Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2003-2

2003-01-31

Storage Allocation in Bounded Time

Sharath Reddy Cholleti

The correctness of a real-time system is very much dependent on the time at which a specific
task is completed. Hence, satisfying a storage allocation request within bounded time is
important. Fragmentation of the heap after repeated allocations and deallocations is a major
issue for real-time systems, as most allocators depend on garbage collection for
defragmentation of the heap, which might not finish in time to honor deadlines. We present the
storage requirement for a defragmentation-free binary-buddy allocator. We also study a
localized defragmentation algorithm to satisfy a single allocation request, within bounded time,
instead of requiring defragmentation of... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Cholleti, Sharath Reddy, "Storage Allocation in Bounded Time" Report Number: WUCSE-2003-2 (2003). All
Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/1067

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1067?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1067

Storage Allocation in Bounded Time

Sharath Reddy Cholleti

Complete Abstract:

The correctness of a real-time system is very much dependent on the time at which a specific task is
completed. Hence, satisfying a storage allocation request within bounded time is important.
Fragmentation of the heap after repeated allocations and deallocations is a major issue for real-time
systems, as most allocators depend on garbage collection for defragmentation of the heap, which might
not finish in time to honor deadlines. We present the storage requirement for a defragmentation-free
binary-buddy allocator. We also study a localized defragmentation algorithm to satisfy a single allocation
request, within bounded time, instead of requiring defragmentation of the entire heap. We prove that the
cost of the algorithm is within twice the optimal cost. Results are presented from applying the
defragmentation algorithm, with different heap sizes, on various programs. The amount of storage
relocated with our defragmentation algorithm is compared with other compaction algorithms. Also, the
amount of storage relocated by selecting a minimally occupied block is compared with the policy of
selecting a block randomly.

https://openscholarship.wustl.edu/cse_research/1067?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1067?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2003-2

Storage Allocation in Bounded Time - Master's Thesis, December 2002

Authors: Cholleti, Sharath R.

January 31, 2003

Abstract: The correctness of a real-time system is very much dependent on the time at which a specific task is
completed. Hence, satisfying a storage allocation request within bounded time is important. Fragmentation of the
heap after repeated allocations and deallocations is a major issue for real-time systems, as most allocators
depend on garbage collection for defragmentation of the heap, which might not finish in time to honor deadlines.
We present the storage requirement for a defragmentation-free binary-buddy allocator. We also study a localized
defragmentation algorithm to satisfy a single allocation request, within bounded time, instead of requiring
defragmentation of the entire heap. We prove that the cost of the algorithm is within twice the optimal cost.

Results are presented from applying the defragmentation algorithm, with different heap sizes, on various
programs. The amount of storage relocated with our defragmentation algorithm is compared with other
compaction algorithms. Also, the amount of storage relocated by selecting a minimally occupied block is
compared with the policy of selecting a block randomly.

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Short Title: Storage Allocation Cholleti, M.Sc. 2002

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

STORAGE ALLOCATION IN BOUNDED TIME
by
Sharath Reddy Cholleti, B.Tech.

Prepared under the direction of Prof. Ron K. Cytron

A thesis presented to the Sever Institute of
Washington University in partial fulfillment

of the requirements for the degree of
Master of Science
December, 2002

Saint Louis, Missouri

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

STORAGE ALLOCATION IN BOUNDED TIME

by Sharath Reddy Cholleti

ADVISOR: Prof. Ron K. Cytron

December, 2002

Saint Louis, Missouri

The correctness of a real-time system is very much dependent on the time at
which a specific task is completed. Hence, satisfying a storage allocation request
within bounded time is important. Fragmentation of the heap after repeated allo-
cations and deallocations is a major issue for real-time systems, as most allocators
depend on garbage collection for defragmentation of the heap, which might not finish
in time to honor deadlines. We present the storage requirement for a defragmentation-
free binary-buddy allocator. We also study a localized defragmentation algorithm to
satisfy a single allocation request, within bounded time, instead of requiring defrag-
mentation of the entire heap. We prove that the cost of the algorithm is within twice
the optimal cost.

Results are presented from applying the defragmentation algorithm, with dif-
ferent heap sizes, on various programs. The amount of storage relocated with our

defragmentation algorithm is compared with other compaction algorithms. Also, the

amount of storage relocated by selecting a minimally occupied block is compared with

the policy of selecting a block randomly.

to my mom, dad and sis

Contents

List of Figures vi
Acknowledgments Lo vii
1 Introduction. 1
1.1 Storage Management L. 1
1.2 Real-Time Systems 1
1.3 Embedded Systemso 2
1.4 The Problems 2
1.5 Road Map 3

2 Background 4
2.1 Unstructured Lists oL 4
2.2 Segregated Free Lists o000 6
2.3 Binary Buddy Systems o o000 6
2.4 Buddy Allocator Policy oo, 7
2.4.1 Address-Ordered Buddy Allocator 7

2.4.2 Address-Ordered Best-Fit Buddy Allocator 8

2.5 Defragmentation oL oo Lo 8
2.6 Notation oL 9

3 Binary Buddy Heaps without Defragmentation. 11
3.1 Trivial Upper Bound 11
3.2 Failures 2M, 3M, ...and Automatic generation of Counter Example . 12
3.3 Tight Bound o 14

4 Binary Buddy Heaps with Defragmentation 18
4.1 Big to Small Allocation Never Locks 19

v

4.2 Worst case relocation with heap of M bytes 20
4.3 Optimal Sequence of Relocation can be Sorted from Small to Big . . 21

4.4 Greedy Heuristic with 2M Heap 22
4.4.1 Heap Manager Algorithm 26

4.4.2 The Algorithm — Pseudo Code 28

4.4.3 Time and Storage Bounds 30

5 Experiments. 34
5.1 The Test Programso, 34
5.1.1 Java Test Programs 35

5.1.2 CTest Programs 36

5.2 Simulator 36
5.2.1 Allocation 37

5.2.2 Defragmentation 0L 37

5.2.3 Left-First Compaction 37

5.2.4 Right-First Compaction 38

5.2.5 Compaction Without Using Buddy Properties 39

5.3 Results o 39
5.3.1 Defragmentation with 2M-byte Heap 40

5.3.2 Defragmentation with M-byte Heap 43

5.3.3 Minimally Occupied vs Random Block Selection 43

6 Conclusion and Future Work 47
References L 49
Vita e 51

List of Figures

2.1
2.2

3.1

4.1

5.1
5.2
9.3
5.4
9.5
2.6
2.7
5.8
2.9

Unstructured List Example.o

Buddy Example: Heapof 16 bytes.

Counter example with 2M storage. 13
Data Structure 27
Java Test Program Characteristics. 36
C Test Program Characteristics. 36
Left-First Compaction 38
Right-First Compaction 39
Non-Buddy Compaction 40
Java Test Programs — Amount of Relocation 41
C Test Programs — Amount of Relocation. 42
Minimally Occupied vs Random — Amount of Relocation 45
Minimally Occupied vs Random — Number of Relocations 46

vi

Acknowledgments

[thank my advisor, Ron K. Cytron, for all his help from introducing the fragmentation
issues in buddy allocators to his insights to the approach we take to tackle the problem.

Also, I would like to thank all my friends for numerous discussions on my
thesis and supporting me all the time directly or indirectly to enjoy life in general.
In particular, Morgan Deters, Michael Plezbert, Ramaprabhu Janakiraman, Krish-
nakumar Balasubramanian and Anand Krishnan for their suggestions, discussing the
proofs and proof reading; Dante Cannarozzi, Steve Donahue, Matthew Hampton and
Delvin Defoe for their experimental data I used in my thesis; Martin Linenweber,
Irfan Pyrali and Nanbor Wang for their support in talking about the thesis and par-
ticipating in various sports that kept me active; My college friends K.V.M Naidu and
Sanjeev Dwivedi for their support. In case I missed anyone, I thank all the people,
things and places — known /unknown, near /far, seen/unseen — who/which were part
of my life during the last two years in a positive way.

Sharath Reddy Cholleti

Washington University in Saint Louis
December 2002

vii

Chapter 1

Introduction

1.1 Storage Management

In any program of significant size, storage management is a necessity. When a pro-
gram starts, the storage allocator has a large block of storage, called the heap, that it
can use for allocations. A program can request a block of storage from the allocator,
for example in C++ by using the operator new, and can deallocate a block by using
the operator delete. After repeated allocations and deallocations, holes can start to
appear in the heap. This is called fragmentation of the heap. Sometimes the allocator
cannot satisfy a request because of fragmentation of the heap into many, small free
chunks. The allocator could request more storage from the operating system, but
every system has a limited amount of storage. If the operating system cannot provide
more then the allocator cannot satisfy a request from a program, even if it has enough
free storage scattered among the small chunks.

An alternative is to combine some of the small, free chunks to obtain a larger,
free chunk. This process, called defragmentation, requires rearranging live storage so

that the storage holes become adjacent and can coalesce.

1.2 Real-Time Systems

A real-time system is one in which correctness of the system depends not only on the
logical results, but also on the time at which the results are provided [10]. Real-time

systems exist in various areas such as avionics, air-traffic control, telecommunications,

2
multimedia, virtual reality, medical applications and defense applications. Almost all
safety-critical systems are real-time systems.

In a time-critical situation, storage-management functions must be reasonably
bounded with regard to their execution time. When a program requests a block
of storage, the allocator has to satisfy the request in bounded time. The bound
is necessary because task-execution times are typically submitted to a scheduler to
determine if all of the tasks’ deadlines can be met [7]. Thus, if a storage-management
function exceeds its time limit, there could be catastrophic results in the overall

system.

1.3 Embedded Systems

Embedded systems are characterized by a set of predefined functions to be performed
on the resources available, where storage, power and computational functionality are
limited. Typically embedded systems are components of a larger system. Embed-
ded systems exist in systems like microwave ovens, watches, ATMs, avionics, defense
equipment. Many embedded systems are part of a larger system with real-time re-
quirements.

