the target

variable identical to its conditional distribution given one source variable(s), and then cal-

culates the expectation of mutual information between it and the other source variable(s)

under different conditions. And it is worth noting that our method is not based on any of

the point-wise, localized, or optimization approaches that existing methods use.
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In Chapter 4, we introduce the work of System Information Decomposition, an innova-

tive theoretically extended framework based on PID that treats all system variables equally

(target-free) and effectively captures their complex interactions. Specifically, we firstly ex-

pand the PID’s conceptual framework to a system horizon by taking all variables in the

system as target variable separately. Then, since PID is inspired by an analogy between

information theory and set theory [36] and redundant information can be understood as

the intersection of variable information, we prove the symmetry properties of information

decomposition based on a set theory perspective of information theory. That means the

value of information atoms, the non-overlapping units obtained by decomposing variables’

information entropy according to their relationship, will not be affected by the the choice of

target variable. Therefore, we put forward a general SID framework, wherein redundant, syn-

ergistic, and unique information atoms become a multivariate system’s property, reflecting

the complex (pairwise and higher-order) relationships among variables. Finally, we discuss

the potential application scenarios and implications of SID from areas such as Higher-order

Networks and theory of Causality.

In Chapter 5, we briefly conclude the rotation result and discuss about and the future works.

And all proofs are provided in the appendix.
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Chapter 2

Partial Information Decomposition

Framework, Axioms, and Properties

The following notational conventions are observed throughout this article: X,X , x (simi-

larly Y,Y , y etc.) denote a random variable, its corresponding (finite) alphabet, and an

element of that alphabet, respectively. The distribution of X is denoted by DX , the joint

distribution of X and Y is denoted by DX,Y , and the distribution of X given Y = y is

denoted by DX|Y=y.

For random variables X, Y, Z, the quantity I(X, Y ;Z) captures the amount of information

that one target variable Z shares with the source variables (X, Y ), but provides no fur-

ther information regarding finer interactions between the three variables. To gain more

subtle insights into the interactions between Z and (X, Y ), [37] proposed to further decom-

pose I(X, Y ;Z) into information atoms. Specifically, the shared information between Z

and (X, Y ) should contain a redundant information atom, two unique information atoms,

and one synergistic information atom (see Figure 2.1).

The redundant information atom Red(X, Y → Z) (also called “shared”) represents the infor-

mation which either X or Y imply about Z. The unique information atom Un(X → Z|Y )

represents the information individually contributed to Z by X, but not by Y (similarly

Un(Y → Z|X)). The synergistic information atom Syn(X, Y → Z) (also called “comple-

mentary”), represents the information that can only be known about Z through the joint

observation of X and Y , but cannot be provided by either one of them separately. Together,

we must have that

I(X, Y ;Z) = Red(X, Y → Z) + Syn(X, Y → Z) + Un(X → Z|Y ) + Un(Y → Z|X). (2.1)

We refer to (2.1) as Partial Information Decomposition (PID).
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Moreover, since the redundant atom together with one of the unique atoms constitute all

information that one source variable implies about the target variable, it must be the case

that their summation equals the mutual information between the two, i.e.,

I(X;Z) = Red(X, Y → Z) + Un(X → Z|Y ),

and I(Y ;Z) = Red(X, Y → Z) + Un(Y → Z|X). (2.2)

In a similar spirit, the synergistic information atom and one of the unique information atoms

measure shared information between the target variable and one of the source variables,

while excluding the other source variable. Therefore, the summation of these quantities

should coincide with the well-known definition of conditional mutual information.

I(Z;X|Y ) = Syn(X, Y → Z) + Un(X → Z|Y ),

and I(Z;Y |X) = Syn(X, Y → Z) + Un(Y → Z|X). (2.3)

Eqs. (2.2), and (2.3) are the foundation of an axiomatic approach towards an operational

definition of the information atoms. These equations form the first in a series of axioms,

presented next, which were raised in previous works on the topic [37, 36, 12]. Such ax-

iomatic approach was also taken in the past in order to shed light on Shannon’s mutual

information [8].

Axiom 1 (Information atoms relationship). Partial Information Decomposition (2.1) satis-

fies (2.2) and (2.3).

Notice that it suffices to specify the definition of any one of the information atoms, and the

definitions for the remaining atoms follow from Axiom 1. Consequently, [37, 20] chose to

specify Red, and provided three additional axioms which Red should satisfy.

The first additional axiom is commutativity of the source variables, which implies that the

order of the source variables must not affect the value of the redundant information.

Axiom 2 (Commutativity). Partial Information Decomposition satisfies Red(X, Y → Z) =

Red(Y,X → Z).

5



Figure 2.1: A pictorial representation of Partial Information Decomposition (2.1),
where I(X, Y ;Z) is decomposed to its finer information atoms, the synergistic Syn(X, Y →
Z) (also called “complementary”), the redundant Red(X, Y → Z) (also called “shared”),
and the two directional unique components Un(X → Z|Y ) and Un(Y → Z|X). The summa-
tion of the redundant atom and one of the unique atoms must be equal to the corresponding
mutual information, as described in Eq. (2.2).
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The second is monotonicity, which implies that the redundant information is non-increasing

when adding a source variable, since the newly added variable cannot increase the redun-

dancy between the original variables. We sidestep the discussion about monotonicity with

more than two variables, which is not our focus in this paper, even though it can be easily

obtained by extending our definition to more than two source variables.

The third is self-redundancy, which defines the redundant information from one source vari-

able to the target variable (i.e., Red(X → Z)) as the mutual information between them. In

the case of two source variables considered herein, monotonicity and self-redundancy merge

into the following single axiom.

Axiom 3 (Monotonicity and self-redundancy). Partial Information Decomposition satisfies

Red(X, Y → Z) ≤ min{I(X;Z), I(Y ;Z)}.

Notice that Axiom 3, alongside Axiom 1 (specifically (2.2)), imply that Un is a nonnegative

quantity. The nonnegativity of Red is stated in [37, 20] as a separate axiom, shown next.

Axiom 4 (Nonnegativity). Partial Information Decomposition satisfies Red(X, Y → Z) ≥
0.

The nonnegativity of Syn is normally not listed as an axiom, since it is debatable if it should

or should not be nonnegative; we will show that our method yields nonnegative Syn under

the closed-system assumption (i.e., H(Z|X, Y ) = 0) in Chapter 3, and further discussion is

given in Chapter 3.3.

Besides, subsequent to [37, 20], studies suggested two additional properties, additivity and

continuity [4, 28]. Additivity implies that whenever independent variable systems are con-

sidered, the joint information measures should be the sum of the information measures of

each individual system. This is the case, for instance, in joint entropy of two independent

variables.

Property 1 (Additivity). Partial Information Decomposition of two independent systems

DX1,X2,X3 and DA1,A2,A3 satisfy

Un((Xi, Al) → (Xj, Am)|(Xk, An)) = Un(Xi → Xj|Xk) + Un(Al → Am|An), and

F((Xi, Al), (Xj, Am) → (Xk, An)) = F(Xi, Xj → Xk) + F(Al, Am → An),

7



for every F ∈ {Red, Syn} and every i, j, k, l,m, n ∈ {1, 2, 3}.

Continuity implies that small changes in the probability distribution lead to small changes in

the value of the information measure. It ensures that the measure behaves predictably and

is a key property in information theory, particularly for measures like entropy and mutual

information.

Property 2 (Continuity). Red, Un, and Syn are continuous functions from the underlying

joint distributions DX,Y,Z to R.

In addition, another well-known property is independent identity [16], which asserts that in

a system of two independent source variables and a target variable which equals to their

joint distribution, the redundant information should be zero.

Property 3 (Independent Identity). If I(X, Y ) = 0 and Z = (X, Y ), then Red(X, Y →
Z) = 0.

We mention that several important properties can be inferred from the above. For example,

the non-negativity of Un can be obtained from Axiom 1 and Axiom 3 as mentioned earlier;

the commutativity of Syn follows from Axiom 1 and Axiom 2; the difference between (2.2)

and (2.3) is often called consistency [4], etc.

