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Preface

Traditionally, developers of software for real-time and embedded systems have resorted to low-level

programming tools and implementation mechanisms during the development cycle. It is routinely argued that

such techniques are needed due to several constraints and requirements on real-time and embedded systems

development, including the following:

� The resulting software must have a small memory footprint. Both the code size and the amount of

memory used during execution must be considered. In designing software for general-purpose plat-

forms (desktop computers, for example), this concern is generally not regarded as significant next

to the features, quality, and overall correctness of the resulting software. In an embedded system or

other “special-purpose” platform, however, a small memory footprint may be a first-class engineering

requirement, considered a vital part of the correctness of the system.

� In real-time systems, some (and perhaps all) logical code segments must be reasonably bounded in

execution time; optimization of the worst case, rather than the average case, is essential. Latency in

response time to user, network, and internally-generated events must be bounded to guarantee that a

critical operation will complete at a particular time or will operate at a particular rate. Notably, this

implies that any storage requests made from a code segment with real-time constraints must guarantee

satisfactory completion within a particular execution window. This timeliness constraint is a matter of

correctness in real-time systems.

� If the target platform is a device operating on a battery, it must budget its power consumption, and

ideally it should adapt to low-power conditions by suspending non-critical, power-expensive opera-

tions. Software running on such systems thus has an additional responsibility to reason logically about

very low-level, hardware-specific constraints, features not present in most of today’s general-purpose

software (excepting, of course, operating systems, some graphics applications, and similar modules).
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Such adaptive logic can naturally be quite complex for advanced, flexible, and upgradeable embedded

systems, such as recent Personal Digital Assistants (PDAs) on the market.

Software developers targeting real-time and embedded platforms are therefore forced to reason about

these software concerns throughout their code, whereas developers of general-purpose software may relegate

such matters to an operating system, a utility library, or, more generally, a layer of Distributed Object Comput-

ing (DOC) middleware [17] or virtual machine [48] capable of scheduling and managing resources. Several

advantages are associated with handling such concerns in middleware:

� Portability is ensured across platforms supported by the middleware layer. Higher-level abstractions

are available to developers, providing robust solutions designed and coded by experts and proven em-

pirically.

� Code reuse is realized. This includes several benefits:

– Ad hoc solutions provided within a group or company or even tailored for a specific project

are often unnecessary and are better handled by using available implementations of design and

architectural patterns [30, 13, 64].

– Development time is reduced. The use of already-engineered, high-level abstractions frees devel-

opers from constantly dealing with low-level technical concerns.

– Reuse of standard, high-level middleware abstractions has a large impact on code maintainability.

– Commercial Off The Shelf (COTS) components built using the standard middleware layer may

be utilized.

� Communications are standardized. Code that targets a layer of middleware can communicate with

other software written by different developers but for the same middleware platform, and inter-vendor

middleware communication is often specified by higher-level standards [56, 59].

� Bugs in production code are reduced. By targeting a well-designed, well-tested middleware package,

the number of bugs in shipped software can be reduced. In critical real-time and embedded systems,

this can be a serious matter of human safety and system security.
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A layer of middleware that supports real-time and embedded concerns is thus needed. Much research

and development effort has been and continues to be directed toward this goal [17, 56], and has brought high-

level constructs and strong portability to real-time and embedded developers. Java1 [33, 2] provides high-level

constructs at the language level, supported by the JVM, and higher-level, distributed concerns are available

in class libraries [16, 69, 70, 45]. Java has indeed enjoyed wide acceptance, from applications deployed on

large servers to those deployed on small, hand-held devices; however, the real-time community has largely

ignored Java for a variety of reasons.

Table 1 coarsely juxtaposes Java and real-time programming. Naturally, this is an oversimplification,

as the truth about system requirements depends upon the particular software in question. Still, it is useful

to note that while Java supports high-level programming constructs largely taken for granted in much of the

programming world, including automatic storage management, objects, and retargetable bytecode, real-time

programmers have concerns that have traditionally kept them from enjoying these language and runtime fea-

tures and have coded tailored memory allocators and hard-coded program logic and concurrency scheduling

in an attempt to keep memory footprint small and execution time predictable. As research continues in this

area, however, high-level features will find their way into real-time programmers’ toolkits because of their

enormous benefits when building large, complex systems that must scale, must be quickly and economically

developed, must be maintainable, and must be retargetable.

Table 1: Java programming vs. real-time programming.

Java Programming Real-Time Programming
High-level Low-level
Popular Specialized art
Object-Oriented Manually-optimized
Automatic memory management Specialized memory allocators
Reusable components Tailored components
Flexible, adaptable Hard-coded behavior
Scalable Doesn’t scale
Portable Hardware-dependent
Optimize the average-case Reasonably-bounded worst-case is critical
Memory use varies Memory request latency is critical
Coarse control over concurrency Fine control over concurrency

Recently, an expert group issued the Real-Time Specification for Java [10] (RTSJ) in an attempt to

reconcile Java and real-time programming differences. This document describes a semantic addendum and

supplemental class library for Java designed to support real-time applications. There are no changes to the

1Java is a registered trademark of Sun Microsystems, Inc.

xiii



base language; thus, compilers and other program-development tools are largely unaffected by the RTSJ’s

mechanisms.

But real-time and embedded systems developers face other challenges as well. Besides the ad-

vantages to high-level reasoning about their programs, simplicity, and reusability afforded by traditional,

standardized middleware, there are “concern complexities” to be addressed. Chapter 3 introduces Advanced

Separation of Concerns (ASoC) technologies and their applicability to real-time and embedded systems soft-

ware. In particular, proper use of these technologies on top of standard middleware can afford code reuse and

design simplicity beyond that which is attainable with object middleware alone.

The RTSJ touches many areas of the Java programming language, including threads, task priori-

tization, event handling, synchronization, and memory management. We introduce these different areas in

Chapter 1, but will focus primarily on the aspects of the RTSJ concerned with storage management, described

in depth in Chapter 2.

After the aforementioned discussion of ASoC in Chapter 3, we identify a difficulty in using the RTSJ

memory system in Chapter 4 and propose a solution in Chapter 5. We tie together this solution and ASoC

in Chapter 6 and describe our implementation. Experimental results for automatically assigning objects to

RTSJ scopes for ordinary Java programs are given in Chapter 7. Related work and concluding remarks are

provided in Chapter 8 and Chapter 9, respectively.

The main contributions of this thesis are to describe the automated harvesting of potential RTSJ

scoped memory areas in ordinary, single-threaded Java programs with the flat Java memory model, to provide

some early evaluation of the objects that can take advantage of these memory areas instead of relying upon

the standard garbage collected heap, and to argue the relevance of ASoC for real-time and embedded systems

software development. This thesis and the research it describes are concerned primarily with Java programs.

However, we believe our technique is applicable to the more general problem of assigning objects to stack

frame-associated memory regions and, therefore, applicable to other systems in which region-based memory

management has been deployed (see Chapter 8 for a brief discussion of these systems).

xiv
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Chapter 1

Introduction to Real-Time Java

The Real-Time Specification for Java [10] (RTSJ) adds various real-time components to the Java1 [33, 2]

programming language. In particular, it specifies:

� A new set of classes constituting a real-time Application Programming Interface (API), comprising the

javax.realtime package;

� Time and scheduling guarantees of an RTSJ-conforming platform;

� Programmatic mechanisms that must be explicitly used by a programmer for the platform to provide

these guarantees; and

� Those implementation decisions that are left to implementation vendors

This chapter introduces each of these areas, discusses its relationship to similar constructs in core Java,

surveys the relevant API, and briefly comments on the approach. The specification’s suitability for real-time

programming is stressed. The RTSJ proposes no modification or extension to Java syntax.2 This approach is

evaluated in a concluding section.

1Java is a registered trademark of Sun Microsystems, Inc.
2Other real-time proposals for Java have included syntactic modifications to the core language; see, for example, the Real-Time Core

Extensions [61] (RTCE).
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This chapter uses class diagram similar to the Unified Modeling Language [57] (UML) for indicating

Java and RTSJ class relationships. In particular, names of interfaces, abstract classes, and abstract methods

are shown in an oblique font, public methods are denoted with a plus (+), and protected methods are denoted

with a hash (#). Java’s implements relation is shown with a dotted line with a closed arrow in the direction

of the relation, and Java’s extends relation is shown with a solid line and an closed arrow in the direction of

the relation. RTSJ interfaces and classes are distinguished from those available in core Java by a thick outline.

A visual summary of this notation is shown in Figure 1.1. Please see [57] or [62] for further discussion of

modeling object designs.

Note that these diagrams and this chapter are intentionally incomplete. The class diagrams and

associated text are intended only to provide a general overview of the RTSJ’s object architecture and may

exclude significant portions of the API. See [10] for additional information about the RTSJ and for complete

API documentation.

+ publicMethod()
+ publicAbstractMethod()
# protectedMethod()

StandardJavaClass

StandardAbstractJavaClass

+ publicMethod()
+ publicAbstractMethod()
# protectedMethod()

<<interface>>

+ publicMethod()

StandardRTSJInterface

+ publicMethod()
+ publicAbstractMethod()
# protectedMethod()

StandardAbstractRTSJClass

<<interface>>
StandardJavaInterface

+ publicMethod()

+ publicMethod()
+ publicAbstractMethod()
# protectedMethod()

StandardRTSJClass

(extends)

(implements)
(implements)

(extends)

Figure 1.1: Sample notation used for Java and RTSJ class diagrams.

An editorial note on RTSJ versions: The Real-Time Specification for Java was first published in 2000 as

a book [10], and this has been called the “first edition” of the specification. A revision, the “final specification
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version 1.0,” was completed in November 2001, and it is available online [11]. The RTSJ reference imple-

mentation from TimeSys [73], development of which took place between the release of the two specifications,

implements some of each but neither in full. Except where noted, we refer to the original, published version

found in [10].

1.1 Threading model

In Java, the creation and management of threads is a relatively simple task: a programmer needs only to

subclass the java.lang.Thread object and provide code for concurrent execution in a run() method.3

Concurrency is then triggered via the start() method. In the RTSJ, this simplicity is largely kept, yet

additional parameters may be specified to control the way in which a given thread is scheduled.

javax.realtime.NoHeapRealtimeThread

javax.realtime.RealtimeThread

+ addIfFeasible()
+ setReleaseParameters()
+ setSchedulingParameters()

javax.realtime.Schedulable
<<interface>>

+ getReleasePaarameters()
+ getMemoryParameters()
+ addToFeasibility()

+ getScheduler()
+ getSchedulingPaarameters()
+ removeFromFeasibility()
+ getSchedulingParameters()

java.lang.Thread

+ run()
+ interrupt()
+ join()
+ start()

java.lang.Runnable
<<interface>>

+ run()

Figure 1.2: Java and RTSJ thread classes.

Figure 1.2 shows Java and RTSJ thread classes. There are three parameter kinds associated with

real-time threads: the SchedulingParameters type specifies information about how a thread should be

3This is not the only way to spawn a thread in Java; one can, for example, subclass java.util.Timer instead, or provide the
Thread constructor with a Runnable object intended to specify the execution behavior of the thread.
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javax.realtime.ReleaseParameters

missHandler: AsyncEventHandler
overrunHandler: AsyncEventHandler
deadline: RelativeTime
cost: RelativeTime

deadline: RelativeTime
cost: RelativeTime

javax.realtime.PeriodicParameters

minInterarrival: RelativeTime

javax.realtime.SporadicParameters

javax.realtime.AperiodicParameters

missHandler: AsyncEventHandler
overrunHandler: AsyncEventHandler
deadline: RelativeTime
cost: RelativeTime

start: HighResolutionTime
period: RelativeTime

javax.realtime.ProcessingGroupParameters

javax.realtime.SchedulingParameters

importance: integer

javax.realtime.ImportanceParameters

priority: integer

javax.realtime.PriorityParameters

Figure 1.3: RTSJ thread parameter classes.

scheduled relative to other schedulable tasks; the ReleaseParameters type specifies how the a thread

should be scheduled with respect to time; and the ProcessingGroupParameters type specifies a limit

to the amount of resources that a group of threads may consume. These parameter types are diagrammed in

Figure 1.3 along with all of their subclasses.

1.1.1 Synchronization

Like threads, Java synchronization is built into the core language instead of being included as part of an

add-on library or provided as an operating system-dependent feature. Each object in Java has an associated

recursive lock that can be acquired and released in a scoped manner. Synchronization is specified by Java’s

synchronized construct. At first this seems particularly suited to real-time software development that

needs this functionality; unfortunately, however, this built-in locking mechanism can be inappropriate for

real-time software that requires the ability to attempt to acquire the lock in a nonblocking fashion.
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Doug Lea has provided additional locking primitives not present in standard Java that can help in

this regard [45]. (These add-on classes are coded in pure Java and can operate on any compliant Java2 v1.2

Java Virtual Machine (JVM), including RTSJ-compliant JVMs.)

Every Java object can be used as a monitor. That is, in addition to locks, Java objects have condition

variables. Condition variables provide a facility for simple condition notification between threads without

polling (busy-waiting).

For additional information about issues in Java concurrent programming, see [44]; for additional

information about RTSJ synchronization, see [10] chapters 3, 4, and 6.

1.2 Features

The RTSJ also contains some “utility” features that are not part of any particular subsystem. These features

include time measurement and environment access.

1.2.1 Keeping time

The RTSJ provides time classes for reflecting about time. They thus perform a similar function to Java’s

standard java.util.Date type, with the exception that these APIs are capable of nanosecond precision

(java.util.Date is limited to millisecond precision), can more easily represent relative times through

the RelativeTime class, and can more easily represent frequencies through the RationalTime class.

The class hierarchy of RTSJ time classes is shown in Figure 1.4. The Clock class is not shown; this

class provides a real-time clock interface capable of scheduling timers.

1.2.2 Software access to execution platform

The RTSJ provides a POSIXSignalHandler class capable of scheduling programmatic responses to stan-

dard POSIX signals (as SIGINT or SIGSEGV) on platforms that support such signals. By calling the static
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milliseconds: long integer
nanoseconds: integer

+ set(long integer, integer)
+ relative(Clock)
+ absolute(Clock)

javax.realtime.HighResolutionTime

<<interface>>

+ compareTo(Object)

java.lang.Comparable

frequency: integer

+ getFrequency()
+ setFrequency(integer)

+ getInterarrivalTime()

javax.realtime.RationalTime

+ add(RelativeTime)

+ getInterarrivalTime()
+ subtract(RelativeTime)

javax.realtime.RelativeTime

+ add(RelativeTime)

+ getDate()
+ subtract(RelativeTime)

javax.realtime.AbsoluteTime

Figure 1.4: RTSJ time classes.

method addHandler() on POSIXSignalHandler, one can associate a list of asynchronous event han-

dlers to a particular signal; a POSIX signal-handling thread runs in the RTSJ-compliant JVM and dispatches

to the appropriate handlers when the underlying platform delivers a signal.

The RTSJ unfortunately under-specifies the handling of POSIX signals by an RTSJ-compliant JVM.

It is unclear whether the addHandler(), removeHandler(), and setHandler() routines, which

are all synchronized static methods of the POSIXSignalHandler class, could block for a period of time

if the internal list of handlers is currently locked (as it might be, for example, when another thread is in the

process of adding a signal handler).4 The use of this feature in real-time software is thus limited.

4This comment is based on [10]. The version of the specification found in [11] corrects this issue—in part—by removing the
keyword “synchronized” from the methods’ signatures. (In this case, the reference implementation [73] conforms to [10].) Still, no
statement is made on synchronization within each method’s implementation, which would appear to defer to the RTSJ JVM implementor
any decision about thread synchronization and implementation in this case. Such an implementor could either handle the dispatching
mechanism largely inside the JVM, or rely more heavily upon the host operating system to dispatch to user code as appropriate. In
either case, however, an RTSJ-compliant JVM running on a host operating system that supports POSIX signals must support multiple
dispatches for a single POSIX signal, in some form, regardless of the host operating system’s support for such a feature.
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1.3 Tasks and event handlers

The RTSJ allows the developer to specify tasks run at a particular time (RTSJ Timers) and define new types of

asynchronous events that can be handled. Once an event has been identified and an AsyncEvent instance

describing it has been discovered or generated, it can be associated with AsyncEventHandler objects.

Each AsyncEventHandler represents a particular programmatic response to the event and has an associ-

ated runtime cost and scheduling parameters, rather like a RealtimeThread.5 However, RTSJ-compliant

JVMs are designed with the expectation that large numbers of AsyncEventHandler objects may exist in

the system at any one time, yet few of them are active simultaneously.6 Violating this assumption can, then,

be expected to result in a weakening of real-time guarantees.

1.4 Memory model

In Java, memory is segregated into the stack, a set of registers (“local variables”), and the heap. Stack

elements and registers contain 32- and 64-bit floating points, object references, and return addresses. The

JVM performs nearly all computation on the stack.7 Objects only exist in the heap; the Java model does not

allow for stack-allocated objects. Object storage is returned to the system with the aid of a garbage collector,

which can detect objects that are no longer in use.

In making no changes to the Java language, the RTSJ keeps the standard Java memory heap. How-

ever, the real-time development community as a whole is unwilling to accept garbage collection due to its run-

time cost. Even more troublesome is the unpredictability of garbage collection—garbage collection schemes

cannot, in general, guarantee that they will reclaim space or how long it will take to find space that may be

reclaimed. If a program executes a new operation to allocate space for a new object, the garbage collector

may need to be invoked at that point to reclaim enough space for the allocation to proceed. Thus garbage

collection can be infeasible for real-time systems that must absolutely guarantee that they will meet their

deadlines.
5This similarity is structurally represented in the class structure: RealtimeThread and AsyncEventHandler both implement

the Schedulable interface.
6This expectation is stated explicitly in [10], page 129, and also in [11], page 183.
7The IINC instruction is a notable exception; it performs computation in a register.
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The RTSJ does not mandate real-time garbage collection and, in fact, dismisses it. The expert group

argued that, as of the time of finalization of the specification (November 2001), no garbage collector was

suitable for all real-time applications.8 Numerous proposals exist for real-time garbage collection schemes,

including , and these choices are certainly open to RTSJ JVM implementors.

