
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-33

2003-04-28

Specialized Hardware Support for Dynamic Storage Allocation Specialized Hardware Support for Dynamic Storage Allocation

Steven M. Donahue

With the advent of operating systems and programming languages that can evaluate and

guarantee real-time specifications, applications with real-time requirements can be authored in

higher-level languages. For example, a version of Java suitable for real-time (RTSJ) has recently

reached the status of a reference implementation, and it is likely that other implementations will

follow. Analysis to show the feasibility of a given set of tasks must take into account their worst-

case execution time, including any storage allocation or deallocation associated with those

tasks. In this thesis, we present a hardware-based solution to the problem of storage allocation

and (explicit)... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Donahue, Steven M., "Specialized Hardware Support for Dynamic Storage Allocation" Report Number:
WUCSE-2003-33 (2003). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1079

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1079&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1079&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1079?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1079&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1079

Specialized Hardware Support for Dynamic Storage Allocation Specialized Hardware Support for Dynamic Storage Allocation

Steven M. Donahue

Complete Abstract: Complete Abstract:

With the advent of operating systems and programming languages that can evaluate and guarantee real-
time specifications, applications with real-time requirements can be authored in higher-level languages.
For example, a version of Java suitable for real-time (RTSJ) has recently reached the status of a reference
implementation, and it is likely that other implementations will follow. Analysis to show the feasibility of a
given set of tasks must take into account their worst-case execution time, including any storage
allocation or deallocation associated with those tasks. In this thesis, we present a hardware-based
solution to the problem of storage allocation and (explicit) deallocation for real-time applications. Our
approach offers both predictable and low execution time: a storage allocation request can be satisfied in
the time necessary to fetch one word from memory.

https://openscholarship.wustl.edu/cse_research/1079?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1079?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1079&utm_medium=PDF&utm_campaign=PDFCoverPages

Short Title: Storage Allocation Donahue, M.Sc. 2003

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SPECIALIZED HARDWARE SUPPORT FOR DYNAMIC STORAGE

ALLOCATION

by

Steven M. Donahue, B. Science

Prepared under the direction of Dr. Ron K. Cytron

A thesis presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Master of Science

May, 2003

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

SPECIALIZED HARDWARE SUPPORT FOR DYNAMIC STORAGE

ALLOCATION

by Steven M. Donahue

ADVISOR: Dr. Ron K. Cytron

May, 2003

Saint Louis, Missouri

With the advent of operating systems and programming languages that can

evaluate and guarantee real-time specifications, applications with real-time require-

ments can be authored in higher-level languages. For example, a version of Java

suitable for real-time (RTSJ) has recently reached the status of a reference imple-

mentation, and it is likely that other implementations will follow.

Analysis to show the feasibility of a given set of tasks must take into account

their worst-case execution time, including any storage allocation or deallocation as-

sociated with those tasks. In this thesis, we present a hardware-based solution to the

problem of storage allocation and (explicit) deallocation for real-time applications.

Our approach offers both predictable and low execution time: a storage allocation

request can be satisfied in the time necessary to fetch one word from memory.

We have implemented our approach in the context of IRAMs (intelligent stor-

age) using FPGAs and it is based on Knuth’s buddy algorithm. In this thesis we

present our design, implementation, and experimental results.

Jennifer Duemler

Contents

List of Figures . vi

Acknowledgments . viii

1 Introduction . 1

1.1 Sequential Fits Allocator . 3

1.2 Application-specific Allocator . 4

1.3 Segregated Free-lists . 4

1.4 Ideal Allocator . 5

2 The Buddy Algorithm (Improved) . 7

2.1 Details . 7

2.1.1 Allocation . 8

2.1.2 Deallocation . 9

2.2 Background . 11

2.3 Optimizations . 12

2.3.1 Fast Find . 12

2.3.2 Fast Return . 13

3 Hardware Design . 16

3.1 Top Level System Design . 16

iv

3.1.1 Inputs and Outputs . 16

3.1.2 Header Fields . 17

3.2 Logic Design . 18

3.2.1 System Components . 19

3.2.2 Memory Subsystem . 23

3.3 Design of Optimizations . 24

3.3.1 Fast Find . 24

3.3.2 Fast Return . 26

4 Experiments . 27

4.1 Software Performance of Buddy . 27

4.2 Hardware Buddy Performance . 32

4.2.1 Impact of Memory Subsystem 35

4.3 Optimized Hardware Buddy . 37

4.3.1 Fast Find . 37

4.3.2 Fast Return . 39

5 Conclusions . 43

Appendix A Data . 45

References . 48

Vita . 50

v

List of Figures

1.1 The life of a block. 1

1.2 Example of an unorganized free-list. 3

1.3 Example application-specific Allocator. 5

2.1 Buddy algorithm: allocation pseudo-code. 8

2.2 Example buddy allocation. 9

2.3 Buddy algorithm: deallocation pseudo-code. 10

2.4 Example buddy deallocation. 10

2.5 Example find stage of software implementation. 13

2.6 Fast Find optimization, with bit vector and leading ones detector. 14

2.7 Time line of software allocation. 14

2.8 Time line of Fast Return allocation. 15

3.1 Header information for an allocated Block. 18

3.2 Header information for an unallocated block. 18

3.3 Basic design structure of Hardware Buddy System. 19

3.4 Structure of the ALU component. 20

3.5 Structure of the buddy-list component. 21

3.6 Structure of a General Register Component. 22

3.7 Basic design structure of the optimized Hardware Buddy System. 25

vi

3.8 Structure of the Fast Find module. 25

3.9 Example execution of masker sub-component. 26

4.1 Java test program characteristics: load value 1. 28

4.2 Minimum allocation times for software implementations. 30

4.3 Mean allocation times for software implementations. 30

4.4 Max allocation time for software implementation. 31

4.5 Minimum allocation time comparison between hardware and software. . . 33

4.6 Mean allocation time comparison between hardware and software. 34

4.7 Maximum allocation time comparison between hardware and software. . . 35

4.8 Comparison of allocation time range between hardware and software. . . 36

4.9 Mean find times for optimized and non-optimized systems. 38

4.10 Maximum find times for optimized and non-optimized systems. 39

4.11 Mean allocation times for optimized and non-optimized systems. 40

4.12 Allocation inter-arrival times (IAT) for SPEC jvm98 benchmarks. 41

4.13 Maximum allocation times if IAT is maintained. 42

A.1 Total allocation times (ns) for JVM allocator 45

A.2 Total allocation times (ns) for software buddy system 45

A.3 Total times (ns) for non-optimized implementation 46

A.4 Total times (ns) for optimized implementation 46

A.5 Maximum times(ns) if IAT constraint is met 46

A.6 Block times for IAT comparison . 47

vii

Acknowledgments

I thank my family for their love and support throughout my life.

I thank my friends and coworkers in the DOC group who have had an impact on

the past two years. In particular, Matthew Hampton, Dante Cannarozzi, and Morgan

Deters for their expertise and work on the beast that was the virtual machine; Victor

Lai for finding that one show stopping bug three weeks before a major deadline;

Michael Henrichs for his ability to coerce me to take a lot of breaks. I would like to

thank Ron Cytron for his advice and guidance through my journey to complete this

work.

Steven M. Donahue

Washington University in Saint Louis

May 2003

viii

1

Chapter 1

Introduction

Most modern programming languages offer some mechanism for dynamic storage man-

agement. Figure 1.1 illustrates the life of a block of storage. A block of dynamic

storage is often allocated to an application out of a section of memory called the

heap. The application has access to this block of memory for a certain period of time

during which we say the block is live. At some point after the block was allocated,

the application can no longer access the block. At this moment we say the block is

dead. Dead blocks can then be deallocated and their storage returned to the heap to

help satisfy future storage requests. The facility to return blocks to the heap is lan-

guage dependent, and can vary from automatic system-level support to programmer

specified deallocation.

