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Chapter 1: Price Dynamic and Market Selection

Abstract

This paper analyzes and characterizes the dynamics of wealth-share and equilibrium price in a

stochastic general equilibrium model with heterogeneous consumers. The characterization enables

a comparison between probabilistic learning and price evolution, revealing that prices incorporate

“sparse” information efficiently. Results on wealth-share are obtained by comparing traders’

optimal investment-consumption plans against their prices. This novel approach extends recent

results in the literature by providing a condition that is necessary as well as sufficient for a trader

to vanish. The results are applied to survival in iid, survival in large economies, and survival of

traders that follow strategies commonly observed in real markets.

1 Introduction

The market selection hypothesis, henceforth MSH, states that the market selects for traders who

produce the most accurate forecasts. This hypothesis, first articulated by Alchian (1950) and

Friedman (1953), is one of the supporting arguments for the plausibility of rational expectations.

As the wealth-share of traders with rational expectations converges to one, financial markets can

be understood, to a large extent, using models with a representative trader who has rational

expectations.

The MSH literature typically focuses on the asymptotic characterization of wealth-shares. The

problem is reduced to one of identifying the investment strategy that ensures the highest capital

accumulation rate, defining an appropriate measure of probabilistic distance and ascertaining the

way beliefs, risk attitudes, discount factors and saving rates influence the individual investment

strategy.

The baseline theory depends on the seminal work of Kelly (1956). An implication of his results

is that the self-financing investment strategy that maximizes capital accumulation corresponds to
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the optimal investment strategy of an investor with rational expectations and log utility (Kelly

rule). Consequently, if all traders have log utility and the same discount factor, the MSH holds

because the trader with rational expectation will have the highest capital accumulation rate and

will asymptotically dominate the market. The robustness of the MSH to deviations from log utility

has been tested. In economies with an exogenously given saving rate, Blume-Easley (1992) shows

that the MSH can fail because a trader with rational expectations but non log utility can have

lower capital accumulation rate than a trader with incorrect beliefs. The situation is qualitatively

different in general equilibrium models. Sandroni (2000) and Blume-Easley (2006), using discrete

time models, and Yan (2006), using a continuum time model, show that in a non growing economy,

the MSH holds true and traders risk attitude plays no role in their survival.

General Equilibrium models which study the MSH explore market selection from different per-

spectives but share the same structure: first, construct the investment strategy of each trader, then,

proceed with a pairwise comparison of each strategy to determine the asymptotic distribution of

wealth. The approach leaves no room to discuss the way equilibrium prices evolve. Fundamental

questions regarding the dependence of price evolution on risk attitudes, the informational content

of equilibrium prices and the amount of information needed by a trader to survive or beat the

market cannot be answered. In order to answer these questions I propose a new approach. My

first step is to characterize equilibrium price dynamics. To discuss survival, I compare each trader

optimal investment-consumption plan with its price and show that the wealth-share of a trader

converges to 0 if his optimal consumption plan becomes too expensive.

1.1 Price dynamics and their informational content

The key step to my approach is to provide a characterization of prices that is general enough to

cover a wide spectrum of economies and informative enough to derive meaningful results. The

information structure adopted is standard, in market selection literature, and is a key component

of the model. Each trader has a personal probabilistic view of the world, his beliefs. I impose

no restrictions on beliefs: they can be correct, incorrect, evolve in a way that is consistent with

Bayes rule or not. Each trader “agrees to disagree” with the other traders. Unlike in the models
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in the information exchange literature (Grossmann-Stiglits 1980), each trader believes that there

is nothing to learn from prices and is engaged in speculative trading. This modelling assumption is

well described by William Feather’s words: One of the funny things about the stock market is that

every time one person buys, another sells, and both think they are astute.

To make things simple, I assume that traders receive no private information which, given the

complete freedom in the evolution of traders’ beliefs, comports no loss of generality. I define

the sparse information of an economy to be the set of all traders’ beliefs and the sequence of

realized states. In this framework, this is all of the available information. Sparse information

together with the initial wealth share distribution and traders preferences are the key elements

in the determination of equilibrium prices. From the literature, we know that if all traders have

the same discount factor, the market selection mechanism implies that the trader with the most

accurate beliefs will dominate the market and that prices will reflect his beliefs. A key question is

how fast equilibrium prices converge to their asymptotic values? In particular, if we introduce a

new trader into the economy and we give him full knowledge of the sparse information, would this

trader be able to construct forecasts that are more accurate than the forecasts implicit in market

prices and would he be able to make money in the market?

My main contribution is to show that it is impossible to use sparse information to produce

forecasts that are more accurate than the forecasts implicit in market prices and that the answer

to the last question depends on the size of the economy: if the economy is small, a trader that uses

sparse information will always be one of the survivors and never be the only one. If the economy

is large, access to sparse information is neither sufficient or necessary to survive.

Blume-Easley (2009) provides a first attempt at characterizing price dynamics. They present

an example of an iid Arrow’s security economy populated by traders with log-utility to show

that the equilibrium price evolves similarly to a Bayesian updating scheme. My paper builds on

Blume-Easley’s example and characterizes the equilibrium price process in every complete-market,

exchange economy.

In order to highlight the similarities between price evolution and probabilistic learning, I mainly

focus on the discounted prices of Arrow’s securities in an economy with no aggregate risk and a
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homogeneous discount factor. For the degenerate case of a representative agent economy, it is an

easy exercise to show that the discounted price of the contingent claim on a certain period-state

coincides with the probability of that period-state. In economies populated by traders with log-

utility, henceforth log-economy, I show that discounted equilibrium prices define, in each period,

a probability measure and that there exists a prior distribution on the beliefs of the traders in

the economy (the market prior) such that discounted prices coincide, on every path, with the

probability obtained via Bayes’ rule from the market prior.

The analysis of economies that are not log-economies is complicated by the fact that discounted

equilibrium prices are not probabilities. Specifically, the sum of the discounted prices of contingent

claims on next-period consumption may differ from 1. There are two ways to address this problem:

to normalize the discounted prices to sum to 1 in each period or to directly study the discounted

price process. Normalized prices reflect the probability that prices attach to future events (the

price’s informational content), which I will interpret as the “market’s beliefs”. Discounted prices

capture their wealth-share implications (the price’s investment strategy content), which I will in-

terpret as the “market’s investment strategy.” My main result is to show that the market’s beliefs

incorporate sparse information efficiently and that a trader vanishes if his investment strategy is

worse than the market’s.

For heterogeneous discount factor economies, the equivalence between price evolution and

Bayesian updating is generally lost even asymptotically. This is due to the fact that the differ-

ences in discount factors can negate the effect of more accurate forecasts. In this setting, unlike in

any Bayesian procedure, equilibrium prices need not converge to the beliefs of the trader with the

most accurate beliefs.

1.2 Wealth-shares

The asymptotic characterization of the wealth-share of traders operating in complete markets has

been studied extensively. Most of the existing models rely on pairwise comparisons of traders’

investment strategies. The approach I adopt is different (as the “leading example” in Section 4

shows). I compare traders’ investment strategies against equilibrium prices instead of against each
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other. As Blume-Easley (2009) and Mailath-Sandroni (2003) have pointed out, pairwise investment

strategy comparison cannot be used to identify a sufficient condition for a trader to vanish. Their

papers reveal that, in order to verify whether a trader vanishes, we must compare his beliefs against

all of the other traders’ beliefs simultaneously. My approach incorporates this idea, as equilibrium

prices are the most natural aggregator of traders’ beliefs. Theorem 4 provides a necessary and

sufficient condition for a trader to vanish that applies to any complete-market, exchange economy.

Section 6 contains some of the implications of my vanishing condition. First, I discuss survival in

small and large economies. In large economies, contrary to the current findings for small economies

(Sandroni (2000), Blume-Easley (2006), Kogan-Ross et al.(2006, 2009) and Yan (2006)), I show that

risk attitudes can have an effect on survival even if the economy does not grow. This result also

has implications on the amount of information needed for a trader to survive. In small economies,

a trader that knows the beliefs of all of the other traders is always one of the survivors. But if the

economy is large, this result holds true only if all of the traders have log utility. This point illustrates

that focusing only on individual characteristics is not enough to determine the asymptotic fate of

a trader.

Second, I apply my vanishing condition to discuss the merits of investment strategies that are

commonly adopted in real world markets. I consider two strategies: the diversified investment

strategy, which is equivalent to holding a long position on a market index, and the copy-trader

strategy, which corresponds to the strategy of always investing all money in the hedge fund that

performed the best in the past (this strategy is commonly advertised by providers of internet-

trading like www.etoro.com and www.currensee.com). My results provide theoretical support in

favor of the diversified portfolio strategy and against the copy-trader strategy.

Third, I complete Blume-Easley’s discussion on the necessary and sufficient condition to survive

in iid economies.

My approach relies on fewer assumptions and incorporates, in a unifying framework, results

that were previously treated as exceptions. These results include survival in an economy with

some Bayesian learners (Blume-Easley(2006) Section 3.3) and the “almost” necessary and sufficient

condition for iid economies of Blume-Easley (2009).
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The remainder of my paper proceeds as follows: Section 2 outlines the economic environment

and introduces the relevant characteristics and definitions of the model. Section 3 presents the

notions of informational content and investment strategy content of equilibrium prices and shows

that normalized prices incorporate sparse information efficiently. Section 4 illustrates, by means

of an example, my approach and compares it with the existing approach. Sections 5 discusses the

small and large sample properties of equilibrium prices and their dependence on the size of the

economy. Sections 6 presents my results about survival in small and large economies. Section 7

concludes. In Appendix A, I compare the notion of distance that I adopt with the distances adopted

in Sandroni (2000) and Blume-Easley(2006). The other appendices contain the proofs.

2 The model

The model is an infinite horizon Arrow-Debreu exchange economy with complete set of claims to

consumption. Time is discrete and begins at date 0. At each date there is a finite set of states

S ≡ {1, ..., s, ..., S} with cardinality |S|=S. The set of all infinite sequences of states is S∞ with

representative sequence of realizations σ = (σ1, ...). Let σt = (σ1, ..., σt) denote the partial history

through date t of path σ and St be the set containing all the different sequences of length t. The

partial history of length t with last element s is denoted by: σt,s(σ1, ..., σt−1, s). Σ is the product

σ-algebra generated by the sequences in S∞. Let P be the true probability measure on Σ. For

any probability measure p on Σ, p(σt) is the marginal probability of the partial history σt; that

is, p(σt) = p({σ1 × ... × σt} × S × S × ...). The information set at time t is Ft. WLOG, given

the absolute freedom I allow on the determination of the probability measures on Σ, Ft ≡ σt: all

that is learned from the past is the sequence of realized states. The conditional probability of a

generic state σt and of the specific state s in period t, given the information set Ft−1 can therefore

be defined as p(σ|Ft−1) = p(σ|σt−1) = p(σt)
p(σt−1)

and p(s|Ft−1) = p(s|σt−1) = p(σt,s)
p(σt−1)

, respectively.

Finally, the expectation operator without a subscript is the expectation with respect to the true

measure P at time 0 and Et is the expectation according to true probability at time t.

The economy contains a set of traders I. If the number of traders is finite then the economy is

called small. If there is a continuum of traders, the economy is large. Each trader has consumption
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set R+. A consumption plan c : S∞ →
∏∞
t=0 R+ is a sequence of R+- valued functions {ct(σ)}∞t=0 in

which each ct(σ) is Ft-measurable. Each trader i is endowed with a particular consumption plan,

called the endowment stream and denoted by eit(σ). Each trader i is characterized by a payoff

function ui : R+ → [−∞,+∞] over consumption, a discount factor βi ∈ (0, 1) and a subjective

probability pi on Σ, his beliefs. The words “distribution” and “probability measure” are used

interchangeably and are to be understood in their most general sense: “distribution” means every

Ft measurable function that generates a probability measure on Σ. There are no restrictions on

the type of processes generating the sequence of realizations, nor on the way traders’ beliefs evolve.

Traders can have ideosincratic iid beliefs, be Bayesian learners or use any other rule that maps

information from the past to produce forecasts about the future.

Trader i’s utility for a consumption plan c is:

U i(c) = Epi

∞∑
t=0

βtiui(ct(σ)).

A present value price system is formally defined as follows:

Definition 1. A present value price system is a sequence of Ft−1-measurable functions {q(σt)}∞t=0.

In terms of asymptotic wealth-shares, traders can either vanish or survive:

Definition 2. Trader i vanishes on path σ if limt→∞ ct(σ) → 0. He survives on path σ if

lim supt ct(σ) > 0.

It is important to stress that survival is not a normative concept. A trader that vanishes is

acting optimally, given his preferences, discount factor and beliefs. My discussion about the copy-

trader strategy and the diversified portfolio strategy does not constitute an exception to this point

of view. My critique is on the way the traders use the same information to produce forecasts. A

trader that adopts the copy-trader strategy is “criticized” because he uses a suboptimal updating

scheme, not because his consumption-investment plan leads him to extinction.
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2.1 Assumptions

A competitive equilibrium is a present value price system and, for each trader, a consumption plan

that is affordable, preference maximal on the budget set and mutually feasible. I make use of a

minimal set of assumptions to ensure the existence and uniqueness of the competitive equilibrium

(see Peleg-Yaeri (1970)). These are the assumptions I will refer to:

• A1: The payoff functions ui : R+ → [−∞,+∞] are C1, concave and strictly increasing and

satisfy the Inada condition at 0; that is, u
′
i(c)→∞ as c↘ 0.

• A2: There are numbers 0 < f ≤ F < +∞ such that for each trader i, all dates t and all paths

σ, f ≤ infσt
∑

i∈I e
i
t(σ) ≤ supσt

∑
i∈I e

i
t(σ) ≤ F .

• A3: For all traders i, all dates t and all paths σ, pi(σt) > 0⇔ P (σt) > 0.

• A4: Each trader has iid beliefs and the union of traders’ beliefs
(
P =

⋃
i∈I p

i
)

coincides with

the S-dimensional-simplex: P = ∆S .

Assumption A1 is a collection of standard properties that the payoff functions must satisfy, the

Inada condition at 0 ensures that equilibrium prices are uniquely identified.1 Assumption A2

uniformly bounds the aggregate endowment above and away from 0. Assumption A3 is needed

in order to exclude pathological economies in which the equilibrium does not exist (for example

economies in which all of the traders attach 0 probability to an event that occurs with positive

probability). I will make use of Assumption A4 only in large economies to ensure that an appropriate

prior distribution (in the Bayesian sense) can be define on the space of beliefs.

