
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-31

2003-04-28

Using Contaminated Garbage Collection and Reference Counting Using Contaminated Garbage Collection and Reference Counting

Garbage Collection to Provide Automatic Storage Reclamation for Garbage Collection to Provide Automatic Storage Reclamation for

Real-Time Systems Real-Time Systems

Matthew P. Hampton

Language support of dynamic storage management simplifies the application programming

task immensely. As a result, dynamic storage allocation and garbage collection have become

common in general purpose computing. Garbage collection research has led to the

development of algorithms for locating program memory that is no longer in use and returning

the unused memory to the run-time system for late use by the program. While many

programming languages have adopted automatic memory reclamation features, this has not

been the trend in Real-Time systems. Many garbage collection methods involve some form of

marking the objects in memory. This marking requires time... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Hampton, Matthew P., "Using Contaminated Garbage Collection and Reference Counting Garbage
Collection to Provide Automatic Storage Reclamation for Real-Time Systems" Report Number:
WUCSE-2003-31 (2003). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1077

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1077?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1077

Using Contaminated Garbage Collection and Reference Counting Garbage Using Contaminated Garbage Collection and Reference Counting Garbage
Collection to Provide Automatic Storage Reclamation for Real-Time Systems Collection to Provide Automatic Storage Reclamation for Real-Time Systems

Matthew P. Hampton

Complete Abstract: Complete Abstract:

Language support of dynamic storage management simplifies the application programming task
immensely. As a result, dynamic storage allocation and garbage collection have become common in
general purpose computing. Garbage collection research has led to the development of algorithms for
locating program memory that is no longer in use and returning the unused memory to the run-time
system for late use by the program. While many programming languages have adopted automatic
memory reclamation features, this has not been the trend in Real-Time systems. Many garbage collection
methods involve some form of marking the objects in memory. This marking requires time proportional to
the size of the head to complete. As a result, the predictability constraints of Real-Time are often not
satisfied by such approaches. In this thesis, we present an analysis of several approaches for program
garbage collection. We examine two approximate collection strategies (Reference Counting and
Contamination Garbage Collection) and one complete collection approach (Mark and Sweep Garbage
Collection). Additionally, we analyze the relative success of each approach for meeting the demands of
Real-Time computing. In addition, we present an algorithm that attempts to classify object types as good
candidates for reference counting. Our approach is conservative and uses static analysis of an
application's type system. Our analysis of these three collection strategies leads to the observation that
there could be benefits to using multiple garbage collectors in parallel. Consequently we address
challenges associated with using multiple garbage collectors in one application.

https://openscholarship.wustl.edu/cse_research/1077?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1077?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages

Short Title� Real�Time Garbage Collection Hampton� M�Sc� ����

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

USING CONTAMINATED GARBAGE COLLECTION AND REFERENCE

COUNTING GARBAGE COLLECTION TO PROVIDE AUTOMATIC

STORAGE RECLAMATION FOR REAL�TIME SYSTEMS

by

Matthew P� Hampton� B�S�

Prepared under the direction of Dr� Ron K� Cytron

A thesis presented to the Sever Institute of

Washington University in partial ful�llment

of the requirements for the degree of

Master of Science

May� ����

Saint Louis� Missouri

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

USING CONTAMINATED GARBAGE COLLECTION AND REFERENCE

COUNTING GARBAGE COLLECTION TO PROVIDE AUTOMATIC

STORAGE RECLAMATION FOR REAL�TIME SYSTEMS

by Matthew P� Hampton�

ADVISOR� Dr� Ron K� Cytron

May� ����

Saint Louis� Missouri

Language support for dynamic storage management simpli�es the application

programming task immensely� As a result� dynamic storage allocation and garbage

collection have become common in general purpose computing� Garbage collection

research has led to the development of algorithms for locating program memory that

is no longer in use and returning that unused memory to the run�time system for

later use by the program�

While many programming languages have adopted automatic memory recla�

mation features� this has not been the trend in Real�Time systems� Many garbage

collection methods involve some form of marking the objects in memory� This mark�

ing requires time proportional to the size of the heap to complete� As a result� the

predictability constraints of Real�Time are often not satis�ed by such approaches�

In this thesis� we present an analysis of several approaches for program garbage

collection� We examine two approximate collection strategies 	Reference Counting

and Contaminated Garbage Collection
 and one complete collection approach 	Mark

and Sweep Garbage Collection
� Additionally� we analyze the relative success of each

approach for meeting the demands of Real�Time computing�

In addition� we present an algorithm that attempts to classify object types as

good candidates for reference counting� Our approach is conservative and uses static

analysis of an application�s type system�

Our analysis of these three collection strategies leads to the observation that

there could be bene�ts to using multiple garbage collectors in parallel� Consequently�

we address challenges associated with using multiple garbage collectors in one appli�

cation�

Contents

List of Figures � v

Acknowledgments � vii

� Introduction �

� Related Work �

��� Scoped Memory �

��� Real�Time Copying Garbage Collection � � � � � � � � � � � � � � � � � �

��� Mostly Non�Copying Real�Time Garbage Collection � � � � � � � � � � �

� Garbage Collection Background �

��� Mark and Sweep Garbage Collector �

��� Reference Counting Garbage Collector � � � � � � � � � � � � � � � � � �

��� Contaminated Garbage Collector ��

�� Approach Comparison ��

� Garbage Collection Experiments ��

�� Performance Metrics �

���� Object�Collection E�ectiveness � � � � � � � � � � � � � � � � � ��

���� Rot�Time ��

���� Overall Execution Time ��

iii

��� RT Readiness Ratio ��

�� Experiments ��

���� Experiment Overview ��

���� Object Collection Statistics ��

���� Rot�Time Analysis ��

��� Overall Execution Time ��

���� Minimum Heap Size Comparison � � � � � � � � � � � � � � � � ��

���� Real�Time Readiness Analysis � � � � � � � � � � � � � � � � � � ��

� RCGC Classi�cation Algorithm ��

��� Algorithm Description ��

��� Results ��

� Concurrent Execution of RCGC and CGC � � � � � � � � � � � � � � � ��

��� Problem Overview �

��� Inter�Class Object References �

����� A CGC Object References an RCGC Object � � � � � � � � � � �

����� An RCGC Object References a CGC Object � � � � � � � � � � �

��� Proof of Correctness for Reference Counting of CGC Objects � � � � �

����� Correctness of Summing Reference Counts for Union Operations

� Conclusions and Future Work ��

Appendix A Support Data for Experiments � � � � � � � � � � � � � � � �	

References ��

Vita ��

iv

List of Figures

��� MSA Operation� where the vertically stacked rectangles are stack frames�

the circles are heap objects� and the arrows are references to those objects� �

��� RCGC Operation� where the vertically stacked rectangles are stack frames�

the circles are heap objects� the arrows are references to those objects� and

the numbered boxes represent object reference counts� � � � � � � � � � � ��

��� CGC Operation� where the vertically stacked rectangles are stack frames�

the circles are heap objects� the arrows are references to those objects� and

the sources of the dashed arrows are the stack frames associated with a

given equilive set ��

�� spec�� Benchmark Properties with MSA Execution Times � � � � � � � ��

�� Object Collection Statistics for CGC and RCGC �Size��� � � � � � � � � � ��

�� Object Collection Statistics for CGC and RCGC �Size���� � � � � � � � � ��

� Min	Max	Avg Percentage of Objects Collected � � � � � � � � � � � � � � ��

�� Average Rot�Times for CGC and RCGC �Size��� � � � � � � � � � � � � � ��

�� Average Rot�Times for CGC and RCGC �Size���� � � � � � � � � � � � � � ��

�� Average Rot�Times for CGC and RCGC Adjusted by the MSA Period �Size��� �

�� Average Rot�Times for CGC and RCGC Adjusted by the MSA Period �Size�

��� ��

�� Object Rot�Time Distribution for CGC and RCGC �Size���� � � � � � � � ��

v

��� CGC and RCGC Slowdown over MSA �Size��� � � � � � � � � � � � � � � ��

��� CGC and RCGC Slowdown over MSA �Size���� � � � � � � � � � � � � � � ��

��� CGC Speedup over RCGC �Size�� and ��� � � � � � � � � � � � � � � � � ��

��� RCGC and CGC Slowdown over MSA with Smaller Heap Sizes �Size��� � ��

�� RCGC and CGC Slowdown over MSA with Smaller Heap Sizes �Size���� ��

��� CGC Speedup over RCGC with Smaller Heap Sizes �Size�� and ��� � � � ��

��� Heap Sizes Used for Experimental Runs � � � � � � � � � � � � � � � � � � ��

��� RT Readiness Ratio� Maximum Allocation Time	Average Allocation Time ��

��� RT Readiness Ratio� Maximum Allocation Time	Average Allocation Time

over Di
ering Heap Sizes �jack� Size��� � � � � � � � � � � � � � � � � � �

��� Percentage of Objects Determined to be Reference Countable � � � � � � �

A�� Object Collection E
ectiveness Data Table � � � � � � � � � � � � � � � � �

A�� Average Rot�Time Data Table �

A�� Rot�Time Distribution Data Table �Size���� � � � � � � � � � � � � � � � ��

A� Speedup	Slowdown Data Table ��

A�� Speedup	Slowdown with Smaller Heaps Data Table � � � � � � � � � � � ��

A�� Real�Time Readiness Ratio Data Table � � � � � � � � � � � � � � � � � � ��

A�� Real�Time Readiness Ratio Data Table �jack Size�� � � � � � � � � � � � ��

A�� RCGC Classi�cation Algorithm Results Data Table � � � � � � � � � � � � ��

vi

Acknowledgments

I would very much like to thank my adviser� Dr� Ron K� Cytron� for his support

of my graduate study �nancially and more importantly intellectually through our

discussions and collaborative e�orts� I would also like to acknowledge the other

members of my committee� Dr� Chris Gill and Dr� Aaron Stump� who are o�ering

their time and expertise to assist in the evaluation of my research�

I would like to thank Dante Cannarozzi� Morgan Deters� Steve Donahue� Jen�

nifer Duemler� Mike Henrichs� Christine Julien� Jamie Payton� and Richard Souvenir