A storage allocation facility specifies the actions taken to satisfy allocation

requests. Several algorithms exist to achieve the functionality of dynamic storage

Live Dead

alloc dealloc

Figure 1.1: The life of a block.

2

management. For instance, languages such as JavaTM and C offer primitives such

as new and malloc that cause a specified or implied number of bytes to be taken

from the heap and allocated for the program’s use. Although dynamic storage usage

will vary by application, there are important applications that use dynamic storage

intensively. Performance of such applications, particularly in a real-time environment,

can be significantly influenced by their storage allocation facility.

Recently, standards for real-time programming languages have emerged that

bring modern, high-level languages within reach of real-time applications. An ex-

ample of this trend is the Real-Time Specification for Java (RTSJ) [1], which

provides for bounded-time dynamic storage allocation. Because JavaTM mandates

initialization of dynamically allocated storage, a block of n bytes is allocated in O(n)

time. Factoring out such initialization, the common challenge for an allocator is

finding a suitable block in constant time.

Real-time environments also require execution time guarantees so that proper

scheduling can be performed to meet all deadlines. A real-time system typically

calculates its schedule based on the worst-case performance of its applications. How-

ever, applications’ average-case can be very different from their worst-case execution.

Therefore, underutilization will occur if applications are budgeted according to their

worst-case performance. An application whose average-case execution is very close to

its worst-case performance minimizes the underutilization when scheduling is based

on worst-case performance. For this reason, when an application’s ratio of worst-case

to average-case performance is close to one, the application is real-time ready.

There are several popular modern algorithms for handling dynamic memory

allocation. The three most popular techniques are sequential fits, application specific,

and segregated free-lists [14].

3

15

13
12

16

18

Head

Figure 1.2: Example of an unorganized free-list.

1.1 Sequential Fits Allocator

The sequential fits allocator is a general-purpose allocation algorithm that places

all free blocks of memory on a single, linear free-list, similar to Figure 1.2. This

list is unorganized. An allocation request is satisfied by searching the list for a

block of an appropriate size. The definition of appropriate varies by algorithm: an

implementation could specify a first-fit, worst-fit, or best-fit approach. However, for

all implementations, appropriate size is at least the requested size.

The average performance of unorganized-list algorithms can be very good.

However, the worst-case allocation request could cause the allocator to inspect the

entire free-list for an appropriate sized block. This worst-case performance is O(n),

where n is the number of elements in the list. This behavior does not scale well to

environments with large heaps and frequent allocations and deallocations.

As an example of the worst-case performance, consider the free-list shown in

Figure 1.2. Suppose the application requests a block of size 18, which can only be

satisfied by the last block on the list. Starting with the first block, the allocator

4

checks each block in turn for a block of size greater than 18. The allocator does not

find an appropriate block until it has searched the entire list.

1.2 Application-specific Allocator

A second type of allocation algorithm is one that is tailored to a given application.

Such allocators are tightly coupled to the implementation of the application. To

implement an application-specific allocator, knowledge about frequently requested

block sizes, number of allocations, total memory needed, and other details is often

needed.

As an example implementation, consider a simple application where the devel-

oper knows that the application needs only blocks of size 27 bytes. The developer can

create a memory pool of size m ∗ 27, where m is the maximum number of dynamic

allocations of size 27 that the application will request. As shown in Figure 1.3, the

programmer can store and manipulate a pointer to the next available block (of size

27). In this manner, a request could be satisfied in O(1) time. Consequently, the

application specific approach can provide excellent performance in both the average

case and worst-case.

The primary drawback to an application-specific algorithm is its inherent cou-

pling of application to allocation algorithm. An application specific allocator in gen-

eral cannot be used by a different application without modification. This lack of

generality presents a major weakness.

1.3 Segregated Free-lists

A third type of allocation algorithm bridges the gap between the application-specific

and sequential fit algorithms by keeping many free-lists of memory blocks, segregated

5

Next

Figure 1.3: Example application-specific Allocator.

by size. To satisfy an allocation request, the list for the appropriate size is used.

When an object is freed, it is restored to the free-list for that objects’ size.

The segregated fits algorithm is a common variant of segregated free-lists. This

algorithm uses size classes, where each class is a range of sizes. Each list holds free

blocks of sizes in the range for its size class. To satisfy a request, the appropriate size

class is determined, and then the corresponding free-list is searched sequentially for

a sufficiently sized block.

By using multiple lists, this algorithm is faster on average than searching a

single free-list. Also, it can be shown that in the worst case, the complexity of an

allocation is O(log n), where n is the size of the heap [14].

1.4 Ideal Allocator

By considering the benefits and drawbacks of each allocation technique described, it

is possible to consider an ideal allocator. As such, an ideal storage allocator would

have the following characteristics:

• It is general purpose.

6

• It can find a suitable block in constant time.

• It does not add excessive memory overhead.

• The gap between its worst-case and average-case performance is as small as

possible.

• Its overall speed is as fast as possible.

In this thesis, we present a hardware implementation of a storage allocation

algorithm and analyze the degree to which it satisfies the above criteria. The thesis

is organized as follows. In Chapter 2, the buddy system, a special, segregated, free-

list algorithm is introduced [8]. We then present two hardware optimizations of the

buddy system that can significantly improve the efficiency of allocation. A simple

translation of the buddy software algorithm into hardware is discussed in Chapter 3

along with the details of the design of our optimizations. Chapter 4 offers experiments

to quantify the effects of our work. Finally, Chapter 5 presents the conclusions from

our work and possibilities for future research.

7

Chapter 2

The Buddy Algorithm (Improved)

We now introduce the buddy algorithm for storage allocation. The buddy system is

a specialized variant of the segregated free-lists algorithm presented in Section 1.3.

2.1 Details

Knuth’s buddy algorithm is a segregated free-list allocator [8]. Several types of buddy

algorithms exist: binary, Fibonacci, weighted, and double[14]. Each algorithm type

handles different size classes. For example, the blocks in a Fibonacci buddy algorithm

have sizes which are Fibonacci numbers. For our research, the binary buddy version

was chosen because the binary size constraint presented excellent properties for a

hardware implementation1.

In the binary buddy algorithm, the heap is conceptually divided into two

halves, and each of these halves are divided in two, and so on. Allocatable blocks of

memory are of size 2k. For each power of two, there is a free-list which is stored in an

array such that index k holds the list of size 2k. The ordered array of free-lists creates

a hierarchy of blocks. Because we constrain the blocks sizes to 2k, we can subdivide

1For the remainder of this paper, the term ”buddy algorithm” refers to the classic binary buddy
algorithm described by Knuth.

8
Allocate(int size)
1 l ← log size
2 ∗p← Find(l)
3 Block(l, ∗p)
4 return Return(∗p, l)

Find(int level)
1 while level ≤ FreeLists.length
2 do if FreeLists[level] �= 0
3 then return FreeLists[level]
4 else level← level + 1
5 return nil

Block(int level, ∗p)
1 l ← ∗p.size
2 FreeList[l].remove(p)
3 l ← l − 1
4 while l ≥ level
5 do ∗b = CalculateBuddy(∗p, l)
6 ∗p.size← l
7 FreeList[l].add(∗b)
8 l← l − 1
9 ∗p.size← level

Return(∗p, int size)
1 ∗p.free← false
2 ∗p.size← size
3 return ∗ p

Figure 2.1: Buddy algorithm: allocation pseudo-code.

any block into two blocks, each half the size of the original. The two blocks formed

by subdivision of a larger block are called buddies.