Though the specification makes no strict guarantees for threads that can access garbage-collected

storage, RTSJ-compliant JVM must support a garbage-collected heap. It also provides other memory areas

that reduce the need for incurring garbage collection overhead. Specifically, it provides an immortal memory

area for objects that are known never to become dead and scoped memory areas—the cousin of stack allo-

cation, scoped memory allocation allows that the program free itself of the need for garbage collection by

meticulously placing objects into scopes outside of which they are known to be dead. However, as demon-

strated in Chapter 2, this approach has serious consequences in the readability and understandability of code,

and the clean separation of design goals in general. Chapter 2 also gives an in-depth description of the RTSJ

memory model.

1.5 Comments

The Real-Time Specification for Java [10] brings real-time programming to Java. Since it makes no mod-

ifications to the underlying, popular Java language, it affords real-time developers the full range of high-

level language features taken for granted in the programming world at-large, including strong type safety, an

object-oriented style of programming, and automatic store management. However, without enhanced syn-

tax to specifically handle the concerns of real-time and embedded systems, RTSJ code can easily become

verbose, unwieldy, and unmanageable.

8See [10] page 59 or [11] pages 76–77.
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Chapter 2

Real-Time Java Memory Model

The work presented here is motivated partly by the RTSJ specification, which itself was motivated by the

desire to make Java attractive to developers of real-time applications. While the RTSJ could itself be subject

to criticism, for the purposes of this work we adopt its views concerning how Java can be used while still

providing real-time guarantees for critical tasks. In this chapter we discuss the relevant portions of the RTSJ

for our work.

2.1 The RTSJ meets garbage collection

As discussed in Chapter 1, the RTSJ [10] covers many issues related to real-time programming. We will now

limit ourselves to matters of storage and threads and their relationship to the garbage collector.

Although research has addressed the viability of real-time garbage collection to some extent [54, 18],

it is still questionable [55] whether a collector and allocator can always provide storage for an allocation

request (i.e., a new command) in time proportional to the size of the request. Consider the case where the

heap is full except for a few dead objects. All exact collectors require some form of marking phase to discover

objects that are still live. Generational collection [79] can limit the extent of marking but at the expense of

ignoring potentially dead objects in older generations. The result is that the time taken to perform a new



10

command cannot be reasonably bounded if garbage collection is required to liberate storage to satisfy the

request.

Such bounds are essential if the thread requesting the storage must adhere to an execution-cost bud-

get. In the RTSJ, tasks’ budgets are submitted to the scheduler so that the feasibility of scheduling the tasks

can be determined. Currently, such decisions are based on Rate-Monotonic Analysis (RMA) [50, 65]. If the

garbage collector causes a thread to experience unbudgeted delay, then that task as well as others could miss

their deadlines.

As a result, the RTSJ insists that threads for which scheduling criteria are taken seriously—the

appropriately-namedNoHeapRealTimeThreads (NHRTTs)—cannot allocate storage in the garbage-col-

lected heap. In fact, such threads cannot even reference an object in the garbage-collected heap, since it is

possible that heap objects could be locked during a garbage-collection cycle, causing the referencing thread

to experience unbudgeted delay.

2.2 Uncollected storage areas

The RTSJ defines two kinds of storage areas for use by NHRTTs:1

ImmortalMemory is a singleton memory area all of whose component objects’ lifetimes are that of the

entire program.

ScopedMemory is an area of storage whose constituent objects’ lifetimes are collectively tied to a particu-

lar execution scope.

Both of the above storage areas are completely ignored by garbage collection in an RTSJ-compliant JVM;

objects allocated in the singleton immortal memory area are not collectible, and objects allocated within a

ScopedMemory area are collected en masse when the threads that could access the memory area exit the

associated scope.

1We do not discuss the PhysicalMemory classes of the RTSJ here; such classes permit access to specific locations of memory
and can also be scoped or immortal, but they are not used in our work.
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There are two types of scoped memory areas defined in the RTSJ. Each derives from the class

ScopedMemory:

LTMemory offers a linear-time memory allocator. That is, allocation requests in LTMemory scoped mem-

ory areas take time proportional to the size requested.

VTMemory offers a variable-time memory allocator. No guarantee is made of such an allocator’s typical or

worst-case timing characteristics.

jRate [20], a gcj-based ahead-of-time compiler implementation of the RTSJ, offers an additional type of

ScopedMemory area:

CTMemory offers a constant-time memory allocator from the point of view of the new operation; the mem-

ory is initialized to a 0 bit-pattern when the CTMemory is first created, rather than incrementally as

objects are instantiated inside of it.

To associate a ScopedMemory area to a particular execution scope and to be permitted to allo-

cate from it, an RTSJ program calls the enter method on a ScopedMemory instance, as in the code of

Figure 2.1(b). The enter method takes a single parameter—a Runnable object whose run method be-

comes the execution scope for the scoped memory area. A reference count of threads currently accessing

a given scoped memory area is kept by the JVM, and when all of these threads exit their scopes’ top-level

run methods, the objects within the memory area are known to be collectible—no live objects in the system

can reference them because of particular reference constraints established by the RTSJ and shown here in

Table 2.1.

Table 2.1: Legal references between storage areas as specified by the RTSJ.

Reference to Reference to Reference to
Heap Immortal Scoped

Heap Yes Yes No
Immortal Yes Yes No
Scoped Yes Yes Yes

�

�

If to an object in the same or outer scope

In accordance with Table 2.1, code executing in an RTSJ thread may not access any storage that

could be reclaimed while the thread is still accessing it. It is safe for any storage area to access immortal

memory. Also, a thread can access any scope that it has entered—any scope whose reference count was

bumped on behalf of that particular thread. To guard against potential “dangling references” to objects that
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class Example {
void zero() {

RefObject E = new RefObject(); *
one(E);

}

void one(RefObject E) {
Object D = two(E);

}

Object two(RefObject E) {
RefObject D = new RefObject(); *
Object F = new Object(); *

RefObject A = new RefObject(D), *
B = new RefObject(E), *
C = new RefObject(F); *

D.ref = E;

refTemporarily(A, B);
refTemporarily(B, C);
refTemporarily(C, A);

Object G = new Object(); *
refTemporarily(E, G);

return D;
}

void refTemporarily(RefObject source,
Object target) {

source.ref = target;
source.ref = null;

}
}

class RefObject {
Object ref;
RefObject() { }
RefObject(Object o) { ref = o; }

}

import javax.realtime.*;

class RTExample {
void zero() {
final RefObject E = new RefObject();
// memory area of 1 kilobyte
new LTMemory(1024,1024).enter(

new Runnable() {
public void run() {

one(E);
}

});
}

void one(final RefObject E) {
final ScopeReturnValue returnObj =

new ScopeReturnValue();
// memory area of 1 kilobyte
new LTMemory(1024,1024).enter(

new Runnable() {
public void run() {

returnObj.set(two(E));
}

});
Object D = returnObj.get();

}

Object two(RefObject E) {
RealtimeThread thisThread =

RealtimeThread.getRealtimeThread();
ScopedMemory thisScope =

(ScopedMemory)thisThread.getMemoryArea();
MemoryArea

outerScope = thisScope.getOuterScope(),
outerOuterScope =

((ScopedMemory)outerScope).getOuterScope();
RefObject D = (RefObject)

outerScope.newInstance(RefObject.class);

Object F = new Object();

RefObject A = new RefObject(D),
B = new RefObject(E),
C = new RefObject(F);

D.ref = E;

refTemporarily(A, B);
refTemporarily(B, C);
refTemporarily(C, A);

Object G =
outerOuterScope.newInstance(Object.class);

refTemporarily(E, G);

return D;
}

void refTemporarily(RefObject source,
Object target) {

source.ref = target;
source.ref = null;

}
}

class ScopeReturnValue {
Object obj;
void set(Object o) { obj = o; }
Object get() { return obj; }

}

// RefObject definition remains the same

(a) (b)

Figure 2.1: (a) A Java program and (b) its RTSJ version. Allocation sites are marked by an asterisk (*) in (a).
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have been reclaimed, inter-scope references are regulated. Scoped storage can contain references to the

garbage-collected heap, but if an NHRTT tries to access any cells in the heap, an exception is thrown.2

2.3 Nested storage scopes and instantiations

While such acquisition by a thread is the mechanism for bumping the reference count of a ScopedMemory

area, it is important to understand the intent of ScopedMemory in the RTSJ. Garbage collection is avoided

in such areas, so it is essentially left to the programmer to determine the effective lifetime of all instantiated

objects and to allocate such objects in the appropriate scope (respecting criteria 1 and 2 discussed in Chap-

ter 1). If ScopedMemory creation and deletion were free, then ideally a program would allocate them to

hold objects with coinciding lifetimes: such objects are then freed collectively when the scope is exited and

its memory area is deleted.

This bias toward “many scopes” may encounter performance difficulties if ScopedMemory cre-

ation, deletion, or other necessary accounting is expensive. In this work, we take the view that more, precise

scopes are better than fewer, conservative scopes.3 We draw from research on regions [75, 74, 31] and tie a

scoped area’s life to the pushing and popping of stack frames in response to method invocations and exits.

Some regions work is more general, as the beginning and ending of a frame could correspond to any reason-

able pair of stack frames. For our present work, we tie the life of a scope to that of a single stack frame. Thus,

when any method is entered, we can open a scope, and that scope exists for the lifetime of that method’s

frame. When the method returns, and its associated frame is popped, the storage scope is deleted.

In our automated method for using scopes, we rewrite object allocation sites (new commands) to

cause the instantiated object to be allocated at a particular location on the call stack, where this location is

determined by the analysis we detail in Chapter 5. Returning to the example in Chapter 1, variables A, B, C,

and F would be allocated in their own allocating method’s associated ScopedMemory area. Since object D

is returned to its allocating method’s caller, however, the instantiation of D must be moved back one frame,

so its allocation site can be rewritten as described in Chapter 5 to allocate D in method one’s stack frame.

Similarly, object G must be moved back two frames due to the reference of G by E.

2The RTSJ does offer a weaker form of a real-time thread, RealtimeThread, that can access such cells, but for which no schedul-
ing guarantees can be made because of the issues discussed in Section 2.1.

3Generally speaking, this is true for runtime memory footprint. However, as mentioned, the generation of many ScopedMemory
areas can potentially increase the footprint and execution time of the program.
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Our instrumented new commands still execute where they were originally specified, but code is

inserted to cause the storage for each allocation to be obtained from the appropriate scope. Object E is

allocated in frame 0, as specified in the original program.

2.4 Issues in using scoped storage

Considering the rules of Table 2.1, we observe that:

� Marking up the source code for a class with explicit scope-allocation gestures (as in Figure 2.1(b)) will

hamper readability and reuse of that class.

� Library classes provided by different vendors often coexist in a system in which they must interoperate;

to promote separation of concerns, portability, and reusability in object-oriented systems, these separate

products should not be required to know of and react to each other’s individual memory requirements.

Furthermore, it is often difficult to determine the best scopes for object instantiation for the following reasons:

� The answer depends on how objects can reference each other and the effective lifetime of objects. As

shown in Figure 2.1(a), object references need not persist to affect object allocation. The references

from A, B, and C are all temporary, but the programmer who uses the RTSJ must ensure that each such

access is safe according to the rules given in Table 2.1.

� Similarly-lived objects often unrelated in design accidentally become collectible at the same time due

to their placement in other, aggregate structures or the behavior of a common thread that uses them.

� Java code is generally not written with object deallocation in mind (as code in a non-garbage collected

language like C++ may be), and it is therefore not always reasonable to pick out places in the code

where finalization and deallocation can occur. Stated another way, it is often difficult to determine

object ownership. While this is a problem shared with C++ development, C++ code is typically written

to handle such memory concerns, while legacy Java code is not.

� Allocation and deallocation events may not be clearly or inherently scoped; two objects of a given type

or instantiated in a similar way may be live a very different amount of time. Standard library utilities

(e.g., Java’s Collection classes) may be used in different ways with different associated liveness.
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� It is unclear how best to communicate scoped-memory requirements between class libraries from dif-

ferent vendors, or between a third-party library and the library user.

Based on these observations, we will present our solutions for determining scopes for objects in Java pro-

grams and ideas for transforming them into scoped memory-aware RTSJ programs. First, however, we survey

Advanced Separation of Concerns (ASoC) techniques and how, in general, they apply to real-time and em-

bedded systems software development.
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Chapter 3

Advanced Separation of Concerns

Since the popularization of object-oriented programming (OOP), a number of “post-object” technologies have

been considered, including generic programming [5, 1, 12], generative programming [21], computational

reflection1 [51], and the broad category of Advanced Separation of Concerns (ASoC). Informally, ASoC

provides a software developer with a method of system decomposition more powerful than OOP provides

alone. Many different technologies make up ASoC.

Section 3.1 attempts to demystify the large collection of technologies grouped under the banner of

ASoC. Section 3.2 gives a brief discussion of the wide array of applications for this technology. Section 3.3

defends our selection of Aspect-Oriented Programming (AOP) for our research in particular, and Section 3.4

serves as a tutorial for the AspectJ suitable for understanding the later content of this work.

3.1 Approaches to Separation of Concerns

Different ASoC techniques define different programmatic abilities to reflect upon and modify the behavior

of a system; in this way, ASoC can be viewed as a “re-abstraction” of reflection, allowing a programmer to

apply reflection at a higher-level in a refined way. To make this concept more concrete, we offer the following

sample of ASoC techniques.

1Of course, reflection is not a “post-object” technology per se, as it existed in various forms before the rise of OOP. Its use (and
misuse) in object-based languages, however, has been the subject of much study [22, 33].
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� The Composition Filters (CF) model [8] is designed to allow a program to respond to inter-object

message passing in a modular fashion.

� Adaptive Programming (AP) [46, 58] allows a runtime system to reflect upon class relationships and

conveniently keep a loose coupling between different classes.

� Meta-Object Protocols (MOPs) [41, 32] offer a refined form of reflection that focuses on modifying

and reacting to object behavior at runtime or structurally reflecting upon code at compile time.

� Subject-Oriented Programming (SOP) [36] is a method of object decomposition inspired by the per-

spective of the consumer of a class rather than the class’s notion of its own place in the system.

� Hyperspaces [71] facilitate the coherent composition of separately-designed or implemented object

classes.

� AOP is a category of related techniques providing facilities to structurally modify object classes and

respond to events at nominated “join points” in code execution or dataflow.

� Intentional Programming (IP) [67] provides a modular, natural way for a programmer or set of pro-

grammers to manufacture a software system.

The following sections briefly discuss each of these techniques in turn, discussing the relevance of each in

the larger world of ASoC and providing references for further study. This survey focuses on the technique,

not any particular language implementing the technique; yet where it serves for purposes of clarity both will

be described.

3.1.1 Composition Filters

The Composition Filters (CF) model allows input and output message filters to be placed on objects in a

flexible manner. In this view, each object has an interface, consisting of input and output filters, with which

it interacts with the outside world, and an implementation, which encapsulates object behavior but is subject

to filters when interacting with other objects.

Figure 3.1 depicts this object architecture. Each incoming message must pass a bank of input filters,

each of which could cause the message to be blocked, diverted to another object, or modified in some way.
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Any message sent from the object must pass through a bank of output filters, with similar functionality.

Composition filters are available for Java using ComposeJ [76], which implements composition filters using

inlining.

filter

filter

filter

filter

filter

Output Filters

filter

filter

filter

filter

filter

Input Filters

Interface

Implementation

Figure 3.1: Overview of the Composition Filters method.

3.1.2 Adaptive Programming

According to the Law of Demeter [47], a programming style rule for object-oriented systems, a class should

not rely upon the structure of other classes in the system except for an immediate set of neighbors, called

its preferred suppliers. This is, in general, a good rule of thumb; experience in object-oriented code main-

tenance overwhelmingly demonstrates that large, highly-coupled object systems are often brittle and small

modifications or extensions are often subject to compilation complaints from the type system or exotic run-

time failures.
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However, programming strictly according to the Law of Demeter can lead to many tiny accessor

methods to navigate the class hierarchy. In some systems, it also leads to long accessor chains; for example,

one might write the following in Java:

( (Expression)getTree().getRoot().getLeftChild() ).getRHS().getConstantValue();

Unfortunately, writing code as above leads to an increased coupling between classes, the exact problem the

style rule is attempting to avoid; in effect we have only shifted the problem with no substantial improvement.2

Adaptive Programming (AP) [58] gives the developer the ability to decouple their object designs

cleanly according to the Law of Demeter. The overall structure of the class hierarchy is discovered by the

runtime system in the form of a UML-like class graph, and programmatic traversal of this structure is per-

mitted using the adaptive visitor design pattern [46] and a traversal strategy. The traversal strategy specifies

what traversals are “interesting” to the program at a particular point and notifies the adaptive visitor for each

of these nominated points. Thus, program code that implements such operations as collecting together the

leaves of a complex tree structure or navigating a complex reference graph to implement object persistence

is completely decoupled from the class structure and handled—adaptively—at runtime. Thus, additions of

new classes or changes to the program’s class inheritance or composition structure does not invalidate the

traversal code.

3.1.3 Meta-Object Programming

Meta-Object Protocols (MOPs) provide the ability for a program to reason about itself. Like reflection, there

are additional levels of interpretation, each of which operates on the levels below. While MOPs vary in their

scope, power, and usability, MOPs for object-oriented systems provide meta-objects attached to other objects

or control or data flows and provide some ability to intercept base operations in the code and “jump” to the

relevant meta-level meta-object.

Figure 3.2 shows an example of such a MOP interception for a received message on an object. In

this case, the meta-object allows the message to be passed through, possibly after altering it. A meta-object

can also block such messages, handle them itself, or dispatch them to another object entirely.