As mentioned earlier, embedded systems have limited storage. The smaller
the amount of storage needed to run a system, the more it cuts the down cost of
the system as well as its power consumption. Since embedded systems have very
specific functions to do, the maximum storage required can usually be calculated a
priori. But dynamic storage allocation causes fragmentation of the heap, making the
calculation difficult. Some systems use static allocation of objects, avoiding dynamic
allocation. But this leads to wasted space as the objects are live all the time [11].
We study how to tackle the fragmentation problem when using dynamic allocation,

while at the same time keeping in mind the limitations of embedded systems.

1.4 The Problems

To explain the problems we study in this thesis, first we need to define defragmentation
and mazlive. Defragmentation can be defined as moving the allocated storage blocks
to some other address so as to create contiguous free blocks that can be coalesced
to form a larger free block. Mazlive is the maximum amount of storage the program

requires at any instant during its execution.

3
Motivated by the requirements of real-time systems and embedded systems as

discussed in sections 1.2 and 1.3, we study two related problems:

1. Given the maxlive of a program, what is the maximum amount of storage re-
quired by a buddy allocator (described in Section 2.3) without any defragmen-
tation, so that it is always able to satisfy an allocation request in spite of the

fragmentation?

2. Given the maxlive of a program and twice-maxlive heap, can the heap be de-
fragmented to satisfy a single request and what is the efficiency of that defrag-

mentation?

1.5 Road Map

In Chapter 2, we provide background on the problem we study and on our approach.
In Chapter 3, we examine the issue of how much storage is required so that all requests
for storage can be satisfied without ever having to defragment the heap. In Chapter 4,
we present a new heap-defragmentation algorithm; experiments using that algorithm
are presented in Chapter 5. In Chapter 6, we present conclusions and future work

concerning this research.

Chapter 2
Background

When a program starts, the storage allocator obtains a large block of storage, called
the heap, which it uses to satisfy the program’s allocation requests. Depending on the
system, the storage allocators can generally increase or decrease the size of the heap
by sending an appropriate request to the operating system [2]. Storage allocators
are characterized by how they allocate and keep track of free blocks. This chapter
describes the most generally used storage allocation mechanisms [13], including the
buddy allocator [6] upon which our research is based.

In Section 2.1 and Section 2.2, allocators based on unstructured lists and seg-
regated free lists, respectively, are described. In Section 2.3, the binary-buddy system
is explained. In Section 2.4 the buddy allocator policies used in this thesis are de-
fined. In Section 2.5, defragmentation is described. In Section 2.6, our notation for

allocation and deallocation is given.

2.1 Unstructured Lists

These allocators have a universal list of all free blocks of storage. Generally the list is
doubly-linked lists or circular-linked to ease deletion from the list. These allocators

use various policies:

Best Fit A best fit allocator searches the free list to find the smallest free block
large enough to satisfy the request. If an exact match is found the search stops
otherwise the whole list is searched exhaustively. For example, if a 100-byte
block is requested in Figure 2.1, the whole list is searched and the 104-byte

block is chosen for the allocation; the remaining 4-byte block is put on the list.

128 104| |83

256

1024

2048

Figure 2.1: Unstructured List Example.

Though the basic motivation for best fit is to find an exact match, it can be
a bad policy if the best fits are approximate, with the resulting fragments too

small to be useful.

Worst Fit A worst fit allocator searches the free list to find the largest free block that
is larger than the requested size. For example, if a 100-byte block is requested
in Figure 2.1, the whole list is searched and the 2048-byte block is chosen for
the allocation. The remaining 1948-byte block is added to the list. This avoids

the problem of having too many tiny fragments as in best fit allocation.

First Fit A first fit sequential fit allocator searches the free list from the beginning to
the end until it finds a free block large enough to satisfy the allocation request.
If the block is larger than required, then it is split and the remainder is added
to the free list. For example, if a 100-byte block is requested in Figure 2.1,
then the 256-byte block is chosen for the allocation and the remaining 156-byte
block is put on the list. A problem with first fit allocation is that the blocks
at the beginning of the list are split and many small blocks accumulate at the
beginning (only if the policy is to put the remaining block on the list at the
same place, which is generally the case). This leads to increased search time for

larger blocks.

6

Next Fit This is an optimization over first fit. Instead of starting the search at the
beginning of the list, it is started from the position where the last request was
satisfied. A pointer is maintained to remember the last position. For example,

after requesting a 100-byte block as in Figure 2.1, a subsequent request for
1200-byte block starts from 156-byte block and the 2048-byte block is split.

The remaining 848-byte is put on the free list. The main motivation is to

reduce the search time.

2.2 Segregated Free Lists

This policy uses a set of free lists, where each free list holds different-sized objects.
To satisfy an allocation request, a free list of the appropriate size is chosen. The size
is rounded to next larger size if there is no perfect match. When an object is freed it
is added to the free list of that object’s size.

Simple Segregated Storage Here, larger free blocks are not split to satisfy a re-
quest for a smaller size and smaller free blocks are not coalesced to satisfy a
request for a larger size. If the appropriate list for satisfying a request is empty
then more storage is requested from the operating system, split into same-sized
blocks, and then put on the free list.

Segregated Fits This variation relaxes the constraint that all objects in a size class
be exactly the same size. This variant uses a set of free lists, with each list
holding free blocks of any size between this size to the next larger size class. To
satisfy a request the appropriate size class is searched for a large enough block
to hold it.

2.3 Binary Buddy Systems

In binary buddy system [6], separate lists are maintained for available blocks of size
2% bytes, 0 < k < m, where 2™ bytes is the heap size. Initially the entire block of
2™ bytes is available. When a block of 2% bytes is requested, and if no blocks of that
size are available, then a larger block is split into two equal parts repeatedly until a
block of 2% bytes is obtained.

When a block is split into two equal sized blocks, these blocks are called buddies.

If these buddies become free at a later time, then they can be coalesced into one larger

7
block. The most useful feature of this method is that given the address and size of a
block, the address of its buddy can be computed very easily, with just a bit flip. For
example, the buddy of the block of size 16 beginning in binary location xx ... 210000
is zz ... 200000 (where the x’s represent either 0 or 1). For more details see [6] page
442.

Tree Notation We present a tree notation for the buddy system, as in Figure 2.2,
to represent the state of a buddy heap. We use this tree notation to visualize the
worst case for defragmentation-free buddy allocation as well as other problems we
tackled. The root of the tree is the whole heap and the next level denotes two
halves of the heap, each of which is in turn split into two and so on. The allocation
and deallocation (freeing) operations on the buddy system can visualized from the
Figure 2.2 as follows: Figure 2.2(a) shows buddy system with the heap size 16 bytes.
Blocks b; and b, are buddies. Similarly, b3 & by; b5 & bg and bg & bg are buddies.
After block b5 and bg are freed Figure 2.2(b) is obtained. Since buddies b5 and bg are
free they coalesce to form a free larger block b3 which in turn coalesces with b, to
form free block by, as in Figure 2.2(c).

When block bg is freed, even though there is a free block b; adjacent to it, in
Figure 2.2(b), they cannot coalesce because they are not buddies. At that instant, as
in Figure 2.2(c), if there is a request for allocation of a 2-byte block, block by has to
be split to satisfy the request. The resultant state of the buddy system can be seen
in Figure 2.2(d).

There are other variants of buddy systems, such as Fibonacci Buddy, Weighted
Buddy and Double Buddy. They use block sizes which may not be powers of two.
The series of sizes differ for all these buddy systems. These variants are discussed
in [13].

2.4 Buddy Allocator Policy

2.4.1 Address-Ordered Buddy Allocator

The address-ordered policy selects a block of requested or greater size with the lowest
address. If there are no free blocks of the requested size then the allocator searches
for a larger free block, starting from the lowest address, and continuing until it finds a

sufficiently large block to divide to get a required-size block. For example, if a 1-byte

16
8
b2 4
bl
b3 b4 5 b3 b4
b5 b6 ‘i 1 b5 b6
b7 b8 b9 b7 b8 b9
@ ()
16
8
4 [|
b2 b2
2 - o
EmEE AT
b7
© (d)
Bl Occupied
|:| Free

Figure 2.2: Buddy Example: Heap of 16 bytes

block is requested in Figure 2.2(c), block by (of 4 bytes) is split to obtain a 1-byte
block even though there is a 1-byte block available in the heap. Using this policy
the lower addresses of the heap tend to get preference leaving the other end unused
unless the heap gets full or fragmented a lot. Our analysis of the binary-buddy heap

requirement is based on this policy.

2.4.2 Address-Ordered Best-Fit Buddy Allocator

In this policy a block of smallest possible size equal to or greater than the required
size is selected with preference to the lowest address block. When a block of required
size is not available then a block of higher size is selected and split repeatedly until
a block of required size is obtained. For example, if a 1-byte block is requested in
Figure 2.2(c), block b7 is chosen. If a 2-byte block is requested then block b, is chosen.
Our implementation of the binary-buddy is based on this policy.

2.5 Defragmentation

Defragmentation can be defined as moving already allocated storage blocks to some

other address so as to create contiguous free blocks that can be coalesced to form a

9
larger free block. Generally, defragmentation is performed when the allocator cannot
satisfy a request for a block. This can be performed by garbage collection [12]. A
garbage collector tries to separate the live and deallocated or unused blocks, and by
combining the unused blocks, if possible, usually a larger block is formed, which the
allocator can use to satisfy the allocation requests. Some programming languages
like C and C++ need the program to specify when to deallocate an object, whereas
the programming languages, like Java, find which objects are live and which are not
by using some garbage collection technique. Generally garbage collection is done by
either identifying all the live objects and assuming all the unreachable objects to be
dead as in mark and sweep collectors [12] or by tracking the objects when they die
as in reference counting [12] and contaminated garbage collection techniques [1].

In our study, we assume we are given both the allocation and deallocation
requests. For this study it does not matter how the deallocated blocks are found —
whether it is by explicit deallocation request using free() for C programs or by using
some garbage collection technique for Java programs. For real-time purposes we get
the traces for Java programs using contaminated garbage collection [1], which keeps
track objects when they die, instead of mark and sweep collectors which might take

unreasonably long time.