2.1.1 Allocation

Pseudo-code for the allocation subroutine for the buddy algorithm is shown in Fig-

ure 2.1. The allocation operation of the buddy algorithm can be broken down into

three sections: find, block, and return. During the find stage, the free-lists are in-

spected to find a block that is at least the requested size. In the block stage, the block

is recursively broken down until the requested size is reached. Finally, the block is

marked as allocated and given to the application in the return stage.

9

64

128

32

16

Return

Figure 2.2: Example buddy allocation.

As an example, consider Figure 2.2. Suppose the application requests a block

of size 16. During the find stage, first the list at 16 would be searched. Not finding

a block, the algorithm next searches the list at 32, again not finding a block. After

searching the list at 32, a free block is found on the free-list for 64. Next, during the

block stage, the block is recursively broken down into buddies until the requested size

is reached. In our example, the first 64 block is broken into two 32 blocks. Then,

the first 32 block is split into two 16 blocks. Finally, the block can be given to the

application in the return stage.

2.1.2 Deallocation

Two buddies of size 2k can be recombined to form a single block of size 2k+1. In

this algorithm, a block can only be recombined with its buddy, which is its unique

neighbor at a certain size. The address of the buddy of a block B is calculated using

the address of B and the size of block B. If the encoding of the size of B is transformed

to a one-hot encoding, then the buddy address calculation is an xor operation.

10
deallocate(∗p)

1 l← ∗p.size
2 ∗b = CalculateBuddy(∗p, l)
3 while ∗ b.free
4 do FreeList[l].remove(∗b)
5 if ∗p > ∗b
6 then ∗p← ∗b
7 l ← l + 1
8 ∗b = CalculateBuddy(∗p, l)
9 ∗p.size← l

10 FreeList[l].insert(∗p)
11 return Return(∗p)

Figure 2.3: Buddy algorithm: deallocation pseudo-code.

64

128

32

16

Deallocate

Figure 2.4: Example buddy deallocation.

Pseudo-code for the deallocation subroutine is shown in Figure 2.3. In the

deallocation operation, the block is aggressively recombined with its free buddies to

form the largest free block possible. Consider the example shown in Figure 2.4. In

this example, a block of size 16 is deallocated. It is recombined with its free buddy at

size 16 to form a free block of size 32. Since the block of size 32’s buddy of size 32 is

also free, these two blocks are recombined to form a block of size 64. In our example,

the buddy of the block of size 64 is not free, so the deallocation operation stops.

11

The buddy subdivision of memory presents two key features. The first is that any free

block can be recursively broken down to satisfy an allocation request for a smaller

size. Secondly, when a block is deallocated and returned to the free memory pool, it

can be aggressively recombined with its free buddies of increasing size to form a larger

free block. This implies that upon the completion of a deallocation, the largest free

blocks possible have been created. Therefore, any request can be satisfied by looking

in the list of the requested size or higher.

Fast allocation and the benefits of easy recombination of free memory blocks

are two key elements of the buddy algorithm. The array of free-lists segregated by

size reduces the complexity of finding an allocatable block to O(log n), where n is the

size of the heap. However, the 2k block size constraint requires every request to be

rounded up to the nearest power of two. This leads to internal fragmentation and

wasted memory. Other work has shown that internal fragmentation of the buddy

algorithm can be as bad as 25 to 33 percent of allocated memory [10, 8]. Others

have quantified the amount of memory required by the buddy algorithm and have

proposed defragmentation algorithms to decrease that amount [3].

With the research being applied to solving the fragmentation issues, we think

that the buddy algorithm is a good starting point in trying to create an ideal allocator.

Our approach is to implement the buddy algorithm in hardware, and then optimize

the algorithm to take advantage of benefits that hardware presents.

2.2 Background

Placing memory allocators in hardware is not a new idea. Several hardware solutions

for dynamic memory management have been proposed. The initial work was a simple

hardware buddy allocator implemented by Puttkamer [11]. Chang and Gehringer pro-

posed a modified buddy algorithm, implemented in hardware, designed to eliminate

12

internal fragmentation [2]. Cam et al. also offered a hardware buddy allocator that

eliminates internal fragmentation [6]. However, the focus of the previous research

was on increasing performance of memory management without necessarily keeping

it deterministic. Research on a real-time enabled memory allocator for a System on

a Chip (SOC) was performed by Shalan and Mooney [12].

2.3 Optimizations

As described above, the allocation operation of the buddy algorithm can be decom-

posed into three sections: find, block, and return. Two optimizations can be applied

to the buddy algorithm. The first, Fast Find, is a performance improvement of the

find stage. The second, Fast Return, is a re-ordering of the stages.

2.3.1 Fast Find

In a classic software implementation, the find stage is algorithmically simple. The

software allocator first searches the list of the smallest size that will fit the requested

size. If a block is not found, then the next highest list is searched. This iterative

process continues until a block is found or all lists have been searched. For example,

consider Figure 2.5. In this example, the application requests a block of size 8. The

algorithm starts searching at the list for 8. Not finding a block on 8, it searches 16

and 32 before finding a block on the list for 64. The worst-case performance of such

a search is proportional to the number of lists. Since the number of lists is O(log n),

the worst-case performance is O(log n), where n is the size of the heap.

Other systems have proposed using a bit vector and certain Pentium TM in-

structions to reduce the lookup to constant time in software [5]. Similarly, in a

hardware implementation we propose to take advantage of the ability to search all

13

4

128

64

32

16

81

2

3

4

Figure 2.5: Example find stage of software implementation.

lists in parallel using a bit vector and a leading ones detector. Consider the exam-

ple shown in Figure 2.6. Similar to the previous example, the application requests

a block of size 8. The bit vector identifies which lists have blocks. First, the bits

for lists smaller than the request are masked out, and then the bit vector is passed

through a leading ones detector. The leading ones detector finds the first list with a

suitable block. The hardware design of such an implementation will be presented in

Section 3.3.1. The computational complexity of the find stage can then be reduced

to O(log log n), which is essentially constant.

2.3.2 Fast Return

In the block stage the pointers stored in memory are updated. For example, consider

a block that must be broken down to form two blocks. First, the initial block must

be removed from its list. It is then split in half, with one half to be returned to

the application, and the other to be inserted on the list below. This process is

described in Section 2.1.1. In general, to break a block down n levels, there will be a

list removal operation and n list insertion operations executed. Also, note that in a

14

1

4

128

64

32

16

8

1

0

0

0

1

1

Figure 2.6: Fast Find optimization, with bit vector and leading ones detector.

Application

Allocator Find Block Return

Allocation Request

Figure 2.7: Time line of software allocation.

typical software implementation, the application must block until the whole allocation

operation is complete, as shown in Figure 2.7.

Some research has been done to reduce the complexity of the block stage to

constant time [5] at the expense of fragmentation and algorithmic complexity. How-

ever, we notice that in the classic buddy algorithm, the return stage is independent

of the block stage. Thus, the address of the block found in the find stage may as well

be the address of the block eventually returned in the return stage. The block stage

can be thought of as the bookkeeping stage of the buddy algorithm and has no direct

impact on the application. We can therefore return the block immediately after it is

found, in parallel with our necessary bookkeeping. An example of this execution is

15

Application

Allocator Find BlockReturn

Allocation Request

Figure 2.8: Time line of Fast Return allocation.

shown in Figure 2.8. Depending on the allocation behavior of the application, all of

the bookkeeping can occur parallel to application execution.