2Although direct application of the style rule may provide some benefit, the problem with such accessor chains is their brittle nature:
any change to any of the classes along the change could require large-scale code refactorization elsewhere in the system.
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Meta-object programming can, in general, be seen as a foundational technique with which many

other ASoC techniques can be implemented.

meta
meta−level jump

send−message

handle−dispatch

meta

Object

Metaobject

implementation

2

1

4

3

execute

Figure 3.2: An example runtime MOP event. Closed arrows indicate flow of control; open arrows indicate
inter-object references. First, a message is sent between objects. This causes a jump to the meta-level to
accept the message; the meta-object of the receiver then routes the message appropriately, modifying it or
blocking it as necessary.

There are also compile-time MOPs that allow structural access to the source code as it is compiled

and add new language functionality to the interpretation and translation mechanism; see, e.g., OpenJava [72].

In a sense, these compile-time MOPs cooperatively compile source code alongside their compilers.

3.1.4 Subject-Oriented Programming

IBM’s initial work with ASoC involved the concept of Subject-Oriented Programming (SOP). This work is

based on the observation that many objects in a software system play different roles during their lifetimes.

Because of this, objects tend to collect additional responsibilities that really implement different concerns

in the overall design of the system. If unchecked, this increased integration of concerns quickly leads to

increased complexity and bug-prone code copy-and-pasting; the only general solution for an active software

project is to ref actor the code base regularly. This is a problem inherent in many object-oriented software

systems, and is not necessarily the fault of designers; a perfectly good object-oriented design can lead to these

type of problems.
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In an example taken from [36], consider a Tree object. The Tree may be seen as a home to a Bird

object; thus, the Tree has such properties as shelter-value and branch-height. But the Tree may fulfill a

different value role to a Logger object; here, the Tree has such properties as time-to-cut and type-of-wood.

Still another object in the system, the logging company’s Accountant object, is concerned with market price.

Here, the Tree has a monetary-value. All of these properties are inherent to the Tree, yet placing the code

for determining each (or placing the store for holding each) inside of the Tree object’s code quickly yields a

maintainability issue; in which other objects in the world are Bird, Logger, and Accountant objects interested?

SOP acknowledges that this sort of issue arises in object software and seeks to provide a method of

composition allowing a clean separation of an object’s different roles at development time. SOP has a relation

to the Role Object design pattern [6], in which many views can be accumulated on an object, and the very

similar Extension Interface design pattern [64], which allows for multiple interfaces to be flexibly applied to

an object.

3.1.5 Hyperspaces and Multi-Dimensional Separation of Concerns

Another approach forwarded by the same group at IBM involves identifying different dimensions of concerns

in the design of a software system. In the Multi-Dimensional Separation of Concerns (MDSOC) approach,

each constituent part of a program (methods, fields, and entire classes and packages) are assigned a posi-

tion along each dimension. An MDSOC compiler then composes a program consisting of the proper pieces

along each dimension, merging code as specified by rules provided by the developer. IBM’s Hyper/J lan-

guage [39] implements their technique. The compiler is freely available, and while it is currently undergoing

development, it is quite stable.

3.1.6 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) allows special-purpose types called aspects to be woven into an object

software system with the end result being a coherent system. Each aspect exerts a particular concern upon

the software; for example, an aspect might modify a system’s behavior in acknowledgment of a low power

condition or implement synchronized access to a particular data structure.
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Two major features define an aspect-oriented system, quantification and obliviousness [29]. Quantifi-

cation refers to the fact that a piece of code may affect another, completely separate piece of code somewhere

else in the system. Obliviousness refers to the fact that the affected piece of code has not been specially

prepared to receive this modification. In practice, this essentially makes the Interceptor design pattern [64] a

first-class language concern: when a particular language construct occurs, intercepting code may be spliced

with it to form a new construct at that point, enacting a new behavior which may be the union of the two or a

wholesale replacement of the initial code gesture.

While it is the intent of AOP to allow programmers to separate concerns readily, letting the language

resolve the code integration dependencies, it is certainly possible to complicate object systems by porting

them to AOP systems badly. As all post-object programming techniques discussed in this chapter, AOP does

not seek to replace OOP, but to extend it. Thus, while there is a temptation to over-separate program concerns

and refactor them into aspects, it is wise to consider the aspects and objects of a system together in order to

achieve a robust design capable of being properly and easily maintained.

3.1.7 Intentional Programming

Intentional Programming (IP) [67, 40] is a proposal allowing the programmer to specify a language-neutral

intent through an easy-to-manipulate interface. Similar in many ways to work on Model-Driven Architectures

(MDAs) and code-generation tools, IP can (potentially) generate code in any target language, effecting the

programmer’s intents within a larger software system. IP often falls under the broad category of ASoC

because it can separate the design considerations and implementation details of the target program. This

separation can assist software development considerably by binding various views and rules to the system in

easily configurable ways.

3.2 Applications of ASoC

ASoC technologies have been successfully applied in a large variety of areas. These are a small sampling of

the resulting benefits:

� improvement, simplification, and reusability of design pattern implementations [35, 23]
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� clean, modular accumulation of feature sets [38]

� detailed, online analysis of executing code in separate modules

� noninvasive support for logging and debugging purposes [4]

� simple and powerful pre- and postcondition annotation

� modular and consistent cryptography settings

� separation of business rules from functional code

� accessibility of multiple object views [49]

� increased ability to reason about object persistence

� separation of optimization, memoization, and caching code [24]

� enforcement of global behavior rules

Our interest in ASoC technologies comes out of the power and expressiveness of this family of programming

paradigms for composing large-scale, adaptable software systems.3 We have found these technologies—and

the mindset of extensive concern-separation that they imply—to be very useful in both everyday program-

ming practice and in our specialized research and development cycles. ASoC can reduce development time,

simplify programs, and improve reusability.

In addition to its broad applicability to general-purpose software engineering, ASoC has important

benefits for special-purpose domains as well. Power, memory, and footprint concerns can be separated cleanly

into “meta-concerns,” distinct from the body of “functional” code. This keeps non-functional pieces of the

system generic and easier to debug, and it eliminates the chances of “missing a spot” during a (manual) global

search and replace operation to change configuration of such behaviors; indeed, it can eliminate such “search

and replace” code maintenance altogether. In this way, ASoC, when applied appropriately, can significantly

cut the accidental complexity of a software system.

3The term “adaptability” often refers to runtime adaptability alone. However, compile-time adaptability can be incredibly useful in
targeting software constraints; see, e.g., [26]
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3.3 Choice of AOP

For our work, we chose to use aspect-oriented programming. In part, our decision was based on tool

support—AspectJ, described in the next section, is well-supported, stable, and quite usable. The problems we

address are also particularly well-suited to design in an aspect system; in Chapter 6 we describe the aspects

we implemented and the ways in which they simplified our task.

3.4 AspectJ: a general-purpose aspect extension to Java

AOP has been realized in a general-purpose aspect language extension to Java called AspectJ [3]. AspectJ

identifies join points in the execution flow of a Java program, and provides four new language constructs:

pointcuts specify a (possibly empty) set of join points; lexical introduction allows an aspect type to declare

new members in other types and modify the type hierarchy; advice represents an AOP quantification that

may be applied on the join points in a particular pointcut; and aspects provide an object type for containing

these constructs. The AspectJ compiler weaves these aspects together with the affected classes, resulting in

standard Java bytecode that may be run on any compliant JVM and that contains the behavioral properties

specified both by the classes and the relevant aspects.

With AspectJ, applications can be designed and implemented more quickly, contain fewer bugs when

shipped, and software development projects can increase code reuse and maintainability. AspectJ can be

used throughout the development process, for small and large programs alike; it can even be used to aid

in refactoring an existing code base. Several companies are using AspectJ and the research community is

quite active. Recently, Hanneman and Kiczales implemented “Gang of Four” design patterns [30] using

AspectJ [35], building upon prior work by Gregor Kiczales and the AspectJ team on a cleanly concern-

separated implementation of the Observer design pattern. AspectJ is growing in popularity, has an active user

community, and the compiler and associated tools are based on an open-source development methodology. Its

tools are easy to use, freely available, and mature. It is for these reasons that we have chosen to use AspectJ

in our research of concern-separation in real-time and embedded software.
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Chapter 4

Motivation for Automatic Scope

Assignment

We motivate the problem we study and preview our analysis using the example introduced previously in

Figure 2.1(a) (page 12) which defines methods zero, one, and two—methods that are invoked at depth 0,

1, and 2 in the call-stack, respectively. The example also contains 7 allocation sites (new statements). The

problem at hand is to map each object instance � to the “highest” call-stack frame
�������	��
�����

that satisfies

the following constraints:

1. Object � is known to be dead after
�

is popped;

2. Any object that could refer to object � is mapped to a frame popped no sooner than
�

.

With regard to constraint 1, our problem is analogous to escape analysis [78, 19, 9] or to the use of “re-

gions” [75, 74]. As explained in Chapter 2, constraint 2 is introduced to ensure safe pointer-accesses in

accordance with the RTSJ.

The ultimate outcome of our analysis is a program conforming to the RTSJ; Figure 2.1(b) shows

this intended result. Each instantiation site is modified to allocate its object from a storage area, in a manner

consistent with the RTSJ.
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Figure 4.1: The doesReference graph for the program of Figure 2.1(a), vertices augmented with object live-
ness information.

To respect constraint 1, we first run the program in Figure 2.1(a) and observe the following object

behavior:

Object Instantiated in frame Becomes collectible
A 2 when frame 2 pops
B 2 2
C 2 2
D 2 1
E 0 0
F 2 2
G 2 2

For the purposes of scope-creation for RTSJ, it suffices to assume that an object cannot die in a frame above

its birth-frame. Analysis has been considered elsewhere to move allocation sites like these up the call-stack

to decrease the lifetime of the instantiated object [66].

Next, to ensure legal references (constraint 2 above), we maintain a graph of inter-object references

observed during runs of the program; in this doesReference graph, shown in Figure 4.1, each object is repre-

sented as a vertex, and an edge is placed between � and � if object � stores a reference to object � at some

point when the program is run. We augment the graph with the “collectibility” information from the above

table, as shown in the figure.

The following observations are key to solving our problem.

� Objects A, B, and C are involved in a cycle in the doesReference graph. Based on constraint 2 above,

these objects must be mapped to the same frame.

� Object A references D, implying by constraint 2 that D must be mapped to a frame at or below the frame

associated with A. The same can be said for objects B � E, C � F, and also D � E and E � G.
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Figure 4.2: Optimal RTSJ scope assignment for the program of Figure 2.1(a) with inter-object references
superimposed.

� Object D is instantiated in method two (at frame 2) but does not actually become dead until frame 1

pops, because it is returned to the calling method.

� Object E is allocated in frame 0, and must therefore live forever.

One possible solution to the above problem is to allocate all objects in frame 0’s memory region—this is

the last frame to be popped. This clearly satisfies the above constraints, because all objects will live for the

duration of the entire program. However, we seek a solution with the objective of minimizing the lifetime of

each object, so as to reduce the program’s storage footprint.

The best RTSJ solution for this problem is depicted in Figure 4.2, which corresponds to the scopes

used in the code of Figure 2.1(b). Inter-object references have been superimposed in the figure; when visual-

ized in this manner, object references are required by constraint 2 to always point down (toward the base of)

the stack.

Object E is around for the entire lifetime of the program and thus is not dead until frame 0 is popped.

Object D cannot die until frame 1 is popped. While objects A, B, C, and F could be allocated in frame 1’s

memory region, that would unnecessarily increase their lifetimes. Instead, they can be allocated in the region

at frame 2. Object G is instantiated during the execution of frame 2, but must be allocated in frame 0 because

of the reference from object E, even though the reference was temporary.
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Chapter 5

Scope Detection and Assignment

Before proceeding with a detailed account of our approach to the problem of automatically determining

scopes in Java programs, we need to understand the specific scope assignment problem we address in relation

to other potential models for scope assignment.

5.1 Parameterization of Scope Analysis

Some assumptions about typical object behavior are made in our scope assignment solution; these design

decisions are detailed here with other potential choices we did not pursue.

For information collected during the analysis phase to be utilized when generating RTSJ-compliant

code, we must be able to “recognize” an object over distinct runs of program
�

. This is important both to

compare data from different analysis runs of
�

and also to calculate which particular points of
�

need to

contain RTSJ memory scope instrumentation.

We therefore define four object lifetime behavior categories that aid in making this determination.

For our purposes, “object behavior” is the lifetime behavior of an object or group of objects—specifically,

birth and death events. We define the following:
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� A class � and all object instances of runtime type � are said to exhibit class lifetime behavior if all of

those objects behave similarly.1

� An instantiation site (new instruction) � and all object instances instantiated at site � are said to exhibit

instantiation site behavior if all of those objects behave similarly.

� An instantiation site � and all object instances instantiated at that site are said to exhibit call stack

behavior with respect to a function ����� ��� where � is the set of all call stacks at points of

instantiation and � is the set of all stack frames. This is a generalization of the previous class of object

behavior.

� Object instances that do not fit into the above categories (for the purposes of our analysis, they behave

only like themselves) are said to exhibit instance behavior.

Because we are concerned primarily with upper bounds on the lifetime of objects, and we can create an

ordering, any one of these four categories is sufficient to characterize all observed object behavior in
�

. (For

example, objects of a given type Foo may have dissimilar liveness characteristics, but they are all live at most

as long as the longest-lived object among them.)

5.2 Approach

Our approach for translating a Java program
�

into a RTSJ-compliant, scoped memory-aware program
�
	

,

is based on two kinds of analysis. In particular, for a given object instance � , we seek to answer these two

questions, analogous to the two criteria introduced in Chapter 1:

1. What is the lifetime of � ?

Based on this information, we can map � ’s lifetime to the stack frames
��

of program
�

. In this way,

we ensure that � ’s allocation in
��	

occurs prior to its use and that � is collected (together with other

objects in the same scoped memory area) only after it is dead.

1By runtime type we intend those objects whose most derived type is � , rather than those objects determined by a more inclusive
instance-of test.
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Figure 5.1: Overview of approach.

2. What other objects must have access to � during program
�

?

With knowledge of those objects’ lifetimes, we can ensure that � is allocated in a scope that does not

violate the scope-referencing rules of the RTSJ, as explained in Chapter 1.

The results of the above analyses are represented in the doesReference graph, similar to the one shown in

Figure 4.1. Once that graph has been determined, the algorithm presented later in this section can be applied

to obtain the optimal scope assignments of Figure 4.2. Before discussing our scope-assignment algorithm,

we explore possible choices of analysis and the effect on the structure and contents of a doesReference graph.

5.3 Analysis techniques

Analysis of object lifetime and object references can be carried out using one of the following techniques:

Static: Compile- or load-time analysis could examine the instructions of a program to determine lifetime [78]

and potential storage-referencing behavior [43, 37, 28, 77].

The information obtained in this manner would hold over any execution of the program. Unfortunately,

such information is necessarily conservative, as the problems defined above are undecidable in general.
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Dynamic tracing: Traces from one or more runs of the program could be examined to profile the lifetime of

objects and their storage-referencing behavior.

While this information is precise for a given set of runs, it may not represent the program’s behavior in

general. Thus, such information is necessarily imprecise; if programs are adapted to RTSJ based only

on dynamic trace information, then the criteria listed above and those introduced in Chapter 1 could

potentially be violated.

As there is no “escape” mechanism for objects once they have been allocated from a region, an adaptive,

runtime approach to scoped region assignment would result in the collection of those objects to which out-

standing references exist or in objects unnecessarily existing for the entire execution of the program.

The truth concerning a program’s behavior lies somewhere between the static answer (which holds

over all executions) and the dynamic tracing answer (which holds only over an observed set of executions).

For this reason it is potentially useful to consider an approach combining the two into a single, unified

approach; the research represented here pursues answers based on dynamic, trace-based analysis rather than

static analysis. Our reasons are as follows.

� Static analysis may turn out to be overly conservative, to the point of not providing useful results for the

real-time applications developer. For example, if all objects appear to be immortal, then the resulting

RTSJ program will essentially preallocate all objects in one global scope.

� Although the answers don’t hold for all executions, the results based on dynamic analysis can inform

static analysis on the distance between its solution and some solutions that hold for particular execu-

tions. If that distance is small, then static analysis has worked well.

� If static analysis turns out to be overly conservative, then the developer will inevitably be involved in

the ultimate decision about the program’s scopes [7]. Our work can serve to validate or invalidate such

a manual scope assignment based on actual executions of a program. Further, if the developer can

provide guarantees of test coverage, stronger statements may be made about the results obtained by

dynamic analysis.

The unifying principle between static and dynamic analysis for the problem we consider is the does-

Reference graph, an example of which is shown in Figure 4.1. For dynamic analysis, this graph shows

reference behavior observed in an actual run of a program. Static analysis could at best produce a “may
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reference” graph, which would indicate potential referencing behavior, but would suffer imprecision because

of the uncertainty of aliasing and other phenomena that must be estimated in a static analysis approach to

the problem. Further, with delayed class loading and reflective calls, it can be difficult to make strict static

guarantees for production Java code, since the conservative estimate reached is often far too conservative:

a static analysis tool may not be able to determine the set of methods called by a reflective invocation, for

example, and thus must either assume that any method in the universe may be called or relax its guarantees

of accuracy.

For these reasons we use dynamic analysis in determining the interconnections between elements of

the doesReference graph. If each vertex of the graph is a set of objects (or a characteristic that defines a set

of objects), as we will discuss below, then we admit an edge � � � ��� to the doesReference graph whenever an

object belonging to � stores a reference to an object belonging to � .

5.4 Vertex granularity of doesReference

When fully built, the doesReference graph will influence object instantiation so that the safe memory accesses

required by the RTSJ (and shown here in Table 2.1) are respected. Before building this graph, though, we

must define the granularity of the vertices of the doesReference graph, which could be one of the following,

corresponding to the behavior categories introduced in Section 5.1:

� A vertex could represent all objects instantiated directly by a given method. This would simplify

expressing the results of our analysis, since each method could enter the appropriate scope upon invo-

cation and exit the scope prior to returning. The resulting graph will merge the behavior of objects of

different types and instances. We would like to obtain a more precise result.