Finally, we emphasize once again that none of the existing operational definitions of the

information atoms satisfy all of the above. A comprehensive list of violations is beyond the

page limit of this paper, and yet we briefly mention that Axiom 4 (nonnegativity) is violated

by [37, 10, 16, 9] (although some sources do not refer to non-negativity as a requirement);

Property 1 (additivity) is violated by all works except [4], [11], [10], and [18] according

to [28]; Property 3 (independent identity) is violated by [37]; Property 2 (continuity) is

violated by [14, 10], [11], [18], etc.

8



Chapter 3

Explicit Formula for Partial

Information Decomposition

In this chapter, we present our operational definition of Un, from which the definitions of

the remaining information atoms follow. Then, we prove that this definition satisfies all the

axioms and properties proposed in Chapter 2.

3.1 Definition of Information Atoms

Our definition of unique information Un requires a do-operation. This newly defined oper-

ation generates a new distribution DA,B,C with a prescribed marginal from the given distri-

bution DX,Y,Z , and is inspired by Judea Pearl’s do-calculus [24] (also [15]). Specifically, we

write DA,B,C = do(DX,Y,Z |DC) to indicate that given a joint distribution DX,Y,Z and a proba-

bility distribution DC (over the same alphabet as Z), we construct a new distribution DA,B,C

whose rightmost variable has the same marginal distribution as the input distribution DC

(and hence the notational choice to represent both by the letter C).

Definition 1 (Do-operation). Given DX,Y,Z and DC with identical support to DZ, let DA,B,C =

do(DX,Y,Z |DC) be such that

Pr(A,B,C = x, y, z) =

0 if Pr(Z = z) = 0, and

Pr(X,Y,Z=x,y,z) Pr(C=z)
Pr(Z=z)

otherwise,
(3.1)

for all x, y, z ∈ X × Y × Z.

In Lemma 13, which is given and proved in Appendix A.1, it is shown that DA,B,C in

Definition 1 is well-defined, and that the rightmost marginal of DA,B,C is identical to DC .

9



Therefore, there is no ambiguity in referring to both the input distribution and the rightmost

marginal of the output distribution by the same letter C. We now turn to present our

definition of Un.

Definition 2 (Unique Information). For y ∈ Y let Cy be a random variable with distribu-

tion DCy = DZ|Y=y, and let DAy ,By ,Cy = do(DX,Y,Z |DCy). The unique information from X

to Z given Y is defined as:

Un(X → Z|Y ) =
∑
y∈Y

Pr(Y = y)I(Ay;Cy). (3.2)

The definitions for the remaining information atoms are then implied by Axiom 1 as follows.

Definition 3 (Redundant Information). The Redundant Information from X and Y to Z

is defined as:

Red(X, Y → Z) = I(X;Z)− Un(X → Z|Y ).

Definition 4 (Synergistic Information). The synergistic information from X and Y to Z is

defined as:

Syn(X, Y → Z) = I(X;Z|Y )− Un(X → Z|Y ).

It should be noted that Definition 3 and Definition 4 strictly depend on the order of the

source variables; the commutativity of Red (Axiom 2) will be addressed in the sequel, and

the commutativity of Syn follows from Axiom 1 and Axiom 2 as mentioned earlier.

3.2 Satisfaction of axioms and properties

To show that our definition satisfies the axioms and properties mentioned in Section 2, we

require the following technical lemma, which shows that conditional entropy can be written

using the do-operation. The proof is given in Appendix A.2.

Lemma 1. Following the notations of Definition 2, we have that H(X|Z) =
∑

y∈Y Pr(Y =

y)H(Ay|Cy).

10



Moreover, since I(Ay;Cy) = H(Ay)−H(Ay|Cy), by Definition 2 and Lemma 1, the following

is immediate.

Corollary 1. Unique information (Def. 2) can also be written as:

Un(Y → Z|X) =
∑
y∈Y

Pr(Y = y)H(Ay)−H(X|Z).

We now turn to define a new auxiliary random variable AZ|Y , which is defined through its

conditioned probabilities.

Definition 5. For a given (X, Y, Z), let AZ|Y be a random variable over X with

Pr(AZ|Y = x|Y = y) = Pr(Ay = x), (3.3)

which implies that

Pr(AZ|Y = x) =
∑
y∈Y

Pr(Y = y) Pr(Ay = x). (3.4)

The fact that AZ|Y is well-defined is proved in Appendix A.3. And by (3.3), we have the

following corollary.

Corollary 2. For every y ∈ Y, the above Ay and AZ|Y satisfy

H(AZ|Y |Y = y) = H(Ay).

Furthermore, the proof in Appendix A.3 also shows the following.

Lemma 2. The variable AZ|Y above satisfies H(AZ|Y ) = H(X).

So far, we require one final auxiliary lemma, which is based on Corollary 2 and Lemma 2

and proved in Appendix A.4.

Lemma 3. We have ∑
y∈Y

Pr(Y = y)H(Ay) ≤ H(X). (3.5)
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Based on the above lemmas and corollaries, we are in a position to prove that our definition

of Un satisfies the required axioms.

3.2.1 Proof of Axiom 1, Information atoms relationship

Follows immediately from Definition 3 and Definition 4.

3.2.2 Proof of Axiom 3, Monotonicity and self-redundancy

According to Definition 2, Un is nonnegative since it is an expectation of mutual information

quantities. Therefore, Axiom 3 follows directly from Definition 3.

3.2.3 Proof of Axiom 4, Nonnegativity

We begin by showing that Red is nonnegative, for which we require the following lemma,

proved in Appendix A.5.

Lemma 4. Unique information (Definition 2) is bounded from above by mutual information,

i.e.,

Un(X → Z|Y ) ≤ I(X;Z).

Then, nonnegativity of Red (in Def. 3) follows from Lemma 4:

Corollary 3 (Nonnegativity of Redundant Information). Redundant information (Defini-

tion 3) is nonnegative, i.e.,

Red(X, Y → Z) ≥ 0.

In addition to Lemma 4, the unique information can also be proved to be smaller than the

conditional entropy, as shown next and proved in Appendix A.6.
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Lemma 5. The unique information defined in Definition 2 is bounded above by conditional

information, such that:

Un(X → Z|Y ) ≤ H(Z|Y ). (3.6)

Although it is not a required property, the nonnegtivity of Syn will follow from Lemma 5

with an additional closed system assumption H(Z|X, Y ) = 0.

Corollary 4 (Nonnegativity of Synergistic Information). If H(Z|X, Y ) = 0, then Synergistic

information (Definition 4) is nonnegative, i.e., Syn(X, Y → Z) ≥ 0.

3.2.4 Proof of Axiom 2, Commutativity

First, Definition 5 provides an equivalent way to compute Red in the following lemma, which

is proved in Appendix A.7.

Lemma 6. Redundant information (Definition 3) can alternatively be written as Red(X, Y →
Z) = I(AZ|Y ;Y ).

Similarly, by switching between X and Y in Definition 3 we have that Red(Y,X → Z) =

I(Y ;Z) − Un(Y → Z|X); based on Lemma 6, this equals to I(X;BZ|X), where BZ|X is

defined analogously to AZ|Y (Definition 5), i.e.,

Pr(BZ|X = y) =
∑
x∈X

Pr(X = x) Pr(Bx = y).

Then, we can conclude the commutativity of redundant information through the following

lemma, which is proved in Appendix A.8.

Lemma 7 (Commutativity of Redundant Information). For AZ|Y and BZ|X as above, we

have that I(AZ|Y ;Y ) = I(X;BZ|X).

Combining Lemma 6 and Lemma 7 readily implies the commutativity of Red, i.e., Red(X, Y →
Z) = Red(Y,X → Z).
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3.2.5 Proof of Property 1, Additivity

The following lemma is proved in Appendix A.9.

Lemma 8 (Additivity of Unique Information). For two independent sets of variables X, Y, Z

and X ′, Y ′, Z ′, unique information (Definition 2) is additive:

Un((X,X ′) → (Z,Z ′)|(Y, Y ′)) = Un(X → Z|Y ) + Un(X ′ → Z ′|Y ′).