16

Chapter 3

Hardware Design

Two hardware implementations were constructed using synthesizable VHDL. The first

implementation was a straightforward translation of the software algorithm into hard-

ware. The second implementation incorporated logic to implement the optimizations

outlined in Section 2.3.

3.1 Top Level System Design

The Hardware Buddy System (HBS) directly implements the Knuth Buddy al-

gorithm. Also, for experimental purposes we wanted to keep it as similar to the

allocator in the Java Virtual Machine (JVM) implementation as possible. This

design force mandated certain design parameters. To match the JVM, the HBS also

assumes 32 bit wide pointers to address the memory space on byte-size boundaries

[9]. All registers in the system were therefore capable of storing 32 bits.

3.1.1 Inputs and Outputs

The buddy logic performs three storage management functions: initialization, allo-

cation, and deallocation. The three operations can be signalled using a two bit wide

17

operations code bus. The system also needs the ability to accept a requested size

during an allocation operation. Also, during deallocation, the system needs the ad-

dress of the block being deallocated as input. These two inputs are required during

different operations and so share the same input lines.

The system requires two outputs. One output denotes the current state of the

system: busy, idle, etc. The second output returns the address of a block following

the completion of an allocation operation. A third class of outputs was not required,

but were present for the simulation and testing of the system. These outputs denote

the algorithmic state of the system and were needed to conduct timing analysis.

3.1.2 Header Fields

The free-lists are stored as doubly linked lists. Doubly linked lists were chosen for

better performance on the removal of a block from a list. To allow blocks to be placed

on a list, each block in the heap has a header. The implementation only operates on

this header field and leaves the rest of the memory to the application. The size of the

header for each block varies between 32 and 96 bits, depending on its state.

An allocated block has a 32 bit header, which is shown in Figure 3.1. The

header contains 31 bits for the size of the block, and one busy bit to denote that the

block has been allocated. Only 31 bits are needed because we limit the minimum size

of an allocation, as explained below. The size must be included because the system

keeps no other record of allocated blocks, and the size of a block must be known at

deallocation time. The number of bits necessary for the size field could be decreased

if the log of the size were stored. However, this optimization was not implemented to

remain consistent with the header overhead of the standard JVM.

18

Size B

31 1

Figure 3.1: Header information for an allocated Block.

Size Next PreviousB

31 32 321

Figure 3.2: Header information for an unallocated block.

As shown in Figure 3.2, an unallocated block has a 96 bit header. The first 32

bits are the same as an allocated block, except the busy bit is off. The next two 32

bit fields are next and previous pointers used in the doubly linked list.

The two header sizes determine several things about an allocation request.

Given a 96 bit header on an unallocated block, the smallest size that the system can

support is a 16 byte block (12 byte header, 8 byte usable memory). Also, since an

allocated block contains a 4 byte header, this overhead must be taken into account.

Any allocation request for a block of size n is automatically treated as a request for

a block of n + 4, which is then rounded up to the nearest power of two greater than

or equal to sixteen.

3.2 Logic Design

The system was designed in a fashion similar to that of a micro-controller or simple

processor. Operations and data are loaded into the system, computations are per-

formed, and then a solution is returned. Figure 3.3 shows a block diagram of our

implementation.

19

General
Purpose
Registers

ALU
Buddy List
Registers

Controller

A
B
I

I

B

A

I
B

A

I I
B

A

Control

Control

Control

B

A

I

Figure 3.3: Basic design structure of Hardware Buddy System.

3.2.1 System Components

The system includes 4 main components: arithmetic and logic unit (ALU), buddy-

list registers, general registers, and a controller. Three busses connect all of the

components. Two busses, A and B, lead to the operand registers of the ALU. The

third bus, I, allows inter-component data movement.

ALU

To perform the calculations necessary to implement the buddy algorithm, the ALU

performs exclusive-or, addition, subtraction, greater than, and equal-to operations.

The ALU performs operations on 32 bit operands, and returns a 32 bit result. A

simple diagram of the structure of the ALU is shown in Figure 3.4. The ALU has two

20

B Register

A Register

Arithmetic
Functions:

xor
add
sub
...

Result Register

A

B

I

B

A

Control

Figure 3.4: Structure of the ALU component.

registers that serve as operand registers, each with a data bus connected to them.

The operand registers in turn feed the computation structure. The output of the

computation structure is stored in a result register and can be placed on any bus.

Buddy-list Registers

The buddy-list registers hold the state of the buddy algorithm. For each size block,

a register holds the address of the first element in the list of free blocks of that size.

Each free-list is represented by a register, and these registers are the logical array of

head pointers for the buddy algorithm as described in Section 2.1. The registers are

arranged in order, from the list that holds the smallest blocks to the list that holds

the largest.

The buddy-list component, shown in Figure 3.5, contains thirty-two 32 bit

registers. The buddy-list component has several inputs: index, I -bus, load, and

reset. The index input specifies on which of the 32 registers to operate. The I -bus

input is a new address that can be loaded into a register specified by the index input.

The load and reset inputs specify either a load or reset operation on the specified

register. The contents of the register currently selected by the index input can be

placed on any bus.

21

32-bit Register

32-bit Register

32-bit Register

Data Out
Decoder

I Bus
ld/reset

ld/reset

ld/reset

A Bus

B Bus

I Bus
In

d
ex

L
oa

d

R
e

se
t

Control

Figure 3.5: Structure of the buddy-list component.

General Purpose Registers

The general purpose registers are used to store temporary calculation results for later

use. As shown in Figure 3.6, the general purpose registers are loaded from the inter-

component (I) bus, and can output their contents to any of the three buses. A

general purpose register includes a simple 32 bit register to store results as well as

inputs to allow loading and resetting of the internal register. The contents of the

internal register can be output on any bus.

The system includes 11 general purpose registers. These 11 registers serve as

result storage and memory subsystem registers. Two more special general purpose

registers also function as bidirectional shift-registers. These two special registers are

used to keep track of indices as the algorithm inspects different lists to satisfy a

request.

22

 B Bus32 Bit RegisterI Bus

Load Reset

I Bus

A Bus

Control

Figure 3.6: Structure of a General Register Component.

Controller

The most complex component of the hardware system is the controller. Designed as a

finite state machine, it controls the other components and contains the specifics of the

buddy algorithm. The controller design is separated into three parts: initialization,

allocation, and deallocation. The opcode input to the system determines which of

the three sections to execute.

Initialization To initialize the system, the controller first resets all internal com-

ponents. Next, the free memory pool has to be constructed of a given specified size.

This involves reading the size value off of the input bus and setting up the first mem-

ory block of that size and inserting it on the appropriate list. After the first block is

created, the system idles to wait for allocation and deallocation requests.

Allocate The first task of the allocation section is to find an appropriate sized

block on which to operate. Given a requested size, the free-lists are searched for the

smallest free block with size greater than or equal to the requested size. This search

is performed by inspecting the head pointers of the doubly linked lists contained in

the Buddy List Nodes component. The search has three possible outcomes:

23

• Block is found on the list of requested size: The block is removed from the list.

The block’s header is then modified by setting the busy bit to ”1”. The address

of the block is then returned.

• Block is found on a list of size greater than requested : For each list above the

requested size, the block is subdivided and two blocks are placed on the list

below. This step first requires the removal of the block from its list and the

block’s header is modified to change its size, next, and previous fields. Second,

the block’s buddy of the level below is computed and its header fields are written

to memory to also insert it on the list below. These memory modifications occur

until the level of the requested size is reached, at which point one of the blocks

is returned.

• Block is not found : The system indicates a failure, for no satisfiable block could

be found.