� A vertex could represent all objects of a given type (class) in the program. If so, then the edges of

the doesReference graph would indicate referencing behavior over all instances of objects of that type.

While such a graph might contain relatively few vertices, the resulting graph may be unnecessarily

conservative. For example, if any String object must live forever, then so would all instances of

String according to such a graph.
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� A vertex could represent a dynamic instance of an object; this was the approach used to construct

the doesReference graph of Figure 4.1. This way, each String object instantiated at runtime would

be represented by its own vertex. The resulting graph would have many vertices, but the behavior of

each instantiation is nicely distinguished. Unfortunately, there is then the problem of recognizing such

dynamic objects across multiple analysis runs of the program and eventually on instrumentation of the

program to place objects into scopes.

� As a compromise of these three ideas, each vertex could represent all instances of objects created at a

particular allocation site (new command) of the program.

Because the ultimate result of our analysis is the instrumentation of allocation sites, we choose each vertex

to represent a unique allocation site. If each object instance is represented separately, we would require

context-sensitive information as to how the appropriate instantiation statement was reached.

To summarize, the vertices of the doesReference graph correspond to object-instantiation sites of the

program and the edges are determined dynamically by instruction traces. The edges of the doesReference

graph reflect inter-object references; each vertex represents all objects instantiated at a given site.2

In addition to the referencing information, we require per-vertex knowledge concerning when the

objects associated with that vertex become collectible. Such information can be recorded as a frame number

(or frame offset, as discussed below) like that shown in Figure 4.1. For the remainder of this section, we

assume that the doesReference graph has been faithfully constructed. Chapter 7 explains the mechanics of

how the relevant information can be collected.

5.4.1 Scope determination

In the observations listed in Chapter 1, and in Figure 4.2, we stored frame information based on the absolute

depth of the call stack. We diverge from that approach here to introduce the more precise concept of relative

depth that our analysis actually produces.

Relative depth is measured as a call-stack frame offset between the instantiation of an object and

the point at which it is first determined to be dead (collectible). If an object is instantiated at frame 10 and

2With this definition of the doesReference graph, Figure 4.1 remains the same, as there is a one-to-one mapping from the 7 instantiated
objects to the 7 instantiation sites.
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becomes collectible when frame 4 pops, its lifetime is said to be 6 frames (it is live until the seventh frame

pop). A relative liveness metric is much more suitable for our purposes than an absolute liveness metric;

any method that acts as a factory (e.g., the commonly-used iterator() method of Java’s Collection

classes) likely generates objects with very different absolute liveness characteristics, since the constructed

object’s liveness is heavily based upon the caller, for whom the object is being instantiated. Relative frame

information alleviates this problem somewhat by reducing the penalty for a call to a factory method deep in

the call stack.3

We now present our algorithm for determining scope assignments for a Java program
�

. We seek a

mapping

��� ����� ��� � �
� �	� 
 � ��

� � �

� �	� � ��
������� ����� 
 �

from a vertex �
� � � in the doesReference graph for

�
to an integer indicating the lifetime of objects

aggregated by that vertex.

To find all legal, potential scopes in a Java program, we first construct the doesReference graph of

observed inter-object references in both user and library code as previewed in Chapter 4. Vertices in this

graph are groups of objects belonging to the same behavior category as described in Section 5.1. Edges in

this graph represent inter-object references.

During an analysis run of program
�

, three types of events are distinguished and processed:

� An object instantiation event indicates the instantiation (allocation) of an object.

� An object collection event indicates the collection of an object by the garbage collector.

� An inter-object reference event indicates that one object is referring to another.

We presently assume objects fall under the category of call stack behavior, although our analysis could be

extended to determine which type is most appropriate. We maintain an instance mapping � from each object

instance to its presently assigned category (a vertex in the doesReference graph), a mapping � of objects to

their birth frame index, and a mapping
�

of doesReference vertices to integers specifying the maximum

relative lifetime on the call stack (measured as the number stack frames) observed for an object in the set

represented by the vertex.

3Early experiments with absolute frame liveness information showed little promise, as expected, compared to the relative frame
liveness results presented in Section 7.3, for the purposes of precise scope detection.
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An instantiation event (which occurs when executing a new instruction) is a quadruple � � � � � � � ��� � ,
representing the instantiation of an object � of class � at an instantiation site � and current depth � � of the

call stack (the object’s birth frame stack index). To process such an event, we first determine if � is in the

doesReference graph—if it is not, we create a new vertex � and set
� � �

� ��� �
. Then we add � � � to � and

set � � � � ��� ��� .

A collection event (which occurs immediately after garbage collection4) is a tuple � � � ��� � , indicating

the automatic reclamation of object � by the JVM with current depth ��� of the call stack.5 We respond to this

type of event by setting
� � � � � � � ���	��
�

��� � � � � � � � � � � � � � � � .

An inter-object reference event (which occurs when executing a putfield or aastore instruc-

tion) is a tuple � � ��� � , indicating that � is storing a reference to
�
. To process an inter-object reference event,

we add an edge � � � � � � � � � � � to the doesReference graph if one does not already exist.

Any cyclic chain of references indicates a set of objects that must reside in the same scope. We thus

decompose the doesReference graph into its strongly connected components upon completion of analysis

runs of
�

. At this point, we have a directed acyclic graph indicating all legal scoping hierarchies.

Assignment of memory scopes

In an RTSJ-instrumented program, we must place objects into their correct scopes, and we must handle the

opening of scopes—an RTSJ compliant JVM, as discussed in Chapter 2, will handle the closing of scopes

when their top-level run() methods exit. Our approach is to associate a memory scope with every stack

frame. Thus, if we know that a particular object � is unreachable after a particular frame � pops, we can

simply place � into the scope ��� associated with � when � is instantiated. Thus, we determine the stack

frame at which a given object becomes dead.

4It is important to note that our analysis runs rely on a garbage collector to determine when objects become collectible. However,
the instrumented, scope-aware program does not make use of a garbage collector, since objects in scoped memory regions may not be
individually collected (see Chapter 2).

5 ��� and ��� are, then, the “birth” and “death” frame indexes, respectively, associated to the object � of the event in which they are
present.
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5.4.2 Propagation of liveness through doesReference graph

To see how our construction proceeds, let us first consider the case of absolute, rather than relative, frame

assignment.

At the point of instantiation of object � , a nonnegative frame number ��� represents the method whose

stack frame occurs at absolute depth ��� in the current call stack. We also define ��� to be the absolute frame

number which, when popped, causes � to become collectible; if � is not collectible until the program exits,

� � � �
. For our purposes an object cannot be collected until at least the call-stack frame from which it was

instantiated pops; thus � ��� � � .

The output of scope determination, then, is the ��� ����� mapping such that ��� ����� � �
�

is the expected

lifetime � � � � � of objects described by vertex � , expressed as an integer.

Once the doesReference graph has been constructed and validated over a set of runs, we proceed to

discover the ��� ����� map as follows:

1. Lifetime information associated with a vertex � indicates the frame by which all objects associated

with � have become dead. This is easily computed by retaining the maximum relative lifetime observed

of any object associated with � . We then have constraints of the following form:

� � ��� � � �
���

��
��
	�� ���� ���������
�
��� � ���

where � ��� � � 
 � � �
�

is the set of all objects instantiated at the site represented in the doesReference graph

by � . As constructed, the doesReference graph already provides us this information.

For the program shown in Figure 2.1(a), liveness information imposes the following constraints:

Vertex ��� ����� � �
�

A, B, C, F, and G
� 

D
� 


E
� �

2. Referencing information constrains the relative scope allocation for the related references. According

to the RTSJ, object � can reference object � only if � ’s associated scope fully encloses � ’s scope in
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a nested-scope relationship for the currently executing thread. In terms of the doesReference graph,

reference information is mapped to the vertices of that graph.

Thus, a reference from an object � to an object � is mapped to an edge from � to � in the graph,

where � and � are the vertices corresponding to the allocation sites of � and � , respectively. Each

reference contributes such an edge to the doesReference graph if one is not already present to represent

the reference. Each edge then imposes the following constraint between all pairs � � � � � where � �

� � � � � :

� � � � �

Letting � ��� 
 � � be a mapping from objects to doesReference vertices, we can obtain

��� ����� � � ��� 
 � � � � � ��� � � � � �

and since � � � � � � ��� ��� � � � ��� 
 � � � � � � in the instrumented program, we have

� � ��� � � � ��� 
 � � ��� � ��� ��� ����� � � ��� 
 � � � � � ��� � � � � �

We can then use the observed values for � � and � � during analysis.

To summarize, once the doesReference graph is constructed, assignment of scopes can be reduced to solving

a relatively simple constraint system. Each vertex is constrained by liveness information to be allocated at

or below a certain stack depth; referencing behavior places edges between vertices to ensure that the relative

stack-depth allocation of objects respects the rules of the RTSJ.

The constraint system that arises in this fashion has at least the following solution

�
�
� � � ��� � � �

�
� � 
 ���	�� ���� ���������
� � �

which effectively assigns all objects to the primordial scoped memory area. At present, ignoring the cost of

scope creation and destruction, the solution we seek maximizes the solution for each scope, so as to minimize

object lifetime. This solution minimizes storage footprint at the expense of creating (perhaps too) many

scopes.
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Table 5.1: Constraint system size for benchmarks (size 10) using allocation site granularity to construct the
doesReference graph. Section 7.2 contains more information on these benchmarks.

benchmark vertices edges
jess 1,072 2,068
raytrace 879 1,721
javac 1,212 3,592
mpegaudio 818 1,605

The solution that minimizes footprint but respects all constraints can be obtained via a worklist

approach, shown in Figure 5.2.

generate doesReference graph � � � � ��� �
fill in � � ��� � � �

� �
�
� � from collected liveness information

initialize � � � ����� ��
 ��� �
while � � � ����� ��
���
	 do

get and remove � from � � � ����� ��

foreach �

� � � � � � � � � � � � � � do
apply reference constraint ( � ref � )
if ��� ���� ��� � �

�
then

� � � ����� ��
 ��� � � � ����� ��
�� � �
�

end if
end foreach

end while

Figure 5.2: Worklist algorithm for scope assignment.

When calculating relative frame depth scopes, the application of a reference constraint ( � ref � ) is

performed by assigning:

��� ����� � �
� ��� ��
�� 	������ ��� ��� ��� � � �

�

The result is a scope index � � ��� � � �
�

for all vertices � of the doesReference graph (and thus for all instantiation

sites of program
�

).

5.4.3 Target program instrumentation

With the above analysis, we can complete our goal of instrumenting the original program
�

to take advantage

of discovered memory scopes. We instrument each method and constructor invocation to allocate and enter

a new ScopedMemory area and each allocation site (that is, each vertex � of the doesReference graph)

to allocate its object in the appropriate stack frame. Thus, an instantiation site with an assigned relative

depth of 4 would allocate its object in the ScopedMemory area associated with the call-stack frame that is

buried 4 frames under the presently active one. Code splitting and other techniques can be performed at this
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step to reduce the overhead and number of ScopedMemory areas in the instrumented program; we have not

implemented such optimizations.

5.4.4 Multithreaded target programs

So far we have considered only single-threaded programs. It is possible, however, to extend this approach to

operate with similar liveness and reference traces collected from multiple threads executing concurrently.

In a multithreaded environment, objects that are not shared between threads can be handled in a

similar way as in the single-threaded case; such objects receive a scope assignment with respect to their

respective owning threads. Objects shared between two or more threads6 must have a scope assignment in

each of those threads. When all threads sharing an object have popped the stack frame associated with the

object’s lifetime, the object is dead.

With those observations, an extension to our approach to allow for multiple threads may be con-

structed. A particular scoped memory area corresponds not to a single stack frame but to a particular cut

across all participating threads’ call stacks.7 Each thread is instrumented to enter this shared scope at its own

appropriate call-stack frame.

6An object � can be shared either directly between threads (multiple threads access the object directly), or indirectly through a
reference from a shared object. In either case, the combined behavior of all participating threads affects the scope assignment of � , so it
constitutes a shared object for our purposes.

7This notion of participation is difficult to define in a satisfying manner under the RTSJ as originally published in [10]. The text here
assumes the “single parent rule,” a constraint introduced with the “final v1.0” version of the specification [11] that addresses a significant
pointer safety problem identified in the original.
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Chapter 6

Aspects

Once the analysis described in previous sections has been performed, each object instantiation site has been

assigned a particular stack frame from which to allocate. We need a way of transforming the program
�

so

that it takes advantage of this information by creating memory scopes at proper times and placing objects into

their assigned scopes. We find it beneficial to use the notion of Aspect-Oriented Programming to encapsulate

this procedure in an aspect. The aspect contains advice to ensure the following:1

1. When a method or constructor is called, advice is patched in to associate it to a scoped memory area.

This new ScopedMemory area is pushed onto a stack of memory regions. Then, the actual method is

dispatched within this memory area. After it returns, the advice pops the memory scope off the stack.

2. Allocation sites (new instructions) are advised to place the objects they instantiate into the correct

memory scope.

Advice similar to that of Figure 6.1 is generated, with implementations of the makeScope and

getScope methods referred to in that example. Recognition of objects (isObjectD and isObjectG

methods in that example) is easily performed by looking up the currently executing instantiation site (using

the thisJoinPoint construct of AspectJ) in the table generated by the analysis.2 The output of the

1As mentioned in Section 3.4, each piece of AspectJ advice represents an AOP quantification. Concretely, a piece of advice is a piece
of code that executes in the execution context of a join point somewhere else in the program.

2Briefly, thisJoinPoint offers reflective contextual information about the current execution point (join point). For example,
if the join point being advised is a “method call” join point, thisJoinPoint offers access to its name, defining class, attributes,
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aspect ScopedMemoryAspect {

ScopeStack scopes = new ScopeStack();
Object around(): call(void Example.one())

|| call(Object Example.two(Object)) {
Object retval = null;
ScopedMemory sm = makeScope(thisJoinPoint);
scopes.push(sm);
sm.enter(

new Runnable() {
public void run() { retval = proceed(); }

} );
scopes.pop();
return retval;

}
Object around(): call(RefObject.new(..)) {
// Object D is allocated one frame back
if(isObjectD(thisJoinPoint.getSourceLocation()))

return scopes.getScope(1) // region for frame 1
.newInstance(RefObject.class);

if(isObjectG(thisJoinPoint.getSourceLocation()))
return scopes.getScope(0) // region for frame 0

.newInstance(Object.class);
// otherwise allocate from current memory area
return proceed();

}
/* ... */

}

Figure 6.1: Advice implementing scopes in the example program of Figure 2.1.

analysis tells us the stack frame
�

at which an object at that site becomes dead, and we retrieve associated

memory region from the stack of ScopeMemory objects to perform the actual allocation.

6.1 Analysis aspects

By determining the execution-flow join points of interest and then advising those points, we can collect and

act on analysis data. We have written a reference-probing aspect to keep track of potential inter-references

between different objects and a death-probing aspect to determine when objects become unreachable (and

therefore eligible for collection by the garbage collector).

Both analysis aspects inherit from a simple, abstract aspect (see the Probe class in Appendix A)

that defines a few useful definitions for sets of join points. These are called pointcuts in AspectJ and can

(informally) be considered a definition of a “net” with which to “catch” certain join points when they occur.

For example, the methodExecutions() and constructorCalls() join points specify such “nets”

to “catch” method executions and constructor calls.

signature, and parameters. For a “reference” join point, the field name and type and the objects involved in the reference are available
through thisJoinPoint.
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The withinUs() pointcut is used in a different manner. It is defined similarly to the others, and it

“catches” join points that occur within the analysis aspects themselves. However, its negation is applied—that

is, it is used to inhibit our aspect advice from acting on the aspects themselves. This behavior is generally not

desired, and leaving this out is a common AspectJ programming error. Such a bug often results in an infinite

loop, with a piece of advice recursively advising itself.

There are three general kinds of advice in AspectJ—”before,” “after,” and “around.” As its name

suggests, “before” advice is triggered before a join point is executed—that is, if it is advising a method-

call join point, it executes before the method call does. “After” advice is the reverse: first the join point is

executed, then the advice is triggered.3

The third kind, “around” advice, runs in place of its target join point. Thus, if “around” advice is

advising a method call join point, the method is not called before or after the advice is triggered. In such a

case, the advice code has complete control over whether the method is called at all. If the advice decides to

execute the join point, it can do so through AspectJ’s proceed() construct.

6.1.1 Reference-probing aspect

As discussed in Chapter 2, it is an error for an RTSJ object to reference an object that is not in an ancestor’s

scope. We have developed a reference-probing aspect to harvest object-referencing activity from a set of

program executions. Appendix A shows the reference-probing aspect’s implementation.

As described in Chapter 5, we are presently concerned with grouping objects together based on the

location of their instantiation—that is, the source code location of their associated new operation. To track

the objects that are created in our system, we use “before” advice on constructor executions. This advice

sets up an unresolved SourceLocationImpl object. When the constructor call is completed, our “after”

advice on constructor calls resolves the source location of the instantiation.

We also have advice to detect when one object references another. “Around” advice captures field-

assignment join points and calls the reference() method, registering the reference. One or both of the

objects involved in the reference may have an unresolved instantiation source location—its constructor may

3There are further classes of “after” advice in AspectJ as well, corresponding to whether a normal or exceptional path was taken to
exit the join point. Further discussion may be found in the AspectJ Programming Guide [4].
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still be executing and, thus, our resolution advice has not yet run. In this case, the reference is kept in a stack

of references that are not yet resolved. A subsequent call to reference() will detect that the instantiation

locations have since been resolved and output the reference data.

The information thus collected can then be analyzed to determine legal scoping hierarchies for RTSJ.

Section 6.1.3 describes the scope-forming process in more detail.