Since mutual information and conditional entropy are additive in the above sense, by Defi-

nition 3 and Definition 4, alongside Lemma 8, Red and Syn are additive as well.

3.2.6 Proof of Property 2, Continuity

We begin by showing that Red is continuous, for which we require the following lemma

proved in Appendix A.10.

Lemma 9 (Continuity of Redundant Information). The redundant information (Def. 3) is

a continuous function of the input distribution DX,Y,Z to R.

By Definition 3 and Definition 4, the continuity of Un and Syn can also be derived.

3.2.7 Proof of Property 3, Independent Identity

The following lemma is proved in Appendix A.11.

Lemma 10. The operator Red satisfies Property 3.

3.3 Discussion about the Formula

In this paper, we proposed an explicit operational formula for PID, which is distinct from

any existing approach, and proved that it satisfies all axioms and properties. In this section

we provide an intuitive explanation for our approach.
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First, we wish to elucidate the role that our do-operation plays in the definition of Un

(Definition 2). In a sense, the do-operation can be understood as adjusting the marginal

distribution of the Z variable of DX,Y,Z , while impacting its connections with other variables

as little as possible. This understanding can be confirmed by Lemma 1, which shows that

the expected value of the conditional entropy after the do-operation retains its original value.

This resembles the invariance implied in Shannon’s communication model [31], where the

conditional entropy of the output given the input is not affected by the input distribution.

From this perspective, Z and X can be regarded as the input and output of the channel,

that indices their “relationship.” The do-operation changes the distribution of the input Z,

but does not change the channel’s characteristic (i.e., H(Z|X)).

Based on this, Definition 2 realizes the intuition that unique information should represent

the relationship between source variable and target variable given other source variables.

So, we use the do-operation to control the marginal distribution of the target variable Z

to its conditional distribution given the value y of some source variable(s) Y , then use

the expectation of mutual information
∑

y Pr(Y = y)I(Ay;Cy) to capture the “connection”

between the specific source variable X and target variable Z given Y after the do-operation.

The reason this method can partition I(X;Z|Y ) to Syn and Un (Def. 4), is that the do-

operation eliminates high-order relations between Y and X,Z, i.e. Syn. Specifically, condi-

tional mutual information relies on the joint conditional probability D(X,Z)|y, in expectation

over all y ∈ Y . This distribution includes both the conditional influence of Y on X,Z, but

also has a simultaneous influence on the relationship between X and Z.

However, Definition 2 of unique information retains the relationship between X and Z with-

out influence from Y by using the conditional probability DZ|y, in expectation over all y ∈ Y ,

to perform the do-operation, which only reflects the conditional influence of Y on Z. There-

fore, the expectation of mutual information
∑

y Pr(Y = y)I(Ay;Cy) can accurately quantify

the unique information, which represents the pure conditional mutual relationship.

In addition to the above analysis of do-operations in unique information, Lemma 6 also brings

another perspective worth discussing. Redundant information can be understood as the

mutual information I(AZ|Y ;Y ) (or I(X;BZ|X)) obtained by changing the joint probability

distribution DX,Y according to DX,Y,Z without changing the marginal distribution DX and

DY according to Lemma 2 (H(AZ|Y ) = H(X)).
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As mentioned earlier, our definition of Syn might be negative, unless the system is closed

(i.e., H(Z|X, Y ) = 0, Corollary 4). While Un and Red represent the information shared by

one or two source variables with the target variable, Syn represents the information provided

to the target variable by the “cooperation” of source variables. It is an accepted aphorism

that cooperation does not necessarily increase outcome, and hence it might be the case that

negative values of Syn conform with intuition. However, the reason why this explanation is

no longer necessary in a closed system, as well as alternative interpretations of Syn that are

nonnegative, remain to be studied.

16



Chapter 4

System Information Decomposition

In this Chapter, we develop a mathematical framework called System Information Decom-

position. The objective of this framework is to decompose the information of all variables

within a system based on their interrelationships. By addressing the limitation of PID, which

focuses solely on a single target variable, we progress towards multi-variable information de-

composition for systems. Firstly, in Part 4.1, we introduce a perspective on understanding

PID to further expand this conceptual model. Afterwards, we simply expanded the decom-

position range of PID in Part 4.2. In Part 4.3, by proving the symmetry of information

atoms, we obtain the formal form of SID, and the potential applications of this work are

discussed in the subsequent Part 4.4.

4.1 Set-theoretic Understanding of PID

Kolchinsky’s work [18] offers an understanding based on set theory. Given that PID is

inspired by an analogy between information theory and set theory [36], the redundant in-

formation can be understood as information sets that the sources provide to the target.

More specifically, the definition of set intersection ∩{Xi} in set theory means the largest set

that is contained in all of the Xi, and these set-theoretic definitions can be mapped into

information-theoretic terms by treating “sets” as random variables, “set size” as entropy,

and “set inclusion” as an ordering relation ⊏, which indicates when one random variable is

more informative than another.

Considering a set of sources variables X1, ..., Xn and a target Y , PID aims to decompose

I(Xi, Xj → Y ) and get Red(X1, · · · , Xn → Y ), the total same information provided by all

sources about the target, into a set of non-negative terms. Therefore, redundant information
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can be viewed as the ”intersection” of the information contributed by different sources,

leading to the following definition:

Definition 6 (Set Intersection of Information [18] ). For a variable-system, the redundant

information from the source variables X1, · · · , Xn to the target variable Y is the information

that all source variables can provide to the target variable, the largest mutual information

between the target variable and a non-unique variable Q that has an ordering relation ⊏ with

all source variables. That is

Red(X1, · · · , Xn → Y ) = I∩(X1, · · · , Xn → Y ) := sup
Q

{I(Q : Y ) : Q ⊏ Xi,∀i ∈ {1 · · ·n}}

(4.1)

The ordering relation ⊏ is an analogy to the relation contained ⊆ in set theory, which is not

specified but follows some assumptions: i) Monotonicity of mutual information, A ⊏ B ⇒
I(A : Y ) ≤ I(B : Y ). ii) Reflexivity: A ⊏ A for all variable A. iii) For all sources Xi,

O ⊏ Xi ⊏ (X1, · · · , Xn), where H(O) = 0 and (X1, · · · , Xn) indicates all sources considered

jointly. For example, the partial order can be Q ⊏ X if and only if H(Q|X) = 0, or the

well-known Blackwell order [6], such that Q precedes Xi if Xi has all of the information that

Q has, about some third variable Y .

4.2 Extension of PID in a System Scenario

The PID method only decomposes joint mutual information between multiple source vari-

ables and a specific target variable, as illustrated by the outermost circle of the Venn diagram

in Figure 2.1. We redesign the Venn diagram with adding the joint conditional entropy of

Y and the conditional entropy of the source variable X1 and X2 to obtain a system-wide

perspective, as demonstrated in Figure 4.1. The system comprises two source variables,X1

and X2, and one target variable, Y , represented by the three intersecting circles.

The area size within the figure signifies the information entropy of the variables or infor-

mation atoms, and the central area denotes the joint mutual information, encompassing

redundant, unique from X1, unique from X2, and synergistic information. This arrangement

aligns with the Venn diagram framework of PID.
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Figure 4.1: Venn diagram from different perspectives of PID.