2.6 Notation

A program issues a number of allocation and deallocation requests to the allocator
throughout its running time, continuously changing the amount of storage used. We
use the following notation given below throughout the thesis to study the program’s

storage usage. All storage sizes are in bytes.

1. ¢ is a sequence of allocation and deallocation requests of the program. ¢;,
i=1,2,...,T denotes the i* request, which is either:
e Alloc(n), an allocation request for a block of size n, or
e Dealloc(k), a deallocation request for the block allocated in the k™ allo-

cation request.

Also, the k' allocation request is denoted as Allocy(n), where n is the size of

the request.

10.

11.

10

. ¢o¢; denotes a sequence of requests ¢ followed by an allocation or a deallocation

request, ¢;.

. log denotes log,

|Alloc(n)| denotes the size of the block actually allocated. For binary-buddy
|Alloc(n)| = 2],

|Dealloc(k)| denotes the negative value of the size of the block deallocated,
which is also the size of the k%" allocated block.
|Dealloc(k)| = —|Allocy,(n)| = —2[ogn1,

6] = alloenl —if ¢, = Alloc(n)
] —2fenl if g, = Dealloc(k)

Curlive is the amount of storage in use at that particular instant. Curlive,
denotes the Curlive after ¢1, ¢o, ..., @¢.

) 0 ifi=0
Curlive; =) ,
Curlive,—y + |¢;| Vi >0

M denotes the mazxlive — the maximum number bytes alive at any instant

during the program’s execution. If ¢7 is the last request,

M = max (Curlive;)
0<i<T

. n is the maz-blocksize — size of the largest block (in bytes) the program can

allocate.
H is the heap size.

B(H, ¢) is a predicate which is true if the address-ordered buddy allocator,
starting with a heap of size H bytes, satisfies the request sequence ¢. We also
use the terminology, B(H, ¢) is satisfied if it is true and B(H, ¢) failed or locked

if it is false.

11

Chapter 3

Binary Buddy Heaps without

Defragmentation

In this chapter, we examine the storage requirements for a binary-buddy allocator so
that heap defragmentation is never necessary to satisfy an allocation request. If the
amount of storage a program can use at any instant, is known assuming worst-case
fragmentation, then a system with that much storage suffices. This could be useful in
embedded systems, for that matter any systems, which are supposed to work without
breaking down. For real-time systems, this is even more useful because the program
cannot wait for an allocator to defragment the heap to satisfy a request. Also, some
languages like C and C++ do not allow relocating allocated blocks because of the
uncertainity of what is a “pointer”.

In Section 3.1, a trivial upper bound for a defragmentation-free heap size is
discussed. In Section 3.2, examples are given to show that O(M) storage, where M is
maxlive, is not enough for a defragmentation-free heap. In Section 3.3, a tight bound

for defragmentation-free heap is proved.

3.1 Trivial Upper Bound

The below theorem gives a trivial upper bound for the buddy allocator without de-

fragmentation.

Theorem 3.1.1 Let k = |{n|3i n = |¢;|,n > 0}|. kM bytes storage is sufficient
to satisfy any sequence of allocation and deallocation requests of the program without

any defragmentation.

12
Proof: Assume kM bytes storage is not sufficient. That is, to satisfy a particular
allocation request kM bytes is not enough. But by associating each of the k sizes
with a pool of M bytes and allocating blocks of a particular size from its own pool
of M bytes, the allocator does not need any extra storage to satisfy a request for any

of the k sizes as maxlive is only M. Hence a contradiction. [

Corollary 3.1.2 Assuming M is a power of 2, M log M bytes storage is sufficient
with buddy system allocator.

Proof: As M is maxlive, there are at most log M different sizes (1,2,4,...,M/2),
the program can request, excluding M-byte block. So M log M is sufficient. When
M-byte block is requested curlive =0 [

3.2 Failures 2M, 3M, ...and Automatic generation

of Counter Example

As the trivial upper-bound seemed an overkill, we next find the exact bound on
the amount storage required for the defragmentation free buddy allocator. First
we experimented with constant multiple of maxlive storage. We generate counter
examples of allocation and deallocation patterns that force the buddy allocator to
run out of the given storage because of fragmentation. As mentioned in 2.4.1, we deal
with address-ordered buddy allocator.

Consider an example where M is 16 bytes and buddy allocator has 2M storage
(32 bytes), to satisfy any request. The counter example shown in Figure 3.1, fragments
the storage so that the allocator fails to satisfy a request even though the live storage

has not exceeded 16 bytes as follows:

1. Allocate sixteen 1-byte blocks, i.e., ¢; = Alloc;(1) for i = 1,...,16. This fills
up first 16 bytes.

2. Deallocate alternate 1-byte blocks, i.e., ¢; = Dealloc(2 x (i — 16)) for i =
17,...,24. This creates fragmentation such that no 2-byte can be allocated in
first 16 bytes (Figure 3.1(a)).

3. Allocate four 2-byte blocks, i.e., ¢; = Alloc;j(2) for i = 25,...,28 and j =
17,...,20. These occupy the third quarter of the 32 bytes.

13

Il Occupied
Free

©
Figure 3.1: Counter example with 2M storage.

4. Deallocate alternate 1-byte blocks and 2-byte blocks, i.e. ¢; = Dealloc(k) for
k=3,7,11,15,18,20 and 7 = 29, ..., 34. This creates fragmentation so that no
4-byte block can be allocated in first three quarters of 32 bytes (Figure 3.1(b)).

5. Allocate two 4-byte blocks, i.e. ¢; = Alloc;(4) for i = 35,36 and j = 21, 22.
These occupy the fourth quarter.

6. Deallocate alternate 1-byte, 2-byte and 4-byte blocks, i.e., ¢; = Dealloc(k) for
1 = 37,...,40 and k = 5,13,19,22. This reduces the current live storage to
8 bytes and creates fragmentation so that no 8-byte block can be allocated
(Figure 3.1(c)).

By using the similar process of allocation followed by deallocation of every
other block, counter examples can be generated for a heap of size 2.5M bytes (for
maxlive 32 bytes, fails to allocate 16-byte block), heap of size 3M bytes (for maxlive
64 bytes, fails to allocate 32-byte block) and so on.

14
3.3 Tight Bound

As seen from Section 3.2, a constant multiple of M is insufficient to avoid the frag-
mentation problem in worst case. So how much storage is needed? We give the details
of the maximum storage requirements in this section.

Below we give the minimum amount of storage required for defragmentation-
free heap in the worst case. We assume the buddy allocator uses address-ordered
policy (Section 2.4.1). The address-ordered policy gives preference for the lower-
address free blocks, and hence one end of the heap stays very active and other end of
the heap extends only if the currently active portion of the heap is full or fragmented.

Some previous work about the bound on storage requirement is found in [8].
Even though the bound given in that paper is for a system in which blocks allocated

are always a power of 2, the allocator assumed is not a buddy allocator.

Lemma 3.3.1 I(n) = M(logn + 2)/2 bytes storage is sufficient for a defragmen-

tation-free buddy allocator, where M 1is the mazlive and n < M 1is the maz-blocksize.

Proof: We prove that I(n) bytes is sufficient by showing that buddy allocator need
not allocate a n-byte block beyond I(n) bytes in the heap. The proof is by induction.
Let P(k) be the proposition that the first I(2¥) = M(k + 2)/2 bytes of the heap
is the limit beyond which a buddy allocator cannot allocate a 2*-byte block, where
2k <p < M.

Base case: P(0) is true, as for a 1-byte block to be allocated beyond M bytes
the first M bytes should be full in which case the maxlive is reached.

Induction assumption: Assume P(k) is true Vk,0 < k < logn. That is,
I(2F) = M(k + 2)/2 bytes is the limit beyond which a 2*-byte block need not be
allocated, where 2F < n < M.

Now for k + 1, we need to prove that I(2*¥*!) is the limit.

According to the induction hypothesis only blocks greater than 2¥ bytes can be
allocated beyond the first I(2*) bytes of the heap. So in the worst case the first I(2¥)
bytes of the heap is fragmented using the minimum amount of storage required, such
that it does not have a free block of size 2¥*! bytes. This forces a buddy allocator to
allocate 2fT1-byte blocks beyond the I(2*) limit.

Let S be the minimum total amount of storage concurrently allocated to avoid
leaving a free block of size 2¥*1 bytes in the first 7(2¥) bytes of the heap. The below

equation follows from the induction assumption I(2%), 0 < 4 < k, is the limit. For

15
example, since a 1-byte block cannot allocated beyond I(1) = M bytes and a 2-byte
block cannot be allocated beyond I(2) = 3M/2 = M + M/2 bytes, for the total
amount of storage concurrently allocated to avoid leaving a free block of 2¥*! bytes
to be minimum, the first M bytes of the heap would involve only 1-byte blocks and
next M /2 bytes would involve only 2-byte blocks. Similarly next M /2 bytes would
involve only 4-byte blocks as I(4) =2M = M + M /2 + M/2 bytes, and so on.

M M/2 _ M/2 M2
S 9k+1 2k+1'2+2k+1'4+"'+2k+1'2
M M/2 k1
ok+1 " Qk+1 (27 -2)
M M,
= W—FW-(Q —1)
M
2

So at least M /2 bytes should be in use to force the allocator to allocate beyond
I(2%) bytes. Since blocks less than 2% bytes need not be allocated beyond I(2*)-byte
limit, other M /2 bytes of the maxlive can be allocated only as blocks of size greater or
equal to 25*1 bytes beyond I(2*) bytes to stretch the limit. Since 2¥*!-byte block is
the smallest beyond 7(2*), it need not be allocated beyond I(2¥)+ M /2 bytes without
exceeding the maxlive. Let L be the limit of the heap with blocks of size 2F*1.