6.1.2 Object death-probing aspect

In Java, one can use the java.lang.ref.WeakReference class to keep references to objects without

inhibiting their collection. Further, one can use a WeakReference together with an instance of Java’s

java.lang.ref.ReferenceQueue class to carry out processing when the object becomes collectible

in a more flexible way than is available with object finalization.

Our death-probing aspect uses Java’s ReferenceQueue and WeakReference types to receive

notification of each object’s “collectibility.” Each method- and constructor-exit is advised with a collection

cycle, and the set of such collectible objects can thus be determined. A sketch of the death-probing aspect is

shown in Appendix A.

A frame field is introduced into Threads to track birth and death “times” of objects created by the

thread, as well as the execution join points at which they become collectible. Using this information, we can

determine how many stack frames particular objects remain live after being instantiated.

The DeathProbe aspect also maintains a list of references to outstanding live objects, refs,4

and the ReferenceQueue instance. “Around” advice captures all method executions and constructor

calls, maintains the frame number, and detects dead objects. “After” advice is used on constructor calls

to capture the birth frame of instantiated objects and store them in a DeathProbeReference. The type

DeathProbeReference, defined as a member class, extends WeakReference and provides for the

storage of objects’ birth information.

4These references are necessary. If a WeakReference object becomes itself collectible, it will never be placed on the
ReferenceQueue upon its referent’s collection.
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6.1.3 Offline analysis

In keeping with the approach outlined in Chapter 5, we must determine two critical pieces of information

from the data collected by the analysis aspects:

� The scoping hierarchy to use in the RTSJ translation

� The execution join points of the program that should enter memory scopes.

To determine the scoping hierarchy, we construct our doesReference graph from the reference information

obtained by the reference-probing aspect, where each node of the doesReference graph corresponds to a

well-defined set of objects in the original program.5 We collapse the strongly-connected components of the

doesReference graph, as any strongly-connected object-reference chain implies that all of the participating

objects must be in the same memory scope. Collapsing strongly-connected components results in a directed

acyclic graph (DAG). Because legal references may only point to objects in the same scope or longer-lived

scopes, the transpose of this collapsed doesReference graph is a DAG representing parent-to-child scope

nesting relationships.

We then select a tree over this DAG to be the memory scope hierarchy of the translated program.

All references observed in dynamic-analysis runs of the program point upward in this generated scoping

tree and are therefore consistent with RTSJ’s reference rules. Having decided on the particular memory

scoping hierarchy to use, we can take the information gleaned from the death-probing aspect to determine the

execution scopes—methods and constructors—on which we wish to root the discovered memory scopes.

6.2 Runtime enforcement

Once a particular scoping hierarchy has been selected, and the exact join points that should signal the entrance

into scopes have been determined, we must enforce the scoping strategy on the running program. We can

achieve this using AOP as well. We advise join points that should enter memory scopes to do so. “Around”

advice is used, as shown in Figure 6.2.6 The scope is entered by a RealtimeThread, which dispatches

5As mentioned in Section 6.1.1, we are currently grouping objects together into doesReference nodes based on the source code
location of their construction—their associated new operation. In the future, we will be investigating more flexible and adaptive ways
of grouping objects into doesReference nodes.

6Of course, the actual structure of the generated memory aspects will depend on the analyzed program.
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control back to the advised join point. No special treatment is required to close the scope, as that will

automatically follow the execution scope’s exit as guaranteed by RTSJ.

The enforcement aspect makes use of our ScopeMap class. ScopeMap implements Java’s Map

interface and maps AspectJ JoinPoints to ScopeMemory instances.

package autoscope.runtime;
aspect EnforcerAspect {

ScopeMap scopes = new ScopeMap();
void enterScope(JoinPoint jp, Runnable logic) {
scopes.getScope(jp).enter(logic);

}

around() returns Object:
executions(public void Foo.foo()) {

Runnable r = new Runnable() {
public Object retval;
public void run() {

retval = proceed();
}

};
// The run() method of "r" executes in our thread,
// not its own.
enterScope(thisStaticJoinPoint, thr);
// Scope no longer exists after call to enterScope()
return thr.retval;

}

// etc.
}

Figure 6.2: A sample enforcement aspect.

6.3 Other aspect analysis techniques

We have herein demonstrated the use of aspects for collecting and analyzing dynamic information about a

running program. There is a wide variety of data that could be collected with aspect-characterized dynamic

analysis:

Instantiation and collection behavior: We operate in this realm of analysis, but other possibilities exist.

A developer may be interested in knowing the maximum amount of live storage in the system at one time, or

the maximum number of live objects. Thread-based analysis could be performed to determine the amount of

work done by each thread in a thread pool.
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Inter-class behavior: Inter-class call behavior could be detected in addition to inter-class references. Par-

ticularly high method-execution frequencies could be detected to indicate the most important places to opti-

mize or inline code.

Dead code removal: Method and constructor implementations never used by a running system can be

detected and replaced by a no-op in bytecode files to reduce the size of the software.

Class preloading: Classes used by an embedded system application could be determined and then either

preloaded or placed in flash memory in the running system to buffer against unexpected pauses during run-

time. In some circumstances it can be impossible to determine all loadable classes statically (e.g., in a

reflective language like Java).

Of course, these are just a few possibilities among a large number of potential applications for AOP,

and AspectJ in particular, in implementing optimizations discovered through static or dynamic analyses.

6.4 Remarks

We have demonstrated the suitability of aspects for dynamic analysis and for the application of insights

gleaned from analysis. While our examples have been limited chiefly to the collection of information pro-

cessed in offline analysis, aspects are sufficiently expressive to allow for program analysis and optimization

at runtime. As such, more powerful, adaptive dynamic analysis [60] could be performed during runtime.
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Chapter 7

Experimentation

In this section we present results that quantify the scopes formed by our analysis and compare the resulting

scoped object lifetimes to observed object lifetimes. As stated earlier, we assume the cost of scope creation

and deletion is negligible; thus, we are interested in creating the most refined scopes possible—as near the

top of stack as possible—to minimize the time an object spends from its logical death until the point of

collection (by having its associated scope deleted). This method is designed to decrease the memory footprint

of the resulting system by collecting objects as quickly as possible; however, because of potential accounting

overhead of scoped memory regions, this is not guaranteed.

7.1 Experimental method

We instrumented Sun’s JVM version 1.1.8 to collect the information required by our algorithm: birth and

death frames of objects and object inter-reference information.1 We also tagged each instantiated object with

its instantiation site—that is, the new instruction that created that object. This information is required to

relate referencing behavior to the vertices of the doesReference graph.

1Our aspects have been tested and perform this purpose, but we wished to use a specialized reference-counting garbage collector and
had a logging-instrumented JVM to use.



48

7.2 Benchmarks

We then built the doesReference graph and computed a mapping from vertices to object liveness for the

objects using the approach presented in Chapter 5. We report results using the following benchmarks (size 10)

from the Java SPEC suite [68]: raytrace renders an image; javac is the Java compiler from Sun’s JDK

1.0.2; mpegaudio is a computational benchmark that performs compression on sound files; jess is an

expert-system shell application that solves a puzzle in logic. The size of these benchmarks is shown in

Table 7.1.

Table 7.1: Benchmark sizes: the number of objects and distinct allocation sites encountered during execution.

benchmark # objects # allocation sites
jess 106,727 1,098
raytrace 559,287 925
javac 211,080 1,239
mpegaudio 9,166 827

Object references were traced by instrumenting the JVM to emit messages in response to putfield

and similar instructions that cause one object to reference another. Object lifetimes were collected by using a

simple reference-counting garbage collector implementation that finds dead objects at each frame pop. This

particular reference-counting implementation counts only inter-object references, and handles local refer-

ences (from local variables and Java’s operand stack) by associating the object with the lowest stack frame

that exhibits such behavior. When a frame pops, its object list is traversed and any object with a reference

count of zero is then collected. While the reference-counting collector is approximate, it is close enough for

these benchmarks [15]. Use of an exact collector would cause our experiments to take too much time [66].

Some inexact methods of garbage collection are not suitable for this analysis as they closely couple

inter-object references and object lifetime. For example, contaminated garbage collection [15, 14] groups

objects that reference each other into equilive sets, expecting that they will become collectible at the same

time.2 If based on a contaminated collector, our scope analysis would not output a properly nested scoping

structure; the scopes would be unnecessarily conservative due to the collector’s bidirectional association

between an object making a reference and the target of the reference. In effect, our two forms of dynamically-

collected data—the object reference and object collection traces—would become utterly tangled and useless.

2In brief: these equilive sets of objects are each associated to a frame; when a reference between two objects � and � occurs, the sets
to which � and � belong are merged (unioned) and re-associated to the lower frame. In this way, garbage marking is done incrementally
with each reference. When a frame pops, objects in equilive sets associated to it are known to be garbage and are scheduled for collection
or recycling.
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We are working on the instrumentation of Java code as described in Chapter 5 to use the scopes

harvested by our analysis. However, we cannot at this time offer measurements of improved real-time deter-

minism due to the use of these scoped memory regions.

7.3 Results

The results presented here show some relevant information about the benchmarks and demonstrate scope

formation using our technique. We compute an assignment of each object to a non-garbage collected scoped

memory area corresponding to its instantiation site. The scope assignment satisfies both the observed object

lifetimes and the reference constraints of the RTSJ introduced in Chapter 2.

Figure 7.1 shows the number of objects we assign into each scope for the mpegaudio benchmark.

Column 0 accounts for objects that are collected in their allocating frame, using the scoped memory areas

we’ve discovered. Column 1 accounts for objects that are collected when the stack frame of their allocating

method’s caller pops.

Figure 7.2 shows the corresponding comparison for raytrace; Figure 7.3 shows the javac

benchmark, and Figure 7.4 shows the results for jess. Of the four benchmarks, three allocate a plural-

ity of their objects such that they become dead when their allocating frame pops; mpegaudio, a primarily

computational benchmark that allocates fewer objects than any of the other three (see Table 7.1), allocates

more objects that ultimately live longer when placed in scoped memory.

In the jess benchmark, a substantial number of objects are paired off in circularly-referencing

relationships; due to this referencing behavior, our reference-counting garbage collector does not collect such

objects until program termination; since this information serves as input to our analysis, our analysis assumes

that such objects are longer-lived than they actually would be under an exact garbage collector.

For practical reasons, inter-procedural escape analysis is typically performed with limits on the max-

imum call-stack depth;3 thus escape analysis [78] could perform rather well for a benchmark like raytrace

3Personal communication, Martin Rinard.
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in which most of the objects become collectible after their allocating stack frame is popped. Our results indi-

cate that for programs that allocate longer-lived objects (like mpegaudio in Figure 7.1), the added expense

of deeper static analysis is justified.

Of course, due to our RTSJ-imposed reference constraints and the fact that we aggregate object

behavior by allocation site, we cannot always collect (by closing a scoped memory) all objects as soon as

they become collectible. To measure this, we consider the lifetime (in frames) of each object according to

the reference-counting collector and subtract from this the lifetime of the object when placed in its assigned

scope according to its allocation site’s assigned scope index. The result is its “extra longevity” under the

scope assignment.

Figure 7.5 shows the “extra longevity” afforded the objects of the raytrace benchmark. The plot

indicates the number of objects that ultimately live longer than necessary when placed in our scoped memory

areas and the additional number of frames for which they live. For example, when placed in scoped memory,

there are 27,588 objects in raytrace that live one frame longer than is necessary.

Figure 7.6 shows a similar plot for the mpegaudio benchmark. Only 700 objects of this benchmark

live one frame longer than necessary. In fact, we can accurately scope approximately 2,300 of the 9,000

objects in mpegaudio such that they live no longer than they would under the reference-counting collector.
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Figure 7.1: Scoping assignments for objects in mpegaudio.
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Figure 7.2: Scoping assignments for objects in raytrace.
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Figure 7.3: Scoping assignments for objects in javac.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50 60 70

Relative Depth Assigned to Objects

# 
o

b
je

ct
s

Figure 7.4: Scoping assignments for objects in jess.



53

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Extra Longevity in Frames

# 
o

b
je

ct
s

Figure 7.5: Extra longevity of objects in raytrace using scoped memory.
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Figure 7.6: Extra longevity of objects in mpegaudio using scoped memory.
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Chapter 8

Related Work

Advanced Separation of Concerns (ASoC) research is surveyed separately in Chapter 3. Other related work

includes that of region-based memory systems and analysis techniques for object-oriented programs.

8.1 Region-based memory systems

Gay and Aiken [31] provide a regions library with such operations as newregion to create a new region,

a corresponding deleteregion, and ralloc to allocate within a region; programmers target a region-

annotated dialect of C, called RC, that permits them to indicate restricted pointers that may only point to

objects in their own region or a limited (possibly empty) set of other regions. Their RC compiler performs

static checks and injects code for runtime checks that ensure that the behavior of these restricted pointers fits

their annotation. A reference count of external pointers into a region is kept, and a region may only be deleted

when no outstanding external references exist.

A stack of regions is suggested by Tofte and Talpin [75, 74]. A programmer can bind the evaluation

of an expression to a particular memory region, similar to the use of scoped memory regions in Real-Time

Specification for Java [10] (RTSJ). This view of region-based memory management has been realized in the

ML Kit [53], a Standard ML [52] compiler. Recently the ML Kit has been extended to allow for the garbage

collection of these regions; an account of this extension is found in [34].
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8.2 Analysis Techniques

Static pointer and escape analysis [77, 78] seeks to collect information about the referencing and lifetime

behavior of objects; such analysis is often targeted to a variety of optimizations, including the allocation of

objects on the stack and synchronization elimination. The analysis by Sălcianu and Rinard [63] introduces a

parallel interaction graph, provides safety checking of supplied region gestures, and can be used to remove

unnecessary runtime instructions for region verification, all for a multithreaded target program. These anal-

yses are performed statically and may need to make overly conservative assumptions about the behavior of

the program, as mentioned in Chapter 5. Manual modifications to the discovered regions may be required to

achieve desired results [7].
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Chapter 9

Conclusion

Automatic memory management is a useful technique that substantially releases the programmer from con-

cerns about the lifetime of objects in a software system. There is a cost to using automatic memory man-

agement, however, and because the state of a system’s memory and garbage collector are often highly un-

predictable, a real-time system can miss important deadlines if it stops or slows program progress for an

unbounded (or unreasonably bounded) period of time to manage memory internally.

The Real-Time Specification for Java addresses this problem by offering regions of memory that

are not garbage collected but instead are reclaimed after a particular scope of execution exits. Chapter 5

presented an algorithm to discover how and where to instrument Java programs to take advantage of these

non-garbage collected, scoped memory regions defined by the Real-Time Specification for Java [10] (RTSJ).

We have presented experimental results to verify that much of the memory used by standard benchmarks is

locally allocated (or is live for a short time on the stack) but that a significant amount can live longer; these

long-lived allocations can be difficult for static analysis to handle without resorting to overly conservative

assumptions.

9.1 Future work

We are presently investigating numerous improvements to our scope-detection tool:
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Aspects: Aspect-Oriented Programming (AOP) [42] can be used to implement the reference and lifetime

dynamic analyses and also to instrument the program to take advantage of scoped memory regions. In this

approach, the analysis is designed, implemented, and then weaved into the program we wish to trace. Simi-

larly, after the analysis is performed a behavioral description of the output of the analysis is weaved into the

program. We have already implemented such profiling aspects [27, 25], but are unable to use these imple-

mentations to analyze Java library code or objects created internally by a Java Virtual Machine (JVM) due to

limitations in the current version (1.0.6) of the AspectJ compiler. The primary advantages to using AOP for

this purpose are (1) to avoid instrumenting and re-targeting Java interpreters individually to log appropriate

data for our analysis, and (2) to separate the Java and RTSJ code cleanly in the target program.

Multiple threads: Further evaluation of our threading-aware analysis techniques as introduced in Sec-

tion 5.4.4 is necessary. We have developed a prototype threading-aware AspectJ aspect to perform this mul-

tithreaded analysis and plan to continue its development as a part of this work.

Alternative liveness measures: Types of object death measurement other than the relative death metric

described here are possible. One example is the time of death of an object relative to the entry of a method

in a particular library or class. This type of measure could be quite useful in analyzing several modular

components separately, then composing those analyses’ data into a full, coherent runtime system that makes

use of all of those components.

Code splitting: The granularity of a vertex in the doesReference graph can be made more precise by “code

splitting” at an instantiation site, with the resulting new commands tailored by some calling context. This

could help objects created by factory methods (and other methods that generate objects on behalf of the

caller), as we could then consider not only the allocation site of the object but also the caller of the allocating

method.

