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Chapter 1

Introduction

Human face recognition is now a very useful tool, involving statistical and mathematical

models, together with computer implementation, which is capable of identifying a per-

son from a digital image or video source. Among existing approaches, facial recognition

techniques can be divided into two groups based on the face representation they use:

1. Appearance-based, which uses holistic texture features and is applied to either whole-

face or specific regions in a face image;

2. Feature-based, which uses geometric facial features (mouth, eyes, brows, cheeks etc.)

and geometric relationships between them [Delac et al., 2005].

When one image is converted to one observation of a dataset, it usually has hundreds

of thousands of variables, each representing one pixel value. Among many approaches

to the problem of face recognition, appearance-based subspace analysis still gives the

most promising results [Delac et al., 2005]. Subspace analysis is aimed at projecting

the images into a lower dimensional space (subspace). Finding an adequate subspace is

the most challenging part of subspace analysis. Also we can measure distances between

images of the original space to avoid the challenge of finding an adequate subspace, but

it needs much more storage space and computational operations when the dataset is large.
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Motivated by the comparisons of efficiency of facial recognition algorithm implementa-

tions in detail, this paper presents a comparison study of three appearance-based face

recognition methods PCA, LDA and KNN on ORL database, and database made up

of photos downloaded online. We study the face recognition accuracy and processing

time in equal conditions. By applying these algorithms on two different datasets, we can

further differentiate the three methods’ advantages and disadvantages and investigate

factors which could influence accuracy.
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Chapter 2

Database

Along with the development of face recognition algorithms, face image data acquisition

and creation of databases have been of great interest for the last few decades. However,

many of these databases are tailored to the specific needs of the algorithm under develop-

ment [Gross, 2011]. The accuracy of results of face recognition research heavily depends

upon the versatility (presence of moderately large representative samples) of the database

used.

2.1 ORL Database

The AT&T face database, sometimes also known as ORL database of faces, was collected

between 1992 and 1994. It contains 10 different images of each of 40 distinct subjects.

For some subjects, the images were taken at different times, varying the lighting, facial

expressions (open or closed eyes, smiling or not smiling) and facial details (glasses or no

glasses). All the images were taken against a dark homogeneous background with the

subjects in an upright, frontal position with tolerance for some side movement.

Table 2.1 ORL Data Review

Number of Subjects Number of Pixels Number of Images

40 92×112 400

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

3
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Figure 2.1 Part of ORL Database

2.2 Self-made Database

Table 2.2 Self-made Data Review

Number of Subjects Number of Pixels Number of Images

10 92×112 50

This database is composed of 10 distinct subjects with 5 different images each. It con-

tains 7 females and 3 males, from whom there are 8 Asians and 2 Westerners. The photos

were taken on different conditions, there is much variety in background and photo quality

between subjects. At the same time, some subjects had more variety in poses, some tilted

head, or lowered head, and the facial expression was much more vivid. The database is

colorful, which will be converted to gray-scaled photos by MATLAB.

4



Figure 2.2 Self-made Database Converted to Gray-scale

(a) Self-Made Part1 (b) Self-made Part2

5



Chapter 3

Face Recognition Method

In this thesis, before the implementation of LDA, we will do an initial dimension reduction

using PCA, due to the limitation of operations on a large-dimensional matrix. This may

affect the accuracy of LDA, and a further discussion in Chapter 4 will show that.

3.1 Principle Component Analysis (PCA)

Principal component analysis (PCA), is a classical technique which can be easily under-

stood and applied. It is a statistical method which belongs to the group of factor analysis.

The PCA is aimed at reducing the large dimensionality of the data space to a smaller

dimensional one, which is quite suitable and efficient for processing the image dataset.

3.1.1 Mathematics of PCA

By concatenating column by column (or row), a 2-D facial image can be converted to a

long thin 1-D vector. Let’s suppose a random vector X,

X =


x1

x2
...

xp

 , (3.1)

6



with variance-covariance matrix

var(X) = Σ =


σ2
1 σ12 . . . σ1p

σ21 σ2
2 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ2
p

 . (3.2)

Consider the following linear combinations:

Y1 = e11x1 + e12x2 + · · ·+ e1pxp

Y2 = e21x1 + e22x2 + · · ·+ e2pxp

...