In order to discuss price evolution in detail, I will need a more restrictive environment:

Definition 3. A CRRA economy is an economy in which all of the traders have the same CRRA

payoff function: u(c) = c1−γ−1
1−γ .

I will also need a technical assumption on the prior distributions of learning traders.
1If we are only interested in the necessary condition to survive, then we can dispose of the Inada condition following

the same reasoning of Section 4 in Blume-Easley (2006).
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Definition 4. A prior probability distribution w(i)is smooth if it is three times differentiable and

strictly positive at the index corresponding to the model with maximum likelihood î.2

3 Equilibrium prices

3.1 Equilibrium prices: Characterization

I study a complete market economy with time 0 trading of a complete set of claims to consumption

contingent on histories σt. The price of a claim that pays a unit of consumption at the end

of σt is given by q(σt). As usual, it is possible to support a Pareto optimal allocation with an

appropriate initial distribution of wealth, sequential trading of one period Arrow’s security and a

set of “natural” limits on the quantities of Arrow’s securities that can be issued in each history, date

pair; for example, see Ljungqvist-Sargent (2004, ch.8). The equilibrium conditions imply that the

price of an Arrow’s security that pays a unit of consumption in state s, period t, after history σt−1

is q(s|σt−1) = q(σt,s)
q(σt−1)

. For the case of homogeneous discount factor economies, particular attention

will be given to time 0 normalized prices: qn(σt) = q(σt)P
σ̂t∈St q(σ̂

t) and to time 0 discounted prices:

qd(σt) = q(σt)
βt , as they capture the informational content and the investment strategy content of

equilibrium prices, respectively.

From the equilibrium condition we obtain that the “risk adjusted” wealth shares capture the

weight that each trader has in the determination of equilibrium prices. By construction, their sum

equals 1 and can be interpreted as a probability distribution on the set of beliefs in the economy:

the market prior distribution.

Definition 5. In a small economy, the market prior distribution is given by:

w0(i) =

 1
u′1(c10)∑
i∈I

1
u′i(c

i
0)

, ...,

1
u′I(cI0)∑
i∈I

1
u′i(c

i
0)


In large economy, the market prior distribution is given by a function w0(i) that is smooth and

2A tighter set of assumptions can be found in Clarke-Barron (1990), Phillips-Ploberger (2003) or Grünwald (2007).
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satisfies: ∫
I
w0(i)dθ(i) = 1

Where θ(i) is the Lebesgue measure on I.

The smoothness assumption is a natural one for a large economy as it is equivalent to require

that no trader has positive wealth-share or price impact.

3.2 Equilibrium prices: Informational content

In order to discuss the informational content of equilibrium prices I need to provide a definition of

efficient forecasting that is independent of the true probability and to define a benchmark against

which to compare the probabilities implicit in the equilibrium prices.

In an economy that is not a log-economy, normalized equilibrium prices do not evolve according

to Bayes’ rule. Nevertheless, via the equilibrium conditions, normalized prices map sparse infor-

mation into future probabilities. I define a function with this property to be a forecasting schemes.

It should be noted that forecasting schemes always implicitly depend on a model class (a prior

support, in Bayesian terminology). A comparison between two different forecasting schemes can

therefore be meaningful only if both schemes use the same sparse information: the same model

class and the same sequence of realizations.

The benchmark to which equilibriums prices are compared is Bayesian updating. This choice

depends on the fact that Bayesian updating produces consistent forecasts with optimal convergence

rate.

Definition 6.

Let P be a set of probabilistic models on Σ and pB(σt) be the likelihood attached by a Bayesian

model obtained with uniform prior on the models in P (if well defined). A probability p on Σ is

informationally efficient with respect to P, if:

∀σ ∈ Σ, lim
t→∞

log
pB(σt)
p(σt)

<∞,
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Definition 6 states that a probability measure p on Σ is efficient if, in every sequence of realiza-

tions, the log-likelihood ratio between p and the likelihood obtained via Bayes’ rule from a uniform

prior on P is bounded above. In other words, on every path, σ, there is no statistical test based

on the log likelihood principle that can claim that pB is a better description of the sequence of

realizations than p.

Theorem 1.

• In a small homogeneous discount factor economy that satisfies A1-A3, normalized equilibrium

prices are informationally efficient with respect to P = {pi : i ∈ I}.

• In a large CRRA homogeneous discount factor economy that satisfies A1-A4, normalized

equilibrium prices are informationally efficient with respect to P = {pi : i ∈ I}.3

Proof. For small economies, see Appendix B. For large economies, it follows from Theorem 6 in

Appendix C

Theorem 1 tells us that normalized equilibrium prices produce forecasts that are as accurate

as the forecasts that a Bayesian with the same information would produce. Nevertheless, unless

all of the traders in the economy have log utility, the way in which normalized prices evolve is not

consistent with Bayes’ rule. Therefore, normalized prices can be seen as a generalization of the

Bayesian paradigm, which cannot be judged as irrational.

It is easy to show that Theorem 1 does not apply to economies with heterogeneous discount

factors. This is because the convergence to a specific model is determined by its likelihoods and

its associated discount factor. If the differences in the discount factors overcome the effect of more

accurate forecasts, normalized prices, unlike Bayesian updating, will not converge to the bast model

in its prior support.

3.3 Equilibrium prices: Investment strategy content

In order to discuss the asymptotic fate of the traders in the economy; I make use of a generalization

of a standard measure of distance between probability distributions, the Kullback-Leibler divergence
3The existence of a well defined prior on P = {pi : i ∈ I} is ensured by assumption A4.
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(K-L∗).

Definition 7.

i) The market investment strategy’s doubling rate is: D∗t (P ||q) ≡ E
(
logP (σt)

q(σt)

)
.

ii) The trader i’s investment strategy doubling rate is: D∗t (P ||βtipi) ≡ E
(
log P (σt)

βtip
i(σt)w0(i)

)
.

The K-L∗ used for this definition is more general than the standard one, as it does not require

q to be a probability measure. In particular, it is well defined for equilibrium price, q(σt), and

for discounted probabilities, βtip
i(σt). This technical modification allows for a direct comparison

of traders’ investment strategies against prices. In my model, traders are not betting against each

other, but against a “fictitious” trader: the market. Following this interpretation, equilibrium

prices can be thought of as the investment strategy of the market. This way of thinking about

prices provides a good interpretation for discounted prices that do not sum to 1. They represent

investment strategies that are not self-financing. The periods in which they sum to more (less) than

1 can be interpreted as periods in which some external funding increases (decreases) the capital

invested. Clearly, the use of external funding has a negative effect on the rate at which the initial

capital is lost (hence “negative distance”).

In the next sections I make use of the following definitions:

Definition 8.

Trader i’s investement strategy is as good as the market’s investment strategy if

lim
t→∞

∣∣D∗t (P ||q)−D∗t (P ||pi) + t log βi
∣∣ <∞.

Trader i’s investment strategy is worse than the market’s investment strategy if

lim
t→∞

D∗t (P ||q)−D∗t (P ||pi) + t log βi = −∞.

Using these definitions, I will show that a trader survives if his investment strategy is as good

as the market’s strategy.
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Definition 8 reveals that the performance of the investment strategy of a trader depends on

two factors. The first one is trader’s ability to produce accurate forecasts and is captured by the

“standard” K-L∗ distance between his beliefs and the true distribution:D∗(P ||pi). The second factor

is trader’s discount factor: βi. The discount factors, can be thought of as the fraction of capital

that is reinvested in every period by trader i using the strategy pi. Clearly, higher β, corresponds to

a greater capital accumulation rate. Moreover, it shows that risk attitudes play no role in traders’

investment strategies. Different risk attitudes can have an effect on survival only through their

effect on equilibrium prices.

4 The leading example

In this Section I present an example to illustrates the main features of my approach and why it

is more informative than trader by trader pairwise comparison. Consider an iid Arrow’s security

economy with S states of the world distributed according to P . There are I traders with log utility

functions, identical discount factors, the same initial wealth and iid beliefs pi. There is a trader

with correct beliefs. The solution is interior and the FOC are: βtpi(σt)

cit(σ)
= 1

ci0
q(σt).

My approach:

Using the FOC, we see that normalized prices coincide with discounted equilibrium prices which

are given by:

qn(σt,s) = qd(σt,s) =
∑
i∈I

pi(σt,s)w0(i) ; qd(s|σt−1) =
∑

i∈I p
i(σt,s)w0(i)∑

j∈I p
j (σt−1)w0(j)

.

Price dynamics:

On every path σ, the probability that the Bayesian posterior probability mass function, obtained

from a prior w0(i) on the model class P = {i ∈ I}, attaches to state s at time t is given by:

W (s|σt−1) =
∑

i∈I p
i(σt,s)w0(i)∑

j∈I p
j (σt−1)w0(j)

=
∑
i∈I

pi(s)w(i|σt−1)

13



where w(i|σt−1) =
pi(σt−1)w0(i)P
j∈I p

j(σt−1)w0(j)
is the Bayesian prior probability of model i, given the sequence

of realizations σt−1 and w0(i). ClearlyW (s|σt−1) = qd(s|σt−1) on every path. Hence, the discounted

price evolution coincides with Bayesian updating, price converges to the true model exponentially

fast and normalized prices are informationally efficient.

Market selection:

Substituting the price equation in the FOCs I obtain:

cit(σ) =
pi(σt)
qd(σt)

=
pi(σt)w0(i)∑
j∈I p

j(σt)w0(j)
= w(i|σt) = e

ln
P (σt)

qd(σt)
−ln

P (σt)

p(σt)w0(i) ≈ eD∗t (P ||qd)−D∗t (P ||pi) (1)

Equation 1 has four interpretations:

• Economic interpretation: cit(σ) → 0 ⇔ pi(σt)w0(i)P
i∈I p

i(σt)w0(i)
→ 0. Trader i vanishes if and only if

his effect on next period prices vanishes.

• Probabilistic interpretation: cit(σ) → 0 ⇔ w(i|σt) → 0. Trader i vanishes if and only if the

measure associated with model i converges to 0. By assumption there is a trader with correct

beliefs, hence, by consistency w(i|σt−1)→P -a.s. 0 if and only if his beliefs are not correct.

• Forecasting interpretation: cit → 0⇔ eD
∗
t (P ||qn)−D∗t (P |pi) → 0. Trader i vanishes in probability

if and only if his forecasts are worse than the market’s.

• Investment strategy interpretation: cit → 0 ⇔ eD
∗
t (P ||q)−D∗t (P ||βtipi) → 0. Trader i vanishes in

probability if and only if his investment strategy is worse than the market’s.

The existing approach:

The standard approach focuses on the log ratios of the FOCs of different traders:

log
cjt (σ)
cit(σ)

= log(
cj0
ci0

) + log
pjt (σ)
pi(σt)

= log(
cj0
ci0

) +
t∑

τ=1

∑
s∈S

Iτσ=s(σ) log
pj(s)
pi(s)

.
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As an implication of the Strong Law of Large Numbers:

1
t

log
cjt (σ)
cit(σ)

≈ 1
t

log(
cj0
ci0

) +
∑
s∈S

P (s) log
pj(s)
pi(s)

≈ D∗t (P ||pi)−D∗t (P ||pj).

Pairwise comparison of the consumption ratio of each couple of traders leads to the con-

clusion that only the trader with lowest K-L∗ distance (hence correct beliefs, because

(D∗(pi||P ) = 0 <=> pi = P ) survives. Hence, trader i vanishes if there is another trader

with a better investment strategy. By standard economic arguments this implies that equilibrium

prices converges to P . The approach is silent about price dynamics.

The main theme of the paper is to generalize the example to the case of different payoff functions,

non-iid (and possibly incorrect) beliefs, different discount factors and large economies.

5 Equilibrium price dynamics

5.1 Equilibrium prices: Small sample properties

In this Section I discuss the evolution of discounted equilibrium prices. My reference model will be

the evolution of the posterior probabilities obtained via Bayes’ rule from the market prior. In order

to make the comparison meaningful I will focus on economies with no aggregate risk. Parallels

between the Bayesian methodology and the evolution of market prices are informally argued by

Blume-Easly (2009) for an iid log-economy. The next Proposition shows that, on every path σ, an

exact equivalence holds independent of the beliefs of the traders.

Proposition 1. In a homogeneous discount factor log-economy (that satisfies A4, if large) and

with no aggregate risk, discounted price follows a Bayesian mixture model.4

• qd(σt) =
∫
I p

i(σt)w0(i)dθ(i).

• qd(s|Ft−1) =
∫
I p

i(s|Ft−1)
pi(σt−1)w0(i)R

I p
j(σt−1)w0(j)dθ(j)

dθ(i) =
∫
I p

i(s|Ft−1)w(i|σt−1)dθ(i).

With w(i|σt−1) =
pi(σt−1)w0(i)R

I p
j(σt−1)w0(j)dθ(j)

representing the prior at t-1.

4The result holds in both large and small economies. The integrals have to be interpreted as Lebesgue integrals.
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Proof. See Appendix B, Lemma 2.

The generalization of Proposition 1 to different risk attitudes is complicated for two reasons.

First, even for the iid case, discounted prices are not probabilities. Second, as Blume-Easley (2006)

point out, risk attitudes have an effect on the rate of convergence of wealth-shares. Defining

w(ML|σt) to be the wealth share of the agent with maximal likelihood on σt. Their observation

suggests the following Proposition:

Proposition 2. Given two CRRA, homogeneous discount factor economies with no aggregate risk

that only differ in the IES parameter’s value (that satisfy A4, if large), then ∀t,∀σ ∈ Σ :

i) 0 < γ′ ≤ 1 ≤ γ′′ <∞⇒
∑
s∈S

qdγ′(s|σt−1) ≥ 1 ≥
∑
s∈S

qdγ′′(s|σt−1);

ii) 0 < γ′ < γ′′ <∞ ⇒ qγ′(σt) ≥ qγ′′(σt);

iii) 0 < γ′ < γ′′ <∞ ⇒ wγ′(ML|σt) ≥ wγ′′(ML|σt).

Proof. See Appendix B.