To enhance the comprehensiveness of the framework, it is necessary to elucidate the un-

explored section of the updated Venn diagram 4.1. In addition to the four sections of

joint mutual information, the information entropy of the target variable Y contains an

unaccounted-for area. According to Shannon’s formula, this area corresponds to the joint

conditional entropy of the source variables to the target variable H(Y |X1, X2), which also

characterizes the interrelationships between the target variable and the source variables. In

the SID framework, numerous joint conditional entropy exist, including one that stands out:

the joint conditional entropy originating from all variables except the target variable. To

optimize the usefulness of the SID framework, we define this specific joint conditional en-

tropy as the target variable’s external information (Ext). The definition is grounded in the

philosophical assumption that everything is interconnected. Since joint conditional entropy

implies the uncertainty that cannot be eliminated by the internal variables of the system,

the variables capable of providing this information must exist outside the system. To some

extent, external information can emphasize the relationship between the target variable and

the entire system rather than just a simple relationship with other variables. Therefore, we

also consider it a kind of information atom within the SID framework.
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Definition 7 (External Information). For a system containing variables Y and {X1, · · · , Xn},
the external information Ext(Y ) is defined as:

Ext(Y ) = H(Y |X1, X2, · · · , Xn) (4.2)

Thus, we have been able to decompose the target variable’s entropy into a finite number

of non-repeated information atoms according to the relationship between it and the other

variables. Furthermore, we can apply this extended PID framework with three variables

as target variable respectively to decompose the entire information entropy of the system,

which results in a SID’s preliminary version. For the convenience of expression, we use

Uni−j, Synij−k, and Redij−k to represent Un, Syn, and Red respectively. A Venn diagram

for a three-variable system is shown in Figure 4.2:

Figure 4.2: Venn diagram of SID’s Preliminary version.

4.3 Properties of Information Atoms

Although the preliminary version of SID can decompose all variables in a system, the de-

composition of each variable is carried out separately, and the description of information
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atoms is directional (from source variables to the target variable). For instance, the unique

information provided by X1 to X3 in Fig. 4.2 is not directly related to the unique information

provided by X3 to X1. To make information atoms better reflect the relationship among

variables and unifies the Venn diagram of Shannon’s framework and the PID framework, it

is necessary to further explore the properties of information atoms within the SID frame-

work. In this section, we are going to prove the symmetry property of information atoms

by demonstrating that unique, redundant, and synergistic information atoms remain stable

when different variables are considered as target variables.

Theorem 1 (Symmetry of Redundant Information). Let X1, · · · , Xn be the variables in

a system. The redundant information is equal irrespective of the chosen target variable.

Formally, we write Red(Xi : X1, · · · , Xn\Xi) = Red(Xj : X1, · · · , Xn\Xj),∀i, j ∈ {1 · · ·n}.

To proof this Theorem, we use the Definition 6 with the Blackwell partial order, such that Q

precedes Xi if Xi has all of the information that Q has, about the target variable Y , which

written in the form Q ⊏YXi. The proof is given in Appendix A.12. Then, we have the

following lemmas, which is proved in Appendix A.13 and A.14.

Lemma 11 (Symmetry of Unique Information). Let X1, · · · , Xn be the variables in a system.

In SID, the unique information of any two variables relative to each other is equal, regardless

of which is chosen as the target variable. Formally, we write Un(Xi : Xj) = Un(Xj : Xi),

∀i ̸= j where i, j ∈ {1, · · · , n}.

Lemma 12 (Symmetry of Synergistic Information). Let X1, · · · , Xn be the variables in a

system. In SID, the synergistic information of any group of variables is equal, regardless of

which is chosen as the target variable. Formally, we write Syn(Xi : {X1, · · · , Xn} \ Xi) =

Syn(Xj : {X1, · · · , Xn} \Xj),∀i, j ∈ {1 · · ·n}.

Based on the Theorem 1, Lemma 11 12 (the symmetry of information atoms), the SID

framework can be merged into the formal version in Figure 4.3. In the formal version of

SID, the concept of target variable is canceled, and all variables are equally decomposed

according to their relationship with other variables. Specifically, redundant information and

unique information are merged. Redundant information (atoms) in any group of variables

and unique information (atoms) between any two variables appear only shown one time

in the Venn diagram. And each variable contains one external information (atom). While

synergistic information (atoms) cannot be fused in a two-dimensional plane, we present them
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independently and give them the same symbol Syn123 (also value and area). So far, we can

give the formal definition of SID:

Figure 4.3: Venn diagram of SID’s Formal Version.

Definition 8 (System Information Decomposition Framework). SID is a conceptual system

decomposition framework based on information entropy, that can divide the whole informa-

tion entropy of a multivariate system into non-overlapping information atoms according to

the relationship among variables. In this framework, redundant information represents the

common or overlapping information of all the variables; unique information represents in-

formation that is only owned by two variables but not by others; and synergistic information

represents the information that can be known from any variable only when the other variables

are observed simultaneously.

In the SID framework, the Venn diagram unifies the Shannon’s framework and PID frame-

work. For a intuitive presentation, we only give the Venn diagram of three-variable system

({X1, X2, X3}) in this paper.
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4.4 Discussion about SID

A foreseeable application across many domains comes from that SID deepens our under-

standing of data, measures, and information. A worth exploring direction is the quantitative

analysis of Higher-order Networks [5]. Since SID can provide a data-driven framework for

identifying and analyzing of high-order network structures, it may potentially impact the

analysis and understanding of complex systems across various domains [2]. For example,

in studying neural networks and brain connectivity [7], the SID framework can provide

further insights into the higher-order information flow between multiple neurons or brain re-

gions, which will allow us to directly generate higher-order network models between neurons

through the temporal data of multiple neurons, and use this model to explain the implemen-

tation of specific functions; in ecological [19], financial, or social systems, the quantitative

characterization of high-order relationships among multiple agents can assist in the devel-

opment of more accurate models and forecasts, as well as the design of effective control

methods.

Another field where SID may interact is Causal Science, since it is a field for studying the

intrinsic relationships between multiple variables. One of the goals of causal science is to

search for invariance in the system. We hope that the revealed properties of the system are

independent of the distribution of the data. However, the results obtained from SID can vary

with changes in the data distribution. Therefore, adopting the methods of causal science in

SID to reveal system invariance is one direction worth to explore.

Apart from the above fields, SID may also has potential applications. Since information

atoms provide a more refined division of information entropy, when the physical meaning

of information atoms within the SID framework is revealed, specific information atoms may

also become indicators for some optimization or learning problems; The symmetry property

of synergistic information in SID may provide inspiration for the information disclosure, an

important application of PID in information protection field. In summary, SID, as a progress

in the underlying measurement, may play a role in many application scenarios, which is also

the focus of our next stage of work.

In addition to the above-mentioned promising progress and expectations, there are still some

limitations worthy of attention. The first limitation is that the existing proofs of framework

properties and computational methods have only been established for three-variable systems.
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Although extending current work to general multivariate systems is not a formidable chal-

lenge, it contains many aspects of work, such as how to present the decomposition results of

multivariate systems on a two-dimensional plane, which will be considered in the next stage

of research. In addition, some feasible extensions are also worth exploring, such as make

the information decomposition framework into time-resolved approaches [23, 32], and get a

point-wise localization [21] are potential topics.
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Chapter 5

Conclusion and Future Works

In this work, we complete two pieces of work, such that Explicit Formula for Partial Infor-

mation Decomposition and System Information Decomposition. The first work provided the

first explicit formula for calculating the information atoms so that Williams and Beer’s ax-

ioms are satisfied, as well as additional properties from subsequent studies in the field. This

work solved the most important open problem in the field of Information Decomposition.

Also, the System Information Decomposition (SID) framework, by connecting information

atoms to higher-order relationships, offers novel insights for decomposing complex systems

and analyzing higher-order relationships while addressing the limitations of existing infor-

mation decomposition methods. In conclusion, the SID framework signifies a promising new

direction for investigating complex systems and information decomposition. We anticipate

that those works will serve as a valuable tools across an expanding array of fields in the

future. In the next stage of research, in addition to the issues mentioned separately in the

discussion chapter above, we will integrate the above two works and try to propose a general

Higher-order Information Networks Model that can achieve data-driven identification, quan-

tification and reconstruction of Higher-order Interactions (Structures). And try to explore

more higher-order networks-related research based on this model.
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Appendix A

Proof of work

A.1 Proof of the completeness of Definition 1.

In this part, we will show that do-operation’s output is a probability distribution with the

same marginal distribution as its input.

Lemma 13. For DX,Y,Z and DC as in Definition 1, the output Pr(A,B,C = x, y, z) of (3.1)

describes a probability distribution, i.e.,

0 ≤ Pr(A,B,C = x, y, z) ≤ 1, and
∑

x,y,z∈X×Y×Z

Pr(A,B,C = x, y, z) = 1.