Yp = ep1x1 + ep2x2 + · · ·+ eppxp,

(3.3)

Yi is a linear combination of x1, x2, . . . , xp, and ei = (ei1, ei2, . . . , eip) is viewed as regression

coefficients in Real field, and have the properties:

var(Yi) = eTi Σei, cov(Yi, Yj) = eTi Σej. (3.4)

First Principal Component

The first principal component is the linear combination of x-variables that has maxi-

mum variance. More formally, select e1 = (e11, e12, . . . , e1p) that maximizes

var(Y1) = eT1 Σe1, (3.5)

7



subject to the constraint that

eT1 e1 =

p∑
j=1

e21j = 1. (3.6)

Further Principal Components

The second principal component is the linear combination of x-variables that has max-

imum variance for the remaining data (exclude the variation which the first component

accounts for), and it’s subject to the constraint,

eT2 e2 =

p∑
j=1

e22j = 1, (3.7)

along with the additional constraint that these two components will be uncorrelated with

one another,

cov(Y1, Y2) = eT1 Σe2 = 0. (3.8)

The ith principal component maximizes

var(Yi) = eTi Σei, (3.9)

with the constraints,

eTi ei =

p∑
j=1

e2ij = 1 and cov(Y1, Yi) = 0, . . . , cov(Yi−1, Yi) = 0. (3.10)

The solution of coefficients involves the eigenvalues and eigenvectors of the variance-

covariance matrix Σ.

8



Let λ1 through λp denote the eigenvalues of the variance-covariance matrix,

λ1 ≥ λ2 ≥ · · · ≥ λp, (3.11)

and the corresponding eigenvectors e1 through ep are

λ1e1 = Σe1, λ2e2 = Σe2, . . . , λpep = Σep. (3.12)

The PCA chooses the m eigenvectors with the largest eigenvalues of Σ, where p� m, but

it is enough to account for the variation among observations. Thus the goal of dimension

reduction is achieved.

The variance-covariance matrix can be written as the sum over the p eigenvalues, mul-

tiplied by the product of the corresponding eigenvector times its transpose as shown

below:

Σ =

p∑
i=1

λieie
T
i

≈
m∑
i=1

λieie
T
i .

(3.13)

Let the dataset be

X =


x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
. . .

...

xn1 xn2 . . . xnp

 , (3.14)

9



and let M = mean(X) = (m1,m2, . . . ,mp), W is the decentered dataset,

W =


x11 −m1 x12 −m2 . . . x1p −mp

x21 −m1 x22 −m2 . . . x2p −mp

...
...

. . .
...

xn1 −m1 xn2 −m2 . . . xnp −mp

 . (3.15)

We can find the eigenvalues and corresponding eigenvectors of WW T instead of Σ =

W TW to avoid large number of operations [Kim, 1996],

WW Tfi = λifi, (3.16)

by pre-multiplying left W T to both sides, we have

W TW
(
W Tfi

)
= λi

(
W Tfi

)
. (3.17)

Let fi be the eigenvector of WW T corresponding to the ith eigenvalue (in descending

order), W Tfi is the eigenvector of W TW , which is also called the ith eigenface by PCA.

3.2 Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) attempts to find a linear projection from the image

space to a low dimensional space by maximizing the between-class scatter and minimizing

the within-class scatter. We assume there are L classes.

3.2.1 Mathematics of LDA

In discriminant analysis, the criterion of class separability is formulated by within-class

and between-class scatter matrices.