M
L = I(2%+ 5

Mk+2) M

M[(k+1) + 2]
2
= I(2*")

Therefore, P(k + 1) is true. So if the max-blocksize is n bytes then a n-byte
block cannot be allocated beyond I(n) bytes of the heap. That is, a buddy allocator
cannot use beyond I(n) bytes of storage when the max-blocksize is n bytes and
maxlive M bytes. So I(n) = M(logn + 2)/2 is sufficient for a defragmentation-free
buddy allocator. [

16
Lemma 3.3.2 I(m) = M(logn + 2)/2 bytes storage is necessary for a defragmen-

tation-free buddy allocator, where M 1is the mazlive and n < M 1is the maz-blocksize.

Proof: We show that I(n) bytes is necessary by showing the existence of an allocation
sequence which uses I(n) storage.

Again the proof is by induction. Let P(k) be the proposition that for a
defragmentation-free buddy allocator there exists an allocation sequence which uses
I(2%) bytes, where 2* bytes is the max-blocksize.

Base case: P(0) is true as 1(2°) = M (0 + 2)/2 = M is used by allocating M
1-byte blocks.

Induction Assumption: Consider an example, for case k = 1, allocate M blocks
of size 1. Now deallocate every other block, hence creating gaps of size 1 byte. Now
the storage that is used up is M/2 bytes. The remaining M /2 bytes are allocated as
blocks of size 2 bytes. Since a block of size 2 bytes cannot fit in any gaps in the first
M bytes of storage, they occupy the next M/2 storage. So the total storage used is
3M/2 = I(2) bytes. Similarly for k£ = 2, deallocate every other block of size 1-byte
and size 2-byte, hence freeing M /2 bytes storage which can be used to allocate blocks
of size 4 bytes in M/2 bytes beyond I(2) bytes of storage. For the inductive step,
assume P(k) is true for 1,2,...,k < logn. ie. an allocation sequence is possible
which uses I(2F) = M (k + 2)/2 bytes, where M/2 exists as blocks of size 2% in the
last M /2 bytes of active storage and the other M /2 exists as blocks of smaller sizes
with gaps less than or equal to 2~ bytes.

To prove P(k + 1) is true, we have to show that an allocation sequence is
possible, such that a buddy allocator uses I(28+1) = M[(k+1)+2]/2 bytes of storage,
when the max-blocksize is 257! bytes. From the inductive assumption the last M /2
bytes of I(2*) bytes is filled up with blocks of size 2* bytes. We can free alternate
blocks among them and hence create gaps of 2% bytes. From this step we recovered
M /4 bytes of storage. Similarly, we can free the alternate blocks of smaller sizes to
increase the maximum gap size from 2*~! to 2% bytes. Since we freed the alternate
blocks which totals M /2 bytes we recover another M /4 bytes. So now only M /2 bytes
storage is used and the other M/2 bytes quota of maxlive can be allocated as blocks
of size 2¥*! bytes, which have to go into storage beyond I(2¥) bytes as there are no
gaps of 2¥*1 bytes. Let L be the total storage used.

17
Mk+2) M
—2 3
M(k+1)+2]
2
I(2k+1)

Therefore, there is an allocation sequence which uses I(28+1). i.e. P(k+ 1) is
true. Hence, I(n) = M(logn+2)/2 bytes storage is necessary for a defragmentation-
free buddy allocator. [

Theorem 3.3.3 I(n) = M(logn + 2)/2 bytes storage is necessary and sufficient for
a defragmentation-free buddy allocator, where M s the mazlive and n < M 1is the

maz-blocksize.
Proof: Follows from Lemma 3.3.1 and Lemma 3.3.2. n

Corollary 3.3.4 M(log M + 1)/2 bytes storage is necessary and sufficient for a

defragmentation-free buddy allocator, where M s the mazlive and the maz-blocksize.

Proof: This is the case with n = M/2 (since allocating a M-byte block means all
the storage is free, so the allocator just needs M bytes of storage). [

So this bound of M (log M + 1)/2 bytes is an improvement of almost half over
the trivial case of M log M. Since this is a tight bound, it cannot be improved further
and thus we should have M (log M + 1)/2 bytes of storage in the system if we do
not want the allocator to ever lock due to fragmentation. In practice, the programs
might never need this much storage because of their good allocation policies, but for
a real-time system which does not use defragmentation there is no other option but

to have M (log M + 1)/2 bytes to guarantee its performance.

18

Chapter 4

Binary Buddy Heaps with

Defragmentation

As we have seen in Chapter 3, defragmentation-free address-ordered buddy allocator
needs ©(M log M) heap. The log M factor makes the system more expensive as the
M increases. ©(M) heap would be much better, if the heap can be defragmented
to satisfy the allocation requests within bounded time. This chapter explores buddy
allocation with 2M heap and defragmentation in bounded time.

Defragmentation requires rearranging live storage to make the storage holes
adjacent to each other, so that they can coalesce to form a larger free chunk. We
call this rearranging of live storage block as relocation, which involves moving a live
storage block from one address to another where there is enough free space. Relocation
is measured in number of bytes or blocks relocated. Also, relocation sequence is a
sequence of relocations taking place one after another to satisfy a single allocation
request.

Section 4.1 shows if the sizes of allocation requests are in non-increasing order
then the allocator is always able to satisfy the request without blocking. Section 4.2
gives the worst case relocation. Section 4.3 shows that any optimal relocation se-
quence can be sorted in increasing order of sizes. Section 4.4 gives the algorithm for

at most twice optimal relocation sequence.

19
4.1 Big to Small Allocation Never Locks

In this section we study the effect of allocation of blocks in non-increasing order of
sizes. We show that the allocator does not lock, that is, it is able to satisfy the request
because a block of required or bigger size is available.

Notation:

e NFB;(¢) denotes the number of free blocks of size 2° bytes after sequence of

allocations and dellocations ¢.
Lemma 4.1.1 (V¢) (Vi 0 <1 <logM) [(s > 2') - NFB;(¢) = NFB;(¢oAlloc(s))].

Proof: By cases:

1. Allocation fails: Then clearly NF B;(¢) = NF B;(¢ o Alloc(s)).
2. Allocation succeeds:

(a) If a block of size 2/1°82°] bytes is available on the free list, that is allocated.
So NFB;(¢) = NFB;(¢ o Alloc(s)).

(b) If a free block of 218251 bytes is not available, a block of size 2* bytes,
where k > [log, s], is recursively split in to two equal blocks until a block
of 219821 bytes is available. So NF B;(¢) = NFB;(¢ o Alloc(s)).

Corollary 4.1.2 (V¢) (Vi 0 < i < logM) [(V j > 1)(s; > 2') = NFB;(¢) =
NFB;(¢ o Alloc(sy) o Alloc(sg) o Alloc(ss) .. .)].

Theorem 4.1.3 [(¢ = ¢1,da, ..., 0p A p; = Alloc(s;)), Vi, j1<i<j<r— s >
), Yi_q |[Alloc(s;)| < M, H> M| — B(H, ¢).

Proof: The theorem states that given an empty heap and if the allocations are in
non-decreasing order of size of the blocks then the allocator never locks.

Let P(k) be the proposition that the theorem is true for ¢ = ¢q,. .., @.
Basis step: P(1) is clearly true.

Inductive step: Assume that P(k), where k < r, is true.

Since initially the heap was empty, from the Theorem 4.1.2, after the alloca-
tions Alloc(sy), Alloc(ss), . .., Alloc(sy), all the free storage is in free blocks of size
|Alloc(s;)|, where s; > s; > s,. As sj > Sg41, Alloc(sg11) does not lock. Therefore,
P(k + 1) is true. =

20
Theorem 4.1.4 [(V¢), (Vi1 <i<r),(NFB,,(¢) >1),(¢ = dodiopso...00,Ap; =
Alloc(2%)), (Vi,j1<i<j<r—s>s;)] = BH,¢).

Proof: Similar to the above proof. Since (Vo) (Vi,j 1 <i < j <) NFB,,(¢) =
NFB;,;(¢ o Alloc(2°)), there is at least one free block of the required size and hence

no allocation locks. m

Corollary 4.1.5 Pulling out all the blocks involved in relocation and allocating them

starting with biggest to smallest, in sequence, does not lock.

4.2 Worst case relocation with heap of M bytes

In this section we find the amount of storage that has to be relocated in worst case,

if the allocator has M bytes and the maxlive of the program is also M bytes.

Theorem 4.2.1 With heap of M bytes and mazlive M bytes, to allocate a s-byte

block, where s < M, 7 logs bytes must be relocated, in worst case.

Proof: In worst case, every block of s bytes used in relocation has only 1 byte free
(using a fully occupied s-byte block is unnecessarily expensive). To free a block of
s bytes, s — 1 bytes have to be relocated. These blocks might cause more relocation
when they are relocated. To cause maximum (worst case) relocation these s — 1 bytes
are made of s/2,s/4,...,1 byte blocks. This is because, instead of a s/2-byte block
if there are smaller blocks they do not need as much relocation to move to other
location.

Let R(s) be the number of bytes to be relocated to allocate a s-byte block
and T'(s) be the number of bytes to be relocated to relocate an s-byte block. Also,
T(1)=1.

R(s) = T(s/2)+T(s/4)+T(s/8)+...+T(1)
= [s/24+T(s/4)+T(s/8)+ ...+ T(V)]+T(s/4) +T(s/8)+...+T(1)
= s/2+2x[T(s/4)+T(s/8)+...+T(1)]
= s/2+4+2xs/44+4%[T(s/8)+T(s/16) + ...+ T(1)]
= glogs

21
Theorem 4.2.2 With heap of M bytes and mazlive M bytes, to allocate a s-byte

block, s — 1 blocks must be relocated, in worst case.

Proof: Similar to the above proof, here also s — 1 bytes have to be relocated.
Let R(s) be the number of blocks to be relocated to allocate a s-byte block and
T'(s) be the number of blocks to be relocated to relocate an s-byte block. T'(1) = 1.

R(s) = T(s/2)+T(s/4)+...+T(1)
= 14+2x[T(s/4)+T(s/8) +...+T(1)]
= 1+2+4+...+5/2

= s—1

4.3 Optimal Sequence of Relocation can be Sorted

from Small to Big

To allocate a block some times the heap has to be defragmented by relocating some
blocks. There can be many solutions, relocation sequences, such that the changed
heap has a free block of required size. Optimal relocation sequence is one which
relocates minimum amount of storage to get a free block of required size. In this
section we show that any optimal relocation sequence can be sorted such that the
smaller blocks are relocated before the bigger ones to get another optimal relocation
sequence.