Proposition 2 describes the small sample properties of discounted prices. The first two lines

generalize Proposition 1 to CRRA-economies that are not log. They show that there is a negative

relation between the value of γ and the price level and that log-economies constitute the knife’s

edge case in which discounted prices determine a probability measure on Σ. The economic intuition

is as follows. Each trader subjectively believes that equilibrium prices are incorrect, hence the no

trade theorems do not apply and each trader sees the market not only as an instrument to transfer

wealth, but also as a “favorable” gamble. Depending on the risk attitudes, traders may be eager or

reluctant to exploit this opportunity and the economy generates discounted prices with a positive

(negative) risk premium if γ > 1(< 1). The last line shows that the value of γ is also inversely

related to the wealth share of the trader with beliefs of maximal likelihood. The reason is that a

lower γ implies more extreme investment strategies and hence faster accumulation of capital for the

trader with beliefs with maximal likelihood. The persistence of these effects and their asymptotic

implications are discussed in the next section.

16



5.2 Equilibrium prices: Asymptotic properties

The results of this section differs depending on the size of the economy. The following definition

will play a fundamental role. What it captures is the notion of two functions that convergence to

0 or diverge to infinity at the same rate.

Definition 9. Given two functions f(x) and g(x), f(x) $ g(x) if and only if ∃0 < a ≤ ā < ∞ :

∀x, f(x) ∈ [ag(x), āg(x)].

All of the results that follows can be seen as implications of this technical Theorem:

Theorem 2. In an economy that satisfies A1-A3:

i) If the economy is small: ∀σ ∈ Σ, q(σt) $
∑
i∈I

βtip
i(σt)w0(i);

ii) In some large economies: ∀σ ∈ Σ, q(σt) 6$
∫
I
βtip

i(σt)w0(i)dθ(i).

Proof. i) See Appendix B. ii) Implied by Corollary 4 in Appendix C, comparing the case of γ = 1

with γ 6= 1.

For small economies, Theorem 2 provides an extremely strong characterization of the rate of

convergence of equilibrium prices. The constant factor implicit in the $ notation has no asymptotic

relevance. It should also be noted that there is no reference to the true probability distribution.

This property of equilibrium prices is universal: it holds on every path of realization. The existence

and the properties of a true distribution are orthogonal to this characterization. Theorem 2 shows

that small economies and large economies are qualitatively different as the relationship between

prices, beliefs and discount factors of the traders in the economy are not the same.

5.2.1 Prices in small economies

Theorem 2 implies that if the economy is small and irrespectively from the risk attitudes of the

traders then, WLOG, we can use
∑

i∈I β
t
ip
i(σt) to determine the asymptotic properties of equilib-

rium prices. More specifically, equilibrium price satisfy these two conditions:
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Corollary 1. In a small economy that satisfies A1-A3:

i) ∀σ ∈ Σ, lim sup
t

∣∣∣∣maxi∈I βtip
i(σt)w0(i)

q(σt)

∣∣∣∣ < +∞

ii) ∀σ ∈ Σ, lim inf
t

∣∣∣∣maxi∈I βtip
i(σt)w0(i)

q(σt)

∣∣∣∣ > 0

Proof. Follows from Theorem 2

The first condition states that the discounted beliefs of each trader are more than absolutely

continuous with respect to equilibrium prices (this condition is stronger than absolute continuity

as it holds on every path and not only for sets of positive measure). The second condition states

that equilibrium prices do not attach too much “weight” to any sequence. This ensures that the

doubling rate of market’s investment strategy is, on every path, bounded above by the doubling

rate the trader with the best investment strategy in the market. As an application, the following

Proposition holds:

Proposition 3. In a small economy that satisfies A1-A3, the market investment strategy is as good

as the best investment strategy in the economy.

Proof. See Appendix B.

These results depend crucially on the assumption about the cardinality of I. The following

example shows that Proposition 3 is incorrect in a large economy:

Example: Consider the following economy: the true data generating process is Bernoulli, iid

θ ∈ (0, 1). We have a continuum of traders with identical discount factors, log utility (by

Proposition 1, discounted prices are probabilities) and iid beliefs. The beliefs of the traders and the

initial wealth-shares are such that the market prior is smooth on the interval (0, 1). Therefore there

is a trader with rational expectations. If Proposition 3 were correct, D∗(P ||qd) −D∗(P ||P ) < ∞.

This is to say, discounted equilibrium prices merge with the true probability. This is impossible as

it would imply that discounted equilibrium prices converge to the true distribution faster than the

Bayesian estimator with the same prior, contradicting the complete class theorem.
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For homogeneous discount factor economies, Theorem 2 allows for a precise characterization of

the rate of convergence of next period discounted prices. The next Proposition shows that in small

economies risk attitudes have no effect on the rate of convergence of next period discounted prices.

Proposition 4. In a homogeneous discount factor small economy with constant aggregate endow-

ment that satisfies A1, if there is a unique trader with beliefs with the highest likelihood, next period

discounted prices converge exponentially fast to the beliefs of the traders with the most accurate

beliefs.

Proof. By Lemma 4 in Appendix B the convergence rate is the same as the convergence rate we

would have in a log-economy, hence, by Proposition 1 the same as Bayesian learning. Standard

results in bayesian learning (see Marinacci-Massari) ensures that the convergence rate is exponen-

tial.

Proposition 4 tells us that, in a small economy, equilibrium price converges exponentially fast, in

contrast with the finding of Yan (2008), it suggests that market selection provides a valid theoretical

argument in favor of the rational expectations assumption.

5.2.2 Prices in large economies

In large economies, the effect of risk attitudes can persist asymptotically. The reason is that

discounted prices do not converge to probabilities fast enough to overcome the effect of the risk

premium discussed in Proposition 2. Unlike the small economy case, the investment strategy

content and the informational content of equilibrium prices are not asymptotically equivalent. For

the case of iid CRRA homogeneous discount factor economies the following Theorem holds:

Theorem 3. Given two large CRRA, homogeneous discount factor economies with no aggregate

risk that only differ in the IES parameter’s value and satisfy A4, then

0 < γ′ < γ′′ <∞⇒ D∗t (P ||qdγ′)−D∗t (P ||qdγ′′)→ −∞.
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Proof. See Appendix C, Corollary 4.

Theorem 3 tells us that in large economies risk attitudes have an asymptotic effect on equilibrium

prices. Specifically, it shows that the equilibrium price in the economy with the lower value of γ

generate a better doubling rate (because it diverges to +∞ at a slower rate). As it is shown by

Proposition 2, the higher doubling rate is due the fact that the more risk loving the traders, the

higher is the price level. The comparison between Theorems 1 and 3 shows that discounted prices

reflect both the risk attitudes of the traders in the market and the aggregate information. In sharp

contrast with the small economy case, the effect of risk attitudes does not fade away fast enough

and it affects the asymptotic properties of equilibrium prices. In the next Section I discuss how

this effects survival.

6 Wealth-shares Dynamics

In this Section I use my characterization of equilibrium prices to discuss wealth-share dynamics.

My approach addresses the problem of wealth-share convergence via a direct comparison between

equilibrium prices, trader beliefs and discount factors. The restriction to Arrow’s securities economy

is done WLOG as the price of more complex assets in a complete market can always be obtained

via no arbitrage pricing. The following Proposition links the standard definition of survival to my

setting:

Proposition 5. In an economy (either small or large) that satisfies A1-A3, trader i vanishes on

path σ if and only if:

∀s ∈ S lim
t→∞

βtip
i(σt,s)w0(i)
q(σt,s)

→ 0

Proof. See Appendix B

In small economies βtip
i(σt,s)w0(i)
q(σt,s) $ βtip

i(σt)w0(i)P
I β

t
jp
j
t (σ)w0(j)

therefore the wealth of trader i is propor-

tional to the weight his beliefs have in the determination of next period prices and the following

interpretation holds. If trader i’s consumption goes to 0 on σ, then trader i does not use the

market to transfer consumption on σ, hence his beliefs have no weight on the determination of
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the equilibrium prices. Conversely, if trader i’s beliefs have no weight on the determination of the

equilibrium prices on σ, then he is not moving consumption on that path, which is to say that his

consumption is 0 on that path. Given Proposition 5, I can apply my results in price dynamic to

derive asymptotic results in wealth shares. I begin with a general necessary condition to vanish:

Proposition 6. In an economy (either small or large) that satisfies A1-A3,

• Trader i vanishes in probability if his investment strategy is worse than the market’s strategy.

• Trader i survives in probability if his investment strategy is as good as the market’s strategy.

Proof. see Appendix B.

My condition to vanish is weaker than Sandroni’s condition, as it only implies that a trader

vanishes in probability, not P -a.s.. Nevertheless, it is more general: it can be used to discriminate

between learning traders, it relies on fewer assumptions and it can be applied to large economies.

In particular, Proposition 7 and 11 cannot be proved using either Sandroni’s or Blume-Easley’s

measure of distance (an equivalent result to Propositions 7 is proven in Blume-Easley (2006) as

a special case). Proposition 6 cannot be used to prove P -a.s convergence because it is a result

on the asymptotic value of consumption, not on the number of times consumption is positive.

Consumption can converge to 0 in expectation and yet be positive sporadically but infinitely often.

In order to capture this second aspect, a more technical condition must be imposed:

Theorem 4. In an economy (either small or large) that satisfies A1-A3:

E

(
lim sup

βtip
i(σt)w0(i)
q(σt)

)
= 0⇔ Trader i vanishes P -a.s.

Proof. See Appendix B

Theorem 4 suggests that in order to capture the sufficient condition to vanish we need to control

for two things. First, the definition of survival states that a trader survives if his consumption is

positive infinitely often, not that his expected asymptotic consumption must be positive. The

difference is subtle, but Blume-Easley (2009) show that is possible for a trader to have positive
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wealth-share so infrequently that his expected consumption goes to 0. Second, we need to keep

track of the geometry of the beliefs in the economy: a trader that makes more accurate forecasts

than every other trader in the market and with a discount factor that exactly compensates for

his better forecasting skills can vanish if the set of sequences in which he has positive wealth has

measure 0. A detailed discussion about conditions under which this can occur can be found in

Blume-Easley(2009).

Proposition 6 can be used to discriminate between Bayesian learners with smooth priors and

different cardinality in their prior support. As already observed by Blume-Easley (2006), the

general result is that in the presence of multiple Bayesian traders with nested prior supports, a

trader vanishes if there is another trader whose prior support has lower dimensionality and contains

the true model. The result captures an intuitive idea: more parameters to be estimate correspond

to slower convergence.This observation is captured in the following Proposition:

Proposition 7. In a small homogeneous discount factor economy that satisfies A1-A3, with two

Bayesian traders i and j with smooth priors, nested prior supports and such that the dimensionality

of j’s prior support is higher than the dimensionality of i’s prior support. If the true model belongs

to i’s prior support, trader j vanishes in probability.

Proof. Follows from Proposition 6 and Corollary 4 in Appendix C (with γ = 1).

In the next section I consider some relevant applications of Theorem 4 that are new to the

literature.

6.1 Learning, risk attitudes and the number of traders

In this section I discuss the amount of information needed to survive in an economy and its relation

with the size of the economy and risk attitudes. For small economies, the first result I present is

standard in the market selection literature. It states that if a Bayesian trader puts positive weight

on the true model, then that trader survives P -a.s..
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Corollary 2. In a small homogeneous discount factor economy that satisfies A1-A3, a Bayesian

trader (B) with positive wealth share and whose prior attaches positive probability to the true model

survives P -a.s..

Proof. See Appendix B.

An equivalent result is also true for large economies:

Proposition 8. In a homogeneous discount factor CRRA economy that satisfies A2-A3, populated

by a continuum of traders whose beliefs satisfy A4 and by a Bayesian trader (B) whose prior

attaches positive probability to the true model; the Bayesian trader survives P -a.s..

Proof. See Appendix B.

Therefore, a trader that attaches positive probability to P always survives.

The problem with these results is that they depend on ex-ante knowledge of the true distribution.

The next results discuss survival without referring to the true distribution. Proposition 2 tells us

that risk attitudes have an effect on the rate of convergence of discounted prices. If the economy is

small, Theorem 2 implies that this effect has no asymptotic relevance as discounted prices merge

with the beliefs of the trader with the most accurate beliefs. Therefore the following Corollary

holds.

Corollary 3. In a small, homogeneous discount factor economy that satisfies A1-A3, a Bayesian

trader survives on every path if and only if he has access to sparse information.

Proof. Follows from Theorem 2 and Proposition 5.

The picture is different in large economies. Theorem 3 tells us that risk attitudes can have an

asymptotic effect on price dynamics. The next Proposition discusses its wealth-shares implications.

Proposition 9. In a large, homogeneous discount factor, iid, CRRA economy that satisfies A2-

A3, populated by a continuum of traders I with beliefs that smoothly cover the simplex and by a

Bayesian trader with positive initial wealth-share with a smooth prior on the union of the beliefs of
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the other traders; the asymptotic wealth-share of the Bayesian trader (B) depends on risk attitudes

as follows:

i) γ ∈ (0, 1)⇔ trader B vanishes P -a.s.

ii) γ = 1⇔ trader B survives and his wealth-share is less than 1 P -a.s.

iii) γ > 1⇔ trader B is the only survivor P -a.s.

Proof. See Appendix B.

The intuition goes as follows. By assumption, we have a continuum of traders with beliefs that

smoothly cover the simplex, therefore there is a trader in the economy with rational expectations

and an infinitesimal fraction of wealth-share. We want to compare the rate at which his wealth-

share grows and the rate at which the Bayesian learns. As Proposition 2 shows, the parameter γ

regulates the rate at which wealth moves between traders. γ = 1 constitutes the knife’s edge in

which this rate coincides with the learning rate of the Bayesian trader, consequently this is the only

case in which the Bayesian trader survives without dominating. For γ < 1, wealth-shares move

faster than the log case and the learning rate of the Bayesian is not fast enough to compensate for

the informational disadvantage. The case γ > 1 is specular, and the Bayesian trader learns fast

enough to become the only survivor. 5

It is easy to find arguments in favor of the hypothesis that real world markets are populated

by traders that are more risk loving than log. For example, the bias in the incentives of portfolio

managers due to the fact that they invest other people’s money and participate in the gains without

(directly) participating in the losses. Proposition 9 is good news for the theory of market selection

because it implies that the selection mechanism becomes faster the more risk loving are the traders

in the economy. On the other side, it is bad news for the investors. It shows that the more risk

loving are the traders in the economy the more information is needed to survive. In particular,

if γ < 1, to know the beliefs of all of the traders in the market is not enough to survive. The

only traders that survive in a large risk loving market are the lucky ones and those with insider
5To be precise, the above argument should be made in terms of neighborhoods of the true parameters (in the

Fisher information metrics) with positive Lebesgue measure (i.e. positive wealth share) and not in terms of a trader
with infinitesimal wealth share.
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information.

