Washington University in St. Louis

Washington University Open Scholarship

Arts & Sciences Electronic Theses and

Dissertations Arts & Sciences

Spring 5-2017

Statistical Analysis of the Price Jumps of Financial Assets Based
on LOB Data

Ying Zhuang
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds

b Part of the Applied Statistics Commons

Recommended Citation

Zhuang, Ying, "Statistical Analysis of the Price Jumps of Financial Assets Based on LOB Data" (2017).
Arts & Sciences Electronic Theses and Dissertations. 1078.
https://openscholarship.wustl.edu/art_sci_etds/1078

This Thesis is brought to you for free and open access by the Arts & Sciences at Washington University Open
Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an
authorized administrator of Washington University Open Scholarship. For more information, please contact
digital@wumail.wustl.edu.


https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci_etds
https://openscholarship.wustl.edu/art_sci
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds/1078?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

Department of Mathematics

Statistical Analysis of the Price Jumps of Financial Assets Based on LOB Data
by

Ying Zhuang

A thesis presented to
The Graduate School
of Washington University in
partial fulfillment of the degree
of Master of Arts

May 2017
Saint Louis, Missouri



copyright by
Ying Zhuang

2017



Contents

List of Tables . . . . . . . . . s iv
List of Figures . . . . . . . . . . . . . \Y%
Acknowledgments . . . . . ... vi
Abstract . . . . ., viii
1 Introduction . . . . . . . . . . 1
1.1 Market Order and Limit Order . . . . . . . . . . . . . . . . . ... ... 1
1.2 Price Process . . . . . . . 3
1.3 LOB Models . . . . . . . 4
1.4  Jump Detection Method . . . . . . . . ... ... ... ... 5)
1.5 Introduction of LOB data . . . . . . . . . . . ... 6
2 Detection of Jumps . . . . . . ... 9
2.1 bS-minute Intervals . . . . . . . .. 9
2.2 1l-minute Intervals . . . . . . . . ., 11
2.3 0.5-minute Intervals . . . . . . . .. 13
2.4 10-second Intervals . . . . . . . . 18
3 Analysisof jumps . . . . ... 21



3.1 Analysis of Level One Prices Changes

3.2 Statistical Tests for the Probability of Mid-price Change

4 Conclusions

References

11



List of Tables

1.1

2.1

3.1

3.2

3.3

3.4

The first three rows of modified data . . . . . . . . . . . . . . . . ... ...

10-second intervals with potential jumps . . . . . . . . ... ... ... ...

Frequencies of level one prices changes of intervals without jump . . . . . . .

Results of proportion test and binomial test on intervals with up jumps . . .

Results of proportion test and binomial test on intervals with down jumps

Results of proportion test and binomial test on intervals without jumps . .

v

18

22

27

27

27



List of Figures

2.1 Trend of increments of 5-minute intervals . . . . . . ... ... .. ... ... 10
2.2 Increments of 5-minute intervals . . . . . . .. ..o 0L 11
2.3 Trend of increments of 1-minute intervals . . . . . . ... ... .. ... ... 12
2.4 Increments of 1-minute intervals together with shresholds . . . . . . . . . .. 13
2.5 Trend of increments of 0.5-minute intervals . . . . . .. ... ... ... ... 14
2.6 Increments of 0.5-minute intervals together with shresholds . . . . . . . . .. 15
2.7 The first 100 increments of 0.5-minute intervals together with shresholds . . 16
2.8 Trend of increments of 1-minute intervals and 0.5-minute intervals . . . . . . 17
2.9 Magnification of Figure 2.8 . . . . . . . .. ..o oo 19
2.10 Trend of increments of 10-second intervals . . . . . . .. ... .. ... ... 20
2.11 Increments of 10-second intervals . . . .. .. .. .. ... ... 20
3.1 Histogram of frequencies in Tables 3.1 . . . . . .. .. ... ... ... ... 23



Acknowledgments

I would like to sincerely thank my thesis advisor Professor José E. Figueroa-Lépez. He is
such a friendly and patient professor and always provides me with lots of valuable ideas.
Without his guidance and help, it would be impossible for me to accomplish this thesis. I
would also like to thank my classmate Qi Wang, who taught me lots of useful skills of using
R. Besides, I want to express my gratitude to my committee members Professor José E.

Figueroa-Lépez and Professor Todd Kuffner for their time and advices.