Notation:
e b; denotes a block of size 2¢ bytes.

e 7(b;,11,15) is defined as relocation of block b; from location I; to [s.

Lemma 4.3.1 To allocate a block b;, no block b;, where ¢ < j, is relocated, for the

relocation sequence to be optimal.

Theorem 4.3.2 No block b; can be moved to location vacated by block b;, where 1 < j,

for the relocation sequence to be optimal.

22

Proof: Assume otherwise. That is, assume y(bj, j1, jo) and (b, 41, j1) are part of
the optimal relocation sequence, in that order.

Let b, be the block to be allocated because of which the relocation is taking
place. From the Lemma 4.3.1, j < a.

Due to the movement of block b; to location j;, which was vacated by b;, block
b, cannot be allocated in the space containing location 7;. It has to be allocated some
where else after some other sequence of relocations.

But without moving b; from location j; and 7(b;, %1, j2) gives a configuration
obtained with a lesser amount of relocation and equivalent to the first one as far as

allocation of b, is concerned. This is a contradiction. n

Theorem 4.3.3 In any optimal relocation sequence smaller block can be relocated

before a bigger block.

Proof: Assume otherwise. That is, an optimal sequence needs to relocate b; prior to
b;, where 7 < j (i.e. b; cannot relocate before b; does). The only thing which stops b;
from relocating prior to b; is if b; has to move in to the space b; vacates. But this is
impossible by the above theorem. Therefore, the optimal relocation sequence can be

changed so that b; is relocated before b;.]

Corollary 4.3.4 Any optimal relocation sequence can be sorted so that smaller blocks

are relocated first.

Proof: By above theorem, a smaller block can be relocated before a bigger block.
Hence, given an optimal relocation sequence, it can be sorted in ascending order of

block sizes. -

4.4 Greedy Heuristic with 2M Heap

In this section, we use 2M-byte heap to see how the allocation requests are satisfied
with this extra storage and how much storage we have to relocate if the need arises.
Remember that 2M-byte is not sufficient to satisfy all allocation requests as shown in
Section 3.2. We present a theorem (Theorem 4.4.3), which directly forms a basis for
a greedy algorithm [3] that relocates less than twice the storage an optimal algorithm
would relocate.

Note the way we use the words chunk and block (of storage). A 2k-byte chunk
is a contiguous storage in the heap which consists of either free or occupied blocks
(objects).

23
Lemma 4.4.1 With 2M-byte heap, when allocation for a block of 2% bytes is re-

quested, there is a 2%-byte chunk with less than 25~ bytes live storage.

Proof: Case 1: If there is a free block of size greater than or equal to 2* bytes, the
lemma is proved.

Case 2: There is no free block of size greater than or equal to 2* bytes.

Size of the block needed = 2* bytes

Maximum possible storage currently live = M — 2*

Total number of 2F-byte chunks = 2M /2"

M — 2%
The average number of bytes live in a 2f-byte chunk < W
_ M — 2k -1
M
< 2]671

= Half the required size

Since the average number of bytes live in a 2*-byte chunk is less than 2¢~!
bytes, there must at least one 2*-byte chunk with less than 2¥~! bytes live storage.

If there is an allocation request for a 2¥-byte block and there is no free block
of 2% bytes then, from the Lemma 4.4.1, less than 2¥~! bytes have to be relocated to
create a free 25-byte block. But to relocate these blocks we might have to empty some
other blocks by repeated relocations if there are no appropriate free blocks. So how
much storage these recursive relocations move? Unlike in the above lemma, where the
entire 2M storage space can be used to select a 2¥-byte block, in this case the 2*-byte
chunk in which the blocks to be relocated are present cannot be used because this
2%_byte chunk is being emptied to satisfy an allocation request for a 2*-byte block.
Similarly, the chunks which are used for repeated relocation cannot be used. For
example, there is an allocation request for 256-byte block but there is no such a free
block. To satisfy the allocation some blocks have to be moved to some other locations
to get a free block of 256 bytes. According Lemma 4.4.1, there is a 256-byte chunk
in which less than 128 bytes are live. Assume there is a 64-byte block in that live
storage, which has to be moved out of 256-byte chunk. Assume there is no free block
of 64 bytes. Now a 64-byte chunk has to be emptied. Let that contain a block of 16

24
bytes. This 16-byte block cannot be moved in to either the 256 or the 64-byte chunk,

as it is being relocated in the first place to empty those chunks.

Lemma 4.4.2 With 2M-byte heap, if there is an allocation request for a 2*- byte
block when there is no free block of size of greater or equal to 2F bytes, for any 29-byte
block to be relocated!, where ¢ < k, there is a 2%-byte chunk with less than 2971 live

storage .

Proof: Case 1: 2%-byte block is part of the 2¥-byte chunk to be emptied.
Maximum possible storage (in bytes) currently live except in the 2-byte chunk
=M —2k_29
Total amount of storage (in bytes) not counting the 2*-byte chunk = 2M — 2%
Total number of 29-byte chunks which can possibly be used for relocation = (2M —
26) /21
Let the average number of bytes live in a 2¢-byte block that can be used for

relocation be A.

M — 2k — 29
A S Gar— o
M -2k
(M — 2k=1) /201
< 92171

Case 2: 29-byte block is part of a chunk that has to be emptied to allow
repeated relocation. Assume, to empty a 2F-byte chunk a 29-byte block is to be
moved out and that there is no free block of 2%* bytes. So a 2%-byte chunk has to
be emptied — assume it has a 2%2-byte block, which has to be moved out, but there
is no free block of 2% bytes (Vi,j i < j — ¢ > ¢;). So a 2%-byte chunk has to be
emptied and a similar problem as above exists and goes on until a 29 -byte chunk has
to be emptied, which has a 29-byte block to be moved out. Now we have to prove
that there exists a 29-byte chunk which has less than 27-! bytes of live storage.
Maximum possible storage (in bytes) currently live not counting the chunk 2* and
the blocks 27;,2% ...,2% and 27

=M-—2F_20n 20 _ _92u _ 21

L The relocation need not be the first one to empty 2F-byte chunk. It could be any of the relocations
that are needed during the repeated (recursive) relocations

25

Total amount of storage (in bytes) that can possibly be used for relocation

=2M -2k 920 202 _ _ 9%
Total number of 2¢-byte chunks that can be used for relocation
=(2M — 2k — 200 — 29 — | —24)/24

(Since 2%-byte block cannot be moved to either the 2% or 2%-byte chunk, 1 < i < r.)
Let the average number of bytes live in a 2%-byte block that can be used for

relocation be A.

A < M2 ogm o g
= (@M — 2k —2a — 90— — 24n) /20
M —2k _on 96 _m _ 2
T (M -2k 120l _om 1 2w 1)/a1
< 20!

Since the average number of bytes live in a 2%-byte chunk is less than 279!

bytes, there must at least one 2%-byte block with less than 297! bytes live storage.

Theorem 4.4.3 With 2M -byte heap, the greedy approach of selecting a chunk with
minimum amount of live storage for relocation, relocates less than twice the amount

of storage relocated by an optimal strategy.

Proof: To get a free 2F-byte block, an optimal algorithm has to move at least the
blocks present in a minimally occupied 2% byte chunk. Let this minimally occupied
chunk has m bytes of live storage.
The greedy algorithm also selects a 2* byte chunk with live storage of m bytes.
Let
m=2" 422 4 42

Now the greedy algorithm has to find space for these blocks to relocate. From
the Lemma 4.4.2, to relocate any 2%-byte block we can find 2%-byte chunk which has
less than 2%~! bytes of live storage.

Let the amount of live storage that needs to be relocated to help move out m

bytes be m/'.

m < 2u~lpon-l 4 gir—l

26
= (2" +27% 4. +2")/2
= m/2

But m' bytes has to be relocated to some where else recursively, till there is
no need of any relocation. Taking the same approach as above, m' bytes relocate less

than m'/2 bytes, which in turn relocate less than m'/4 bytes and so on.

The total amount of storage that is to be relocated < m+m/2+m/4+...+1

= 2m -1

Therefore, the greedy approach relocates less than twice the amount of storage

that an optimal algorithm relocates. [

Corollary 4.4.4 With a 2M -byte heap, the amount of storage relocated to allocate a
s-byte block is less than s bytes.

Proof: Follows from the Lemma 4.4.1 and the Theorem 4.4.3. n

4.4.1 Heap Manager Algorithm

The main idea in Theorem 4.4.3 is to select a minimally occupied chunk of the required
size and relocate all the sub blocks in that chunk to some other locations. The cost of
such a relocation is proved to be less than twice the optimal cost when the heap size
is 2M bytes. In this section, we describe a data structure and algorithms to find the
minimally occupied block and relocate the sub blocks. Here we assume the assume
the heap size 2M bytes.