Combination of analyses: Our dynamic analysis could be combined with static escape analysis [78] to

provide static analysis with areas where precision could be improved and to inform our analysis of areas

where we should be more conservative.
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Appendix A

Source for Analysis Tools

Probe.javapackage autoscope.probe;

import java.io.*;
import java.util.*;

/**
* Contains some important pointcuts for aspect probes in this
* package.
*/

abstract aspect Probe {
/** The ID string of the RCS file.<p>Currently:
* $Id: Probe.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $ */

protected static final String rcsid =
"$Id: Probe.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $";

/** A pointcut to exclude {@link Probe} aspects from analyzing
* themselves */

pointcut withinUs():
within(autoscope.probe..*+)
|| within(autoscope.runtime..*+);

/** Convenience pointcut for method join points that interest us */
pointcut methodExecution():
!withinUs() && execution(* *.*(..));

/** Convenience pointcut for constructor join points that interest
* us */

pointcut constructorCall():
!withinUs() && call(*.new(..));

/** A pointcut to select the execution of the <code>main()</code>
* routine. */

pointcut mainCut(String[] cmdline) returns void :
args(cmdline) && execution(public static void main(String[]));

/** The PrintWriter to which to send output.
* @see #outExtension()
* @see #around(String[]) */

protected PrintWriter out;

/** The PrintWriter to send debugging information to -- by
* default, this is a PrintWriter around System.err. */

protected DebugPrintWriter debug = new DebugPrintWriter(System.err);

/** Debugging on or off? If <i>false</i>, all invocations of
* methods (except <code>new</code>) on {@link
* Probe.DebugPrintWriter} instances are ignored. If <i>true</i>,
* all such calls are permitted to proceed. */

protected boolean debugOn;
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/** Return the Object ID (class name + "@" + hex identity hash
* code). Meant for debugging purposes. */

protected String oid(Object o) {
return o.getClass().getName() + "@" +

Integer.toHexString(System.identityHashCode(o));
}

/** Advice to halt method invocations on {@link
* Probe.DebugPrintWriter} when debugging is off (via {@link
* #debugOn}). */

/* -- doesn’t compile (compiler crash)
Object around(DebugPrintWriter pw): call(* PrintWriter.*(..))
&& target(pw) && this(Probe) {
System.out.println("debug " + thisJoinPoint);
return null;
}

*/

public void DebugPrintWriter.on() {}
public void DebugPrintWriter.off() {}

void around(Probe p): this(p) && call(public void DebugPrintWriter.on()) {
p.debugOn = true;

}
void around(Probe p): this(p) && call(public void DebugPrintWriter.off()) {
p.debugOn = false;

}

/** Must be overridden by subaspects to specify the output file
* extension.
* @return the filename extension to use for the {@link #out}
* file. The base part of the name is determined by the class
* that executes the <code>main()</code> routine. */

abstract protected String outExtension();

/** A member aspect designed to cut around <code>main()</code>
* before any {@link Probe} subaspect does. Only thing is, the
* subaspects of {@link Probe} have to have member aspects that
* dominate {@link Probe.MainCutter} and force them (the
* subaspects of {@link Probe}) to be loaded, adding to {@link
* #theProbes} a reference to themself. <i>Really ugly.</i> */

static aspect MainCutter dominates Probe+ {
/** A {@link java.util.Vector Vector} of {@link Probe}
* aspects. This is added to with {@link #after(Probe)
* <i>after</i>} advice on {@link Probe} initialization. */

protected Vector theProbes = new Vector();
/** Advice to grab onto <code>MakeMyPresenceKnown</code>
* aspects in {@link Probe} subaspects. It adds {@link Probe}
* instances to the {@link java.util.Vector Vector} {@link
* #theProbes} as they are initialized. */

after(Probe p): this(p) && initialization(Probe.new(..)) {
theProbes.add(p);
p.debug.println("Probe.MainCutter adding " + p);

}
/** Advice to set up the log file output {@link
* java.io.PrintWriter PrintWriter} ({@link Probe#out}). The
* filename extension is retrieved from {@link
* Probe#outExtension()}.
* @see Probe#outExtension() */

void around(String[] cmdline): mainCut(cmdline) {
String packagedir = "";
try {

packagedir =
thisJoinPointStaticPart.getSignature()
.getDeclaringType().getPackage().getName()
.replace(’.’,’/’) + ’/’;

} catch(RuntimeException _) {}
String filename =

thisJoinPointStaticPart.getSourceLocation().getFileName();
String reffilename = packagedir +

filename.substring(0, filename.length() - 4);
String extension = null;
try {

synchronized(theProbes) {
for(Enumeration en = theProbes.elements();

en.hasMoreElements();) {
Probe p = (Probe)en.nextElement();
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extension = p.outExtension();
if(extension == null)

throw new NullPointerException
("The String returned by "
+ p.getClass().getName() +
".outExtension() cannot be null");

p.out = new PrintWriter
(new FileWriter(reffilename + extension));

}
}

try {
proceed(cmdline);

} catch(Throwable e) {
System.out.println("main() threw a "

+ e.getClass().getName());
e.printStackTrace();

}

Thread[] thds = new Thread[32];
Thread me = Thread.currentThread();
ThreadGroup myGroup = me.getThreadGroup();
int t;

do {
t = myGroup.enumerate(thds, true);
try {
for(int i = 0; i < t; ++i)

if(thds[t] != null && thds[t] != me)
thds[t].join();

} catch(InterruptedException _) {}
} while(t > 1);

synchronized(theProbes) {
for(Enumeration en = theProbes.elements();

en.hasMoreElements();)
((Probe)en.nextElement()).out.close();

}
} catch(IOException e) {

System.err.println("while trying to work with "
+ reffilename + extension + ": " + e);

e.printStackTrace();
}

}
}

/** Member class to serve as a debugging writer. This class only
* exists so that the <i>around</i> advice can distinguish
* debugging calls from other {@link java.io.PrintWriter
* PrintWriter} calls. */

public static class DebugPrintWriter extends PrintWriter {
/** Create a new {@link DebugPrintWriter}, <i>with</i>
* automatic line flushing, from an existing {@link
* java.io.OutputStream OutputStream}. Using this constructor
* is identical to calling {@link
* #DebugPrintWriter(java.io.OutputStream,boolean)} with the
* second argument equal to <i>true</i>.
* @param out An output stream */

public DebugPrintWriter(OutputStream out) {
this(out, true);

}
/** Create a new {@link DebugPrintWriter} from an existing
* {@link java.io.OutputStream OutputStream}. This constructor
* is identical to {@link java.io.PrintWriter’s} {@link
* java.io.PrintWriter#PrintWriter(java.io.OutputStream,boolean)
* constructor} of the same signature.
* @param out An output stream
* @param autoFlush A boolean; if true, the println() methods
* will flush the output buffer */

public DebugPrintWriter(OutputStream out, boolean autoFlush) {
super(out, autoFlush);

}
/** Create a new {@link DebugPrintWriter}, <i>with</i>
* automatic line flushing. */

public DebugPrintWriter(Writer out) {
super(out, true);

}
/** */
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public DebugPrintWriter(Writer out, boolean autoFlush) {
super(out, autoFlush);

}
}

/** A member class to serve as an {@link Error} class for {@link
* Probe}s */

protected static class ProbeError extends Error {
/** Construct a {@link ProbeError} with no detail message */
public ProbeError() { }
/** Construct a {@link ProbeError} with the specified detail
* message.
* @param s the detail message of the {@link ProbeError} */

public ProbeError(String s) { super(s); }
}

}
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ReferenceProbe.javapackage autoscope.probe;

import java.util.*;

import org.aspectj.lang.reflect.*;

/**
* An aspect to detect and store to a file which objects in a system
* refer to which others.
*/

aspect ReferenceProbe extends Probe {
/** The ID string of the RCS file.<p>Currently:
* $Id: ReferenceProbe.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $ */

protected static final String rcsid =
"$Id: ReferenceProbe.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $";

/** Whether or not to print stuff verbosely. */
protected boolean verbose = false;

/** A hash of encountered new sites. */
protected Hashtable newLocHash = new Hashtable();

/** A {@link java.util.Hashtable Hashtable} of {@link Thread}s to
* the {@link org.aspectj.lang.reflect.SourceLocation
* SourceLocation} of <code>new</code> sites */

protected Hashtable newSiteThreadHash = new Hashtable();

/** Returns our preferred filename extension "ref".
* @return The {@link String} "ref", signalling that we want an
* output file with a ".ref" extension.
* @see Probe#outExtension() */

protected String outExtension() { return "ref"; }

/** Sets a "currently executing" <code>new</code> site {@link
* org.aspectj.lang.reflect.SourceLocation SourceLocation} for the
* current {@link Thread}. */

before(): constructorCall() {
newSiteThreadHash.put(Thread.currentThread(),

thisJoinPointStaticPart.getSourceLocation());
}

/** Links the {@link org.aspectj.lang.reflect.SourceLocation
* SourceLocation} of a <code>new</code> site to the object
* currently under construction.<p>
* The {@link org.aspectj.lang.reflect.SourceLocation
* SourceLocation} is retrieved from {@link #newSiteThreadHash},
* which contains a mapping of {@link Thread}s to the
* <code>new</code> sites they are currently executing. */

before(Object o): this(o) && execution(*.new(..)) && !withinUs() {
/* In super() constructor invocations, we’ll run multiple

times. This explicit null check keeps us from unnecessary
work (and garbage). */

if(newLocHash.get(o) == null)
newLocHash.put(o, newSiteThreadHash.get(Thread.currentThread()));

}

/** Links the {@link org.aspectj.lang.reflect.SourceLocation
* SourceLocation} of a <code>new</code> site to a constructed
* object.<p>
* The {@link org.aspectj.lang.reflect.SourceLocation
* SourceLocation} is retrieved from this (constructor call) join
* point.<p>
* This advice is necessary for objects instantiated by our system
* but whose constructor code is outside our system (for example,
* instantiating a {@link String} or some other standard class in
* the Java class library. */

after() returning(Object o): constructorCall() {
if(newLocHash.get(o) == null)

newLocHash.put(o, thisJoinPointStaticPart.getSourceLocation());
}

/** This advice, on assignments, tracks which objects refer to
* which others and calls reference() appropriately to generate
* reference output. */

before(Object a, Object x):
target(a) && args(x) && set(* *..*.*) && !withinUs() {
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if(x == null) {
if(verbose)

out.println("=== PROBE: x is null in nonstatic probe at " +
thisJoinPoint);

return;
}
if(a == null)

reference(new StaticClass(thisJoinPointStaticPart.getSignature()
.getDeclaringType()), x);

else reference(a, x);
}

/** This routine registers (and prints to the {@link
* java.io.PrintWriter PrintWriter} specified in {@link #out})
* that an object refers to another object.<p>
* The {@link String} printed for each item is the {@link String}
* returned by {@link #getSrcLoc(Object)}, unless parameter
* <code>a</code> is an instance of {@link StaticClass}, in which
* case the name of the encapsulated class is output.
* @param a the object that refers to object x
* @param x the object that object a refers to
* @see ReferenceProbe.StaticClass
* @see #getSrcLoc(Object) */

protected void reference(Object a, Object x) {
try {

out.println(( (a instanceof StaticClass) ?
((StaticClass)a).getReferent().getName() :
getSrcLoc(a))

+ ": " + getSrcLoc(x));
} catch(NoSuchNewSiteException _) {}

}

/** Get a {@link String} representing the new site for the given object.
* @param o the object to get the new site for
* @return a {@link String} of the form "Foo(Foo.java<1:3>)"
* @exception a {@link ReferenceProbe.NoSuchNewSiteException} is
* thrown if the object’s new site hasn’t been detected (ie., it
* corresponds to a library object, which AspectJ cannot track, or
* a primitive type that was promoted to a class-based equivalent
* (like int -> Integer) by AspectJ. */

protected String getSrcLoc(Object o) throws NoSuchNewSiteException {
SourceLocation loc = (SourceLocation)newLocHash.get(o);

if(loc == null)
throw new NoSuchNewSiteException();

return o.getClass().getName() + "(" + loc.getFileName()
+ "<" + loc.getLine() + ":" + loc.getColumn() + ">)";

}

/** A class to handle cases where no new site exists for an object
* (for example, a primitive int that AspectJ promotes to an
* Integer. */

static protected class NoSuchNewSiteException extends Exception {}

/** Class used to track static reference information by
* encapsulating a java.lang.Class */

static final protected class StaticClass {
private Class c;
public StaticClass(Class c) { this.c = c; }
public Class getReferent() { return c; }

}

/** Aspect containing simple advice that forces the {@link
* ReferenceProbe} aspect to be class-loaded before {@link
* Probe.MainCutter}’s advice runs. */

static aspect MakeMyPresenceKnown dominates Probe.MainCutter {
/** Simple advice to force the {@link ReferenceProbe} aspect
* to be class-loaded before {@link Probe.MainCutter}’s advice
* runs. */

before(): mainCut(String[]) {
ReferenceProbe.hasAspect();

}
}

}
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LivenessProbe.javapackage autoscope.probe;

// import java.util.*;

import org.aspectj.lang.*;

/**
* An abstract aspect to serve as the parent for aspect probes that
* detect when objects become collectible. This aspect contains no
* liveness-probing implementation, but does handle some
* implementation-independent stuff.
* @see autoscope.probe.DeathProbe
* @see autoscope.probe.FinalizationProbe
*/

abstract aspect LivenessProbe extends Probe {
/** The ID string of the RCS file.<p>Currently:
* $Id: LivenessProbe.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $ */

protected static final String rcsid =
"$Id: LivenessProbe.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $";

/** Returns our preferred filename extension "liv".
* @return The {@link String} "liv", signalling that we want an
* output file with a ".liv" extension.
* @see Probe#outExtension() */

protected String outExtension() { return "liv"; }

// Ideally, we’d do this...
// private long Thread.frame = 0;
// but for now, we have to do this... :(

/** The {@link DeathProbe.ThreadMap ThreadMap} for the probed
* program. */

protected final ThreadMap threads = new ThreadMap();

/** This static field enforces the rule that you may not have more
* than one LivenessProbe probe at once. */

private static boolean alreadyConstructed;
{
if(alreadyConstructed)

throw new ProbeError("Only one LivenessProbe probe "
+ "may be used at once.");

alreadyConstructed = true;
}

protected pointcut frameAction(): constructorCall() || methodExecution();

Object around(): constructorCall() {
Object o = proceed();
Thread thr = Thread.currentThread();
out.println("::new/" + (threads.getFrame(thr) - 1) + " " + oid(o));
return o;

}

Object around(): frameAction() {
enterScope(thisJoinPointStaticPart);
Object retval = proceed();
exitScope(thisJoinPointStaticPart);
return retval;

}

protected void enterScope(JoinPoint.StaticPart jp) {
out.println(">>enter/" + threads.getFrame(Thread.currentThread()) +

" " + jp);
}

protected void exitScope(JoinPoint.StaticPart jp) {
out.println("<<exit/" + threads.getFrame(Thread.currentThread()) +

" " + jp);
}

}
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FinalizationProbe.javapackage autoscope.probe;

import java.util.*;

/**
* An aspect to detect when objects become collectible. This aspect
* uses advice around calls to {@link Object#finalize() finalize()} to
* detect dead objects.
* @see autoscope.probe.DeathProbe
*/

aspect FinalizationProbe extends LivenessProbe {
/** The ID string of the RCS file.<p>Currently:
* $Id: FinalizationProbe.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $ */

protected static final String rcsid =
"$Id: FinalizationProbe.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $";

protected final Set fQ = new HashSet();

private long Object+.birthFrame = 0;
private Thread Object+.birthThread = null;

// finalize() advice
before(Object o): !target(autoscope.probe..*+) &&
call(void *.finalize()) && target(o) {
synchronized(fQ) {

fQ.add(o.getClass().getName() +
"@" + System.identityHashCode(o));

}
}

/** Advice to capture a frame push or pop; frame counts are
* maintained and collected objects are tracked. */

Object around(): frameAction() {
Thread thr = Thread.currentThread();

Object retval = proceed();

// debug.println("::GC/"+frame+" after "+thisJoinPointStaticPart);

System.gc();
System.runFinalization();

synchronized(fQ) {
for(Iterator i = fQ.iterator(); i.hasNext();)

debug.println("::DEATH_finalize "
+ (String)i.next());

fQ.clear();
}

return retval;
}

after() returning(Object o): constructorCall() {
Thread thr = Thread.currentThread();
o.birthThread = thr;
o.birthFrame = threads.getFrame(thr) - 1;

}

/** Aspect containing simple advice that forces the {@link
* FinalizationProbe} aspect to be class-loaded before {@link
* Probe.MainCutter}’s advice runs. */

static aspect MakeMyPresenceKnown dominates Probe.MainCutter {
/** Simple advice to force the {@link FinalizationProbe}
* aspect to be class-loaded before {@link Probe.MainCutter}’s
* advice runs. */

before(): mainCut(String[]) {
FinalizationProbe.hasAspect();

}
}

}
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DeathProbe.javapackage autoscope.probe;

import java.lang.ref.*;
import java.util.*;

/**
* An aspect to detect when objects become collectible. This aspect
* uses a {@link java.lang.ref.ReferenceQueue ReferenceQueue}
* implementation.
* @see autoscope.probe.FinalizationProbe
*/

aspect DeathProbe extends LivenessProbe {
/** The ID string of the RCS file.<p>Currently:
* $Id: DeathProbe.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $ */

protected static final String rcsid =
"$Id: DeathProbe.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $";

/** A {@link java.lang.ref.ReferenceQueue ReferenceQueue} to use
* for object {@link java.lang.ref.WeakReference WeakReference}s
* becoming dead */

protected final ReferenceQueue Q = new ReferenceQueue();

/** A {@link java.util.Vector Vector} to keep track of currently
* live object {@link java.lang.ref.WeakReference WeakReference}s
* in the system. If we didn’t keep a strong reference to these
* {@link java.lang.ref.WeakReference WeakReference}s, they would
* be collected and not show up on our {@link #Q queue}. */

protected final Vector refs = new Vector();

// Threads to Vectors of dead references
protected final Hashtable deadRefHash = new Hashtable();

/** Advice to capture a frame push or pop; frame counts are
* maintained and collected objects are tracked. */

Object around(): frameAction() {
Thread thr = Thread.currentThread();

Object retval = proceed();

DeathProbeReference r;

// debug.println("::GC/" + threads.getFrame(thr)
// + " after " + thisJoinPointStaticPart);

System.gc();
System.runFinalization();

// If using PhantomReferences, we must do it twice...
// System.gc();
// System.runFinalization();

Vector deadRefs = (Vector)deadRefHash.get(thr);
if(deadRefs == null)

deadRefHash.put(thr, deadRefs = new Vector());

long thisFrame = threads.getFrame(thr);

while((r = (DeathProbeReference)Q.poll()) != null) {
deadRefs.add(r);
refs.remove(r);

}

for(Iterator it = deadRefs.iterator(); it.hasNext();) {
r = (DeathProbeReference)it.next();
long birthFrame = r.getBirthFrame();

if(birthFrame >= thisFrame) {
out.println("::DEATH_queue " + r + "/"