In addition, I would like to truly thank my dear parents. As I am growing up, I realize just
how much they did for me. Their continuous encouragement and support make me fearless
no matter what kind of difficulties I encounter.

Ying Zhuang

Washington University in Saint Louis
May 2017

vi



Dedicated to my parents.

vii



ABSTRACT OF THE THESIS

Statistical Analysis of the Price Jumps of Financial Assets Based on LOB Data
by
Ying Zhuang
Master of Arts in Statistics
Washington University in St. Louis, May 2017

Advisor: Professor José E. Figueroa-Loépes

The price process in electronic markets is one prototypical example of a stochastic process,
and it has historically be fitted and analyzed using different stochastic models such as Lévy
processes, diffusions, and SDEs (stochastic differential equations). In this thesis, we analyze
Microsoft stock data in 2014-11-03 with the goal of studying the presence of jumps based
on Limit Order Book (LOB) data. To this end, we divide the whole day’s data into many
consecutive intervals and proceed to apply a jump detection method to identify the intervals
that could potentially have jumps. After obtaining the intervals with potential jumps, we
zoom in these intervals and compare them in order to characterize their features. More
specifically, we analyze the price LOB data from both the traditional side and the statistical
side, and our aim is that try to identify statistical differences between the intervals with jumps
and without any jump, and then give evidence to support this jump detection method and

conjecture reasons for the appearance of sharp price changes in small intervals.
Key words: Jump Detection, Limit Order Book, Bi-power Variation, Price Process
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Chapter 1

Introduction

In this chapter, we introduce different orders in electronic markets at the first section. After
that, we describe the price process and introduce several LOB models and the jump detection

method. At the end of this chapter, we give details of the LOB data.

1.1 Market Order and Limit Order

When it comes to electronic trading market, a company’s stock is a general term which
represents the ownership of the company. Companies use stocks to raise money and investors
gain profits by buying or selling stocks. Traders will place orders as they want to execute
transactions in the stock market. An order contains information about the number of shares

and the price at which the investors wants to trade them.

There are two sides in the electronic markets, namely, bid and ask. Traders in the bid (ask)
side are willing to buy (sell) certain number of shares at a specific price. Correspondingly,
bid (ask) price is the traders’ desired transaction price. The highest bid price is called the
best bid price (¢;) and the lowest ask price is called the best ask price (p;), or we call them

both level one price. The average of them S; = ‘“JFT’” is defined as the mid-price. When

1



traders want to trade in the market, there are two options to place their orders: Market

Order or Limit Order.

Market orders (MOs) are considered more fundamental and of immediate execute. That
is, a trader who wants to immediately buy or sell a certain quantity of shares at the best
available price usually place a MO. Since, in principle, the market’s affordability of trading is
connected with the timing and size of MOs, the transactions may not be actually processed

if the size of MOs is too large.

Compared to MOs, Limit Orders (LOs) are relative more passive. A trader places a LO
indicates her desire to trade a certain quantity of shares at a specific price. LOs are usually
not trade immediately and have to wait until either they are matched with new orders
(execution) or they are withdrawn (cancellation). In general, the current market price is

usually higher than the price of buying LOs and lower than the price of selling LOs.

All of the non-executed LOs are queued in a type of accounting book called limit order book
(LOB) based on their price and the time they are placed. The execution occurs only if a new
market order come in and match the LO order. Orders that are stay far away from the best
quote are less likely to be executed. Hence traders may choose to select price close to the
best bid or ask order in order to increase the probability of execution during some specified

time range.

Every time a trader places a LO, she must choose price and amount for purchasing or
selling at first. The designated price and quantity make LOs more controllable. The other
convenient side of LOs is that traders can place LOs even if the market is closed. The LOs

placed when the market is closed are set into a queue and they will be processed as soon as



the market open. In one word, when traders place LOs they can select the prices they want

and, thus, LOs are better than MOs if the specific price is a priority.

1.2 Price Process

A cadlag (right-continuous with left limits) stochastic process (X;):;>o on a probability space
(Q, F,P) with values in R? and X, = 0 is a Lévy process if it satisfies independent increments,
stationary increments, and stochastic continuity. Due to these characters, a Lévy process
could be treated as the continuous-time analog of a random walk. The Brownian motion
process is one of the most well known examples of Lévy process, and usually be used for

fitting a price process.