A simple way of finding the minimally occupied chunk is to go through the
entire storage and seeing which block of required size has less live storage. But the
time complexity of such a search is O(M) (note that it is of the order of the heap
size which is 2M byte). To decrease the search time we use a data structure, similar
to the heap data structure [3] but without the sorting, to record the amount of live
storage in chunks of size 2,4,..., M bytes. This data structure is similar to the
heap data structure for locating the parent or child node using the node’s address.
For example, in Figure 4.1, the whole storage is 16 bytes. First level in the data

structure keeps track of how full the 2-byte chunks of the storage are. It stores

27

16— [9)

g —

4 —

2 — 2] [1] [d [1][2][2] [2][o] _

~+— Storage

Data Structure

7
z Occupied Free

Figure 4.1: Data Structure

the number of live bytes each 2-byte chunk has. That 2-byte chunk can be two 1-
byte blocks or a 2-byte block. The second level stores fullness of 4-byte chunks by
taking the numbers from the first level which keeps track of 2-byte chunks. This
way of recording the fullness goes for on 8, ..., M-byte chunks. For example, when
a 2-byte block is allocated appropriate node in the first level is updated. But that
information has to propagated to second level and so on. That is where having a
heap-like data structure is helpful in finding the appropriate parent node. To find a
minimally occupied block of the required size, only that particular level is searched
in the data structure. This decreases the time complexity of the search to O(M/s),
where s is the required block size (it has to go through 2M/s numbers to find a
minimum). This is done by FindMinimallyOccupiedBlock() method in the pseudo
code given below (pseudo code for all the methods mentioned in this section is given
below in Section 4.4.2). After finding a minimally occupied block, all the sub blocks
can be relocated to some other locations guaranteeing the less than twice the optimal
relocation cost, by the Theorem 4.4.3. These relocations cost more search time. The

overall time cost is given below in Section 4.4.3. But having this data structure adds

28
2M — 1 bytes additional storage requirement. In fact, the data structure does not
need to keep track of 2-byte chunks as the need to find a minimally occupied block
of 2 bytes never arises. That is because when there is a need to find a 2-byte block,
less than M bytes storage is live out of 2M bytes, and therefore the average number
of bytes live in a 2-byte chunk is less than 1 indicating there is 2-byte block free. So
the data structure can start tracking at 4-byte chunk level. This reduces the extra
storage requirement by half to M — 1 bytes (with a 2M-byte heap).

In Initialization() method all the values in the data structure are initialized
to 0. Allocate() method tries to allocate a block of requested size according to the
address-ordered best-fit buddy allocation algorithm (Section 2.4.2). If there are no
blocks of requested size or bigger, the normal buddy allocator [6] cannot satisfy the
request and gives an error. But this Allocate() relocates some blocks to create a big
enough chunk to satisfy the request. First it calls FindMinimallyOccupiedBlock()
method to find a minimally occupied block and then calls Relocate() to relocate
the sub blocks. Relocate() deallocates a sub block by calling deallocate() and then
allocates that sub block else where, except in the block which is being freed. It is
applied to all the sub blocks one after another.

The important method which is called after every allocation or deallocation is
UpdateHeapManager(), which updates the data structure according to the changes in
each sub tree (for example Figure 4.1). When an allocation (deallocation) occurs at
a particular level, values in all the above levels are increased (decreased) by the size
of the allocated (deallocated) block (costs O(log M) time units) and all the sub levels
are supposed to be changed to full (empty). But noticing that sub levels are either
full or empty, and that a particular level is not searched when there is a free block
(normal buddy allocation finds a block and the relocation algorithm is not called) we
need not update the sub levels and just assume empty indicates the chunk being full

because of some block of bigger size using it.

4.4.2 The Algorithm — Pseudo Code

1. Initialization()
fori =0to H—1
heapManager[i] = 0; /* empty heap */

2. Allocate (S)
if there is a free block of size S

29
allocate the block of size S with the lowest address, A
UpdateHeapManager(S, A, “allocation”)
else search for a free block of size bigger than S in increasing order of size
if found, select the block with the lowest address
split the block recursively until there is block of size S
select the block of size S with the lowest address, A
UpdateHeapManager(S, A, “allocation”)
else
A = FindMinimallyOccupiedBlock(S) /* finds block to relocate */
Relocate(S, A) /* relocates the sub blocks from block A*/
allocate the block with address A
UpdateHeapManager(S, A, “allocation”)

3. FindMinimallyOccupiedBlock(S)
find i such that heapManager[i] is minimum for ¢ = 2H/S — 1 to H/S
return address A =1 << log, S

4. Relocate(S, A)
subBlocks = FindSubBlocks(S, A);
for each SB € subBlocks
Deallocate(SB), VSB € subBlocks
/* allocates the subblocks in a location other than A */
Allocate(SB, S, A), VSB € subBlocks

5. Deallocate(extId)
find address A of block extId and size S;
free the block;
UpdateHeapManager(S, A, “deallocation”);

6. UpdateHeapManager(S, A, type)
int maxLevel = log, H;
int level = log, S,
if type= “allocation”
int addr = A >> level;
if § > MinBlockSize

30
heapM anager|addr] = S /* block is fully occupied */
/* blocks above the allocation level */
addr = A >> level;
for (i = level + 1;1 <= maxLevel;i + +)
addr = addr >> 1;
heapM anager|addr] = heapManager|addr] + S;
if type= “deallocation”
int addr = A >> level;
/* current block */
it S > MinBlockSize
heapManager|addr] = 0;
/* blocks above the deallocation level */
addr = A >> level;
for (i = level + 1;1 <= maxLevel;i + +)
addr = addr >> 1; //continuing from above addr
heapManager|addr] = heapManager|addr] — S;

4.4.3 Time and Storage Bounds

Theorem 4.4.5 If H is the heap size, Heap Manager Algorithm needs O(H) storage.
Proof: Our heap-like data structure needs H — 1 bytes. [

Theorem 4.4.6 With 2M -byte heap, defragmentation according to the Heap Man-
ager Algorithm(Section 4.4.1) to satisfy a single allocation request of a s-byte block
takes O(Ms%5%) time.

Proof: Let the allocation request be for a s-byte block, where s < M. If there is a
free block of s bytes then that is allocated and the allocation is satisfied. If there is
no free block of s bytes then the allocator first defragments a s-byte chunk of storage.
According to the Lemma 4.4.1, there is a s-byte chunk with less than s/2 bytes live.
As mentioned in Section 4.4.1, search for a minimally occupied s-byte block has to go
through 2M /s numbers (in short we call the time taken is 2M /s units). After finding
a minimally occupied chunk all the blocks in that chunk have to be relocated to other
locations to free up the s-byte chunk. Each block to be relocated needs searching for
a minimally occupied block (only in case there is no free block of that size, which we

assume for the purpose of worst case analysis). Since a s-byte chunk is less than half

31
full the largest live block in that chunk is of s/4 bytes, and in worst case blocks of
sizes s/4,s/8,...,2,1 bytes can exist in that chunk.

Let T'(s) be the total number of time units taken for emptying the s-byte chunk
including all the time taken for the relocations required. Searching for a minimally
occupied block is not required for a 1-byte or a 2-byte block, so T'(1) = T'(2) = 0,
T(4) =2M/4 = M/2. Below, F (i) denotes the i* Fibonacci number. Fibonacci series
is given by the recurrence relation F(s) = F(s —2)+ F(s—1),F(0) =0,F(1) =

Also, F(s) = % <1+2‘/5)3 - % (1’2‘/5)8. Please see [9] for a proof. Note that log

denotes log,.

T(s) = 204 T(s/4) +T(s/8) + ...+ T
_ M {% +T(s/16) +T(s/32) + ... + T(4)} +T(s/8)+...+T(4)
= QAJ 2?1 +T(s/8)+2x[T(s/16) +T(s/32) + ...+ T(4)]

_ 20 L2 2N T (s/16) + 3% [T(5/32) + T(s/64) + ...+ T(4)]

s/4 s/8
- QiW + i% + i% +2- :/j\l/[()' +3%T(s/32) + 5% [T(s/64) + ...+ T(4)]
= 22\4 [1+1-441-842-16+3-32+...+ F (log(s/4) — 1) - 2¢/")]
— 22\4 [1 +448+2-16+3-32+...+ F (log(s/8)) - 2log(s/4)]
= Qi‘/f [1 [1 141-2+42-443-84+...+ F (log(s/8)) - 2109(5/4)_2“
= Qi\/f [1 +4 [)20+ F(2) -2 4+ ...+ F(log(s/8)) - 210g(s/16)]]
oM [log(s/8)

= —-|1+4| > F@)-2"

§ | =1

|

e)]

2M 1

= — 144 [10 {(1 + V/5)1o8(/8FH (1 — (/5)losls/B)+1 _ 2}”
2M 1

= g {0 VEE st o)
oM [2

< 1+ {(1 + V/5)los(s/4) 4 Z —~ 2}]

32

- 2M 1+2 (S>1'695+8 5
S 5 | \4 4

— O(MSO'695)

Theorem 4.4.7 With M-byte heap, defragmentation according to the Heap Man-
ager Algorithm(Section 4.4.1) to satisfy an allocation request for a s-byte block takes
O(Ms) time.

Proof: In worst case, every chunk of s bytes can occupied with s — 1 bytes made
up of s/2,s/4,...,2,1-byte blocks. Searching for a minimally occupied s-byte chunk
takes M /s units time. Please refer to the above proof for more explanation about
relocation.

Let T'(s) be the total number of time units taken for emptying the s-byte chunk
including all the time taken for the relocations required. Searching for a minimally
occupied block is not required for a 1-byte so 7'(1) = 0, and T'(2) = M/2.

T(s) = % +T(s/2)+T(s/4)+...+T(2)
M

- Yy 8% +2[T(s/4) + T(s/8) + ... + T(2)]

M M M s
_ ?+t9/—2+2.s/—4+4lT(S/8)+T(S/16)+”.+T(5/—2)

M
— [1+1-2+2-4+4.8+f-5]

s 4 2
M 1+1 s2 5
- 3\ 2

M(+2)
= — (s —
6 s

= O(Ms)

—~

]

The above two theorems give the worst case time bounds for the defragmen-
tation to satisfy a single request. With 2M bytes heap defragmentation takes O (M)
time and with M bytes heap it takes O(Ms) time to allocate a s-byte block. So

33
the system designer has to go for a trade-off between the amount of storage and the
defragmentation time. If the time is a more important constraint then having 2M
bytes storage is better than having only M bytes, and if the system can go easy on
time then it is better to go with M-byte heap to keep the cost low.

Chapter 5 shows experimental results with heap of 2M and M bytes.

34

Chapter 5
Experiments

Storage requirements as well allocation and deallocation patterns vary from one pro-
gram to another. Hence, storage fragmentation and the need for defragmentation
varies as well. This chapter describes the implementation of the defragmentation al-
gorithm presented in Section 4.4.1 and its application on some real benchmarks. To
facilitate experimentation, we implemented a simulator that takes the allocation and
deallocation information from a program trace! and simulates the effects of allocation
and deallocation. The simulator uses address-ordered best-fit binary buddy algorithm
to satisfy the program’s allocation and deallocation requests. If it cannot satisfy an
allocation request from the heap due to fragmentation (and not due to exceeding
maxlive), then it carries out the defragmentation algorithm in Section 4.4.1 to create
a sufficiently large free block to satisfy the request.

