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Figure 3.14: Predicted keywords using FastTag for sample images in the Espgame dataset.

Test time. At test time, given an image x, the final mapping W∗ is used to score the

dictionary of tags.

Homogeneous feature mapping

Local kNN methods [75, 104] enjoy the advantage of naturally identifying non-linear de-

cision boundaries based on multiple feature spaces from different image features. In our

work, we adopt linear image feature classifiers for their simplicity and speed, and instead

incorporate non-linearity into the feature space as a pre-processing step. To this end, we

adopt the homogeneous feature mapping method of Vedaldi and Zisserman [157]. For each

visual descriptor fm(x) 2 R dm extracted from the input image, it uses an explicit fea-

ture mapping Ψm : R dm ! R dm (2r+1) to project it to a slightly higher-dimensional feature

space, in which the inner product approximates the kernel distance well. In other words,

hΨm(fm(x),Ψm(fm(x′))i � Km(fm(x), fm(x′)). For the family of additive kernels, such as

the l1-distance and χ2-distance used in our experiments, the mapping Ψ(�) can be computed

analytically and approximates the kernel well even with small r (in our experiment, we set
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r = 1). After projecting each visual descriptor independently, we further apply random

projection [158] to reduce the dimensionality20.

3.3.5 Experimental Results

We evaluate FastTag on three image annotation benchmark datasets. All data sets (with pre-

extracted features) were obtained from http://lear.inrialpes.fr/people/guillaumin/

data.php.

Experimental Setup

We begin with a detailed description of the data sets, the visual feature descriptors and the

evaluation metrics.

Corel5K. The dataset was first introduced in [57], and has thereafter become a staple bench-

mark set for evaluating keyword based image retrieval and image annotation. It contains

5,000 images collected from the larger Corel CD set. Each image is manually annotated with

keywords from a dictionary of 260 distinct terms. On average, each image was annotated

with 3.5 tags.

ESP game. The dataset consists of 20,770 images21 of a wide variety, such as logos, drawings,

and personal photos, collected for the ESP collaborative image labeling task [162]. Overall,

the images are annotated with a total of 268 tags. Each image is associated with a maximum

of 15 and on average 4.6 tags.

IAPRTC-12.22. The dataset consists of 19,627 images of sports, actions, people, animals,

cities, landscapes and many other aspects of contemporary life [74]. Tags are extracted from

the free-flowing text captions accompanying each image. Overall, 291 tags are used.

20The dimension k is roughly cross-validated using a least squares baseline.
21To be comparable to prior work, we use the same subset (out of the total 60,000 images) selected

by Guillaumin et al. [75], Makadia et al. [104], available at http://hunch.net/?p=23.
22We used the same annotations as in [75, 104]
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Table 3.5: Comparison of FastTag and existing work on the Corel5K dataset.

Name P R F1 N+

leastSquares 29 32 30 125
CRM [94] 16 19 17 107

InfNet [109] 17 24 20 112
NPDE [169] 18 21 19 114

SML [29] 23 29 26 137
MBRM [60] 24 25 24 122
TGLM [100] 25 29 27 131

JEC [104] 27 32 29 139
TagProp [75] 33 42 37 160

FastTag 32 43 37 166

For all these datasets, we follow the training/test split used in previous work [75, 104]. Please

refer to Guillaumin et al. [75] for more detailed statistics on the datasets.

Feature extraction. We use the 15 different visual descriptors, extracted by Guillau-

min et al. [75] for each dataset. These include one Gist descriptor [119], six global color

histograms, and eight local bag-of-visual-words features. As described in section 3.3.4, we

adopt the explicit feature mapping of Vedaldi and Zisserman [157] to obtain a non-linear

feature transformation. Here we use the l1 approximation (i.e. the Euclidean distance after

the mapping approximates the l1 distance) for the global color descriptors, and the approx-

imated χ2 distance for the local bag-of-visual-words features. Finally, we apply random

projection after each feature mapping to reduce the dimensionality.

Evaluation metric. For full comparability, we adopt the same evaluation metrics as

in Guillaumin et al. [75]. First, all image are annotated with the five most relevant tags

(i.e. tags that have the highest prediction value). Second, precision (P) and recall (R) are

computed for each tag. The reported measurements are averaged across all tags. For easier

comparability, both factors are combined in the F1-score (F1 = 2 P∗Q
P+Q

), which is reported

separately. We also report the number of keywords with non-zero recall value (N+). In all

metrics a higher value indicates better performance.
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Figure 3.15: Comparison of FastTag and existing work in terms of F1 score vs. training time
on the Corel5K, Espgame and IAPRTC-12 dataset.

Table 3.6: Comparison of FastTag and existing work on the Espgame and IAPRTC-12
dataset.