Deallocate To deallocate a block, the deallocation section first has to read the size

of the block from its header. Then it calculates its buddy at that size, and checks to see

if it is free. If it is not free, the recently deallocated block is inserted on the appropriate

list and its allocated bit cleared. If the buddy is free, the buddy is spliced out of its list.

The two blocks are then re-aligned so that the buddy address calculation is performed

on the lowest address. The address calculation, buddy allocation check, and re-

alignment are executed on successively higher levels until a buddy is encountered

that is not free.

3.2.2 Memory Subsystem

The memory subsystem that is used with the HBS is designed to be a simple yet

accurate reflection of a dynamic random access memory (DRAM) based memory

24

system. The main DRAM memory implementation is a Micron Technology Inc.

simulation model of a 128 Mb, 32 bit Synchronous DRAM chip [7]. Four of these

memory chips are tied together to create a 64 MB memory system from which the HBS

can allocate objects. A simple controller that handles the specific DRAM operations

was implemented to separate the specifics of latency, refresh, and other details from

the implementation of the HBS.

3.3 Design of Optimizations

The optimizations discussed in Chapter 2 were added to the HBS to create the Opti-

mized Hardware Buddy System (OHBS). The two optimizations mainly required

modifications to the controller and some additional logic.

3.3.1 Fast Find

The Fast Find optimization adds another logic component to the design. The addi-

tional component, the Fast Find module, is shown in Figure 3.7.

The buddy-list component was modified to output a bit for each of the 32

registers in the buddy-list component. For each register, this bit indicates whether

a valid address is stored in that register. Therefore, each bit indirectly indicates

whether the list represented by the register has any blocks on it. This 32 bit array

was placed in the Fast Find module as the flags array, as shown in Figure 3.8. A

second input, also shown in Figure 3.8, is a one-hot encoded size mask. The one-hot

encoding helps us determine the level at which we want to search.

The two inputs are first passed through a logic component called the masker.

The single bit which is asserted in the size array indicates the pivot point in the flags

array: bits below the pivot point are ignored, and we only inspect the bits at or above

25

General
Purpose
Registers

ALU
Buddy List
Registers

Controller

A
B
I

I

B

A

I
B

A

I I
B

A

Control
Control

Control

B

A

I

Fast Find

Figure 3.7: Basic design structure of the optimized Hardware Buddy System.

Masker

flags

size

Leading
Ones

Detector
index

Figure 3.8: Structure of the Fast Find module.

26

Flags 0010110100111100
Size 0000001000000000

Masker 0010110000000000

Figure 3.9: Example execution of masker sub-component.

the pivot point. To achieve this, any bits below the pivot point are replaced with a

zero value. An example of this logic is shown in Figure 3.9.

The resulting masked bit array is passed through a leading ones detector. The

leading ones detector was implemented with the aid of a shared VHDL arithmetic

library[15]. The leading ones detector outputs the one-hot encoding of the index of

the first one value in the array. This result is the first level at or above the requested

size that has a block on its free-list. This method essentially finds an allocatable

block in approximately constant time.

3.3.2 Fast Return

The Fast Return optimization required a change to the controller. The states of

the controller that returned the block to the application were moved in front of the

states that recursively break down the found block. The system’s status lines were

set to busy during the block stage of the allocation to prohibit further requests until

the block stage was complete.

27

Chapter 4

Experiments

The design described in Chapter 3 was implemented as a hardware system. To quan-

tify if, when, and why the algorithm could be beneficial it was used in several exper-

iments. The experiments were executed to quantify several performance questions:

the performance of the buddy algorithm, the performance gain of the algorithm’s

translation into hardware, and the effect of the optimizations on the algorithm that

are provided by hardware.

4.1 Software Performance of Buddy

The performance of the buddy algorithm in software is a reference point for our

comparisons. The buddy algorithm was chosen for its easy translation into hardware

and its theoretical performance bounds as outlined in Chapter 2. A quantifiable

comparison to another popular software allocator should showcase its better worst-

case performance guarantees.

The buddy algorithm was implemented in the JVM version 1.1.8. The buddy

implementation and the standard JVM implementation were then instrumented so

that every allocation request was timed from start to finish (request for memory to

28

Space Requested
Program Allocations JVM Buddy % Fragmentation
Compress 5,147 5,926,690 8,410,048 41.90
DB 8,091 9,653,908 12,334,455 27.77
Jack 410,483 466,058,956 605,116,064 29.84
Javac 26,131 31,630,607 40,295,584 27.39
Jess 46,132 55,779,223 74,027,288 32.71
MpegAudio 7,581 8,418,767 11,555,409 37.26
MTRT 276,111 298,717,197 383,955,460 28.53
Raytrace 277,055 320,756,416 384,998,114 20.03

Figure 4.1: Java test program characteristics: load value 1.

return of address). The allocation timings were reported in nanoseconds using the C

function gethrvtime(). The timings were then dumped to a data file. Both algorithms,

buddy and the standard JVM allocator, were tested in this experiment.

For each algorithm, several JavaTM applications from the SPEC jvm98 bench-

mark suite were used [4]. The benchmarks provided three different load values: 1,

10, and 100. We configured the benchmarks for a load value of 1, as higher load

values led to increasingly impractical execution times. The benchmarks are shown in

Figure 4.1. The input files for all benchmarks were included in the SPEC JVM98 dis-

tribution. The number of allocations among the applications in the suite varied from

approximately 5, 000 to 400, 000. One of the drawbacks to the buddy algorithm is the

internal fragmentation from the rounding of each request to a power of two. A nu-

merical value for the impact of this fragmentation is shown in Figure 4.1, and at most

it is 42%. The software comparison experiments were run on a Sun Microsystems

Ultra 5 workstation. The system had a single Ultra II, 400 MHz processor, and 128

MB of 100 MHz RAM. The workstation was running Solaris 8. The benchmarks were

run in the real-time class with pinned memory for better timing using the following

commands:

• mlockall (MCL FUTURE)

29

• priocntl -e -c RT -p 59 benchmark

The size of the memory heap was constrained to 32 MB, and asynchronous garbage

collection in the JVM was disabled. Allocation timing data were captured from each

benchmark. The gethrvtime function that timed the allocations has a resolution which

is hardware dependent. With the 400 MHz processor, the resolution of the timing

was 2.5 nanoseconds.

The JVM allocator is an implementation of the first-fit, list-based algorithm

described in Section 1.1. Worst-case performance of the JVM allocation algorithm is

expected to be inferior to that of the buddy algorithm. Also, as discussed in Section

1.3, average case allocation time should theoretically show an improvement in favor

of the buddy algorithm.

Three variables were measured in this experiment: minimum, maximum, and

average allocation time. The minimum allocation times are shown in Figure 4.2 1. As

shown, the minimum allocation time for the buddy algorithm is around 100 nanosec-

onds faster than the standard JVM algorithm.

On average and worst-case, we expected the buddy algorithm to outperform

the single free-list based JVM implementation. The mean allocation times for the two

systems are presented in Figure 4.3 2. Surprisingly, on average the JVM implementa-

tion outperforms the buddy algorithm. This performance difference is approximately

250 nanoseconds across all benchmarks.

The worst-case maximum allocation times are shown in Figure 4.4 3. On about

half of the applications, the buddy algorithm has a better worst-case allocation time.

In the other half of the benchmarks, the JVM allocator displays a better worst-case

1This chart is associated with the data in Figure A.2 and Figure A.1.
2This chart is associated with the data in Figure A.2 and Figure A.1.
3This chart is associated with the data in Figure A.2 and Figure A.1.