All the results mentioned in this chapter are based on Release 1.1 of the sim-
ulator.

In Section 5.1 information about the test programs is given. In Section 5.2

implementation of the simulator is explained and in Section 5.3 the results are given.

5.1 The Test Programs

Various programs with different allocation patterns were tested by the defragmen-
tation algorithm. By instrumenting the allocator to print out the allocation and

deallocation requests, we logged all the requests of the program which includes size

! This portion was implemented by Dante Cannarozzi, Steve Donahue and Matthew Hampton

35
of each request. We rounded the size of a requested block to its next power of 2, as
our simulation uses buddy allocation algorithm.

As mentioned in Section 4.4.1 all the allocated blocks’ information is main-
tained in separate storage of size maxlive. This is done to make the searching for the
appropriate block faster if the need for defragmentation arises. To create space for
block of size n our algorithm relocates minimally occupied chunk of size n. If we go
through the whole heap it takes O(M) time to find a minimally occupied of chunk.
But if we have a heap-like data structure as in Section 4.4.1 to maintain the amount
of live storage for each size the search time takes decreases to O(M/n). Also, the
overall defragmentation takes O(Mn®5%) time with 2M bytes heap. For more details
see Section 4.4.1 and the example in Figure 4.1. Note that the time taken is only for
searching appropriate blocks to relocate without actually moving the storage, unlike

the compaction algorithms which move all the storage to one end of the heap.

5.1.1 Java Test Programs

The allocation and deallocation information for the benchmarks was obtained by
instrumenting the garbage collector in a Java Virtual Machine (JVM). Instead of
the regular garbage collector, we used the Contaminated Garbage Collector [1]. Unlike
mark and sweep collectors which mark live objects and assume all the unreachable
objects to be dead, contaminated garbage collector associates each object with a stack
frame such that it is collectable when the frame pops.

Some of the properties — notably maxlive and maximum number of objects
live at any point — are specific to the Contaminated Garbage Collector. If the alloca-
tion and deallocation information were obtained using a different garbage collection
technique, then these statistics would be different.

Figure 5.1 shows the properties of the SPEC benchmarks [4] that we used for
the simulations: program size, maxlive, max objects live, number of allocation and
deallocations, max and min block size requested by the program and overall storage
allocated by the program in its life time.

The maxlive is obtained after rounding the allocation requests to next higher
power of 2. Depending on the program and its size the maxlive varies from 411552
bytes for Check of size 1 to 15494888 bytes for Compress of size 10. We have not done
many simulations for programs with size 100 because of the long time and storage

they need.

36

Program Maxlive | Maxlive| Allocations| Deallocations| Max Min Overall
(size) (bytes) | (ob- Block Block | Storage
jects) size Size | Allocated
check(1) 411552 | 4957 6296 1505 32768 8 559112
compress(1) 9972336 | 4605 5124 653 4194304/ 8 10021232
compress(10) | 15494888 4657 5234 711 4194304| 8 15553096
db(1) 500832 | 5482 7609 3111 32768 8 774696
db(10) 3064536 | 99626 122015 117521 524288 | 8 4958896
jack(1) 1955616 | 11314 209715 198890 32768 8 7050032
javac(1) 871432 | 17440 26115 8812 32768 8 1549808
javac(10) 2204600 | 55236 209715 155837 32768 8 8743504
jess(1) 638328 | 10132 45868 36377 32768 8 2355552
jess(10) 1177768 | 16910 106514 90036 32768 8 5510056
jess(100) 1377448 | 21428 209715 189410 32768 8 8974528
mpegaudio(1) | 594232 | 7006 7551 679 32768 8 649768
mpegaudio(10)| 742912 | 8487 9087 734 32768 8 817984
mtrt(1) 5341472 | 209435 | 209715 330 262144 | 8 5353776
raytrace(1) 5341704 | 209433 | 209715 332 262144 | 8 5354200

Figure 5.1: Java Test Program Characteristics.

Program | Maxlive | Max Allocations| Deallocations| Max Min Overall
Objects Block Block | Storage
Alive size Size Allocated
cfrac 34552 | 1521 1528 1230 512 8 36728
gawk 3680046 | 151465 | 874375 722920 8192 1 50344545
gs 673248 | 6195 108541 102384 32768 16 31689120
p2c 96802 | 1698 5479 4265 1024 2 222312
ptc 102304 | 2885 2885 0 1024 8 102304

Figure 5.2: C Test Program Characteristics.

5.1.2 C Test Programs

Similar to the above Java programs Figure 5.2 lists the properties of the C programs

we used in our simulations.

5.2 Simulator

The simulator, implemented in Java programming language, reads the program trace
— program’s allocation and deallocation requests — from a file and executes each

request. For example, an allocation request looks like “1 17 32”7, where ’1’ indicates it

37
is an allocation request, '17’ is the identification number, in short Id, of the block being
requested and ’32’ is the size of the block. Further down in the program trace this
Id is used to request deallocation, if any, of the block. For example, the deallocation
request for the block allocated above looks like “0 17”7, where ’0’ indicates it is a
deallocation request and ’17’ is the Id of the block.

The simulator starts with a fixed size heap according to the given parameters.
For example, for the experiments we use heap of size M and 2M. Tt uses storage equal
in size to the heap to keep track of density of the allocated blocks according to the
Heap Manager Algorithm given in Section 4.4.1. It uses standard Java class HashMap
to maintain mapping between the block Id and the address on the heap where it is
actually located. If an allocation request is unsatisfiable due to fragmentation, then
the simulator relocates part of the storage or compacts the heap to make space for

the requested block. Its behavior is described in the following subsections.

5.2.1 Allocation

Allocation is according to the address-ordered best-fit buddy algorithm described in
Section 2.4.2, where a block of smallest possible size equal to or greater than the
required size is selected with preference to the lowest address block. When a block of
required size is not available then a block of higher size is selected and split repeatedly

until a block of required size is obtained.

5.2.2 Defragmentation

The algorithm used is the greedy algorithm given in Section 4.4.1. If there is no block
of the requested size and larger, then it finds the minimally occupied block of the
requested size and relocates the chunks to some other locations in the heap and uses

the free block created to satisfy the allocation request.

5.2.3 Left-First Compaction

This is an alternative to defragmentation when there is no free block to satisfy an
allocation request. It compacts all the storage to the lower end (left end as shown in
the Figure 5.3), based on address, by filling up the holes with the closest block (to the

right) of less than or equal size. An example is shown in Figure 5.3 where Figure 5.3(a)

38

(@)

Y8 A A

(b)

Occupied Free

Figure 5.3: Left-First Compaction

and Figure 5.3 (b) gives the initial and final configuration. The movement of occupied

blocks is indicated by arrows beginning from the left.

5.2.4 Right-First Compaction

Similar to left-first compaction in moving all the storage to the left end of the heap
but it picks the blocks from the right end i.e., farthest addressed block of size less
than or equal to the hole. An example is shown in Figure 5.4 where Figure 5.4(a) and
Figure 5.4 (b) gives the initial and final configuration. The movement of occupied
blocks is indicated by arrows beginning from the left. Since our buddy allocator uses
address-ordered policy (left-first in the figures) the heap tends to be full on the left
end of the heap. So compaction by moving blocks from the right end should move
less memory than left-first compaction and hence be a tougher competitor to our

defragmentation algorithm.

39

Gtk

(b)

Occupied Free

Figure 5.4: Right-First Compaction

5.2.5 Compaction Without Using Buddy Properties

This method has been implemented to compare our defragmentation algorithm to
a naive compaction method of sliding the blocks to one end of the heap, without
following the buddy block properties similar to the general non-buddy allocators. An

example is given in Figure 5.5.

5.3 Results

The most important part of this research is to provide bounded time guarantee for
each and every allocation request. As we have seen in Section 4.4, the defragmentation
algorithm does provide bounded time allocation and the amount of storage relocated
during defragmentation is given for heaps of size M and 2M bytes. This section
shows the results of the application of the defragmentation algorithm (Section 4.4.1)
to see the overall amount of relocation that takes place in SPEC benchmark programs’

life-time.

40

R R

(@

58 R8s

(b)

Occupied Free

Figure 5.5: Non-Buddy Compaction

5.3.1 Defragmentation with 2M/-byte Heap

First we explored the defragmentation in various benchmarks with 2M-byte heap
using the algorithm described in Section 4.4.1, which is based on the theorem 4.4.3.
To our surprise we found that none of the benchmarks needed any defragmentation
when the heap size is 2M bytes! So having twice the maxlive storage, the address-
ordered best-fit buddy allocator is able to avoid any relocation of the storage. Even
some randomly generated program traces® did not need any relocation with a heap of
size 2M bytes. Looking at these results, we wonder if fragmentation is a real problem.
If having extra storage is not big issue, just by putting some extra storage, we might
be able to get rid of fragmentation issue altogether. In a study [5], it has been shown

that some well-known allocation algorithms have essentially zero fragmentation.