Espgame IAPR
P R F1 N+ P R F1 N+

leastSquares 35 19 25 215 40 19 26 198
MBRM 18 19 18 209 24 23 23 223

JEC 24 19 21 222 29 19 23 211
TagProp 39 27 32 238 45 34 39 260
FastTag 46 22 30 247 47 26 34 280

Baselines. We compare against leastSquares, a ridge regression model which uses the partial

subset of tags y1, . . . ,yn as labels to learn W, i.e., FastTag without tag enrichment. We

also compare against the TagProp algorithm [75], a local kNN method combining different

distance metrics through metric learning. It is the current best performer on these benchmark

sets. Most existing work do not provide publicly available implementations. As a result, we

include their previously reported results for reference [94, 109, 169, 29, 60, 100, 104] .

Comparison with related work

Table 3.5 shows a detailed comparison of FastTag to the leastSquares baseline and eight pub-

lished results on the Corel5K dataset. We can make three observations: 1. The performance

of FastTag aligns with that of TagProp (so far the best algorithm in terms of accuracy on

132



this dataset), and significantly outperforms the other methods; 2. The leastSquares baseline,

which corresponds to FastTag without the tag enricher, performs surprisingly well compared

to existing approaches, which suggests the advantage of a simple model that can extend to

a large number of visual descriptor, as opposed to a complex model that can afford fewer

descriptors. One may instead more cheaply glean the benefits of a complex model via non-

linear transformation of the features. 3. The duo classifier formulation of FastTag, which

adds the tag enricher, alleviates the intrinsic label sparsity problem of image annotation. It

leads to a 10% improvement on precision, 28% on recall, and an overall 20% improvement on

F1 score over the leastSquares baseline. We also increase the number of tags with positive

recall by 34.

Table 3.6 compares the performance of FastTag over leastSquares and three existing methods

on the Espgame and IAPRTC-12 datasets. Similar trends can be observed. First, FastTag

significantly outperforms the baseline, MBRM (a generative mixture model) of Feng et al.

[60], and JEC (a local NN method) of Makadia et al. [104] on both datasets. FastTag

performs slightly worse than TagProp on these datasets. However, as we next demonstrate,

FastTag achieves enormous speedup over TagProp during both training and testing.

Computational time. All experiments were conducted on a desktop with dual 6-core Intel

i7 cpus with 2.66Ghz.

Figure 3.15 shows the F1 score vs. the training time required for different methods on these

three datasets. The time is plotted in log scale. We can make three observations: 1. TagProp

outperforms all other related work in terms of F1 measure, but is also the slowest to train.

It takes close to one hour to train on the relatively small Corel5K dataset, which has around

4,500 training examples. For the larger datasets (ESPgame and IAPRTC-12) with close to

17,000 examples, the training time blows up to 16 hours. 2. The JEC method of [104] falls

into the same category of local NN method as TagProp, with the difference that it uses the

simple average of the 15 distance metrics to define neighbors. JEC does not require training.

However, we can see that it cannot compete in terms of accuracy performance. Note that, it

still has O(n) test-time complexity, where n is the number of training examples, because each

query example requires a neighbor-lookup during testing. 3. The training time of FastTag

is over 50x faster than that of TagProp. Note the time reported in the figure for FastTag

also includes the feature preprocessing time, i.e, performing homogeneous feature mapping
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Figure 3.16: Comparison of FastTag and existing work at different levels of tag sparsity.

and random projection, which takes up the majority of the computation time. For a total

of 16,748 training examples (dimensionality d = 15, 000) and 268 tags, FastTag takes on

average 34 seconds to train for one bootstrap iteration. The optimal number of bootstrap

iterations ranges from 1 to 8 in different re-optimization iterations (The number of iterations

is usually very small at the beginning, but gradually increases in the later re-optimization

stages as it needs bootstrapping to recover rare tags.). The algorithm converges within a

few re-optimization stages.
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Sample annotations

Figure 3.14 shows example images from the ESP game data set and their tag annotations

obtained with FastTag. The figure shows three rows of results. The top row consists of

images with high F1 score, i.e. these are images on which FastTag reliably retrieves relevant

tags. The middle row shows images that are picked uniformly at random. Although not

perfect, the vast majority of tags are relevant to the particular image. The bottom images

have low F1 score, and represent examples where FastTag fails to retrieve relevant tags.

Note that, even among the ones with low F1 score, we can find some very relevant tags.

Further analysis

The graphs compare the results of FastTag with the TagProp algorithm at different levels of

tag sparsity.

While these benchmark data sets are appropriate for algorithm comparisons, they may not

be representative of the quality of training image tags found in the wild. In practice, most

of the images are annotated with far fewer tags. We run the algorithms on images with

down-sampled sparse tags in order to gauge their performance in this more realistic setting.