When it comes to price process, we ought to consider both diffusions and jumps and it is very
important to consider their influences separately in applications. Suppose X is a stochastic

process with initial value zg € R at time ¢t = 0, then X can be used to represent asset price

if

dXt:atdt+Utth+th, te [O,T]
where a and o are measurable processes, W is a standard Brownian motion and J is a jump
process.

In general, a jump process (J) is the sum of a finite activity (J;) and an infinite activity

component (J2), i.e. J = J; + Jo, where finite activity indicates in each finite time interval



a jump process owns a.s. a finite number of jumps. Otherwise we consider the jump process

have infinite activity.

1.3 LOB Models

The simple uncorrelated random walk is similar to the Bernoulli trial process or the discrete
time Brownian motion process is some respects. Suppose that Z = (7, Zs, ...) is a sequence
of independent random variables, and each of them take values 1 or -1 with probability

p € [0,1] and 1 — p respectively. Let X = (X, X1, Xo,...) with
X,=> Z, neN
i=1

Then the sequence X is the simple random walk with parameter p.

Suppose the parameter p = % Now X = (X, X1, Xs, ...) is called the uncorrelated symmetric
random walk. In an uncorrelated symmetric random walk, the price process assumed to go
upward or downward one tick with the same probability % The ”tick” here is a measure of

the minimum upward or downward movement in the price of a stock.

In order to analyze the pattern of two consecutive time intervals mid-price changes and
compare the patterns among different type of intervals, in this thesis we try to use a correlated

random walk moder to fit the mid-price change.

Under optimal conditions, we will first assume that X = (X1, X5,..X;) (1 <t <7T)is a
sequence of independent variables, each taking value 1 or -1 with P(X; =1) =1— P(X; =

—1) =pand p € [0,1]. Let S; be the mid-price at time ¢, measured as ticks. Assume that



the mid-price increases or decreases at each time ¢ = 0,1, ...,7", and the movement range is

always 1 tick, then
t
St:SO+ZXi7 S():O
i=1

In this thesis, we apply correlated random walk model to fit the mid-price change and proceed

to use statistical tests to analyze the probability of consecutive mid-price changes.

1.4 Jump Detection Method

Power Variations is first defined by Berman (1965) as estimator of the sum of given powers of
the jumps. Barndorff-Nielsen & Shephard (2004, 2006) introduced the Multi-power Variation
(MPV) and the Bi-Power Variation (BPV) originally and use them to estimate the integrated

volatility fOT ot dt for a given p. The BPV (p=2) is a precursor of the general MPV.

The electronic market opens at 9:30 and closes at 16:00, during the 6.5 hours we can divide

the time into many consecutive and length-equal intervals. For both ends of each interval

— @itpa
2

we can obtain a mid-price S; , where ¢; is the best bid price and p; is the best ask
price. It is clear that two consecutive intervals are going to share one same mid-price. For

the n consecutive intervals the consecutive increments {AX;, 1 <i < n} are defined as

AX; = log(5;) — log(Si-1) = log(

Si
< )

i—1

For the purpose of recovering the integrated volatility fOT o2dt of a continuous process without

jump, we can make use of the traditional realized quadratic variation

RQV =Y |AXi =) |log(4 )P
i=1 i=1 =

5




However, this purpose can not be achieved if jump occurs. Hence, On the basis of RQV, the

estimator BPV is proposed

Sit1
=)

n—1 n—1
T T S;
BPV = SN AX|AX | = & i
V=5 S IAKIAK = § 3 a5 e

The heuristic of BPV comes from the fact that jumps are unlikely to occurs in both of two
adjacent intervals, in which case |AX;||AX; 1| ~ |AX;|%. In other cases, even if one interval
have jumps in [t;_1,t;41], we still have |[AX;||AX; 1] &~ 0. The constant part Z of BPV is

2

needed for the consistency of the estimator.

The most popular form of a power shreshold is Ch® with C' > 0 and « € (0,0.5). In this

thesis we use a shreshold that has been typically done in existing work

Ch* = 4\/—3?/ x RO

where T=6.5 (9:30-16:00), and h is the length of each interval measured in hour.

We think the i interval may contain at least one jump if |AX;| > Ch®. Otherwise, it is
reasonable to assume that there is no jump in i*" interval. More specifically, AX; > Ch®

indicates the likely presence of a up jump while if AX; < Ch® there is possible a down jump.

