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Chapter 1

What Is The Maximum Return Predictability?

This paper investigates whether return predictability can be explained by existing

asset pricing models. Using different assumptions, we develop two theoretical upper

bounds on the R-square of the regression of stock returns on predictive variables.

Empirically, we find that the predictive R-square is significantly larger than the upper

bounds, implying that extant asset pricing models are incapable of explaining the

degree of return predictability. The reason for this inconsistency is the low correlation

between the excess returns and the state variables used in the discount factor. The

finding of this paper suggests the development of new asset pricing models with new

state variables that are highly correlated with stock returns.

1.1 Introduction

In the past three decades, financial economists and investors have found numerous

economic variables that can be identified as predictors of stock returns.1 The evidence

on return predictability has led to the development of new asset pricing models,

such as the habit formation model (Campbell and Cochrane 1999), the long-run risk

model (Bansal and Yaron, 2004), and the rare disaster model (Barro, 2006; Gabaix,

1Examples include the short-term interest rate (Fama and Schwert, 1977; Breen, Glosten, and
Jagannathan, 1989; Ang and Bekaert, 2007), the dividend yield (Fama and French, 1988; Campbell
and Yogo, 2006; Ang and Bekaert, 2007), the earnings-price ratio (Campbell and Shiller, 1988), term
spreads (Campbell, 1987; Fama and French, 1988), the book-to-market ratio (Kothari and Shanken,
1997), inflation (Campbell and Vuolteenaho, 2004), corporate issuing activity (Baker and Wurgler,
2000), the consumption-wealth ratio (Lettau and Ludvigson, 2001), stock volatility (French, Schwert,
and Stambaugh, 1987; Guo, 2006), output (Rangvid, 2006), oil price (Driesprong, Jacobsen, and
Maat, 2008), output gap (Cooper and Prestley, 2009), and open interest (Hong and Yogo, 2012).
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2012; Gourio, 2012; Wachter, 2012). While many asset pricing models can generate

time-varying expected returns, it is unclear whether they allow the same degree of

predictability as observed in the data.

This paper asks whether predictability can be fully explained by a general asset

pricing model, of which the above three models are special cases. To answer this

question, I develop two theoretical upper bounds on the R2 of the regression of stock

returns on any predictive variable. If the predictive R2 is less than the bounds, return

predictability is consistent with asset pricing models. Otherwise, the models can be

rejected. In this sense, the proposed bounds provide a new way to diagnose asset

pricing models.

With the assumptions that the stochastic discount factor (SDF) is a function of

a set of known state variables and investors’ risk aversions have an upper bound

(maximum risk aversion), the first bound in this paper depends on three key param-

eters: the multiple correlation between the excess return and the state variables of

the SDF, the maximum risk aversion, and the volatility of the marginal investor’s

optimal wealth. The rationale of the maximum risk aversion is from Ross (2005) who

shows that the volatility of the SDF is positively related to risk aversion and that

any upper bound on the SDF volatility is directly related to the upper bound on the

marginal investor’s risk aversion.

Instead of the maximum risk aversion, the second bound assumes that the volatil-

ity of the SDF is bounded above by the market Sharpe ratio and also depends on

three important parameters: the multiple correlation (as used in the bound with max-

imum risk aversion), the market Sharpe ratio, and a parameter chosen by end-users

that excludes arbitrage opportunities or “good-deals” in the sense of Cochrane and

Saá-Requejo (2000). This bound is in the spirit of Ross (1976) and Cochrane and

Saá-Requejo (2000) who advocate using the market Sharpe ratio to restrict the SDF

volatility. The intuition is that extremely high Sharpe ratios cannot persistently exist
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in the market and the volatility of the SDF is intimately linked to the market Sharpe

ratio. Hence, excluding extremely high Sharpe ratios is equivalent to imposing an

upper bound on the SDF volatility.

In the applications, I consider ten widely explored variables utilized by Goyal and

Welch (2008) to predict the excess returns of the market portfolio and cross-sectional

portfolios, such as portfolios formed based on size, book-to-market ratio, momentum,

and industry. For the state variables in the SDF, I first consider the consumption

growth rate and the three factors used by Fama and French (1993). The results show

that the predictive R2s are almost always larger than the proposed upper bounds.

When the consumption growth rate is used as the state variable in the SDF, the two

proposed bounds are approximately zero regardless of any of the ten predictors is used.

When the state variables are the Fama-French three factors, out of ten predictors, six

predictors generate larger R2s than the bounds with the maximum risk aversion and

seven are larger than the bounds with the market Sharpe ratio. Cross-sectionally,

when any one of the ten variables is used as a predictor, with several exceptions, all

the predictive R2s violate the upper bounds, no matter whether the state variables

of the SDF are the consumption growth rate or the Fama-French three factors.2.

I then consider the market portfolio forecast in the case when the state variables

are those used in the habit formation model, the long-run risk model, or the rare

disaster model. The state variables in the habit formation model are the consump-

tion growth rate and the surplus consumption ratio. All the ten predictors generate

larger R2s than the two bounds. For example, when the dividend-price ratio is the

predictor, the predictive R2 is 0.27% while the upper bound is 0.03% with the max-

imum risk aversion and 0.02% with the market Sharpe ratio. Constantinides and

Ghosh (2011) show that the state variables in the SDF of the long-run risk model

can be the consumption growth rate, the risk-free rate, and the dividend-price ratio.

2The results are robust when the momentum factor is included.
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Nine predictive R2s violate the two bounds. With respect to the rare disaster model,

Wachter (2012) shows that the state variables can be the consumption growth rate

and the dividend-price ratio. In this case, both bounds are similar to that in the

habit formation and long-run risk models, and all ten predictive R2s exceed the two

proposed bounds significantly. In summary, one can conclude with a high degree of

confidence that the above three models explain only a fraction of predictability.

What happens when market frictions are introduced into the bounds? It may be

the case that the profits documented in the literature are not attainable for investors

due to the presence of market frictions. I follow Nagel (2012) by augmenting the SDF

with a factor that captures different notions of transaction cost, such as the marginal

value of liquidity services of tradeable assets in Holmström and Tirole (2001), the

transaction costs in Acharya and Pedersen (2005), or the funding liquidity in Brun-

nermeier and Petersen (2009). When the liquidity factor in Pátor and Stambaugh

(2003) is used as a proxy of transaction cost, the proposed bounds are improved but

still less than the predictive R2s significantly. In this sense, transaction cost or market

friction is not a key source to explain return predictability.

Since the bounds are robust to any specification of investors’ preference, the inca-

pability of extant asset pricing models in explaining return predictability is mainly due

to the low contemporaneous correlation between the excess return and the state vari-

ables. This explanation is supported by the fact that the upper bounds are higher

when the state variables are the Fama-French three factors than the consumption

growth rate, because the Fama-French three factors have a higher contemporaneous

correlation with the excess return. Therefore, the finding of this paper suggests the

development of new asset pricing models with new state variables that are highly

correlated with stock returns. This is consistent with Cochrane and Hansen (1992)

and Campbell and Cochrane (1999) who find that the low correlation exacerbates a

lot of asset pricing puzzles. More recently, Albuquerque, Eichenbaum, and Rebelo
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(2012) introduce a demand shock to a representative agent’s rate of time preference

to account for the equity premium, bond term premia, and the correlation puzzle.

In the literature, most studies focus on the qualitative property of predictability,

and only a few studies explicitly explore the quantitative magnitude allowed by asset

pricing models. Hansen and Singleton (1983) seem to be the first to consider this

problem exclusively and find that the predictability of stock returns are proportional

to the predictability of the consumption growth rate. The weak predictability of the

consumption growth rate implies that stock returns are almost unpredictable. Ferson

and Harvey (1991) and Ferson and Korajczyk (1995) find that the multi-beta model

explain a large fraction of return predictability. Kirby (1998) develops a formal test

and finds that none of the recognized models can deliver sufficient predictability to

accommodate the empirical pattern. Bansal, Kiku, and Yaron (2012) show that the

dividend-price ratio can only generate a marginal degree of predictability with the

long-run risk model. de Roon and Szymanowska (2012) show that transaction costs

rather than short sale constraint can reconcile Kirby (1998). All these papers assume

specific utility functions and so the results vary with different models and parameter

specifications.

Ross (2005) proposes an upper bound on the predictive R2 and finds that pre-

dictability is consistent with asset pricing models. Zhou (2010) proposes a tighter

bound and shows that most predictors generate larger predictive R2s than his bound

if the SDF is driven by the consumption growth rate. This paper is closely related to

Ross (2005) and Zhou (2010) but departs from them in four aspects. First, I propose

a new bound with the market Sharpe ratio rather than the maximum risk aversion,

giving a new choice to those who are uncertain about risk aversion. Second, Ross

(2005) implicitly assumes that the correlation between the forecasted excess return

and the state variables is 1, making it a special case of my bounds. Third, Zhou
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(2010) uses the correlation between the state variables and the default SDF,3 while

my bounds use the correlation between the excess return and the state variables,

thereby providing some insights on cross-sectional predictability as to why some as-

sets are more predictable than others. Fourth and more important, my bounds use

conditional information explicitly and are much tighter than Ross (2005) and Zhou

(2010). When the market portfolio is included in the state variables of the SDF, the

bounds in Ross (2005) and Zhou (2010) lose the power to bind the predictive R2 while

my bounds still work well.

The rest of the paper is organized as follows. Section 2 shows how the predictive

R2 can be bounded above by a specific SDF. Section 3 presents two semi-parametric

bounds when the SDF are bounded above by the maximum risk aversion or by the

market Sharpe ratio. The results of applying these two bounds to return predictability

are reported in Section 4. Finally, Section 5 summarizes and concludes.

1.2 Model

In this section, I show how to connect the predictive regression with asset pricing

models and then derive an upper bound on the predictive R2 with the variance of the

stochastic discount factor (SDF).

1.2.1 Asset pricing model

The central idea of finance theory is that the price of any asset is uniquely determined

by a Euler equation that satisfies

E[mt+1rj,t+1|It] = 0, j = 0, 1, · · · , N, (1.1)

3See equation (1.2) in Section 2.
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wheremt+1 is the SDF, rj,t+1 is the return of asset j in excess of the risk-free rate Rf,t.
4

Equation (1.1) says that the risk-adjusted return process defined by the product of

the excess return rj,t+1 and the SDF mt+1 is a martingale and is unpredictable using

any information contained in It. This equation is so general that it can accommodate

the case when the return itself is predictable, which does not necessarily conflict with

the market efficiency hypothesis. The only case of rj,t+1 being unpredictable is when

mt+1 is constant over time.

According to Cochrane (2005), any asset pricing model is a particular specification

of mt+1. One default SDF, which satisfies (1.1) and prices the N + 1 assets, is given

by

m0,t+1 = R−1
f,t + (1N −R−1

f,tμ)
′Σ−1(Rt+1 − μ), (1.2)

where Rt+1 is the N × 1 vector of gross returns on the N risky assets with mean μ

and covariance Σ, and 1N is an N -dimensional vector of ones. I assume that μ is not

proportional to 1N and the N risky assets are not redundant.

In what follows, when it is not necessary to be explicit about the difference between

assets, I will suppress the subscripts and just write rt+1 rather than rj,t+1.

1.2.2 Predictive regression

Predictive regression is widely used in the study of return predictability, and is ex-

pressed as

rt+1 = α + βzt + εt+1, (1.3)

4I use Rf,t rather than Rf,t+1 since it is known at the beginning of the return period.
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where zt is a predictive variable known at the end of period t. The degree of pre-

dictability is measured by the predictive R2,

R2 =
Var(α + βzt)

Var(rt+1)
. (1.4)

When R2 > 0, rt+1 can be forecasted by zt. Otherwise, it cannot be forecasted.

Following this idea, numerous variables have been identified as predictors. Ludvigson

and Ng (2007) and Goyal and Welch (2008) provide a comprehensive list of predictors.

1.2.3 Bound on R2

Whether return predictability can be explained by asset pricing models is equivalent

to ask whether the predictive R2 in (1.4) can be derived from (1.1). For easy of

exposition, I follow Balduzzi and Kallai (1997) and normalize the SDF

m̃t+1 =
mt+1

E(mt+1)

such that E(m̃t+1) = 1 and E(m̃t+1rt+1) = 0. With a little abuse of notation, I still

call this normalized SDF as the SDF in the sequel.

I assume that the predictor zt in (1.3) has a mean zero and variance one throughout

the paper. Following Kirby (1998) and Ferson and Siegel (2003), I multiply the pricing

equation (1.1) by zt in both sizes and apply the law of iterated expectations to obtain

E(m̃t+1rt+1zt) = 0, (1.5)

which can be rewritten as

Cov(rt+1, zt) = −Cov(m̃t+1, rt+1zt). (1.6)
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Since Cov(rt+1, zt) = E(rt+1zt), equality (1.6) says that the expected excess return

with zt units of investment in the asset rt+1 is equal to the negative covariance between

the SDF and the realized excess return of the investment. In other words, any dynamic

trading strategy that exploits the predictability of rt+1 must be priced by the SDF.

Recall that Var(zt) = 1 and β = Cov(rt+1, zt). Combining (1.4) and (1.6) gives

R2 =
Var(α + βzt)

Var(rt+1)
=

β2

Var(rt+1)
=

Cov2(rt+1, zt)

Var(rt+1)
=

Cov2(m̃t+1, rt+1zt)

Var(rt+1)
. (1.7)

If an asset pricing model is true, i.e., the model can match the empirical evidence,

the last equality of (1.7) should always hold. To test this hypothesis, Kirby (1998)

uses the generalized method of moments (GMM) and finds that the R2 calculated

from the last equality of (1.7) is much smaller than that in (1.4) for established

consumption- and factor-based asset pricing models at that moment. Therefore, he

concludes that return predictability is inconsistent with what is expected. Kirby’s

method is parametric and depends on the specification of m̃t+1. Since Kirby (1998),

new asset pricing models, such as the habit formation model, the long-run risk model

and the rare disaster model, have been developed. This implies that we need retest

the conclusion of Kirby (1998) when a new model is proposed.

I solve Kirby’s problem from another perspective by developing an upper bound on

(1.7) which can serve as a benchmark for evaluating forecasts. Statistically, the larger

the predictive R2, the higher the degree of predictability. Both financial economists

and investment practitioners have paid a lot attention in the past four decades in

searching for variables that can produce a better R2. This raises two issues. First,

without theoretical guidance on the R2 permitted by asset pricing models, an investor

will never know whether the used predictor is the best one. Second, given hundreds

of predictors that have been identified, how does an investor use them in investment

decision making? Should an investor utilize all the possible predictors or just choose
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a subset of them?5 An investor cannot run two million regressions and then decides

which one is the best. However, if an investor knows the maximum predictability, he

can stop searching when a predictor generates an R2 that achieves or is close to the

theoretical upper bound. Moreover, an investor can directly exclude those variables

with R2s much less than the bound.

Following Kan and Zhou (2006), I impose one structure on the SDF: m̃t+1 =

m̃(xt+1) is a function of a set of observable state variables xt+1. This structure remains

general enough to accommodate many asset pricing models. For example, factor-

based models, such as the capital asset pricing model (CAPM) and the Fama-French

three-factor model, specify m̃t+1 as a linear function of factors. In consumption-based

models, the state variables are the surplus consumption ratio and the consumption

growth rate in the habit formation model (Campbell and Cochrane, 1999; Kan and

Zhou, 2006), are the risk-free rate, the dividend-price ratio, and the consumption

growth rate in the long-run risk model (Constantinides and Ghosh, 2011), and are

the consumption growth rate and the dividend-price ratio in the rare disaster model

(Wachter, 2012). In addition, Bansal and Viswanathan (1993) specify the SDF as

a nonlinear function of the market portfolio, the Treasury bill yield, and the term

spread. Dittmar (2002) specifies the SDF as a cubic function of aggregate wealth.

Aı̈t-Sahalia and Lo (2000) project the SDF onto stock returns to obtain an observable

kernel, thereby avoiding the use of the consumption growth rate.

Now I am in a position to present the following proposition to explain that the

predictive R2 can be bounded above.

Proposition 1 Suppose that the SDF m̃t+1 = m̃(xt+1) is a function of K-

dimensional state variable xt+1 and E(εt+1|xt+1) = 0 in the regression rt+1zt =

5This echoes Cochrane (2011) who asks how multivariate information affects the understanding
of price movements.
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a+ b′xt+1 + εt+1.Then,

R2 ≤ φ2
x,rzVar(m̃t+1), (1.8)

where

φ2
x,rz =

ρ2x,rzVar(rt+1zt)

Var(rt+1)
, (1.9)

and

ρ2x,rz =
Cov(xt+1, rt+1zt)

′Var−1(xt+1)Cov(xt+1, rt+1zt)

Var(rt+1zt)
. (1.10)

The formal proof is provided in the paper’s Appendix. Here I give a simplified

proof showing how the predictive R2 can be bounded by the variance of the SDF. This

is the key to restrict the regression analysis of return predictability by asset pricing

models. Suppose xt+1 and rt+1zt are jointly normally distributed conditional on time

t. From (1.7), I have

R2 =
Cov2(m̃t+1, rt+1zt)

Var(rt+1)
=

[
Cov(xt+1, rt+1zt)

′Var−1(xt+1)Cov(m̃t+1, xt+1)
]2

Var(rt+1)
(1.11)

≤ [
Cov(xt+1, rt+1zt)

′Var−1(xt+1)Cov(xt+1, rt+1zt)
]

×
(
Cov(m̃t+1, xt+1)

′Var−1(xt+1)Cov(m̃t+1, xt+1)
)

Var(rt+1)
(1.12)

=
ρ2x,rzVar(rt+1zt)Cov(m̃t+1, xt+1)

′Var−1(x)Cov(m̃t+1, xt+1)

Var(rt+1)
(1.13)

≤ ρ2x,rzVar(rt+1zt)Var(m̃t+1)

Var(rt+1)
= φ2

x,rzVar(m̃t+1), (1.14)

where (1.11) uses Stein’s Lemma, which separates the underlying stochastic struc-

ture between rt+1 and xt+1 from the distortion of m̃(·) (Furman and Zitikis, 2008).
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Inequalities (1.12) and (1.14) use the Cauchy-Schwarz inequality. This completes the

proof of (1.8).

Equality (1.11) shows that the covariance Cov(m̃t+1, rt+1zt) = E(rt+1zt) is mainly

dependent on two parts: one is covariance between the excess return with zt units

of investment in rt+1 and the state variable xt+1, Cov(xt+1, rt+1zt), and the other is

the covariance between the SDF and the state variable, Cov(m̃t+1, xt+1). In the asset

pricing literature, expected returns are expressed by the covariance of the returns

and the SDF. The failure of asset pricing models in explaining return puzzles or

anomalies is usually attributed to the inability of preferences in capturing investor’s

behaviors. For this reason, many different preferences have been proposed over the

past three decades. With a “moment-matching” approach (calibrating parameters

with real data and investigating if the estimated parameters make sense or if what

the model implies with given parameters is consistent with return moments), one

specific utility is usually successful in explaining one or several puzzles, but not all of

them. Proposition 1, however, shows that the failure of asset pricing models may be

due to the insufficient state variables xt+1 rather than the utility functions m̃(·). The
covariance between the return and the SDF may blur the main reason of the inability

of asset pricing models.

Proposition 1 imposes a slightly stronger assumption

Et(ut+1|xt+1) = 0, (1.15)

rather than the typical Et(ut+1) = 0 and Covt(ut+1, xt+1) = 0. One extreme case is

ut+1 = 0 when rt+1zt is the same as xt+1 and can be fully projected on xt+1. Actually,

the two assumptions are equivalent if the excess return rt+1zt and the state variable

xt+1 are jointly elliptically, conditionally distributed (Muirhead, 1982).
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The bound in (1.8) is an improvement over the bound of Ross (2005) who finds

R2 ≤ Var(m̃t+1). (1.16)

This improvement is due to the fact that I use the information of xt+1 in m̃t+1.

Comparing (1.8) and (1.16), Ross (2005) takes the extreme possibility that the state

variable and the excess return are perfectly correlated. This is obviously not the case

in the real equity market. Suppose that the correlation between the consumption

growth rate and the market portfolio is 0.2 and that the SDF is driven by the con-

sumption growth rate, bound (1.8) will be at least 25 times tighter than that derived

by Ross (2005). Cochrane (2005) notes the fact that the low correlation between

the consumption growth rate and stock returns exacerbates the risk premium puzzle,

but does not develop this point with respect to return predictability. In summary,

Ross’ bound imposes almost no structure on the SDF other than the law of one price.

The consequence is that it can deliver an R2 bound that is applicable for all SDFs.

However, the cost is that the bound is too loose to be meaningful in practice. Over

my sample period, Ross’ bound is as large as 4.78%, but the predictive R2 in the

existing literature is less than 1% in general. To the best of my knowledge, no single

predictor can produce an R2 of 4.78%.

The bound in (1.16) holds with respect to the default SDF, i.e.,

R2 ≤ Var(m̃0,t+1), (1.17)

which can be tightened by Kan and Zhou (2007) who show that

Var(m̃0,t+1) ≤ ρ2x,m̃0
Var(m̃(xt+1)), (1.18)
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where ρx,m̃0 is the multiple correlation between the state variable xt+1 and the default

SDF. Combining these two inequalities, Zhou (2010) gives the following upper bound

R2 ≤ ρ2x,m̃0
Var(m̃t+1), (1.19)

which is apparently tighter than Ross (2005) bound.

An interesting question at this point is whether the bound in (1.8) is tighter

than (1.19). This is equivalent to exploring whether φ2
x,rz < ρ2x,m0

. While there is no

analytical relation between them, empirical applications will show that φ2
x,rz is always

smaller than ρ2x,m0
.

It is important to highlight the implication of the proposed bound of the predictive

R2 on cross-sectional return predictability. In the literature, a large number of papers

find that return predictability exists and varies across cross-sectional portfolios sorted

by market capitalization (Ferson and Harvey, 1991; Kirby, 1998), book-to-market

ratio (Ferson and Harvey, 1991), industry (Ferson and Harvey, 1991), and volatility

(Han, Yang and Zhou, 2012). Proposition 1 says that the maximum predictability of

any asset is directly determined by the parameter, φ2
x,rz̃, in the upper bound of R2.

An asset is allowed to be more predictable if it has a higher correlation with the state

variables of the SDF, regardless of the specification of the SDF.

1.3 Upper Bound on Var(m̃t+1)

Inequality (1.8) provides an upper bound on the predictive R2. However, the SDF

is model-specific and unobservable. The goal of this section is to develop an upper

bound on Var(m̃t+1) that is observable and model-free.

There are two approaches for the SDF specification proffered in the literature,

the absolute approach and the relative approach (Cochrane and Saá-Requejo, 2000).

The absolute approach makes explicit assumptions about the representative investor’s
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preference and endowment. Under these assumptions, the SDF is uniquely, endoge-

nously determined by the form of preferences. Although this approach is precise, it is

sensitive to model and parameter misspecification errors. The relative approach as-

sumes the existence of a set of basis assets and the absence of arbitrage opportunities,

restricting the set of the SDF to those that can correctly price the basis assets in the

economy and assigning positive values to payoffs in every state. Without resorting

to preferences or endowments, this approach is exogenously specified and robust to

model specification. The drawback is that there are usually infinite SDFs that can

price the basis assets. This implies that it is difficult to choose an correct asset pricing

model when all the SDFs produce the same price.

To tackle this challenge, Cochrane and Saá-Requejo (2000) and Ross (2005) pro-

pose to integrate the absolute and the relative approaches by restricting the SDF to

an economically meaningful set. In contrast to Hansen and Jagannathan (1991) who

restrict the SDF with a lower bound, I assume an upper bound on the SDF volatility

to exclude the opportunities that may generate arbitrages.

1.3.1 Bound Var(m̃t+1) with relative risk aversion

Ross (2005) shows that, in an incomplete market, if all investors are bounded above

by a maximum risk aversion, the set of the SDFs can be restricted by the marginal

investor’s SDF.

Lemma 1 (Ross, 2005) If a utility function, U(w), is bounded above in the rel-

ative risk aversion by a utility function V (w), i.e., the risk aversion of U(w) is less

than that of V (w), then

Var(m̃U) ≤ Var(m̃V ),

where m̃U and m̃V are the corresponding SDFs. Moreover, if V (w) is a constant

relative risk aversion utility function with risk aversion γ (γ �= 1) and the optimal
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wealth is lognormally distributed such as logw ∼ N(μw, σ
2
w), then

Var(m̃U) ≤ γ2σ2
w.

This lemma says that the variance of any SDF can be bounded above by a maximum

risk aversion.

Applying Lemma 1, I present the first semi-parametric bound in this paper as

follows.