Figure 3.16 depicts the comparison of FastTag and TagProp at different levels of training set

tag sparsity. We “stage” the training data into successively larger tag sets, starting by giving

each image only one tag (down sampled from the full set if more tags are available), then up

to two tags, and so on. Performance in terms of Precision (P), Recall (R) and F1 score (F1)

is plotted as a function of the maximum number of tags provided for each training image

on the three benchmark datasets. We can see that FastTag out-performs TagProp when the

maximum number of provided tags is small. In general, FastTag performs comparably to

Tagprop across different tag sparsity levels. In other words, the tag enrichment mapping of

FastTag indeed helps to alleviate the intrinsic tag sparsity problem.
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3.3.6 Conclusion

We present an automatic image tagging method, FastTag, that performs on-par with current

state-of-the-art algorithms, at a fraction of the computation cost. We recast a supervised

multi-label classification problem as unlabeled multi-view learning. We define two classifiers,

one for each view of the data, and coerce them into agreement via co-regularization in

a joint loss function. We trade off complexity in the classifiers with non-linear mapping

of the features and demonstrate that such a choice pays off. FastTag is computationally

efficient during training and testing yet maintains tagging accuracy. It can effectively deal

with sparsely tagged training data and rare tags that are often obstacles in such large-scale

learning problems. We hope our research will lead to interesting future work in many related

learning scenarios.
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Chapter 4

Conclusion and Future Directions

Most canonical machine learning algorithms assume that: 1) a sufficiently large quantity

of training data is available; 2) the training and testing data come from some common

distribution. Although these assumptions are often met in practice, there are also many

tasks for which obtaining a large amount of high quality labels (training data) is hard and the

first assumption is violated. In this dissertation, we focus on the scenarios in which training

data from the relevant distribution is scarce and exert trading off the second assumption

to compensate for the first one. In other words, we utilize additional data, which is readily

available or can be obtained easily but comes from a different distribution than the testing

data. Generalizing to the testing distribution is hopeless if the data we used for training

follows any arbitrary distribution. We have to enforce certain constraints on the distribution

of the external data to enable learning.

We present five learning scenarios based on the kinds of constraints we imposed on the

distribution that is used to sample the additional training data and the testing distribution:

1) learning with weak supervision; 2) domain adaptation; 3) learning from multiple domains;

4) learning from corrupted data; 5) learning with partial supervision. For learning with weak

supervision, we assume the support of the data distribution is a superset of the support of

the testing distribution. We proposed Pseudo Multi-view Co-training (PMC), an algorithm

to cherry pick the instances that belong to the overlapped support from the noisy set to help

learning. For domain adaptation and learning from multiple domains, we assume the support

of the data (source) distribution(s) overlaps with that of the testing (target) distribution.

we proposed Co-training for Domain Adaptation (CODA), an algorithm to slowly adapt

the training data from source to target; and marginalized Stacked Denoising Autoencoders
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(mSDA), an algorithm to reduce the difference between distributions of different domains via

unsupervised feature learning. For learning from corrupted data, we introduced Marginalized

Corrupted Features (MCF), an algorithm that learns more robust classifiers implicitly on

“infinitely many” data created by corrupting the original small set of training data. For

learning with partial supervision, we assume that only a subset of the labels is available

for multi-label tasks. We proposed FastTag, an automatic image annotation algorithm that

recovers missing labels by corrupting the labels. We demonstrated the applicability of these

algorithms on many real datasets.

The proposed algorithms can be divided into two groups based on the basic building blocks.

Single View Co-training. The first two algorithms, PMC and CODA, are inspired by

the co-training algorithms of Blum and Mitchell [23]. While Co-training itself is restricted

to multi-view data, the automatic feature decomposition proposed in PMC generalizes co-

training to the more common single view cases, making it applicable to most real datasets.

In contrast to previous works [116, 171, 2, 33], which decompose the feature space either in a

preprocessing step or greedily, PMC explicitly models the necessary conditions for successful

co-training. It decomposes the feature space along with training the classifiers to satisfy these

condition and the decomposition is adapted to the distribution of the training data in each

PMC iteration, making it more powerful and reliable. PMC achieves record performance on

the challenging Caltech-256 object recognition task, using web retrieved images as weakly

labeled data. Comparable performance has been achieved before [65, 146], but much more

sophisticated features and classifiers have to be employed. The ability of PMC to effectively

select high quality examples from large collection of noisy search results opens the door to

future work on diverse sets of web-specific applications across different domains, such as

web-spam filtering, sentiment analysis or information retrieval.

CODA adds to PMC another feature selection component. While PMC shifts the distribution

of the training data from source to target, the new feature selection component slowly shifts

the active feature distribution from source to target, which address the problem of incompat-

ible features used in different domains. In contrast to previous works [82, 105, 167, 21, 22],

which either weighs the source instances, or learns a new feature representation as a prepro-

cessing step, CODA changes the weights for source and target instances in each iteration, as
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well as the features employed in the classifiers for best performance on the target domain.