30

Minimum Allocation Time (ns)

600

650

700

750

800

850

Compress DB Jack Javac Jess MpegAudio MTRT Raytrace

Benchmark

T
im

e
(n

s)

Buddy
JVM

Figure 4.2: Minimum allocation times for software implementations.

Mean Allocation Time (ns)

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

Compress DB Jack Javac Jess MpegAudio MTRT Raytrace Average

Benchmark

M
ea

n
A

llo
ca

ti
o

n
T

im
e

(n
s)

Buddy
JVM

Figure 4.3: Mean allocation times for software implementations.

31

Maximum Allocation Time (ns)

0

50000

100000

150000

200000

250000

Compress DB Jack Javac Jess MpegAudio MTRT Raytrace Average

Benchmark

T
im

e
(n

s)

Buddy
JVM

Figure 4.4: Max allocation time for software implementation.

allocation time. Further, in two benchmarks, Compress and MTRT, the worst-case

buddy allocation time is significantly higher than that for the JVM.

The discrepancies observed between the theoretical performance guarantees

and the observed results are related to the allocation behavior of the application.

The worst-case time for the JVM’s free-list allocator is dependent on the length of

the free-list. It is conceivable that an application might exhibit allocation behavior

such that all allocation requests can be satisfied from the beginning of the free-list.

It is likely that compress and MTRT exhibit such behavior.

The comparison between the buddy algorithm and the free-list based JVM im-

plementation showed that the fastest allocation times were observed from the buddy

algorithm. However, in the benchmarks used, the buddy algorithm did not exhibit

the better worst-case performance that was expected. Also, the buddy system imple-

mentation was a little slower than the JVM implementation on average when tested

using the SPEC jvm98 benchmarks.

32

4.2 Hardware Buddy Performance

In Chapter 3, care was taken to minimize the differences between the software imple-

mentation and the hardware implementation. As such, the hardware implementation

differs from the software implementation only in the fact that it is implemented in

hardware: the steps of the algorithm are executed in the same order. Experiments

comparing the two systems will show the performance impact of translating the same

algorithm from software to hardware.

As discussed in Chapter 3, the buddy algorithm was implemented in VHDL.

While the logic implementation was synthesizable, we elected to conduct our experi-

ments in a software simulation environment. The Mentor Graphics VHDL simulator

(vsim) was used to simulate hardware performance during the experiments [13]. The

clock rate of the logic implementing the buddy algorithm was set at 200 MHz to be

half of the speed of the processor executing the software applications. The simulator

model for the memory itself was obtained from Micron and was configured to run

at 100 MHz [7]. This clock rate was chosen to match the memory subsystem clock

of the Ultra 5 workstation on which the results of the software implementation were

gathered.

The logic that implemented the allocation algorithm was instrumented to pro-

vide timing information. The JavaTM benchmarks described in Figure 4.1 were ex-

ecuted to produce a log of their allocation behavior to a file. The data logged did

not include timing information, only allocation requests and their sizes and deallo-

cation requests and their addresses. Those log files were then used by the hardware

simulator as test drivers for the hardware implementation.

The performance numbers from the software implementation of the buddy

algorithm were obtained using the same means as outlined in Section 4.1. Given

that the hardware implementation is specialized just for the execution of the buddy

33

Min Allocation Times (ns)

718
703 697 692 703 702 697 702 701.75

590 590 590 590 590 590 590 590 590

0

100

200

300

400

500

600

700

800

Compress DB Jack Javac Jess MpegAudio MTRT Raytrace Average

Benchmark

T
im

e
(n

s)

Software
Hardware

Figure 4.5: Minimum allocation time comparison between hardware and software.

algorithm, it is expected to outperform the software implementation. Also, better

time bounds should be achieved given the highly predictable nature of hardware.

In this experiment, three variables were measured: minimum, average, and

maximum allocation time. A fourth metric, the range of allocation times, was cal-

culated from the first three variables. The minimum allocation time comparison is

shown in Figure 4.5 4 . From this experiment we can see that the minimum allocation

time has improved from around 700 nanoseconds to 590 nanoseconds. Also, we see

that the minimum allocation time is constant across all benchmarks.

As shown in Figure 4.6, the mean allocation time for the hardware implemen-

tation is on average less than the time for the software buddy implementation 5. For

two benchmarks, MTRT and Raytrace, the mean allocation time for the software

implementation outperforms the hardware implementation by 50 nanoseconds. On

4This chart is associated with the data in Figure A.2 and Figure A.3.
5This chart is associated with the data in Figure A.2 and Figure A.3.

34

Mean Allocation Time (ns)

0

200

400

600

800

1000

1200

1400

1600

1800

Compress DB Jack Javac Jess MpegAudio MTRT Raytrace Average

Benchmark

T
im

e
(n

s)

Software
Hardware
JVM

Figure 4.6: Mean allocation time comparison between hardware and software.

average, however, the mean allocation time is roughly 50 nanoseconds slower for the

software implementation.

The maximum allocation statistic for the hardware and software implemen-

tations is shown in Figure 4.7 6. For the hardware implementation, the maximum

allocation times vary much less over all the benchmarks compared to the software

implementation. Overall, the software implementation’s worst case allocation is ap-

proximately 7 times worse than that of the hardware implementation.

An interesting effect of implementing the algorithm in hardware is that the

range of allocation times decreases. The difference between the maximum allocation

and the minimum allocation is much larger for the software implementation than the

hardware implementation. As shown in Figure 4.8, the range for software is seven

6This chart is associated with the data in Figure A.2 and Figure A.3

35

Maximum Allocation Time (ns)

0

50000

100000

150000

200000

250000

Compress DB Jack Javac Jess MpegAudio MTRT Raytrace Average

Benchmark

T
im

e
(n

s)

Software
Hardware
JVM

Figure 4.7: Maximum allocation time comparison between hardware and software.

times larger than hardware on average 7. This exhibits another feature that makes

the hardware buddy system more suitable for real time, as discussed in Chapter 1.

The benefits of the hardware implementation of the algorithm are twofold.

First, the hardware implementation shows a convincing performance increase, espe-

cially with respect to worst-case allocation times. Secondly, the hardware implemen-

tation provides more concrete timing bounds and a smaller timing range than the

software implementation.

4.2.1 Impact of Memory Subsystem

One key difference between the hardware and software implementations is the memory

subsystem. The hardware implementation has direct access to the DRAM memory

through a simple controller while the software implementation has a more complex

subsystem with a cache. Both systems use the same speed and size main memory, but

7This chart is associated with the data in Figure A.2 and Figure A.3.

36

Software to Hardware Range Ratio

5.5
5.0

7.6

6.2 6.4
6.1

13.0

6.0

7.0

0

2

4

6

8

10

12

14

Compress DB Jack Javac Jess MpegAudio MTRT Raytrace Average

Benchmark

R
at

io
o

f
H

ar
d

w
ar

e
R

an
g

e
(n

s)
to

S
o

ft
w

ar
e

R
an

g
e

(n
s)

Range Ratio

Figure 4.8: Comparison of allocation time range between hardware and software.

the presence of the cache could have an impact on the performance of the software im-

plementation. The cache could increase performance on some memory operations or

inflict a small performance penalty on others (cache miss). However, the performance

gain of a cache system typically outweighs any performance penalties. Therefore, we

assume that the presence of the cache doesn’t negatively impact the software imple-

mentation. The quantitative impact of a cache on the software implementation of the

buddy algorithm and the impact of a cache for the hardware system is left for future

experimentation.