Proposition 2 Under conditions of Propositions 1 and Lemma 1, if investors are

bounded above by the maximum risk aversion γ, the upper bound of the predictive R2

is

R2 ≤ R̄2
RA = φ2

x,rzγ
2σ2

w. (1.20)

1.3.2 Bound Var(m̃t+1) with market Sharpe ratio

Instead of maximum risk aversion, Ross (1976) advocates using the market Sharpe

ratio to restrict the variability of the SDF. The intuition is that a high Sharpe ratio

is not an arbitrage opportunity or a violation of the law of one price, but extremely

high Sharpe ratios are unlikely to persist. In particular, Ross (1976) bounds the

asset pricing theory residuals by assuming that no portfolio can have more than

twice the market Sharpe ratio. With this idea, Cochrane and Saá-Requejo (2000)

use the market Sharpe ratio to bound option prices when either market frictions or

non-market risks violate simple arbitrage pricing. That is,

Std(m̃t+1) ≤ h · SR(rS&P500), (1.21)
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where h is a parameter chosen by the marginal investor. Cochrane and Saá-Requejo

(2000) choose h = 2 as the threshold for “good deals”.

Proposition 3 Under conditions of Propositions 1, if the volatility of the SDF is

bounded by the market Sharpe ratio as in (1.21), the upper bound of the predictive R2

is

R2 ≤ R̄2
SR = φ2

x,rz · h2 · SR2(rS&P500). (1.22)

It is important to point out that the maximum risk aversion γ or h are the central

parameters that a user must input to the calculation. When the upper bound of

the SDF’s volatility is violated, Shanken (1992) calls there have some “approximate

arbitrage” opportunities. Ledoit (1995) calls a high Sharpe ratio a “δ arbitrage” that

should be ruled out. Also, there are other ways to bound the volatility of m̃t+1. For

example, Bernardo and Ledoit (2000) bound the SDF as a ≤ m̃t+1 ≤ b, where a and

b are two positive and finite real parameters. By applying the Grüss’ inequality, one

immediately has Var(m̃t+1) ≤ (b−a)2

4
for any distribution of m̃t+1.

1.4 Empirical Results

This section explores empirically whether the predictive R2s of predicting excess re-

turns on the market portfolio and cross-sectional portfolios are smaller than the upper

bounds derived from asset pricing models.

1.4.1 Data

The main data set used in this paper is from Goyal and Welch (2008) and the Ken

French data library, spanning 1959:01-2010:12,6 where the sources are described in

6I thank Amit Goyal and Ken French for making the data available.
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detail. The excess return of the market portfolio is the gross return on the S&P 500

(including dividends) minus the gross return on a risk-free treasury bill. As discussed

by Ferson and Korajczyk (1995), in the context of this paper, it is not appropriate to

use continuously compounded returns, which are commonly used in the literature of

return predictability. The basic pricing equation says that the expected returns are

equal to the conditional covariances of returns with the marginal utility for wealth,

which depends on the simple arithmetic return of the optimal portfolio. Moreover,

continuously compounded portfolio returns are not the portfolio-weighted average of

the compounded returns of the component securities. For these reasons, I use simple

arithmetic returns.7

Ten popular economic variables in Goyal and Welch (2008) are used as predictors:

1. Dividend-price ratio (d/p): a 12-month moving sum of dividends paid on the

S&P 500 index divided by the S&P 500 index;

2. Earning-price ratio (e/p): a 12-month moving sum of earnings on the S&P 500

index divided by the S&P 500 index;

3. Dividend yield (dy): a 12-month moving sum of dividends divided by the lagged

S&P 500 index;

4. Treasury bill rate (tbl): the 3-month Treasury bill (secondary market) rate;

5. Default yield spread (dfy): the difference between BAA and AAA-rated corpo-

rate bond yields;

6. Term spread (tms): the difference between the long-term yield on government

bonds the Treasury bill rate;

7. Net equity expansion (ntis): ratio of a twelve-month moving sum of net equity

issues by NYSE-listed stocks to the total end-of-year market capitalization of

NYSE stocks;

7The predictive R2s with compounded returns are generally larger than simple arithmetic returns.
The results are available upon request.
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8. Inflation (infl): the Consumer Price Index;

9. Long-term return (ltr): return on long-term government bonds;

10. Equity risk premium volatility (rvol): moving standard deviation of the monthly

returns on the S&P 500 index (Mele, 2007):

σ̂t =

√
π

2

12∑
i=1

|rt+1−i|√
12

.

I use this volatility measure rather than the realized volatility in Goyal and

Welch (2008) to avoid two severe outliers in Octobers of 1987 and 2008.

To calculate the upper bounds of the predictive R2, I need state variables. The

most popular state variable in consumption-based asset pricing models is the con-

sumption growth rate: the percentage change in the seasonally adjusted, aggregate,

real per capita consumption expenditures on nondurable goods and services. The

data are reported by the Bureau of Economic Analysis (BEA). In addition, I consider

the linear factor models where the market index or the Fama-French three-factors are

used as the state variables. I also use data on ten size portfolios, ten book-to-market

portfolios, ten momentum portfolios, and ten industry portfolios, for cross-sectional

predictability.

What is the reasonable maximum risk aversion has been and will continue to be a

debate for a long time, although researchers admit that it should not be large. Mehra

and Prescott (1985) argue that a reasonable upper bound of risk aversion is around 10.

Ross (2005) uses the insurance premium to explain that a value of 5 is large enough.

Barro and Ursúa (2012) think that “a γ [risk aversion] of 6 seems implausibly high.”

Empirically, Guiso, Sapienza and Zingales (2011) find that the average risk aversion

increases from 2.85 before the 2008 crisis to 3.27 after the collapse of the financial

market. Paravisini, Rappoport and Ravina (2012) estimate the risk aversion from

investors’ financial decisions and find that the average risk aversion is 2.85 with a
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median of 1.62. I follow Ross (2005) by setting the maximum risk aversion to be 5.

Also, in the application, I assume that the optimal wealth for the marginal investor

who has the maximum risk aversion is the market portfolio. During the sample period,

the market portfolio has an annual risk premium 5.31% and a volatility 15.44%.

When the market Sharpe ratio is used to bound the predictive R2, I follow Ross

(1976) and Cochrane and Saá-Requejo (2000) by setting h equal to 2. I find that the

upper bound with this value is close to that with the maximum risk aversion bound

with a value of 5. This result indirectly supports Ross (2005) that the upper bound

of risk aversion should not exceed 5.

1.4.2 Estimation and test

The parameters to calculate the predictive R2 and its upper bounds involve only

the mean and covariance of yt+1 = (rt+1, zt, rt+1zt, x
′
t+1)

′, where xt+1 could be multi-

dimensional. The moment conditions are

h(yt+1, θ) =

⎛
⎜⎝ yt+1 − μy

yt+1y
′
t+1 − (Σy + μyμ

′
y)

⎞
⎟⎠ , (1.23)

where μy = E(yt+1) and Σy = Cov(yt+1). The econometric specification in (1.23)

is exactly identified, the GMM estimator of θ = (μ′
y,Σy) is the value that sets

1/T
∑T

t=1 h(yt+1, θ) equal to zero.

The distribution of θ̂ takes the form

√
T (θ̂ − θ)

d−→ N(0, S), (1.24)

where S =
∑∞

j=−∞ E[h(yt+1, θ)h(yt+1−j, θ)
′].

We use a Wald test to evaluate whether R2 ≤ R̄2
RA or R̄2

SR. This is equivalent to

a one-sided test for g(θRA) = 0 or g(θSh) = 0, where θRA and θSh are the parameters
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used in g(θRA) = R2 − R̄2
RA for the bound with risk aversion and g(θSh) = R2 − R̄2

SR

for the bound with Sharpe ratio. Let ΣRA and ΣSh be the corresponding covariances

of θRA and θSh. The Wald statistic is

WRA = Tg(θ̂RA)

[
dg

dθRA

Σ̂RA
dg

dθRA

]−1

g(θ̂RA)
d−→ χ2(1) (1.25)

for the bound with risk aversion, and

WSh = Tg(θ̂Sh)

[
dg

dθSh
Σ̂Sh

dg

dθSh

]−1

g(θ̂Sh)
d−→ χ2(1) (1.26)

for the bound with Sharpe ratio.

The approach here is slightly different from the typical GMM estimation and

testing by imposing the constraint R2 = R̄2
RA or R̄2

SR in the econometric specification

directly. With the property of GMM, the two approaches are asymptotically equiv-

alent. The choice of this paper makes it easy to compare the difference between the

predictive R2 and the theoretical upper bounds apparently.

1.4.3 R2 bounds on market portfolio predictability

Table 1.1 reports the predictive R2 and its bounds for the regression model, rt+1 =

α + βzt + εt+1, where rt+1 is the excess return of the market portfolio and zt is the

predictor given in the table’s first column. The value of R2 and its bounds are all in

percentage points. The state variable is the consumption growth rate and the default

SDF m0 is constructed by the market portfolio.8 Panel A shows the results when the

maximum risk aversion is 5. The predictive R2s are given in the second column, which

range from 0.04% for the net equity issues (ntis) to 1.23% for the equity risk premium

volatility (rvol). Positive R2s suggest that the excess return of the market portfolio

8Other portfolios, such as the Fama-French three factors or Fama-French 25 size book-to-market
portfolios, can be easily used to construct m0. This will change the multiple correlation ρ2x,m0

, but
the change is very small. The results are available upon request.
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is predictable and the degree of predictability varies across predictors. The upper

bound of Ross (2005), R̄2
Ross, is 4.78% reported in Column 3 regardless of what the

predictor is. Because this bound exceeds any R2 in Column 2, time-varying expected

return appears to be a perfect explanation of return predictability. To the best of

my knowledge, however, there is no single predictor in the literature generating an

R2 as large as 4.78% with monthly data. The reason is that Ross’ bound implicitly

assumes a correlation of 1 between the excess return and the consumption growth

rate. Hence, it is too loose to be meaningful.

Column 4 reports the correlation between the state variable and the default SDF

and Column 5 reports the bound developed by Zhou (2010). Since the correlation

is 0.17, the bound in Zhou (2010) is 0.13%, and thereby improves approximately 37

times relative to Ross (2005). Out of ten predictors, eight exhibit significantly higher

predictive R2s than this bound. The two exceptions are the earnings-price ratio (e/p)

and the net equity issues (ntis).

Column 6 shows that the correlations between the state variable and the excess

returns with trading strategy zt. Surprisingly, all the correlations are pretty small

and range from 0.02 to 0.06. Recall that the key parameter in the upper bounds in

(1.20) and (1.22) is φ2
x,rz = ρ2x,rzVar(rt+1zt)/Var(rt+1). Var(rt+1zt)/Var(rt+1) is larger

than one but less than 4 for any zt of the ten predictors. This implies that small value

of ρx,rz makes the upper bounds of the predictive R2 small. Actually, both bounds

with the maximum risk aversion and the market Sharpe ratio are approximately

zero. As a result, the proposed bounds are significantly less than the predictive

R2s. The low bound of R2 is consistent with Hansen and Singleton (1983) who

explore the joint dynamics of stock returns and consumption growth and find that

the predictability of stock returns is proportional to that of consumption growth. The

weak predictability of the consumption growth rate in turn implies that stock returns
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are almost unpredictable. This result is confirmed by Kirby (1998) with a formal

GMM test.

Panel B considers the case when the maximum risk aversion is 10. In this case,

the upper bounds R2 can be obtained by multiplying the bounds in Panel A by 4.

Due to the small value of ρx,rz, the increase in the risk aversion does not change the

upper bounds significantly. This insensitivity of the R2 bounds implies that changing

the maximum risk aversion is not promising to reconcile the violations of the bounds.

On the other hand, since the bound with the maximum risk aversion of 5 is close to

the bound with the market Sharpe ratio (as shown in Panel A), I believe that 5 is a

reasonable upper bound of risk aversion. In this sense, I will report results with the

maximum risk aversion of 5 in the sequel.

One may be curious that the results in Table 1.1 are only valid to consumption-

based asset pricing models since I only consider the consumption growth rate as the

state variable of the SDF. In the literature, there are many factor-based asset pricing

models. Table 1.2 reports the bounds with alternative state variables. In particular,

Panel A assumes that the state variable is the market portfolio (the state variable of

CAPM) and Panel B considers the Fama-French three factors. With these two cases,

since the correlation ρx,m0 is approaching one, the bound of Zhou (2010) reduces to

Ross (2005) and exceeds the predictive R2s. However, the bounds proposed in this

paper still work well. When the state variable is the market portfolio, eight predictors

violate the bounds, either with the maximum risk aversion or the market Sharpe ratio.

When the state variables are the Fama-French three factors, six predictors violate the

bounds with the maximum risk aversion and seven violate the bounds with the market

Sharpe ratio. When the momentum factor is added to the Fama-French three factors,

the upper bounds of R2 do not change significantly, and therefore, to conserve space,

the results are not reported.
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In summary, the predictive R2s from the predictive regression are larger

than the maximum predictability permitted by asset pricing models. Since

Var(rt+1zt)/Var(rt+1) has nothing with the asset pricing model, the failure to

explain predictability is clearly due to the correlation between the excess return and

the state variables of the SDF, the maximum risk aversion, or the volatility of the

marginal investor’ wealth. In the bound with the market Sharpe ratio, the parameter

of the maximum risk aversion is replaced by the parameter h which is the threshold of

excluding arbitrage opportunities. Among them, I have already considered the case

of a risk aversion of 10. The marginal investor’s wealth is assumed to be the market

portfolio, which may be more volatile than the real wealth with other non-financial

assets. Therefore, the only reason is that the correlation between the excess return

and the state variables in the SDF is too low (as shown in Column 6 in Tables 1.1

and 1.2). This explanation is obvious when the state variables are the Fama-French

three factors, which have a much higher correlation with the excess returns and so

generate higher bounds on the predictive R2s. The findings of this section suggest

that the state variables are more important than investor’s preferences in explaining

return predictability. This explanation is consistent with Cochrane and Hansen

(1992), Campbell and Cochrane (1999), and Albuquerque, Eichenbaum, and Rebelo

(2012) who attribute the failure of consumption-based asset pricing models to the

low correlation between asset returns and the state variables of the SDF.

1.4.4 R2 bounds with recently developed models

This subsection discusses whether the habit formation model, the long-run risk model,

or the rare disaster model can explain the predictability of the market portfolio when

the state variables are from one of these three asset pricing models.
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Habit formation

The state variables in the habit formation model are the consumption growth rate

and the surplus consumption ratio st that is unobservable since the habit level is

latent. I follow Campbell and Cochrane (1999) by extracting st from the model and

calculate the multiple correlation between the state variables xt = (�ct,�st) and

the excess return with zt units of investment in the market portfolio. The results

are reported in Panel A of Table 1.3. With an additional state variable �st, the

correlation between the excess return and the state variables approximately doubles

relative to the traditional Consumption-based models. However, it is still very small.

Nine out of ten correlations (since different predictor implies different correlation)

are less than 0.1. As a result, both bounds with the maximum risk aversion and the

market Sharpe ratio are still close to zero, significantly less than the predictive R2s.

Long-run risk

The long-run risk model focuses on the low-frequency properties of the time series

of dividends and aggregate consumption, and can explain simultaneously the equity

risk premium puzzle, the risk-free rate puzzle, and the high level of market volatility.

The key assumptions in the long-run risk model are that the consumption growth

rate and the dividend growth rate follow the following joint dynamics:

�ct+1 = μc + μc,t + σtεc,t+1,

μc,t+1 = ρμμc,t + ψcσtεμ,t+1,

σ2
t+1 = (1− ν)σ̄2 + νσ2

t + σwεσ,t+1,

�dt+1 = μd + φμc,t + φσtεd,t+1,
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where ct+1 is the log aggregate consumption and dt+1 is the log dividends. The shocks

εc,t+1, εμ,t+1, εσ,t+1, and εd,t+1 are assumed to be i.i.d. normally distributed.9

With log-affine approximation, the SDF is

logmt+1 = A0 + A1μc,t + A2σ
2
t + A3�ct+1 + A4μc,t+1 + A5σ

2
t+1, (1.27)

where A0, · · · , A5 are parameters to be estimated. There are two latent state variables

in the SDF, the conditional mean of the consumption growth rate yt and the condi-

tional variance of its innovation σ2
t , which are difficult to be measured in the data.

Motivated by Dai and Singleton (2000), Constantinides and Ghosh (2011) bridge this

gap and find that these two latent variables can be projected on the log risk-free rate

rf,t and the log dividend-price ratio dpt:

μc,t = α0 + α1rf,t + α2dpt,

σ2
t = β0 + β1rf,t + β2dpt.

In this way, the log SDF is an affine function of the log risk-free rate, the log dividend-

price ratio, and the consumption growth rate:

logmt+1 = B0 +B1rf,t +B2dpt +B3rf,t+1 +B4dpt+1 +B5�ct+1.

Panel B of Table 1.3 shows the R2 bounds when the state variables in the SDF are

xt+1 = (�ct+1, rf,t+1, dpt+1)
′. (1.28)

The correlations between xt+1 and the excess returns conditional information zt are

around 0.1, implying that the R2 bounds will be significantly larger than that in the

9I use μc,t rather than xt to denote the persistent component of consumption since xt has been
used as the state variables of the SDF.
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habit formation model. However, both bounds are still less than the predictive R2s.

These results are consistent with Constantinides and Ghosh (2011) and Bansal, Kiku,

and Yaron (2012) who find that the permitted degree of predictability is extremely

low in the long-run risk framework.

Rare disaster

The rare disaster model revived by Barro (2006) is intended to solve the equity risk

premium puzzle and does not accommodate time-varying expected returns. Gabaix

(2012) allows for time-varying probability and size of disasters, thereby generating

volatility of price-dividend ratios and implying return predictability to some extent.

Gourio (2008) exclusively studies whether the predictability generated by the rare

disaster model can match the magnitude of predictability observed in market data. In

so doing, he introduces an exogenous, persistent, time-varying disaster probability in

the rare disaster framework. With numerical simulation, to best match the predictive

power of the dividend-price ratio, the model needs to have an average equity premium

as high as 13.71%, which is obviously not reasonable. As a result, Gourio concludes

“with Epstein-Zin utility, the model can fit the facts qualitatively, and to some extent

quantitatively, if we allow for a highly variable probability of disaster, leverage and

an IES above unity” to explain return predictability.

The basic assumption for the rare disaster model is that the consumption growth

rate follows the stochastic process:

�ct+1 =

⎧⎪⎨
⎪⎩

μc + σεt+1, with probability 1− pt;

μc + σεt+1 + log(1− b), with probability pt.
(1.29)

where εt+1 is i.i.d. N(0, 1) and 0 < b < 1 is the size of the disaster. The crucial ques-

tion is to find a variable to proxy the unobservable probability of disasters. Wachter

(2012) considers the rare disaster model in a continuous-time setting and find that
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the dividend-price ratio is a strictly increasing function of the disaster probability,

which implies that one can invert this function to find the disaster probability given

the observations of the dividend-price ratio. Hence, in addition to the consumption

growth rate, the dividend-price ratio can be used as an observable state variable for

the rare disaster model. That is,

xt+1 = (�ct+1, dpt+1)
′.

The predictive R2 bounds are exhibited in Panel C of Table 1.3. Again, ten predictive

R2s exceed the bounds significantly. These results are approximately the same as that

in the habit formation model. Therefore, consistent with Gourio’s (2008) numerical

simulation, it is difficult for the rare disaster model to match the observed return

predictability.

1.4.5 R2 bounds with market frictions

One interesting question is what happens when the market is not frictionless. The

proposed bounds in this paper assume that investors can trade freely without trans-

action costs and constraints. It may be the case that the profits documented in the

literature are not attainable for investors because of transaction costs and constraints.

The limit of arbitrage forces investors to deviate from the trading strategy that seeks

to exploit predictability in the market.

Market frictions refer to trading costs that can be the transaction cost in He

and Modest (1995), the marginal value of liquidity services of tradeable assets in

Holmström and Tirole (2001), the transaction cost in Acharya and Pedersen (2005),

the funding liquidity in Brunnermeier and Pedersen (2009), or the execution cost

in Hasbrouck (2009).10 Nagel (2012) reviews these models and finds that the SDF

10Amihud, Mendelson, and Pedersen (2005) give an excellent literature review on the relationship
between transaction costs of different dimensions and asset prices.
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in frictionless market can be augmented with a factor Λt that captures the state of

transaction costs

m̃F
t+1 = m̃t+1

Λt

Λt+1

. (1.30)

Let �λt+1 = log(Λt+1/Λt). Then I can rewrite m̃F
t+1 as

m̃F
t+1 = m̃F (xt+1,�λt+1). (1.31)

In this way, a higher �λt+1 means a higher transaction cost, and an asset paying well

in the state of higher �λt+1 earns a lower expected return. The bounds in this paper

can be adjusted easily by including �λt+1 into the state variables.

I use the liquidity factor constructed by Pástor and Stambaugh (2003) as the

proxy of transaction cost. Table 1.4 reports the R2 bounds on the market portfolio

forecasts with the ten macroeconomic variables. Panel A considers the case when the

state variable is the consumption growth rate. In this case, the bound with either the

maximum risk aversion or the market Sharpe ratio is marginally improved relative

to that without considering transaction (Panel A of Table 1.1). All the ten R2s are

significantly larger than the two bounds. Where the Fama-French three factors are

used as the state variables in Panel B, the results are almost the same as Panel B

of Table 1.2. Six R2s exceed the two proposed bounds significantly. The results in

Table 1.4 are in contrast to de Roon and Szymanowska (2012) who point out that

the finding in Kirby (1998) can be reconciled with transaction costs. The reason is

that they consider fixed transaction cost while I focus on time-varying cost.

1.4.6 R2 bounds on cross-sectional portfolio predictability

One interesting question is whether the proposed bounds work well for cross-sectional

portfolio forecasts. Theoretically, Propositions 2 and 3 show that individual portfo-
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lios should have different predictability since they have different correlations with

the state variables. For this reason, I report results on ten size portfolios, ten value

portfolios (formed based on the book-to-market ratio), ten momentum portfolios, and

ten industry portfolios. I consider two cases for the state variables: the consump-

tion growth rate and the Fama-French three factors. The maximum risk aversion

is assumed to be 5. To save space, I report the results when the predictor is the

dividend-price ratio or the term spread. The results for the other predictors exhibit

similar characteristics and are available upon request.

Portfolio forecasts with dividend-price ratio

Size portfolios The predictability of size portfolios (i.e., portfolios formed based on

market capitalization) has been extensively investigated (Ferson and Harvey, 1991;

Ferson and Korajczyk, 1995; Kirby, 1998). The basic pattern is that portfolios with

small size are more predictable than portfolios with large size. Table 2.6 reports the

predictive R2s when the dividend-price ratio is used as the predictor, and the upper

bounds proposed in this paper. Panel A considers the case when the state variable

is the consumption growth rate. Surprisingly, the predictability of size portfolios in

Column 2 does not show the monotonic pattern reported by Kirby (1998).11 The min-

imum predictability is the smallest size portfolio with an R2 of 0.09%. The maximum

predictability is the 4th smallest size portfolio with an R2 of 0.48%. The predictive

R2 for the largest size portfolio is 0.25%. The bound developed by Ross (2005) is

4.78%, larger than any predictive R2, suggesting that the predictability of size port-

folios can be explained. However, the bound in Zhou (2010) is 0.13%, smaller than

all R2s except for the smallest size portfolio. With respect to the proposed bounds

11Kirby (1998) forecasts the size portfolios by using five predictors simultaneously (the excess
return on the equally weighted NYSE index, a dummy variable for the month of January, the 1-
month 90-day Treasury bill rate less than the 30-day Treasury bill rate, the yield on Moody’s Baa
rated bonds less the yield on Moody’s Aaa rated bonds, and the dividend yield on the S&P 500
stock index less the 30-day Treasury bill rate).
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in this paper, both bounds with the maximum risk aversion and the market Sharpe

ratio are close to zero and significantly smaller than the corresponding R2s.

Panel B of Table 2.6 considers the case when the Fama-French three factors are

used as the state variables. Since the Fama-French three factor model includes the

market portfolio as a factor, which has high correlations with component portfolios,

the bound in Zhou (2010) loses the power to diagnose the predictability. However, my

bounds remain valid. Except for the first two smallest size portfolios, the other eight

portfolios display R2s larger than the bounds, either the bound with the maximum

risk aversion or the bound with the Sharpe ratio. Cross-sectionally, the proposed

bounds are monotonically decreasing in firm size. The inability of the dividend-price

ratio to generate monotonic predictive R2s may be due to the fact that the dividend-

price ratio uses the sum of dividends paid on the S&P 500 index. Big firms usually

pay more dividends than small firms. As a result, the dividend-price ratio is more

informative for large size portfolios, exhibiting higher predictive power.