The following stronger result shows that the γ parameter and the dimensionality of the market

prior have comparable effects on the rate of convergence.

Proposition 10. In a large homogeneous discount factor economy, to have more information than

the market is not necessary nor sufficient to vanish.

Proof. Examples.

The first example illustrates the case in which the Bayesian learner knows more than the market

and yet vanishes. There are two parameter to be estimated and the Bayesian learner knows one of

them. The second example discusses the case in which the Bayesian learner knows less than the

market and yet become the only survivor. There are two parameters to be estimated and everybody

but the Bayesian knows one of them.

Example 1 Consider a homogeneous discount factor economy with three states S = {a, b, c} with

iid true probabilities P = [1
3 ,

1
3 ,

1
3 ]. Trader B is a Bayesian who knows that the probability of state

a, has a uniform prior on (0, 2
3) on the probabilities of the other two states and holds 1

2 of the

wealth of the economy. The other half of the wealth is evenly distributed to a continuum of traders

Ic with iid beliefs that cover the tridimensional simplex. All traders have a CRRA payoff functions

with the same parameter γ. The discounted equilibrium prices are given by:

qd(σt) =
(

1
2
pBt (σ)

1
γ +

1
2

∫ ∫
p(σt|θ1, θ2)

1
γ dθ1dθ2

)γ
=

1
2

(∫ 2
3

0
p(σt|θ2)dθ2

) 1
γ

+
1
2

∫ ∫
p(σt|θ1, θ2)

1
γ dθ1dθ2

γ
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The FOCs implies:

cB(σt) = cB0

(
pB(σt)
qd(σt)

) 1
γ

=
cB0

(∫ 2
3

0 p(σt|θ2)dθ2

) 1
γ

(
cB0
∫ 2

3
0 p(σt|θ2)dθ2

) 1
γ

+
∫ ∫

p(σt|θ1, θ2)
1
γ dθ1dθ2

=
cB0

cB0 +
R R

p(σt|θ1,θ2)
1
γ dθ1dθ2„R 2

3
0 p(σt|θ2)dθ2

« 1
γ

$By Cor.4,Appendix C cB0

cB0 + e
1
γ (lnP (σt)− 2γ

2 ln t)

e
1
γ (lnP (σt)− 1

2 ln t)

P -a.s.

Therefore the Bayesian trader vanishes P -a.s. if and only if γ < 1
2

Example 2 Consider a homogeneous discount factor economy with three states S = {a, b, c}

with iid true probabilities P = [1
3 ,

1
3 ,

1
3 ]. Trader B is a Bayesian with uniform prior on the tridi-

mensional simplex and holds 1
2 of the wealth of the economy. (0, 2

3) on the probabilities of the other

two states . The other half of the wealth is evenly distributed to a continuum of traders Ic with iid

beliefs so that all of the traders agree on the probability of the first state, and their beliefs cover

the bidimensional simplex. All traders have a CRRA payoff functions with the same parameter γ.

Following the same logic of the previous example the FOCs implies:

cB(σt) = cB0

(
pB(σt)
qd(σt)

) 1
γ

$By Cor.4,Appendix C cB0

cB0 + e
1
γ (lnP (σt)− γ2 ln t)

e
1
γ (lnP (σt)− 2

2 ln t)

P -a.s.

Therefore the Bayesian trader is the only survivor P -a.s. if and only if γ > 2

6.2 Real world investment strategies

This Section describes the merit of investment strategies that are commonly adopted in real world

markets. I consider two strategies: the diversified investment strategy and the copy-trader strategy.

Given a set of investment opportunities (for example the strategies of the other traders, different

edge fonds or different stocks) the diversified investment strategy consist on investing a fraction

of the initial capital in each investment in the first period and hold the position (this strategy
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correspond to holding a long position on a market index). The copy-trader strategy is to invest, in

each period, all of the capital according to the investment that had the highest cumulated wealth

up to the previous period (to copy the strategy of the trader that did best in the past). This

strategy is intuitive and is commonly advertised by providers of internet-trading (for example,

www.etoro.com, www.currensee.com). My results provide theoretical support for the diversified

portfolio strategy and against the copy-trader one. If the two strategies consider the same set of

possible investments, the diversified portfolio strategy always guaranties survival while the copy-

trader strategy leads to extinction if the best strategy (the leader’s strategy) changes often. This

result does not depends on the presence of frictions in the market, the copy-trader strategy is

suboptimal because produces lower capital accumulation rate, not because there is a cost in moving

the capital between investment strategies.

Proposition 11. In small economy that satisfies A1-A3, in which there are two traders d, c that

consider the same set of traders and adopt respectively the diversified investment strategy and the

copy-trader strategy, then:

• Trader d survives on every path.

• Trader s survives if and only if the leaders do not alternate infinitely often.

Proof. See Massari (2012a)

The following example illustrates the content of Proposition 11:

Example Consider a log-economy with two states S = {a, b}, iid true probability P := [1
2 ,

1
2 ], four

traders (1,2,3,4) with log utilities, the same discount factors and eit = 1
4 ∀t, i = 1, 2, 3, 4. Traders 1

and 2 have iid beliefs: p1 := [2
3 ,

1
3 ], p2 := [1

3 ,
2
3 ]. Traders 3 follows the diversified investment strategy

and trader 4 follows the copy-trader strategy:

p3(a|σt−1) := p1(a)
1
2p

1(σt−1)
1
2p

1(σt−1) + 1
2p

2(σt−1)
+ p2(a)

1
2p

2(σt−1)
1
2p

1(σt−1) + 1
2p

2(σt−1)

p4(a|σt−1) :=

 pi(a) : i = arg max
{
p1(σt−1), p2(σt−1)

}
random 1/2p1(a), 1/2p2(a) if ties occur.
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Proposition 11 implies that trader 4 vanishes P -a.s.

More formally, the two strategies described above correspond to investing using two bayesian

forecasting procedures: Bayesian Mixture (Bernardo-Smith 1994) and Bayesian Factor Model

(Kass-Raftery 1995), respectively. The surprising result is that if the posterior does not converge,

Bayesian Mixture forecasts outperform Bayesian Factor forecasts in terms of likelihood.6

6.3 Survival in iid economies

Precise results on who survives in iid economies with heterogeneous discount factors have been

proved surprisingly hard to obtain. In this section I conclude the project of Blume-Easley (2009)

about survival in the iid setting. For an easier comparison, I will adopt their notation and approach.

Blume-Easley (2009) present an almost tight geometric condition to verify if a trader survives in

an iid economy. They first apply the necessary condition for extinction from Blume-Easley (2006)

to all of the traders in the economy in order to identify the set of potential survivors (SUR). Then,

they apply their geometric condition to further refine this set and identify the actual survivors.

More formally,

Definition 10. Trader’s i survival index: si = log βi − E log P
pi

Let SUR denote the set of traders with maximal survival index (in my setting this is set of

traders with the best investment strategies). Blume-Easley show that the fate of a trader in SUR

is determined by how his beliefs are positioned relative to the beliefs of the other traders in SUR.

Let lo(pj) =
(

log
(
p(s)
p(S)

))S−1

s=1
and C

{
lo(pj)

}
j∈SUR be the closed convex cone generated by the

log-probability vectors of the traders.

Definition 11. Trader i is interior if lo(pj) is in the relative interior of C
{
lo(pj)

}
j∈SUR. He is

extremal if lo(pj) is an extreme point; that is, not a non-negative linear combination of the other

lo(pj).
6This result is consistent but not overlapping with the finding in Grünwald-Rooij (2005). In particular, it conforms

to the general observation that forecasting schemes that can produce forecasts that correspond to models outside the
model prior support perform better, in terms of sum squared error and log loss function, than forecasting schemes
that only formulates forecasts that corresponds to model that belong to the model prior support.
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Blume-Easley (2009) shows that if |S| ≤ 3, a trader survives if and only if he is in SUR. If

|S| > 3, interior traders vanish and extremal traders survive. Nothing is said about the asymptotic

fate of traders on the boundaries of C
{
lo(pj)

}
j∈SUR.

Geometrically, the fate of an internal (extremal) trader is determined by the time spent by a

discrete S−1 dimensional Random Walk in compact sets (on S−1 dimensional half-spaces). These

results are readily available and have been used by Blume-Easley (2009). In order to determine the

fate of the traders whose beliefs lie on the boundaries of C
{
lo(pj)

}
j∈SUR it is necessary to have

results on the time spent by a discrete S−1 dimensional Random Walk on S−r conical subspaces.

In Appendix C, I prove the needed results. The next Theorem completes their Theorem including

these cases:

Definition 12. Let K2 be the set of traders in SUR such that lo(pj) is a non-negative linear

combination of lo(pi)j 6=i∈SUR in at most two dimensions.

Theorem 5. Assume A1-A3, in a iid economy

Trader i survives⇔ i ∈ K2

Proof. See Appendix D and Blume-Easley (2009) (Theorems 2 and 3).

7 Conclusion

This paper introduces a new approach to the market selection mechanism. By interpreting prices as

investment schemes, I am able to compare price evolution and probabilistic learning, even though

prices are not necessarily probabilities and their evolution is not obtained via Bayes’ rule. My

characterization reveals a new implication of the market selection hypothesis: prices convey all

of the information available in the market as efficiently as a Bayesian with the same information.

In line with the results of Sandroni (2000), Blume-Easley (2006) and Yan (2008) for non-growing

economies, I find that, if the economy is small, different risk attitudes have no asymptotic effect

on wealth-share. Nevertheless, I show that the result does not apply to large economies. The

amount of information needed by a trader to survive also depends on the size of the economy. In
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small economies, a trader that knows the beliefs of all of the other traders is always among the

survivors. In large economies, if the traders are more risk loving than log, a trader survives only

if he has more information than the market; if the traders are less risk loving than log, a trader

with less information than the market can be the only survivor. Log-economies constitute the

knife’s edge case: knowledge of all traders’ beliefs ensures survival. In addition, this paper extends

existing results by providing a necessary and sufficient condition for a trader to vanish that applies

to general complete market economies. On the way, it discusses survival in iid economies, which

concludes the analysis of Blume-Easley (2006), and the wealth-shares implications of investment

strategies that are commonly observed in real markets. My results provide theoretical support in

favor of the diversified portfolio strategy and against the copy-trader strategy.

Appendices

A Appendix

In this section I discuss the relationship between the notion of distance I adopt (D∗t (P ||pi)) and

the distances adopted by Sandroni (Entropy:Ei,t) and Blume-Easley (Sum of Conditional Relative

Entropies Dt(P ||pi)).

Definition 13. Entropy of trader i:

Ei,t ≡ −
1
t

t∑
τ=1

Eτ

(
log

Pτ (σ|Fτ−1)
pτ (σ|Fτ−1)

)
= −1

t

t∑
τ=1

d(Pτ ||piτ )

Definition 14. Sum of conditional relative entropies of trader i:

Dt(P ||pi) ≡
t∑

τ=1

Eτ

(
log

Pτ (σ|Fτ−1)
p(σ|Fτ−1)

)
=

t∑
τ=1

d(Pτ ||piτ )

The K-L and E distances are approximations of the K-L∗ distance I am using. Most of the

times these distances provide equivalent implications, nevertheless examples in which this is not
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the case can be constructed.

The scope of Assumption A5 in Blume-Easly’s (2006) and Sandroni’s (2000) Definition 8 (equiv-

alent to A5) is to make these distances equivalent.

• A5: There is a δ > 0 such that for all paths σ, all dates t, s ∈ S, and traders i, P (s|Ft−1)(σ) >

0⇒ p(s|Ft−1)(σ) > δ and pi(s|Ft−1)(σ) > δ.

An assumption similar to A5 is needed in terms of E because the sum of conditional relative

entropies can diverge on a set of measure 0 fast enough to invalidate the Strong Law of Large

Numbers. This implies that it is possible to construct an economy (an example can be found

in Blume-Easley (2006)) with beliefs and true probabilities such that E and K-L fail to correctly

identify the limit of the summations. An intuition of it is given:

example 1.

Let: st =

 t2 − 1 w.p. 1
t2

−1 w.p. 1− 1
t2

Then:

−∞ =a lim
t→∞

t∑
τ=1

sτ = lim
t→∞

E

(
t∑

τ=1

sτ

)
6= lim

t→∞

t∑
τ=1

Et(sτ ) = lim
t→∞

r∑
τ=1

1− 1
τ2
− (1− 1

τ2
) = 0

−1 =a lim
t→∞

1
t

t∑
τ=1

sτ = lim
t→∞

E

(
1
t

t∑
τ=1

sτ

)
6= lim

t→∞

1
t

t∑
τ=1

Et(sτ ) = lim
t→∞

1
t

t∑
τ=1

1− 1
τ2
− (1− 1

τ2
) = 0

a) By Borel-Cantelli Lemma

Nevertheless Massari (2012) shows that even assuming A5 the use of the distance proposed by

Blume-Easley can lead to incorrect results. This finding has serious implications as it shows that

the D(.||.) distance cannot be used to identify the necessary condition for extinction for a non-iid

economy.

On the other hand, the measure adopted by Sandroni is to coarse to discriminate between learning

rates. If two traders learns at different rates, they would both pass Sandroni’s criterion. In particu-

lar the measure of distance he adopt cannot be used to discriminate between Bayesian learner with

31



different dimensionality in the prior support because the differences in the likelihoods are “killed”

by the 1
t term.

These approximations do not make the model more tractable and can lead to mistakes (as

Massari (2012) shows). Therefore, nothing is lost by using a more abstract, but correct, notion

of distance. The convergence Theorems are less demanding in terms of assumptions (A5 becomes

superfluous) and special cases, instead of being ruled out, can be treated and solved individually.

B Appendix

Lemma 1. In a small economy that satisfies A1-A3: ∀t,∀σ ∈ Σ,∃a, b ∈ R :

0 < a <
∑
i∈I

1
u′i(c

i
t(σ))

< b <∞ (2)

Proof. i):
∑

i∈I
1

u′i(c
i
t(σ))

<∞:

∀σ ∈ Σ, ∀i ∈ I, u′i(cit(σ)) > 0 as the total endowment is finite (by A2), the payoff functions are

monotone and strictly concave with positive derivative at 0 (by A1).

ii): 0 <
∑

i∈I
1

u′i(c
i
t(σ))

:∑
i∈I

1
u′i(c

i
t(σ))

= 0 ⇔ ∀i ∈ I, u′i(cit(σ) = ∞ which is true iif all the traders have 0 consumption

and satisfy the Inada condition at 0. The first requirements is impossible as it violates the market

clearing condition:
∑

i∈I c
i
t =

∑
i∈I e

i
t > 0.