Furthermore, the marginal distribution DC of the output DA,B,C is equal to the input (call it

DC′), i.e.,. ∑
xy∈XY

Pr(A,B,C = x, y, z) = Pr(C ′ = z).

Proof. We begin by showing 0 ≤ Pr(A,B,C = (x, y, z)) ≤ 1. By Definition 1,

Pr(A,B,C = (x, y, z)) = Pr((X, Y, Z) = (x, y, z)) · Pr(C = z)/Pr(Z = z) (A.1)

Since Pr(Z = z) > 0 if Pr((X, Y, Z) = (x, y, z)) > 0, (A.1) is well -defined (no zero division).

Then, we can write the quotient of the joint probability Pr((X, Y, Z) = (x, y, z)) and the

marginal probability Pr(Z = z) as the conditional probability Pr((X, Y ) = (x, y)|Z = z)
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and thus

(A.1) = Pr((X, Y ) = (x, y)|Z = z) · Pr(C = z). (A.2)

Since both terms in (A.2) are between 0 and 1, so is Pr(A,B,C = (x, y, z)).

We continue by showing that
∑

x,y,z Pr((A,B,C) = (x, y, z)) = 1. Since Pr(A,B,C =

(x, y, z)) can be written as (A.2), it follows that∑
x,y,z

Pr((A,B,C) = (x, y, z)) =
∑
x,y,z

Pr((X, Y ) = (x, y)|Z = z) · Pr(C = z)

=
∑
z∈Z

Pr(C = z)
∑

x,y∈X ,Y

Pr((X, Y ) = (x, y)|Z = z) =
∑
z∈Z

Pr(C = z) = 1.

Then, we prove that the input DC′ is equal to the marginal distribution DC of the out-

put DA,B,C . Since DC is the marginal distribution of the output DA,B,C , we have that

Pr(C = z) =
∑

x,y∈X×Y

Pr((A,B,C) = (x, y, z)), (A.3)

and by Definition 1,

(A.3) =
∑
x,y

Pr((X, Y, Z) = (x, y, z)) · Pr(C
′ = z)

Pr(Z = z)

=
∑
x,y

Pr((X, Y ) = (x, y)|Z = z) · Pr(C ′ = z)

= Pr(C ′ = z).

A.2 Proof of Lemma 1.

Proof. Consider the r.h.s of Lemma 1,∑
y∈Y

Pr(Y = y)H(Ay|Cy). (A.4)
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By the definition of conditional entropy, we have

(A.4) =
∑
y∈Y

Pr(Y = y) ·
∑
z∈Z

Pr(Cy = z)H(Ay|Cy = z) (A.5)

By recalling that Pr(Cy = z) = Pr(Z = z|Y = y), and by the definition of conditional

entropy, we have

(A.5) =
∑
y∈Y

Pr(Y = y)
∑
z∈Z

Pr(Z = z|Y = y) · (−
∑
x∈X

Pr(Ay = x|Cy = z) log Pr(Ay = x|Cy = z))

=
∑
y∈Y

∑
z∈Z

Pr(Z = z, Y = y) · (−
∑
x∈X

Pr(Ay = x|Cy = z) log Pr(Ay = x|Cy = z))

=
∑
y∈Y

∑
z∈Z

Pr(Z = z, Y = y) · (−
∑
x∈X

Pr(Ay = x,Cy = z)

Pr(Cy = z)
log

Pr(Ay = x,Cy = z)

Pr(Cy = z)
)

(A.6)

Now, notice that summation of (3.1) over all y ∈ Y results in

Pr(Ay = x,Cy = z) =
Pr(X = x, Z = z) Pr(Z = z|Y = y)

Pr(Z = z)
,

and therefore we have

(A.6) =
∑
y∈Y

∑
z∈Z

Pr(Z = z, Y = y)

· (−
∑
x∈X

Pr(X = x, Z = z) Pr(Z = z|Y = y)

Pr(Z = z) Pr(Z = z|Y = y)
log

Pr(X = x, Z = z) Pr(Z = z|Y = y)

Pr(Z = z) Pr(Z = z|Y = y)
)

(A.7)

and hence,

(A.7) =
∑
y∈Y

∑
z∈Z

Pr(Z = z, Y = y) · (−
∑
x∈X

Pr(X = x|Z = z) log Pr(X = x|Z = z))

=
∑
z∈Z

Pr(Z = z)H(X|Z = z) = H(X|Z).
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A.3 Proof of the completeness of Definition 5.

In this part, we will show that AZ|Y is a probability distribution.

Lemma 14. For DX,Y,Z in Def. 5, the output Pr(AZ|Y = x) of (3.4) describes a probability

distribution, i.e.,

0 ≤ Pr(AZ|Y = x) ≤ 1, and
∑
x∈X

Pr(AZ|Y = x) = 1.

Proof. Recall that

Pr(AZ|Y = x) =
∑
y∈Y

Pr(Y = y) Pr(Ay = x). (A.8)

By viewing each Ay as the marginal of (Ay, By, Cy), we have that

(A.8) =
∑
y∈Y

Pr(Y = y)
∑
y′,z

Pr(Ay = x,By = y′, Cy = z), (A.9)

which by Definition 1 implies

(A.9) =
∑
y∈Y

Pr(Y = y)
∑
y′,z

(Pr(X = x, Y = y′, Z = z) · Pr(Z = z|Y = y)/Pr(Z = z)),

(A.10)

[32]



and by summing over all y′ we have

(A.10) =
∑
y∈Y

Pr(Y = y)
∑
z∈Z

(Pr(X = x, Z = z) · Pr(Z = z|Y = y)/Pr(Z = z))

=
∑

y,z∈Y×Z

Pr(X = x, Z = z) · Pr(Z = z, Y = y)

Pr(Z = z)

=
∑

y,z∈Y×Z

Pr(X = x, Z = z) · Pr(Y = y|Z = z)

=
∑
z∈Z

Pr(X = x, Z = z)
∑
y∈Y

Pr(Y = y|Z = z)

=
∑
z∈Z

Pr(X = x, Z = z)

= Pr(X = x).

Therefore, we have shown Pr(AZ|Y = x) is a probability distribution and H(AZ|Y ) = H(X).

A.4 Proof of Lemma 3.

Proof. In Corollary 2 we have that H(Ay) = H(AZ|Y |Y = y). Therefore, we can write the

left hand side of Equation (3.5) as∑
y∈Y

Pr(Y = y)H(AZ|Y |Y = y).

By Lemma 2, we have H(AZ|Y ) = H(X). Then by the definition of conditional entropy, we

have: ∑
y∈Y

Pr(Y = y)H(AZ|Y |Y = y) = H(AZ|Y |Y ) ≤ H(AZ|Y ) = H(X).
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A.5 Proof of Lemma 4.

Proof. By Corollary 1, Lemma 4 is equivalent to:∑
y∈Y

Pr(Y = y)H(Ay)−H(X|Z) ≤ I(X,Z), which is
∑
y∈Y

Pr(Y = y)H(Ay) ≤ H(X).

(A.11)

Since (A.11) coincides with the statement of Lemma 3, the proof of Lemma 4 follows.

A.6 Proof of Lemma 5.

Proof. By Definition 2,

Un(X → Z|Y ) =
∑
y∈Y

Pr(Y = y)I(Ay;Cy). (A.12)

Since the mutual information I(AyCy) is less than the entropy H(Cy), we have:

Un(X → Z|Y ) ≤
∑
y∈Y

Pr(Y = y)H(Cy) (A.13)

By the definition of entropy, we have (A.13) equals:∑
y∈Y

Pr(Y = y)
∑
z∈Z

Pr(Cy = z)(− log Pr(Cy = z)) (A.14)

By Definition 2 that Pr(Cy = z) = Pr(Z = z|Y = y), we have (A.14) equals:∑
y∈Y

Pr(Y = y)
∑
z∈Z

Pr(Z = z|Y = y)(− log Pr(Z = z|Y = y)) (A.15)

which is H(Z|Y ) by the definition of conditional entropy.
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A.7 Proof of Lemma 6.