Value portfolios The predictability of the value premium reported in the literature is

mixed. Lettau and Ludvigson (2001) show some positive evidence, but Lewellen and

Nagel (2006) find that the time-variation in the expected value premium is marginal

and hence unpredictable. Table 1.6 reports the results when the dividend-price ratio

is used to forecast the ten value portfolios formed based on the book-to-market ratio.

The predictive R2s are 0.11% for the 1st decile portfolio (growth portfolio) and 0.32%

for the 10th decile portfolio (value portfolio). This suggests that when the difference

between the value and the growth portfolio is used as a proxy of the value premium,

the value premium should be significantly predicted by the dividend-price ratio. Panel

A shows that the proposed bounds, as well as those in Zhou (2010), are less than the

predictive R2s when the state variable is the consumption growth rate. When the

Fama-French three factors are used, the two proposed bounds are still less than the
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predictive R2s. While the predictive R2s are more than 0.25% except for the growth

portfolio. The difference between the R2s for the value portfolios versus the size

portfolios is that the proposed bounds do not show a monotonic pattern with respect

to the book-to-market ratio.

Momentum portfolios When the dividend-price ratio is used to forecast the ten decile

momentum portfolios, the predictive R2s vary significantly, ranging from 0.10% for

the 5th portfolio to 0.83% for the 9th portfolio, as shown in Table 1.7. The R2s for

the lowest- and the highest-momentum portfolios are 0.19% and 0.24%, respectively.

Again, all R2s exceed the proposed bounds when the state variable is the consumption

growth rate. When the Fama-French three factors are used, the predictive R2s, except

for the 5th portfolio, exceed the two bounds.

Industry portfolios Ferson and Harvey (1991) and Ferson and Korajczky (1995) show

significant predictability for industry portfolios. In Table 2.8, when the dividend-price

ratio is used as the predictor, eight out of ten industries (with two exceptions, man-

ufacturing and energy) show strong performance. The most predictable industry is

nondurable goods with an R2 of 0.64%. Panel A shows that all the predictive R2s

except Enrgy exceed the proposed bounds when the state variable is the consump-

tion growth rate. Panel B identifies that five industries that have larger R2s than

the bounds when the state variables are the Fama-French three factors. This result

indicates that asset pricing models can generate more predictability for some industry

portfolios than others.

Portfolio forecasts with term spread

This section discusses the results when the term spread is used to forecast cross-

sectional portfolios. While the term spread exhibits stronger predictive ability, the

overall pattern is similar to the case when the predictor is the dividend-price ratio.
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When the consumption growth rate is used as the state variable, asset pricing models

do not show any hope of explaining return predictability. Instead, when the Fama-

French three factors are used, they generate larger bounds. Here I only report the

results for the case of the Fama-French three factors (see Tables 1.9 and 1.10), which

are summarized as follows. First, the predictive ability of the term spread is too

strong to be explained by asset pricing models. That is, all the predictive R2s,

with three exceptions, exceed the proposed bounds. Second, the predictability varies

significantly across different portfolios. Third, the failure of current asset pricing

models lies in the poor ability of the state variable in capturing the cross-sectional

characteristics of individual portfolios.

The results are robust to the habit formation model, the long-run risk model, and

the rare disaster model, and also robust to the case with transaction costs. Over-

all, the cross-sectional results echo the market portfolio forecast that time-varying

expected return can only explain a small fraction of predictability.

1.5 Conclusion

This paper asks whether the overall pattern of return predictability is consistent

with asset pricing models. To answer this question, I develop two upper bounds on

the predictive R2. When one of ten established macroeconomic variables in Goyal

and Welch (2008) is used to forecast the excess returns of the market portfolio and

cross-sectional portfolios, the predictive R2s almost always exceed the upper bounds,

implying that return predictability cannot be fully explained by extant asset pricing

models. The reason is the low correlation between the forecasted excess return and

the state variables used in the SDF.

There are also many other reasons to explain why the predictive R2s violate the

upper bounds. There may be structural breaks in the specific models over the long-
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term period investigated in this study. For example, Goyal and Welch (2008), Rapach,

Strauss, and Zhou (2010), Henkel, and Martin and Nardari (2011) find strong evi-

dence of fairly frequent breaks in the predictive regression. Most macro fundamental

variables exhibit significant power of return predictability during economic recessions,

but perform badly during economic expansions. It may be necessary to incorporate

regime changes into the upper bounds. Also, an alternative explanation is behavioral

bias that leads investors to under- or over-react to private or public news, generating

return predictability.

This paper focuses on the stock market. It will be of interest to investigate whether

any asset pricing model can explain return predictability on the bond market, housing

market, commodity market, currency market, and international markets.
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Appendix

Proof of Proposition 1. Since Et(εt+1|xt+1) = 0 in the regression rt+1zt = a +

bxt+1 + εt+1, I have

Cov(εt+1, m̃(xt+1) = E[E(εt+1|xt+1)m̃(xt+1)] = 0.

Then

Cov(rt+1zt, m̃(xt+1)) = Cov[b′xt+1, m̃(xt+1)] = b′Σxm̃.

The Cauchy-Schwarz inequality generates

Cov[rt+1zt, m̃(xt+1)]
2 = (b′Σ1/2

xx Σ
−1/2
xx Σxm̃)

2 ≤ (b′Σxxb)(Σ
′
xm̃Σ

−1
xxΣxm̃).

From the regression rt+1 = α + βzt + εt+1, the R2 is

R2 =
βVar(zt)β

Var(rt+1)
≤ Cov2(rt+1, zt)

Var(rt+1)

=
Cov2(m̃t+1, rt+1zt)

Var(rt+1)

≤ b′Σxxb

Var(rt+1zt)

Var(rt+1zt)(Σ
′
xm̃Σ

−1
xxΣxm̃)

Var(rt+1)

≤ ρ2x,rz
Var(rt+1zt)

Var(rt+1)
Var(m̃t+1)

= φ2
x,rzVar(m̃t+1).

This completes the proof.
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Table 1.1: R2 bounds on market portfolio forecast

The table reports the bounds of the predictive R2 from the regression rt+1 = α +
βzt + εt+1, where rt+1 is the excess return of the market portfolio and zt is one of
the ten predictors given in the first column. The state variable x in the SDF is the
consumption growth rate. The marginal investor’s risk aversion is 5 in Panel A and
10 in Panel B. R̄2

Ross and R̄2
Zhou denote the bounds proposed by Ross (2005) and

Zhou (2010). R̄2
RA and R̄2

SR denote the bounds developed in this paper with the
maximum risk aversion and the market Sharpe ratio, respectively. ρx,m0 and ρx,rz
denote the multiple correlations, where the default SDF m0 is constructed by the
market portfolio. Statistical significance is assessed by the Wald statistic for testing
that the predictive R2 is less than the theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate
significance at the 1%, 5%, and 10% level, respectively.

z R2(%) R̄2
Ross(%) ρx,m0 R̄2

Zhou(%) ρx,rz R̄2
RA(%) R̄2

SR(%)

Panel A: maximum risk aversion γ = 5

d/p 0.27 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

e/p 0.11 4.78 0.17 0.13 0.03 0.01∗∗∗ 0.01∗∗∗

dy 0.33 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

tbl 0.21 4.78 0.17 0.13∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

dfy 0.21 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

tms 0.56 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

ntis 0.04 4.78 0.17 0.13 0.02 0.00∗∗∗ 0.00∗∗∗

infl 0.42 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

ltr 1.04 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

rvol 1.23 4.78 0.17 0.13∗∗∗ 0.03 0.00∗∗∗ 0.00∗∗∗

Panel B: maximum risk aversion γ = 10

d/p 0.27 19.11 0.17 0.54 0.02 0.01∗∗∗ 0.00∗∗∗

e/p 0.11 19.11 0.17 0.54 0.03 0.03∗∗∗ 0.01∗∗∗

dy 0.33 19.11 0.17 0.54 0.02 0.01∗∗∗ 0.00∗∗∗

tbl 0.21 19.11 0.17 0.54 0.06 0.07∗∗∗ 0.02∗∗∗

dfy 0.21 19.11 0.17 0.54 0.02 0.01∗∗∗ 0.00∗∗∗

tms 0.56 19.11 0.17 0.54∗∗ 0.04 0.03∗∗∗ 0.01∗∗∗

ntis 0.04 19.11 0.17 0.54 0.02 0.01∗∗ 0.00∗∗∗

infl 0.42 19.11 0.17 0.54 0.02 0.01∗∗∗ 0.00∗∗∗

ltr 1.04 19.11 0.17 0.54∗∗∗ 0.02 0.01∗∗∗ 0.00∗∗∗

rvol 1.23 19.11 0.17 0.54∗∗∗ 0.03 0.01∗∗∗ 0.00∗∗∗
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Table 1.2: R2 bounds on market portfolio forecast

The table reports the bounds of the predictive R2 from the regression rt+1 = α+βzt+
εt+1, where rt+1 is the excess return of the market portfolio and zt is one of the ten
predictors given in the first column. The state variables xt in the SDF are the market
portfolio in Panel A or the Fama-French three factors in Panel B. R̄2

Ross and R̄2
Zhou

denote the bounds proposed by Ross (2005) and Zhou (2010). R̄2
RA and R̄2

SR denote
the bounds developed in this paper with the maximum risk aversion and the market
Sharpe ratio, respectively. ρx,m0 and ρx,rz denote the multiple correlations, where
the default SDF m0 is constructed by the market portfolio. Statistical significance
is assessed by the Wald statistic for testing that the predictive R2 is less than the
theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10%
level, respectively.

z R2(%) R̄2
Ross(%) ρx,m0 R̄2

Zhou(%) ρx,rz R̄2
RA(%) R̄2

SR(%)

Panel A: xt is the return of the market portfolio

d/p 0.27 4.78 1.00 4.76 0.10 0.06∗∗∗ 0.05∗∗∗

e/p 0.11 4.78 1.00 4.76 0.05 0.02∗∗∗ 0.02∗∗∗

dy 0.33 4.78 1.00 4.76 0.06 0.02∗∗∗ 0.02∗∗∗

tbl 0.21 4.78 1.00 4.76 0.07 0.03∗∗∗ 0.02∗∗∗

dfy 0.21 4.78 1.00 4.76 0.25 0.47 0.40

tms 0.56 4.78 1.00 4.76 0.03 0.00∗∗∗ 0.00∗∗∗

ntis 0.04 4.78 1.00 4.76 0.19 0.24 0.21

infl 0.42 4.78 1.00 4.76 0.10 0.07∗∗∗ 0.06∗∗∗

ltr 1.04 4.78 1.00 4.76 0.00 0.00∗∗∗ 0.00∗∗∗

rvol 1.23 4.78 1.00 4.76 0.25 0.32∗∗∗ 0.27∗∗∗

Panel B: xt are the Fama-French three-factors

d/p 0.27 4.78 1.00 4.76 0.11 0.07∗∗∗ 0.06∗∗∗

e/p 0.11 4.78 1.00 4.76 0.12 0.10 0.09∗∗

dy 0.33 4.78 1.00 4.76 0.08 0.04∗∗∗ 0.03∗∗∗

tbl 0.21 4.78 1.00 4.76 0.25 0.35 0.30

dfy 0.21 4.78 1.00 4.76 0.32 0.75 0.64

tms 0.56 4.78 1.00 4.76 0.18 0.16∗∗∗ 0.13∗∗∗

ntis 0.04 4.78 1.00 4.76 0.23 0.33 0.28

infl 0.42 4.78 1.00 4.76 0.16 0.16∗∗∗ 0.14∗∗∗

ltr 1.04 4.78 1.00 4.76 0.09 0.06∗∗∗ 0.04∗∗∗

rvol 1.23 4.78 1.00 4.76 0.28 0.40∗∗∗ 0.34∗∗∗
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Table 1.3: R2 bounds on market portfolio forecast with recently developed models

The table reports the bounds on the R2 from the regression rt+1 = α+βzt+εt+1, where
rt+1 is the excess return of the market portfolio and zt is one of the ten predictors
in Column 1. R̄2

Ross and R̄2
Zhou denote the bounds proposed by Ross (2005) and

Zhou (2010). R̄2
RA and R̄2

SR denote the bounds developed in this paper with the
maximum risk aversion and the market Sharpe ratio, respectively. ρx,m0 and ρx,rz
denote the multiple correlations, where the default SDF m0 is constructed by the
market portfolio. Statistical significance is assessed by the Wald statistic for testing
that the predictive R2 is less than the theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate
significance at the 1%, 5%, and 10% level, respectively.

z R2(%) R̄2
Ross(%) ρx,m0 R̄2

Zhou(%) ρx,rz R̄2
RA(%) R̄2

SR(%)

Panel A: Habit formation model
d/p 0.27 4.78 0.18 0.15∗∗∗ 0.07 0.03∗∗∗ 0.02∗∗∗

e/p 0.11 4.78 0.18 0.15 0.04 0.01∗∗∗ 0.01∗∗∗

dy 0.33 4.78 0.18 0.15∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

tbl 0.21 4.78 0.18 0.15∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

dfy 0.21 4.78 0.18 0.15∗∗∗ 0.11 0.10∗∗∗ 0.08∗∗∗

tms 0.56 4.78 0.18 0.15∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

ntis 0.04 4.78 0.18 0.15 0.02 0.00∗∗∗ 0.00∗∗∗

infl 0.42 4.78 0.18 0.15∗∗∗ 0.03 0.00∗∗∗ 0.00∗∗∗

ltr 1.04 4.78 0.18 0.15∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

rvol 1.23 4.78 0.18 0.15∗∗∗ 0.03 0.00∗∗∗ 0.00∗∗∗

Panel B: Long-run risk model
d/p 0.27 4.78 0.17 0.14∗∗∗ 0.11 0.07∗∗∗ 0.06∗∗∗

e/p 0.11 4.78 0.17 0.14 0.07 0.04∗∗∗ 0.03∗∗∗

dy 0.33 4.78 0.17 0.14∗∗∗ 0.12 0.09∗∗∗ 0.07∗∗∗

tbl 0.21 4.78 0.17 0.14∗∗∗ 0.08 0.03∗∗∗ 0.03∗∗∗

dfy 0.21 4.78 0.17 0.14∗∗∗ 0.09 0.06∗∗∗ 0.05∗∗∗

tms 0.56 4.78 0.17 0.14∗∗∗ 0.09 0.04∗∗∗ 0.03∗∗∗

ntis 0.04 4.78 0.17 0.14 0.11 0.08 0.07
infl 0.42 4.78 0.17 0.14∗∗∗ 0.13 0.10∗∗∗ 0.08∗∗∗

ltr 1.04 4.78 0.17 0.14∗∗∗ 0.10 0.06∗∗∗ 0.05∗∗∗

rvol 1.23 4.78 0.17 0.14∗∗∗ 0.12 0.07∗∗∗ 0.06∗∗∗

Panel C: Rare disaster model
d/p 0.27 4.78 0.17 0.14∗∗∗ 0.08 0.04∗∗∗ 0.03∗∗∗

e/p 0.11 4.78 0.17 0.14 0.06 0.02∗∗∗ 0.02∗∗∗

dy 0.33 4.78 0.17 0.14∗∗∗ 0.08 0.04∗∗∗ 0.03∗∗∗

tbl 0.21 4.78 0.17 0.14∗∗∗ 0.05 0.02∗∗∗ 0.01∗∗∗

dfy 0.21 4.78 0.17 0.14∗∗∗ 0.08 0.05∗∗∗ 0.04∗∗∗

tms 0.56 4.78 0.17 0.14∗∗∗ 0.07 0.03∗∗∗ 0.02∗∗∗

ntis 0.04 4.78 0.17 0.14 0.06 0.02∗∗∗ 0.02∗∗∗

infl 0.42 4.78 0.17 0.14∗∗∗ 0.03 0.01∗∗∗ 0.00∗∗∗

ltr 1.04 4.78 0.17 0.14∗∗∗ 0.09 0.05∗∗∗ 0.04∗∗∗

rvol 1.23 4.78 0.17 0.14∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗
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Table 1.4: R2 bounds on market portfolio forecast with transaction cost

The table reports the bounds on the R2 from the regression rt+1 = α + βzt + εt+1,
where rt+1 is the excess return of the market portfolio and zt is one of the 10 predictors
in Column 1. The state variables xt in the SDF are the consumption growth rate
in Panel A and the Fama-French three factors in Panel B. The transaction cost is
measured by the liquidity factor of Pástor and Stambaugh (2003). R̄2

Ross and R̄2
Zhou

denote the bounds proposed by Ross (2005) and Zhou (2010). R̄2
RA and R̄2

SR denote
the bounds developed in this paper with the maximum risk aversion and the market
Sharpe ratio, respectively. ρx,m0 and ρx,rz denote the multiple correlations, where
the default SDF m0 is constructed by the market portfolio. Statistical significance
is assessed by the Wald statistic for testing that the predictive R2 is less than the
theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10%
level, respectively.

z R2(%) R̄2
Ross(%) ρx,m0 R̄2

Zhou(%) ρx,rz R̄2
RA(%) R̄2

SR(%)

Panel A: xt is consumption growth rate

d/p 0.29 4.88 0.34 0.55 0.05 0.01∗∗∗ 0.01∗∗∗

e/p 0.10 4.88 0.34 0.55 0.03 0.01∗∗∗ 0.01∗∗∗

dy 0.31 4.88 0.34 0.55 0.06 0.02∗∗∗ 0.02∗∗∗

tbl 0.24 4.88 0.34 0.55 0.04 0.01∗∗∗ 0.01∗∗∗

dfy 0.20 4.88 0.34 0.55 0.01 0.00∗∗∗ 0.00∗∗∗

tms 0.53 4.88 0.34 0.55 0.04 0.01∗∗∗ 0.01∗∗∗

ntis 0.04 4.88 0.34 0.55 0.06 0.02∗∗ 0.02∗∗

infl 0.55 4.88 0.34 0.54 0.09 0.05∗∗∗ 0.04∗∗∗

ltr 1.10 4.88 0.34 0.55∗∗∗ 0.09 0.05∗∗∗ 0.04∗∗∗

rvol 1.19 4.88 0.34 0.55∗∗∗ 0.03 0.00∗∗∗ 0.00∗∗∗

Panel B: xt are the Fama-French three-factors

d/p 0.29 4.88 1.00 4.86 0.14 0.12∗∗∗ 0.11∗∗∗

e/p 0.10 4.88 1.00 4.86 0.13 0.12 0.10

dy 0.31 4.88 1.00 4.86 0.12 0.08∗∗∗ 0.07∗∗∗

tbl 0.24 4.88 1.00 4.86 0.26 0.39 0.33

dfy 0.20 4.88 1.00 4.86 0.34 0.84 0.72

tms 0.53 4.88 1.00 4.86 0.18 0.16∗∗∗ 0.14∗∗∗

ntis 0.04 4.88 1.00 4.86 0.22 0.32 0.28

infl 0.55 4.88 1.00 4.86 0.17 0.19∗∗∗ 0.16∗∗∗

ltr 1.10 4.88 1.00 4.86 0.12 0.09∗∗∗ 0.08∗∗∗

rvol 1.19 4.88 1.00 4.86 0.29 0.42∗∗∗ 0.36∗∗∗
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Table 1.5: R2 bounds on size portfolio forecasts

The table reports the bounds of the predictive R2 from the regression rj,t+1 = αj +
βjzt + εj,t+1, where rj,t+1 is the excess return on one of the ten size portfolios and zt
is the dividend-price ratio. The state variables xt in the SDF are the consumption
growth rate (Panel A) or the Fama-French three factors (Panel B). R̄2

Ross and R̄2
Zhou

denote the bounds proposed by Ross (2005) and Zhou (2010). R̄2
RA and R̄2

SR denote
the bounds developed in this paper with the maximum risk aversion and the market
Sharpe ratio, respectively. ρx,m0 and ρx,rz denote the multiple correlations, where
the default SDF m0 is constructed by the market portfolio. Statistical significance
is assessed by the Wald statistic for testing that the predictive R2 is less than the
theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10%
level, respectively.

r R2(%) R̄2
Ross(%) ρx,m0 R̄2

Zhou(%) ρx,rz R̄2
RA(%) R̄2

SR(%)

Panel A: xt is the consumption growth rate

Small 0.09 4.78 0.17 0.13 0.08 0.04∗∗∗ 0.03∗∗∗

2 0.20 4.78 0.17 0.13∗∗∗ 0.05 0.02∗∗∗ 0.02∗∗∗

3 0.32 4.78 0.17 0.13∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

4 0.48 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

5 0.43 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.01∗∗∗

6 0.43 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.00∗∗∗

7 0.29 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.00∗∗∗

8 0.28 4.78 0.17 0.13∗∗∗ 0.00 0.00∗∗∗ 0.00∗∗∗

9 0.24 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

Large 0.25 4.78 0.17 0.13∗∗∗ 0.01 0.00∗∗∗ 0.00∗∗∗

Panel B: xt are the Fama-French three-factors

Small 0.09 4.78 1.00 4.76 0.23 0.31 0.26

2 0.20 4.78 1.00 4.76 0.23 0.34 0.29

3 0.32 4.78 1.00 4.76 0.20 0.23∗∗∗ 0.19∗∗∗

4 0.48 4.78 1.00 4.76 0.19 0.18∗∗∗ 0.16∗∗∗

5 0.43 4.78 1.00 4.76 0.17 0.18∗∗∗ 0.15∗∗∗

6 0.43 4.78 1.00 4.76 0.14 0.12∗∗∗ 0.10∗∗∗

7 0.29 4.78 1.00 4.76 0.15 0.14∗∗∗ 0.11∗∗∗

8 0.28 4.78 1.00 4.76 0.14 0.12∗∗∗ 0.10∗∗∗

9 0.24 4.78 1.00 4.76 0.12 0.09∗∗∗ 0.08∗∗∗

Large 0.25 4.78 1.00 4.76 0.09 0.06∗∗∗ 0.05∗∗∗
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Table 1.6: R2 bounds on value portfolio forecasts

The table reports the bounds of the predictive R2 from the regression rj,t+1 = αj +
βjzt + εj,t+1, where rj,t+1 is the excess return on one of the ten value portfolios and
zt is the dividend-price ratio. The state variables xt in the SDF are the consumption
growth rate (Panel A) or the Fama-French three factors (Panel B). R̄2

Ross and R̄2
Zhou

denote the bounds proposed by Ross (2005) and Zhou (2010). R̄2
RA and R̄2

SR denote
the bounds developed in this paper with the maximum risk aversion and the market
Sharpe ratio, respectively. ρx,m0 and ρx,rz denote the multiple correlations, where
the default SDF m0 is constructed by the market portfolio. Statistical significance
is assessed by the Wald statistic for testing that the predictive R2 is less than the
theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10%
level, respectively.

r R2(%) R̄2
Ross(%) ρx,m0 R̄2

Zhou(%) ρx,rz R̄2
RA(%) R̄2

SR(%)

Panel A: xt is the consumption growth rate

Low 0.11 4.78 0.17 0.13 0.04 0.01∗∗∗ 0.01∗∗∗

2 0.33 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.00∗∗∗

3 0.28 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.00∗∗∗

4 0.25 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.01∗∗∗

5 0.19 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.01∗∗∗

6 0.39 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

7 0.23 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

8 0.28 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

9 0.41 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

High 0.32 4.78 0.17 0.13∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

Panel B: xt are the Fama-French three-factors

Low 0.11 4.78 1.00 4.76 0.11 0.09∗∗ 0.08∗∗∗

2 0.33 4.78 1.00 4.76 0.13 0.09∗∗∗ 0.08∗∗∗

3 0.28 4.78 1.00 4.76 0.15 0.14∗∗∗ 0.12∗∗∗

4 0.25 4.78 1.00 4.76 0.16 0.15∗∗∗ 0.13∗∗∗

5 0.19 4.78 1.00 4.76 0.15 0.14∗∗∗ 0.12∗∗∗

6 0.39 4.78 1.00 4.76 0.12 0.08∗∗∗ 0.07∗∗∗

7 0.23 4.78 1.00 4.76 0.17 0.16∗∗∗ 0.14∗∗∗

8 0.28 4.78 1.00 4.76 0.18 0.18∗∗∗ 0.15∗∗∗

9 0.41 4.78 1.00 4.76 0.15 0.12∗∗∗ 0.10∗∗∗

High 0.32 4.78 1.00 4.76 0.18 0.16∗∗∗ 0.14∗∗∗
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Table 1.7: R2 bounds on momentum portfolio forecasts

The table reports the bounds of the predictive R2 from the regression rj,t+1 =
αj + βjzt + εj,t+1, where rj,t+1 is the excess return on one of the ten momentum
portfolios and zt is the dividend-price ratio. The state variables xt in the SDF are
the consumption growth rate (Panel A) or the Fama-French three factors (Panel B).
R̄2