1.5 Introduction of LOB data

The data we use is Microsoft stock during the day 2014-11-03. The original data contains
seven variables Time, ID tag for initial posted message, Message Type, Number of shares,

Price, Exchange, BidSide Flag.



Table 1.1: The first three rows of modified data

Best Bid | Volume at | Best Ask | Volume at
Price Best Bid Price Best Ask

Seconds | Nanoseconds

34200 8078523 467300 100 467500 2695
34200 8087812 467300 100 467500 1495
34200 8222545 467300 100 467500 1395

T'ime measures the number of milliseconds from midnight, so the market open at 9:30:00.000
with Time=34200000 and close at 16:00:00.000 with Time=>57600000. ID tag for initial
posted message is an ID number for every posted order in the limit order book that can
be used to keep track of the order. Message Type is encoded by numbers and there are 8

different messages in total:

66: ‘B’ — Add buy limit order on the bid side; 83: ‘S’ — Add sell limit order on the ask side;
69: ‘E’ — Execute outstanding market order in part; 70: ‘F’ — Execute outstanding market
order in full; 67: ‘C’ — Cancel outstanding LOB order in part; 68: ‘D’ — Delete outstanding
LOB order in full; 88: ‘X’ — Bulk volume for the cross event; 84: ‘T’ — Execute non-displayed

order.

Number of shares and Price are measured in units and 0.01 cents respectively. Exchange
always equal to 1 indicates that the stock is in NASDAQ. BidSide Flag has only two different
values 0 or 1. Zero represents the messages was posted on the ask side and one indicates the

bid side.

By python, we cleaned the original data and extract a modified data which is an n x 6 matrix
form where the six columns are: Seconds, Nanoseconds, Best Bid Price, Volume at Best
Bid, Best Ask Price, Volume at Best Ask. Seconds is the same as Time, Nanoseconds are

since the last seconds. Best Bid Price and Best Ask Price are the level one prices at a given



time and measured in 0.01 cents. Volume at Best buy and Volume at Best Ask are volumes
under the best prices. For example, table 1.1 is the first three rows of the data matrix, each

row represent a state of LOs at the best ask price and the best bid price at a specific time.



Chapter 2

Detection of Jumps

This chapter aims to apply the jump detection method to LOB data to obtain intervals with
potential jumps. We separate the whole LOB data into many consecutive intervals with time
length equal. There are 4 different time length of the intervals: 5-minute interval, 1-minute
interval, 0.5-minute interval, and 10-second interval. For each time length we will apply the

jump detection method once and find out which intervals have potential jumps.

2.1 5-minute Intervals

The range of our data is from 9:30 to 16:00, so T=6.5 hour. At first, we separate the data into

78 consecutive 5-minute intervals. We show in Figure 2.1 the cumulative sum of increments

AX; = log(S;) — log(Si—1) = log(sf_il) where S; = ‘“J“Tpl, ¢1 1s the best bid price and p; is

the best ask price at time t = i.

After calculation we can obtain

Sit1
Si

)| =6.239 x 107°

77
m Sz
BPV = = 2
V=3 ;:1 Ilog(siil)lllog(



L o

C1_

=

o © |

S
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= |
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0 20 40 60 80

i—th Interval

Figure 2.1: Trend of increments of 5-minute intervals

This corresponds to an initialized volatility of the process. Hence we can calculate the

BPV 5
a_ g 049 _ o
Ch* = 44) === % () 0.00367

which is about three ”ticks”.

shreshold

The maximal and minimal numbers of AX; are 0.00267 and -0.00254 respectively. Figure
2.2 shows the increment AX; of each 5-minute interval. According to the jump-detection
algorithm we mentioned in chapter one, since both the absolute values of 0.00267 and -

0.00254 are less than 0.00367, there is no interval detected with a jump of all the 78 intervals.
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DealtaX
-0.002 0.000 0.002
|

0 20 40 60 80

i—th Interval

Figure 2.2: Increments of 5-minute intervals

2.2 1-minute Intervals

When we set 1 minute as the length of interval, we can get 390 intervals in total. In this

case
- 389 5 Sy i
BPV = — lo “Nlog(— = 5.506 x 10~
53 loot 2 oo )
BPV 1
Ch® =4 W X (@)0‘49 = 0.00157

Figure 2.3 shows the cumulative sum of increments of these 390 intervals.