Proof. By Definition 3, we have:

Red(X, Y → Z) = I(X,Z)− Un(X → Z|Y ) (A.16)

By adding and then subtracting the conditional entropy H(X|Z), we obtain (A.16) equals:

(I(X,Z) +H(X|Z))− (Un(X → Z|Y ) +H(X|Z)) (A.17)

Since mutual information plus conditional entropy equals information entropy, (A.17) can

be written as:

H(X)− (Un(X → Z|Y ) +H(X|Z)) (A.18)

Since Corollary 1 states:

Un(Y → Z|X) =
∑
y∈Y

Pr(Y = y)H(Ay)−H(X|Z), (A.19)

it follows that

(A.18) = H(X)−
∑
y∈Y

Pr(Y = y)H(Ay). (A.20)

Recall thatH(AZ|Y |Y = y) = H(Ay) for all y ∈ Y by Corollary 2, and thatH(X) = H(AZ|Y )

by Lemma 2. Therefore,

(A.20) = H(AZ|Y )−
∑
y∈Y

Pr(Y = y)H(AZ|Y |Y = y) = H(AZ|Y )−H(AZ|Y |Y ) = I(AZ|Y ;Y ).

A.8 Proof of Lemma 7.

Proof. To prove that I(AZ|Y ;Y ) = I(BZ|X ;X), it suffices to show that Pr(AZ|Y = x, Y =

y) = Pr(X = x,BZ|X = y) for all x, y ∈ X × Y .
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Indeed, for every x, y ∈ X × Y we have that

Pr(AZ|Y = x, Y = y) = Pr(Y = y) Pr(AZ|Y = x|Y = y) = Pr(Y = y) Pr(Ay = x), (A.21)

where the last transition follows from Definition 5. Then, by considering Ay as a marginal

of (Ay, By, Cy), we have that

(A.21) = Pr(Y = y)
∑
y′,z

Pr(Ay = x,By = y′, Cy = z) (A.22)

and then by Definition 1,

(A.22) = Pr(Y = y)
∑
y′,z

(Pr(X = x, Y = y′, Z = z) · Pr(Z = z|Y = y)/Pr(Z = z)). (A.23)

By summing over all y′ we have

(A.23) =Pr(Y = y)
∑
z∈Z

(Pr(X = x, Z = z) · Pr(Z = z|Y = y)/Pr(Z = z))

=
∑
z∈Z

Pr(X = x, Z = z) · Pr(Y = y, Z = z)

Pr(Z = z)
(A.24)

Now, the proof will be concluded by following similar steps to (A.21)-(A.24), only in reversed

order.

(A.24) =
∑
z∈Z

Pr(Z = z,X = x)

Pr(Z = z)
Pr(Y = y, Z = z) = Pr(X = x)

·
∑
z∈Z

(Pr(Y = y, Z = z) · Pr(Z = z|X = x)/Pr(Z = z))

=Pr(X = x)
∑

x′,z∈X×Z

(Pr(X = x′, Y = y, Z = z) · Pr(Z = z|X = x)/Pr(Z = z))

=Pr(X = x)
∑

x′,z∈X ,Z

Pr(Ax = x′, Bx = y, Cx = z)

=Pr(X = x) Pr(Bx = y) = Pr(X = x) Pr(BZ|X = y|X = x)

=Pr(X = x,BZ|X = y).
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A.9 Proof of Lemma 8.

Proof. By Definition 2, we have:

Un((X,X ′) → (Z,Z ′)|(Y, Y ′)) =
∑

y,y′∈Y×Y

(Pr(Y, Y ′ = y, y′)I(Ay, A
′
y′ ;Cy, C

′
y′)) (A.25)

To show the additivity property of (A.25), we begin by showing that Ay, By, Cy are inde-

pendent of A′
y′ , B

′
y′ , C

′
y′ for every y, y′ ∈ Y × Y , where

D(Ay ,By ,Cy) = do(DX,Y,Z |DCy), andD(A′
y′ ,B

′
y′ ,C

′
y′ )

= do(DX′,Y ′,Z′|DC′
y′
).

To this end, by Definition 1 and Definition 2, for every y, y′, ŷ, ˆ̂y ∈ Y , every x, x′ ∈ X , and

every z, z′ ∈ Z, we have:

Pr((Ay, A
′
y′), (By, B

′
y′), (Cy, C

′
y′) = (x, x′), (ŷ, ˆ̂y), (z, z′))

=(Pr((X,X ′), (Y, Y ′), (Z,Z ′) = (x, x′), (ŷ, ˆ̂y), (z, z′))

·Pr((Z = z, Z ′ = z′)|(Y = y, Y ′ = y′))/Pr(Z = z, Z ′ = z′)) (A.26)

Since X, Y, Z are independent of X ′, Y ′, Z ′, for every x, x ∈ X every y, y′ ∈ Y , and ev-

ery z, z′ ∈ Z, we have:

Pr((X,X ′), (Y, Y ′), (Z,Z ′) = (x, x′), (ŷ, ˆ̂y), (z, z′))

= Pr(X, Y, Z = x, ŷ, z) · Pr(X ′, Y ′, Z ′ = x′, ˆ̂y, z′),

Pr(Z = z, Z ′ = z′|Y = y, Y ′ = y′) = Pr(Z = z|Y = y, Y ′ = y′) · Pr(Z ′ = z′|Y = y, Y ′ = y′)

= Pr(Z = z|Y = y) · Pr(Z ′ = z′|Y ′ = y′),

and Pr(Z = z, Z ′ = z′) = Pr(Z = z) · Pr(Z ′ = z′).
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Therefore,

(A.26) =Pr(X, Y, Z = x, ŷ, z) · Pr(Z = z|Y = y)/Pr(Z = z)

· Pr(X ′, Y ′, Z ′ = x′, ˆ̂y, z′) · Pr(Z ′ = z′|Y ′ = y′)/Pr(Z ′ = z′)

=Pr(Ay = x,By = ŷ, Cy = z) · Pr(A′
y′ = x′, B′

y′ =
ˆ̂y, C ′

y′ = z′)

Therefore, we have that Ay, By, Cy are independent of A′
y′ , B

′
y′ , C

′
y′ . Coming back to (A.25),

we have:

(A.25) =
∑

y,y′∈Y×Y

Pr(Y = y) · Pr(Y ′ = y′) · (I(Ay;Cy) + I(A′
y′ ;C

′
y′))

=
∑

y,y′∈Y×Y

Pr(Y = y) Pr(Y ′ = y′)I(Ay;Cy) +
∑

y,y′∈Y×Y

Pr(Y ′ = y′) Pr(Y = y)I(A′
y′ ;C

′
y′)

=
∑
y∈Y

Pr(Y = y)I(Ay;Cy) +
∑
y′∈Y

Pr(Y ′ = y′)I(A′
y′ ;C

′
y′)

= Un(X → Z|Y ) + Un(X ′ → Z ′|Y ′).

A.10 Proof of Lemma 9.

Proof. Recall that Lemma 6 states that Red(X, Y → Z) = I(AZ|Y ;Y ). Therefore, since

I(AZ|Y ;Y ) is a continuous function ofDAZ|Y ,Y , it suffices to prove that the mapping F(DX,Y,Z) =

DAZ|Y ,Y , that is implied by Definition 1, Definition 2, and Definition 5, is continuous.

Specifically, let F : ∆1 → ∆2 be the implicit mapping mentioned above, where ∆1 (resp. ∆2)

is the suitable probability simplex, i.e., the set of all tensors in R|X |×|Y|×|Z| (resp. R|X |×|Y|)

with nonnegative entries which sum to 1.

To show that F is continuous, we show that

lim
w→w0

F(w) = F(w0)

for every w0 ∈ ∆1. Indeed, by Definition 5, DAZ|Y ,Y = F(DX,Y,Z) satisfies

Pr(AZ|Y , Y = x, y) = Pr(Y = y) Pr(Ay = x) (A.27)

[38]



for every x ∈ X and y ∈ Y , where Ay is the marginal of DAy ,By ,Cy = do(DX,Y,Z |DZ|Y=y) given

in Definition 2. Therefore,

(A.27) = Pr(Y = y)
∑

y′,z∈Y×Z

Pr(Ay, By, Cy = x, y′, z)

=
∑

y′,z∈Y×Z

Pr(Y = y) Pr(Ay, By, Cy = x, y′, z), (A.28)

for every x ∈ X and every y ∈ Y .