Ross and R̄2
Zhou denote the bounds proposed by Ross (2005) and Zhou (2010). R̄2

RA

and R̄2
SR denote the bounds developed in this paper with the maximum risk aversion

and the market Sharpe ratio, respectively. ρx,m0 and ρx,rz denote the multiple corre-
lations, where the default SDF m0 is constructed by the market portfolio. Statistical
significance is assessed by the Wald statistic for testing that the predictive R2 is less
than the theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%,
and 10% level, respectively.

r R2(%) R̄2
Ross(%) ρx,m0 R̄2

Zhou(%) ρx,rz R̄2
RA(%) R̄2

SR(%)

Panel A: xt is the consumption growth rate

Low 0.19 4.78 0.17 0.13∗∗∗ 0.01 0.00∗∗∗ 0.00∗∗∗

2 0.23 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

3 0.48 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

4 0.24 4.78 0.17 0.13∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

5 0.10 4.78 0.17 0.13 0.08 0.03∗∗∗ 0.01∗∗∗

6 0.56 4.78 0.17 0.13∗∗∗ 0.07 0.03∗∗∗ 0.02∗∗∗

7 0.31 4.78 0.17 0.13∗∗∗ 0.07 0.03∗∗∗ 0.03∗∗∗

8 0.31 4.78 0.17 0.13∗∗∗ 0.03 0.01∗∗∗ 0.01∗∗∗

9 0.83 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

High 0.24 4.78 0.17 0.13∗∗∗ 0.01 0.00∗∗∗ 0.00∗∗∗

Panel B: xt are the Fama-French three-factors

Low 0.19 4.78 1.00 4.76 0.12 0.08∗∗∗ 0.07∗∗∗

2 0.23 4.78 1.00 4.76 0.10 0.06∗∗∗ 0.05∗∗∗

3 0.48 4.78 1.00 4.76 0.12 0.13∗∗∗ 0.11∗∗∗

4 0.24 4.78 1.00 4.76 0.18 0.18∗∗∗ 0.15∗∗∗

5 0.10 4.78 1.00 4.76 0.17 0.17 0.15

6 0.56 4.78 1.00 4.76 0.19 0.22∗∗∗ 0.19∗∗∗

7 0.31 4.78 1.00 4.76 0.21 0.27∗∗ 0.23∗∗∗

8 0.31 4.78 1.00 4.76 0.19 0.24∗∗∗ 0.20∗∗∗

9 0.83 4.78 1.00 4.76 0.16 0.17∗∗∗ 0.14∗∗∗

High 0.24 4.78 1.00 4.76 0.15 0.16∗∗∗ 0.13∗∗∗
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Table 1.8: R2 bounds on industry portfolio forecasts

The table reports the bounds of the predictive R2 from the regression rj,t+1 = αj +
βjzt+εj,t+1, where rj,t+1 is the excess return on one of the ten industry portfolios and
zt is the dividend-price ratio. The state variables xt in the SDF are the consumption
growth rate (Panel A) or the Fama-French three factors (Panel B). R̄2

Ross and R̄2
Zhou

denote the bounds proposed by Ross (2005) and Zhou (2010). R̄2
RA and R̄2

SR denote
the bounds developed in this paper with the maximum risk aversion and the market
Sharpe ratio, respectively. ρx,m0 and ρx,rz denote the multiple correlations, where
the default SDF m0 is constructed by the market portfolio. Statistical significance
is assessed by the Wald statistic for testing that the predictive R2 is less than the
theoretical upper bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10%
level, respectively.

r R2(%) R̄2
Ross(%) ρx,m0 R̄2

Zhou(%) ρx,rz R̄2
RA(%) R̄2

SR(%)

Panel A: xt is the consumption growth rate

NoDur 0.64 4.78 0.17 0.13∗∗∗ 0.09 0.05∗∗∗ 0.04∗∗∗

Durbl 0.19 4.78 0.17 0.13∗∗∗ 0.06 0.02∗∗∗ 0.02∗∗∗

Manuf 0.03 4.78 0.17 0.13 0.03 0.01∗∗∗ 0.01∗∗∗

Enrgy 0.01 4.78 0.17 0.13 0.00 0.00 0.00

HiTec 0.10 4.78 0.17 0.13 0.01 0.00∗∗∗ 0.00∗∗∗

Telcm 0.52 4.78 0.17 0.13∗∗∗ 0.02 0.00∗∗∗ 0.00∗∗∗

Shops 0.47 4.78 0.17 0.13∗∗∗ 0.04 0.01∗∗∗ 0.01∗∗∗

Hlth 0.25 4.78 0.17 0.13∗∗∗ 0.08 0.04∗∗∗ 0.03∗∗∗

Utils 0.16 4.78 0.17 0.13∗∗∗ 0.00 0.00∗∗∗ 0.00∗∗∗

Other 0.44 4.78 0.17 0.13∗∗∗ 0.05 0.01∗∗∗ 0.01∗∗∗

Panel B: xt are the Fama-French three-factors

NoDur 0.64 4.78 1.00 4.76 0.27 0.42∗∗∗ 0.35∗∗∗

Durbl 0.19 4.78 1.00 4.76 0.09 0.04∗∗∗ 0.03∗∗∗

Manuf 0.03 4.78 1.00 4.76 0.16 0.16 0.14

Enrgy 0.01 4.78 1.00 4.76 0.20 0.29 0.24

HiTec 0.10 4.78 1.00 4.76 0.21 0.32 0.27

Telcm 0.52 4.78 1.00 4.76 0.16 0.16∗∗∗ 0.13∗∗∗

Shops 0.47 4.78 1.00 4.76 0.18 0.18∗∗∗ 0.15∗∗∗

Hlth 0.25 4.78 1.00 4.76 0.23 0.32 0.27

Utils 0.16 4.78 1.00 4.76 0.25 0.40 0.34

Other 0.44 4.78 1.00 4.76 0.22 0.28∗∗∗ 0.24∗∗∗
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Table 1.9: R2 bounds on size and value portfolio forecasts

The table reports the bounds on R2 from the regression rj,t+1 = αj+βjzt+εj,t+1, where
zt is the term spread and rj,t+1 is the excess return on one of the 10 size portfolios
(Panel A) or the 10 value portfolios (Panel B). The state variables xt in the SDF are
the Fama-French three factors. R̄2

Ross and R̄2
Zhou denote the bounds proposed by Ross

(2005) and Zhou (2010). R̄2
RA and R̄2

SR denote the bounds developed in this paper
with the maximum risk aversion and the market Sharpe ratio, respectively. ρx,m0

and ρx,rz denote the multiple correlations, where the default SDF m0 is constructed
by the market portfolio. Statistical significance is assessed by the Wald statistic for
testing that the predictive R2 is less than the theoretical upper bound. ∗∗∗, ∗∗, and ∗

indicate significance at the 1%, 5%, and 10% level, respectively.

r R2(%) R̄2
Ross(%) ρx,m0 R̄2

Zhou(%) ρx,rz R̄2
RA(%) R̄2

SR(%)

Panel A: Size portfolios

Small 0.83 4.78 1.00 4.76 0.23 0.26∗∗∗ 0.22∗∗∗

2 0.61 4.78 1.00 4.76 0.20 0.19∗∗∗ 0.16∗∗∗

3 0.54 4.78 1.00 4.76 0.17 0.15∗∗∗ 0.13∗∗∗

4 0.63 4.78 1.00 4.76 0.17 0.16∗∗∗ 0.13∗∗∗

5 0.58 4.78 1.00 4.76 0.17 0.14∗∗∗ 0.12∗∗∗

6 0.81 4.78 1.00 4.76 0.16 0.13∗∗∗ 0.11∗∗∗

7 0.69 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.12∗∗∗

8 0.52 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.12∗∗∗

9 0.58 4.78 1.00 4.76 0.18 0.18∗∗∗ 0.13∗∗∗

Large 0.54 4.78 1.00 4.76 0.18 0.17∗∗∗ 0.14∗∗∗

Panel B: Value portfolios

Low 0.52 4.78 1.00 4.76 0.18 0.16∗∗∗ 0.14∗∗∗

2 0.51 4.78 1.00 4.76 0.13 0.08∗∗∗ 0.07∗∗∗

3 0.73 4.78 1.00 4.76 0.12 0.08∗∗∗ 0.06∗∗∗

4 0.68 4.78 1.00 4.76 0.14 0.10∗∗∗ 0.09∗∗∗

5 0.65 4.78 1.00 4.76 0.12 0.08∗∗∗ 0.07∗∗∗

6 0.43 4.78 1.00 4.76 0.14 0.10∗∗∗ 0.09∗∗∗

7 0.28 4.78 1.00 4.76 0.11 0.06∗∗∗ 0.05∗∗∗

8 0.14 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.11∗∗∗

9 0.29 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.12∗∗∗

High 0.49 4.78 1.00 4.76 0.20 0.24∗∗∗ 0.21∗∗∗
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Table 1.10: R2 bounds on momentum and industry portfolio forecasts

The table reports the bounds on R2 from the regression rj,t+1 = αj + βjzt + εj,t+1,
where zt is the term spread and rj,t+1 is the excess return on one of the 10 momentum
portfolios (Panel A) or the 10 industry portfolios (Panel B). The state variables xt

in the SDF are the Fama-French three factors. R̄2
Ross and R̄2

Zhou denote the bounds
proposed by Ross (2005) and Zhou (2010). R̄2

RA and R̄2
SR denote the bounds devel-

oped in this paper with the maximum risk aversion and the market Sharpe ratio,
respectively. ρx,m0 and ρx,rz denote the multiple correlations, where the default SDF
m0 is constructed by the market portfolio. Statistical significance is assessed by the
Wald statistic for testing that the predictive R2 is less than the theoretical upper
bound. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

r R2(%) R̄2
Ross(%) ρx,m0 R̄2

Zhou(%) ρx,rz R̄2
RA(%) R̄2

SR(%)

Panel A: Momentum portfolios

Low 0.54 4.78 1.00 4.76 0.22 0.25∗∗∗ 0.21∗∗∗

2 0.43 4.78 1.00 4.76 0.18 0.16∗∗∗ 0.14∗∗∗

3 0.51 4.78 1.00 4.76 0.15 0.12∗∗∗ 0.10∗∗∗

4 0.60 2.78 1.00 4.76 0.15 0.11∗∗∗ 0.10∗∗∗

5 0.50 4.78 1.00 4.76 0.17 0.14∗∗∗ 0.12∗∗∗

6 0.80 4.78 1.00 4.76 0.15 0.13∗∗∗ 0.11∗∗∗

7 1.11 4.78 1.00 4.76 0.14 0.11∗∗∗ 0.09∗∗∗

8 0.56 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.12∗∗∗

9 0.37 4.78 1.00 4.76 0.15 0.13∗∗∗ 0.11∗∗∗

High 0.33 4.78 1.00 4.76 0.19 0.21∗∗∗ 0.18∗∗∗

Panel B: Industry portfolios

NoDur 0.40 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.12∗∗∗

Durbl 1.41 4.78 1.00 4.76 0.21 0.24∗∗∗ 0.20∗∗∗

Manuf 0.80 4.78 1.00 4.76 0.15 0.12∗∗∗ 0.10∗∗∗

Enrgy 0.16 4.78 1.00 4.76 0.12 0.08∗∗∗ 0.07∗∗∗

HiTec 0.61 4.78 1.00 4.76 0.21 0.21∗∗∗ 0.18∗∗∗

Telcm 0.21 4.78 1.00 4.76 0.21 0.21 0.18∗

Shops 0.43 4.78 1.00 4.76 0.10 0.05∗∗∗ 0.04∗∗∗

Hlth 0.00 4.78 1.00 4.76 0.12 0.06 0.05

Utils 0.19 4.78 1.00 4.76 0.03 0.00∗∗∗ 0.00∗∗∗

Other 0.40 4.78 1.00 4.76 0.16 0.14∗∗∗ 0.12∗∗∗

50



Chapter 2

Economic and Market Conditions: Two State Vari-

ables that Predict the Stock Market1

Stock market predictability is of great interest to both researchers and practitioners.

In this paper, motivated by both economic theory and investment practice, we identify

two new predictors that capture the state of the economy and the market condition,

and outperform the well-known variables in predicting the market risk premium.

Moreover, the new predictors forecast the stock market not only during the down

turns of the economy, but also during the up turns when extant predictors fail. Cross-

sectionally, we find that the same idea also provides new and effective predictors for

component portfolios sorted by size, book-to-market ratio, industry, and long- and

short-term reversals.

2.1 Introduction

Forecasting the stock market is of great interest to both academic researchers and

investment practitioners. There is a huge literature on predictability, and numerous

economic variables have been identified as predictors of the market risk premium. For

example, Rozeff (1984), Fama and French (1988), and Campbell and Shiller (1988a,

1988b) present evidence that various valuation ratios, such as the dividend yield,

have forecasting power. On the other hand, Keim and Stambaugh (1986), Campbell

(1987), Breen, Glosten, and Jaganathan (1989), and Fama and French (1989) find that

1This is a joint work with Guofu Zhou.
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the nominal interest rates and the interest rate spreads can predict the market risk

premium, while Nelson (1976) and Fama and Schwert (1977) find that the inflation

rate can predict the market too. Recent studies continue to confirm the predictabil-

ity using valuation ratios (Cochrane, 2008; Pastor and Stambaugh, 2009), interest

rates (Ang and Bekaert, 2007), and inflation (Campbell and Vuolteenaho, 2004).

Other studies identify useful economic variables as new predictors, including the cor-

porate issuing activity (Baker and Wurgler, 2000; Boudoukh, Michaely, Richardson,

and Roberts, 2007), the consumption-wealth ratio (Lettau and Ludvigson, 2001),

and stock volatility (Guo, 2006). While these studies provide mostly in-sample pre-

dictability, Rapach, Strauss, and Zhou (2010), Henkel, Martin, and Nardari (2011),

Ferreira and Santa-Clara (2011), Dangl and Halling (2012), and Neely, Rapach, Tu,

and Zhou (2012), among others, show that the market risk premium can be reliably

predicted out-of-sample as well. However, despite the diversity of existing economic

predictors, none of them seems to capture the overall outlook of the economy and the

mean-reversion behavior of the stock market.

In this paper, we identify two new predictors of the stock market. The first

predictor is an economic indicator of the future state of the overall economy. The

classic Merton (1971) model provides the theoretical basis for the state of the economy

or the changing investment opportunity set as the source for the time-varying market

risk premium. Surprisingly, in the vast empirical literature on predictability, no

studies have ever used a simple aggregate measure of the economy to predict the

market, though various individual economic variables have been used. Since each

individual economic variable summarizes only one aspect of the economy, it does not

capture the overall state of the economy. To utilize fully the insight from Merton

(1971), an overall measure of the state of the economy is needed. Fortunately, the

leading economic indicator (we call it ECON hereafter) of The Conference Board is

designed exactly for this purpose, and is widely available today from Bloomberg and
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other news sources. In the finance literature, ECON has been used as a measure of

economic state in earlier studies by Perez-quiros and Timmermann (2000), Lamont,

Polk, and Saá-Requejo (2001), Ozoguz (2009), and Lee (2012), but not for forecasting

the market risk premium. More importantly, instead of revised data, we use vintage

data (those were actually released at the time) that are more appropriate for out-of-

sample forecasting.2

The second predictor is a technical indicator (TECH hereafter) that measures

the mean-reversion behavior of the stock market.3 Practitioners have long held the

view that the stock market fluctuates around its long-term mean. For example, John

Bogle (2012), the legendary investor and founder of the Vanguard Group that manages

billions of retirement funds for teachers and college professors, says that the number

one rule of investing (out of his ten rules) is “Remember reversion to the mean.”

What is hot today may not be hot tomorrow. The stock market reverts to its long-

term mean over the long run. To capture this mean-reversion idea, we simply define

the TECH indicator at any given time as the past year cumulative return minus its

long term mean, and standardize it by its annualized volatility. The intuition is that,

when we look at the market this month, if the cumulative return since one year ago

has already been 26%, the stock market will be more likely to go down than to go up

next month since the long-term mean is less than 13%.4

This paper also makes an econometric contribution to the classical predictive

regression model by advocating the use of up- and down-market regressions. While

2We are very grateful to Ataman Ozyildirim of The Conference Board for providing us with the
vintage data.

3This indicator belongs to the domain of Technical Analysis that uses past price or trading
volume data to predict future price movements. Brock, Lakonishok, and LeBaron (1992), Neely,
Weller, and Dittmar (1997), Sullivan, Timmermann, and White (1999), Lo, Mamaysky, and Wang
(2000), Kavajecz and Odders-White (2004), Menkhoff and Taylor (2007), Han, Yang, and Zhou
(2012), among others, find significant economic values of technical trading strategies.

4This is also in line with various newspapers and investment publications that post 52-week
(roughly a year) high, low and return on individual stocks and the market. George and Hwang
(2004) and Li and Yu (2012) study the anchor effects of the 52-week high. But we focus here on the
market mean-reversion effects which is not necessarily psychologically based.
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academic studies on the asymmetry in stock returns in up- and down-markets are

fairly recent (see, e.g., Ang and Chen, 2002 and Cooper, Gutierrez, and Hameed,

2004), practitioners have long characterized the stock price movements as up- and

down-markets. The most popular concept of an up-market is defined as the periods

when the stock market price is above its 200-day moving average price. Otherwise,

a down-market occurs. In the finance literature, Cooper, Gutierrez, and Hameed

(2004) appear the first to use the up- and down-market regressions in their study of

the momentum strategy and find that the profitability depends on the state of the

market.5 However, their definition of the up- and down-markets has nothing to do

with the moving averages.

In this paper, we follow practitioners’ definition of the up- and down-markets

and incorporate them into the standard predictive regression model. The extended

model shares the simple feature of the predictive regression model, but allowing for

asymmetric reactions of the stock market to its predictors in the up- and down-

markets. It nests the usual predictive regression model as a special case if the up-

and down-market reactions are the same. Statistically, one may use a different lag,

say 100 days, to re-define the moving average, or use an optimal lag that can yield

the greatest out-of-sample predictability than reported below. However, to mitigate

concerns of data mining and data snooping (see., e.g., Lo and MacKinlay, 1990),

we simply use the 200-day moving average that had been used by practitioners for

decades before our out-of-sample periods. Indeed, according to Siegel (1994), the

analysis of the moving averages goes back at least to the 1930s, and Gordon (1968)

finds that, over the period of 1897 to 1967, up to seven times returns can be earned by

buying stocks above their moving averages than sticking to the buy-and-hold strategy.

Siegel (1994) continues to find the value of the moving average investment strategy

5To capture the leptokurtosis of the momentum strategy, Daniel, Jagannathan, and Kim (2012)
identify the state of the stock market as “calm” or “turbulent” with a two-state hidden Markov
Chain model, and find that severe losses mainly occur in the “turbulent” state.
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till the 1990s. In practice, the 200-day moving average has been widely plotted

for years in investment letters, trading softwares, and newspapers (such as Investor

Business Daily). Economically, since the 200-day moving average is widely followed,

its effect might be easy to understand. If enough investors believe it, they may herd

on this information, thereby generating impact on the market price (see, e.g., Froot,

Schaferstein, and Stein, 1992, and Bikhchandani, Hirshleifer and Welch, 1992), and

making it necessary to study the predictability across the up- and down-markets.

Econometrically, our extended predictive regression model with the up- and down-

markets may capture some common regime effects of sophisticated econometric mod-

els such as those of Hamilton (1989), Perez-Quiros and Timmermann (2000), Lettau

and Van Nieuwerburgh (2008), and Tu (2010). We do not use these models for two

reasons. First, it is well known that complex models can be counter-productive in

out-of-sample forecasting due to estimation errors, which is why the simple predictive

regression model is the primary model used in the predictability literature. Second,

our definition is what many investors are actually using to assess the market state.

It is economically interesting to see how it works in practice.

Empirically, an analysis over the up- and down-markets does reveal some fun-

damentally different behaviors of the stock market across the market states. For

example, a large daily drop of 5% or more in the stock market occurs five times more

often in down-markets than in up-markets, and a daily drop of 10% or more hap-

pens only in the down-markets in terms of the S&P500 index over January 1959 to

December 2011.6 In addition, the root mean-squared pricing error of the well-known

Fama-French (1993) three-factor model increases 70% in the down-markets.

More interestingly, the market’s responses to our measure of mean-reversion have

different signs across the market state. The regression slope of the market risk pre-

mium on TECH is negative with a value of −0.21 in the up-markets, but it becomes

6With respect to the Dow Jones Industrial Average, it is about 4 times over the much longer
period of May 1896 to December 2011.
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positive, 0.41, in the down-markets, implying that a 1% increase in TECH in the

down-markets is likely to increase next month’s return by 0.41%. To understand the

sign in the up-markets, suppose that the market is under-valued (as measured by

a negative TECH value). Since investors have abundant capital due to past rising

prices and have less constraints in borrowing, they buy aggressively when TECH is

negative, which drives the price up and lifts the future return back to its long-term

mean or above it. For the sign in the down-markets, there are two intuitive reasons.

First, as many investors follow the down-market indicator, they may not buy ag-

gressively in a down-market or even start selling to reduce stock exposure. Second,

those investors who use leverage are likely forced to sell as margins relative to asset

values are increased. Both explanations contribute to the empirical fact that selling

generates more selling in the down-markets, resulting in a positive regression slope of

the market risk premium on TECH.

How well do the new predictors, ECON and TECH, predict the market risk pre-

mium? The most stringent criterion is the out-of-sample R-square, R2
OS, defined

by Campbell and Thompson (2008). When pooling information across 14 commonly

used macroeconomic variables, the combination method of Rapach, Strauss, and Zhou

(2010) provides an R2
OS of only 1% for monthly market risk premium forecasting.

With more sophisticated strategies, the R2
OSs are improved to about 1.3% and 1.8%,

respectively, by Ferreira and Santa-Clara (2011) and Neely, Rapach, Tu, and Zhou

(2012). In contrast, our simple and intuitive predictors yield an R2
OS of 3.02%, the

best to date. Moreover, while existing predictors predict the stock market primar-

ily during recessions and do not have significant predictive power during economic

expansions, ECON and TECH predict the market risk premium in both expansions

and recessions with R2
OSs of 1.96% and 6.70%, respectively.

An interesting aspect on ECON and TECH is that their predictive power is com-

plementary to each other. When measured by both in- and out-of-sample R-squares,
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the total R-square is close to the sum of both individual R2s. This implies that

the economic condition captured by ECON is fairly unrelated to the mean-reversion

measure. Another interesting aspect is that ECON and TECH can also predict risk

premiums significantly on cross-sectional portfolios sorted by size, book-to-market

ratio, industry, long- and short-term reversals. Moreover, their predictive ability is

robust when TECH is re-defined by the mean reversion measure of individual port-

folios.

Why can ECON and TECH forecast the stock market? While the predictabil-

ity of ECON is obvious since it captures the future state of the economy, the pre-

dictability of TECH deserves more discussion. One explanation is the existence of

mean-reverting variation in expected returns, which implies that the best prediction

of next month’s return is the long-term mean plus a correction term that depends on

the deviation of current return from the long-term mean, and therefore, generating

return predictability (Fama and French, 1988). Empirically, Conrad and Kaul (1988)

find that expected stock return is time-varying and reverts back to its mean over

time. The source of mean-reversion can be due to investors’ asymmetric response to

uncertainty on the state of the economy. Theoretically, Veronesi (1999) shows that,

when the market shifts between two unobservable states, investors overreact to bad

news in good times and underreact to good news in bad times. In this perspective,

TECH can be regarded as a proxy of the news. A negative TECH is a bad news that

drives investors to overreact in an up-market, suggesting that the return is expected

to revert in the future, so the prediction of TECH is negative in an up-market. On

the other hand, a positive TECH is a good news that drives investors to underreact

in a down-market, suggesting that the current return will continue. However, since

the market is more often in an up trend than a down trend, stock returns will be re-

verting overall. This mean-reversion behavior has been well recognized. For example,

Cecchetti, Lam, and Mark (1990), Bessembinder, Coughenour, Seguin, and Smoller
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(1995), Pastor and Stambaugh (2012), among others, explicitly use mean-reverting

models of stock returns to address various important questions in finance.

The rest of the paper is organized as follows. Section 1 introduces the econometric

methodology. Section 2 shows how the two new predictors predict the market risk

premium significantly. Section 3 investigates cross-sectional portfolio predictability,

which is followed by Section 4 with a brief conclusion.