A within-class scatter matrix shows the scatter of samples around their group’s expected

10



vector, and is expressed as below:

Swx =
L∑
i=1

PiE
{

(X −Mi) (X −Mi)
T |X ∈ Group i

}
. (3.18)

A between-class scatter matrix is the scatter of the groups’ expected vectors around the

overall mean, expressed as below:

Sbx =
L∑
i=1

Pi (Mi −M) (Mi −M)T . (3.19)

LDA is aimed at finding a linear transformation from p-dimensional X to an m-dimensional

Y (p� m), which is expressed by

Y = ATX. (3.20)

In order to formulate class separability, the typical criterion is defined as J = tr
(
S−1
wySby

)
in m-dimensional subspace, where large between-group deviances and small within-group

deviances make it large [Fukunaga, 2013].

To maximize J = tr(S−1
wySby) = tr

{
(ATSwxA)−1(ATSbxA)

}
, A must satisfy

∂J

∂A
= 0 ⇒ (S−1

wxSbx)A = A(S−1
wySby). (3.21)

Two matrices Sby and Swy can be simultaneously diagonalized to Dm and Im by a linear

transformation,

BTSbyB = Dm and BTSwyB = Im, (3.22)

where B is an m×m nonsingular matrix and B−1 is assumed to exist.

11



The criterion value is invariant under this nonsingular transformation B:

tr
{(
BTSwyB

)−1 (
BTSbyB

)}
= tr

(
B−1S−1

wyB
−TBTSbyB

)
= tr

(
S−1
wySbyBB

−1
)

= tr
(
S−1
wySby

)
.

(3.23)

Using (3.21), (3.22) may be written as:

(S−1
wxSbx)(AB) = (AB)Dm. (3.24)

Equation (3.24) shows that the components of Dm and the column vectors of (AB) are

the m eigenvalues and eigenvectors of S−1
wxSbx.

Since the trace of a matrix is the summation of the eigenvalues,

J(p) = tr(S−1
wxSbx) = λ1 + λ2 + · · ·+ λp,

J(m) = tr(S−1
wySby) = d1 + d2 + · · ·+ dm,

(3.25)

and d1, d2, . . . , dm are also the eigenvalues of S−1
wxSbx, we can maximize J(m) by selecting

the largest m eigenvalues and the corresponding m eigenvectors of S−1
wxSbx to form the

transformation matrix.

3.3 K-Nearest Neighbours (KNN)

K-nearest neighbours (KNN) is a nonparametric method used for classification. The sin-

gle nearest neighbour technique, i.e. k = 1, is the simplest method of all. Nonetheless,

other simple rules exist which have good statistical properties for various statistical tasks,

such as estimation, prediction, and classification.

Let the data be (x, y), where x is the variable representing pixel values, y is the label.

Reorder the data according to distances from x. We write
(
x[n], y[n]

)
for the nth reordered

12



Figure 3.1 LDA transforms the data to maximize between-class scatter and mini-
mize within-class scatter.

Source: https://www.mathworks.com/matlabcentral/fileexchange/30779-lda--linear-
discriminant-analysis-?focused=5183374&tab=function

data point with respect to x. And d(·) is a distance function to be defined that should

have some properties, such as non-negativity, symmetry, the triangle inequality:

d
(
x, x[1]

)
≤ d

(
x, x[2]

)
≤ · · · ≤ d

(
x, x[n]

)
. (3.26)

The nearest neighbourhood is

g(x) = y[1] (x) , (3.27)

x is classified by assigning the label of the nearest data point to x.

By considering more than just a single neighbour, we can obtain the rule for the K-nearest

neighbours. x is classified by a majority vote of its neighbours, i.e.

g (x) = mode
(
y[1] (x) , y[2] (x) , . . . , y[n] (x)

)
. (3.28)

In this thesis, we will use Euclidean distance measurement. For PCA and LDA, after

reduction of dimensionality the Euclidean distances between training and test are mea-

sured, and then we apply the 1-NN rule for recognition. For the KNN method, we will

13



Figure 3.2 One Example of Decision Boundary: 1-NN rule results in a complicated
decision boundary and the 5-NN’s decision boundary is simpler.