The memory subsystem also impacts the performance of the hardware imple-

mentation. The majority of the clock cycles in the hardware implementation are

spent waiting for a memory operation to complete. For example, consider the sim-

plest allocation case. In this case, the algorithm has a block available on the list of

the requested size. Such a scenario requires the fewest number of memory operations

for our implementation. However, waiting for the memory subsystem consumes 70

37

clock cycles of the 88 clock cycles needed to satisfy the request. In other scenarios the

memory operations consume a higher percentage of the allocation time. Therefore, a

higher clock-speed for the buddy logic would not be as beneficial has a higher speed

memory subsystem.

4.3 Optimized Hardware Buddy

The proposed improvements outlined in Chapter 2 provide a theoretical improvement

in the complexity of the buddy algorithm. To quantify the impact of the optimizations

we created an experiment comparing the straightforward hardware implementation

and an optimized implementation. To evaluate this impact, the two systems were

tested under the same benchmarks. Both systems were clocked at 200 MHz, and had

a 100 MHz memory system configuration described in Section 4.2.

Input files were obtained from running the SPEC jvm98 benchmarks through

a special JVM that logs the allocation behavior to files, exactly as described in Sec-

tion 4.2. The hardware simulations were again conducted on the Mentor Graphics

hardware simulator.

The optimizations described in Chapter 2 apply to the find stage and the order

in which the three stages are applied. The block stage is common to both systems,

and in our experiment we observed that the statistics of the block stage did not

change between the platforms. Therefore, the block stage is independent of the two

optimizations, as expected.

4.3.1 Fast Find

The Fast Find optimization was designed to provide a fast, essentially constant time

operation to locate a suitable address for allocation. As shown in Figure 4.9, the

38

Mean Find Times

59

59.5

60

60.5

61

61.5

62

Compress DB Jack Javac Jess MpegAudio MTRT Raytrace Average

Benchmarks

T
im

e
(n

s)

Optimized
Non-optimized

Figure 4.9: Mean find times for optimized and non-optimized systems.

mean find times of the find stage were 60 nanoseconds for all benchmarks 8. Overall,

the optimized implementation is about 1.5 nanoseconds faster on average.

The maximum find times are shown in Figure 4.10 9. Across all benchmarks,

the maximum find time for the optimized implementation was constant at 65 nanosec-

onds. Upon closer inspection of the results, it turns out that 60 and 65 were the only

values observed as times for the fast find optimization. The maximum find stage

times for the non-optimized implementation were an order of magnitude worse than

the maximum find stage times for the optimized version.

The effect of the Fast Find optimization on the entire allocation operation

is shown in Figure 4.11 10. The mean find stage time for the non-optimized version

was about 8 nanoseconds faster than the optimized version. However, the constant

8This chart is associated with the data in Figure A.4 and Figure A.3.
9This chart is associated with the data in Figure A.4 and Figure A.3.

10This chart is associated with the data in Figure A.4 and Figure A.3.

39

Maximum Find Times (ns)

0

100

200

300

400

500

600

700

800

Compress DB Jack Javac Jess MpegAudio MTRT Raytrace Average

Benchmark

F
in

d
T

im
es

(n
s)

Optimized
Non-Optimized

Figure 4.10: Maximum find times for optimized and non-optimized systems.

lookup time is worth a small penalty (≈ 8 nanoseconds) in average performance given

our real-time target.

4.3.2 Fast Return

To discover how often the Fast Return optimization would be applicable, we first

had to determine the maximum time the allocator spent in the block stage. This

is the maximum time that the allocator would be unavailable for another allocation

request. Then we determined the inter-arrival times of every allocation in all the

benchmarks described in Figure 4.1.

This portion of the experiment was conducted on the software implementation

of the buddy algorithm. Timings were taken at the beginning and end of the allocation

function to record the inter-arrival times of allocation requests. Similar to the timings

in Section 4.1, these were obtained using the C function gethrvtime. The benchmarks

40

Effect of Optimization on Mean Allocation Times (ns)

1440.00

1445.00

1450.00

1455.00

1460.00

1465.00

1470.00

1475.00

1480.00

Compress DB Jack Javac Jess MpegAudio MTRT Raytrace Average

Benchmark

M
ea

n
A

llo
ca

ti
o

n
T

im
e

(n
s)

Optimized
Non-Optimized

Figure 4.11: Mean allocation times for optimized and non-optimized systems.

from the SPEC jvm98 suite (outlined in Figure 4.1) were used, and the inter-arrival

time for each allocation was logged to a file. This experiment will give us the amount

of time an application spends processing between each allocation request. This time

can be used to perform other operations, as long as the new operations finish in time

so that the system is ready to satisfy any new request.

The minimum inter-arrival times for the SPEC jvm98 benchmarks are shown in

Figure 4.12. Also shown are the maximum block times observed from the experiments

in Section 4.2. The count of inter-arrival times that were smaller than the maximum

block times for each benchmark is shown in the Missed column. As shown, the

minimum inter-arrival time was greater than the max block time for three of the

benchmarks in the SPEC jvm98 suite. This means that the applications would only

have to suspend execution for the duration of a fast-find, and the block time could be

completed in parallel to the application execution (provided no memory contention).

41

Benchmark Min Inter-arrival time (ns) Max Block Time (ns) Missed
Compress 14785 13960 0
DB 13035 13960 1
Jack 15062 15560 1
Javac 14821 13960 0
Jess 13271 13960 1
MpegAudio 14165 13960 0
MTRT 13316 15560 1
Raytrace 12315 14535 1

Figure 4.12: Allocation inter-arrival times (IAT) for SPEC jvm98 benchmarks.

For each of the five other benchmarks, only one inter-arrival time was less than the

maximum block time.

For the SPEC jvm98 benchmarks, the performance improvement compared to

the non-optimized and software implementations of the buddy algorithm is shown

in Figure 4.13 11. This shows the maximum allocation time encountered during the

benchmarks if the inter-arrival times are greater than the max block time for that

application. The fast return optimization achieves two orders of magnitude better

performance than the non-optimized system, and close to three orders of magnitude

better than the software version.

The Fast Find optimization provides a small performance improvement on

average and a much better worst-case performance that is applicable in all situations.

The Fast Return optimization, when applicable, can offer an incredible performance

gain. As shown in our results, for particular applications in the SPEC jvm98 bench-

mark, this optimization coupled with fast-find can provide a performance increase of

≈ 130 times the performance of the non-optimized hardware buddy implementation.

11This chart is associated with the data tabulated in Figure A.5.

42

Max allocation times (ns) for IAT

120 120 120 120 120

14635 16315 14635 14635 15055

78030
119800

88470 86800 93275

1

10

100

1000

10000

100000

1000000

Compress Jack Javac MpegAudio Average

Benchmark

T
im

e
(n

s)

Optimized Non-optimized Software

Figure 4.13: Maximum allocation times if IAT is maintained.

43

Chapter 5

Conclusions

First, we discussed current popular allocation algorithms and their theoretical com-

plexities. We proposed several features of an ideal allocator for the real-time en-

vironment. We showed that several current algorithms are unsuitable for general

deployment in the real-time environment.

We then introduced Knuth’s buddy algorithm, which satisfies some of the ideal

allocator requirements. We also contributed two optimizations that can be realized

in hardware. These contributions were designed to reduce the find time to a constant

and increase the performance of the algorithm.

We introduced a hardware design of the buddy algorithm, with and without the

optimizations. The designs were implemented in synthesizable VHDL and then tested

on various benchmarks. As expected, the non-optimized hardware implementation

produced a faster, more bounded allocation strategy. The optimized implementation

improved upon this by reducing the find time of the solution to a constant.