CODA achieves state-of-the-art classification results with impressive consistency across a

wide range of available target labels. As CODA does not make any explicit assumption on

the features or classifiers, it opens up opportunities for future work on domain adaptation

in many different areas, such as natural language processing, speech and vision.

Marginalized Dropout. The second group of algorithms, mSDA, MCF and FastTag,

all incorporate marginalized dropout into learning. Another common point of these three

algorithms is that they all achieve state-of-the-art performance with orders of magnitude

speedup at training and testing. mSDA is inspired by the Stacked Denoising Autoencoders

(SDA) [161, 69], which learn hidden representation to reconstruct clean inputs from corrup-

tion. In contrast to SDA, mSDA: 1) does not have hidden nodes in each layer – this allows

a closed-form solution with substantial speed-ups but might entail limitations; 2) only has

two free meta-parameters, which greatly simplifies the model selection. 3) trains the pa-

rameters in each layer to optimally denoise all possible corrupted training inputs – arguably

infinitely many by leveraging the analytic tractability of linear regression and marginalizing

out corruption. This is practically infeasible for SDAs. mSDA achieves state-of-the-art per-

formance. The fast training time, the capability to scale to large and high-dimensional data

and implementation simplicity make it a promising method with appeal to a large audience

within and beyond machine learning. As for its limitation, we found that sparsity in the

original inputs is important for successful application of mSDA. For text data, it is natural

to start from the sparse bag-of-word representation or its variant. For dense input, such

as vision data, it would help to first transform the original input into some sparse repre-

sentation, e.g., bag-of-visual-word before applying mSDA. In future work, we would like to

investigate whether we can relax this requirement while still preserving the computational

efficiency.

MCF deals with overfitting when training data is insufficeint. It offers an effective and

efficient alternative to regularization or learning with priors. Specifically, MCF trains pre-

dictors by introducing corruption on the training examples, which is marginalized out in the

expectation of the loss function. In comparison with traditional regularization approaches,

MCF corruption shines in three ways: 1) it often yields superior classification performance

and 2) it can be much more intuitive to set parameters about data corruption than about
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model hyper parameters; 3) while regularization encourages sparsity, MCF with blank-out

corruption appears to prevent weight under-training [158], encouraging the weight on each

feature to be non-zero, in case this particular feature survives the corruption. The result-

ing redundancy is one of the key factors why MCF corruption makes classifiers so effective

against the nightmare at test-time scenario. In comparison with previous work on incorpo-

rating corruption for better generalization [28, 35, 67], which either uses explicit corruption

or focus on worst-case scenarios, MCF has several advantages: 1) it considers the (arguably)

more common average-case scenario by training on all possible corrupted observations, which

results in more robust classifiers; 2) it is computationally much cheaper; we can derive plug

in solutions for a wide range of loss functions and corrupting distributions by marginalizing

out the corruption. The training and testing cost of MCF is equivalent to learning with

regularizations; 3) it is easy to incorporate prior knowledge of the data variance by setting

the parameters in the corrupting distributions. We test MCF on a variety of tasks, includ-

ing text and image classifications, and the “nightmare at test-time” scenario, and achieve

promising results. We investigated blank-out, Poisson and Gaussian corruption in our exper-

iments. As future work, we plan to explore in more detail what corrupting distributions is

useful for what types of data. Another interesting direction is to extend MCF to structured

prediction, kernel machines, as well as different learning scenarios, such as the learning with

weak supervision, or cross-domain generalization.

FastTag is an image tagging method we introduced to learn from overly-sparse supervision,

i.e., incomplete user tags. Different from mSDA and MCF, in which the corruption is applied

to the inputs, FastTag corrupt the partial list of labels in order to recover missing labels.

Similarly, we consider all possible corrupted labels and marginalize out the corruption. In

comparison with previous work on automatic image annotation [112, 7, 57, 85, 94, 60, 48,

72, 104, 75], FastTag employes a much simpler model. In particular, it finds two mappings,

one from the visual descriptors to the complete list of tags, and one from the partial tags to

the complete ones using the corrupted labels, by coercing them into agreement. The jointly

convex loss function of FastTag can be efficiently optimized with closed form updates – this

allows for including a diverse set of visual descriptors as well as non-linear feature mappings.

The tradeoff of model complexity with feature expressiveness pays off as FastTag performs on-

par with current state-of- the-art algorithms, at a fraction of the computation cost. Sparsely

tagged training data and rare tags, which are prevalent in large scale problems, are often

obstacles for learning. We have demonstrate a way to deal with such partial supervision for
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image annotation. As future works, we would like to explore the work in many related tasks,

such as multi-label text classification, and biology-related problems, e.g., protein and gene

function classifications.
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