Since continuity is preserved by summation, to show the continuity of (A.28), it suffices to

show the continuity of each term in (A.28). To this end, for x ∈ X , y, y′ ∈ Y , and z ∈ Z,

let Gx,y,y′,z be the mapping from ∆1 to R which is implied by the respective term in (A.28),

i.e.,

Gx,y,y′,z(w) = Pr w(Y = y) Pr w(Ay, By, Cy = x, y′, z) (A.29)

for every w ∈ ∆1, where Prw(E) is the probability of event E implied by the joint distribution

on X × Y × Z given by the tensor w. Then, it suffices to show that

lim
w→w0

Gx,y,y′,z(w) = Gx,y,y′,z(w0)

for every w0 ∈ ∆1.

By Definition 1, we have:

(A.29) =

0, if Prw(Z = z) = 0 or

Prw(Y = y) Prw(X, Y, Z = x, y′, z) · Prw(Z = z|Y = y)/Prw(Z = z), otherwise,

(A.30)

=

0, if Prw(Z = z) = 0, or

Prw(X, Y = x, y′|Z = z) Prw(Y, Z = y, z)
(A.31)

for every x ∈ X , every y, y′ ∈ Y , and every z ∈ Z. Next, we split to cases.

Case 1: Prw0(Z = z) > 0. There exists a neighborhood around w0 for which Prw(Z = z) > 0

for every w in that neighborhood. Here, continuity can be explained in simple terms as a
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composition of continuous functions, i.e., the product of a joint probability Prw(Y, Z = y, z)

and a conditional joint probability Prw(X, Y = x, y′|Z = z).

Case 2: Prw0(Z = z) = 0. Observe that for this w0 we have Gx,y,y′,z(w0) = 0 by (A.30), and

thus we wish to show that

lim
w→w0

Gx,y,y′,z(w) = Gx,y,y′,z(w0) = 0 (A.32)

for every w0 ∈ ∆1. First, we can without loss of generality assume that Prw(Z = z) > 0

for every w in a neighborhood of w0, since all w for which Prw(Z = z) = 0 already have

that Gx,y,y′,z(w) = 0.

It remains to show that limw→w0 Gx,y,y′,z(w) = 0 under the condition that Prw(Z = z) > 0

for every w in the limit operation. To show that, write

lim
w→w0

Gx,y,y′,z(w)
(A.30)
= lim

w→w0

Prw(X, Y = x, y′|Z = z) · Prw(Y, Z = y, z)

= lim
w→w0

Prw(X, Y = x, y′|Z = z) ·
∑

x̂w(x̂, y, z). (A.33)

Now, observe that Prw0(Z = z) = 0 implies that w0(x̂, ŷ, z) = 0 for every x̂ ∈ X and

every ŷ ∈ Y . Therefore, it follows that limw→w0 w(x̂, y, z) = w0(x̂, y, z) = 0 for every x̂ ∈ X .

Hence,

lim
w→w0

∑
x̂∈X

w(x̂, y, z) =
∑
x̂∈X

lim
w→w0

w(x̂, y, z) = 0.

Therefore, (A.33) is a limit of a bounded quantity and a quantity which goes to zero, and

hence equals zero itself, which concludes the proof.

A.11 Proof of Lemma 10.

Proof. Since Z = (X, Y ), we identify the alphabet Z of Z as X ×Y , and as a result, observe

that

Pr(X, Y, Z = x, y, (x′, y′)) = 0 whenever x ̸= x′ or y ̸= y′,
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for every x, x′ ∈ X and every y, y′ ∈ Y .

Similarly, it follows from Definition 1 and Definition 2 that Pr(X, Y, Z = x, y, z) = 0 implies

that Pr(A,B,C = x, y, z) = 0 for every x, y, z ∈ X × Y × Z, and hence

Pr(Ay, By, Cy = x, y′, (x′, y′′)) = 0 (A.34)

whenever x ̸= x′ or y′ ̸= y′′, for every x, x′ ∈ X , and every y, y′, y′′ ∈ Y .

Also, since the marginal distribution DCy of DAy ,By ,Cy = do(DX,Y,Z |DZ|Y=y) is identical

to DZ|Y=y (by the “furthermore” part of Lemma 13) it follows that

Pr(Cy = (x, y′)) = Pr(Z = (x, y′)|Y = y) (A.35)

for every y, y′ ∈ Y . Furthermore, considering that Z = (X, Y ), (A.35) also implies that

Pr(Cy = (x, y′)) = 0 whenever y ̸= y′, (A.36)

for every x ∈ X and every y, y′ ∈ Y . When y′ = y, however, for every x ∈ X and every

y ∈ Y we have

Pr(Cy = (x, y)) = Pr(Z = (x, y)|Y = y) = Pr(X = x|Y = y) = Pr(X = x), (A.37)

where the latter two steps follow since Z = (X, Y ) and I(X, Y ) = 0. Besides, (A.36)

and (A.34) imply that

Pr(Ay, By, Cy = x, y′, (x′, y′′)) = 0 whenever x′ ̸= x, or y′ ̸= y, or y′′ ̸= y, (A.38)

for every x, x′ ∈ X and every y, y′, y′′ ∈ Y .

We now turn to prove that

Pr(Ay, Cy = x, (x, y)) = Pr(Ay = x) = Pr(Cy = (x, y))

for every x ∈ X and every y ∈ Y , by showing that each of the three expressions equals an

identical common expression, which in turn is shown to be equal H(X).
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We begin with Pr(Ay, Cy = x, (x, y)), for which every x, x′ ∈ X and every y, y′ ∈ Y satisfy

Pr(Ay, Cy = x, (x′, y′)) =
∑
y′′∈Y

Pr(Ay, By, Cy = x, y′′, (x′, y′)). (A.39)

By (A.38), each summand in (A.39) equals zero if either x′ ̸= x or y′ ̸= y or y′′ ̸= y, and

hence

(A.39) =

0, if x′ ̸= x or y′ ̸= y

Pr(Ay, By, Cy = x, y, (x, y)), otherwise.
(A.40)

Similarly, for Pr(Ay = x), every x ∈ X and every y ∈ Y satisfy

Pr(Ay = x) =
∑

y′′,(x′,y′)

Pr(Ay, By, Cy = x, y′′, (x′, y′))
(A.38)
= Pr(Ay, By, Cy = x, y, (x, y)).

(A.41)

Further, for Pr(Cy = (x, y′)), every x ∈ X and every y, y′ ∈ Y satisfy

Pr(Cy = (x, y′)) =
∑
x′,y′′

Pr(Ay, By, Cy = x′, y′′, (x, y′))
(A.38)
= Pr(Ay, By, Cy = x, y, (x, y′)),

(A.42)

and observe that according to (A.38), Eq. (A.42) is equal to zero whenever y ̸= y′.

Therefore, by (A.40), (A.41), and (A.42), we have

Pr(Ay, By, Cy = x, y′′, (x′, y′)) =

0, if x′ ̸= x or y′ ̸= y or y′′ ̸= y, and otherwise

Pr(Ay, Cy = x, (x, y)) = Pr(Ay = x) = Pr(Cy = (x, y)).