2.2 Econometric Methodology

The standard predictive regression model for the market risk premium forecast is

rt+1 = α + βxt + εt+1, (2.1)

where rt+1 is the excess return of the S&P 500 index, xt is a predictor, and εt+1 is the

error term. The out-of-sample forecast of next period’s market risk premium based

on (2.1) is naturally computed as

r̂t+1 = α̂t + β̂txt, (2.2)

where α̂t and β̂t are the ordinary least squares (OLS) estimates of α and β, respec-

tively, based on data from the start of the available sample through t. The in-sample

forecast is computed the same as above except that the α̂t and β̂t are replaced by

those estimated by using the entire sample. In the finance literature, almost all of the

predictability studies prior to Goyal and Welch (2008), such as Rozeff (1984), Fama

and French (1988), and Campbell and Shiller (1988a, 1988b), are based on in-sample

results.

With respect to out-of-sample forecasting, however, Goyal and Welch (2008) find

that the market risk premium cannot be reliably predicted in the past 30 years with
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the use of numerous established macroeconomic variables, which raises the question

of whether the predictability really exists. One reason for their finding is that the

data-generating process for stock returns may be subject to parameter instability

and regime shifts, but regression (2.1) does not consider this possibility. Clearly,

predictors may have in general different predictive abilities in different time periods

or market states.

In this paper, with the idea similar to Cooper, Gutierrez, and Hammed (2004), we

consider an extension of the standard predictive regression model (1) by allowing for

two states: the up- and down-markets. We follow the wide investment practice and

define an up-market as time periods when the market is above its 200-day moving

average price, which is defined as

Iup,t =

⎧⎪⎨
⎪⎩

1, if Pt ≥ 1
200

∑200
i=1 Pt+1−i;

0, otherwise,
(2.3)

where Pt is the daily price level of the market index.

To assess the importance of up- and down-markets, we present two characteristics

of stock returns in different market states. The first characteristic is about large

daily drops of the stock market. Table 2.1 reports the numbers of daily drops for

the Dow Jones Industrial Average (DJIA) and the S&P 500 index when the drop

is larger than 3%, 5%, and 10%, respectively, where the drop is measured by the

daily arithmetic return without dividends. The market state, up or down, on day

t+ 1 is determined by the 200-day moving average indicator on date t. The data on

DJIA is from May 26, 1896 to December 30, 2011, downloaded from Robert Shiller’s

homepage. During this period, there are 84 days with return drops larger than 5%,

among which, 66 occur in the down-markets and the remaining 18 happen in the

up-markets. Moreover, all six daily drops larger than 10% occur only in the down-

markets. During the sample period (January 2, 1959 to December 30, 2011) studied
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in this paper for return predictability, DJIA has 3 daily drops larger than 5% in the

up-markets, and 16 such drops in the down-markets. Accordingly, the S&P 500 index

has 3 drops in the up-markets, and 19 in the down-markets. These results show a

clear difference on large return drops over the up- and down-markets.

The second characteristic is the pricing error of the Fama-French three-factor

model on their 25 portfolios sorted by firm size and book-to-market ratio over the up-

and down-markets, which is reported in Table 2.2. The portfolio betas are estimated

with all data from January 1959 to December 2011, but the pricing errors, alphas,

are evaluated in each of the up- and down-markets, respectively. One may interpret

that a portfolio is underpriced if its pricing error is positive, and is overpriced if

its pricing error is negative. With this interpretation, 12 out of 25 portfolios are

overpriced in the up-markets (Panel A), and 9 are overpriced in the down-markets

(Panel B). In particular, except for the smallest size and lowest book-to-market ratio

portfolio, all the remaining smallest size portfolios are underpriced in the up-markets

and overpriced in the down-markets. This suggests that small size portfolios are more

likely to be affected by the market state.

To measure the aggregate market pricing error, we investigate the root mean-

squared pricing error (RMSE),

RMSE =

√∑25
i=1 α

2
i

25
, (2.4)

where αi is the pricing error for portfolio i. Table 2.2 shows that the root mean-

squared error increases from 0.13% in the up-markets to 0.22% in the down-markets,

implying that the aggregate pricing error increases 70% around in the down-markets.

Both Tables 2.1 and 2.2 suggest that it is important to divide the market into up-

and down-markets.
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In this paper, to allow for different predictive power of predictors in up- and

down-markets, we modify the usual predictive regression as

rt+1 =

⎧⎪⎨
⎪⎩

αup + βup · xt + εup,t+1, up-market;

αdown + βdown · xt + εdown,t+1, down-market.
(2.5)

Apparently, (2.5) nests regression (2.1) as a special case when the up- and down-

market reactions are the same.

We follow Campbell and Thompson (2008) and use R2
OS to measure the out-of-

sample performance, which is defined as

R2
OS = 1−

∑T
t=1(r̂t − rt)

2∑T
t=1(r̄t − rt)2

, (2.6)

where T is the out-of-sample number, r̂t is the excess return forecast estimated from

regression (2.5), and r̄t is the historical average return, both of which are estimated

using data up to month t − 1. If the predictor xt is viable, R2
OS will be positive,

which implies a lower mean-squared forecast error (hereafter MSFE) relative to the

forecast based on the historical average return. All the forecasts are estimated with

the expanding windows approach. We use the first 26 years of data for in-sample

training and the remaining 27 years of data for the out-of-sample evaluation. That

is, our out-of-sample period starts in January 1985 and ends in December 2011.7

If R2
OS is positive, the forecast outperforms the historical average return in terms of

the MSFE. The null hypothesis of interest is therefore R2
OS ≤ 0 against the alternative

hypothesis that R2
OS > 0. We test this hypothesis by using the Clark and West (2007)

MSFE-adjusted statistic. Define

ft+1 = (rt+1 − r̄t+1)
2 − [(rt+1 − r̂t+1)

2 − (r̄t+1 − r̂t+1)
2]. (2.7)

7The data on ECON starts from January 1959 but the first vintage is only available in December
1968. So, we have effectively used 16 years of vintage data for the in-sample training.
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Then, the Clark and West (2007) MSFE-adjusted statistic is the t-statistic from the

regression of ft+1 on a constant.

2.3 Empirical Results

In this section, we describe first the data sets and provide the in- and out-of-sample

results for predicting the market risk premium. Then, we examine the results over

business cycles. Finally, we assess the performance of our predictors in forecasting

economic activity.

2.3.1 Data

The data sets span from January 1959 through December 2011. We follow the litera-

ture and focus on monthly market risk premium predictability. One reason is that our

ECON indicator is released with a monthly frequency, and another reason is that Ang

and Bekaert (2007) and Boudoukh, Richardson, and Whitelaw (2008) suggest short

horizon predictability to avoid the overestimation issue in long-horizon regressions.

The market risk premium is the log return on the S&P 500 index (including

dividends) minus the log return on a risk-free bill. For comparison, we use ten of the

most popular predictors in Goyal and Welch (2008).

1. Dividend-price ratio (d/p): log of a twelve-month moving sum of dividends paid

on the S&P 500 index minus the log of stock prices (S&P 500 index).

2. Earnings-price ratio (e/p): log of a twelve-month moving sum of earnings on

the S&P 500 index minus the log of stock prices.

3. Book-to-market ratio (b/m): book-to-market value ratio for the Dow Jones

Industrial Average.

4. Treasury bill rate (tbl): three-month Treasury bill rate (secondary market).
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5. Default yield spread (dfy): difference between Moody’s BAA- and AAA-rated

corporate bond yields.

6. Term spread (tms): difference between the long-term yield on government bonds

and the Treasury bill rate.

7. Net equity expansion (ntis): ratio of a twelve-month moving sum of net equity

issues by NYSE-listed stocks to the total end-of-year market capitalization of

NYSE stocks.

8. Inflation (infl): consumer price index (all urban consumers). As in Goyal and

Welch (2008), we use inflation with one month lag to account for the delay in

releases.

9. Long-term return (ltr): return on long-term government bonds.

10. Stock variance (svar): monthly sum of squared daily returns on the S&P 500

index.

The ECON indicator, published by The Conference Board on a monthly basis, is

constructed to predict economic turning points (peaks and troughs) over the business

cycle. As a composite index, ECON consists of ten individual economic leading indi-

cators: 1) average weekly hours (manufacturing), 2) average weekly initial claims for

unemployment insurance, 3) manufacturers’ new orders (consumer goods and materi-

als), 4) vendor performance (slower deliveries diffusion index), 5) manufacturers’ new

orders (nondefense capital goods), 6) building permits (new private housing units), 7)

stock prices (S&P 500 Index), 8) Money supply (M2), 9) interest rate spread (10-year

Treasury bonds less Federal Funds rate), and 10) The Conference Board index of con-

sumer expectations. All of these indicators have an established tendency to decline

before recessions and rise before recoveries. Following the standard macroeconomic

forecasting, we use the simple linear detrending approach to remove the trend of

ECON before using it in the predictive regression. As other macroeconomic indices,
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the data released today on the past may include possible revisions and adjustments.

We follow the common practice by using this data for in-sample forecasting. However,

we use the vintage data, which are the actual released data and have no updates, for

out-of-sample forecasting to obtain the only practically feasible forecasts over time.

The TECH indicator, as a proxy of mean-reversion, at any time t is defined by

TECHt =
rt−12→t − μ

σt−12→t

, (2.8)

where rt−12→t is the cumulative return of the S&P 500 index over the year from

month t − 12 to month t, μ is its long-term mean,8 and σt−12→t is the annualized

moving standard deviation estimator (Officer, 1973; Mele, 2007), which appears more

appropriate to use for investors when they lookback at the volatility over the past

year.9

2.3.2 Forecasting results

Table 2.3 reports the estimation results of forecasting the market risk premium with

the modified predictive regression (2.5). Column 1 presents the predictors. Columns

2 and 4 are regression intercepts in the up- and down-markets. The corresponding

regression slopes are shown in Columns 3 and 5. The t-statistics are included in the

parentheses. The last two columns are the in-sample and out-of-sample R-squares.

For comparison, we first report the results for the ten well-known macroeconomic

variables introduced in Section 2, among which, five predictors exhibit significant

predictive ability in the up-markets (the default yield spread (dfy), the term spread

(tms), the net equity expansion (ntis), the inflation rate (infl), and the stock variance

(svar)), and two show significance in the down-markets (the long-term return (ltr)

8The long-term mean is calculated with full sample up to date.
9We have examined some alternative volatility measures such as the realized volatility in Goyal

and Welch (2008) and find that they do not alter the qualitative conclusions.
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and the stock variance (svar)). The in-sample R2s are all positive, ranging from

0.59% for the earnings-to-price ratio (e/p) to 3.26% for the stock variance (svar).

In an unreported table where regression (2.1) is used, all the ten predictors deliver

smaller R2s than those in Column 6. The overall performance in Table 2.3 suggests

that the predictive ability of macroeconomic variables varies over the market states.

However, when we turn to the out-of-sample forecast, only the earnings-price ratio,

the inflation and the stock variance show better performance in predicting the market

risk premium than the historical average return. In particular, the out-of-sample

R2
OS of the stock variance is 1.52%, significant at the 10% level. When the R2

OSs are

calculated separately over economic expansions and recessions, their values are 0.21%

and 6.10%, respectively. This is consistent with the literature that the predictive

power of existing economic variables is mainly from economic recessions.

When ECON is used as the sole predictor, both the up- and down-market regres-

sion slopes are negative, implying that an increase in ECON predicts a decrease in

the future market risk premium. This may not be surprising since ECON is designed

to predict the future economic activity. This finding is consistent with Cooper and

Priestley (2009) who find that the output gap (de-trended industrial production) is

negatively related to the market risk premium. Interestingly, unlike many other eco-

nomic variables, the regression slopes of ECON are almost the same in the up- and

down-markets, with values of −0.50 and −0.57, respectively. The in-sample R2 is

1.29%, about the average of all the economic variables. However, its out-of-sample

R2
OS is 0.87%, which is significant at the 10% level and is higher than all existing

variables except the stock variance (svar). As a leading indicator, it is not a surprise

that ECON outperforms pure macro variables such as the long-term (ltr) and the

inflation rate (infl). However, the stock variance (svar), as a market-based variable,

seems to possess sufficient future information to do better than ECON.

65



In contrast to ECON, TECH exhibits different predictive patterns across the mar-

ket states. Its regression slope is negative in the up-markets and positive in the down-

markets, and both are significant at the 5% level. This asymmetric predictive ability

implies that investors are likely to overreact to bad news in an up-market when there

is a negative shock, and underreact to good news in a down-market. The in-sample

and out-of-sample R-squares based TECH alone are 3.69% and 2.34%, respectively.

In comparison with all the ten well-known predictors, TECH outperforms them both

in-sample and out-of-sample. In fact, the only good existing predictor is the stock

variance (svar), which has an R2
OS of 1.52% and while others have negative or virtu-

ally zero out-of-sample R-squares. The stock variance (svar) is more like a market

condition measure and has a correlation of −0.22 with TECH.

To examine the predictive ability of using both ECON and TECH, we run the

following regression,

rt+1 =

⎧⎪⎨
⎪⎩

αup + βup · TECHt + β · ECONt + εup,t+1, up-market;

αdown + βdown · TECHt + β · ECONt + εdown,t+1, down-market,
(2.9)

Note that, to reduce the number of parameters that minimizes estimation error, we

do not distinguish the predictive ability of ECON in the up- and down-markets since

its slopes are close to each other in the two states, as shown earlier in the case when

ECON is used as the sole predictor. The results are reported at the bottom of Table

2.3. The in-sample R2 is 3.98%, which is the best to date and is about doubling

the size of most existing predictors in the literature. Consistent with this evidence,

the out-of-sample R2
OS is 3.02%,10 far greater than 1.3% and 1.8%, the maximum

R2
OSs obtained recently by Ferreira and Santa-Clara (2011), and Neely, Rapach, Tu

and Zhou (2012) with sophisticated approaches and predictors. Interestingly, the

10The in-sample and out-of-sample R-squares are 5.03% and 2.90%, respectively, when ECON is
allowed to have different slopes in the up- and down-markets.
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out-of-sample R2
OS of using both ECON and TECH is close to the sum of both,

suggesting that the economic condition captured by ECON is fairly unrelated to the

mean-reversion behavior of the stock market.

Goyal and Welch (2003, 2008) provide an interesting graphical approach to evalu-

ate the out-of-sample predictive power. This device depicts recursively the residuals

to show whether the predictive regression forecast has a lower MSFE than the his-

torical average return for any period by simply comparing the height of the curve at

the beginning and end points of the segment corresponding to the period of interest.

If the curve is higher at the end of the segment relative to the beginning, the predic-

tive forecast has a lower MSFE during the period. A predictive forecast that always

outperforms the historical average will have a slope that is positive everywhere.

Figure 2.1 plots the cumulative sum-squared error from the historical average

return forecast minus the cumulative sum-squared error from our competing fore-

casts. The positive slopes reveal that either ECON, TECH, or both outperforms the

historical average forecast consistently over time. This is in contrast to Goyal and

Welch (2008) who find that the out-of-sample predictive ability of a number of other

economic variables deteriorates markedly after the oil shock of the mid-1970s. Our

out-of-sample period, 1985:01–2011:12, also allows us to analyze how our predictors

behave over the recent market period characterized by the collapse of the technology

bubble and the 2008–2009 mortgage crisis. As shown in Figure 2.1, even during these

turbulent periods, either ECON or TECH or they jointly continue to predict the

market risk premium. Finally, the cumulative sum-squared errors from using both

ECON and TECH are the sum of the errors from using each individually, echoing the

earlier results about their R2s that the sum of using each equals closely to using both

simultaneously.
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2.3.3 Performance over business cycle

This section investigates whether ECON and TECH can forecast the market risk pre-

mium during expansions, as well as recessions. This is of interest since recent studies,

such as Rapach, Strauss, and Zhou (2010), Henkel, Martin, and Nardari (2011), and

Dangl and Halling (2012), find that the forecasting power of traditional macroeco-

nomic variables is significant during recessions but insignificant during expansions.

We calculate the R2
OSs during expansions and recessions over the NBER business

cycle dates, separately. Table 2.4 reports the results. When ECON is the unique

predictor in regression (2.1), the R2
OSs are 0.10% and 1.66% during expansions and

recessions, respectively, in which 1.66% is significant at the 5% level.11 In contrast,

when the only predictor is TECH, the R2
OS is 1.57% in expansions, significant at the

5% level, and 5.02% in recessions, insignificant.12 These results indicate that ECON

performs better in recessions while TECH works better in expansions. When they are

put together, the R2
OSs are 1.96% and 6.70% during expansions and recessions, and

are significant at the 5% level and the 10% level, respectively. Again, the R2
OSs from

the joint prediction are slightly larger than the sum of individual R2
OSs, implying that

ECON and TECH are complementary with each other in the market risk premium

forecasting.

Why is the performance of ECON and TECH in predicting the market risk pre-

mium weaker during economic expansions than during recessions? One explanation

is the countercyclical pattern of the market risk premium. In expansions when con-

sumption, output, and investment are strong, investors are less risk-averse and require

a lower premium for risk taking. In addition, they are less constrained and have ample

11When the predictive abilities of ECON are distinguished by running (2.5) in up- and down-
markets, the out-of-sample R-squares are -0.02% and 3.98% over expansions and recessions. The
overall R2

OS is 0.87%, reported in Table 2.3.
12The insignificance is likely due to the small sample size, i.e., there are only 34 months during

our out-of-sample period identified as economic recessions. However, this small sample size does not
alter the significance when ECON and TECH are jointly used.
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capital to eliminate any arbitrage opportunity. As a result, any information/news will

be incorporated quickly into the market, and the predictability is weaker. On the con-

trary, in recessions when consumption, output and investment are weak, investors are

more risk-averse and require a higher risk premium (Campbell and Cochrane, 1999;

Cochrane, 2011). In this case, investors suffer from both leverage and capital con-

straints (He and Krishnamurthy, 2012). Hence, the lack of sufficient arbitrage capital

may limit the speed of news diffusion, resulting in stronger prediction in recessions.

The above intuitive explanation can yield some analytical insights via a simple

model. Suppose that the market risk premium is governed by the following process

rt+1 = ζstμt + σstεt+1, (2.10)

μt+1 = (1− ρ)μ0 + ρμt + ut+1, (2.11)

where st = G,B is the business cycle barometer of expansion or recession, and is

independent of εt+1 and ut+1. When ζst and σst are constant, the assumed return

process reduces to Pastor and Stambaugh (2009) where the risk premium is time-

varying and follows an AR(1) process. When μt is constant, it reduces to the simplest

regime shifting process (Ang and Timmermann, 2012). Our assumption says that the

expected return is time-varying and may shift from a high-growth state to a low-

growth state at random times (Veronesi, 1999; Ozoguz, 2009).

The Sharpe ratio conditional on business cycle is

Shst = Est

[
ζstμt

stdt(rt+1)

]
=

ζstμ0

σst

. (2.12)

According to Lettau and Ludvigson (2010) and Lustig and Verdelhan (2012), the

Sharpe ratio is higher in economic recessions. This implies that ζB
σB

> ζG
σG

(the uncon-

ditional expected return μ0 > 0 is self-evident). Moreover, the predictive R-square
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over business cycles is

R2
st =

Var[Et(rt+1)|st]
Var(rt+1|st) =

ζ2stVar(μt)

ζ2stVar(μt) + σ2
st

. (2.13)

Obviously, if ζB
σB

> ζG
σG

, then the R-square during recessions must be larger than that

during expansions, that is,

R2
B > R2

G. (2.14)

This helps to understand why stock returns are more predictable in recessions than

expansions.

2.3.4 Economic activity forecast

One interesting question is whether ECON and TECH have the power of forecasting

economic activity. Ang, Piazzesi, and Wei (2006) and Hong, Torous, and Valka-

nov (2007) find that financial ratios that forecast the market risk premium can also

forecast economic activity.

Following Diebold and Rudebusch (1991), we use the index of industrial produc-

tion (IP) as the proxy of economic activity. We use the revised IP data as our target

to predict. The reason is that revised data is believed to be closer to the truth. Also,

as pointed out by McGuckin and Ozyildirim (2004), the use of revised data in lagged

values of the dependent variable gives the autoregressive element an advantage vis-

a-vis the contribution of our predictors. This may make it more difficult to improve

the forecast relative to the lags of IP.

We run the following regression

IPt+1 =

⎧⎪⎨
⎪⎩

αup + βup · xt + εup,t+1, up-market;

αdown + βdown · xt + εdown,t+1, down-market,
(2.15)
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where IPt+1 is the growth rate in industrial production and xt are ECON, TECH,

or both. In the calculation of the out-of-sample R2
OS, we adopt the historical sample

mean as the benchmark so that the interpretation is consistent with our market risk

premium prediction. Table 2.5 reports the regression intercepts, slopes in the up-

and down-markets, and the in- and out-of-sample R-squares. When ECON is used as

the predictor, it significantly predicts the industrial production growth in the down-

markets. The in- and out-of-sample R-squares are 11.18% and 7.47%, respectively.

When TECH is used to forecast IP, its regression slope is significant in the down-

markets. Overall, the in-sample R2 is 18.03% and the out-of-sample R2
OS is 10.33%.

Surprisingly, TECH has even better forecasting performance than ECON. One pos-

sible reason is that TECH is more timely to forecast IP while ECON is released with

one-month lag. When ECON and TECH are jointly used, the R-square is 18.99% for

in-sample forecast and 10.61% for out-of-sample forecast.

In brief, we can conclude with a high degree of confidence that both ECON and

TECH can predict the future economic activity.

2.4 Portfolio Risk Premium Forecast

In this section, we show that ECON and TECH can also predict risk premiums on

cross-sectional portfolios sorted by size, book-to-market ratio, industry, long- and

short-term reversals.

2.4.1 Size portfolios

Return predictability on size portfolios has been extensively investigated in the liter-

ature (Ferson and Harvey, 1991; Ferson and Korajczyk, 1995; Kirby, 1998) and the

basic characteristic is that smaller size portfolios are more predictable than larger size

portfolios.
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Table 2.6 presents the out-of-sample R2
OSs on the ten decile portfolio risk premium

forecasts. We report the results for ECON, TECH, and both, respectively. The

market state, up or down, is determined by the 200-day moving average indicator of

the S&P 500 index, as defined in (2.3). TECH is constructed by either the returns

on the S&P 500 index or the individual portfolio returns. Panel A considers the

case when TECH is constructed on the market portfolio. When ECON serves as the

predictor, the R2
OSs are generally decreasing from 2.00% for the smallest size portfolio

to 0.42% for the largest size portfolio, with one exception of the second smallest size

portfolio whose R2
OS is 2.10%. Among the ten portfolios, only the performance for

the largest size portfolio is not significant. This finding is consistent with our results

in Table 2.2 that small firms are more positively affected by improving economic

fundamentals but more vulnerable during economic downturns (Perez-Quiros and

Timmermann, 2000).

When TECH is the predictor, it shows significant forecasting ability too. Without

a strictly monotonic predictability trend, the R2
OSs increase from small size portfolios

to large size portfolios, and are significant at least at the 10% level. The reason for

this increasing predictability is the increasing correlation between the size portfolios

and the market portfolio, which ranges from 0.55 for the smallest size portfolio to 0.99

for the largest size portfolio. The returns we use in this paper are value-weighted,

which implies that a larger size portfolio should have a higher correlation with the

market portfolio than a smaller size portfolio. As shown in the previous section,

TECH should exhibit stronger predictive ability for portfolios with a larger weight in

the market portfolio, since it can significantly forecast the market risk premium. The

smallest size portfolio does not have a high correlation with the market portfolio but

is predicted by TECH significantly. This may be due to the fact that the small size

portfolio is highly mispriced (as shown in Table 2.2). When ECON and TECH are

jointly used, all R2
OSs are significant at the 5% level, with values ranging from 2.25%
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to 3.00%. As in the market risk premium forecasting, the R2
OS from joint use of ECON

and TECH is almost equal to the sum of R2
OSs from individual ECON and TECH

forecasts. This implies that ECON and TECH are complementary in predicting size

portfolio risk premiums.

Panel B of Table 6 shows the performance when individual portfolio returns are

used to construct TECH. That is, the TECH indicator for the first decile portfolio risk

premium forecast is constructed by using the first portfolio returns, and so on. In this

case, the general pattern is that TECH can still forecast portfolio risk premium but

with weaker performance. Six portfolios show positive R2
OSs. The weaker performance

is due to the fact that individual size portfolios have different trends. For example,

when the 100-day moving average is used as the market state indicator, most R2
OSs

are improved significantly. To keep consistent, however, we insist on the 200-day

moving average throughout the paper. This phenomenon applies to other component

portfolio forecasts too. When ECON and TECH are combined, the R2
OSs range from

1.33% to 2.96% and all are significant at the 5% level.

2.4.2 Book-to-market portfolios

Whether value premium is predictable has received considerable attention in the

past two decades. Janannathan and Wang (1996), Pontiff and Schall (1999), and

Chen, Petkova, and Zhang (2008) document positive evidence, while Lewellen and

Nagel (2006) find that the covariance between the value-minus-growth risk and the

aggregate risk premium is small and therefore the value premium is unpredictable.