11



0.014
|

Increments
0.008
|

0.002

|
0 100 200 300 400

i—th Interval

Figure 2.3: Trend of increments of 1-minute intervals

There are three intervals detected with potential jumps: 4™ interval (9:33-9:34), 5 interval

(9:34-9:35), and 33™ interval (10:02-10:03).
AXy =log(—=) = —0.00182 < —Ch"

S
AX; = zog(S—5) = 0.00171 > Ch®

4

S
AXyy = log(s—:j) = 0.00170 > Ch®

which indicate that the 4" interval is detected with jump down and the other two intervals
are detected with jump up. Figure 2.4 shows AX;s of all these intervals together with
shresholds ( the horizontal straight lines).

12



0.0005
|

DealtaX

—-0.0015

|
0 100 200 300 400

i—th Interval

Figure 2.4: Increments of 1-minute intervals together with shresholds

2.3 0.5-minute Intervals

For 0.5-minute interval, we have 780 intervals in total. Then, we have

779

T S
BPV = =N log(==)||1
v 2;|09(Si_1)||09(

| BPV 0.5
@ _ 9 0.49 —0. 114
Ch %5 X (—60) 0.00

Sit1
Si

)| = 5.746 x 1077
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Among the 780 intervals, there are still three intervals detected with jumps: 8 interval

(9:33:30-9:34:00), 9" interval (9:34:00-9:34:30), 86" interval (10:12:30-10:13:00).

AXg = log(g—i) — —0.00171 < —Ch”

AXy = log(%) = 0.00160 > Ch®
8

AXgs = log(g—zg) = 0.00127 > Ch®

which indicate the 8" interval is jump down, 9** and 86" intervals are jump up. We show

the cumulative sum of increments of all the 780 intervals in Figure 2.5.

U) o
c o -
“E’ o
(O]
o |
£
(@)
(@)
S
d [ [ [ [ [
0 200 400 600 800
i—th Interval

Figure 2.5: Trend of increments of 0.5-minute intervals
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Figure 2.6 gives information about AXj; of all these intervals together with shresholds. Since
the three intervals detected with potential jumps are all belong to the first 100 intervals,
we give a magnification, Figure 2.7, of Figure 2.6 that only contains the first 100 AX;s of

0.5-minute intervals together with shresholds

DealtaX
—0.0015 0.0000 0.0015
|

0 200 400 600 800

i—th Interval

Figure 2.6: Increments of 0.5-minute intervals together with shresholds

We find out three intervals with potential jumps in both 1-minute intervals and 0.5-minute
intervals respectively. In order to analyze the connection and difference between them,
we put the two group of intervals in one plot. Figure 2.8 shows the cumulative sum of
increments of 1-minute intervals (solid line) and 0.5-minute intervals (dashed line). Figure

2.9 is a magnification of figure 2.8 contains intervals with potential jumps.

15
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Figure 2.7: The first 100 increments of 0.5-minute intervals together with shresholds

It is clear that the 8 0.5-minute interval and 9** 0.5-minute interval belong to 4" 1-minute
interval and 5* 1minute-interval. From the first plot in Figure 2.9 we can see that the
mid-price change of 7" 0.5-minute interval is very small, which can explain why we detect a
jump down in the 4"* 1-minute interval and also detect a jump down in the 8 0.5-minute
interval. Similarly, it makes sense that we detect the 5th Iminute-interval jump up and then

detect the 9th 0.5-minute interval jump up.

As shown before, we detect a potential jump up in the 33** 1-minute interval, but neither
the 65 0.5-minute interval nor the 66" 0.5-minute interval were flagged as having any
jump. Take a look at the second plot of Figure 2.9, mid-price changes of the 65 0.5-minute

interval and the 66" 0.5-minute interval are relative equal, which means that AX§:"~™" and

16
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|

Increments
0.006
|

0.002

0 10 20 30 40 50

i—th interval under 1 minute length

Figure 2.8: Trend of increments of 1-minute intervals and 0.5-minute intervals

AXgP™™™ have similar weight on influencing A X33 ™. With all of AXg ™" AXgd ™™™,
and AXg3; ™™ are positive and Chg and C'hy are similar, thus although the 33

0.5—man 1—min

l-minute interval jump up (AXz; ™" > Ch$_,.), it is not unreasonable that the 65t 0.5-

1—min

«

minute interval and the 66" 0.5-minute interval have no jumps (|AXE " < ChSs_,.in

and |[AXY ™" < Chg ).