(a) The dataset (b) The 1-NN Classification Map

(c) The 5-NN Classification Map

Source: https://en.wikipedia.org/wiki/K-nearest neighbors algorithm

directly measure the distances between test and training images, then apply the KNN

rule. If there are multiple modes, for example, if the KNN method has two modes for a

test image, then we will drop to the (K-1)-NN rule for recognition.

Euclidean distance between two vectors x,z of p dimensionality:

d (x, z) =

√
(x1 − z1)2 + (x2 − z2)2 + · · ·+ (xp − zp)2 . (3.29)

3.4 Method Comparison

Among the three methods, KNN is the easiest to be implemented and understood, with

the intuition that subjects with nearest distance are from the same class with high prob-

ability. However, there is no theoretical guarantee for the optimal selection of k. The

value of k is usually selected by maximizing accuracy with respect to the training data.

Theoretically, PCA reaches the dimensionality reduction target and at the same time it

14



retains the variation of variables as much as possible, which is reliable. Moreover, PCA

finds the eigenvectors of WW T instead of W TW , which makes the method practical and

efficient. The dimensionality can be reduced to no more than the number of training data.

If the training size is too small, say not more than 10, it may not be an ideal method. A

similar criticism applies to KNN in that the selection of the projection matrix depends

on the training data. LDA is also designed to reduce dimensionality, but unlike PCA,

its motivating principle is to find the projection matrix which maximizes the intergroup

variation, and makes within-group variation as small as possible. Thus the training data

must have two or more observations within each class. The projection selection also de-

pends on the training data. However, to perform operations on large matrices, which are

usually larger than 1e4 × 1e4, is time-consuming, and sometimes hard to be computed.

The difficulty lies in creating advanced algorithms for computing inverses and singular

value decompositions for large matrices. Another approach to this problem is to combine

several methods. In this thesis, we combine PCA and LDA to achieve our goals. First we

utilize PCA to obtain a comparatively small dimensional space, but which is still large

enough for accuracy, and then we apply LDA.

Figure 3.3 One Example of Results of different KNN: Test photo is correctly as-
signed with the 1-NN rule, but incorrectly assigned with 3-NN.

15



Chapter 4

Results

4.1 Recognition Performance with Increasing Training Size

Table 4.1 Running Time on ORL Database

PCA Reduced
to dim 13

LDA Reduced
to dim 30

1-NN 3-NN

Time 12.5250 70.9384 4.4231 7.0387

Each of three methods were run 10 times on the ORL database under equal conditions.

Within each iteration, we respectively selected 40, 80, ..., 360 images (1, 2, ..., 9 images

of each subject) to be training data and the remaining images (360, 320, ..., 40 images)

to be testing data. The training sample size is increasing by one for each iteration, but

the selected images to be tested are changed between each run.

The accuracy is computed as (correctly recognized total) / total.

Table 4.2 Correctly Recognized Total on ORL
1 test × 40 subjects

Select the ith image of each subject as test

10th 1st 2nd 3rd 4th 5th 6th 7th 8th 9th
standard
deviation

PCA 36 37 37 39 40 39 39 39 37 38 1.28668
LDA 38 39 39 40 38 40 37 37 36 36 1.49071
1-NN 37 39 40 40 39 39 40 39 39 39 0.87560
3-NN 37 38 39 39 38 38 39 40 39 37 0.96609

16



We also assessed the three methods by running 5 iterations on the Self-made dataset.

Within each iteration, 10, 201, 30, 40 images were respectively selected as training. The

algorithms’ performance on the Self-made data is not as good as their performance on

the ORL data. Moreover, the recognition accuracy has a bigger deviance between each

run compared to the ORL database. That is, the recognition performance differs greatly

when different images are selected, even with the same training size.