(A.43)

for every x, x′ ∈ X and for every y, y′, y′′ ∈ Y .
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Finally, we show that H(Ay, Cy) = H(Ay) = H(Cy) = H(X). By the definition of entropy,

H(Ay, Cy) =
∑

x,(x′,y′)

Pr(Ay, Cy = x, (x′, y′) · log(1/Pr(Ay, Cy = x, (x′, y′))) (A.44)

Since by (A.40), every term in the summation in (A.44) with x′ ̸= x or y′ ̸= y equals zero,

and otherwise Pr(Ay, Cy = x, (x, y)) = Pr(Ay, By, Cy = x, y, (x, y)), we have that

(A.44) =
∑
x

Pr(Ay, By, Cy = x, y, (x, y)) log(1/Pr(Ay, By, Cy = x, y, (x, y))). (A.45)

Similarly, we have

H(Ay) =
∑
x

Pr(Ay = x) log(1/Pr(Ay = x))

(A.41)
=

∑
x

(Pr(Ay, By, Cy = x, y, (x, y)) log(1/Pr(Ay, By, Cy = x, y, (x, y))), (A.46)

and

H(Cy) =
∑
(x,y′)

Pr(Cy = (x, y′)) log(1/Pr(Cy = (x, y′)))

(A.42)
=

∑
x

Pr(Ay, By, Cy = x, y, (x, y)) log(1/Pr(Ay, By, Cy = x, y, (x, y))). (A.47)

Further, for every y ∈ Y , we have

H(X) =
∑
x

Pr(X = x) log(1/Pr(X = x))
(A.37)
=

∑
x

Pr(Cy = (x, y)) log(1/Pr(Cy = (x, y)))

=
∑
x

Pr(Ay, By, Cy = x, y, (x, y))(1/Pr(Ay, By, Cy = x, y, (x, y))). (A.48)

Then, since (A.45), (A.46), (A.47), and (A.48) are all equal, it follows that H(Ay, Cy) =

H(Ay) = H(Cy) = H(X) for all y′ ∈ Y .

To conclude the proof, recall Definition 3 of Red,

Red(X, Y → Z) = I(X;Z)− Un(X → Z|Y )
(2)
= I(X;Z)−

∑
y∈Y

Pr(Y = y)I(Ay;Cy). (A.49)
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Also, observe that I(Ay;Cy) = H(Ay) +H(Cy)−H(Ay, Cy) = 2H(X)−H(X) = H(X) for

all y ∈ Y according to the above discussion, and that I(X;Z) = H(X) since I(X;Y ) = 0

and Z = (X, Y ). Then, by (A.49), we have Red(X, Y → Z) = 0, which completes the

proof.

A.12 Proof of Theorem 1

Proof. Suppose we have a multivariate system containing a target variable Y and source

variables X1, · · · , Xn. For the convenience of expression, we use X to represent all the

source variables X1, · · · , Xn. The proof is to show that Red(Y : X , Y ) = Red(Y ;X ) and

Red(U : X , Y ) = Red(Y : X , Y ), where U is the union variable of Y and X , such that

U = (X , Y ). (The entropy of the union variable U can be expressed as H(U) = H(X , Y ).)

Then, we can demonstrate that redundant information is equal regardless of which variable

is chosen as the target variable.

Step One, to prove Red(Y : X , Y ) = Red(Y : X ) :

By Definition 6,

Red(Y : X ) = sup
Q

{I(Q : Y ) : Q ⊏Y Xi, ∀i ∈ {1 · · ·n}} (A.50)

According to Blackwell order, Q ⊏Y Y , since Y has all of the information about Y . Then,

we have:

sup
Q

{I(Q : Y ) : Q ⊏Y Xi,∀i ∈ {1 · · ·n}} = sup
Q

{I(Q : Y ) : Q ⊏Y Y,Q ⊏Y Xi,∀i ∈ {1 · · ·n}}

(A.51)

Therefore, Red(Y : X , Y ) = Red(Y ;X ).

Step Two, to prove Red(U : X , Y ) = Red(Y : X , Y ):

Building upon the conclusion that Red(Y : X , Y ) = Red(Y : X ), we can replace the target

variable with the union variable U = (X , Y ).
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By Definition 6,

Red(U : X , Y ) = sup
Q

{I(Q : U) : Q ⊏U Y,Q ⊏U Xi,∀i ∈ {1 · · ·n}} (A.52)

Let Q∗ satisfies or infinitely approaches the above conditions:

I(Q∗ : U) = Red(U : X , Y )− ε,∀ε > 0

= sup
Q

{I(Q : U) : Q ⊏U Y,Q ⊏U Xi,∀i ∈ {1 · · ·n}} − ε,∀ε > 0,

Since U = (X , Y )(H(Y |U) = 0), then I(Q∗ : U) ≥ I(Q∗ : Y ). Considering that Q∗ ⊏U Y ,

which means Y has all of the information that Q∗ has, about the target variable U , such

that I(Q∗ : U) ≤ I(Q∗ : Y ), we have:

I(Q∗ : U) = I(Q∗ : Y ) (A.53)

Since Y has all the information about itself, we have:

Q∗ ⊏Y Y (A.54)

Since U = (X , Y )(H(Y |U) = 0) and Q∗ ⊏U Xi,∀i ∈ {1 · · ·n}} (Xi has all of the information

that Q∗ has, about the target variable U), we have:

Q∗ ⊏Y Xi,∀i ∈ {1 · · ·n} (A.55)

Therefore, by Equation A.52-A.55 and Definition 6, we obtain:

Red(U : X , Y ) = sup
Q

{I(Q : Y ) : Q ⊏Y Y,Q ⊏Y Xi,∀i ∈ {1 · · ·n}} = Red(Y : X , Y )

In Summary: Since we have established that Red(Y : X , Y ) = Red(Y : X ), and Red(U :

X , Y ) = Red(Y : X , Y ), we can conclude that for all Xi in {X}, Red(Xi : Y, {X} \ Xi) =
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Red(Y : {X}). Therefore, Theorem 1 is proved, and we can use Red(X1, · · · , Xn) or Red1···n

denote the redundant information within the system {X1, · · · , Xn}.

A.13 Proof of Lemma 11

Proof. According to Axiom 1, unique information is a part of the information provided by

the source variable to the target variable, that is, mutual information minus redundant

information. In a three-variable system {X1, X2, X3}, by Axiom 1,

Un(Xi : Xj) = I(Xi;Xj)−Red(Xi : Xj, Xk),∀i ̸= j ∈ {1, 2, 3} (A.56)

Since I(Xi : Xj) = I(Xj : Xi) according to the symmetry of Shannon’s formula [31], and

Red(Xi : Xj, Xk) = Red(Xj : Xi, Xk) = Red(Xi, Xj, Xk) according to Theorem 1, we have:

Un(Xi : Xj) = I(Xi;Xj)−Red(Xi : Xj, Xk) = I(Xj;Xi)−Red(Xj : Xi, Xk) = Un(Xj : Xi)

For general multivariate systems X1, . . . , Xn, we can prove the symmetry of unique informa-

tion between any two variables Xi and Xj by combining other variables X1, · · · , Xn \Xi, Xj

into one variable Xk. Therefore, we proved the theorem, and we can represent this informa-

tion atom as Un(Xi, Xj), or Uni,j.
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A.14 Proof of Lemma 12

Proof. According to Axiom 1, Lemma 11, and the chain rule of Shannon formula, for a

three-variable system with Xi, Xj, Xk:

Syn(Xk : Xi, Xj) = H(Xk|Xj)−H(Xk|Xi, Xj)− Un(Xi, Xk)

= (H(Xj, Xk)−H(Xj))− (H(Xi, Xj, Xk)−H(Xi, Xj))− Un(Xi, Xk)

= H(Xj, Xk) +H(Xi, Xj)−H(Xj)−H(Xi, Xj, Xk)− Un(Xi, Xk)

= (H(Xi, Xj)−H(Xj))− (H(Xi, Xj, Xk)−H(Xj, Xk))− Un(Xi, Xk)

= H(Xi|Xj)−H(Xi|Xj, Xk)− Un(Xi, Xk)

= Syn(Xi : Xj, Xk)

Therefore, we demonstrate that Xi and Xk are interchangeable, and since Xi and Xj are

interchangeable as source variables, we proved that all variables are interchangeable. For

general multivariate systems X1, · · · , Xn, we can prove the symmetry of synergistic infor-

mation between any two variables Xi and Xk by combining other variables into one variable

Xj. Therefore, we proved Lemma 12 and we can write synergistic information in the form

of Syn(X1, · · · , Xn) or Syn1···n.
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