Proof of Theorem 1 (small economies)

Since the bayesian model cannot do better, in terms of likelihood, than the best model in its prior

support, the desired result can be proven by showing that under A1-A3, if all of the traders have

the same discount factor: ∀i ∈ I, ∃vi0 > 0 : log 1
vi0
> log pi(σt)

qn(σt) ∀σ
t ∈ Σ.
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Proof. Rearranging the FOCs, normalized equilibrium prices are:

qn(σt) =
q(σt)∑
σt q(σt)

=

βt
P
i∈I p

i(σt) 1
u′
i
(c0)P

i∈I
1

u′
i
(ct(σ))

βt
∑

σt∈St

(P
i∈I p

i(σt) 1
u′
i
(c0)P

i∈I
1

u′
i
(ct(σ))

) (3)

By Lemma 1 ∃a, b : 0 < a ≤ b < +∞

qn(σt) ∈ [

βt
P
i∈I p

i(σt) 1
u′
i
(c0)

b

βt
∑

σ∈St

(P
i∈I p

i(σt) 1
u′
i
(c0)

a

) , βt
P
i∈I p

i(σt)

a

βt
∑

σ∈St

(P
i∈I p

i(σt) 1
u′
i
(c0)

b

) ]

=> qn(σt) ∈ [
a

b

∑
i∈I

pi(σt)
1

u′i(c0)
,
b

a

∑
i∈I

pi(σt)
1

u′i(c0)
]

=> ∀i ∈ I, ∀σ ∈ Σ,∀t, qn(σt) >
a

b
pi(σt)

1
u′i(c0)

And the result follows rearranging, noticing that in equilibrium ∀i ∈ I, +∞ > 1
u′i(c0)

> 0 and taking

log.

Proof of Theorem 2, (small economies)

Proof. The equilibrium conditions implies ∀t, q(σ
t)

pi(σt)
= βtu′i(ct)

u′i(c0)

Rearranging and summing over traders:

q(σt) =

∑
i∈I β

t
i
pi(σt)
u′i(c0)∑

j∈I
1

u′j(c
j(σt))

(4)

Lemma 1 implies ∀t,∀σ ∈ Σ:

∑
i∈I

βtip
i(σt)

u′i(c0)

b
≤ q(σt) ≤

∑
i∈I

βtip
i(σt)

u′i(c0)

a

Which is to say ∀i,∀t,∀σ ∈ Σ:

q(σt) $
∑
i∈I

βtip
i(σt)

u′i(c0)
$a
∑
i∈I

βtip
iwi0(σt)
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a :The result follows noticing that in equilibrium ∀i ∈ I, +∞ > 1
u′i(c0)

> 0.

Proof of Proposition 3

Proof. I have to show two things:

i) limt→∞D
∗(P ||qd)−mini∈I(D∗(P ||βtipi) < +∞

Suppose not. This implies that ∃σ ∈ Σ,∃i ∈ I : log βtip
i(σt)

qd(σt)
→ +∞.

Contradicting Theorem 2.

ii) limt→∞D
∗(P ||qd)−mini∈I(D∗(P ||βtipi) > −∞

Suppose not. This implies that ∃σ ∈ Σ : ∀i ∈ I, βtip
i(σt)

qd(σt)
→ −∞

Contradicting Theorem 2.

Lemma 2. Proof. Standard calculations show that for a homogeneous discount factors CRRA
economy (∀i ∈ I, ui(c) = c1−γ−1

1−γ ) with constant aggregate endowment (∀t,
∑

i∈I e
i
t = e):

qdγ(σt) =

0@X
i∈I

pi(σt)
1
γ w0(i)

1Aγ ; qdγ(σ|Ft−1) =

“P
i∈I p

i(σt)
1
γ w0(i)

”γ
“P

i∈I p
i (σt−1)

1
γ w0(i)

”γ (5)

Log economy: lim γ → 1

q̂γ(σt) =
∑
i∈I

pi(σt)w0(i)

qd(σ|Ft−1) =
∑
i∈I

pi(σt|Ft−1)pi
(
σt−1

)
w0(i)∑

I p
i (σt−1)w0(j)

=
∑
i∈I

pit(σ|Ft−1)w(i|σt−1)

Lemma 3. In a small CRRA economy with constant aggregate endowment, if all of the traders

have identical discount factors, these two conditions are equivalent: i) : ∃A : P (A) = 1 and ∀σ ∈ A

∀i ∈ I, lim sup pi(σt)
pML(σt)

= lim inf pi(σt)
pML(σt)

ii) : ∀γ1, γ2 ∈ [0,+∞), qγ1 (σ|Ft−1)

qγ2(σ|Ft−1) → 1 P -a.s.

Proof. i)⇒ ii)

By Lemma 2 (defining pi0(σ) = (w0(i))γ):
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qγ1(σ|Ft−1)
qγ2(σ|Ft−1)

=

(∑
i∈I p

i(σt)
1
γ1

)γ1
(∑

i∈I p
i (σt−1)

1
γ1

)γ1
(∑

i∈I p
i
(
σt−1

) 1
γ2

)γ2
(∑

i∈I p
i(σt)

1
γ2

)γ2

=a

(
1 +

∑
i 6=ML

(
pi(σt)
pML(σt)

) 1
γ1

)γ1
(

1 +
∑

i 6=ML

(
pi(σt−1)
pML(σt−1)

) 1
γ1

)γ1
(

1 +
∑

i 6=ML

(
pi(σt−1)
pML(σt−1)

) 1
γ2

)γ2
(

1 +
∑

i 6=ML

(
pi(σt)
pML(σt)

) 1
γ2

)γ2
→b (1 +K)γ1

(1 +K)γ1
(1 +K)γ2

(1 +K)γ2
= 1

a : Dividing and multiplying by pML(σt)
pML(σt−1)

.

b : i) implies ∀σ ∈ A,∀i ∈ I,
(

pi(σt)
pML(σt)

)γ
→
(
pi(σt−1)
pML
t−1σ

)γ

ii) ⇒ i): By contradiction: ¬i) ⇒
(

pi(σt)
pML(σt)

)γ
6→
(
pi(σt−1)
pML
t−1σ

)γ
hence the last implication (b)

does not hold.

Lemma 4. In a small economy with constant aggregate endowment that satisfies A1, if all of the

traders have identical discount factors, these two conditions are equivalent:

i) : ∃A : P (A) = 1 and ∀σ ∈ A ∀i ∈ I, lim sup pi(σt)
pML(σt)

= lim inf pi(σt)
pML(σt)

ii) :


qdgen(σ|Ft−1)

qdlog(σ|Ft−1)
→ 1 P -a.s.

qdlog(σ|Ft−1)

qdgen(σ|Ft−1)
→ 1 P -a.s.

Proof. The result follows from Lemma 3, The convergence rate of a general economy can be sand-

wiched between the linear case lim γ → 0 and an arbitrarily large γ.

Proof of Proposition 2

Proof. For small economies, integrals have to be understood in the Lebesgue sense.
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i) By Equation 5, qdγ(σ|Ft−1) =

„R
I p

i(σt)
1
γ w0(i)dθ(i)

«γ
„R
I p

j(σt−1)
1
γ w0(j)dθ(j)

«γ . For γ ≤ 1, the result is an implication

of the Minkowsky ’s inequality for integrals (Folland (1999) pg. 194): let r = 1
γ ≥ 1, then,

X
s∈S

0BB@ZI pi(s|Ft−1)
r

„
pi
“
σt−1

”
(w0(i))

1
r

«r
R
I

„
pj
`
σt−1

´
(w0(j))

1
r

«r
dθ(j)

dθ(i)

1CCA
1
r

≥

0BBBB@
Z
I

0BBBB@
X
s∈S

p
i
(s|Ft−1)

pi
“
σt−1

”
(w0(i))

1
r„R

I

„
pj
`
σt−1

´
(w0(j))

1
r

«r
dθ(j)

« 1
r

1CCCCA
r

dθ(i)

1CCCCA
1
r

=

0BB@ZI
„
pi
“
σt−1

”
(w0(i))

1
r

«r
R
I

„
pj
`
σt−1

´
(w0(j))

1
r

«r
dθ(j)

dθ(i)

1CCA
1
r

= 1

For γ > 1 we have that r < 1 hence the quantities of interests are not norms (fail to satisfy the
triangular inequality). The result holds as we can use a “reversed” Minkowsky’s inequality for
integrals. The inequality is obtained by plugging the “reversed” Hölder’s Inequality in the proof of
Minkowski’s inequality for integrals at page 194 of Folland (1999).

X
s∈S

0BB@ZI pi(s|Ft−1)
r

„
pi
“
σt−1

”
(w0(i))

1
r

«r
R
I

„
pj
`
σt−1

´
(w0(j))

1
r

«r
dθ(j)

dθ(i)

1CCA
1
r

≤

0BBBB@
Z
I

0BBBB@
X
s∈S

p
i
(s|Ft−1)

pi
“
σt−1

”
(w0(i))

1
r„R

I

„
pj
`
σt−1

´
(w0(j))

1
r

«r
dθ(j)

« 1
r

1CCCCA
r

dθ(i)

1CCCCA
1
r

=

0BB@ZI
„
pi
“
σt−1

”
(w0(i))

1
r

«r
R
I

„
pj
`
σt−1

´
(w0(j))

1
r

«r
dθ(j)

dθ(i)

1CCA
1
r

= 1

ii) The result follows from proposition 6.12 pg 186, Folland (1999) that states:

If P (X) <∞ and 0 < p < q ≤ ∞, then Lp(P ) ⊂ Lq(P ) and ||f ||p ≤ ||f ||qP (X)
1
p
− 1
q .

The result apply to this setting as follows:

By Equation 5, P (X) =
∫
I w

i
0 = 1 and qdγ(σt) =

(∫
I
(
pi(σt)

) 1
γ w0(i)

)γ
= ||p|| 1

γ
.

Therefore for 0 ≤ γ′ < γ′′ <∞, qdγ′′ = ||p|| 1
γ′′
≤ ||p|| 1

γ′
= qdγ′ .

iii) For large economies that satisfy A4, the result is trivially true as no trader ever has positive

wealth share. For small economies, define ∀i ∈ I, pi0(σ) = (w0(i))γ . Using the FOC and Equation

5 we find that in a CRRA economy with parameter γ, the wealth share of trader i in the partial

history σt is given by w(i|σt) = pi(σt)
1
γP

j∈I p
j(σt)

1
γ

. Therefore, the wealth share of the trader with beliefs

with maximal likelihood (pML) is given by: w(ML|σt) = pML(σt)
1
γP

j∈I p
j(σt)

1
γ

= 1

1+
P
j 6=ML

“
pj(σt)

pML(σt)

” 1
γ

and
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the result follows because

∂w(ML|σt)
∂γ

= −

1
γ2

(
−
∑

j 6=ML

(
pj(σt)
pML(σt)

) 1
γ ln

(
pj(σt)
pML(σt)

))
1 +

∑
j 6=ML

(
pj(σt)
pML(σt)

) 1
γ

≤a 0

a) : ∀j 6= ML,
(

pj(σt)
pML(σt)

)
< 1 by construction with equality if we have multiple models with

maximal likelihood.

Proof of Proposition 5:

Proof. By the FOCs: u′i(c0)
u′i(c(σ

t,s))
= βtip

i(σt,s)
q(σt,s) . Therefore, ∀σt,s ∈ Σ

βtip
i(σt,s)

q(σt,s)
→ 0⇔ u′i(c0)

u′i(ci(σt,s))
→ 0⇔a u′i(c

i(σt,s))→ +∞⇔b ci → 0

a : By A2: ci0 < +∞⇒by A1 u′i(c0) > 0.

b : By A1 limc→0 u
′
i(c) = +∞ and the payoff functions are strictly concave, increasing.

Proof of Proposition 6

Proof. From the equilibrium condition ∀σt, log cit(σ) = log βtpi(σt)
q(σt) . Therefore E

(
log cit(σ)

)
=

E
(

log βtpi(σt)
q(σt)

)
. The result follows because convergence in expectation implies convergence in

probability.

Proof of Theorem 4:
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Proof. In an economy that satisfies A1-A3 Note that:

E

(
lim sup

βtip
i
t (σ)w0(i)∫

I β
t
jp
j
t (σ)w0(j)dθ(j)

)
= 0⇔ ∀ε > 0, E

I
lim sup

βt
i
pit(σ)w0(i)R

I β
t
j
p
j
t (σ)w0(j)dθ(j)

>ε

 = 0

⇔ ∀ε > 0, P

{
lim sup

βtip
i
t (σ)w0(i)∫

I β
t
jp
j
t (σ)w0(j)dθ(j)

> ε

}
= 0

⇔ by Prop. 5 ∀ε1 > 0, P
{

lim sup cit > ε1
}

= 0

⇔ ∀ε1 > 0, P
{
cit > ε1 i.o.

}
= 0

⇔a cit → 0 P -a.s.

⇔ Trader i vanishes p-a.s.

a: the <= implication is obvious, the => implication is an application of Borel-Cantelli Lemma

(see exercise EA13.1 C in Williamson)

Proof of Corollary 2 and Proposition 8:

Proof. Let ν be the probability that the Bayesian attaches to the true model. Then, ∀σ ∈

Σ,∀t, pB(σt) ≥ νP (σt). Moreover, since P is the data generating proces, ∃A ∈ Σ : P (A) = 1

and ∀σ ∈ A,∀p on Σ, limt→∞
pi(σt)
P (σt) <∞.

Small economies:

By Theorem 2, q(σt) $
∑

i∈I β
t
ip
i(σt)w0(i). Therefore ∀σ ∈ A,∀t,∃b <∞ :

pB(σt)
q(σt)

≥
w0(B)νP (σt)

P (σt)

b
P
i∈I p

i(σt)

P (σt)

=
w0(B)v

b
∑

i
pi(σt)
P (σt)

> 0.

The result follows because by Proposition 5, a trader survive if limt→∞
pB(σt)w0(B)

q(σt) > 0 infinitely

often.

Large economies:
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The FOC implies that ∀σ ∈ A:

cB(σt) =
pB(σt)

1
γw0(B)

w0(B)pB(σt)
1
γ +

∫
I\B p

i(σt)
1
γw0(i)dθ(i)

≥ w0(B)ν
1
γ

pB(σt)
1
γ w0(B)+

R
I\B p

i(σt)
1
γ w0(i)dθ(i)

P (σt)
1
γ

$
1

1 +

„R
I\B p

i(σt)
1
γ w0(i)dθ(i)

«γ
P (σt)


1
γ

$ByCor.4 1

1 +
(

P (σt)

t
γk
2 P (σt)

) 1
γ

P -a.s. > 0

and the result follows from Proposition 5.