Table 4.3 Correctly Recognized Total on Self-made
1 test × 10 subjects

Select the ith image of each subject as test

5th 1st 2nd 3rd 4th
standard
deviation

PCA 5 7 9 5 5 1.78885
LDA 5 6 6 4 7 1.14018
1-NN 4 7 8 8 7 1.87083
3-NN 4 7 6 6 8 1.48324

Figure 4.1 Recognition Accuracy on Self-made Data: 5 runs with subjects’ different
images selected as test

(a)
Select 1 image of each subject as test set

(b)
Select 3 images of each subject as test set

For the ORL database, when the test number is 1 for each subject (and 9 training images

for each subject), PCA, LDA, and KNN all perform well. They all exceed 90% accuracy,

which means out of 40 subjects, at least 36 subjects are correctly classified. PCA re-

duces to 13 dimensional space, and LDA reduces to 30, which is enough to carry enough

information compared to the original 10,304-dimensional space. When the test set is

enlarged (and the training set shrinks), 1-NN performs most efficiently with the shortest

operation time and the best accuracy. Although LDA takes more time, it performs better
1There must be at least 2 images for each subject as training set for the LDA method, so the training size

starts from 20 on Self-made data, 80 on ORL data.

17



than PCA when the training set is small.

Figure 4.2 Recognition Accuracy on ORL Data: 10 runs with subjects’ different
images selected as test

(a)
Select 1 image of each subject as test set.

(b)
Select 5 images of each subject as test set

(c)
Select 8 images of each subject as test set

18



4.2 Recognition Performance with Fixed Training Size

In this section, we ran each method 50 times on the ORL dataset with a fixed test set

of size 40 (every subject selects the 10th image as test). In each run, the subjects may

have different numbers of images selected in the training set, but the total training size

is fixed at 200.

Figure 4.3 Boxplot of Correctly Recognized Total
out of 40 tests

PCA 13 LDA 30 1NN 3NN

28

30

32

34

36

The 3-NN method has a median of 34 correctly recognized subjects and is the least vari-

able. The 1-NN method performs similarly as the 3-NN method but has several runs of

higher accuracy than the 3-NN. LDA has the lowest median (31), and it also has the

greatest variability.

For a certain test subject with low accuracy in recognition by one method, the other

methods also don’t perform well. 1-NN, 3-NN and PCA have similar patterns, but

PCA’s (reduced to 13 dimensional space) recognition performance is not as good as KNN

with training size of 200. LDA can correctly identify when other methods misidentify in

several runs, but still makes more misclassified decisions than other methods.

For the 10th image of Subject 10, 1-NN and 3-NN classify it as Subject 3, 4, 8, and 38.
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Figure 4.4 Recognition Result of 40 Subjects of ORL

Figure 4.5 Recognition Result for the 10th Image of Subject 10 as Test in 25 Runs
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PCA classifies it as 3, 4, 8, 36, 38. The methods give wrong classifications for all 50 runs.

LDA classifies it as 5, 8, 10, 19, 21, 29, 38, which shows LDA is different than the other

methods, in that it is more sensitive to the selected training images.

4.3 Further Comparison

In this section, we ran 50 times with fixed training size of 30 on every subjects’ images

(10 subjects × 5 images) of Self-made data. Between each iteration, the selected training

images are different.

Taking the first, second or fifth image of Subject 6 as a test sample, the KNN method

is not able to recognize the subject, but has high accuracy (above 85%) on the third

and fourth image. However, LDA can correctly recognize the images for which KNN

fails. Overall, while LDA may have the lowest accuracy, it is more stable with respect

to different partitions of the dataset into training and test sets, compared to the other

methods. That is, it has the smallest standard error of the accuracy rate for each subject.