0.5—min

According to the third plot of Figure 2.9, we can see that the trend of mid-price from 10:12
(beginning of the 43™ 1-minute interval) to 10:13 (beginning of the 44" 1-minute interval)
is up. But actually, when we observe the trend based on 0.5-minute interval, it is clear that
the mid-price decreases at the first half of the 43" 1-minute interval and then goes up at

the second half. So \AXgéE”mm\ = ]Ang’mm] + \AXigmm| with |AXj3’mm\ < Ch§_,.;,, and

17



|[AXg ™" > Chg Therefore, we detect the 86 0.5-minute interval jump up but

0.5—main"

43" 1-minute interval does not have jump.

2.4 10-second Intervals

Although we found 3 intervals having potential jumps when we separate the whole day data
into 780 0.5-minute intervals, the sample is relatively small to do any statistical analysis.
In order to have a larger sample of jump intervals, we set 10 seconds as the length of each
interval. Figure 2.10 shows the trend of increments of all 10-second intervals. Figure 2.11

shows AXj;s of all intervals together with shresholds.

For time frequency 10 seconds, BPV = 4.889 x 107° and Ch® = 0.000613. Out of all the
2340 intervals, we detect 32 intervals as having potential jumps. Among these 32 intervals,
17 intervals jump up and 15 intervals jump down. Table 2.1 indicates which intervals with

potential jumps.

Table 2.1: 10-second intervals with potential jumps

1, 13, 26, 105, 119, 181, 186, 210, 221, 234, 258, 318,
521, 811, 1893, 1954, 2281
23, 24, 183, 184, 185, 187, 220, 224, 247, 259, 280, 284,
454, 461, 642

Jump up intervals (i'")

Jump down intervals (i*")

18
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Figure 2.9: Magnification of Figure 2.8

19




Increments

DealtaX
-1e-03

0.015

0.000

| | | |
0 500 1000 1500 2000

i—th Interval

Figure 2.10: Trend of increments of 10-second intervals

i

| | | |
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Figure 2.11: Increments of 10-second intervals
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Chapter 3

Analysis of jumps

This chapter contains two sections. The first section compares the numbers of level one
prices changes of intervals detected with potential jumps and without any jump. The second
section makes use of proportion test and binomial test in order to find out the differences of

probability of mid-price change trend in different type of intervals.

3.1 Analysis of Level One Prices Changes

In this section, we count the numbers of changes of the best bid price and the best ask
price for each interval. By comparing the numbers of times these level one prices changes of
intervals having potential jumps and intervals without any jump, we are going to find out
that whether the number of level one prices changes is a significant feature of different type

of intervals.

As mentioned above, there are three 1-minute intervals detected with potential jumps: 4%,
5%, and 33", Table 3.1 shows the number of times level one prices changes of these three
intervals, and Table 3.2 gives the frequencies of changes of level one prices of the other 387

I-minute intervals without jump. We show the histogram of frequencies in Tables 3.1 in

21



Figure 3.1. Note: In Table 3.2 and Figure 3.1, BBP meas the number of intervals that the
best bid price change Freq. times, BAP means the number of intervals that the best ask

price change F'req. times.

Table 3.1: Frequencies of level one prices changes of intervals without jump

Freq. | O | 1 | 2|3 |4 ] 5 6 7 8 9 10 | 11
BBP | 30 |47 |65 |52 |31 | 25 | 22 | 16 | 16 | 10 | 10 | 7
BAP | 2532|5543 33|28 | 22| 20 | 18 | 14| 9 |10
Freq. |12 |13 |14 | 15|16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
BBP | 3 |8 |44 ]| 7] 3 1 3 1 1 2 1
BAP | 5 | 5 | 8| 7 |4 2 6 5 1 1 5
Freq. |24 | 25|26 |27 |28 | 31 | 32 | 33 | 34 | 35 | 37 | 38
BBP |1 |2 |1|2]|1 3 0 1 2 0 0 1] 0
BAP |1 | 3|2 |11 1 3 1
Freq. | 40 | 43 | 56 | 70 | 80 | 120 | 134 | 168 | 174 | 181 | 230
BBP | 1|0 |0|0]|1 1 1 0
BAP | O] 1|1 ]1]0] 0 0 1 1 0 1

—
—_
[\]
w

=}
—_
=}

From table 3.1 we can see that the number of price changes of these intervals are relative
small. Since limit orders can be placed in a queue during the market is closed and they will
be processed as quick as the market open, it is rational that there will be more executions of
limit orders when the market is just open and thus level one prices are more likely to change
at the beginning of market is open. In fact, the intervals without jump which have a relative
large number of times the level one prices changes are the intervals represent the market just
open, say, the first three intervals. The best bid prices in the first three intervals (9:30-9:33)
change 181 times, 134 times, and 120 times, the best ask prices change 230 times, 168 times,

and 174 times.