+ birthFrame + "/" + (thisFrame - birthFrame)
+ " after " + thisJoinPointStaticPart);

it.remove();
}

}

return retval;
}
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after() returning(Object o): constructorCall() {
Thread thr = Thread.currentThread();
refs.add(new DeathProbeReference(o, Q,

thr, threads.getFrame(thr) - 1));
}

/** Aspect containing simple advice that forces the {@link
* DeathProbe} aspect to be class-loaded before {@link
* Probe.MainCutter}’s advice runs. */

static aspect MakeMyPresenceKnown dominates Probe.MainCutter {
/** Simple advice to force the {@link DeathProbe} aspect to be
* class-loaded before {@link Probe.MainCutter}’s advice
* runs. */

before(): mainCut(String[]) {
DeathProbe.hasAspect();

}
}

}
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DeathProbeReference.javapackage autoscope.probe;

import java.lang.ref.WeakReference;
import java.lang.ref.ReferenceQueue;

/**
*/

class DeathProbeReference extends WeakReference {
/** The ID string of the RCS file.<p>Currently:
* $Id: DeathProbeReference.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $ */

protected static final String rcsid =
"$Id: DeathProbeReference.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $";

protected String str = null;
protected long birthFrame;
protected Thread birthThread;

DeathProbeReference(Object referent, ReferenceQueue Q,
Thread thr, long frame) {

super(referent, Q);

birthFrame = frame;
birthThread = thr;
if(referent != null)

str = referent.getClass().getName()
+ "@" + Integer.toHexString(System.identityHashCode(referent));

}

public long getBirthFrame() { return birthFrame; }
public Thread getBirthThread() { return birthThread; }
public String toString() { return str; }

}
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Scopes.javapackage autoscope.probe;

import java.util.*;
import java.io.*;

import org.aspectj.lang.reflect.*;
import util.*;

/**
* A class to encapsulate the reading of raw data from a reference
* trace file and develop a representation of legal scopes from it.
* <p>For the reference trace file format, see:
* http://www.cs.wustl.edu/˜mdeters/projects/middleware/trace.html
*/

public class Scopes {
/** The ID string of the RCS file.<p>Currently:
* $Id: Scopes.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $ */

protected static final String rcsid =
"$Id: Scopes.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $";

/** The doesReference graph */
protected DirectedGraph doesReference = new DirectedGraph();
/** Whether or not we’ve coalesced strongly connected components */
protected boolean collapsed = true;

/** The input file buffer to read reference data from */
protected BufferedReader infile;
/** The line of the input file buffer currently being read */
protected int refline = 0;

/** Whether or not to instantiate {@link java.lang.Class} objects
* (thus loading the classes, which takes extra time and requires
* that they are compiled and on the <tt>CLASSPATH</tt>) */

protected boolean instantiateClasses;

/** Build a {@link Scopes} object with data read in from the
* specified file with the specified {@link java.lang.Class}
* instantiation behavior.
* @param fname the file to open and read reference data from
* @param instantiateClasses whether or not to instantiate {@link
* java.lang.Class} objects for the data read in---requires that
* the classes are compiled and on the <tt>CLASSPATH</tt>
* @see Scopes#instantiateClasses */

public Scopes(String fname, boolean instantiateClasses)
throws FileNotFoundException {
this(new FileReader(fname), instantiateClasses);

}

/** Build a {@link Scopes} object with data read in from the
* specified file with the default {@link java.lang.Class}
* instantiation behavior (which is to instantiate {@link
* java.lang.Class} objects)
* @param fname the file to open and read reference data from
* @see Scopes#instantiateClasses */

public Scopes(String fname)
throws FileNotFoundException {
this(fname, true);

}

/** Build a {@link Scopes} object with data read in from the
* specified {@link java.io.Reader Reader} with the specified
* {@link java.lang.Class} instantiation behavior.
* @param in the Reader to read reference data from
* @param instantiateClasses whether or not to instantiate {@link
* java.lang.Class} objects for the data read in---requires that
* the classes are compiled and on the <tt>CLASSPATH</tt>
* @see Scopes#instantiateClasses */

public Scopes(Reader in, boolean instantiateClasses) {
infile = new BufferedReader(in);
this.instantiateClasses = instantiateClasses;

}

/** Build a {@link Scopes} object with data read in from the
* specified {@link java.io.Reader Reader} with the default {@link
* java.lang.Class} instantiation behavior (which is to
* instantiate {@link java.lang.Class} objects)
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* @param in the Reader to read reference data from
* @see Scopes#instantiateClasses */

public Scopes(Reader in) {
this(in, true);

}

/** Calculate the doesReference graph, if necessary, and return
* it.
* @return the internal {@link #doesReference} {@link
* util.DirectedGraph DirectedGraph}, after strongly connected
* components have been coalesced */

protected DirectedGraph calculateDoesReference() {
if(!collapsed) {

collapsed = true;
doesReference =

doesReference.coalesceStronglyConnectedComponents();
}
return doesReference;

}

/** Get the doesReference graph for this {@link Scopes} object.
* @return a {@link util.DirectedGraph DirectedGraph} denoting
* doesReference relationships; this is a clone of the internal
* {@link #doesReference} {@link util.DirectedGraph DirectedGraph}
* object, so you can use it without harming {@link Scopes}
* internals */

public DirectedGraph getReferenceGraph() {
return (DirectedGraph)calculateDoesReference().clone();

}

/** Get the legal scopes, as a directed acyclic graph, from this
* {@link Scopes} object.
* @return a DAG representing legal scopes */

public DirectedGraph getLegalScopes() {
return calculateDoesReference().transpose();

}

/** Get one possible scope, as a tree, from this {@link Scopes}
* object.
* @return a topological ordering of the DAG nodes returned from
* {@link #getLegalScopes()} */

public DirectedGraph getScopeTree() {
DirectedGraph g = getLegalScopes();
Vector verts = g.vertices(), topVerts = new Vector();

while(verts.size() > 0) {
topVerts.add(verts.firstElement());
makeTreeVisitNode(g, verts);

}

g.newRoot(this);
for(Enumeration e = topVerts.elements(); e.hasMoreElements();)

g.addEdge(this, e.nextElement());

return g;
}

/** Read all the data from the file associated with this {@link
* Scopes} object. The method simply calls the {@link
* #nextLine()} method until it returns null.
* @exception the same exceptions can be thrown as in the {@link
* #nextLine()} method */

public void readAll()
throws ClassNotFoundException, ParseError, IOException {
while(nextLine() != null);

}

/** Read and process the next line of data from the file
* associated with this {@link Scopes} object.
* @exception a {@link ClassNotFoundException} is thrown if {@link
* #instantiateClasses} behavior is on and the construction of a
* {@link java.lang.Class} throws this exception
* @exception a {@link Scopes.ParseError} is thrown with a
* (hopefully) meaningful message if there is a problem parsing
* the data file
* @exception an {@link java.io.IOException IOException} can be
* thrown by the internal {@link java.io.Reader Reader} object.
* @return a {@link Scopes.Reference} object representing the



72

* reference data from the line; <tt>null</tt> if there is no more
* reference data to read */

public Reference nextLine()
throws ClassNotFoundException, ParseError, IOException {
// need to fix this to handle /* comments */ in the data file
StringTokenizer tzr; Reference.Item left, right;

try {
String s = infile.readLine(), curtk = null;
if(s == null)

return null;
tzr = new TrimmingStringTokenizer(s, ":(", true);
++refline;
try {

SourceLocation loc;
String clsname;

clsname = tzr.nextToken();
if(tzr.nextToken().equals("("))

loc = parseSourceLoc(tzr);
else loc = null;
left = instantiateClasses

? Reference.Item.getNew(Class.forName(clsname), loc)
: Reference.Item.getNew(clsname, loc);

while((curtk = tzr.nextToken(":")).equals(""));
if(!curtk.equals(":"))

throw new ParseError("colon separator expected", curtk);

clsname = tzr.nextToken("(");
if(!(curtk = tzr.nextToken()).equals("("))

throw new ParseError("open parenthesis expected", curtk);
loc = parseSourceLoc(tzr);
right = instantiateClasses

? Reference.Item.getNew(Class.forName(clsname), loc)
: Reference.Item.getNew(clsname, loc);

} catch(NoSuchElementException e) {
throw new ParseError("got end of line but expected more");

}
try {

for(;;)
if((curtk = tzr.nextToken()).length() > 0)
throw new ParseError("junk at end of line", curtk);

} catch(NoSuchElementException e) { }
} catch(ClassNotFoundException e) {

throw new ClassNotFoundException(e.getMessage()
+ " at line " + refline);

} catch(IOException e) {
throw new IOException(e.getMessage() + " at line " + refline);

} catch(ParseError e) {
throw new ParseError(e.getMessage() + " at line " + refline);

}

doesReference.addEdge(left, right);
collapsed = false;

return new Reference(left, right);
}

/** Parse a source location string of the form
* "Foo.java&lt;10:20&gt;)". The closing parenthesis at the end
* is gobbled.
* @param tzr a {@link java.util.StringTokenizer StringTokenizer}
* whose current token pointer should be on the file name, as the
* format above implies.
* @return an object implementing the {@link
* org.aspectj.lang.reflect.SourceLocation} interface
* corresponding to the source location of the string tokenizer
* passed in */

protected static SourceLocation parseSourceLoc(StringTokenizer tzr) {
String filename, curtk = null;
int line, column;

try {
filename = tzr.nextToken("<");
tzr.nextToken();
line = Integer.parseInt(curtk = tzr.nextToken(":"));
tzr.nextToken();
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column = Integer.parseInt(curtk = tzr.nextToken(">"));
tzr.nextToken();
if(!(curtk = tzr.nextToken(")")).equals(")"))

throw new ParseError("expected close parenthesis", curtk);
} catch(NoSuchElementException e) {

throw new ParseError("got end of line but expected more of new site");
} catch(NumberFormatException e) {

throw new ParseError("error reading numeric data in new site", curtk);
}

return new SourceLocationImpl(filename, line, column);
}

/** A utility routine to visit a node of a {@link
* util.DirectedGraph DirectedGraph} during a topological
* traversal.
* @param g the {@link util.DirectedGraph DirectedGraph} we’re
* traversing
* @param vxv a {@link java.util.Vector Vector} of <i>g</i>’s
* nodes that are visitable
* @return <i>true</i> if the {@link util.DirectedGraph
* DirectedGraph} contains at least one node, and therefore the
* ordering succeeded; <i>false</i> otherwise */

private static boolean makeTreeVisitNode(DirectedGraph g, Vector vxv) {
return makeTreeVisitNode(g, vxv, null);

}

/** A utility routine to visit a node of a {@link
* util.DirectedGraph DirectedGraph} when building a topological
* ordering of a legal-scopes DAG.
* @param g the {@link util.DirectedGraph DirectedGraph} we’re
* traversing
* @param vxv a {@link java.util.Vector Vector} of nodes from the
* {@link util.DirectedGraph DirectedGraph}---each node visited is
* removed from this {@link java.util.Vector Vector}; an empty
* {@link java.util.Vector Vector} indicates that we’ve visited
* every node
* @param vx the {@link Object} to visit; if <tt>null</tt>, visit
* the first object in the <i>vxv</i> {@link java.util.Vector
* Vector}.
* @return <i>false</i> if object <i>vx</i> is not in the
* <i>vxv</i> {@link java.util.Vector Vector}; <i>true</i> if the
* object existed in the {@link java.util.Vector Vector} (and was
* therefore removed) */

private static boolean makeTreeVisitNode(DirectedGraph g, Vector vxv,
Object vx) {

if(vx == null)
vx = vxv.remove(0);

else if(!vxv.remove(vx))
return false;

for(Iterator i = g.neighbors(vx); i.hasNext();)
if(!makeTreeVisitNode(g, vxv, i.next()))

i.remove();
return true;

}

/** This {@link #main(String[]) main()} routine is a simple
* command-line interface to the {@link Scopes} object. Valid
* usage is: <code>java {@link autoscope.probe.Scopes} [-n]
* ref_file</code><p>
* The <code>-n</code> option indicates that {@link
* java.lang.Class} objects should not be instantiated (non-{@link
* #instantiateClasses} behavior). The <code>ref_file</code>
* argument specifies the name of the file containing reference
* trace data.
* @param args the command line arguments */

public static void main(String[] args) {
if(!((args.length == 2 && args[0].equals("-n")) || args.length == 1)) {

System.err.println("Usage: java probe.Scopes [-n] ref_file");
System.err.println(" -n do not create java.lang.Class objects"

+ " (no ClassNotFoundExceptions)");
System.exit(1);

}

Scopes sc = null;

try {
sc = new Scopes(args[args.length - 1], args.length == 1);
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sc.readAll();
} catch(Exception e) {

System.err.println(e);
System.exit(1);

}

DirectedGraph g = sc.getLegalScopes();
System.out.println(g.toString());
g = sc.getScopeTree();
System.out.println(g.toString());

}

/** An member class used to keep track of a reference
* (object-new-location-1 -> object-new-location-2) */

public static class Reference {
/** The ID string of the RCS file.<p>Currently:
* $Id: Scopes.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $ */

protected static final String rcsid =
"$Id: Scopes.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $";

/** The referring {@link Scopes.Reference.Item Item} */
public Item from;
/** The referred-to {@link Scopes.Reference.Item Item} */
public Item to;

/** Constructs a {@link Scopes.Reference Reference} object.
* @param from the referring {@link Scopes.Reference.Item Item}
* @param to the referred-to {@link Scopes.Reference.Item Item} */

public Reference(Item from, Item to)
{ this.from = from; this.to = to; }

/** A member class to track a reference item with new site
* ({@link Class}, {@link
* org.aspectj.lang.reflect.SourceLocation SourceLocation}) */

public static class Item {
/** The ID string of the RCS file.<p>Currently:
* $Id: Scopes.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $ */

protected static final String rcsid =
"$Id: Scopes.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $";

/** An {@link Scopes.Reference.Item} can be constructed
* with a {@link Class} object or the name of a class.
* The <i>is_cls</i> property is <i>true</i> if this
* {@link Scopes.Reference.Item Item} contains a valid
* <i>cls</i> property; <i>false</i> otherwise. The
* <i>clsname</i> is valid in either case. */

public final boolean is_cls;
/** The {@link Class} of the {@link Scopes.Reference.Item
* Item}. This is only valid if <i>is_cls</i> is
* <i>true</i>. */

public Class cls;
/** The class name of the item; always valid */
public String clsname;
/** The {@link org.aspectj.lang.reflect.SourceLocation
* SourceLocation} of the new site for this {@link
* Scopes.Reference.Item Item} */

public SourceLocation loc;

/** Construct a new {@link Scopes.Reference.Item Item}
* from a {@link Class} and a {@link
* org.aspectj.lang.reflect.SourceLocation
* SourceLocation}.<p>
* The constructors of the {@link Scopes.Reference.Item
* Item} class have protected access because {@link
* Scopes.Reference.Item Item} objects should be
* constructed through the {@link
* Scopes.Reference.Item#getNew(Class,SourceLocation)
* getNew()} method, described below.
* @param cls the {@link Class} of the {@link
* Scopes.Reference.Item Item}
* @param loc the new site of this {@link
* Scopes.Reference.Item Item} */

protected Item(Class cls, SourceLocation loc) {
this.cls = cls; this.clsname = cls.getName();
this.loc = loc; is_cls = true;

}
/** Construct a new {@link Scopes.Reference.Item Item}
* from a class name and a {@link
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* org.aspectj.lang.reflect.SourceLocation
* SourceLocation}.<p>
* The constructors of the {@link Scopes.Reference.Item
* Item} class have protected access because {@link
* Scopes.Reference.Item Item} objects should be
* constructed through the {@link
* Scopes.Reference.Item#getNew(Class,SourceLocation)
* getNew()} method, described below.
* @param clsname the name of the class of the {@link
* Scopes.Reference.Item Item}
* @param loc the new site of this {@link
* Scopes.Reference.Item Item} */

protected Item(String clsname, SourceLocation loc) {
this.clsname = clsname;
this.loc = loc; is_cls = false;

}

/** A {@link java.util.Hashtable Hashtable} of
* already-known {@link Scopes.Reference.Item Item}s.
* This keeps the {@link
* Scopes.Reference.Item#getNew(Class,SourceLocation)
* getNew()} method from instantiating two different Item
* objects corresponding to the same class and new
* site. */

protected static Hashtable itemHash = new Hashtable();

/** The public factory for getting a new {@link
* Scopes.Reference.Item Item} object. Constructs a new
* {@link Scopes.Reference.Item Item} (or re-uses an old
* {@link Scopes.Reference.Item Item}) with the specified
* {@link Class} and {@link
* org.aspectj.lang.reflect.SourceLocation
* SourceLocation}.
* @param cls the {@link Class} of the {@link
* Scopes.Reference.Item Item}
* @param loc the new site of the {@link
* Scopes.Reference.Item Item}
* @return an {@link Scopes.Reference.Item Item} object
* corresponding to the given class and new site */

public static Item getNew(Class cls, SourceLocation loc) {
String key = cls.getName() + "@" + loc;
Item it = (Item)itemHash.get(key);
if(it == null)

itemHash.put(key, it = new Item(cls, loc));
return it;

}

/** The public factory for getting a new {@link
* Scopes.Reference.Item Item} object. Constructs a new
* {@link Scopes.Reference.Item Item} (or re-uses an old
* {@link Scopes.Reference.Item Item}) with the specified
* class name and {@link
* org.aspectj.lang.reflect.SourceLocation
* SourceLocation}.
* @param cls the name of the class of the {@link
* Scopes.Reference.Item Item}
* @param loc the new site of the {@link
* Scopes.Reference.Item Item}
* @return an {@link Scopes.Reference.Item Item} object
* corresponding to the given class name and new site */

public static Item getNew(String clsname, SourceLocation loc) {
String key = clsname + "@" + loc;
Item it = (Item)itemHash.get(key);
if(it == null)

itemHash.put(key, it = new Item(clsname, loc));
return it;