Figure 4.6 Self-made Data Images

For Subject 7 and 8, all methods perform very well, but not for Subject 2.
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Table 4.4 PCA (Dim 10) Correctly Recognized Total out of 50 Runs

Subject ID
1 2 3 4 5 6 7 8 9 10

ith
image

as
test

1 50 0 49 39 13 0 50 50 44 45
2 50 14 41 37 0 41 49 39 38 50
3 33 0 24 0 17 0 50 50 0 50
4 12 0 0 48 8 3 38 50 39 50
5 50 0 50 2 0 39 50 50 0 0

total 195 14 164 126 38 83 237 239 121 195

standard
deviation

16.79 6.26 21.09 22.49 7.64 21.41 5.27 4.92 22.21 21.91

Table 4.5 LDA (Dim 6) Correctly Recognized Total out of 50 Runs

Subject ID
1 2 3 4 5 6 7 8 9 10

ith
image

as
test

1 42 0 19 23 43 21 49 36 10 2
2 44 0 25 35 38 2 27 45 2 45
3 20 0 0 11 40 9 49 39 42 15
4 16 0 0 30 22 31 50 47 28 48
5 18 0 40 44 4 26 50 50 12 1

total 140 0 84 143 147 89 225 217 94 111

standard
deviation

13.78 0.00 17.14 12.46 16.37 12.03 10.08 5.77 16.04 22.88

Table 4.6 3-NN Correctly Recognized Total out of 50 Runs

Subject ID
1 2 3 4 5 6 7 8 9 10

ith
image

as
test

1 50 0 50 0 50 0 50 50 43 40
2 50 0 50 12 0 0 50 50 28 50
3 50 0 0 5 38 43 50 50 13 50
4 50 0 0 50 33 42 50 50 50 50
5 50 0 40 0 0 0 50 50 0 0

total 250 0 140 67 121 85 250 250 134 190

standard
deviation

0.00 0.00 25.88 21.04 22.94 23.28 0.00 0.00 20.68 21.68
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Table 4.7 1-NN Correctly Recognized Total out of 50 Runs

Subject ID
1 2 3 4 5 6 7 8 9 10

ith
image

as
test

1 50 0 47 39 50 0 50 50 50 13
2 50 0 50 37 35 0 50 50 35 50
3 12 0 0 9 38 43 50 50 12 16
4 12 0 0 50 33 50 50 50 50 50
5 50 0 50 0 0 0 50 50 0 0

total 174 0 147 135 156 93 250 250 147 129

standard
deviation

20.81 0.00 26.87 21.37 18.65 25.59 0.00 0.00 22.62 22.90
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Chapter 5

Conclusion

The statistical facial recognition methods PCA, LDA and KNN work very differently from

how a human would perform a recognition task. In this paper, the algorithms all work

well on some images which are distinguishable from others, but each lacks the ability to

capture facial features and small details. When similar images are together, females may

even be classified as males. More complex algorithms and increased precision are needed

to improve recognition accuracy. Another approach is geometric algorithms investigating

the relationship of mouth, eyes, brows etc., which imitate a human’s identifying features.

This thesis applies these methods to the ORL database, which yields 10,304 variables.

Our results show that the KNN method has the best overall accuracy. When the training

set’s size rises above 300, PCA, which reduces the dimension from 10,304 to 13 can almost

be as good as KNN, which keeps all the information.

From the perspective of operation, KNN is always shorter than PCA and LDA. The

computational complexity of computing distances of a large matrix is smaller than com-

puting eigenvalues of a relatively small matrix. But in practice, when the image data has

hundreds of thousands of variables, PCA is good for space saving and efficiency.

The 3-NN method does not outperform the 1-NN method, sometimes 3-NN misclassi-

fies while 1-NN correctly classifies.
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Among PCA, KNN, LDA, LDA is the most different. It’s more sensitive to the changing

of training images, and can perform better when KNN and PCA all fail. It’s less sensi-

tive to the image changes of test subjects, compared to the result that KNN can do very

well on certain test images, and will perform poorly on other test images from the same

subject. Due to the limitation of the LDA algorithm for high dimensional matrices, we

first reduce to a relatively small space, and then perform LDA. This reduces the accuracy

of the LDA procedure. A better algorithm of computing eigenvalues and eigenvectors

of large matrices may be helpful to improve the performance of LDA. In a related pa-

per, Navarrete and Ruiz-del-Solar [Navarrete and Ruiz-del Solar, 2002] claim that LDA

outperforms PCA on all tasks in their tests.
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