Bytes (log scale)

41

Java Benchmarks

100000000

10000000 -
1000000 -
O Maxlive
H Overall Memory Allocated
O Relocation
100000 | O LeftFirstCompaction
H RightFirstCompaction
O Compaction
10000 -
1000 -
100 A
10 A
1 4
ecl}
&

Programs(size)

Figure 5.6: Java Test Programs — Amount of Relocation

Bytes (log scale)

100000000

10000000

1000000

100000

10000

1000

100

10

C Benchmarks

O Maxlive

M Overall Memory Allocated
O Relocation

O LeftFirstCompaction

M RightFirstCompaction

O Compaction

cfrac gawk gs p2c ptc

Programs

Figure 5.7: C Test Programs — Amount of Relocation

42

43
5.3.2 Defragmentation with M-byte Heap

After seeing that none of the benchmarks needed any defragmentation with 2M-byte
heap, we experimented with M-byte heap to see the effect of fragmentation and the
performance of our defragmentation. But with only M-byte heap there is no guarantee
about how much storage is relocated when compared to the optimal. From Figure 5.6
and Figure 5.7 we can see that very few programs required defragmentation! Among
the programs which needed defragmentation, except for Jess of size 1 and Javac
of size 10, the amount of storage relocated by our defragmentation algorithm for
other programs is very insignificant. But compared to our algorithm which relocates
storage only to satisfy a particular request without defragmenting the whole heap,
all the compaction methods perform badly. The amount of storage relocated by
our defragmentation algorithm is summed over all the relocations necessary, whereas
for the compaction methods the amount is only for one compaction which is done
when the allocator fails to satisfy an allocation request for the first time. Among
all the compaction methods only right-first compaction (Section 5.2.4) performed
reasonably well. The other two methods — left-first compaction (Section 5.2.3) and
naive compaction of sliding all the live storage to one end (Section 5.2.5) — relocated
lot more storage, which some times is almost equal to the maxlive of the program.
The above results, which showed the weakness of the compaction methods
when compared to our defragmentation algorithm, indicate that it might be a good
idea to go for localized defragmentation to satisfy a single allocation request instead
of defragmenting the whole heap. If the defragmentation is needed for very few
allocations (according to the amount of storage relocated as shown in Figure 5.6 and
Figure 5.7 and the number of relocations as shown in Figure 5.9) there is no point in
doing extra work by compacting the whole heap, either in anticipation of satisfying

the future allocation requests without any defragmentation or for some other reason.

5.3.3 Minimally Occupied vs Random Block Selection

Here we compare the two different heuristics — selecting minimally occupied block
and selecting a random block for relocation. They are compared using the amount
of relocation and the number of relocations required, for various programs. Since

not all the benchmarks need defragmentation as seen in Figure 5.6 and Figure 5.7,

2The program to generate a random allocation and deallocation sequence with a particular
maxlive was implemented by Delvin Defoe

44
the random block selection heuristic is applied only on the programs that needed
defragmentation.

From Figure 5.8 we see that out of the 6 Java SPEC benchmark programs which
needed some defragmentation, for 3 programs (namely check(1), db(1) and jess(100))
the same amount of relocation is required for both the heuristics — selecting minimally
occupied block and selecting a random block, for 2 programs (namely jess(1) and
jess(10)) selecting minimally occupied block is better and for 1 program (namely
javac(10)) selecting random block is better.

From Figure 5.9, 2 Java SPEC benchmark programs (namely check(1) and
db(1)) needed same number of relocations while other 4 (namely jess(1), javac(10),
jess(10) and jess(100)) needed different number of relocations. For all those 4 pro-
grams selecting minimally occupied block is better. Note that even though random
selection needed more relocations for javac(10), the amount of storage relocated is
less.

For the C benchmarks there is no significant difference between the two heuris-
tics. So we have not listed them here.

The above results indicate that using the random block selection might be a
good alternative. That would avoid the search time for the minimally occupied block.
Since the search time is significant the system designer should determine if it is worth

going for the minimally occupied block for a particular system depending on its needs.

Relocation: Minimal vs Random

10000000
1000000
100000
10000 -
@
©
o
)
o
2
0
[
s
)
1000 - — 1
100 +]
10
1+
checkl dbl jessl javacl0 jess10 jess100
O Maxlive 411552 500832 638328 2204600 1177768 1377448
W Overall Memory Allocated 559112 774696 2355552 8743504 5510056 8974528
O Relocation: Minimally Occupied 8 8 296 1536 56 56
O Relocation: Random Partially Occupied 8 8 968 1024 120 56

Program(size)

Figure 5.8: Minimally Occupied vs Random — Amount of Relocation

45

35

30

25

20

Number of Relocations

15

10

0

Number of Relocations: Minimal vs Random

checkl

jessl

javac10

jess10

jess100

O Number of Relocations: Minimally
Occupied

B Number of Relocations: Random
Partially Occupied

1

27

2

30

3

Figure 5.9: Minimally Occupied vs Random — Number of Relocations

Program(size)

46

47

Chapter 6
Conclusion and Future Work

First we showed kM storage is sufficient for a defragmentation-free buddy allocator,
where k is the number of different block sizes the program can request. We gave
examples to show that O(M) is not sufficient for a defragmentation-free buddy allo-
cator. Then we proved a tight bound of M (logm + 2)/2 for a defragmentation-free
address-ordered buddy allocator.

We proved various theorems showing allocation of blocks in non-increasing
order of sizes will never lock the allocator because of fragmentation, and that optimal
relocation sequence can be sorted in increasing order of the block sizes.

Designed a greedy algorithm, with heap-like datastructure with bounded time

0-695) to allocate a s-byte block and less than twice optimal re-

guarantee of O(Ms
location, with 2M-byte heap. We also gave the bounds with M-byte heap. Even
though the programs’ traces we experimented with did not need any relocation with
2M, there is some relocation involved when heap size is M. The results show bet-
ter performance of a localized defragmentation algorithm, which defragments just a
small portion of the heap to satisfy a single request, over the conventional compaction
algorithms.

Also, we compared the greedy algorithm with random selection heuristic to
find that our greedy algorithm performed better, as expected. But since the overall
fragmentation is low, random heuristic that takes lesser time might be good enough
for some systems.

As the effectiveness of the localized defragmentation, by relocation, is estab-
lished in this thesis, it is a good idea to concentrate on studying such algorithms
instead of defragmenting the entire heap. We proposed only one algorithm based on

heap-like data structure, so further study could involve designing and implementing

48
better data structures and algorithms to improve on the current ones. For example,
instead of using linear search in each level of the data structure we can use heap sort
to maintain each level, hence making the cost of searching a minimally occupied block
O(1) and cost of updating each level O(log N), where N is the number of nodes in
that level.

Our experiments are based on program traces using Contaminated Garbage
Collection [1] only. It would useful to conduct experiments with traces collected from
other garbage collection methods like Reference Counting [12] and the mark and
sweep garbage collectors [12]. The future work could involve the implementation of
the defragmentation algorithm in JVM. That will give a better idea of actual time it
takes and see if we can give exact bounds in micro or milli seconds it takes to allocate
a block of particular size (for some specific machine configuration).

Also, studying the effects on cache when such a localized defragmentation

algorithm is used would be interesting.

49

References

[1] Dante J. Cannarozzi, Michael P. Plezbert, and Ron K. Cytron. Contaminated
garbage collection. In Proceedings of the ACM SIGPLAN 00 conference on
Programming language design and implementation, pages 264-273. ACM Press,
2000.

[2] Benjamin Chelf. Dynamic memory allocation — part ii. Linuz Magazine, July
2001.

[3] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, Mass., 1990.

[4] SPEC Corporation. Java SPEC benchmarks. Technical report, SPEC, 1999.
Available by purchase from SPEC.

[6] Mark S. Johnstone and Paul R. Wilson. The memory fragmentation problem:

Solved? In International Symposium on Memory Mangement, October 1998.

[6] Donald E. Knuth. The Art of Computer Programming, volume 1: Fundamental
Algorithms. Addison-Wesley, Reading, Massachusetts, 1973.

[7] C. L. Liu and J. W. Layland. Scheduling algorithms for multi-programming
in a hard real-time environment. Journal of the Association for Computing
Machinery, 1:40-61, January 1973.

[8] J.M. Robson. Bounds for Some Functions Concerning Dynamic Storage Alloca-
tion. Journal of ACM, 21(3):491-499, July 1974.

[9] Kenneth H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill,
New York, NY, 4th edition, 1999.

[10] John A. Stankovic. Strategic Directions in Real-Time and Embedded Systems.
ACM Computing Surveys, 28:751-763, December 1996.

50

[11] David Stepner, Nagarajan Rajan, and David Hui. Embedded application design

using a real-time os. In Proceedings of the 36th ACM/IEEE conference on Design
automation conference, pages 151-156, New York, NY, 1999. ACM Press.

[12] Paul R. Wilson. Uniprocessor garbage collection techniques (Long Version).
Submitted to ACM Computing Surveys, 1994.

[13] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic
Storage Allocation: A Survey and Critical Review. In International Workshop

on Memory Management, Kinross, Scotland, UK, September 1995.

Date of Birth

Place of Birth

Degrees

Publications

o1

Vita

Sharath Reddy Cholleti

May 19, 1979
Jangaon, Andhra Pradesh, India

B.Tech. Computer Science and Engineering, 2000,
from Indian Institute of Technology, Guwahati, India.

Sharath Reddy Cholleti and Sudeshna Sarkar. “Correlation
based Neural Net Construction” in Proceedings of 5th In-
ternational Conference on Cognitive Systems, New Delhi,
India, Dec 1999.

December 2002

	Storage Allocation in Bounded Time
	Recommended Citation
	Storage Allocation in Bounded Time

	tmp.1471023011.pdf.ya16j

	Abstract: Abstract: The correctness of a real-time system is very much dependent on the time at which a specific task is completed. Hence, satisfying a storage allocation request within bounded time is important. Fragmentation of the heap after repeated allocations and deallocations is a major issue for real-time systems, as most allocators depend on garbage collection for defragmentation of the heap, which might not finish in time to honor deadlines. We present the storage requirement for a defragmentation-free binary-buddy allocator. We also study a localized defragmentation algorithm to satisfy a single allocation request, within bounded time, instead of requiring defragmentation of the entire heap. We prove that the cost of the algorithm is within twice the optimal cost.

Results are presented from applying the defragmentation algorithm, with different heap sizes, on various programs. The amount of storage relocated with our defragmentation algorithm is compared with other compaction algorithms. Also, the amount of storage relocated by selecting a minimally occupied block is compared with the policy of selecting a block randomly.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: January 31, 2003
	Author: Authors: Cholleti, Sharath R.
	Title: Storage Allocation in Bounded Time - Master's Thesis, December 2002
	ReportNumber: 2003-2
	DepartmentName: Department of Computer Science & Engineering