}
}

}

/** An member class to encapsulate reference file parsing
* problems. */

protected static class ParseError extends RuntimeException {
/** The ID string of the RCS file.<p>Currently:
* $Id: Scopes.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $ */

protected static final String rcsid =
"$Id: Scopes.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $";
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/** Construct a {@link Scopes.ParseError ParseError} with the
* given message.
* @param s the error message */

public ParseError(String s) { super(s); }

/** Construct a {@link Scopes.ParseError ParseError} with the
* given message corresponding to the given token.<p>The
* message is of the form: <code>&lt;base parse error
* message&gt; (current token is "&lt;token&gt;")</code>
* @param s the base error message
* @param tok the token at which the error occurred */

public ParseError(String s, String tok) {
super(s + " (current token is \"" + tok + "\")");

}

/** Construct a {@link Scopes.ParseError ParseError} without a
* message. */

public ParseError() { super(); }

/** Convert a {@link Scopes.ParseError ParseError} to a
* string.<p>The string is of the form <code>"Parse Error:
* &lt;message&gt;"</code> */

public String toString() { return "Parse Error: " + getMessage(); }
}

}
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SourceLocationImpl.javapackage autoscope.probe;

import org.aspectj.lang.reflect.SourceLocation;

/**
* A class to serve as a simple implementation of AspectJ’s {@link
* org.aspectj.lang.reflect.SourceLocation SourceLocation} interface.
* @see org.aspectj.lang.reflect.SourceLocation
*/

class SourceLocationImpl implements SourceLocation {
/** The ID string of the RCS file.<p>Currently:
* $Id: SourceLocationImpl.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $ */

protected static final String rcsid =
"$Id: SourceLocationImpl.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $";

/** The filename of this source code location */
protected String filename = null;
/** The line number of this source code location */
protected int line = -1;
/** The column number of this source code location */
protected int column = -1;
/** The "within" (declaring) type of this source code location */
protected Class withinType = null;

/** Default constructor; leaves location values unspecified. */
public SourceLocationImpl() { }

/** Construct a {@link SourceLocationImpl} from the given file,
* line, column, and "within" (declaring) type.
* @param f the file name
* @param l the line number
* @param c the column number
* @param w the "within" (declaring) type */

public SourceLocationImpl(String f, int l, int c, Class w) {
filename = f;
line = l;
column = c;
withinType = w;

}

/** Construct a {@link SourceLocationImpl} from the given file,
* line, and column. The "within" (declaring) type is set to
* <tt>null</tt>.
* @param f the file name
* @param l the line number
* @param c the column number */

public SourceLocationImpl(String f, int l, int c) {
this(f, l, c, null);

}

/** Construct a {@link SourceLocationImpl} from the given {@link
* org.aspectj.lang.reflect.SourceLocation SourceLocation}. The
* file name, line, column, and "within" (declaring) type are
* taken from the parameter.
* @param loc the {@link org.aspectj.lang.reflect.SourceLocation
* SourceLocation} from which to construct this {@link
* SourceLocationImpl} */

public SourceLocationImpl(SourceLocation loc) {
filename = loc.getFileName();
line = loc.getLine();
column = loc.getColumn();
withinType = loc.getWithinType();

}

/** Get the file name of the {@link SourceLocationImpl}.
* @return the file name of the {@link SourceLocationImpl} */

public String getFileName() {
return filename;

}

/** Get the line number of this {@link SourceLocationImpl}.
* @return the line number of this {@link SourceLocationImpl}. */

public int getLine() {
return line;

}
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/** Get the column number of this {@link SourceLocationImpl}.
* @return the column number of this {@link SourceLocationImpl} */

public int getColumn() {
return column;

}

/** Get the "within" (declaring) type of this {@link
* SourceLocationImpl}.
* @return the "within" (declaring) type of this {@link
* SourceLocationImpl} */

public Class getWithinType() {
return withinType;

}

public boolean isResolved() {
return filename != null;

}

/** Copy values from a {@link
* org.aspectj.lang.reflect.SourceLocation SourceLocation}. Meant
* to resolve instances constructed with the {@link
* #SourceLocationImpl() default constructor}. */

public void resolve(SourceLocation srcloc) {
filename = srcloc.getFileName();
line = srcloc.getLine();
column = srcloc.getColumn();

}

/** Convert the {@link SourceLocationImpl} to a {@link String}.
* The {@link String} is of the form:
* <code>filename&lt;line:column&gt;</code>
* */

public String toString() {
return filename + "<" + line + ":" + column + ">";

}
}
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ThreadMap.javapackage autoscope.probe;

import java.lang.ref.*;
import java.util.*;

import org.aspectj.lang.*;

/**
* A class to maintain a map of {@link Thread}s to stack
* frame information
*/

class ThreadMap {
/** The ID string of the RCS file.<p>Currently:
* $Id: ThreadMap.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $ */

protected static final String rcsid =
"$Id: ThreadMap.java,v 1.1 2002/11/25 08:05:13 mdeters Exp $";

/** The internal {@link java.util.Hashtable Hashtable} */
protected Hashtable hash;

/** Constructs a {@link ThreadMap} with a default initial capacity
* and load factor. */

public ThreadMap() {
hash = new Hashtable();

}

/** Constructs a {@link ThreadMap} with the specified initial
* capacity and default load factor.
* @param initialCapacity the initial capacity for the map */

public ThreadMap(int initialCapacity) {
hash = new Hashtable(initialCapacity);

}

/** Constructs a {@link ThreadMap} with the specified initial
* capacity and load factor.
* @param initialCapacity the initial capacity for the map
* @param loadFactor the load factor for the map */

public ThreadMap(int initialCapacity, float loadFactor) {
hash = new Hashtable(initialCapacity, loadFactor);

}

/** Returns the current stack frame number of the given {@link
* Thread}.
* @param thr the {@link Thread} of which to query the frame.
* @return the current frame number of the {@link Thread}
* <i>thr</i> */

public synchronized long getFrame(Thread thr) {
try {

return ((Long)hash.get(thr)).longValue();
} catch(Exception _) {

return -1;
}

}

/** Increase the current stack frame number of the given
* {@link Thread}.
* @param thr the {@link Thread} for which to increment the
* frame.
* @return the current frame number (after incrementing) of {@link
* Thread} <i>thr</i> */

public synchronized long incFrame(Thread thr) {
long l;
hash.put(thr, new Long(l = getFrame(thr) + 1));
return l;

}

/** Decrease the current stack frame number of the given {@link
* Thread}.
* @param thr the {@link Thread} for which to decrement the
* frame.
* @return the current frame number (after decrementing) of
* the {@link Thread} <i>thr</i> */

public synchronized long decFrame(Thread thr) {
long l;
hash.put(thr, new Long(l = getFrame(thr) - 1));
return l;
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}

// I *hate* saying "dominates" here!
static private aspect ThreadMapMaintainer dominates LivenessProbe+ {
Vector tms = new Vector(); // WeakVector ?

Object around(): (call(*.new(..)) || execution(* *.*(..))) &&
!within(autoscope.probe..*+) && !within(autoscope.runtime..*+) {
Thread thr = Thread.currentThread();

synchronized(tms) {
for(Enumeration e = tms.elements(); e.hasMoreElements();)

((ThreadMap)((Reference)e.nextElement()).get())
.incFrame(thr);

}

Object retval = proceed();

synchronized(tms) {
for(Enumeration e = tms.elements(); e.hasMoreElements();)

((ThreadMap)((Reference)e.nextElement()).get())
.decFrame(thr);

}

return retval;
}

after() returning(ThreadMap tm): call(ThreadMap.new(..)) {
tms.add(new MyWeakReference(tm));

}

before(ThreadMap tm):
this(tm) && execution(void ThreadMap.finalize()) {
tms.remove(new MyWeakReference(tm));

}

private static class MyWeakReference extends WeakReference {
public MyWeakReference(Object referent) {

super(referent);
}
public MyWeakReference(Object referent, ReferenceQueue Q) {

super(referent, Q);
}
public boolean equals(Object o) {

return (o instanceof MyWeakReference) &&
get() == ((MyWeakReference)o).get();

}
}

}
}
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PartiallyConstructedException.javapackage autoscope.probe;

/**
*/

class PartiallyConstructedException extends RuntimeException {
private Object o;
private Exception t;

public PartiallyConstructedException(Object o, Exception t) {
this.o = o;
this.t = t;

}

public Object getObject() { return o; }
public Exception getThrowable() { return t; }

}
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Appendix B

Source for Instrumentation

Scope.javapackage autoscope.runtime;

import org.aspectj.lang.JoinPoint;

import java.util.Stack;

public class Scope {
protected static Stack currentScopes = new Stack();
protected static Stack currentExecutionScopes = new Stack();

protected Scope parentScope;
String debugName;

int refcount = 0;

public Scope() {
this(null, null);

}

public Scope(Scope _parentScope) {
this(null, _parentScope);

}

public Scope(String _debugName) {
this(_debugName, null);

}

public Scope(String _debugName, Scope _parentScope) {
debugName = _debugName;
parentScope = _parentScope;

}

public static Scope inScope(JoinPoint jp) {
int ix = currentExecutionScopes.lastIndexOf(jp);
if(ix < 0) return null;
return (Scope)currentScopes.get(ix);

}

public static JoinPoint inScope(Scope sc) {
int ix = currentScopes.lastIndexOf(sc);
if(ix < 0) return null;
return (JoinPoint)currentExecutionScopes.get(ix);

}

public void enter(JoinPoint jp, Runnable logic) {
ScopeRunnable sr = new ScopeRunnable(jp, logic);

synchronized(this) { ++refcount; }

if(parentScope == null || inScope(parentScope) != null)
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sr.run();
else parentScope.enter(jp, sr);

}

protected class ScopeRunnable implements Runnable {
private Runnable innerLogic;
private JoinPoint joinPoint;

public ScopeRunnable(JoinPoint jp, Runnable logic) {
innerLogic = logic;
joinPoint = jp;

}

public void run() {
synchronized(Scope.this) {

currentScopes.push(Scope.this);
currentExecutionScopes.push(joinPoint);

}

System.out.println("[ entering " + debugName + " ]");
innerLogic.run();
System.out.println("[ leaving " + debugName + " ]");

synchronized(Scope.this) {
currentExecutionScopes.pop();
currentScopes.pop();

if(--refcount == 0) {
System.out.println("[[ scope " + debugName

+ " collectible ]]");
}

}
}

}
}
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ScopeRule.javapackage autoscope.runtime;

import org.aspectj.lang.reflect.SourceLocation;

import java.util.*;

public class ScopeRule {
private Class c;
private SourceLocation srcloc = null;

protected static Map rules = new Hashtable();

private ScopeRule(Class _c, SourceLocation _srcloc) {
c = _c;
srcloc = _srcloc;

}

static ScopeRule getRule(Class _c, SourceLocation _srcloc) {
Map h = (Map)rules.get(_c);
if(h == null)

return null;
return (ScopeRule)h.get(_srcloc);

}

static ScopeRule applicableRule(Class _c, SourceLocation _srcloc) {
Map h = (Map)rules.get(_c);
if(h == null)

return null;
ScopeRule sr = (ScopeRule)h.get(_srcloc);
if(sr != null)

return sr;
return (ScopeRule)h.get(null);

}

static ScopeRule makeRule(Class _c) {
return makeRule(_c, null);

}

static ScopeRule makeRule(Class _c, SourceLocation _srcloc) {
ScopeRule rule = getRule(_c, _srcloc);
if(rule == null) {

rule = new ScopeRule(_c, _srcloc);
Map h = (Map)rules.get(_c);
if(h == null) {

h = new HashMap();
rules.put(_c, h);

}
h.put(_srcloc, rule);

}
return rule;

}
}
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ScopeMap.javapackage autoscope.runtime;

import org.aspectj.lang.*;
import org.aspectj.lang.reflect.*;

import java.util.HashMap;

public class ScopeMap extends HashMap {
private Object jp2reflect(JoinPoint jp) {
Signature sig = jp.getSignature();
Class cl = sig.getDeclaringType();

try {
MethodSignature ms = (MethodSignature)sig;
return cl.getDeclaredMethod(ms.getName(), ms.getParameterTypes());

} catch(ClassCastException e) {
if(!(jp instanceof ConstructorCallJoinPoint))

throw new ClassCastException();
return ScopeRule

.applicableRule(cl, jp.getCorrespondingSourceLocation());
} catch(NoSuchMethodException e) {

throw new RuntimeException("NoSuchMethodException in "
+ "ScopeMap.jp2reflect() while "
+ "working on class " + cl.getName());

}
}

public Scope getScope(JoinPoint jp) {
try {

Scope s = (Scope)super.get(jp2reflect(jp));
// System.out.println("ScopeMap.getScope(\"" + jp + "\") returning " + s);
return s;

} catch(ClassCastException e) {
throw new RuntimeException("ScopeMap.get() requires a "

+ "MethodExecutionJoinPoint or "
+ "ConstructorCallJoinPoint argument");

}
}

}
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Params.javapackage autoscope.runtime;

import autoscope.demo.*;
import java.util.*;

class Params {
ScopeMap scopeMap = new ScopeMap();

public Params() {
Scope str = new Scope("str");
Scope AB = new Scope("AB", str);
Scope fooHT = new Scope("fooHT", AB);
Scope demo = new Scope("demo", fooHT);

scopeMap.put(ScopeRule.makeRule(String.class), str);
scopeMap.put(ScopeRule.makeRule(A.class), AB);
scopeMap.put(ScopeRule.makeRule(B.class), AB);
scopeMap.put(ScopeRule.makeRule(Foo.class), fooHT);
scopeMap.put(ScopeRule.makeRule(Hashtable.class), fooHT);
scopeMap.put(ScopeRule.makeRule(Demo.class), demo);

try {
scopeMap.put(Demo.class.getDeclaredMethod("main", new Class[] { String[].class }), str);

} catch(NoSuchMethodException e) {
System.err.println("Uh oh.. Params() throwing " + e);
System.exit(1);

}
}

}
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DemoAspect.javapackage autoscope.runtime;

import org.aspectj.lang.JoinPoint;
import java.util.*;

import autoscope.demo.*;

public aspect DemoAspect {
protected Object retval = null;
protected Params params = new Params();

void enterScope(JoinPoint jp, Runnable logic) {
params.scopeMap.getScope(jp).enter(jp, logic);

}

pointcut us(): within(autoscope.runtime..*);

pointcut methodExecutions(): !us() && executions(* *.*(..));
pointcut constructorCalls(): !us() && calls(*.new(..));

around() returns Object : methodExecutions() {
// enter scope associated with this method execution and compute
enterScope(thisStaticJoinPoint, new RealtimeThread() {

public void run() {
System.err.println("-- method returning "

+ (retval = proceed()));
}

});
return retval;

}

around() returns Object : constructorCalls() {
// have we already entered this scope?
if(Scope.inScope(thisStaticJoinPoint) != null) {

System.err.println("Scope.inScope");
return null;

} else {
enterScope(thisStaticJoinPoint, new RealtimeThread() {

public void run() {
System.err.println("-- constructor returning "

+ System
.identityHashCode(retval =

proceed()));
}

});
return retval;

}
}

}
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DemoAspectDebug.javapackage autoscope.runtime;

import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.reflect.MethodExecutionJoinPoint;

aspect DemoAspectDebug dominates DemoAspectAssertions {
// DEBUG advice
around(Scope sc, JoinPoint jp) returns void:
calls(void sc.enter(jp, Runnable)) &&
instanceof(Scope) {

// Argh! AspectJ bug. If I try to bind a "JoinPoint jp" in the
// withincode(enterScope) construct, ajc creates bad Java code.
// In the mean time...
/*

JoinPoint jp = (JoinPoint)
( (MethodExecutionJoinPoint)
thisJoinPoint.getEnclosingExecutioJoinPoint() )
.getParameters()[0];

*/

System.out.println("entering scope for " + jp);
proceed(sc, jp);
System.out.println("leaving scope for " + jp);

}

around(Scope sc, JoinPoint jp, DemoAspect da) returns void:
calls(void sc.enter(jp, Runnable)) &&
instanceof(da) {

System.out.println("entering scope for " + jp);
proceed(sc, jp, da);
System.out.println("leaving scope for " + jp + ", returning "

+ System.identityHashCode(da.retval));
}

}



89

DemoAspectAssertions.javapackage autoscope.runtime;

import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.reflect.MethodExecutionJoinPoint;

privileged aspect DemoAspectAssertions {
static void assert(boolean cond, String str) {
if(!cond) {

System.err.println("assertion failed: " + str);
System.exit(1);

}
}

// assertion advice
around(Scope sc, JoinPoint jp) returns void:
calls(void sc.enter(jp, Runnable)) {

// Argh! AspectJ bug. If I try to bind a "JoinPoint jp" in the
// withincode(enterScope) construct, ajc creates bad Java code.
// In the mean time...
/*

JoinPoint jp = (JoinPoint)
( (MethodExecutionJoinPoint)
thisJoinPoint.getEnclosingExecutionJoinPoint() )
.getParameters()[0];

*/

int numScopes = sc.currentScopes.size();
int numExScopes = sc.currentExecutionScopes.size();

assert(numScopes == numExScopes,
"currentScopes(" + numScopes + ") and currentExecutionScopes("
+ numExScopes + ") different sizes "
+ "before entering scope for " + jp);

proceed(sc, jp);

assert(numScopes == sc.currentScopes.size(),
"currentScopes different size after leaving ("
+ sc.currentScopes.size() + ") than before "
+ "entering (" + numScopes + ") scope for " + jp);

assert(numExScopes == sc.currentExecutionScopes.size(),
"currentExecutionScopes different size after leaving ("
+ sc.currentExecutionScopes.size() + ") than before "
+ "entering (" + numExScopes + ") scope for " + jp);

/*
JoinPoint rjp = (JoinPoint)sc.currentExecutionScopes.lastElement();
assert(rjp == jp, "found wrong execution scope on top of stack "
+ "when leaving scope for " + jp + "; expected " + jp
+ " but got " + rjp);

Scope rs = (Scope)sc.currentScopes.lastElement();
assert(rs == sc, "found wrong scope on top of stack when "
+ "leaving scope for " + jp + "; expected " + sc
+ " but got " + rs);

*/
}

}
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