Proof of Proposition 9:

Proof. Let g(i) be the smooth prior of the Bayesian trader and remember that θ(i) has an atom at

B and w0(i) is smooth for i ∈ Ic. The FOCs imply:

cB(σt) = w0(B)
(
pB(σt)
q(σt)

) 1
γ

=
w0(B)

(∫
i∈Ic p

i(σt)g(i)dθ(i)
) 1
γ

w0(B)
(∫

i∈Ic p
i(σt)g(i)dθ(i)

) 1
γ +

∫
i∈Ic p

i(σt)
1
γw0(i)dθ(i)

$by Cor 4 e
1
γ (lnP (σt)− k

2
ln t)

e
1
γ (lnP (σt)− k

2
ln t) + e

1
γ (lnP (σt)− γk

2
ln t)

P -a.s.

Note that for γ < 1 the RHS converges to 0, for γ = 1 the RHS converges to a constant ∈ (0, 1)

and for γ > 1 the RHS converges to 1. Therefore the result follows from Proposition 5.

C Appendix

In this appendix I make use of the notation O(.) and o(.) with the following meanings. The big-O

notation, f(x) = O(g(x)), means lim supx→∞
|f(x)|
|g(x)| < ∞. The little-o notation, f(x) = o(g(x)),

abbreviates limx→∞
f(x)
g(x) → 0.
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Using Lemma 2 and letting the number of traders go to infinity we obtain the following equation

for the normalized equilibrium prices in a CRRA economy with a continuum of traders:

qnγ (σt) =

(∫
I p

i(σt)
1
γw(i)dθ(i)

)γ
∑

σt

(∫
I p

j(σt)
1
γw(j)dθ(j)

)γ
The proof of Theorem 3 relies on a modification of standard proofs on the asymptotic convergence

rate of Bayesian posterior (Clarke-Barron (1990), Phillips-Ploberger (2003)) (γ = 1)with smooth

positive Lebesgue prior together with the proof of the asymptotic minimum regret property of the

Normalized Maximum Likelihood distribution (γ = 0) in Grünwald (2007).

Theorem 6. For all γ ∈ [0,+∞), if
∫
I detI(pi)−

1+γ
2 <∞7 and the market prior is smooth:

∣∣ln qnγ (σt)− ln qn1 (σt)
∣∣ =

∣∣∣eln pî(σ
t)(σt)− k

2
ln t

2π
+O(1) − eln pî(σ

t)(σt)− k
2

ln t
2π

+O(1)
∣∣∣ = O(1) P -a.s.

Proof. I focus on the case k = 1, which is to say on the Bernoulli family: S = {a, b}. The

generalization to the multinomial family is straightforward. Let I(pi) be the Fisher information,

î(σt) be the model with Maximum likelihood on σt, which is to say the model such that pî(σ
t)(a) =Pt

ν=1 Iσn=a

t .

The priors are smooth, therefore satisfy the standard regularity conditions which make the error

in the third and higher order Taylor expansion around î be o(1).
7This assumption comport no loss of generality because it is always true for the multinomial model with proba-

bilities strictly bounded away from the boundaries of the simplex.
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qnγ (σt) =

(∫
I p

i(σt)
1
γw(i)dθ(i)

)γ
∑

σt

(∫
I p

i(σt)
1
γw(i)dθ(i)

)γ
≈a,b e

ln pî(σ
t)(σt)+γ ln

√
γ+γ lnw(̂i)−γ 1

2
ln t

2π
−γ ln
√

det I(pî)+o(1)∑t
τ=0

(
t
τ

) (∫
I p

i(σtτ )
1
γw(i)dθ(i)

)γ
≈c eln pî(σ

t)(σt)+γ ln
√
γ+γ lnw(̂i)−γ 1

2
ln t

2π
−γ ln
√

det I(pî)+o(1)∑t
τ=0 e

“
− ln pî

τ
t (σtτ )− 1

2
ln 2πt−ln

√
det I (̂iτt )+o(1)

”
eln pî

τ
t (σtτ )+γ ln

√
γ+γ lnw(̂iτt )−γ 1

2
ln t

2π
−γ ln
√

det I (̂iτt )+o(1)

≈ eln pî(σ
t)(σt)+γ lnw(̂i)−γ 1

2
ln t

2π
−γ ln
√

det I(pî)+o(1)∑
îτt ={0, 1

t
,...,1} e

γ lnw(̂iτt )−(1+γ) ln
√
tdet I (̂iτt )+ 1−γ

2
ln 2π+o(1)

≈ eln pî(σ
t)(σt)+γ lnw(̂i)−γ 1

2
ln t

2π
−γ ln
√

det I(pî)+o(1)

t√
(2π)

1−γ
t
1+γ

∫ 1
0 detI (̂iτt )−

1+γ
2 w(̂iτt )dîτt

= eln pî(σ
t)(σt)− 1

2
ln t

2π
+O(1)

Which prove the claim as eln pî(σ
t)(σt)− 1

2
ln t

2π
+O(1) does not depend on γ.

a : numerator: by Lemma 6

b : With σtτ denoting the sequences of length t in which Maximum likelihood estimator for the

probability of state a is given by pî
τ
t (a) = τ

t (which is to say, such that
∑t

ν=1 Iσν=a = τ).

c : Using Stirling’s approximation of the factorial and Lemma 6

Lemma 5. Let M be an exponential family of distributions parametrized by I. Let σt be any

sequence with pî(σ) ∈ I and let w be an arbitrary prior distribution. Then:

γ ln
∫
I
pi(σt)

1
γw(i)dθ(i) = γ ln

∫
I
e
− t
γ
D(pî(σ

1)||pi)
w(i)dθ(i) + ln pî(σ

t)(σt)
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Proof.

γ ln
∫
I
pi(σt)

1
γw(i)dθ(i) = γ ln

∫
I
pi(σt)

1
γw(i)dθ(i) + γ ln pî(σ

t)(σt)
1
γ − γ ln pî(σ

t)(σt)
1
γ

= γ ln
∫
I

pi(σt)

pî(σt)(σt)

1
γ

w(i)dθ(i) + γ ln pî(σ
t)(σt)

1
γ

= γ ln
∫
I
e

1
γ

“
ln pi(σt)−ln pî(σ

t)(σt)
”
w(i)dθ(i) + γ ln pî(σ

t)(σt)
1
γ

=a γ ln
∫
I
e
− t
γ
D(pî(σ

1)||pi)
w(i)dθ(i) + ln pî(σ

t)(σt)

a: as M is an exponential family

Lemma 6. Let M be an exponential family parametrized by I (in the canonical parametrization of

distributions). Let I0 be non empty compact set in the interior of I. Let σt be any sequence with

pî(σ) ∈ I0 and let w be a prior distribution on I which is continuous and strictly positive on I0.

Then

γ ln
∫
I
pi(σt)

1
γw(i)dθ(i) = ln pî(σ

t)(σt) + γ ln
√
γ + γ lnw(̂i)− γ 1

2
ln

t

2π
− γ ln

√
det I(pî) + o(1)

Proof. The proof uses standard arguments in Bayesian statistics, and is an adaptation (the only

difference is that I have the γ term) of the proof give by Grüwald (pg 248). By Lemma 5

γ ln
∫
I
pi(σt)

1
γw(i)dθ(i) = γ ln

∫
I
e
− t
γ
D(pî(σ

1)||pi)
w(i)dθ(i) + ln pî(σ

t)(σt)

To proof the claim I will approximate the integral using a second order Taylor series expansion

and proving that the expansion does not loose relevant information.

D(pî(σ
1)||pi) ≈ 1

2

(
pî(σ

1)(a)− pi(a)
)2
I(pî) + o

((
pî(σ

1)(a)− pi(a)
)2
)

(6)

for 0 < α < 1
2 let Bt = [pî(σ

1)(a)− t−
1
2

+α, pî(σ
1)(a) + t−

1
2

+α].

Since w(i) is continuous on I and strictly positive at î there is a T , such that ∀t > T w(i) > 0,∀θ ∈

Bt. In what follows I always assume t > T .
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Note that:

∫
I
e
− t
γ
D(pî(σ

1)||pi)
w(i)dθ(i) =

∫
i∈I\Bt

e
− t
γ
D(pî(σ

1)||pi)
w(i)dθ(i) +

∫
i∈Bt

e
− t
γ
D(pî(σ

1)||pi)
w(i)dθ(i)

I need to bound the two integrals:

First integral: I1 =
∫
i∈I\Bt e

− t
γ
D(pî(σ

1)||pi)
w(i)dθ(i)

Remember that D(pî(σ
1)||pi) as a function of pi is strictly convex and has a minimum at pi = pî(σ

1).

D(pî(σ
1)||pi) is increasing in |pi(a)− pî(σ1)(a)|, so that:

0 <
∫
θ∈I\Bt

e
− t
γ

minθ∈I\Bt D(pî(σ
1)||pi)

w(i)dθ(i)

By Equation 6

min
θ∈I\Bt

D(pî(σ
1)||pi) ≥ 1

2
t−1+2αI(pî)

Therefore, since I(pi) is continuous and > 0 and also
∫
I\Bt w(i)dθ(i) <∞.

0 <
∫
θ∈I\Bt

e
− t
γ
D(pî(σ

1)||pi)
w(i)dθ(i) <

∫
θ∈I\Bt

e
−
“
n 1

2γ
t−1+2αI(pî)

”
w(i)dθ(i) < ke−ct

2α

For some c > 0, k <∞.

Second integral: I2 =
∫
θ∈Bt e

− t
γ
D(pî(σ

1)||pi)
w(i)dθ(i)

Let

I−t := inf
i′∈Bt

I(i′), I+
t := sup

i′∈Bt
I(i′), w−t := inf

i′∈Bt
w(i′), w+

t := sup
i′∈Bt

w(i′)

By Equation 6

I2 ≈
∫
θ∈Bt

e
− t
γ

(pî(σ
1)(a)−pi(a))2I(i′)

w(i)dθ(i)
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Where i′ depends on θ. using the definitions above, we get

w−t

∫
θ∈Bt

e
− t
γ

(pî(σ
1)(a)−pi(a))2I+t dθ(i) ≤ I2 ≤ w+

t

∫
θ∈Bt

e
− t
γ

(pî(σ
1)(a)−pi(a))2I−t dθ(i)

Perform the substitution z := (pî(σ
1)(a) − pi(a))

√
t
I+t
γ on the left integral and z := (pî(σ

1)(a) −

pi(a))
√
t
I−t
γ in the right integral to get

w−t√
t
I+t
γ

∫
|z|<tα

√
I−t

e−
1
2
z2dθ(i) ≤ I2 ≤

w+
t√
t
I−t
γ

∫
|z|<tα

√
I−t

e−
1
2
z2dθ(i)(i)

Both integral are standard Gaussian. Since, as n→∞ I−t → I(pî) and I+
t → I(pî) the domain of

integration tend to infinity for both integral so that they both converge to
√

2π. Since w+
t → w(̂i)

and w−t → w(̂i) the constant in both integral converges to w(̂i)r
t
I(pî)
γ

and we get

I2 →
√

2πw(̂i)√
t I(p

î)
γ

Therefore

I1 + I2 ≈
√

2πw(̂i)√
t I(p

î)
γ

Hence

γ ln
∫
I
pi(σt)

1
γw(i)dθ(i) = γ ln (I1 + I2) + ln pî(σ

t)(σt)

→ ln pî(σ
t)(σt) + γ ln

√
γ + γ lnw(̂i)− γ 1

2
ln

t

2π
− γ ln

√
det I(pî) + o(1)

Note that the convergence is uniform because w and I are continuous functions over a compact set:

I0.

Corollary 4. Under the assumption of Lemma 6:

qdγ(σt) ≈ eln pî(σ
t)(σt)−γ k

2
ln t+O(1) $

pî(σ
t)

t
γk
2
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Moreover, if P ∈ I, then pî(σ
t) →P -a.s. P.

Proof. The first point follows from Lemma 6. The second from the fact that if the data generating

process is P , then P -a.s. pî(σ
t) ≡ P .

D Appendix

In this section I show that a s-dimensional random walk generated by the sum of normalized

extractions from a multinomial with s+1 states, lies infinitely often in a s-dimensional neighborhood

of convex cones, whose dimensionality is at least s-2 and that it does not lies infinitely often in the

s dimensional neighborhood of any cone whose dimensionality is less then s-2. With this result,

the proof in Blume-Easleys (2009) can be extended to traders whose beliefs lies on the boundary

of C(lo(pj))j∈SUR.

D.1 The proof

My strategy is to use the multinomial process that generates the Random walk to obtain the

unconditional probabilities that the Random walk is in the desired set in each period. Then I use

the first Borel-Cantelli lemma and a generalization of the Second Borel-Cantelli Lemma to identify

the sets that are reached infinitely often.

First Borel-Cantelli Lemma 1. Suppose E1, E2, . . . are events with

∞∑
n=1

P (En) <∞

Then P {Eni.o.} = 0

Kochen-Stone Lemma 2. Suppose E1, E2, . . . are events with

∞∑
n=1

P (En) =∞ and lim inf
t→∞

∑t
m=1

∑t
n=1 P (Em ∩ En)(∑t
n=1 P (En)

)2 <∞

Then P {Eni.o.} = 1
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Proof. For references see pg. 74 of “Brownian motion” Peter Mörters and Yuval Peres

I make use of the notation O(.), o(.) and $ with the following meanings. The big-O notation,

f(x) = O(g(x)), means lim supx→∞
|f(x)|
|g(x)| < ∞. The little-o notation, f(x) = o(g(x)), abbreviates

limx→∞
f(x)
g(x) → 0.

Theorem 7. Let Bt be a s-dimensiona random walk of the form:

∀tBt = [
∑t

τ=1 Ix=1−P1, ...,
∑t

τ=1 Ix=s+1−Ps+1]′ with X ≈ f(x1, ...xs+1, 1) a multinomial with cell

probabilities: [P1, ..., Ps+1].

Let Ks−r a convex cones in s− r dimensions and Cs a s-dimensional compact set: [−1, 1]s ⊂ Cs.