We revisit this problem by considering ten book-to-market portfolio risk premium

forecast.

Panel A of Table 2.7 presents the results when TECH is constructed with market

portfolio returns. In the second column, ECON delivers increasing R2
OSs from the

lowest book-to-market (growth) portfolio to the highest book-to-market (value) port-

73



folio. When TECH is used, the R2
OSs do not show a monotonic pattern but nine are

significant at the 5% level and the remaining one is insignificant but positive. The

R2
OSs for joint prediction range from 1.97% for the first decile portfolio to 3.59% for

the fourth portfolio.

Panel B reports R2
OSs when individual portfolio returns are used to construct

TECH. The performance is again weaker than simply using the market portfolio re-

turns. However, all R2
OSs are positive during our sample period and five are significant

at least at the 10% level. When TECH is augmented by ECON, all the forecasts are

significant at the 10% level.

2.4.3 Industry portfolios

Studies on industry portfolio risk premium are relatively limited. Ferson and Har-

vey (1991) and Ferson and Korajczyk (1995) consider this problem on a small set

of economic variables that serve as predictors. Cohen and Frazzini (2008) and Men-

zly and Ozbas (2010) provide supporting evidence that some industry portfolios are

predictable while others are not.

Table 2.8 provides the results on which industries can be forecasted by ECON

and TECH. It is clear that ECON can produce significant R2
OSs on four industry

portfolio forecasts, which are consumer durables (Durbl), business equipment (HiTec),

Wholesale, retail, and some services (Shops), and Other. In contrast, when TECH

is constructed by the market portfolio returns (Panel A), it generates positive R2
OSs

for all ten industries and seven of them are significant at the 5% level. When both

ECON and TECH are used, nine industries, except Telcm, are significantly predicted

at the 10% level. Panel B reports the results when TECH is constructed by the

individual portfolio returns. Again, the predictive ability of TECH is weaker in this

case. The reason is that we use the 200-day moving average indicator to define the

up- or down-market states, which is unlikely to always work due to the fact that
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different industries may have different up- or down-market cycles and these cycles

may not coincide exactly with the market cycles.

2.4.4 Long- and short-term reversal portfolios

For robustness, we investigate further on ten long-term reversal and ten short-term

reversal portfolios whose data are readily available from Ken French Library. The

long-term reversal portfolios at month t are constructed based on prior returns from

month t − 60 to month t − 13 while the short-term reversal portfolios are based on

the previous month’s return.

The results are reported in Tables 2.9 and 2.10. The overall patterns can be

summarized as follows. First, ECON shows decreasing predictive ability for the long-

term reversal portfolios and stable ability for the short-term reversal portfolios. All

the R2
OSs are positive. Second, TECH generates increasing R2

OSs for both long- and

short-term reversal portfolios. Third, when our two predictors are simultaneously

used, the R2
OSs are significantly improved and are approximately equal to the sum

of R2
OSs predicted with individual predictors. With several exceptions, all R2

OSs are

significant at the 5% level.

2.5 Conclusion

In this paper, we provide two new predictors, ECON and TECH, that measure the

state of the economy and the market condition. We find that the two state variables,

complementary to each other, can predict the market risk premium significantly in

both up- and down-markets or in both business expansions and recessions. ECON

and TECH are simple to compute, easy to interpret and perform far better than

numerous predictors found in the large finance literature. Moreover, the same idea
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can also be applied to forecast portfolio returns sorted on firm size, book-to-market

ratio, industry, long- and short-term reversals.

Our study focuses on the stock market. It will be of interest to investigate the

predictive ability of similar ECON and TECH predictors in the bond market, com-

modity market, currency market and international markets. Since the pricing errors

of factor models and predictability vary substantially over the up- and down-markets,

our study also calls for developing theoretical models to understand them, and for

exploring implications on corporate decision making.
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Table 2.1: Large market daily drops in up- and down-markets

r < −3% r < −5% r < −10%

up down overall up down overall up down overall

Panel A: DJIA

5/26/1896–12/30/2011 122 254 376 18 66 84 0 6 6

5/26/1896–12/31/1958 103 190 293 15 50 65 0 5 5

1/2/1959–12/30/2011 19 64 83 3 16 19 0 1 1

Panel B: S&P 500

1/2/1959–12/30/2011 20 71 91 3 19 22 0 1 1

This table reports the numbers of daily big drops in up- and down-markets. The
up-market state on day t + 1 is defined by the market index above its 200-day mov-
ing average on day t. The market return, r, is the daily simple arithmetic return
(excluding dividends).
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Table 2.2: Pricing errors (alphas) in up- and down-markets

Low 2 3 4 High

Panel A: Pricing errors (alphas) in up-markets

Small −0.31 0.08 0.05 0.24 0.23

2 −0.23 −0.12 0.06 0.04 −0.06

3 −0.11 0.04 −0.06 0.05 0.02

4 0.07 −0.18 −0.07 0.06 −0.09

Big 0.20 0.03 −0.10 −0.12 −0.08

Root mean-squared error (RMSE) 0.13

Panel B: Pricing errors (alphas) in down-markets

Small −0.80 −0.18 −0.10 −0.01 −0.11

2 −0.03 0.15 0.21 0.19 0.10

3 0.06 0.16 0.15 0.08 0.20

4 0.24 0.16 0.12 0.11 −0.14

Big 0.09 0.05 0.16 −0.16 −0.38

Root mean-squared error (RMSE) 0.22

This table reports the pricing errors (alphas) of the Fama-French three-factor model
in up- and down-markets on the the Fama-French 25 portfolios formed on size and
book-to-market ratio:

Rt −Rf
t = α + β1 · (Rmt −Rf

t ) + β2 · SMBt + β3 · HMLt + εt.

We estimate the betas with the entire sample (January 1959 to December 2011) and
then calculate the pricing errors in up- and down-markets, respectively. The root

mean-squared pricing error (RMSE) is defined as RMSE =
√∑25

i=1 α
2
i /25.
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Table 2.3: Forecasts of market risk premium

xt αup βup αdown βdown R2 R2
OS

d/p 0.01 0.00 0.05 0.01 2.47 -0.38
(0.69) (0.38) (1.58) (1.63)

e/p 0.00 -0.00 0.02 0.01 1.10 0.09
(0.23) (-0.13) (0.65) (0.69)

b/m 0.01 -0.00 -0.01 0.01 2.47 -0.51
(1.36) (-0.06) (-0.93) (0.87)

tbl 0.01 -0.11 -0.00 0.01 1.23 -0.16
(3.20) (-1.54) (-0.25) (0.06)

dfy -0.00 1.02 -0.00 -0.08 1.16 -0.18
(-0.94) (2.29) (-0.07) (-0.08)

tms 0.00 0.25 -0.00 0.08 0.59 -1.09
(0.45) (1.95) (-0.54) (0.33)

ntis 0.01 -0.20 -0.00 0.16 2.35 -0.28
(3.74) (-2.11) (-0.69) (0.75)

infl 0.01 -1.45 -0.00 0.15 1.73 0.17∗
(4.46) (-2.31) (-0.37) (0.16)

ltr 0.01 0.10 -0.00 0.19 0.79 -0.54
(2.72) (1.31) (-0.76) (1.93)

svar 0.00 2.57 0.00 -1.19 3.26 1.52∗
(1.08) (1.70) (0.82) (-2.56)

ECON 0.01 -0.50 -0.00 -0.57 1.29 0.87∗
(3.25) (-1.83) (-0.40) (-1.01)

TECH 0.01 -0.21 0.01 0.41 3.69 2.34∗∗∗
(3.98) (-2.02) (1.75) (1.99)

ECON+ TECH 3.98 3.02∗∗∗

This table reports the results of forecasting the market risk premium:

rt+1 =

{
αup + βup · xt + εup,t+1, up market;
αdown + βdown · xt + εdown,t+1, down market,

where rt+1 is the log return (including dividends) on the S&P 500 index minus the
log return on a risk-free bill, xt is one of predictors given in the first column. ECON
is the leading economic indicator. TECH is the past year cumulative return minus
its long term mean and standardized by its annualized moving standard deviation.
R2 is the in-sample R-square and R2

OS is the Campbell and Thompson (2008) out-of-
sample R-square over 1985:01–2011:12. The values in parentheses are the t-statistics.
Statistical significance for R2

OS is based on the p-value for the Clark and West (2007)
MSPE-adjusted statistic for testing H0 : R2

OS ≤ 0 against HA : R2
OS > 0. ∗∗∗ and ∗

indicate significance at the 1% and 10% level, respectively.
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Table 2.4: Forecasts of market risk premium over business cycles

ECON TECH ECON+TECH

Expansion 0.11 1.57∗∗ 1.96∗∗

Recession 1.66∗∗ 5.02 6.70∗

Overall 0.45 2.34∗∗ 3.02∗∗∗

This table reports the Campbell and Thompson (2008) out-of-sample R2
OSs in pre-

dicting market risk premium with ECON and TECH over 1985:01–2011:12. The
R2

OSs are calculated based on the NBER-dated periods of expansions and recessions,
respectively. The results in the column of ECON are based on the model

rt+1 = α + β · ECONt + εt+1,

in the column of TECH are based on

rt+1 =

{
αup + βup · TECHt + εup,t+1, up-market;
αdown + βdown · TECHt + εdown,t+1, down-market,

and in the column of ECON+TECH are based on

rt+1 =

{
αup + βup · TECHt + β · ECONt + εup,t+1, up-market;
αdown + βdown · TECHt + β · ECONt + εdown,t+1, down-market,

where rt+1 is the log return (including dividends) on the S&P 500 index minus the log
return on a risk-free bill. ECON is the leading economic indicator. TECH is the past
year cumulative return minus its long term mean and standardized by its annualized
moving standard deviation. Statistical significance for R2

OS is based on the p-value
for the Clark and West (2007) MSPE-adjusted statistic for testing H0 : R2

OS ≤ 0
against HA : R2

OS > 0. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10% level,
respectively.
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Table 2.5: Forecasts of industrial production growth

xt αup βup αup βdown R2 R2
OS

ECON 0.38 0.94 -0.08 3.57 11.18 7.47∗∗∗

(9.45) (1.63) (-1.22) (4.40)

TECH 0.36 3.19 0.20 10.27 18.03 10.33∗∗∗

(7.73) (1.33) (2.25) (3.35)

ECON + TECH 18.99 10.61∗∗∗

This table reports estimates from OLS regressions of current industrial production
growth rates on ECON, TECH, or both, i.e.,

IPt+1 =

{
αup + βup · xt + εup,t+1, up-market;
αdown + βdown · xt + εdown,t+1, down-market.

ECON is the leading economic indicator. TECH is the past year cumulative return
minus its long term mean and standardized by its annualized moving standard devi-
ation. R2 is the in-sample R-square and R2

OS is the Campbell and Thompson (2008)
out-of-sample R-square over 1985:01–2011:12. The t-statistics are reported in paren-
theses. Statistical significance for R2

OS is based on the p-value for the Clark and
West (2007) out-of-sample MSPE-adjusted statistic for testing H0 : R

2
OS ≤ 0 against

HA : R2
OS > 0. ∗∗∗ indicates significance at the

1% level.
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Table 2.6: Forecasts of size portfolios

ECON TECH ECON+TECH

Panel A: Market TECH

Small 2.00∗∗∗ 1.21∗∗ 2.28∗∗∗

2 2.10∗∗∗ 0.20∗ 2.48∗∗∗

3 1.95∗∗∗ 0.80∗∗ 3.00∗∗∗

4 1.76∗∗∗ 0.94∗ 2.93∗∗∗

5 1.78∗∗∗ 0.84∗ 2.84∗∗

6 1.67∗∗∗ 0.91∗ 2.82∗∗∗

7 1.12∗∗ 0.83∗ 2.25∗∗

8 1.05∗∗ 1.28∗∗ 2.64∗∗∗

9 0.85∗∗ 1.40∗∗ 2.54∗∗

Large 0.42 2.35∗∗ 2.96∗∗∗

Panel B: Individual TECH

Small 2.00∗∗∗ 1.06∗∗ 2.79∗∗∗

2 2.10∗∗∗ -0.04 2.12∗∗∗

3 1.95∗∗∗ 0.14 2.08∗∗∗

4 1.76∗∗∗ -0.01 1.84∗∗

5 1.78∗∗∗ -0.01 1.74∗∗

6 1.67∗∗∗ -0.09 1.58∗∗

7 1.12∗∗ 0.21 1.33∗∗

8 1.05∗∗ 0.38 1.56∗∗

9 0.85∗∗ 0.73∗ 1.73∗∗

Large 0.42 2.43∗∗ 2.96∗∗∗

This table reports the Campbell and Thompson (2008) out-of-sample R2
OSs of predict-

ing size portfolio risk premiums over 1985:01–2011:12. ECON is the leading economic
indicator. TECH is constructed by the S&P 500 index in Panel A and by individ-
ual portfolio in Panel B. The results in columns ECON, TECH, and ECON+TECH
are based on the models in Table 2.4. Statistical significance for R2

OS is based on
the p-value for the Clark and West (2007) out-of-sample MSPE-adjusted statistic for
testing H0 : R

2
OS ≤ 0 against HA : R2

OS > 0. ∗∗∗, ∗∗, and ∗ denote significance at the
1%, 5%, and 10% level, respectively.
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Table 2.7: Forecasts of book-to-market portfolios

ECON TECH ECON+TECH

Panel A: Market TECH

Low 0.42 1.48∗∗ 1.97∗∗

2 0.67∗ 1.86∗∗ 2.84∗∗∗

3 0.58 2.00∗∗∗ 2.88∗∗∗

4 0.47 2.70∗∗ 3.59∗∗∗

5 0.65∗ 1.71∗∗ 2.68∗∗∗

6 0.57∗ 1.68∗∗ 2.50∗∗

7 0.62∗ 2.25∗∗ 3.09∗∗∗

8 0.64∗∗ 2.63∗∗ 3.56∗∗

9 0.73∗∗ 2.45∗∗ 3.54∗∗∗

High 1.07∗∗∗ 1.50 2.81∗∗

Panel B: Individual TECH

Small 0.42 1.82∗∗ 2.22∗∗

2 0.67∗ 1.40∗∗ 2.47∗∗∗

3 0.58 1.79∗∗ 2.79∗∗∗

4 0.47 0.64 1.29∗∗

5 0.65∗ 1.23∗ 2.21∗∗

6 0.57∗ 0.10 0.98∗

7 0.62∗ 1.26∗∗ 2.08∗∗

8 0.64∗∗ 0.15 1.01∗

9 0.73∗∗ 0.12 1.04∗

Large 1.07∗∗∗ 0.47 1.66∗∗

This table reports the Campbell and Thompson (2008) out-of-sample R2
OSs of pre-

dicting book-to-market portfolio risk premiums over 1985:01–2011:12. ECON is the
leading economic indicator. TECH is constructed by the S&P 500 index in Panel A
and by individual portfolio in Panel B. The results in columns ECON, TECH, and
ECON+TECH are based on the models in Table 2.4. Statistical significance for R2

OS

is based on the p-value for the Clark and West (2007) out-of-sample MSPE-adjusted
statistic for testing H0 : R2

OS ≤ 0 against HA : R2
OS > 0. ∗∗∗, ∗∗, and ∗ denote

significance at the 1%, 5%, and 10% level, respectively.
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Table 2.8: Forecasts of industry portfolios

ECON TECH ECON+TECH

Panel A: Market TECH

NoDur -0.11 2.94∗∗∗ 3.33∗∗∗

Durbl 1.31∗∗∗ 0.59 2.22∗∗

Manuf 0.25 1.87∗∗ 2.32∗∗

Enrgy -0.16 2.24∗∗∗ 2.08∗∗∗

HiTec 0.45∗ 0.55 0.98∗

Telcm -0.02 0.25 0.22

Shops 1.66∗∗ 1.13∗∗ 3.41∗∗∗

Hlth 0.20 1.28∗∗ 1.59∗∗

Utils -0.39 2.50∗∗∗ 2.11∗∗∗

Other 1.05∗∗ 2.05∗∗ 3.41∗∗∗

Panel B: Individual TECH

NoDur -0.11 -0.35 -0.42

Durbl 1.31∗∗∗ -0.14 1.26∗

Manuf 0.25 1.51∗∗ 1.81∗∗

Enrgy -0.16 1.06∗∗ 0.83∗

HiTec 0.45∗ -0.27 0.19

Telcm -0.02 0.43 0.08

Shops 1.66∗∗ -0.13 1.77∗∗

Hlth 0.20 0.61 0.77

Utils -0.39 0.00 -0.77

Other 1.05∗∗ 0.79 2.21∗∗

This table reports the Campbell and Thompson (2008) out-of-sample R2
OSs of pre-

dicting industry portfolio risk premiums over 1985:01–2011:12. ECON is the lead-
ing economic indicator. TECH is constructed by the S&P 500 index in Panel A
and by individual portfolio in Panel B. The results in columns ECON, TECH, and
ECON+TECH are based on the models in Table 2.4. Statistical significance for R2

OS

is based on the p-value for the Clark and West (2007) out-of-sample MSPE-adjusted
statistic for testing H0 : R2

OS ≤ 0 against HA : R2
OS > 0. ∗∗∗, ∗∗, and ∗ denote

significance at the 1%, 5%, and 10% level, respectively.
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Table 2.9: Forecasts of long-term reversal portfolios

ECON TECH ECON+TECH

Panel A: Market TECH

Low 1.36∗∗∗ 0.98∗ 2.63∗∗∗

2 1.72∗∗∗ 0.97∗ 3.12∗∗∗

3 0.80∗ 1.18∗∗ 2.31∗∗

4 1.43∗∗∗ 1.27∗ 3.12∗∗∗

5 0.72∗ 1.53∗ 2.58∗∗

6 0.60∗ 2.40∗∗∗ 3.30∗∗∗

7 0.38 1.83∗∗ 2.43∗∗

8 0.49∗ 2.47∗∗ 3.28∗∗∗

9 0.25 3.22∗∗ 3.75∗∗∗

High 0.38 2.40∗∗ 2.85∗∗∗

Panel B: Individual TECH

Low 1.36∗∗∗ -0.36 1.04∗

2 1.72∗∗∗ -0.07 2.45∗∗

3 0.80∗ -0.34 1.08∗

4 1.43∗∗∗ 0.13 2.07∗∗

5 0.72∗ 0.92∗ 1.97∗∗

6 0.60∗ 1.33∗∗ 2.08∗∗

7 0.38 0.45 0.93∗

8 0.49∗ 0.80∗ 1.57∗∗

9 0.25 0.80∗ 1.09∗∗

High 0.38 1.75∗∗ 2.08∗∗

This table reports the Campbell and Thompson (2008) out-of-sample R2
OSs of pre-

dicting long-term reversal portfolio risk premiums over 1985:01–2011:12. ECON is
the leading economic indicator. TECH is constructed by the S&P 500 index in Panel
A and by individual portfolio in Panel B. The results in columns ECON, TECH, and
ECON+TECH are based on the models in Table 2.4. Statistical significance for R2

OS

is based on the p-value for the Clark and West (2007) out-of-sample MSPE-adjusted
statistic for testing H0 : R2

OS ≤ 0 against HA : R2
OS > 0. ∗∗∗, ∗∗, and ∗ denote

significance at the 1%, 5%, and 10% level, respectively.
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Table 2.10: Forecasts of short-term reversal portfolios

ECON TECH ECON+TECH

Panel A: Market TECH

Low 0.54∗∗ 0.57 1.28∗∗

2 0.55∗ 0.56 1.32∗

3 0.56∗ 1.83∗∗ 2.55∗∗

4 0.47 2.16∗∗ 2.82∗∗

5 0.15 1.89∗∗ 2.25∗∗

6 0.40 1.80∗∗ 2.45∗∗

7 0.63∗ 1.39∗∗ 2.22∗∗

8 0.47 2.51∗∗ 3.29∗∗∗

9 0.71∗ 2.01∗∗ 2.86∗∗∗

High 0.52∗ 2.53∗∗∗ 3.15∗∗∗

Panel B: Individual TECH

Low 0.54∗∗ -0.22 0.31

2 0.55∗ -0.37 0.19

3 0.56∗ 1.12∗ 1.82∗∗

4 0.47 0.38 1.11∗

5 0.15 0.85∗ 1.07∗

6 0.40 1.22∗∗ 2.25∗∗∗

7 0.63∗ 0.78∗ 1.53∗∗

8 0.47 2.48∗∗ 3.12∗∗∗

9 0.71∗ 2.42∗∗ 3.11∗∗∗

High 0.52∗ 2.20∗∗ 2.72∗∗∗

This table reports the Campbell and Thompson (2008) out-of-sample R2
OSs of pre-

dicting short-term reversal portfolio risk premiums over 1985:01–2011:12. ECON is
the leading economic indicator. TECH is constructed by the S&P 500 index in Panel
A and by individual portfolio in Panel B. The results in columns ECON, TECH, and
ECON+TECH are based on the models in Table 2.4. Statistical significance for R2

OS

is based on the p-value for the Clark and West (2007) out-of-sample MSPE-adjusted
statistic for testing H0 : R2

OS ≤ 0 against HA : R2
OS > 0. ∗∗∗, ∗∗, and ∗ denote

significance at the 1%, 5%, and 10% level, respectively.
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Figure 2.1: Cumulative relative out-of-sample sum-squared errors (SSE)

This figure depicts differences in the cumulative squared forecast errors for the his-
torical average forecast relative to the predictive regression forecast based on ECON
and TECH. Vertical bars depict the NBER-dated recessions. SSETECH indicates that
TECH is the predictor in the predictive regression, SSEECON indicates that ECON is
the predictor, and SSEECON+TECH indicates that both ECON and TECH are used as
the predictors. SSEECON + SSEECON is the sum of SSEECON and SSETECH.

93



Chapter 3

Side-by-Side Management

We present a common agency model to study side-by-side (SBS) management when

a manager simultaneously manages two funds and separately contracts with the two

fund principals. The contracting is decentralized and includes two types of exter-

nalities: the manager’s efforts are substitutable and the performance in one fund

generates a spillover effect on the other fund, which implies that the two principals

can choose competition or free-riding at the equilibrium. Under public contracting,

competition is more likely to dominate free-riding. Under private contracting, how-

ever, free-riding becomes more important. In either case, SBS could generate better

performance than standalone management.

3.1 Introduction

Side-by-side management (SBS) refers to the growing financial practice that the

same fund manager/fund family simultaneously manages two or more funds, and

separately contracts with the two or more fund principals via different compensation

schemes.1 Critics contend that this practice creates conflicts of interest that SBS

managers may favor one fund over the other because of limited and substitutable

efforts. Even worse, an SBS manager may directly shift performance from the lower

1In the hedge fund industry, each manager operates on average 1.84 funds according to the
AltVest database (Kolokolova, 2011). In contrast, in the equity mutual fund industry according
to the CRSP Mutual Fund Database, the average number of funds under SBS management is 2.2
(Yadav, 2011). Also, the proportion of SBS managers amounts to 30%, managing 36% of the total
assets (Agarwal and Ma, 2012).
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incentivized fund to the higher incentivized fund.2 However, industry proponents

argue that investors may benefit from their affiliation funds due to spillover effect

if the funds are delegated to a skilled manager or if one of the funds under SBS

management shows star performance. In addition, with reputation effect and SEC

regulation, SBS managers many have a strong incentive to avoid favoritism.3

Since SBS management directly influences fund performance and hence share-

holders’ interest, it is logical to investigate the effects that SBS managers will have

on the SBS funds. What are the costs and benefits of SBS management and why

do some fund investors/principals choose to delegate different fund management to

a common fund manager instead of the traditional exclusive managers (standalone

management)? With SBS management, what kind of contract should the principals

offer, public contracting or private contracting?

This paper develops a common agency model to answer these questions by in-

vestigating the benefits and the costs of SBS management and to find the condition

under which SBS management is beneficial relative to standalone management. In

my model, two risk-neutral fund principals have two channels to delegate the fund

management to risk-neutral managers who are skilled and have some special abil-

ity to generate abnormal returns. The principals can use the traditional standalone

management and sign exclusive contracts with two different managers. This is the

standard one principal-one agent delegation. Alternatively, they can choose SBS man-

agement, i.e., they delegate the two funds and sign different contracts with a common

manager separately. In so doing, they may enjoy a spillover performance among SBS

funds, which is well recognized in practice. For example, effort may generate a posi-

tive externality, i.e., a manager may efficiently exert efforts and transfer information

across funds by holding common stocks among the different funds. This is achieved

2Cici, Gibson and Moussawi (2010) list six examples where favoritism can take different forms.
3As of 2006, all managers are required to disclose all of the funds and accounts they manage in

the Statements of Additional Information.
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by holding his best stocks in all of his funds he has better stock-picking or timing

skill. With common holdings, he can spend his limited efforts on concentrated stocks

and hence obtains more precise information. Another type of spillover is performance

externality. Yadav (2011) finds that a fund receives 7.8% higher new money inflows

per year if one of the other funds under SBS management is a star fund.