who have always been willing to lend assistance throughout my progression through

the master�s degree program� As friends and colleagues� they have always been willing

to share their time and talents to help me achieve my goals�

I extend my gratitude to the members of the DOC group who have provided

a venue for lively discussion and the sharing of insights which have bolstered the

research e�orts of us all�

I appreciate very much the e�orts of the department faculty who provide an

intellectually stimulating environment in which to pursue a graduate education�

I would also like to acknowledge Peggy Fuller� Jean Grothe� Myrna Harbison�

and Sharon Matlock� whose e�orts ensure that the department functions e�ectively�

In addition� I send many thanks to the sta� of Computing Technology and Services�

Mark Bober� Mitchell Henderson� Samantha Lacy� Josh Lawrence� and Allen Rueter�

whose willingness to help and level of commitment has been nothing short of extraor�

dinary �

I would especially like to thank my parents� James K� and Kathleen Hampton�

for all of their love and support throughout the previous �� years�

The research represented in this thesis was sponsored by the NSF under grant

ITR��������

Matthew P� Hampton�

Washington University in Saint Louis

May� ����

vii

�

Chapter �

Introduction

Real�Time 	RT
 applications generally require that their performance exhibit pre�

dictable behavior� Indeed� RT application developers are often willing to sacri�ce

some overall performance and e�ciency for the ability to predict bounds for certain

program characteristics 	e�g�� execution time or storage requirements
� In the past�

RT performance was ensured in part by carefully implementing applications at the

assembly�language level� With such implementations� memory management for exam�

ple was performed explicitly as part of the application code� More recently however�

RT applications are being implemented in higher level languages such as JavaTM ����

C� and C��� When programming RT applications in these languages� operations

such as memory allocation and reclamation must be implemented in a manner that

is cognizant of the needs of the RT environment�

Most modern programming languages provide some form of dynamic storage

management ���� ���� For example the JavaTM and C languages o�er the primitives

new and malloc respectively as a means for allocating storage from the heap� JavaTM

also provides a Garbage Collector �GC� ���� program for automatic reclamation of

memory no longer used whereas C and C�� o�er the primitives free and delete

for manual memory deallocation� Most GC implementations use a Mark and Sweep

�

Algorithm �MSA� ���� to detect objects that are no longer used by an application�

While this method works well in general� barring extensive modi�cation or knowledge

abour a bound on the amount of storage used� it is not suitable for RT applications�

This is because the MSA must examine every object in the heap� and thus it is

di�cult to place a reasonable bound on the execution time of a GC cycle� In this

case� provisioning to ensure bounded execution time for GC would be prohibitively

expensive� therefore� MSA is not a suitable solution for RT implementations� Were it

possible to calculate a bound on storage used� such an approach would have limited

application because such bounds are often di�cult to determine for programs in

general�

Research in the �eld of dynamic storage management has yielded several al�

ternatives to the MSA approach that provide explicit GC execution�time bounds�

In this context� algorithms such as the Contaminated Garbage Collector �CGC� ���

and Reference Counting Garbage Collector �RCGC� ���� are promising solutions� By

adding extra per�instruction�per�object bookkeeping� these methods manage to re�

claim unused storage without searching the entire object space� As a result� a bound

can be placed on the worst�case execution time� thus allowing an RT scheduler to

make reasonable provisions for GC resource requirements�

This thesis explores the merits of each of these alternative bounded execution

time GC methods 	i�e�� CGC and RCGC
 relative to each other and relative to the

standard MSA� Four performance metrics are de�ned and a set of experiments is

performed using a group of selected benchmark programs� The data are presented

to determine the e�ectiveness of CGC and RCGC� The performance metrics are as

follows�

�

� Object Collection E
ectiveness� This refers to the completeness of each

method in collecting objects that are no longer used� It is quanti�ed as the

percentage of objects collected�

� Rot�Time� This is a measure of the amount of time that passes between the

point at which an object is no longer used by a program and the time of its

collection� The larger the collection delay� the more likely a given collector

would be unable to satisfy the memory requirements of a program�

� Overall Execution Time� This refers to the overall execution times for the

applications for each of the GC schemes�

� RT Readiness Ratio� This ratio is de�ned as the ratio of the time required

for worst�case execution of a given program or code segment to that of the time

required for the average�case execution of that same component� Calculating

this ratio o�ers a means to determine the degree to which resources are wasted

when worst�case performance is assumed in all cases as in the context of RT�

In the chapters that follow� we o�er analysis of the relative e�ectiveness of our

approximate garbage collection approaches� Chapter � provides an overview of some

related work� In Chapter �� we provide an overview of MSA� RCGC� and CGC� In

Chapter � we present data that compare the operation of RCGC and CGC to each

other and to MSA� In Chapter � we o�er an algorithm that determines statically

if an object is a suitable candidate for RCGC� Chapter � discusses an approach to

address the concurrent use of multiple garbage collection strategies during program

execution� Chapter � presents some conclusions and directions for future work�

Chapter �

Related Work

��� Scoped Memory

The Real�Time Speci�cation for Java 	RTSJ
 ��� avoids the issue of automatic garbage

collection through a scoped memory approach� That is� the programmer is faced with

the task of creating regions of memory from which objects can be allocated� These

regions are tied to execution scopes and are reclaimed at the point of exit of their

associated scope� At any given point in the program� the programmer can select from

which of the available memory scopes he or she wishes to allocate objects� While

this approach addresses the predictability concerns that might be raised by dynamic

storage management� it does make the task of application programming more chal�

lenging� In order to ensure memory safety� there are rules regarding how objects from

di�erent memory scopes can reference each other� Therefore� the programmer must

not only have an idea of the program memory structure at the point of allocation

but also an understanding of the overall memory structure of the program� Having

an alternative to the Mark and Sweep Algorithm 	MSA
 which also meets the pre�

dictability needs of an RT system would remove some of this memory management

burden from programmers�

�

��� Real�Time Copying Garbage Collection

Nettles and O�Toole ��� use a copying mark and sweep collector to provide garbage

collection support for RT programming� Their approach avoids long execution pauses

induced by GC through incremental execution of MSA� They limit the amount of time

that is allotted to GC execution in order to meet RT constraints� By making a copy

of the live objects in the heap as MSA executes� the program can continue operation�

As the live objects of the heap are marked� duplicates of those objects are placed

in a separate memory region� In order to ensure data consistency� their approach

maintains a mutation log� which tracks changes to data references as the program

executes� Once a GC cycle is complete and the mutations have been addressed� an

atomic operation that switches the program object space to the GC created copy is

performed� and the memory for the original heap can be deallocated�

This approach o�ers garbage collection that meets the needs of RT systems�

However� it is important to note that there is memory overhead required to keep

a separate copy of the object heap� In addition to memory overhead� one might

conceive of a scenario in which a large number of objects were reachable from a

program through a relatively small number of references from the program stack�

That is� a very large portion of the heap might be reachable from an application�

but only a very small number of objects would be referenced directly from the stack�

This scenario would be problematic for the incremental mark and sweep collector�

This is because it might spend a great deal of time making a copy of what appear

to be numerous live heap objects when a relatively small number of changes in stack

references might render most of the heap objects collectible� thus requiring another

GC cycle�

�

��� Mostly Non�Copying Real�Time Garbage Col�

lection

Bacon et al ��� present another version of the incremental MSA collector which re�

duces the need for copying� Their approach makes use of size segregated free�lists�

As the collector executes the sweep phase� dead objects can be returned to the ap�

proriate list� As a result� copying the objects during collection becomes necessary

only when memory fragmentation has become a signi�cant concern� When memory

fragmentation is low� there is no need to relocate objects to satisfy a storage request�

Therefore� the collector need not create a copy of the live heap as it executes� The

authors claim that such fragmentation is rare� and that as a result� their approach

�induces lower overhead and o�ers more consistent utilization than other RT GCs��

There are certainly applications whose execution patterns do actually fragment

the memory heap� In the face of fragmentation� the above approach su�ers from the

same limitations associated with the simple copying collector� That said� a more

general solution for RT garbage collection that does not depend on the absence of

memory fragmentation would be bene�cial�

�

Chapter �

Garbage Collection Background

This section describes the operation of each of the Mark and Sweep Algorithm 	MSA
�

Reference Counting Garbage Collector 	RCGC
� and Contaminated Garbage Collec�

tor 	CGC
� We begin by presenting how each GC method handles the same allocation�

garbage collection portion of a program�s execution� This is followed with an intro�

ductory comparison of the strengths and weaknesses of the methods�

��� Mark and Sweep Garbage Collector

The MSA is an exact collector in that it collects all of the objects in memory that

are unreachable from a running program� It succeeds in doing this by performing an

exhaustive search of the objects in the object heap and marking those objects as still

reachable from the executing program� References to unmarked objects are removed

from the heap� These tasks are achieved in two phases�

�� The �rst phase iterates over the object space 	i�e�� the circles in Figure ���

and marks objects that are still live 	i�e�� shades the objects in Figure ��� to

indicate a marking
�

�

Collected

Marked
1

0

b.