The work contained in this thesis nearly achieved the goals of an ideal alloca-

tor. Future work should focus on improving the worst-case time bound for the block

stage. Previous research by others has produced solutions with reduced block stage

complexity in software. The ability of these solutions to complement our hardware

44

implementation should be determined. Also, the interaction of the hardware system

with a cache should be investigated. Further, a more complex simulation environment

should be constructed that could better demonstrate the differences between software

CPU-side and hardware memory-side allocation solutions.

45

Appendix A

Data

Benchmark Min Mean Max
Compress 827 1151.48 11210
DB 812 1193.17 82933
Jack 827 1135.39 88162
Javac 822 1210.46 104274
Jess 772 1209.12 88171
MpegAudio 802 1110.51 96969
MTRT 828 1081.87 122029
Raytrace 827 1157.74 112205
Average 814.62 1156.21 88244.12

Figure A.1: Total allocation times (ns) for JVM allocator

Benchmark Min Mean Max Range
Compress 718 1634 78030 77312
DB 703 1524 71240 70537
Jack 697 1474 119800 119103
Javac 692 1542 88470 87778
Jess 703 1605 91020 90317
MpegAudio 702 1524 86800 86098
MTRT 697 1391 205700 205003
Raytrace 702 1390 94530 93828
Average 701.75 1510.5 104448.75 103747

Figure A.2: Total allocation times (ns) for software buddy system

46

Find Times Total Times
Benchmark Min Max Mean Min Max Mean
Compress 25 625 60.91 590 14635 1454.56
DB 25 625 61.17 590 14635 1458.91
Jack 25 700 61.66 590 16315 1466.79
Javac 25 625 61.02 590 14635 1456.26
Jess 25 625 61.58 590 14635 1465.57
MpegAudio 25 625 61.16 590 14635 1458.79
MTRT 25 700 61.65 590 16315 1466.71
Raytrace 25 700 61.64 590 16115 1466.49
Average 25 653.13 61.35 590 15240 1461.76

Figure A.3: Total times (ns) for non-optimized implementation

Find Times Total Times
Benchmark Min Max Mean Min Max Mean
Compress 60 65 60 640 14085 1463.44
DB 60 65 60 640 14085 1467.52
Jack 60 65 60 640 15690 1475.14
Javac 60 65 60 640 14085 1465.25
Jess 60 65 60 640 14085 1474.07
MpegAudio 60 65 60 640 14085 1467.53
MTRT 60 65 60 640 15690 1475.08
Raytrace 60 65 60 620 15490 1474.89
Average 60 65 60 637.5 14661.88 1470.36

Figure A.4: Total times (ns) for optimized implementation

Benchmark Max Max Max
Compress 120 14635 78030
DB 120 14635 71240
Jack 120 16315 119800
Javac 120 14635 88470
Jess 120 14635 91020
MpegAudio 120 14635 86800
MTRT 120 16315 205700
Raytrace 120 16115 94530
Average 120 15240 104448.75

Figure A.5: Maximum times(ns) if IAT constraint is met

47

Benchmark Min Max Mean
Compress 510 13960 1338.66
DB 510 13960 1342.74
Jack 510 15560 1350.13
Javac 510 13960 1340.24
Jess 510 13960 1348.98
MpegAudio 510 13960 1342.63
MTRT 510 15560 1350.06
Raytrace 510 15360 1349.85
Average 510 14535 1345.41

Figure A.6: Block times for IAT comparison

48

References

[1] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turnbull. The Real-Time

Specification for Java. Addison-Wesley, 2000.

[2] J. M. Chang and E. F. Gehringer. A high-performance memory allocator

for object-oriented systems. IEEE Transactions on Computers, 45(3):357–366,

March 1996.

[3] Sharath Reddy Cholleti. Storage allocation in bounded time. Master’s thesis,

Washington University, 2002.

[4] SPEC Corporation. Java SPEC benchmarks. Technical report, SPEC, 1999.

Available by purchase from SPEC.

[5] Erik D. Demaine and J. Ian Munro. Fast allocation and deallocation with an

improved buddy system. In Foundations of Software Technology and Theoretical

Computer Science, pages 84–96, 1999.

[6] H. Cam et al. A high-performance hardware efficient memory allocation tech-

nique and design. In International Conference on Computer Design, pages 274–

276, October 1999.

[7] Micron Technology Inc. MT48LC4M32B2 128Mb: x 32 SDRAM Data Sheet,

August 2002.

49

[8] Donald E. Knuth. Fundamental Algorithms, Volume 1, The Art of Computer

Programming, Second Edition. Addison-Wesley, 1973.

[9] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.

Addison-Wesley, 1997.

[10] James L. Peterson and Theodore A. Norman. Buddy systems. Communications

of the ACM, 20(6):421–431, 1977.

[11] E. V. Puttkamer. A simple hardware buddy system memory allocator. IEEE

Transaction on Computers, 24(10):953–957, October 1975.

[12] M. Shalan and V. Mooney. A dynamic memory management unit for embedded

real-time system-on-a-chip. In International Conference on Compilers, Architec-

ture and Synthesis for Embedded Systems, pages 180–186, November 2000.

[13] Model Technology. Optimizing ModelSim Performance, December 2002.

[14] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic

Storage Allocation: A Survey and Critical Review. In International Workshop

on Memory Management, Kinross, Scotland, UK, September 1995.

[15] Reto Zimmermann. VHDL library of arithmetic units. Technical report, Inte-

grated Systems Laboratory, ETH Zürich, 1998.

50

Vita

Steven M. Donahue

Date of Birth March 2, 1979

Place of Birth St. Louis, Missouri, United States of America

Degrees B. Science Computer Science, 2001,

Washington University in St. Louis, Missouri, United States

of America.

B. Science Computer Engineering, 2001

Washington University in St. Louis, Missouri, United States

of America.

Publications Steven M. Donahue, Matthew P. Hampton, Ron K. Cytron,

Mark Franklin, and Krishna M. Kavi. ”Hardware Support

for Fast and Bounded Time Storage Allocation” in Pro-

ceedings of the Workshop on Memory Processor Interfaces

(WMPI) in conjunction with the International Symposium

of Computer Architecture, Anchorage, Alaska, May 2002.

Steven M. Donahue, Matthew P. Hampton, Morgan Deters,

Jonathan M. Nye, Ron K. Cytron, and Krishna M. Kavi.

“Storage Allocation for Real-Time, Embedded Systems” in

Proceedings of the First International Workshop on Embed-

ded software, Washington, D.C., May 2001.

May 2003

	Specialized Hardware Support for Dynamic Storage Allocation
	Recommended Citation
	Specialized Hardware Support for Dynamic Storage Allocation

	tmp.1471023011.pdf.Tw79i

	Abstract: Abstract: With the advent of operating systems and programming languages that can
evaluate and guarantee real-time speciﬁcations, applications with real-time requirements can be authored in higher-level languages. For example, a version of Java suitable for real-time (RTSJ) has recently reached the status of a reference implementation, and it is likely that other implementations will follow.

Analysis to show the feasibility of a given set of tasks must take into account their worst-case execution time, including any storage allocation or deallocation associated with those tasks. In this thesis, we present a hardware-based solution to the problem of storage allocation and (explicit) deallocation for real-time applications. Our approach oﬀers both predictable and low execution time: a storage allocation request can be satisﬁed in the time necessary to fetch one word from memory.

We have implemented our approach in the context of IRAMs (intelligent storage) using FPGAs and it is based on Knuth™s buddy algorithm. In this thesis we present our design, implementation, and experimental results.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: April 28, 2003
	Author: Authors: Donahue, Steven M.
	Title: Specialized Hardware Support for Dynamic Storage Allocation - Master's Thesis, May 2003
	ReportNumber: 2003-33
	DepartmentName: Department of Computer Science & Engineering