However, the concern of SBS management is that both principals face conflicts of

interest that prevent them from dealing with the fund management at arms-length.

With different incentives, the manager may favor one principal that offers him more

incentives over the other one.4 That is, SBS management may raise favoritism, un-

equal trading costs, different trading priorities and disproportionate allocations of

securities, even among funds with nearly identical objectives and investment philoso-

phies. To capture this concern by SEC and investors, I assume in this paper that the

manager’s efforts exerted on the two funds are substitutable (Homstrom and Milgrom,

1991; Peng and Röell, 2008; Liang and Nan, 2011), which generates an indirectly neg-

ative externality between the two contracts, implying that an increase in one fund’s

incentive will lead to an increase in the marginal cost of the other fund.

Under SBS management, the two principals can choose either public contracting

or private contracting. Under public contracting, the two fund principals make the

efforts public and contract on efforts exerted on the two funds. Under private con-

tracting, each principal cannot observe the effort exerted on the other fund and hence

can only control the effort on her own fund. Given the other fund’s contract, the

fund principal can compete by providing more incentives to the manager, or reduce

the incentives by free-riding but enjoying the spillover effect. My model predicts that

competition is more likely to be dominant in the public contracting while free-riding

occurs more frequently in the private contracting. This in turn implies that public

4“Making special efforts to [...] keep them engaged in their work and the company, as well as
appropriately rewarded,” Hewitt reports, “getting a Bonus Instead of a Raise”, The Wall Street
Journal, December 29, 2004.
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contracting is more likely to occur when the SBS funds are from the same fund family,

whereas the private contracting is more often to occur when the SBS funds are from

different fund families.5

It should be noted that, under standalone management, the principal’ expected

payoff corresponding to a given equilibrium effort is well defined, but under SBS

management, this value needs to be defined more precisely either with full or in-

complete information. Under SBS management, the binding participation constraint

of the least-efficient manager determines only the sum of performance generated to

both principals. There is an indeterminancy in the exact sharing of this surplus, and

therefore only the sum of the principals’ payoff is determined. If a specific sharing

rule is not chosen, it will introduce multiple perfect Bayesian equilibria of the game in

which SBS management is chosen, as long as the corresponding sharing rules satisfy

both principals’ reservation constraints. Because the principals’ total payoff and the

levels of effort are the same under any of these equilibria, there is no loss of generality

in restricting ourselves to the symmetric, differential equilibria.

Another striking characteristic of SBS is that there are multiple symmetric, dif-

ferential equilibra even in the case of complete information when the contracting is

private. The reason underlying is that principals in SBS can provide nonlinear com-

pensations that are unchosen in equilibrium, which generates intense competition

between the principals, serving as implicit threats to prevent the rival principal from

deviating from the equilibrium allocation. That is, these out-of-equilibrium offers are

irrelevant to the offering principal’s payoff but have impact on the rival principal’s

strategy.

The model proposed in this paper can reconcile and rationalize the contradicting

evidence in Cici, Gibson, and Moussawi (2010) and Nohel, Wang, and Zheng (2010).

5This is consistent with Chen, Hong, Jiang and Kubik (2012) who document that mutual fund
families outsource the management of their funds to unaffiliated advisory firms and find that funds
managed externally significantly under-perform those run internally. They attribute this to the in-
ability for fund families to coordinate with the external firm who manage other funds simultaneously.
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Cici, Gibson, and Moussawi (2010) track 71 advisory firms engaged in both hedge

and mutual fund management and find SBS mutual funds underperform unaffiliated

mutual funds. In a contemporaneous paper, however, Nohel, Wang, and Zheng (2010)

study 344 portfolio managers who manage a total of 693 mutual funds and 538 hedge

funds simultaneously, and find that SBS mutual funds outperform unaffiliated funds

and SBS hedge funds perform at best on par as good as unaffiliated funds. Agarwal

and Ma (2011) examine the determinants and consequences of SBS in the mutual fund

industry and find that well-performing and more experienced managers are more

likely to switch to SBS by either taking over other funds within fund companies

(i.e., acquired funds) that are poorly performing or launching new funds, and that

funds managed prior to multitasking experience significant performance deterioration

improve within two years after the switch. Yadav (2011) examines the portfolio

management strategies of SBS mutual fund managers who are classfied to be low-

match managers or high-match managers according to whether they hold low or high

fraction of common holdings across the different funds they manage. He shows that

high-match managers perform significantly better than low-match managers. The

star performance of a fund results in high level of new money flows not only to the

fund itself but also to the other funds managed by the manager.6

This paper differs from the traditional centralized contracting where the manager

has no other option than accepts or refuses the contract offered by the principal.

The participation constraint is most often modeled by an exogenously reservation

utility for the manager. Under decentralized contracting, the manager may either

accept all contracts at once or accept only a subset of the offers he receives. Also, a

major difficulty in the common agency literature is to understand the new frictions

6Our paper is also related to the literature on fund family where performance spillover and
favoritism are well acknowledged (Massa, 2003; Nanda, Wang and Zheng, 2004; Gaspar, Massa and
Matos, 2006; Elton, Grumber and Green 2007; Dangl, Wu and J. Zechner (2008); Ruenzi and Kempf,
2008; Agarwal, Boyson and Naik, 2009; Gavazza, 2011; Brown and Wu, 2011; and Sialm and Tham,
2011).
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due to the principals’ non-cooperative behaviors. This requires a careful study of

the contracting possibilities available to the principals, which may either alleviate

or exacerbate distortions depending on the contexts. Readers may refer to Bernheim

and Whinston (1986a), Dixit (1997), Martimort (1996), Martimort (2007), Martimort

and Stole (2009) for common agency theory.

The rest of the paper proceeds as follows. Section 2 introduces the basic model.

Section 3 discusses standalone management, which will serves as a benchmark. Sec-

tion 4 studies SBS management under complete information, which is followed by

Section 5 with incomplete information. Section 6 extends the model to the case

where the SBS manager has ownerships in both funds. Section 7 summarizes the

findings and concludes.

3.2 Model

This section describes the sequence of events that arises SBS and introduces a

common agency model to analyze the effects of SBS on the manager’s effort exer-

tion and fund performance. For simplicity, I assume that all players are risk-neutral

throughout the paper.

Suppose in the market there are two funds, A and B. To obtain abnormal returns,

the fund principals delegate the funds to managers who have some scarce skills. There

are two mechanisms for delegation, standalone management and SBS management.

With standalone management, the two fund principals delegate their funds to two

exclusive fund managers who will respectively generate risk-adjusted returns as

rA = eA + εA, (3.1)

rB = σeB + εB, (3.2)
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where eA and eB are efforts exerted by fund managers, and εA and εB are two i.i.d

residuals with mean zero and variances σ2.7 Since everyone is risk-neutral, the mean-

zero residual terms and their distributions have no effect on the results, but are

introduced to demonstrate their generality (Laffont and Tirol, 1986). Also, this paper

assumes that standalone managers have the same cost function as C(e) = e2

2
.

With SBS management, the two fund principals delegate the two funds to one

common manager and contract with the manager separately. The benefit is the

spillover effect between the two funds, i.e, the effort exerted on one fund has a positive

effect on the other fund. The cost is the substitutable effect of efforts, i.e., the manager

opts to allocate his limited efforts to align with each specific principal. To capture

these two characteristics, I assume that the fund returns follow

rA = eA + θeB + εA, (3.3)

rB = σ(eB + θeA) + εB, (3.4)

and that the cost function is

C(eA, eB, δ) =
1

2
(e2A + e2B) + δeAeB,

where θ ∈ (0, 1) measures the spillover effect and δ ∈ [0, 1] captures the substitute

effect. When a fund principal raises the manager’s incentive to attract more efforts,

the manager will reduce his effort to the other fund principal since his skills are

substitutable. Specifically, when δ = 0, the efforts are independent of each other

and SBS management has an obvious benefit due to the spillover effect. However,

when δ approaches ρ, the efforts for the two funds are perfectly substitutable and

therefore, the manager will exert all his efforts on the fund with more incentives. The

7Generally, we may assume the fund excess return as R = σe + β(Rm − Rf ) + ε. This implies
that σe is the fund alpha or the risk-adjusted return.
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substitutable assumption ensures that the manager’s efforts are limited (∂C(eA,eB ,δ)
∂eA∂eB

≥
0). This is in the spirit of Homstrom and Milgrom (1991), Peng and Röell (2008)

and Liang and Nan (2011) who consider the one principle one agent with multitask

problems, while I explore the multi-principal one agent contract.

The key principle in SBS management is the desirability of keeping a balance

between incentives across funds to avoid a form of fund arbitrage by the manager

that results in one fund being neglected, i.e, when higher effort on one fund raises the

marginal cost of effort on the other fund. In the absence of conflict, SBS is beneficial

for both fund principals who prefer to hiring a common manager to manage the funds

rather than hiring one manager per fund. However, introducing conflicts change the

results because the manager may extract more rents from one fund by exerting more

effort.

An alternative explanation for the effort substitutability is that the manager’s

ability consists of two components, market-timing ability (eA) and stock-picking abil-

ity (eB). Each type of ability can generate a positive abnormal return to the two

funds, but the contributions are different. With the assumption of θ ∈ (0, 1), fund A

is perhaps more dependent on the market-timing ability while fund B may be more

dependent on the stock-picking ability. The difference may be due to the fact that

each fund uses different investment strategies and is subject to different restrictions.

For example, fund B is a mutual fund and hence is subject to short-sale constraint.

As a result, fund B’s performance is more likely to be attributed by the manager’s

stock-picking ability. Instead, fund A is a hedge fund and its performance is more

likely to be attributed by the manager’s market-timing ability.

Both the spillover effect θ and the substitute parameter δ can be used to measure

the manager’s type. The larger θ or the smaller δ, the higher the manager’s ability.

For simplicity, I fix θ and only use δ to define the manager’s type throughout the

paper. The information asymmetry naturally means that the manager’s ability δ is
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only known to the manager but unknown to both fund principals. However, I assume

that it follows a special distribution that is common knowledge among the two fund

principals and the SBS manager.

The SBS manager has a quasi-linear utility function:

U(δ) = wA + wB − C(eA, eB, δ), (3.5)

where wA and wB are compensation schedules that will be specified in detail according

to the contract context. Specifically, I will consider in this paper two compensation

schemes with SBS management, public contracting or private contracting. Under

public contracting, both fund principals can contract with the manager on both eA

and eB, i.e., wA = wA(eA, eB) and wB = wB(eA, eB). Under private contracting,

however, principal A can only contract with the manager on effort eA and eB is

unobservable to him, i.e., wA = wA(eA), and principal B can only contract on effort

eB, i.e., wB = wA(eB).

Although the two principals can change the compensation w to change the man-

ager’s incentives, SBS management introduces some new features that are not present

under centralized contracting. For example, the manager’s effort contracted upon by

principal A enters directly into principal B’s objective function, and vice versa. This

arises a direct contractual externality (Martimort and Stole, 2003). Another type of

externality occurs because the manager’s cost function for fund A depends also on

contractual effort eB. With these two externalities, there may have multiple equilibria

in the case of private contracting even under complete information. The multiplicity

is driven by the nonlinear compensations available to the manager that will not be

chosen in equilibrium. Offering a nonlinear compensation schedule that is uncho-

sen by the manager can prevent the other fund principal from deviating from the

equilibrium (Martimort and Stole, 2003). With SBS as a special characterization of
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common agency, the two compensation schemes are not determined at the equilibrium

although the sum is determined that jointly satisfies the manager’s participation con-

straint. In this sense, I only consider symmetric, differential equilibriums that equally

distribute the joint payoff at the equilibrium between the two fund principals. In this

sense, SBS is beneficial if the joint payoff is larger than the sum of individual payoffs

from standalone management. Lastly, I assume that when the two principals decide

SBS management, the manager cannot reject one but accept the other one, thereby

he can only reject or accept both.

To sum up, the sequence of events is illustrated in Figure 1 and proceeds as follows:

1. Nature draws δ. This parameter is known only by the SBS manager in the case

of asymmetric information or by all players under complete information. The

manager reports δ̃ to both fund principals.8

2. Principals choose the contracting scheme, standalone or SBS. If they choose

SBS management, they need a new step to choose either public contracting or

private contracting.9 Then they propose separate contracts to the manager.

3. The common manager accepts or rejects both contracts.

4. If the SBS manager rejects, he gets his reservation utility zero. If he accepts,

he chooses efforts to exert on both funds. Then, the final payoffs realize.

I am ready now to define the equilibrium of SBS as a triplet that includs the

manger’s effort level and the two incentive schemes offered by the two principals,

(e∗, w∗
A, w

∗
B), such that

8The manager could reports different values to the two principals. With truthful equilibrium,
the manager will only report the same value.

9I will not consider the situation where one fund principal uses public contracting while the
other principal uses private contracting, which could be the third type of SBS management. Maier
and Ottaviani (2009) show that the welfare with this semi-public contracting is the same as public
contracting.
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Figure 3.1: Sequence of events.

1. the manager chooses effort levels (e∗) to maximize his expected utility, taking

the incentive schemes offered by the two principals as given, and

2. each principal offers an incentive scheme (w∗
A or w∗

B) that gives her the highest

expected payoff, taking as given the incentive scheme provided by the other

principal and the manager’s optimal efforts.

3.3 Standalone Management

For comparison, in this section I consider standalone management where one man-

ager is only allowed to manager one fund (Bhattacharya and Pfleiderer, 1985; Ad-

mati and Pfleiderer, 1997). Since the manager’s effort is contractible, the problem for

principal A is to choose eA and wA to maximize the expected payoff subject to the
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manager’s participation constraint.

max
eA,wA

EεA [eA + εA]− wA (3.6)

s.t. wA − C(eA) ≥ 0, (3.7)

where we assume the manager’s reservation utility is zero which holds throughout

this paper.

It is clear that at the equilibrium, the participant constraint is binding and the

optimal effort is

eSA = 1. (3.8)

In this case, the principal provides the manager with a contract as

wA =
1

2
,

which equals the cost of exerting eSA. The expected payoff for principal A is

ΠS(A) =
1

2
. (3.9)

Similarly, the optimal effort for principal B with standalone management is

eSB = σ,

and the expected payoff is

ΠS(B) =
σ2

2
.
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The sum of expected payoffs for the two fund principals is

ΠS(A,B) =
1 + σ2

2
.

3.4 SBS with Complete Information

To characterize the complexity of SBS management, this section considers the

simplest case where both principals can observe the manager’s type δ. The reasons

for focusing on complete information are at least twofold. First, SBS management

is different from the traditional standalone management as “significant complexities

arise even when there is no private information” in a common agency game (Bernheim

and Whinston, 1986b). Second, ruling out information asymmetry permits one to

isolate the effect on the outcomes of the competition between the two principals from

the effect of incomplete information.

The contract of management can be formulated as a two-objective optimization

problem subject to a participant constraint:

max
wA

EεA [rA]− wA (3.10)

max
wB

EεB [rB]− wB (3.11)

s.t. wA + wB − C(eA, eB, δ) ≥ 0. (3.12)

Comparing this problem with standalone management, the difference is that the

contract is decentralized and there are two competing objectives in the contract formu-

lation. This is also the main difference between one principal- and multiple principal-

agency contracts. Subject to a joint participant constraint, the two fund principals

choose incentives to maximize their own expected payoffs. The trilateral relationships

make the problem much more complex. On the one hand, the two principals should

provide incentives to make the manager work efficiently. On the other hand, when
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one principal makes an offer to the manager, she has to consider the potential conflict

of interest from the other principal who may attenuate or intensify the manager’s

incentives. Because the efforts are substitutable, a small change in the compensation

scheme offered by one fund principal affects the other fund performance. This in-

teraction between the two funds’ incentive schemes complicates the analysis of SBS

management.

3.4.1 Public contracting

I now consider the public contracting where the effort exerted on one fund is

observable to the other fund principal. This indicates that the two principals agree

to rely on common efforts (eA, eB) but simultaneously and independently provide

contracts to the manager. The conflict of interest is that each principal affects the

manager’s efforts and thus tries to mislead the other principal via the SBS manager.

For technical purpose, I restrict attention to contracts which are differentiable almost

everywhere.

Proposition 4 Under complete information, the symmetric, differential equilibrium

efforts are

eP,fbA =
1− σδ + θ(σ − δ)

1− δ2
, (3.13)

eP,fbB =
σ − δ + θ(1− δσ)

1− δ2
(3.14)

When δ ≤ ρθ, the spillover effect dominates the substitute effect and SBS management

is over-incentivized relative to standalone management, i.e., eP,fb ≥ eS.10 Otherwise,

10The superscript “P” and “fb” denote the public contracting and first-best, respectively. Ac-
cordingly, in the sequel, I will use “NP” and “sb” to denote private and second-best for the case
of incomplete information. It should be mentioned that the first-best equilibrium refers to the case
when the manager’s type is known to both principals. The second-best equilibrium refers to the
case when the manager’s type is unknown to both fund principals.
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the substitute effect becomes more important and hence SBS management is under-

incentivized.

The proof of existence of equilibrium is an adaptation to Bernheim and Whinston

(1986b) and I omit it here. However, it is important to point out the difference

between SBS management and standalone management. First, due to complete in-

formation, the individual rationality (IR) constraint (3.12) is binding at any equilib-

rium. Otherwise, either principal A or B can obtain a higher payoff by decreasing wA

or wB. Compared with the IR constraint (3.7) in standalone management, the SBS

manager’s compensations are from two funds.

Second, given wA(e) and wB(e), the manager chooses e to maximize his utility as

max
e

wA(e) + wB(e)− C(e),

which yields the first-order conditions as

∂wA

∂eA
+

∂wB

∂eA
− ρeA − δeB = 0, (3.15)

∂wA

∂eB
+

∂wB

∂eB
− ρeB − δeA = 0. (3.16)

Third, for any given compensation wB chosen by principal B, principal A chooses

wA so that the IR constraint binds and induces the manager to choose the effort level

that maximizes her expected payoff. This amounts to choosing an output (eA, eB)

which maximizes the bilateral payoff of the coalition he forms with the manager:

max
wA

EεA [rA]− wA(eA, eB)

s.t. wA(eA, eB) + wB(eA, eB)− C(e) ≥ 0,

where wB(rB) is taken for granted optimal with respect to fund B.
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Compared with the contract in standalone management, a new term wB(eA, eB)

occurs in SBS management. When principal A chooses a compensation scheme, he

has to consider the effect of wB(eA, eB) on the manager’s effort choice. To solve this

problem, principal A’s offer will make the manager choose e to maximize

EεA [rA] + wB(eA, eB)− C(e).

Suppose the compensation scheme wB(eA, eB) is piecewise differentiable. The first-

order conditions for principal A is

σ +
∂wB

∂eA
− ρeA − δeB = 0, (3.17)

θσ +
∂wB

∂eB
− ρeB − δeA = 0. (3.18)

Similarly, the problem for principal B is

max
e

EεB [rB]− wB(eA, eB)

s.t. wA(eA, eB) + wB(eA, eB)− C(e) ≥ 0,

where wA(eA, eB) is again taken for granted optimal with respect to principal A. The

first-order conditions for principal B is

θσ +
∂wA

∂eA
− ρeA − δeB = 0,

σ +
∂wA

∂eB
− ρeB − δeA = 0.

Solving these six equations (3.15) - (3.19) generates (3.13).

The second part of proposition 1 shows how the two fund principals trade off

between two types of contractual externalities, the positive spillover effect and the

negative substitutable effect. This is reflected in the optimal efforts. On the one hand,
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the positive spillover effect, measured by θ, suggests the manager exerting more efforts

on both funds. On the other hand, however, the negative substitute effect implies that

the manager will exert less efforts. In particular, when δ ≤ ρθ, the substitute effect

is relatively small, each principal increases incentives to let the manager exert more

effort to her own fund relative to that in standalone management. In contrast, when

δ > ρθ is large, the substitute effect is so strong to offset the spillover effect. As a

result, each principal reduces the incentive and just enjoys the spillover performance.

The joint expected payoff between the two principals is

ΠP,fb(A,B) =
(1 + θ)2

ρ+ δ
σ2.

Proposition 5 Under complete information, the symmetric, differential equilibrium

payoffs are [
ΠP,fb(A,B)

2
,
ΠP,fb(A,B)

2
, 0

]
.

Moreover, when δ ≤ ρ(2θ + θ2), SBS is beneficial. Otherwise, it is detrimental.

As discussed in Introduction, SBS may generate multiple equilibria. Proposition 5

presents the unique symmetric, differential equilibrium outcome such that the two

principals equally distribute the total surplus. Actually, any proportional assignment

between the two principals will implement an efficient outcome. This implies the

challenge in SBS management that, while each principal can separately determine the

incentives in wA and wB, they need to jointly determine the compensations satisfying

the manager’s participation condition.11

The equilibrium efforts and payoffs in Propositions 1 and 2 are the same with the

case when the two principals are merged to one and SBS reduces to the traditional

one principal one agent with two tasks contract. The main reason is that there is

11Martimort and Stole (2003) exclusively discuss the multiplicity of equilibria in common agency
with complete information and pure strategy.
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Figure 3.2: Comparison of efforts and payoffs with SBS and standalone management.

information asymmetric and the two compensations are public to all players. In this

case, the goal of the two principals is to offer compensation wA and wB to solve the

following problem:

max
wA,wB

EεA [rA] + EεB [rB]− wA − wB

s.t. wA + wB − C(eA, eB, δ) ≥ 0.

Propositions 2 shows how the two externalities affect the two principals’ equilib-

rium payoffs. In particular, when δ ≤ ρθ(2+ θ), SBS management is better off due to

the spillover effect. Figure 3.2 show how the equilibrium efforts and payoffs change

over the manager’s type δ. When δ < ρθ, the spillover effect is stronger and the two
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principals choose to compete by increasing incentives. As a results, the equilibrium

efforts are larger than that in standalone management. When δ > ρθ, the two prin-

cipals ride on the spillover performance by reducing incentives. Hence the managers

exerts less efforts. The lower panel of figure 3.2 even the two principals ride on the

other’s contract, the joint performance still could be better once δ < ρθ(2 + θ). This

is because the spillover effect can intensify with each other. The better performance

of fund A generates a spillover effect on fund B. In turn, the increased performance

in fund B delivers a reverse spillover performance on fund A.

One can intuitively relate the substitute parameter δ to the manager’s ability. As

a result, I have the following implication.

Implication 1 Fund managers with lower abilities are more likely to be confined in

managing one fund; on the other hand, managers with higher ability tend to do SBS

management.

This prediction is consistent with the work of Nohel, Wang and Zheng (2010) and

Agarwal and Ma (2012) who document that SBS is more likely to be delegated to

well-performing and skilled managers. Particularly, Nohel, Wang and Zheng (2010)

find that the outperformance on the mutual fund side is driven by those who began

their careers as mutual fund managers, which implies that the experience or skill is

a key factor for SBS delegation. Agarwal and Ma (2012) show that a one-standard-

deviation increase in the four-factor fund alpha can lead to an increase of 12.5% in the

probability of managers switching to SBS management from standalone management.

Implication 2 SBS managers is more likely to work harder than standalone man-

agers.

This is a new prediction unexplored but interesting in the SBS literature. The

intuition is that competition between the principals raises effort above the level of
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standalone management. Since the effort exerted on one fund has a positive exter-

nality on the other fund, each principal pays at the margin too much for the effort

from the manager. In any equilibrium, a principal does not choose effort below the

standalone management level because of the threat that the manager will work harder

for the other fund. A less degree of competition is obtained when the manager has

little incentive to substitute one effort against the other. This occurs when both

principals offer the same compensation around the equilibrium. Finally, the spillover

effect has a second-order effect on the fund principals. This suggests that the spillover

effect intensifies with each other. For example, when the effort eA is increased, the

performance on fund A will improves, generating a positive spillover effect on fund

B. In turn, the better performance on fund B will indirectly generates a second-order

spillover effect on fund A.

Before ending this section, some one may be interested in the optimal compensa-

tion of SBS managers. With the symmetric, differentiable assumption, the optimal

compensation is hence

wP,fb
A = wP,fb

B =
1

2
C(eP,fbA , eP,fbB , δ) =

(1 + θ)2

2(ρ+ δ)
σ2,

where I use the fact that the manager has zero expected payoff at the equilibrium

according to proposition 2.