B

C

A

C

0

c.

B

A

2

1

C

B

3

2

1

0

a.

A

C

0

d.

B

A

Figure ���� MSA Operation� where the vertically stacked rectangles are stack frames� the
circles are heap objects� and the arrows are references to those objects�

�� The second phase reclaims the memory occupied by objects that were not

marked during the execution of phase one�

Figure ��� shows an example of how the MSA operates� In each section of

Figure ���� the program stack is represented by the numbered� vertically stacked

rectangles� The object heap is composed of individual objects that are shown as

circles containing letters� The stack frames are numbered from earliest 	in time

to most recent with stack frame � being the initial stack frame� Further� for the

purposes of illustration� we may assume that the MSA executes as often as necessary

to immediately detect objects the moment they are no longer alive�

Figure ��� indicates that there are three objects in the heap� A� B� and C

spawned from stack frames �� �� and 	 respectively� Initially� all of the heap objects

are marked 	shaded
 because they are still live 	Figure ���a
� At some point in time

after stack frame � pops� illustrated in Figure ���b� a reference is made from object

A to object B� Executing the MSA at this time again causes each of the objects to be

�

marked since they can all be referenced by the program� In Figure ���c� notice that

the reference to object B from A has been removed� and because stack frame � has

popped� B is no longer reachable from the program� As a result� the collector will

mark only objects A and C� and the memory associated with object B is reclaimed�

Figure ���d shows the point where object C is no longer being referenced from the

stack� Although there is still a self�reference to C� the MSA is able to determine that

C is no longer reachable from the program because it performs an exhaustive search

of the object space� Thus� as the collector executes� only object A is marked and the

memory associated with object C is collected�

Since on each execution the MSA must check each object in the heap� detecting

the live objects has a complexity of �	n � e
� where n is the number of live objects

in the heap and e is the number of live references� However� the number of objects is

very di�cult to predict prior to execution� particularly in situations where program

execution is data dependent� Thus� it is di�cult to bound the running time of the

garbage collection� This is a critical drawback of the MSA in RT situations where

RT response to external stimuli requires a priori knowledge of the time� or bounds

on time� associated with program execution� This is the primary motivation behind

exploring alternative garbage collection techniques�

��� Reference Counting Garbage Collector

RCGC operates by keeping track of the number of references to a speci�c object from

either the program stack or other objects� Thus� as long as a given object is still

being referenced by some entity in the program� the collector will assume that the

object is alive� Once an object�s reference count reachers zero� it can be placed on

a list of objects to be returned to the heap at a speci�ed time� For our purposes�

this reclamation was implemented at a stack frame boundary� That is� at each point

��

Collected

C

B

1

1

0

2

c.

0

A

C

B 1

2

1

3

2

1

0

a.

C

B

A

2

2

1

2

1

0

b.

A

C

B

1

0

0

d.

1

A

Figure ���� RCGC Operation� where the vertically stacked rectangles are stack frames�
the circles are heap objects� the arrows are references to those objects� and the numbered
boxes represent object reference counts�

where a stack frame is popped� dead objects are handed o� to the run�time system

to be reclaimed� As we will demonstrate shortly� the e�cacy of reference counting is

limited by the extent to which objects reference each other�

Figure ��� depicts the same program as Figure ���� However� the RCGC is

utilized to reclaim memory� In each stage of execution� we show the reference counts

as seen from the collector�s perspective� The initial reference counts of the objects

are as shown in Figure ���a� In Figure ���b� notice that the reference from object

A to object B causes the reference count for B to be incremented� In Figure ���c

the reference count for B drops to � because stack frame � has popped and A no

longer points to B� Therefore� B can be collected� The RCGC is unable to detect

the death of C in Figure ���d� because its reference count is still greater than zero

due to the self�reference� This exempli�es the limitation of the reference counting

approach� That is� objects involved in reference cycles are never collected by the

��

reference counting collector because their reference counts will not drop to zero even

though they may no longer be reachable from the program�

Unlike the MSA� it is possible to bound the execution time of RCGC to detect

live objects� This is because RCGC executes incrementally over the lifetime of the

program� RCGC can simply hand a pointer to a list of free objects to the run�time

system at the point of collection� hence� RCGC has a collection time complexity of

O	�
� For each memory reference� RCGC must determine how to adjust reference

counts� but this is also a constant time operation� As a result� there is a constant

amount of overhead induced on each instruction�

��� Contaminated Garbage Collector

The fundamental principle behind CGC is that we can partition the heap into sets

of objects that are all regarded as equally live� These sets are called equilive sets�

That is� if two objects are in the same equilive set� then they will be collected at

the same time� Initially� an object is in its own set and is associated with the stack

frame in which it is allocated� As the program executes and references are made from

one object to another� CGC joins these equilive sets� As stack frames are popped

	as with the reference counting approach
� a list of objects whose memory can be

freed is passed to the memory management subsystem� While CGC is una�ected by

cycles that might occur among objects� it does not break apart equilive sets� Sets are

not split because the correctness of the approach is based on the assumption that an

object in a given set is equally live as other objects in that set� That is� no element

of an equilive set will have a shorter or longer lifespan than any other element of

that same set� Thus� objects which might reference each other for only a short time

remain tied to each other from the collector�s point of view�

��

Collected

a.

A

0

B

C

B 2

b.

A

1

2

3

1

C

B

1

0

c.

A

C

0

C

B

0

d.

A

Equilive
 Sets

Figure ���� CGC Operation� where the vertically stacked rectangles are stack frames� the
circles are heap objects� the arrows are references to those objects� and the sources of the
dashed arrows are the stack frames associated with a given equilive set �

Figure ��� shows the same example program previously considered� The shaded

areas represent equilive sets� the dashed arrows show with which stack frame a given

equilive set is associated� As we can see from Figure ���a� initially all of the objects in

the heap are contained in their own equilive sets� However� as the reference from A to

B is made in Figure ���b� the equilive sets for A and B are unioned� In Figure ���c�

note that while B is no longer live� CGC fails to detect it� Because A and B were

placed in the same equilive set� the collector is not able to detect the death of B�

Since A was associated with an earlier stack frame than was B� B cannot be collected

until after stack frame � pops� While this is a problem for CGC� the issue of cycles 	a

problem with RCGC
 is not� As illustrated in Figure ���d� object C� which contains

a self�reference� is collected�

As with RCGC� it is possible to bound the execution time requirements of

CGC for detecting live objects� It executes incrementally over the lifetime of the

��

program� The point of collection is a stack frame pop� and at that time� CGC simply

hands a pointer to a list of free objects to the run�time system� Thus� as is the case

with RCGC� collection with CGC has a complexity of O	�
 in terms of the number of

objects being collected� Also as with RCGC� overhead is incurred for each instruction�

When one object references another� their equilive sets must be merged� CGC uses

The Union by Rank and Path Compression �� data structure� As a result� the time

required to merge two equilive sets has an amortized complexity of O	�	m�n

 where

m is the number of set operations performed� n is the total number of objects in the

system� and � is the Inverse Ackermann Function ��� � grows so slowly that for

all reasonable paremeter values� it is less than equal to four� Consequently� for all

practical purposes� CGC performs a constant amount of work at each instruction�

��� Approach Comparison

Clearly� there are limitations faced by both CGC and RCGC that lead to di�culties

in certain situations� That is� because these two methods are approximate collectors�

it is possible that they will be incapable of collecting enough objects to provide

applications with the memory resources they need� However� we present data that

show both methods do reasonably well in terms of object collection�

In RT systems� in addition to the number of objects collected� performance pre�

dictability is of concern� Clearly� in this domain� both of the approximate approaches

o�er a feasible solution� Since MSA must search the entire object space each time

it executes� there is no reasonable bound on the computational time required by the

MSA� However� as indicated earlier� both CGC and RCGC have constant time com�

plexity thus making them suitable for RT applications� That said� we need to assess

the trade�o�s associated with each collection approach empirically� The following

chapter focuses on a performance comparison of the collectors under study�

�

Chapter �

Garbage Collection Experiments

��� Performance Metrics

Before presenting the data� let us further examine the performance metrics that will

be used and discuss their importance� As noted in Chapter �� we use four metrics to

compare the garbage collection schemes�

Object�Collection E
ectiveness This is the percentage of collectible objects col�

lected by the GC algorithm� The Mark and Sweep Algorithm 	MSA
 theoreti�

cally collects ���� of the collectible objects and e�ectiveness is thus relative to