Then:

i)r < 3⇒ P {Bt ∈ Ks−r + Cs i.o.} = 1

ii)r ≥ 3⇒ P {Bt ∈ Ks−r + Cs i.o.} = 0

Proof. The cases r = 0 and r = 1 are implied by the case r = 2. Therefore I will focus WLOG on

the cases r = 2 and r > 2.

Let En = {Bt ∈ Ks−r + Cs}.

r = 2. From Lemma 8, P (Eτ ) $ 1
τ :

lim
t→∞

t∑
τ=1

P (Eτ ) = lim
t→∞

t∑
τ=1

1
τ

= lim
t→∞

log t =∞

To prove the result I need to show that the conditions for Kochen-Stone’s lemma are satisfied:

lim inf
t→∞

∑t
m=1

∑t
n=1 P (Em ∩ En)(∑t
n=1 P (En)

)2 <∞
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Numerator:

t∑
m=1

t∑
n=1

P (Em ∩ En) =
t∑

m=n

P (Em) + 2
t−1∑
m=1

t∑
n>m

P (Em)P (En−m)

≤By Lem 9
t∑

m=n

P (Em) + 2A
t−1∑
m=1

t∑
n>m

P (Em)P (En−m)

$By Lem 8
t∑

τ=1

1
τ

+ 2A
t−1∑
m=1

t∑
n>m

1
m

1
n−m

$a

∫ t

1

1
τ
dτ + 2A

∫ t−1

1

1
m

∫ t

n=m+1

1
n−m

dndm

$ log t+ 2A
∫ t−1

1

1
m

log (n−m) |tm+1dm

= log t+ 2A
∫ t−1

1

1
m

log (t−m) dm

≤ log t+ 2A
∫ t−1

1

1
m

log (t) dm = log t+ 2A (log t)2

a) : I can approximate the sum with an integral because the elements are positive.

Denominator:

(
t∑

τ=1

P (Eτ )

)2

$

(
t∑

τ=1

1
τ

)2

$ (log t)2

Therefore

lim inf
t→∞

∑t
m=1

∑t
n=1 P (Em ∩ En)

(
∑∞

n=1 P (En))2 ≤ lim inf
t→∞

(log t)2

(log t)2
<∞

and by Kochen-Stone Lemma P {En i.o.} = 1.

r ≥ 3. From Lemma 8, ∃η > 0 :

lim
t→∞

t∑
τ=1

P (Eτ ) = lim
t→∞

t∑
τ=1

(
1√
τ

)r
> lim

t→∞
η

t∑
τ=1

(
1√
τ

)3

<∞

Therefore by the first Borel-Cantelli Lemma P {En i.o.} = 0.
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Lemma 7. Let kt follows a multinomial with probabilities m = [P1, ..., Ps+1] and t extractions.

P (kt = dtm + ie) =
(

t

k1, ..., ks+1

) s+1∏
i=1

P kii $

(
1√
t

)s
e
−
Ps+1
j=1

(i2j )

2Pjt for i <
√
t log t

Proof.

(
t

k1, ..., ks+1

) s+1∏
j=1

P
kj
j =

t!∏s+1
j=1 kj !

s+1∏
j=1

P
kj
j = eln t!+

Ps+1
j=1 kj lnPj−

Ps+1
j=1 ln kj !
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I focus on the exponent:

ln t! +
s+1∑
j=1

kj lnPj −
s+1∑
j=1

ln kj !

=a −t+
(
t+

1
2

)
ln t+

s+1∑
j=1

kj lnPj −

s+1∑
j=1

(
−kj +

(
kj +

1
2

)
ln kj

)+O(1)

=b −t+
(
t+

1
2

)
ln t+

s+1∑
j=1

kj lnPj −

−t+
s+1∑
j=1

(
kj +

1
2

)
ln kj

+O(1)

= t ln t+
1
2

ln t+
s+1∑
j=1

kj ln
Pj
kj
−

s+1∑
j=1

1
2

ln kj +O(1)

= t ln t+
1
2

ln t+
s+1∑
j=1

kj ln
tPj
kj
−

s+1∑
j=1

kj ln t−
s+1∑
j=1

1
2

ln kj +O(1)

=b t ln t+
1
2

ln t+
s+1∑
j=1

kj ln
tPj
kj
− t ln t−

s+1∑
j=1

1
2

ln kj +O(1)

=
1
2

ln t+
s+1∑
j=1

kj ln
tPj
kj
−

s+1∑
j=1

1
2

ln kj +O(1)

=
1
2

ln t−
s+1∑
j=1

kj ln
kj
tPj
−

s+1∑
j=1

1
2

ln
tk

t
+O(1)

=
1
2

ln t−
s+1∑
j=1

kj ln
kj
tPj
−

s+1∑
j=1

1
2

ln t−
s+1∑
j=1

1
2

ln
(
Pj +

ij
t

)
+O(1)

= −s
2

ln t−
s+1∑
j=1

(tPj + ij) ln
(

1 +
ij
tPj

)
−

s+1∑
j=1

1
2

ln
(
Pj +

ij
t

)
+O(1)

=c −s
2

ln t−
s+1∑
j=1

(
(tPj + ij)

((
ij
tPj

)
− 1

2

(
ij
tPj

)2

+ o

(
ij
tPj

)3
))
− 1

2

s+1∑
j=1

ln
(
Pj +

ij
t

)
+O(1)

=d −s
2

ln t−
s+1∑
j=1

ij −
s+1∑
j=1

(
i2j
tPj
− 1

2
i2j
tPj
− 1

2
i3j

(tPj)
2 + o

(
i3j
t2

))
−O(1) +O(1)

=b −s
2

ln t− 0−
s+1∑
j=1

(i2j )
2Pjt

+O

(
i3j
t2

)
+O(1)

$e e
ln
““

1√
t

”s”
−
Ps+1
j=1

(i2j )

2Pjt

a) : By Sterling formula: lnn! ∈
[
−n+

(
n+ 1

2

)
lnn+ 1,−n+

(
n+ 1

2

)
lnn+ ln

√
2π
]
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b) : By construction:
∑s+1

i=1 kj = t and
∑s+1

i=1 ij = 0

c) : Taylor series approximation. The approximation can be done because
√
t log t
t → 0

d) :
√
t log t
t → 0⇒ ln

(
Pj + ij

t

)
→ ln (Pj) ∈ (−∞,+∞).

e) :
√
t log t
t → 0⇒

(
i3j
t2

)
→ 0

Lemma 8. Let Xt ≈ f(x1, ..., xs+1, t) a multinomial distribution with cell probabilities

m = [P1, ..., Ps+1].Let X̂s
t be the first s coordinates of the vector [x1 − tP1, ..., xs+1 − tPs+1],

Cs be a compact subset of Rs : [−1, 1]s ⊂ Cs and Ks−r be a (s-r)-dimensional closed convex cone

in Rs. Then

i) P (X̂s
t ∈ Cs) $

(
1√
t

)s
ii) P (X̂s

t ∈ Ks−r + Cs) $
(

1√
t

)r

Proof. i) : Let ks ∈ Zs be the first s coordinates of the vector [k1, ..., ks, ks+1 = −
∑s

j=1 kj ].

P (X̂s
t ∈ Cs) = P (Xs

t ∈ Cs + tm) =
t∑

ks∈(Cs+tm)∩Zs

(
t

k1, ..., ks+1

) s+1∏
i=1

P kii

Note that:

a) Let A := {ks ∈ (Cs + tm) ∩ Zs}. Cs compact ⇒ | (Cs + tm) ∩ Zs| <∞⇒ ∃B <∞ : |A| = B

b) By Lemma 7 ∀ks ∈ (Cs + tm) ∩ Zs, P (ks) $
(

1√
t

)s
. Because Cscompact ⇒ maxj

i2j
t → 0

Therefore

min
ks∈(Cs+tm)∩Zs

P (kst ) ≤ P (X̂s
t ∈ Cs) ≤ B max

ks∈(Cs+tm)∩Zs
P (kst )

which implies P (X̂s
t ∈ Cs) $

(
1√
t

)s
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ii): Let Di be the extreme points of a section of K (points that are not a non-negative linear

combination of other points in K).

Let start with s− r = 1

P (X̂s
t ∈ K1 + Cs) = P (Xs

t ∈ (tms + Cs + τD) ∩ Zs) for 0 ≤ τ ≤ t

$a
t∑

τ=1

P (Xs
t ∈ (tms + Cs + τD) ∩ Zs)

$b

√
t log t∑
τ=1

1√
ts
e−

(τ)2

t

$c

∫ √t log t

τ=1

1√
ts
e−

(τ)2

t dτ

$
1√
ts

√
tπ

2

$
1√
tr

a) : [−1, 1]s ⊂ Cs ⇒ ∀τ, τD + Cs ∩ Zs 6= ∅

b) : By lemma 7. This is done WLOG because the Law of Iterated Logarithm implies:

max τ = O(
√
t log log t) P -a.s.

c) : The approximation is done WLOG because each element of the sum is positive.
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For s− r = 2

P (X̂s
t ∈ K2 + Cs) = P (Xs

t ∈ (tms + Cs + τChull(D1, D2)) ∩ Zs) for 0 ≤ τ ≤ t

$
t∑

τ1,τ2∈(τChull(D1,D2))

P (Xs
t ∈ (tms + Cs + τ1D1 + τ2D2) ∩ Zs)

$

√
t log t∑

τ1,τ2∈(τChull(D1,D2))

1√
ts
e

(τ1)2+(τ2)2

t

$
∫ √t log t

τ1,τ2∈(τChull(D1,D2))

1√
ts
e

(τ1)2+(τ2)2

t dτ1dτ2

$
1√
ts

√
t2π

2

$
1√
tr

The same argument generalizes to arbitrary values of s− r.

Lemma 9. Let En = {Bt ∈ Ks−r + Cs} =
{
X̂n ∈ Ks−r + Cs

}
.

for n > m,∃A < +∞ : P{Em ∩ En} ≤ AP{Em}P{En−m}
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Proof.

P{Em ∩ En} =
∑
Xm

P{Em ∩ En|Xm}P (Xm)

=a
∑
Xm

P{Em|Xm}P{En|Xm}P (Xm)

=
∑
Xm

IEmP{En|Xm}P (Xm)

=b
∑

Xm∈Em∩Zs
P{Ên−m(Xm)|Xm ∈ Em ∩ Zs}P (Xm)

≤c P{Em} max
kr∈Cr

P{Ēn−m(kr)}

$d P{Em}
1√

t−mr = P{Em}P{En−m}

a) : The process is Markov and Xm is in the past of En

b) : Letting Êi(Xm) = {Bs
i ∈ (Ks−r + Cs −Xs

m)}.

c) : Letting Ēn−m(kr) =
{
Br
n−m ∈ (Cr − kr)

}
.

Note that:

maxkr∈Cr P{Ēn−m(kr)} exists because Cr is compact.

Moreover

max
kr∈Cr

P{Ēn−m(kr)} = max
ks∈Cs+Rs−r

P{Ên−m(ks)}

≥ max
ks∈Cs+Ks−r

P{Ên−m(ks)}

≥ max
ks∈(Cs+Ks−r)∩Zs

P{Ên−m(ks)}

= max
Xm∈Em

P{Ên−m(Xm)}

d) : Follows from Lemma 8 as Cr − kr is compact
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Chapter 2: On survival of traders in complete markets

Abstract

Market Selection studies the evolution of wealth shares among traders with heterogeneous beliefs

operating in a market. For the case of homogeneous discount factors, the sufficient condition

proposed in Blume-Easley (2006) for the wealth share of a trader to converge to 0 (vanish) implies

that a trader vanishes whenever there is another trader in the economy whose beliefs are, in every

period, closer to the true distribution. Surprisingly, this intuitive result can fail to be correct. In

this paper I present a non pathological counter-example to Blume-Easley’s (2006) result and discuss

its implications.

1 Introduction

Market Selection studies the evolution of market prices and wealth shares in economies where

traders have heterogeneous beliefs. One focus of this literature has been on establishing sufficient

conditions for the wealth share of a trader to converge to 0 (vanish). Theorem 8 in Blume and

Easley (2006) gives a sufficient condition for the case in which the true probability need not be

absolutely continuous with respect to survivors (i.e. non-vanishing traders) beliefs. For the case

in which players have identical discount factors, the condition of Theorem 8 implies that a trader

vanishes whenever there is another trader in the economy whose beliefs are, in every period, closer

to the true distribution. This paper provides a non-pathological counter example. The example

also provides insight into equilibrium prices in market selection models.

In Sections 2 and 3 I introduce the notation and the sufficient condition of Blume-Easley (2006).

Sections 4, 4.1 and 5 are dedicated to the counter-example, comments and a remark on the proof

of Theorem 8.
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2 The model

I follow the notation of Blume-Easley (2006). The model is a discrete time, infinite horizon,

exchange economy that allocates a single commodity good. Time is discrete and begins at date

0. At each date t there is a finite set of states S ≡ {1, ..., S} with cardinality |S|=S. The set of

all infinite sequences of states is Σ with representative sequence of realizations σ = (σ0, ...). Let

σt = (σ0, ..., σt) denote the partial history through date t of the path σ, and Ist (σ) is the indicator

function (defined on path σ) that takes the value 1 if the t-th element of path σ takes the value

s (σt = s) and 0 otherwise. The set Σ, with its σ-field, is the relevant measurable space.The

information partition at period-event σt is Ft. Let p be the “true” probability measure on Σ. For

any probability measure q on Σ, qt(σ) is the marginal probability of the partial history (σ0, ..., σt);

that is, qt(σ) = q({σ0, ...σt} × S × S × ...).The expectation operator without a subscript is the

expectation with respect to the true measure p. The little-o notation, f(x) = o(g(x)), abbreviates

limx→∞
f(x)
g(x) → 0.

2.1 Traders

The economy contains a finite number of traders I, each with consumption set R+. A consumption

plan c : Σ →
∏∞
t=0 R+ is a sequence of R+- valued functions {ct(σ)}∞t=0 in which each ct is Ft-

measurable. Each trader i is endowed with a particular consumption plan, called the endowment

stream and denoted by ei. Trader i has a utility function Ui(c) : c → [−∞,+∞) which is the

expected present discounted value of some payoff stream with respect to some beliefs. The beliefs

of trader i are represented by a probability distribution pi on Σ. Each trader also has a payoff

function ui : R+ → [−∞,+∞) over consumption and a discount factor βi ∈ (0, 1). Trader i’s

consumption plan c utility is:

U i(c) = Epi

∞∑
t=0

βtiui(ct(σ)).

In terms of asymptotic consumption, traders can either vanish or survive:

Definition 1.