For 4%, 5" "and 33" intervals, the average number of the best bid price change is w =

50, the average number of the best ask price change is w = 75. For the other 387

intervals, the average number of the best bid price change is 7.116, the average number of
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Figure 3.1: Histogram of frequencies in Tables 3.1
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the best ask price change is 9.119. If we do not consider the first three intervals, then for the
other 384 intervals, the average number of the best bid price change is 6.039, the average

number of the best ask price change is 7.701.

It is obvious that there are much more price changes within the intervals detected with
jumps. In order to check this argument, let us do the same analysis of 0.5-minute intervals

and 10-second intervals.

There are also three 0.5-minute intervals detected with potential jumps: 8, 9", and 86"
The average number of the best bid price change of intervals with potential jumps is w =
27.333, of the best ask price change is w = 44. For the other 777 intervals without
jump, the average number of the best bid price change is 3.687, of the best ask price change

is 4.758.

For 10-second intervals, there are 32 intervals have jumps. The average number of the best
bid price change of these intervals is 11.375, of best ask price change is 13.063. For the other
2308 intervals without jump, the average number of the best bid price change is 1.195, of

the best ask price change is 1.564.

According to the results, the intervals with jumps have more level one price changes than
the intervals without jump. The number of changes of 86! is small (the magnitude of the
change is large and we have discussed about it in chapter two, and compare to the average
number of changes of intervals without jump, 7 and 9 are still large enough), which means
that we cannot categorize one interval arbitrarily by the number of level one price change.
However, the number of level one price change have a certain connection with the jump. In
general, one interval with large number of level one price change is more likely to be detected

with potential jumps.
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3.2 Statistical Tests for the Probability of Mid-price

Change

In the section, we do proportion test and binomial test on the probability of mid-price change

in order to find out the difference between the change probability and 0.5.

For a mid-price at time ¢, it will have three different states at next time ¢ + 1: remain the
same, go upward, go downward. In order to be able to better analysis, we only consider the
mid-price go upward or go downward. That is to say if mid-price at time ¢, t + 1, and t + 2
are Sy, Sp, and S;, then we treat t as the first state ¢/, and ¢ + 2 as the second state ¢’ + 1,

Sp and S; are mid-prices at the two states.

Let us define
P, up = Prob(next mid — price change up | mid — price change up)

P,y down = Prob(next mid — price change down | mid — price change up)
Piown.up = Prob(next mid — price change up | mid — price change down)
Piown.down = Prob(next mid — price change down | mid — price change down)

Let Ny and Ny be the numbers of mid-price change up or down during [¢;, t;11] respectively.
And nq1, ny9 are the numbers of next mid-price change up or down conditioned on a change
up mid-price during [t;, t;41]. Similarly, no; and nay are the numbers of next mid-price change

up or down conditioned on a change down mid-price during [¢;,t;+1]. Hence Ny = nyy + ng
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and Ny = no; + noo, and the estimated probabilities are

~ ni1 ~ Ni2

P“P,“P = Nl ) Pup,down - N1

Na1

Pdown,up = F; Pdown,down -
2

Ny

We use the 10-second intervals as our sample since there are more intervals (32 intervals)
detected with jumps. At the first we categorize the sample into three sub-samples. Sample
one contains all of the 17 intervals detected with up jumps, sample two contains all of the
15 intervals detected with down jumps, sample three contains all the 2308 intervals without
jump. Then for each interval we can obtain a Pup,up and a Pdown,down. Our aim is to compare

Popup and Pyown, down Of these three samples.