MSA operation�

Rot�Time Rot�Time is the time delay between an object�s death and detection of

that death by the MSA�

Overall Execution Time This metric is time required for the program to complete

the application using one of the GC strategies�

RTReadiness Ratio This is the ratio of worst�case to average�case performance for

a given operation�

��

����� Object�Collection E�ectiveness

Clearly� an important measure of the e�ectiveness of any garbage collector is the

degree to which it is able to collect dead objects� This metric is especially important

for the approximate collectors that we have discussed� if their ability to collect objects

is too limited 	i�e�� they don�t collect a su�ciency of dead objects or fail to collect

them in a timely fashion
� then gains in predictability would not be enough to warrant

their use� Obviously� the mark and sweep approach can collect all objects that are no

longer reachable from a running program� � As a result� the MSA is the gold standard

for collection e�ectiveness� The Reference Counting Garbage Collector 	RCGC
 and

the Contaminated Garbage Collector 	CGC
 are thus compared to the MSA�

����� Rot�Time

Another important metric for a garbage collection algorithm is the amount of time

that passes between the point in the program at which an object is no longer reach�

able and the point at which the GC is able to collect the object� Rot�Time is a useful

metric because it gives us the ability to quantify the amount of extra time dead

objects remain in the heap utilizing memory resources� As a collector�s Rot�Time

increases� the likelihood that memory resources will be exhausted before the collector

can reclaim unused storage also increases� A collector which results in objects with

excessively large Rot�Times would o�er little use even if it were capable of collecting

all of the unreachable objects� This is because these objects would stay in the system

utilizing memory resources for long periods of time thus mitigating any bene�ts re�

sulting from their collection� Consequently� as object collection is delayed further� the

�The JavaTM implementation of MSA approximates stack references� That is� it is possible for

the collector to see a primitive on the stack whose value happens to correspond to a valid object

reference� Therefore� it is possible the collector will mark objects that should not be�

��

memory footprint of a given program can only increase since unused memory remains

uncollected for a more lengthy period of time�

We present data that compare the relative collection delays associated with

CGC and RCGC to each other� We examine two aspects of Rot�Time� We begin our

analysis by comparing the average Rot�Time associated with CGC and RCGC� We

are able to calculate that value using the following�

Average�Rot�T imeCGC �

Pn
i��	T

CGC
i � TMSA

i

n

Average�Rot�T imeRCGC �

Pn
i��	T

RCGC
i � TMSA

i

n

where n is the number of objects collected by both RCGC and CGC� The TMSA
i �

TCGC
i � and TRCGC

i terms represent the collection time of the ith object by MSA�

CGC� and RCGC respectively� In addition to our comparison of the average Rot�

Times� we also examine the distribution of the Rot�Times for each of CGC and

RCGC� These data show how the collection delay is distributed over all of the objects

being considered�

����� Overall Execution Time

The third metric in our comparison relates to the overall program execution time

associated with each collection scheme� Obviously� if it is prohibitively expensive to

use a speci�c GC� predictability advantages aside� an RT application or any other for

that matter� would be loathe to take on signi�cant overhead� We present data that

compare the relative e�ects of the di�erent GCs on program execution time�

��

����� RT Readiness Ratio

The fourth metric we use is the RT Readiness Ratio� We use the metric to compare

how MSA a�ects the object allocation time during program execution� This ratio is

extremely valuable because it provides a means to compare how much overprovision�

ing might occur under an RT scenario� Because RT systems require predictability�

they assume worst�case performance for a given program or code block� As a result�

the larger the ratio of worst�case to average�case behavior� the greater the degree to

which resources will likely be wasted� We present this ratio for the execution time of

object allocation�

��� Experiments

In this section� we present experimental data in which we compare the operation of

RCGC and CGC with MSA� We begin by providing an overview of our experimental

approach� Results and data analysis follow�

����� Experiment Overview

Our experiments were conducted using the Sun ����� Java Virtual Machine 	JVM
 ���

with the JVM modi�ed to provide support for both CGC and RCGC� To obtain

information related to object collection e�ectiveness and Rot�Time� the JVM was

modi�ed to allow all three GCs 	i�e��MSA� RCGC� and CGC
 to execute concurrently�

Our current implementations of CGC and RCGC do not allow objects to be collected

when any two or more of the collectors run concurrently� Thus� we did not allow any

one collector to reclaim objects� instead� we simply took a time stamp at the point a

given collector detected an object to be dead� In order to facilitate this operation� we

��

Name Description Lines Objects MSA Execution
of Source Created Time 	sec

Size�� Size��� Size�� Size���
compress Modi�ed Lempel�Ziv ����� ���� ����� �� ��
jess Expert System ��� ���� ������� � ��
raytrace Ray Tracer ����� ������� ������� ���
db Database Manager ����� ���� ������ � ��
javac Java Compiler ���� ������ ������� � �
mpegaudio MPEG�� decompressor N�A ����� ����� � ��
mtrt Ray Tracer� threaded ����� ������� ������� ���
jack PCCTS tool N�A ���� ���� ��� ��

Figure ��� spec�� Benchmark Properties with MSA Execution Times

ran each benchmark with su�cient memory to allow the program to execute without

actual garbage collection�

In addition� because the Rot�Time calculations require that we have some

information about when an optimal garbage collection scheme would collect an ob�

ject� we used MSA to run continuously to provide optimal data for object collection

times� As an approximation to ideal MSA operation� the MSA collector was set to

execute on a periodic basis 	every ������ JVM instructions
� Executing the MSA

more frequently would have required excessive computation and would not have been

reasonable for our experiments� � For the execution�time data� each of the garbage

collection algorithms was run separately and the times were measured for each of the

benchmark applications�

Figure �� contains the spec�� ��� benchmarks used in our experiments� It is

important to note that two of them 	mpegaudio and compress
 are computational in

nature and thus do not allocate many objects� We omit the data for the mtrt 	multi�

threaded raytrace
 benchmark because of the benchmark�s similarity to the single�

threaded version� raytrace� Each of the spec�� benchmarks has three sizes 	�� ���

�Executing MSA every ������ JVM instructions resulted in each experiment taking on the order

of a week�

��

Object Collection Breakdown for CGC and RCGC (Size-1)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

compress mpegaudio jess raytrace db javac jack Average

Benchmark

%
 o

f
O

b
je

ct
s

C
o

lle
ct

ed

CGC

RCGC

Figure ��� Object Collection Statistics for CGC and RCGC �Size���

���
� A larger size implies a longer execution time and generally the allocation of more

objects� For our tests� benchmarks with sizes � and �� were used� We elected not to

use the size���� benchmarks due to time constraints� We selected these benchmarks

because their usage is common in the �eld� and they provide a point of reference when

compared with the results seen by others�

����� Object Collection Statistics

Figure �� and Figure �� depict the number of collectible objects that are detected

and reclaimed by our two approximate garbage collection methods for benchmarks

��

Object Collection Breakdown for CGC and RCGC (Size-10)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

compress mpegaudio jess raytrace db javac jack Average

Benchmark

%
 o

f
O

b
je

ct
s

C
o

lle
ct

ed

CGC

RCGC

Figure ��� Object Collection Statistics for CGC and RCGC �Size����

sizes � and �� respectively� The percentages were calculated by dividing the number

of objects collected by each of CGC and RCGC by the number of objects collected by

MSA multiplied by ����� The objects collected via MSA represent the total number

of objects that could be collected during the execution of the program� Figure �� and

Figure �� show that both CGC and RCGC manage to collect a substantial number

of the collectible objects ranging from ��� to ���� with a mean of ������� However�

at size ��� neither approach does particularly well for compress or mpegaudio� In

fact� the collectors collect fewer than ��� of the collectible objects� Unfortunately�

the benchmarks at sizes � and �� are black boxes from our point of view� and there is

��

RCGC
Min Max Avg

Size�� ���� ������� ������
Size��� ���� ������� ������

CGC
Size�� ������ ������ ������
Size��� ������ ������ ������

Figure �� Min	Max	Avg Percentage of Objects Collected

not su�cicient information to determine what di�erences between the two benchmark

sizes might cause the performance degradation� In addition� notice that the reference

counting and contaminated approaches are fairly comparable for most of the bench�

marks� but the raytrace application shows relatively poor RCGC performance� The

results are aggregated in Figure �� �

While it is obvious that there are applications for which the approximate col�

lectors might not be appropriate solutions 	e�g�� compress� mpegaudio
� these results

show that there are many applications for which reference counting or the contami�

nated collector work well from the perspective of object collection� In addition� we

can see from the data that as a general rule� RCGC is slightly more e�ective at object

collection than CGC because it tends to collect a higher percentage of the collectible

objects for most of the benchmarks�

����� Rot�Time Analysis

We now o�er experimental data that provide a means to compare CGC and RCGC

on the basis of how quickly they are able to determine an object to be dead� For this

�The support data for Figure ���� Figure ���� and Figure ��� can be found in Figure A���

��

Average Rot-Time for CGC and RCGC (Size-1)