Trader i vanishes on path σ if limt→∞ ct(σ)→ 0.
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He survives on path σ if lim supt ct(σ) > 0.

In the notation of Blume-Easley (2006), these are the axioms I will refer to:

• A1: The payoff functions ui : R+ → [−∞,+∞) are C1, strictly concave, strictly monotonic

and satisfy the Inada condition at 0.

• A2: The endowment processes eit are bounded above and away from 0.

• A3: For each trader i, all dates t, and all paths σ if pt(σ) > 0 then pit(σ) > 0.

• A5: There is a δ > 0 such that for all paths σ, all dates t, s ∈ S, and traders i, p(s|Ft−1)(σ) >

0 => p(s|Ft−1)(σ) > δ and pi(s|Ft−1)(σ) > δ.

Axioms A1 and A2 are standard in General Equilibrium models. A3 and A5 are technical axioms

introduced to avoid pathological behavior of log likelihood ratios on the boundaries of the simplex.

A4 is not stated because it plays no role in the discussion.

3 Blume-Easley’s sufficient conditions to vanish

Blume-Easley characterize the long run fate of the traders in the economy in terms of Pareto

optimality of the equilibrium allocation. In particular the economy is organized by a Social Planner

that solves the following maximization problem:

max
ci

∑
i∈I

λiEpi

∞∑
t=1

βtui(cit(σ))

such that
∑
i∈I

cit − eit = 0

∀t, σ cit(σ) ≥ 0

The first order conditions (A1 guaranties an interior solution) implies that ∀i, j ∈ I, ∀t, and

∀σ ∈ Σ, the optimal allocation of resources satisfies:

ui
′
(cit(σ))

uj′(cjt (σ))
=
λjβ

t
jp
j
t (σ)

λiβtip
i
t(σ)

=
λjβ

t
j

∏
s∈S p

j
τ (s|Fτ−1)

Pt
τ=1 I

s
τ (σ)

λiβti
∏
s∈S p

i
τ (s|Fτ−1)

Pt
τ=1 I

s
τ (σ)

(1)
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If we define the two random variables:

Zkt := −
∑
s∈S

Ist (σ) log pk(s|Ft−1) and Z̄kt (σt−1) :=
t∑

τ=1

E{Zkτ |Fτ−1}

Equation 1 can be rewritten as:

log
ui
′
(cit(σ))

uj′(cjt (σ))
= log

λj
λi

+ t log
βj
βi

+
t∑

τ=1

(Ziτ − Zjτ ) (2)

B.-E. and S. sufficient condition to vanish 1.

Assume Axioms 1-3 and 5. On the event:

lim
t→∞

[
t log

βj
βi

+ Z̄it(σ
t−1)− Z̄jt (σt−1)

]
= +∞

ci(σt)→ 0 p− a.s.

It is instructive to compare the implications of Theorem 8, Blume-Easley (2006), and Proposi-

tion 3, Sandroni (2000), in a homogeneous discount factor economy (t log βj
βi

= 0).

Using Equation 2 we can show that Theorem 8 implies:

lim
t→∞

[
Z̄it(σ

t−1)− Z̄jt (σt−1)
]

= +∞ => lim
t→∞

t∑
τ=1

(Ziτ − Zjτ ) = +∞

while Proposition 3 only implies:

lim
t→∞

1
t

[
Z̄it(σ

t−1)− Z̄jt (σt−1)
]
> 0 => lim

t→∞

t∑
τ=1

(Ziτ − Zjτ ) = +∞.

The two implications are not equivalent. The 1
t term “kills” all of the deviations of order o(t).

In the next Section I show that there are simple economies that satisfy A1-A3, A5 in which these

deviations occur and invalidate Theorem 8.
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4 The counter-example

Consider an economy such that the distribution of states is given by iid draws on S = {a, b}

with p(a) = 1
2 = p(b). There are three traders {1, 2, 3} operating in the market with log utility

(A1 is satisfied8) and homogeneous discount factors. Endowments are positive and the aggregate

endowment is constant in each period (A2 is satisfied).

The beliefs are as follows: trader 1 and 2 have i.i.d. beliefs with p1(a)=p2(b)=1
3 ; trader 3 is

a Bayesian learner whose prior support consists of singletons {p1, p2} to which he assigns equal

probability: 1
2 . With these specifications, for all t, the conditional probabilities that traders 1,2,3

attach to the realization a at period t, given the information set Ft−1 are respectively: p1,t(a|Ft−1) =

1− p2,t(a|Ft−1) = 1
3 and

p3,t(a|Ft−1) =
1
2p1(a|Ft−1)p1,t−1(σ) + 1

2p2(a|Ft−1)p2,t−1(σ)
1
2p1,t−1(σ) + 1

2p2,t−1(σ)
(3)

The conditional probabilities of state b at time t are 1− pi,t(a|Ft−1).

Therefore, in each period and in each path, the beliefs of all traders belong to the interval
[

1
3 ,

2
3

]
and A3-A5 are satisfied.

Claim : Trader 1 and 2 cannot both vanish p-a.s..

Here I prove the stronger result that there is no path in which both traders vanish.

Suppose, by contradiction, that there is a path σ ∈ Σ in which the consumption of traders 1 and 2

goes to 0. Then, the FOC (Equation 1) for this economy would imply that the following conditions

hold simultaneously:

• λ3p3,t(σ)
λ1p1,t(σ) = c3t (σ)

c1t (σ)
→∞

• λ3p3,t(σ)
λ2p2,t(σ) = c3t (σ)

c2t (σ)
→∞

This is impossible. Solving Equation 3 recursively, we see that:∀σ ∈ Σ, ∀t

p3,t(σ) =
1
2
p1,t(σ) +

1
2
p2,t(σ) < max(p1,t(σ), p2,t(σ))

8If we define log 0 = −∞.
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Therefore the left-hand-side of at least one of the FOC must be less than ∞.

This result contradicts Theorem 8. As Lemma 10 (see Appendix) shows, the beliefs of trader 1

and 2 satisfy Blume-Easley’s sufficient condition to vanish.

4.1 Comments

• The sufficient condition in Sandroni (2000) and the necessary and sufficient condition of

Massari (2011) both correctly identify the set of traders that vanishes.

• ∀t, p3,t ∈ (p1,t, p2,t), and p(a) = 1
2 , therefore trader 3 makes better forecasts about the future

than trader 1 and 2 in every period. Yet his wealth share is strictly bounded away from 1. In

particular, if all traders start with the same wealth shares (Pareto weights), the FOCs imply

that in every path trader 3’s wealth share is always between the wealth shares of the other

two traders.

• The counter-example does not depend on log preferences, on the symmetry of the problem

around p = 1
2 , or on the dimensionality of the state space. It can be shown that Theorem 8

does not apply to any homogeneous discount factors economy such that there is a subset Î of

the survivors9 with asymptotically fixed beliefs and a Bayesian learner whose prior contains

the beliefs of some of the survivors in Î.

• It is easy to show that if all the traders have the same initial wealth shares, trader 3’s

beliefs coincide with the normalized equilibrium prices. The counter-example provides us an

interesting insight about the argument in the book: “The Wisdom of Crowds” (Surowiecki

2004). He claims that equilibrium prices can produce more accurate forecasts than the beliefs

of all traders in the market. The example shows that this intuition is true with a grain of salt.

On one hand, we have that according to any probabilistic criterion (for example in terms of

KullbackLeibler distance and expected Euclidean distance), normalized equilibrium prices are
9The condition of Massari (2011) can be used to identify the survivors.
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the best forecasts for the next period realizations. On the other hand, these better forecasts

cannot be used by any trader in the market to increase his wealth share.10

• If Theorem 8 of Blume-Easley (2006) were correct it would lead to absurd conclusions. Con-

sider the case of a financial market in which there are two portfolios of assets that, on average,

perform equally well and in which traders are allowed to invest in both portfolios. Suppose

Blume-Easley’s sufficient condition were correct. Then, to invest half of the initial capital in

each portfolios would ensure (p-a.s.) a rate of return that is higher than the rate of return of

the portfolio that performs best. This conclusion is simply too good to be true.

5 A comment on the proof of Theorem 8

In this Section, I show where the proof given by Blume-Easley (2006) of Theorem 8 (page 963)

breaks down. The key step of the proof is to show that p-a.s.:

lim
t→∞

[t log
βj
βi

+ Z̄it(σ
t−1)− Z̄jt (σt−1)] = +∞ => lim

t→∞
[t log

βj
βi

+
t∑

τ=1

(Ziτ − Zjτ )] = +∞.

Blume-Easley use a version of the Strong Law of Large Numbers (specifically Freedman (1973))

to show that there are random variables Akt (σ
t) =

Pt
τ=1 Z

k
τ

Z̄kt (σt−1)
that converge to 1 p-a.s. such that:

t log
βj
βi

+
t∑

τ=1

(Ziτ − Zjτ ) = t log
βj
βi

+AitZ̄
i
t(σ

t−1)−Ajt Z̄
j
t (σ

t−1).

The problem is that the above equation does not imply, as they claim, that:

lim
t→∞

[t log
βj
βi

+ Z̄it(σ
t−1)− Z̄jt (σt−1)] = +∞

=> lim
t→∞

[t log
βj
βi

+AitZ̄
i
t(σ

t−1)−Ajt Z̄
j
t (σ

t−1)] = +∞ p− a.s.

This implication is not true because the rate of convergence to 1 of the random variables Ait and

Ajt can be different!

10In Massari (2011) it is shown that this property of market prices holds in any economy that satisfies A1-A2.
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For an intuition, consider the case in which βi = βj and the random variables Ait(σ
t) and Ajt (σ

t)

are such that:

Ait(σ
t) = 1− 1

t
and Ajt (σ

t) = 1− 1
log t

.

Then

lim
t→∞

[Z̄it(σ
t−1)− Z̄jt (σt−1)] = lim

t→∞

t∑
τ=1

E log
(pj(σ|Fτ−1)
pi(σ|Fτ−1)

)
=∞

6=> lim
t→∞

AitZ̄
i
t(σ

t−1)−Ajt Z̄
j
t (σ

t−1) = lim
t→∞

t∑
τ=1

E log
( pj(σ|Fτ−1)(pi(σ|Fτ−1))

1
t

pi(σ|Fτ−1)(pj(σ|Fτ−1))
1

log t

)
= lim

t→∞
[
t∑

τ=1

E log
pj(σ|Fτ−1)
pi(σ|Fτ−1)

+ E log
( (pi(σ|Fτ−1))

1
t

(pj(σ|Fτ−1))
1

log t

)
] =∞.

The implication is not true as it is possible that limt→∞E
[

log (pi(σ|Fτ−1))
1
t

(pj(σ|Fτ−1))
1

log t

]
→ −∞ fast enough.

In the counter-example, trader 1 and 2’s beliefs are fixed while trader 3’s beliefs do not converge,

therefore trader 1 and 2’s rate of convergence to the average payoff is faster than trader 3’s. This

is to say that A1
t and A2

t converge to 1 faster than A3
t . Moreover, it can be shown that A3

t → 1

from below. This is enough to invalidate Theorem 8.

A Appendix

Lemma 10. In the setting of the counterexample, for i=1,2:

lim
t→∞

[t log
β3

βi
+ Z̄it(σ

t−1)− Z̄3
t (σt−1)] = +∞ p− a.s. (4)

Proof.

First note that the first element of Equation 4 is 0 as all the traders in the market have the same

discount factor and that condition 4 can be conveniently rewritten as:

lim
t→∞

[
t∑

τ=1

E log
pτ (s|Fτ−1)
pi,τ (s|Fτ−1)

−
t∑

τ=1

E log
pτ (s|Fτ−1)
p3,τ (s|Fτ−1)

] =∞ p− a.s.
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Note that:

• i) For i=1,2 ∀t, E log pt(σ|Ft−1)
pi,t(σ|Ft−1) = 1

2 log
1
2
1
3

+ 1
2 log

1
2
2
3

= 1
2 log 9

8 > 0 Because the two traders do

not update their beliefs and the true probability is iid.

• ii) ∀t, p3,t(σ|Ft−1) ∈
[

1
3 ,

2
3

]
therefore ∀t E log pt(σ|Ft−1)

p3,t(σ|Ft−1) ≤ E log pt(σ|Ft−1)
pi,t(σ|Ft−1) .

• iii)
∑t

τ=1 I
a
τ = t

2 => p3,t+1(σ|Ft) = 1
2 This is because:

p3,t+1(a|Ft) =
1
2p1,t+1(a|Ft)p1,t(σ) + 1

2p2,t+1(a|Ft)p2,t(σ)
1
2p1,t(σ) + 1

2p2,t(σ)

=a
1
2(p1,t+1(a|Ft)p1,t(σ) + p2,t+1(a|Ft)p1,t(σ))

1
2p1,t(σ) + 1

2p1,t(σ)

=b
1
2p1,t(σ)
p1,t(σ)

=
1
2

Where in (a) I used the the symmetry of p1,t(σ) and p2,t(σ) around 1
2 to conclude that∑t

τ=1 I
a
τ = t

2 => p1,t(σ) = p2,t(σ). And (b) is a consequence of the fact that in each period

p2(a|Ft−1) + p1(a|Ft−1) = 1.

• iv)
∑t

τ=1 Ia = t
2 occurs infinitely often p-a.s.. This is because:

Let yτ =

 1 if sτ = a

−1 if sτ = b

The Law of Iterated Logarithm (see D.Williams page 208 for reference) implies:

 lim supt
∑t

τ=1
yτ√

2t log log t
= 1 p− a.s.

lim inft
∑t

τ=1
yτ√

2t log log t
= −1 p− a.s.
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Therefore p{t :
∑t

τ=1 I
a
τ = t

2 i.o.} = 1

Consequently on a set of p measure 1

lim
t→∞

[
t∑

τ=1

E log
pτ (σ|Ft−1)
pi,τ (σ|Fτ−1)

−
t∑

τ=1

E log
pτ (σ|Fτ−1)
p3,τ (σ|Fτ−1)

]

≥a lim
t→∞

 ∑
K<t:

PK−1
τ=1 Iaτ=K

2

E log
pK(σ|FK−1)
pi,K(σ|FK−1)

−
∑

K<t:
PK−1
τ=1 Iaτ=K

2

E log
pK(σ|FK−1)
p3,K(σ|FK−1)


=b lim

K→∞

[
K(

1
2

log
9
8
− 1

2
log

1
2
1
2

)

]
= +∞

ii) => (a), iii) implies the second term of (b) and iv) => K →a.s ∞.
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