For each sample, we do three proportion tests and three binomial tests. Binomial test is a
test of a simple null hypothesis about the probability of success in a Bernoulli experiment.
Proportion test is a test that can be used for testing the null that the proportions (proba-
bilities of success) in several groups are the same, or that they equal certain given values.
Considering the sample size of intervals with potential jumps is not very large, we do both
of the two tests on each sample. We want to use correlated random walk model to fit the
mid-price change and the next step can only be walk upward or walk downward, then in
order to find out the tendency of next "walk”, we choose probability 0.5 as target. The null
hypothesis of three tests are the same Hy: The probability is equal to 0.5. The alternative
hypothesis of three tests are ) Hy: The probability is not equal to 0.5; @) H;: The proba-
bility is greater than 0.5; @) Hy: The probability is less than 0.5. And we use P-value=0.05
as significant level. Table 3.2, Table 3.3, and Table 3.4 give the results of proportion test

and binomial test on different type of intervals.
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According to table 3.2, 3.3, and 3.4, we can conclude that the intervals with potential
upward jumps have Isupw > (0.5 and pdowmdown = 0.5, the intervals with downward jumps

have Pupyup = 0.5 and Pdown’down > 0.5, the intervals without jump havef?upmp = 0.5 and

Pdoum,doum = 0.5.

Table 3.2: Results of proportion test and binomial test on intervals with up jumps

Hy: The probability is equal to 0.5 | P-value of (D) | P-value of @) | P-value of 3
. Pupr 1.602¢-06 8.012e-07 1
Proportion test =5 *" = 0.3737 0.8131 0.1869
. Pupap 1.848¢-06 0.239e-07 1
Binomial test =5 "= 0.4149 0.8324 0.2075
Estimated value Pupup=0.642,  Piown,down=0.467

Table 3.3: Results of proportion test and binomial test on intervals with down jumps

Hy: The probability is equal to 0.5 | P-value of () | P-value of @) | P-value of 3
. Pupean 0.1776 0.9112 0.08882
Proportion test |=p » =~ 110109 | 5.5060-10 | 1
. Pupoay 0.2132 0.9269 0.1066
Binomial test =5 " "= 0.2500-10 | 4.6200-10 | 1
Estimated value Pupup=0.430,  Piown down=0.721

Table 3.4: Results of proportion test and binomial test on intervals without jumps

Hy: The probability is equal to 0.5 | P-value of Q) | P-value of 2) | P-value of (3
Proportion test Pupup 0.06054 0.3027 0.6973
b Piown.down 0.5233 0.7383 0.2617
: : Pupup 0.6188 0.3094 0.7039
Binomial test =5 = 0.5364 0.7448 0.2682
Estimated value Popup=0.505,  Paown,down=0.494
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Chapter 4

Conclusions

In this thesis, we aim to analyze LOB data to explain the presence of potential ”jumps”
in the dynamics of asset prices. To this end, first we apply a jump detection procedure
commonly used for macro financial models based on Brownian Motion driven SDE. Second,
we compare the numbers of level one prices changes of intervals with potential jumps and
intervals without jump. Third, we make use of proportion test and binomial test to analyze

the probabilities of mid-price change.

As we divide the intervals shorter, the shreshold Ch® becomes smaller (0.00367 for 5-minute
interval, 0.00157 for 1-minute interval, 0.00114 for 0.5-minute interval, 0.000613 for 10-second
intervals), and we detect more intervals with jumps. Hence the length of interval is one of

the factors that have much influence on the detection method.

Another feature of the intervals is that the best bid price and the best ask price of intervals
with jumps usually change more frequently than the prices of intervals without jump. The
price change may due to big orders come into the limit order book, or there is sparsity

between limit orders.

In addition, according to the statistical tests, intervals without jump have ﬁ’upyup = 0.5 and
Pdown,down = 0.5. It is just like a simple random walk model, the price goes upward or
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downward is random, so a significant price change is less likely to occur and this is the
reason that we do not detect any jumps in these intervals. For intervals with up jumps,
Pupmp > 0.5 and Pdown’down = 0.5. When mid-price goes downward, at the next state the
mid-price goes upward or goes downward is random with same probability. However, if the
mid-price goes upward, then the mid-price is more likely to goes upward at the next state.
Therefore, the mid-price has an overall upward trend, and this can be used to explain why
we detect up jumps in these intervals. Similarly, intervals with down jumps have Pup#p =0.5
and f’down,down > (0.5. The statistical tests results of intervals with down jumps also support

our detection.

Overall, this thesis may still have some insufficient place that can be improved, but all of
these evidences above could be used to support that this jump detection method is effective
and there exists obvious differences between intervals with potential jumps and intervals

without any jump.
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