1

10

100

1000

10000

100000

1000000

10000000

compress mpegaudio jess raytrace db javac jack

Benchmark

JV
M

 In
st

ru
ct

io
n

s

CGC

RCGC

Figure ��� Average Rot�Times for CGC and RCGC �Size���

analysis� we use the term Rot�Time� which is measured as the number of JVM in�

structions executed between an object�s collection by the MSA and that same object�s

collection by either CGC or RCGC�

Average Rot�Time

Figure �� and Figure �� show the average Rot�Time for both RCGC and CGC for

sizes � and �� respectively� A log scale is used to make the data visually discernable�

We can see that the average Rot�Time for CGC is larger than that of RCGC for all of

the various benchmarks� For the db behchmark at size ��� the CGC average is quite

��

Average Rot-Time for CGC and RCGC (Size-10)

1

10

100

1000

10000

100000

1000000

10000000

compress mpegaudio jess raytrace db javac jack

Benchmark

JV
M

 In
st

ru
ct

io
n

s

CGC

RCGC

Figure ��� Average Rot�Times for CGC and RCGC �Size����

large� It is likely there are a high number of short�lived inter�object references� This

would explain such a large CGC collection delay�

Because we execute the MSA every ������ JVM instructions and not after every

JVM instruction� it is possible that our Rot�Time measurements are underestimated

by the period of MSA execution� For example� let us assume that we execute MSA at

instruction i and an object o dies at instruction i � �� We would detect o�s death at

instruction i���� ��� thereby underestimating the Rot�Time by ��� ��� instructions�

Figure �� and Figure �� show the average Rot�Times as they would be were

the Rot�Time of every object under consideration increased by ������ instructions�

�

 Average Rot-Time for CGC and RCGC Adjusted for MSA Sampling Rate (Size-1)

1

10

100

1000

10000

100000

1000000

10000000

compress mpegaudio jess raytrace db javac jack

Benchmark

JV
M

 In
st

ru
ct

io
n

s

CGC

RCGC

Figure ��� Average Rot�Times for CGC and RCGC Adjusted by the MSA Period �Size���

Again� we use a log scale for clarity� Even under these worst�case assumptions� the

trend mentioned above seems to hold� That is� for most of the benchmarks� the

average Rot�Time for RCGC is slightly lower than that of CGC� This suggests that

RCGC reclaims unused memory slightly faster than CGC� �

Rot�Time Distribution

Figure �� presents the distribution of the objects� Rot�Times aggregated over all

the size��� benchmarks� The same histogram for the size�� benchmarks are omitted

because the data collected for the smaller size yield no new information� We can

�The source data for Figure ���� Figure ��	� Figure ��
� and Figure ��� can be found in Figure A���

��

 Average Rot-Time for CGC and RCGC Adjusted for MSA Sampling Rate (Size-10)

1

10

100

1000

10000

100000

1000000

10000000

compress mpegaudio jess raytrace db javac jack

Benchmark

JV
M

 In
st

ru
ct

io
n

s

CGC

RCGC

Figure ��� Average Rot�Times for CGC and RCGC Adjusted by the MSA Period �Size����

see very clearly that the distribution of the Rot�Times con�rms what we see with

the average Rot�Time statistics presented previously� That is� the distribution for

RCGC shows that objects are collected slightly earlier than they are using CGC�

Furthermore� for both CGC and RCGC� most 	over ���
 of the objects are collected

within ������ JVM instructions of their creation� This seems reasonable because most

programs allocate objects for short�term usage�

Overall� the Rot�Time data show that RCGC collects objects slightly faster

than CGC� This reduced collection delay allows unused memory to be returned to

��

Rot-Time Distribution for CGC and RCGC (Size-10)

0%

10%

20%

30%

40%

50%

60%

70%

80%

0-10^4 10^4-10^5-1 10^5-10^6-1 10^6-10^7-1 10^7-10^8-1 10^8-10^9-1 10^9-

of JVM Instructions

o

f
O

b
je

ct
s

CGC

RCGC

Figure ��� Object Rot�Time Distribution for CGC and RCGC �Size����

the program at an earlier point in its execution� As a result� the memory footprint

required for an application can be reduced by returing dead objects more quickly� �

����� Overall Execution Time

In Figure ��� and Figure ���� we present a comparison of the execution time re�

quirements for CGC and RCGC with MSA� For the size�� benchmarks� the use of

RCGC and CGC cause no more than a ��� slowdown� The principal exception is the

raytrace benchmark in which RCGC has a more than ��� slowdown� We see similar

�The source data for Figure ��� are found in Figure A���

��

Slowdown of CGC and RCGC over MSA
(Size-1)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

compress mpegaudio jess raytrace db javac jack Average

Benchmark

S
lo

w
d

o
w

n

CGC

RCGC

Figure ���� CGC and RCGC Slowdown over MSA �Size���

behavior with the larger size raytrace experiments� This appears to be a result of

the poor object collection capability of RCGC with this application 	see Figure ��

and Figure ��
� However� the exact cause requires further investigation� For the

size��� benchmarks� Figure ��� shows that the slowdown for RCGC and CGC is no

more than ��� with notable exceptions for db and raytrace�

Our experiments were conducted using relatively large heaps to ensure that

that mark and sweep collector would not need to execute constantly� In fact� we saw

at most two garbage collection cycles during the execution of all of the benchmarks�

Thus� even under the best of circumstances for the mark and sweep collector� we see

��

Slowdown of CGC and RCGC over MSA
(Size-10)

0

1

2

3

4

5

6

compress mpegaudio jess raytrace db javac jack Average

Benchmark

S
lo

w
d

o
w

n

CGC

RCGC

Figure ���� CGC and RCGC Slowdown over MSA �Size����

that both reference counting and contaminated garbage collection are fairly compet�

itive 	within ��� for the most part
� Figure ��� shows the speedup for CGC over

RCGC� It is clear that CGC is faster in general than RCGC� � This suggests that the

overhead required to update reference counts is larger than that required to manage

the equilive sets�

�The source data for Figure ����� Figure ����� and Figure ���� can be found in Figure A���

��

Speedup of CGC over RCGC

0

1

2

3

4

5

6

7

8

9

10

11

12

compress mpegaudio jess raytrace db javac jack Average

Benchmark

S
p

ee
d

u
p

Size-1

Size-10

Figure ���� CGC Speedup over RCGC �Size�� and ���

����� Minimum Heap Size Comparison

In addition to the data presented above that compare the amount of execution time

overhead induced by using CGC and RCGC� we also performed a series of exper�

iments that show what would happen when the benchmarks are run with smaller

heaps to force the MSA to execute more frequently� For each of our approximate GC

strategies� we found the minimum heap size for which a given benchmark could exe�

cute successfully� We then compared the execution times for each benchmark when

using either RCGC or CGC with that of MSA at the appropriate heap size�

��

Slowdown of CGC and RCGC over MSA with Smaller Heap Sizes (Size-1)

0

1

2

3

4

5

6

7

8

9

10

11

12

compress mpegaudio jess raytrace db javac jack Average

Benchmark

S
lo

w
d

o
w

n

CGC

RCGC

Figure ���� RCGC and CGC Slowdown over MSA with Smaller Heap Sizes �Size���

Figure ��� and Figure �� present data for the experiments described above�

The smaller heap sizes forced the MSA to execute more frequently� This reduces the

impact of the overhead associated with RCGC and CGC In comparison with the data

presented in Figure ��� and Figure ��� in Section ���� we can see that there is

a slight decrease in the slowdown of CGC and RCGC for several of the benchmarks

with the smaller heap� While the e�ects of the execution of the MSA are small� they

are not negligible� We can see that with the smaller heaps� the slowdown of RCGC

and CGC is reduced by two to three percentage points� Figure ��� compares the

execution time of RCGC and CGC directly� The speedup numbers are very similar

��

Slowdown of CGC and RCGC over MSA with Smaller Heap Sizes (Size-10)

0

1

2

3

4

5

6

compress mpegaudio jess raytrace db javac jack Average

Benchmark

S
lo

w
d

o
w

n

CGC

RCGC

Figure ��� RCGC and CGC Slowdown over MSA with Smaller Heap Sizes �Size����

to those seen in Figure ��� which makes sense given the fact that the work done by

both RCGC and CGC is not a�ected by the heap size� � Figure ��� displays the

heap sizes calculated for each of the benchmarks when using one of RCGC or CGC�

����	 Real�Time Readiness Analysis

In this section� we present data that indicate that the approximate collectors o�er

a solution for RT systems and that MSA is not appropriate� primarily due to the

inability to bound its performance� For any RT environment� a fundamental concern

�The source data for Figure ����� Figure ����� and Figure ���� are located in Figure A���

��

Speedup of CGC over RCGC with Smaller Heap Sizes

0

1

2

3

4

5

6

7

8

9

10

11

12

compress mpegaudio jess raytrace db javac jack Average

Benchmark

S
p

ee
d

u
p

Size-1

Size-10

Figure ���� CGC Speedup over RCGC with Smaller Heap Sizes �Size�� and ���

Heap Size KB�
Bencehmark RCGC CGC RCGC CGC

Size � Size ��
compress ����� ����� ������ ������
mpegaudio ��� ��� ���K ���
jess �� ����� ����� �����
raytrace ���� ���� ���� ����
db �� ��� ����� ����
javac �� ��� ��� ����
jack ���� ����� ���� �����

Figure ���� Heap Sizes Used for Experimental Runs

��

Benchmark Size�� Size���
RCGC CGC MSA RCGC CGC MSA

compress ������ ����� ������� ���� ������ �������
mpegaudio ������ ����� ����� ������ ���� ������
jess ������ ������ �������� �������� ������ �������
raytrace ���� ���� ���������� ������� ������� ����������
db ����� ����� ������ ������� ������ ���������
javac ��� ������ ��������� �������� ������ �������
jack ������ ������� �������� �������� ��������� ���������
Average ������� ������ ��������� ������� ����� ��������

Figure ���� RT Readiness Ratio� Maximum Allocation Time	Average Allocation Time

is predictability in the operation of entities within that environment� As a result� a

program that performs quite e�ciently on average but with distrastrous worst�case

behavior is less preferable than another program with worse average�case performance

but with worst�case behavior closer to its average�case� This is because the timing

requirements of RT systems require the assumption that the programs operate under

worst�case conditions resulting in overprovisioning certain resources� such as time�

One way to measure the degree to which resources might be underutilized

due to overprovisioning is to calculate the ratio of the worst�case to average�case

performance of a given program or code segment� Obviously� the closer that ratio

is to one� the less likely it is that computing resources will be wasted� We use this

analysis to compare our garbage collection schemes� �tness for RT�

We compare the ratio mentioned above for object allocation times when us�

ing our three garbage collection methods� Because both CGC and RCGC collect

continuously� we would expect the ratio observed when using those methods to be

relatively small compared to that seen when using MSA� This is because there may

be an allocation failure which causes MSA to execute thereby delaying that allocation

signi�cantly�

�

Heap Size MSA RCGC CGC
�MB �������
�MB ���������
�MB ���������
	MB ���������
��MB �������� ����� ������
��MB ���������� ����� �����
��MB ������� ����� ����
��MB �������� ���� �����
�	MB ������ ����� ����
��MB ������� ���� ���

Figure ���� RT Readiness Ratio� Maximum Allocation Time	Average Allocation Time
over Di
ering Heap Sizes �jack� Size���

We obtained this data by timing each object allocation and calculating the

average of those times� We then took the ratio of the maximum value observed to

the calculated average� Figure ��� shows the worse�case to average�case execution

time ratio for object allocation in our benchmarks� We can see quite clearly that

the ratio for MSA is signi�cantly larger than that for either CGC or RCGC in all

cases� Figure ��� provides clear evidence that the the unpredictability of MSA is not

suitable for the RT environment� On average the ratios are around �� and �� times

worse for MSA vs� RCGC at sizes � and �� respectively� The ratios are approximately

� and � times worse for MSA vs� CGC at sizes � and �� respectively�

Although the ratios associated with CGC and RCGC are not insigni�cant� it

is likely this phenomenon is related to object size and JavaTM �s use of an unsorted

freelist allocator� The time required to allocate an object is partially a�ected by the

time required to �nd free memory for that object and initialize the memory� There�

fore� increasing object sizes likely yields longer search and initialization times� Such

phenomena are avoidable� The use of an allocation scheme which o�ers a constant

time bound for example would reduce these ratios�

��

The data were collected from benchmark executions in which the heap sizes

were the same as those calculated for the experiments presented in Section �����

The heap sizes used are found in Figure ���� For the MSA experiments� the smaller

of the two heap sizes 	i�e�� the minimum of the RCGC or CGC heap sizes
 was

used� As a result� these ratios represent a best�case scenario for MSA� This is true

because running a given benchmark with a larger heap may result in fewer allocations

interrupted by a collection cycle� However� those collection cycles would have to

process more objects since the program would be able to allocate more objects without

needing a collection� Thus� assuming there is insu�cient memory to execute the

program without any collection at all� the MSA ratio can only grow as heap size

grows�

In Figure ���� we track the e�ects of heap size on the maximum to average

allocation time ratio for the jack benchmark at size��� We can see quite clearly that

as the heap size increases� the allocation time ratio for MSA also increases� As noted

previously� we see this behavior because increasing the heap size allows the program

to execute for a longer period of time with garbage collection� As a result� with a

larger heap� at the point when collection occurs� there will be more objects to process�

That pattern holds as long as there is insu�cient memory to run the jack program

without any garbage collection� The ratios for both CGC and RCGC are not present

for the heap sizes of ����� and �MB because those heap sizes were not su�cient for

the benchmark to complete execution using our approximate collectors� Figure ���

shows a large drop in the ratios for both CGC and RCGC as the heap size is increased

from ��MB to ��MB� This is likely due to the behavior of the JavaTM allocator itself�

Because it uses an unsorted freelist to maintain free blocks of memory� larger heaps

will tend to reduce the search time required to �nd a free memory block� Since

��MB is close to the minimum heap size that can be used� it is likely that there are

��

allocations for which the list search time is very long� While Figure ��� corresponds

to only the jack benchmark� we believe similar patterns would hold for the rest of

the benchmarks�

It is clear from Figure ��� and Figure ��� that MSA is less appropriate for RT

systems than is either RCGC or CGC� 	 The nature of MSA is such that bounding its

execution and therefore its e�ects on the execution of object allocation is exceedingly

di�cult� Furthermore� even if a bound were calculated� the resource requirements

called for would likely render an RT schedule infeasible�

�The source data for Figure ���
 and Figure ���� are contained in Figure A�	 and Figure A�

respectively�

��

Chapter �

RCGC Classi�cation Algorithm

We have shown that both the Contaminated Garbage Collector 	CGC
 and Reference

Counting Garbage Collector 	RCGC
 o�er e�ective collection solutions for the RT

environment� Further� we have explored the weaknesses of each garbage collection

approach� Having seen the cases in which our collectors fail to perform� it seems logical

to explore the possibility of determining a priori whether one garbage collection

scheme might work better for a given object than another� For example� were it

possible to know all of the objects involved in a reference cycle� CGC could be used

to manage the collection of those objects since RCGC cannot collect objects involved

in cycles� Making such an ideal determination is not possible at compile�time given

the information available� That said� a more conservative approach that examines the

type�system of a given program and determines which types might become involved

in a reference cycle is presented below�

��� Algorithm Description

The fundamental concept behind our approach is the observation that objects may

become involved in reference cycles via direct or indirect references� That is� a given

��

object might have a �eld that allows it to refer directly to itself or through a chain of

references spanning multiple objects� Given this observation� the task we undertake

is determining which types could become involved in a cycle� In order to discover the

elements of this set� we analyze the types of the �elds for each of the object types in

the program�

If we view the referencing capabilities of an application�s type system as a di�

rected graph� then the problem of �nding cycles of object references can be formulated

as the well�known problem of �nding Strongly Connected Components 	SCCs
 ����

Thus� our approach �rst builds a directed graph representing the possible referencing

patterns of a given type set� it then �nds the SCCs�

The algorithm we describe below is conservative in that it may omit classes

that could be reference countable but appear statically to be unsuitable� There is

no harm in viewing any class as reference countable� except for the overhead in

maintaining reference�counting information for objects that cannot be collected using

such information�

Our approach is to bulid a graph whose nodes represent instantiable classes

and whose edges indicate potential references between classes� An edge is placed

between classes x and y if an object of 	actual runtime
 type x could reference an

object of 	actual runtime
 type y� The liveness of any object not involved in a cycle

of such a graph can be determined using reference counting�

� A graph is constructed with a vertex for every class type�

� For a �eld variable of declared type x� let CouldBe	x
 denote the set of actual

runtime types that could be referenced by the variable of type x� We dsecribe

the computation of this set below�

��

� For an actual class of type c� let HasA	c
 represent the set of declared variable

types in

c� super	c
� super	super	c

� � � � �Object

This set represents the 	declared
 types of objects that could be referenced from

an instance of c�

We then perform the following computation�

� For each class c

� For each type t in HasA	c

� For each type u � CouldBe	t
 place an edge in the graph from node

c to u�

Finally� the computation of CouldBe	t
 is the
xed point of the following�

� t � CouldBe	t

� If class c � CouldBe	t
 then so is every subclass of c�

� If interface i � CouldBe	t
 then so is every class that implements i�

� If interface i � CouldBe	t
 then so is every interface that extends i�

By repeating the above rules until nothing is added to CouldBe	t
 we arrive at a �x

point answer�

��� Results

In this section� we present results from the execution of our algorithm on the JavaTM

benchmarks� Figure ��� shows the proportion of object types for each benchmark

�

Reference Countable Types

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

compress mpegaudio jess raytrace db javac jack

Benchmark

%
 o

f
T

yp
es Overall

Non-Java
Java

Figure ���� Percentage of Objects Determined to be Reference Countable

determined to be reference countable� For each benchmark� there are three data

items� There is a value computed for the overall percentage of reference countable

object types� The other two percentages were calculated over the object types built�

in to JavaTM and those object types that are benchmark speci�c� We can see from

Figure ��� that a large percentage of the object types used in each benchmark are

good candidates for reference counting� Over half of the object types used by the

benchmarks are reference countable according to our algorithm� While the benchmark

speci�c results are less impressive� it is important to remember that our algorithm is