3.4.2 Private contracting

When the two funds are from two different fund families, the two principals propose

contracts noncooperatively and each principal can only contract with the manager

on effort ei, i.e., wi = wi(ei).
12 The reason for this noncooperation may be that

principal i does not have the auditing rights or monitoring technologies to observe

12He and Xiong (2012) give an example that principal cannot observe the effort exerted on another
market even the contract is centralized due to market segmentation.
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ej exerted on fund j. This will result in some interesting results. First, there are

multiple symmetric, differential equilibria. Second, free-riding will becomes central.

Third, the equilibrium payoff of SBS management still could be larger than that in

standalone management.

Since principal A pays only for effort eA, the compensation from fund A is a

function of effort eA regardless of eB. This is, given the compensation from fund B,

principal A privately chooses the pair (eA, wA) to maximize her expected payoff,

max
wA,eA

σ(eA + θeB)− wA(eA)

s.t. wA(eA) + wB(eB)− C(eA, eB, δ) ≥ 0.

The difference between private and public contracting is that principal A cannot

directly contract on the effort eB. However, this does not mean that the compensation

wA has no effect on eB. Actually, an indirect externality still exists. Principal A can

vary the incentive wA to change the marginal cost on fund B so that indirectly affects

wB.

Given fund B’s equilibrium contract, define the indirect utility function of principal

A as

v(eA) = max
ẽB

σ(eA + θẽB) + wB(ẽB)− C(eA, ẽB, δ),

where wB(eB) satisfies the first-order condition of the manager

∂wB

∂eB
= C2(eA, eB, δ) = ρeB + δeA,

which characterizes the manager’s choice of eB, implying

∂eB
∂eA

=
δ

w′′
B − ρ

. (3.19)
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The first-order condition with respect to principal A is

σ

[
1 + θ

∂eB
∂eA

]
+ w′

B

∂eB
∂eA

= (ρeA + δeB)+

[
ρeB + δeA

]
∂eB
∂eA

,

i.e.,

σ

[
1 + θ

∂eB
∂eA

]
= ρeA + δeB.

Together with (3.19), I have

σ

[
1 +

θδ

w′′
B − ρ

]
= ρeA + δeB. (3.20)

The necessary conditions for a symmetric, differential equilibrium are that the

Hessian of the symmetric problem calculated at the equilibrium is semi-negative def-

inite:

w′′
B − ρ ≤ 0, (3.21)

(w′′
B − ρ)2 ≥ δ2. (3.22)

I use these two necessary local concavity conditions to derive the boundaries of the

equilibrium sets.

Substituting (3.21) into (3.20) gives

(ρ+ δ)e ≤ σ, (3.23)

which implies that the equilibrium efforts (eNP,fb
A , eNP,fb

B ) have an upper bound such

as

eNP,fb
A = eNP,fb

B ≤ σ

ρ+ δ
.
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On the other hand, from (3.22), one has

eNP,fb
A = eNP,fb

B ≥ 1− θ

ρ+ δ
σ.

Now I am ready to present the following proposition.

Proposition 6 Under complete information, any effort eNP,fb ∈ [1−θ
ρ+δ

σ, 1
ρ+δ

σ] can be

a symmetric, differentiable equilibrium. Moreover, in all such equilibria, the agent

gets zero rent:

U(δ) = wA + wB − C(eA, eB, δ) = 0.

The proof is a special adaption of proposition 1 in Martimort and Stole (2003), and

the requirements for the existence of equilibrium are apparently satisfied.

By using a nonlinear differential compensation, fund A restricts not only the

manager’s equilibrium effort eA but also the behavior of the manager around this

equilibrium. This extra control of the manager’s behavior off-the-equilibrium path

changes the degree of the fund principals’ competition. Choices offered by one prin-

cipal that are not taken in equilibrium constrains the other principal from inducing

the manager to exert a different effort.

Since the SBS manager can always substitute away effort for fund A against

effort for fund B, each principal will not pay at the margin as much as that in stan-

dalone management. Instead, they ride on the effort bought by the other principal

which can generate a positive spillover effect. In equilibrium, the manager thus de-

creases the effort for each principal with respect to a situation where the principals

would have competed. In the extreme case, the maximum degree of free-riding is

obtained when the efforts are perfect substitutable. This responds to the equilibrium

(eNP,fb = (1−θ)σ
ρ+δ

) when both principals offer a flattest nonlinear compensations around

the equilibrium. On the other hand, the maximal degree of competition is obtained

when each principal provides the steepest contract that is independent of the other
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one. In this case, no principal can increase incentive anymore (eNP,fb = σ
ρ+δ

). By

varying the slope of the out-of-equilibrium transfer-effort pairs, any effort between

the extremes can be implemented.

From proposition (6), in any equilibrium, each fund principal does not choose

effort level larger than that in stanalone management except δ = 0. A fair question

is whether this kind of free-riding equilibra are detrimental or not. To answer this

question, let us calculate the joint payoff between the two principals

ΠNP,fb(A,B) = 2σ(1 + θ)eNP,fb − (ρ+ δ)(eNP,fb)2,

which is increasing over [1−θ
ρ+δ

σ, 1
ρ+δ

σ]. Hence,

1 + 2θ − θ2

ρ+ δ
σ2 ≤ ΠNP,fb(A,B) ≤ 1 + 2θ

ρ+ δ
σ2.

Proposition 7 Under complete information, SBS management with private con-

tracting is better off relative to that of standalone management when δ ≤ ρθ(2− θ).

The proof is simple since when δ ≤ ρθ(2−θ), 1+2θ−θ2

ρ+δ
σ2 ≥ ρ2

ρ
, i.e, the joint payoff with

SBS is larger than that in standalone management. Figure 3.3 shows the difference

of the equilibrium efforts and payoff between the public and the private contracting.

With public contracting, the equilibrium is unique, and δ1 = ρθ and δ2 = ρθ(2 + θ)

are the thresholds when the equilibrium efforts and payoffs are larger than that in

standalone management. When the contracting is private, however, there are infinite

equilibriums. Figure 3.3 shows the minimum equilibrium efforts and payoffs. Inter-

estingly, the equilibrium efforts are always less than that in standalone management.

This is, due to unobservable contract, each principal provides less incentive to the

manager but rides on the other principal’s contracting to enjoy the spillover effect.

This is reflected in the lower panel of figure 3.3. When δ < δ3 = ρθ(2 − θ), the

joint payoff with SBS management is larger than that in standalone management.
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Figure 3.3: Comparison of efforts and payoffs with public and private contracting.
δ1 = ρθ, δ2 = ρθ(2+θ), and δ3 = ρθ(2−θ). eNP,fb

min is the minimum equilibrium efforts
and ΠNP,fb

min is the minimum equilibrium payoff in SBS management.

Therefore, when the substitute effect is weak, the spillover effect is more important

in SBS management.

Someone may wonder that if one can use direct mechanism by restricting attention

to singleton contracts. However, singleton contracts cannot include compensations

that will not be implemented in equilibrium.

Corollary 1 When principals are restricted to singleton contracts of the form

{wi, ei}, eNP,fb
A = eNP,fb

B = σ
ρ+δ

is the unique equilibrium of SBS with complete infor-

mation.

The proof is similar to proposition 2 of Martimort and Stole (2003). This equilibrium

corresponds to the least degree of free-riding. Assume that principal B offers the
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direct revelation mechanism {wB(δ), eB(δ)}, then principal A’s problem is

max
wA,eA

σ(eA + θeB)− wA

s.t. wA + wB(δ)− C(eA, eB, δ) ≥ 0.

The first-order condition yields

σ = ρeA + δeB.

In a symmetric equilibrium, I have

eNP,fb
A = eNP,fb

B = eNP,fb =
σ

ρ+ δ
.

The joint payoff for the two principals at the equilibrium is

ΠNP,fb = 2(1 + θ)σeNP,fb − C(eNP,fb, eNP,fb, δ) =
1 + 2θ

ρ+ δ
σ2.

Corollary 2 Suppose the direct mechanism is implemented, i.e., the equilibrium

efforts are eNP,fb
A = eNP,fb

B = 1
ρ+δ

σ. When δ ≤ 2ρθ, SBS is preferred.

This may be the most counterintuitive result in this paper. Even both principals

freely ride on each other’s contracts by providing a flatter incentive to the manager,

the expected payoff could still be better than standalone management due to the

spillover effect. The reason is that principal A freely enjoys the benefit from the

performance spillover but does not pay anything for effort eB bought by principal B,

and vice versa.
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3.5 Incomplete Information

This section studies a more realistic situation where the manager’s type δ is unob-

servable and noncontractable, but it is common knowledge that δ follows a uniform

distribution with distribution function F (δ) and density f(δ) over [0, δ̄]. In this

framework, I assume that each fund principal chooses a direct compensation scheme

consisting of a pair of functions specifying, for any reported type, the compensation

to the manager and the effort level in the principal’s own fund. It is important to

stress that the manager must send a separate report to each fund principal. Although

the manager’s reports to the two principals could differ, in equilibrium they coincide

with the manager’s true type (Martimort and Stole, 2009). I assume that the two

principals use continuous, piecewise differentiable compensation functions.

3.5.1 Public contracting

I now analyze the case when the two fund principals contract on both eA and eB.

As in the full information case, principal A’s problem is

max
eA,eB ,wA

∫ δ̄

0

[σ(eA + θeB)− wA]f(δ)dδ (3.24)

s.t. wA + wB − C(eA, eB, δ) ≥ 0, (3.25)

(eA, eB) ∈ argmaxẽA,ẽB
wA + wB − C(ẽA, ẽB, δ). (3.26)

The difference between complete and incomplete information is the incentive compat-

ibility constraint, which says that the manager must obtain a higher compensation

from exerting more efforts and therefore, as the equilibrium, the efforts exerted by

the SBS manager are optimal with respect to his type δ.
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Define the manager’s total compensation as

U(δ) = max
eA,eB

wA(eA, eB) + wB(eA, eB)− C(eA, eB, δ).

With envelop theory, the first-order derivative with respect to the type is

U̇(δ) = −Cδ(eA, eB, δ) = −eAeB ≤ 0.

Let δ̄ be the least skilled SBS manager to whom the two principals will delegate

their funds, i.e., U(δ̄) = 0. As in centralized contracting, principal A’s objective

function (3.24) can be rewritten as

Π(A) =

∫ δ̄

0

[σA(eA + θeB)− wA]f(δ)dδ (3.27)

=

∫ δ̄

0

[
σA(eA + θeB) + wB − C(eA, eB, δ)− F (δ)

f(δ)
eAeB

]
f(δ)dδ.

Define

δP = δ + 2
F (δ)

f(δ)
= 3δ.

With mild assumption that ensures the existence of optimal effort, the first-order

condition for principal A is

σ +
∂wB

∂eA
− ρeA − δCeB = 0,

θσ +
∂wB

∂eB
− ρeB − δCeA = 0.

Similarly, the first-order conditions for principal B is

θσ +
∂wA

∂eA
− ρeA − δCeB = 0,

σ +
∂wA

∂eB
− ρeB − δCeA = 0,
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and for the manager is

∂wA

∂eA
+

∂wB

∂eA
− ρeA − δeB = 0,

∂wA

∂eB
+

∂wB

∂eB
− ρeB − δeA = 0.

Solving the above six equations gives the following proposition.

Proposition 8 Under incomplete information and public contracting, the symmetric,

differential equilibrium efforts are given by

eP,sbA = eP,sbB =
1 + θ

ρ+ δP
σ =

1 + θ

ρ+ 3δ
σ, (3.28)

When δ ≤ 1
3
ρθ, the SBS manager is over incentivized relative to the standalone man-

ager. Otherwise, he is under incentivized.

Comparing with the equilibrium effort under complete information, each principal

reduces the manager’s efforts under incomplete information to better extract his rent.

The reason is that each principal affords the full cost of information disclosure but

only enjoys a part of its benefit.

Now I calculate the rent of the SBS manager with type δ as

U(δ) =

∫ δ̄

δ

eAeBdδ =
(δ̄ − δ)(1 + θ)2

(ρ+ 3δ̄)(ρ+ 3δ)
σ2,

and the joint expected payoff of the two fund principals as

ΠP,sb(A,B) =

∫ δ̄

0

[
σA(eA + θeB) + σB(eB + θeA)− C(eA, eB, δ)− U(δ)

]
f(δ)δ

=

∫ δ̄

0

[
2(1 + θ)σe− (ρ+ δ)e2 − U(δ)

]
f(δ)dδ

= σ2(1 + θ)2
[
4

9δ̄
[log(ρ+ 3δ̄)− log(ρ)]− 1

3(ρ+ 3δ̄)

]
.
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Figure 3.4: Joint payoffs of SBS and standalone management

Define δU to be the solution to ΠP,sb(A,B) = σ2

ρ
.

Proposition 9 When δ̄ ≤ δU , SBS is beneficial.

While it is difficult to give an analytical formula for δU , one can prove that the joint

expected payoff of the two principals is monotonically decreasing with respect to

δ̄. This suggests that the variation of the SBS manager’s type is important in SBS

management. When the spillover effect is fixed, the larger the substitute effect, the

lower the joint payoff. Suppose ρ = 3 and σ = 1. Figure 3.4 shows how the joint

payoff changes over the upper bound of δ. When θ = 0.1, SBS management is better

if δ̄ ≤ 0.65. When θ = 0.2, SBS management is preferred if δ̄ ≤ 1.45.

3.5.2 Private contracting

Now I consider the non-cooperative case where principal A only contracts on effort

eA and principal B only contracts on effort eB as in the complete information case.

Given principal B’s contract that satisfies the manager’s first-order condition,

w′
B(eB) = C2(eA, eB, δ) (3.29)
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Principal A’s objective function can be written as

max
U(δ),eA

∫ δ̄

0

[
σ(eA + θeB) + wB − C(eA, eB)− U(δ)

]
f(δ)dδ

s.t. U̇(δ) = −eAeB,

U(δ) ≥ 0,

ėA(δ) is non-increasing.

Proceeding as the complete information case, principal A’s best response satisfies

σA(1 + θ
∂eB
∂eA

)− (ρeA + δeB)− F (δ)

f(δ)
[eB + eA

∂eB
∂eA

] = 0. (3.30)

Differentiating (3.29) with respect to eA gives

∂eB
∂eA

=
δ

w′′
B − ρ

.

Hence, the differential equilibrium equation (3.30) can be rewritten as

σA − (ρeA + δeB)− F (δ)

f(δ)
eB + [θσA − F (δ)

f(δ)
eA]

δ

w′′
B − ρ

= 0.

Symmetric equilibrium implies that

σ − (ρ+ δ +
F (δ)

f(δ)
)e+ (θσ − F (δ)

f(δ)
e)

δ

w′′ − ρ
= 0.

Proposition 10 Under incomplete information, any symmetric, differentiable equi-

librium with SBS are such that

σ

ρ+ 2δ
< eNP,sb <

σ

ρ+ δ
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over (0, δ̄]. When δ = 0, e = σ
ρ
. The manager with type δ has the information rent

U(δ) =

∫ δ̄

δ

e2dz

The proof is similar to proposition 6 of Martimort and Stole (2003).

In the following, I calculate the range of the joint expected payoff. If e = σ
ρ+2δ

,

U(δ) =
(δ̄ − δ)σ2

(ρ+ 2δ)(ρ+ 2δ̄)
.

So

ΠNP,sb(A,B) >

∫ δ̄

0

[
2(1 + θ)σe− C(e, e, δ)− U(δ)

]
f(δ)dδ

= σ2(1 + 2θ)
log(ρ+ 2δ̄)− log(ρ)

2δ̄
. (3.31)

On the other hand, if e = σ
ρ+δ

,

U(δ) =
(δ̄ − δ)σ2

(ρ+ δ̄)(ρ+ δ)
.

Hence,

ΠNP,sb(A,B) <

∫ δ̄

0

[
2(1 + θ)σe− C(e, e, δ)− U(δ)

]
f(δ)dδ

= σ2

[
2θ[log(ρ+ δ̄)− log(ρ)]

δ̄
+

1

ρ+ δ̄

]
. (3.32)

Define δU to be the solution to

(1 + 2θ)[log(ρ+ 2δ̄)− log(ρ)]

2δ̄
=

1

ρ
. (3.33)
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Proposition 11 Under incomplete information, SBS with non-cooperative contract-

ing is beneficial when δ̄ ≤ δU .

The proof is simple since both (3.31) and (3.32) are decreasing with respect to δ̄.

This proposition says that when δ̄ < δU , the worst-case equilibrium payoff with SBS

management is larger than that in standalone management. Figure 3.5 shows how the

equilibrium payoffs change in terms of the upper bound δ at which the two principals

are indifferent between SBS management and standalone management. Since there

are infinite equilibra, this figure shows the minimum and maximum payoffs for a

specific δ̄. Suppose ρ = 3, θ = 0.2 and σ = 1. When δ̄ < 1.34, the payoff with

the worst-case equilibrium (eNP,sb
A = eNP,sb

B = σ
ρ+2δ

) is larger than that in standalone

management.

Implication 3 SBS is more likely to happen in fund families.

The intuition of this implication is that, if the two funds from one fund family,

the principals are more likely to cooperate with each other. On the other hand, to

understand the basic externality across funds that leads to a private contracting out-

come different from the public contracting, one needs to describe how a change in
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one compensation affects the choice of the other one. Under asymmetric information,

there is a tradeoff between increasing the marginal efficiency of the effort allocation

and reducing the informational rent left to the manager. If fund A distorts its com-

pensation further downward, this makes the manager choose a higher effort to fund

B. Since fund A’s compensation is distorted downward, a marginal increase of incen-

tive in fund B is beneficial for fund B. On the other hand, under private contracting,

principal A cannot observe the effort exerted on fund B, and hence she does not pay it

but can enjoy the spillover effect. With this direct positive externality, each principal

will ride on the other principal’s contract until the maximal free-riding equilibrium is

achieved.

With my theoretical results, one can easily to explain the conflicting, empirical

evidence of SBS management. Recall that in Cici, Gibson, and Moussawi (2010), they

define SBS managers to be firms who simultaneously manage mutual funds and hedge

funds, and find that SBS mutual fund underperform unaffiliated funds. This is more

likely to correspond to the private contracting case for SBS management. Regarding

a firm/fund family as an SBS manager, investors invested in one fund do not even

know those investors who invest in the other fund managed by the same firm/family.

In this case, it is impossible for one principal to observe the effort exerted on the

other fund. As a result, the contracts are private, and the final fund performance

may be worse due to more distortions. Instead, in Nohel, Wang and Zheng (2010),

they define an SBS manager as an identified person who simultaneously manage two

funds. With this definition, they find that SBS mutual funds outperform unaffiliated

funds. In this case, SBS funds are more likely to belong to one fund family.

Implication 3 can be directly used to test outsourcing mutual fund management. It

is popular for mutual fund families to offer individual funds with various investment

styles and fee structures, which can increase the competitive advantage and result

in more stable inflows since investors are more likely to switch to funds inside a
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family when they want to access different styles. However, mutual fund families

face challenges since they may lack the expertise in hiring and evaluating managers

in styles other than their core ones. To reduce management costs, most of fund

families outsource some funds to external advisors who help manage the funds and

obtain the management fees. This suggests that investors may suffer from conflicts

of interest faced by their fund advisors. Chen, Hong, Jiang and Kubik (2012) find

that outsourcing funds underperform in-house funds due to firm boundaries make it

difficult to extract performance from an outsourced relationship. However, they do

not investigate the performance difference between outsourced funds since an outside

manager can manage funds from different fund families, thereby the manager may

favor funds from one family over those from another family.

3.6 Extension

So far, I have focused on the case where the SBS manager does not have any

ownership in the funds he manages. With this implicit assumption, the decentralized

compensation schemes distort the optimal efforts in the case of information asymme-

try, especially when the two principals are competing with each other. In this section,

I consider an extension for future research that may relieve the distortions of SBS.

3.6.1 Sequential SBS Management

Let us now consider a sequential timing SBS. That is, the two fund principals con-

tract with the manager sequentially. Implicit under simultaneous common agency

is that principals obtain an expected fund performance better than their reserva-

tion/standalone performance. Principals choose to participate because they earn

more than standalone management. This imposes some conditions on the way they

can share contributions of SBS manager.
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With sequential SBS, the difficulty could be that Fund A offers compensations

to the manager which are so low that inducing the manager’s participation may

become too costly for Fund B. To avoid such issues, Fund B should have the option of

choosing standalone management, breaking down the SBS management. This might

be captured by introducing a constraint stipulating that Fund A designs his own

mechanism taking into account that Fund B should chooses SBS too.13

Given wA(rA) offered by Fund A, optimal compensation between Fund B and the

manager leads to choose an indirect utility of Fund B which maximizes

VB(δ) = max
e

σB(eB + θeA) + wA − ρ

2
(e2A + e2B)− δeAeB − F (δ)

f(δ)
eAeB (3.34)

With the Envelope theorem, we have

V ′
B(δ) = −

(
1 +

d

dδ

(F (δ)

f(δ)

))
eAeB. (3.35)

Using revealed preferences arguments and (3.34) yields the monotonicity condition

e′A(δ) ≤ 0, e′B(δ) ≤ 0.

Because Fund B may not participate SBS, he could decide to give up the SBS

with type δ if the expected utility of having that type manager is worse. To avoid

this situation, the following constraint must hold

VB(δ) ≥ σ2
B

2ρ
= ΠS,fb(B), (3.36)

which is the expected utility with standalone management.

13Here is an example. Suppose the compensation is linear, wA = aA+ bArA and wB = aB + bBrB .
Then at the equilibrium, we can specify the optimal bA, bB , and aA+aB , the specific aA and aB can
not be specified. That is also a feature with common agency that has multiple equilibrium outcomes
or multiple equilibra.
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Acting as a Stackelberg leader, principal A anticipates this continuation of the

contracting game and solves

max
e,V2

∫ δ̄

0

[
σA(eA + θeB) + σB(eB + θeA)− ρ

2
(e2A + e2B)− [δ+

F (δ)

f(δ)
]eAeB − V2(δ)

]
f(δ)dδ

subject to (3.35) and (3.36).

From (3.35) and the fact that (3.36) binds at δ̄ only, we get

V2(δ) =

∫ δ̄

δ

(
1 +

d

dδ

(
F (δ)

f(δ)

)
eAeB

)
dδ +

σ2
B

2ρ
,

which is decreasing if d
dδ

(
F (δ)
f(δ)

)
≥ 0 and d2

dδ2

(
F (δ)
f(δ)

)
≥ 0.

Then the above optimization problem can be rewritten as

max
e,V2

∫ δ̄

0

[
σA(eA+θeB)+σB(eB+θeA)−ρ

2
(e2A+e2B)−

[
δ+

F (δ)

f(δ)

(
2+

d

dδ

(
F (δ)

f(δ)

))]
eAeB

]
f(δ)dδ

Define

δS = δ +
F (δ)

f(δ)

(
2 +

d

dδ

(F (δ)

f(δ)

))

eSqA =
ρ(σA + θσB)− δS(σB + θσA)

ρ2 − δ2S
, (3.37)

eSqB =
ρ(σB + θσA)− δS(σA + θσB)

ρ2 − δ2S
. (3.38)

Now we can obtain some flexible results. When d
dδ

(F (δ)
f(δ)

) ≥ 1, the distortion is

larger than that of SBS with non-cooperation. When 0 ≤ d
dδ

(
F (δ)
f(δ)

)
< 1, the distortion

is larger than that of SBS with cooperation. Otherwise, the distortion is less than

the case of SBS with cooperation.
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3.6.2 SBS with ownership

Khorana et al. (2007) find that mutual fund performance improves by about three

basis points for each basis point of managerial ownership. This motivates the con-

sideration of the case when the manager has a proportion of α ownership in both

funds.14 I only consider the case of cooperation contracting. In this case, principal

A’s objective function is

max
e

∫ δ̄

0

[
σ(eA + θeB) + wB − C(eA, eB, δ)− (1− α)

F (δ)

f(δ)
eAeB

]
f(δ)dδ.

Define

δO = δ + 2(1− α)
F (δ)

f(δ)
= (3− 2α)δ,

which implies the optimal efforts as

eOA = eOB =
(1 + θ)σ

ρ+ δO
=

(1 + θ)σ

ρ+ (3− 2α)δ
. (3.39)

Obviously, ownership can reduce the effort distortion with information asymmetry,

and as a result, it may then be nearly optimal relative to the case with full information.

3.7 Conclusion

In this paper, I present a common agency model to explore the benefits and

costs of SBS when one manager is simultaneously managing multiple funds with

different incentives. In contrast to the traditional centralized contracting, the SBS

contract is decentralized and explicitly considers the competition between the two

fund principals. This explains the empirical puzzle why the SBS performance is

mixed.

14Recall that the objective here is to explore the effect of ownership on the optimal efforts and
the case of different ownerships in the two funds is beyond the scope of this paper.
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