�

conservative� As a result� it is possible that classes not detected to be be reference

countable may well never become involved in a reference cycle� �

�The source data for Figure ��� are found in Figure A���

�

Chapter �

Concurrent Execution of RCGC

and CGC

The data presented in previous chapters have shown that there might be some advan�

tage to being able to select the GC mechanism on a per�object basis� To achieve this

goal� we must consider the problems associated with using multiple GCs concurrently�

��� Problem Overview

Given a program� we wish to separate the objects referenced by that program into two

classes� one class of objects is managed by the Reference Counting Garbage Collector

	RCGC
� and the other by the Contaminated Garbage Collector 	CGC
� There is one

central issue that must be addressed�

� How do we handle references that occur between objects managed by the di�er�

ent collectors� That is� what action should be taken when an object managed

by RCGC references an object managed by CGC and vice versa�

�

��� Inter�Class Object References

Given an object type space that is divided into two classes 	one class managed by

RCGC and the other by CGC
� there are four possible referencing patterns� However�

references that occur between objects in the same set are not a concern since the GC

responsible for a given set has a facility for dealing with those references already�

Thus� for the purposes of this discussion� we consider only references that occur

between objects managed by di�erent collection strategies� In the following� we argue

that handling such references is a relatively straightforward operation�

	���� A CGC Object References an RCGC Object

Let us consider an object X� managed by CGC� and an object Y� managed by RCGC�

Let us assume that X references Y at some point during program execution� Under

these circumstances� nothing needs to be done� The reference counting semantics for

Y will ensure its correct collection behavior� As for X� there is no need to perform

a union since Y is not part of any equilive set� Further� we need not worry about Y

being collected before X� The only way Y can be collected before X is if the reference

from X to Y were removed and there were no other references to Y� causing its

reference count to drop to �� In this case� there is no problem because the reference

from X to Y no longer exists�

	���� An RCGC Object References a CGC Object

Let us now consider the case in which Y refers to X� In order to ensure the proper

collection behavior for X� we simply modify its collection strategy slightly by adding

a reference count �eld to X� This �eld will keep track of the number of RCGC object

references for a given CGC object� Given the operation of the CGC� we can simplify

this strategy by keeping only one reference count per equilive set� That is� the rep�

resentative object of an equilive set will have a reference count �eld that will be the

number of RCGC objects with live references to members of that set� As a result� we

will only detect an equilive set to be collectible if the CGC algorithm itself �nds the

set to be dead and the reference count for that set is �� Furthermore� upon a union�

the representative element of the newly created set will have a reference count equal

to the sum of the reference counts of the two original sets� We now follow with a

proof that adding the reference count will not result in improper operation�

��� Proof of Correctness for Reference Counting

of CGC Objects

Let us begin with the following� let us assume there is an object y managed by CGC

that is part of an equilive set Sy� Futher� let there be a set of references of size r from

objects not managed by CGC whose targets are elements of Sy� We can de�ne the

reference count of y as follows�

rc	y
 � rc	Sy
 �
Pr

i��	�

As mentioned above� should two equilive sets be merged� we need only add their

respective reference counts�

	���� Correctness of Summing Reference Counts for Union

Operations

We now argue that the reference count of an equilive set created by the union of

two smaller sets is the sum of the reference counts of the two smaller sets� Consider

�

two equilive sets ES� and ES� with reference counts of x� and x� respectively� Let

us assume that these two sets are unioned to form a single set ES �� Based on the

operation of CGC� we know that ES� and ES� must be disjoint sets� Therefore� there

can be no overlap in the pool of non�CGC object references to ES� and ES�� As a

result� the reference count for ES � must be equal to x� � x��

�

Chapter �

Conclusions and Future Work

For a programmer� the advantages of automatic garbage collection are well�known� As

a result� the use of garbage collection is commonplace in general purpose computing�

However� the often unpredictable nature of memory usage during program execution

complicates matters signi�cantly in the RT domain� As a result� direct language

memory management support has been avoided by RT application developers leaving

the task of explicitly allocating and deallocating objects or memory regions 	as in

the RTSJ
 to the programmer� This forces the programmer to maintain at least a

partial view of the overall memory structure of a given program at every allocation

point� While such an approach addresses RT predictability concerns� it complicates

application development�

From the preceding work� we can e�ectively compare our alternative garbage

collection approaches to the Mark and Sweep Algorithm 	MSA
 and to each other�

Additionally� we can comment on the degree to which these collection mechanisms are

suitable for RT� It is clear from the data that neither RCGC nor CGC collects all of the

objects collected by MSA� However� both methods are reasonably successful in terms

of object collection� Further� while both approximate collectors induce overhead� it

is not so large an overhead as to mitigate their bene�ts� Most importantly� whereas

�

bounding the operation of MSA is impractical� the incremental nature of both RCGC

and CGC makes them ideal candidates for garbage collection when RT constraints

must be met�

Our work also shows that RCGC tends to perform better in general� how�

ever� there are cases in which CGC is a more appropriate choice� Each collector has

limitations in the realm of object collection� the fact that these limitations are com�

plementary provides direction for future work� One area of future work might be to

determine how we can combine these garbage collection approaches to increase their

overall collection e�ectiveness� For example� we might wish to use RCGC to collect

objects containing only primitive data since they cannot become involved in reference

cycles� However� we would use CGC to collect objects representing the nodes of a

doubly�linked list since those objects may well become part of a reference cycle� In

addition� �nding a means of using MSA with RCGC and CGC in a limited fashion

while still meeting RT demands would be advantageous�

�

Appendix A

Support Data for Experiments

The data that follow are the source data for the �gures presented in the preceding

thesis� Figure A�� is the support data for Figure ��� Figure ��� and Figure �� The

source data for Figure ��� Figure ��� Figure ��� and Figure �� are displayed in

Figure A��� Figure A�� contains the source data for Figure ��� Figure A� depicts

the support data used to create Figure ���� Figure ���� and Figure ���� Figure A��

provides the source data for Figure ���� Figure ��� and Figure ���� Figure A��

and Figure A�� contain the the source data used by Figure ��� and Figure ���

respectively� Finally� Figure A�� contains the source data used for Figure ��� ��

�User types refer to those dened by the benchmarks themselves� Java types are those built�in

to Java�

�

Benchmark Size��
CGC RCGC RCGC�CGC MSA Collectible � CGC � RCGC

compress �� � ��� � ��� �� ��
mpegaudio � � ��� � ��� �� ��
jess � ����� ������ ���� ����� �� ��
raytrace ������ �� ������� �� ������� ���
db � ��� ����� ��� ����� � ��
javac � ����� ��� ����� ������ �� ��
jack � ���� ������� � ������� � ���

Size���
compress �� �� ��� ��� ��� � ��
mpegaudio � �� ��� ���� ����� �� ��
jess � ����� ����� ����� ������� � ��
raytrace ������ �� ������� �� ������� ���
db � ����� ������� �� ������� �� ���
javac � ��� ������ ����� ������ �� ��
jack � �� ������� � ������� � ���

Figure A��� Object Collection E
ectiveness Data Table

Benchmark Size���
Average Rot�Time log�
Average Rot�Time�

Observed Adjusted Observed Adjusted
CGC RCGC CGC RCGC CGC RCGC CGC RCGC

compress � � ������ ������ ���� ���� ��� ���
mpegaudio ������� �������� ������� ��������� ���� ���� ���� ����
jess ������ ����� ������ ����� ��� ��� �� ��
raytrace ������ �������� ������� �������� ���� ���� ���� ����
db ����� ����� ����� ����� ���� ��� ���� ��
javac ������ ����� ����� ���� ��� ��� ��� ���
jack ����� ������ ����� ������ ��� ��� ���� ���

Size���
compress � � ������ ������ ���� ���� ��� ���
mpegaudio � � ������ ������ ���� ���� ��� ���
jess ������� ����� ������� ����� ���� ���� ���� ����
raytrace ������ �������� ������� �������� ���� ���� ���� ����
db ��������� ������� ��������� ������� ���� ��� ���� ����
javac ���� ������ ���� ������ ��� ��� ��� ���
jack ����� ������ ����� ������ ��� ��� ���� ���

Figure A��� Average Rot�Time Data Table

��

Benchmark Size���
����� ��������� ��������� ��������� ������	�� ��	������ ����

compress CGC ��� �� � � � � ��
RCGC ��� �� � � � � ��

mpegaudio CGC ��� �� � � � � ��
RCGC �� � � � � ��

jess CGC ������ ����� ����� ��� �� �� �
RCGC ������ ����� ��� ��� �� � �

raytrace CGC ������ ���� ���� ������ ����� � �
RCGC ���� ���� ����� ������ ������ � �

db CGC ���� ������ ����� ���� ������ � �
RCGC ����� ������ ����� ����� ��� � �

javac CGC ������� ����� ��� ��� �� � �
RCGC ������ ����� ��� �� ��� � �

jack CGC ������� ������ ����� ����� �� �� �
RCGC ������� ������ ���� ����� � �� �

Total CGC ������� ������ ����� ������ ������ �� ��
RCGC ������� ������ ����� ������ ������ �� ��

� CGC ���� ���� ���� ���� ����� ���� ����
RCGC ����� ����� ���� ���� ���� ���� ����

Figure A��� Rot�Time Distribution Data Table �Size����

Size��
Execution Time s� Slowdown over MSA Speedup

Benchmark CGC RCGC MSA CGC RCGC CGC over RCGC

compress ������ ������ ������ ���� ���� ����
mpegaudio ���� ���� ����� ���� ���� ����
jess ���� ���� ���� ���� ��� ����
raytrace ����� ������ ����� ���� ����� �����
db ���� ���� ���� ���� ���� ����
javac ���� ���� ���� ��� ��� ���
jack ����� ���� ���� ���� ���� ����

Size���

compress ������ ������ ����� ���� ���� ���
mpegaudio ������ ������ ����� ���� ���� ����
jess ��� ���� ���� ���� ���� ���
raytrace ����� ��� ����� ���� ���� ���
db ���� ����� ����� ���� ���� ����
javac ����� ����� ����� ���� ��� ����
jack ����� ������ ������ ���� ���� ����

Figure A�� Speedup	Slowdown Data Table

��

Size��
Execution Time s� Slowdown over MSA Speedup

Benchmark CGC RCGC MSA CGC RCGC CGC over RCGC
compress ����� ������ ����� ���� ��� ����
mpegaudio ���� ���� ����� ���� ���� ���
jess ��� ���� �� ���� ���� ����
raytrace ����� ����� ����� ���� ����� �����
db ��� ���� ���� ���� ��� ����
javac ���� ���� ���� ���� ���� ����
jack ���� ���� ���� ���� ���� ����

Size���

compress ������ ������ ����� ���� ��� ����
mpegaudio ����� ������ ����� ���� ���� ���
jess ���� ����� ����� ���� ���� ����
raytrace ���� ��� ���� ���� ���� ���
db ���� ����� ���� ���� ���� ����
javac ����� ���� ����� ���� ���� ����
jack ������ ������ ������ ���� ���� ����

Figure A��� Speedup	Slowdown with Smaller Heaps Data Table

Size��
MSA RCGC CGC

Benchmark Avg Max Ratio Avg Max Ratio Avg Max Ratio
compress ��� ���������� ������� ���� ��� ������ ��� ������ �����
mpegaudio ���� ����� ����� ��� ������ ������ ���� ����� �����
jess ���� �������� �������� ���� ��� ������ ���� ������ ������
raytrace ���� ����������� ���������� ���� ����� ���� ��� ���� ����
db ���� �������� ������ �� ������ ����� ��� ������ �����
javac ���� ���������� ��������� ���� ������ ��� ���� ����� ������
jack ���� ��������� �������� ���� �������� ������ �� �������� �������

Size���
compress ���� ��������� ������ ���� ������ ���� ���� ������ ������
mpegaudio �� ��������� ������ �� ������ ������ ���� ������ ����
jess ���� ��������� ������� ���� ������� �������� ���� ������� ������
raytrace ����� ������������ ���������� ���� ������� ������� ��� �������� �������
db ���� ��������� ��������� ���� �������� ������� ���� ����� ������
javac ��� �������� ������� ���� ������� �������� ���� ����� ������
jack ���� ���������� ��������� ���� ��������� �������� ���� ��������� ���������

Figure A��� Real�Time Readiness Ratio Data Table

��

MSA RCGC CGC
Heap Size Avg Max Ratio Avg Max Ratio Avg Max Ratio
�MB ���� ��������� �������
�MB ��� ���������� ���������
�MB ��� ��������� ���������
	MB �� ���������� ���������
��MB ���� ������� �������� ��� ������� ����� ��� ������� ������
��MB ��� ��������� ���������� ���� ������ ����� ���� ������ �����
��MB ��� ��������� ������� ���� ������ ����� ���� ����� ����
��MB ���� �������� �������� ��� ������ ���� ���� ����� �����
�	MB ���� ������� ������� ��� ������ ����� ���� ���� ����
��MB ���� �������� ������� ��� ����� ���� ��� ������ ���

Figure A��� Real�Time Readiness Ratio Data Table �jack Size��

� of RC Types � of Types � RC Types
Benchmark User Java User Java Overall User Java
compress �� ��� �� ��� ���� ��� ����
mpegaudio �� ��� �� ��� ���� ����� �����
jess ��� ��� ��� ��� ���� ����� �����
raytrace �� ��� � ��� ����� ����� ����
db � ��� �� ��� ����� ����� �����
javac �� ��� ��� ��� ����� ���� �����
jack � ��� �� ��� ���� ����� ����

Figure A��� RCGC Classi�cation Algorithm Results Data Table

��

References

��� David F� Bacon� Perry Cheng� and V� T� Rajan� A real�time garbage collector

with low overhead and consistent utilization� In Proceedings of the ��th ACM

SIGPLAN�SIGACT symposium on Principles of programming languages� pages

�������� ACM Press� �����

��� Bollella� Gosling� Brosgol� Dibble� Furr� Hardin� and Turnbull� The Real�Time

Speci
cation for Java� Addison�Wesley� �����

��� Dante J� Cannarozzi� Michael P� Plezbert� and Ron K� Cytron� Contaminated

garbage collection� Proceedings of the ACM SIGPLAN ��� conference on Pro�

gramming language design and implementation� pages ������� �����

�� T� H� Cormen� C� E� Leiserson� and R� L� Rivest� Introduction to Algorithms�

MIT� �����

��� SPEC Corporation� Java SPEC benchmarks� Technical report� SPEC� �����

Available by purchase from SPEC�

��� James Gosling� Bill Joy� Guy Steele� and Gilad Bracha� The Java Language

Speci
cation Second Edition� Addison�Wesley� Boston� Mass�� �����

��� Tim Lindholm and Frank Yellin� The Java Virtual Machine Speci
cation�

Addison�Wesley� �����

�

��� Scott Nettles and James O�Toole� Real�time replication garbage collection� In

ACM SIGPLAN Conference on Programming Language Design and Implemen�

tation� pages �������� �����

��� Robert Tarjan� Depth��rst search and linear graph algorithms� SIAM Journal

of Computing� ����������� September �����

���� Paul R� Wilson� Uniprocessor garbage collection techniques 	Long Version
�

Submitted to ACM Computing Surveys� ����

���� Paul R� Wilson� Mark S� Johnstone� Michael Neely� and David Boles� Dynamic

storage allocation� A survey and critical review� In Henry Baker� editor� Proceed�

ings of International Workshop on Memory Management� volume ��� of Lecture

Notes in Computer Science� Kinross� Scotland� September ����� Springer�Verlag�

��

Vita

Matthew P� Hampton�

Date of Birth June �� ����

Place of Birth Cape Girardeau� Missouri

Degrees B�S� Summa Cum Laude� Applied Science 	Computer Sci�

ence
� May �����

from Washington University�

Publications Steven M� Donahue� Matthew P� Hampton� Ron K� Cytron�

Mark Franklin� and Krishna M� Kavi� �Hardware Support

for Fast and Bounded Time Storage Allocation� in Pro�

ceedings of the Workshop on Memory Processor Interfaces

�WMPI� in conjunction with the International Symposium

of Computer Architecture� Anchorage� Alaska� May �����

Steven M� Donahue� Matthew P� Hampton� Morgan Deters�

Jonathan M� Nye� Ron K� Cytron� and Krishna M� Kavi�

 Storage Allocation for Real�Time� Embedded Systems� in

Proceedings of the First International Workshop on Embed�

ded software� Washington � D�C�� May �����

May� ����

	Using Contaminated Garbage Collection and Reference Counting Garbage Collection to Provide Automatic Storage Reclamation for Real-Time Systems
	Recommended Citation
	Using Contaminated Garbage Collection and Reference Counting Garbage Collection to Provide Automatic Storage Reclamation for Real-Time Systems

	tmp.1471023011.pdf.3M8Z3

	Abstract: Abstract: Language support for dynamic storage
management simplifies the application programming task immensely. As a
result, dynamic storage allocation and garbage collection have become
common in general purpose computing. Garbage collection research has led
to the development of algorithms for locating program memory that is no
longer in use and returning that unused memory to the run-time system for
later use by the program.

While many programming languages have adopted automatic memory reclamation
features, this has not been the trend in Real-Time systems. Many
garbage collection methods involve some form of marking the objects in
memory. This marking requires time proportional to the size of the heap
to complete. As a result, the predictability constraints of Real-Time are often not satisfied by such approaches.

In this thesis, we present an analysis of several approaches
for program garbage collection. We examine two approximate
collection strategies (Reference Counting and Contaminated Garbage
Collection) and one complete collection approach (Mark and Sweep Garbage
Collection). Additionally, we analyze the relative success of each
approach for meeting the demands of Real-Time computing.

In addition, we present an algorithm that attempts to classify
object types as good candidates for reference counting. Our approach is conservative and uses static analysis of an application's type system.

Our analysis of these three collection strategies leads to the
observation that there could be benefits to using multiple garbage
collectors in parallel. Consequently, we address challenges
associated with using multiple garbage collectors in one application.

	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: April 28, 2003
	Author: Authors: Hampton, Matthew P.
	Title: Using Contaminated Garbage Collection and Reference Counting Garbage Collection to Provide Automatic Storage Reclamation for Real-Time Systems - Master's Thesis, May 2003
	ReportNumber: 2003-31
	DepartmentName: Department of Computer Science & Engineering

