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ABSTRACT OF THE DISSERTATION

The influence of diet on the mammalian gut microbiome

by

Brian David Muegge

Doctor of Philosophy in Biology and Biomedical Sciences

(Molecular Microbiology and Microbial Pathogenesis)

Washington University in St. Louis, 2013

Professor Jeffrey I. Gordon, Chair

The mammalian gut is residence to a large microbial community whose collective set of millions 

of genes (microbiome) encodes a vast array of functions, including many that process dietary 

components. Few tools are available to change the microbiome’s properties to promote host health 

because the factors governing community assembly and operation are poorly understood. My the-

sis focused on the impact of one factor, host diet.

I used a variety of experimental and computational methods to perform a comparative 

metagenomic study of the fecal communities of 39 diverse mammals to assess microbiome varia-

tion. These animals included herbivores, omnivores and carnivores representing different portions 

of the mammalian tree, Targeted sequencing of the bacterial 16S rRNA gene and shotgun gene 

sequencing of total fecal DNA revealed that animals with similar diets possessed similar microbi-

omes, both in terms of bacterial species detected and the functions that their genomes encoded. A 

large number of genes were found in all gut microbiomes, but the relative abundance of many traits 

was differentially represented in carnivorous compared to herbivorous hosts, demonstrating that 

diet can shape a microbiome. We next studied microbiome variation within a single host species 

consuming a range of diets, using a population of 18 calorie-restricted adult humans with carefully 

recorded dietary intake. Even in these free-living, unrelated individuals, the amount of protein and 

dietary fiber consumed was significantly correlated with the variation in the gut metagenomes.
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My second study addressed the period of dramatic dietary variation in human life when 

breast fed infants are weaned. The study population was a birth cohort of 103 children born in Ban-

gladesh, some of who developed malnutrition during the first two years of life. My results demon-

strate that despite large inter-personal variation, common patterns are found in the establishment 

of bacterial species and functions as the children age. The data revealed a developmental pattern 

of human gut microbiome functional assembly. This was exemplified by the emergence of glycan 

degradation capacity in all children studied. Some of the taxonomic and functional changes can be 

correlated with the host’s diet, but many properties of the developing infant microbiome cannot be 

explained by diet alone.
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Chapter 1

From Animalicules to Zobellia: Development and Function of the 
Human Gastrointestinal Microbiota
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From Animalicules to Zobellia: Development and Function of the 

Human Gastrointestinal Microbiota

“I would like to point out that we depend on more than the activity of some 30,000 genes en-

coded in the human genome. Our existence is critically dependent on the presence of upwards of 

1000 bacterial species (the exact number is unknown because many are uncultivable) living in 

and on us; the oral cavity and gastrointestinal tracts contain particularly rich and active popula-

tions. Thus, if truth be known, human life depends on an additional 2 to 4 million genes, mostly 

uncharacterized. Until the synergistic activities between humans (and other animals) with their 

obligatory commensals has been elucidated, an understanding of human biology will remain 

incomplete.”

-Julian Davies (Davies, 2001)
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The report of the human genome sequence in 2001 ushered in a new era of genomic medicine, 

providing biology with a comprehensive resource to study the role of our genes in health and 

disease (International Human Genome Sequencing Consortium, 2001; Venter et al., 2001). At the 

same time, remarkable new DNA sequencing technologies developed for that project opened new 

windows to the vast collection of genes encoded by the microbes covering and colonizing every 

surface of the human body. The microbiota - the ensemble of bacteria, archaea, eukaryotes, and 

viruses associated with the host - influences human postnatal development, physiology, and maybe 

our predilection towards disease. Just as the human genome provides the blueprint for our cellular 

operations, the genomes of the members of the microbiota guide their interactions with our bodies 

and the environment. Studying the microbiome, or the collection of all of the genes and genomes 

in the microbiota, should help to reveal the molecular basis for this incredible symbiosis (Hooper 

and Gordon, 2001; Lederberg and McCray, 2001).

This thesis focuses on the largest microbial community in the human body, the gastrointes-

tinal microbiota. There are more microbial cells in the gastrointestinal tract than there are human 

cells in the rest of the body, and the hundreds to thousands of different species living in a typical 

gut collectively contain at least 100 times more genes than the human genome (Qin et al., 2010). 

The genes encode a diverse array of functions that are absent from the human genome, including a 

large number of enzymes to process and utilize ingested carbohydrates. The organizing hypothesis 

of this thesis is that dietary variation within humans and between diverse mammals influences the 

functional properties of the gut microbiome. In turn, the resident microbes interact with our food 

and our bodies to influence normal health and possibly contribute to the pathogenesis of malnutri-

tion. Later chapters of this thesis will describe the results of our shotgun gene sequencing studies 

of gut microbiomes that test these hypotheses. The remainder of this chapter reviews the history of 

human microbiome studies, new culture-independent technologies that have dramatically changed 

our views of human microbial diversity, and current knowledge about the influence diet on the gut 

microbiome. Particular attention will be paid to variations in the gut microbiomes of mammals 

with divergent diets, and in humans during the dramatic dietary changes that occur during infancy.
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A brief history of the gastrointestinal microbiota

In 2008, the NIH launched the “Human Microbiome Project” (Peterson et al., 2009). With an in-

vestment of 150 million dollars, this ambitious project strives to describe microbial diversity in the 

mouth, nose, skin, vagina, and gut of several hundred healthy American adults. The goal is to cre-

ate reference datasets and technologies for microbiome studies, analogous to the Human Genome 

Project. This project, and similar efforts in other parts of the world (Qin et al., 2010), sits at the 

cutting edge of modern technology and has been met with a great deal of anticipation. But while 

the technology is new and exciting, comparative studies of host associated microbial communities 

are as old as microbiology itself.

The first images of microbes were reported by the Dutch microscopist Anton van Leeuwen-

hoek in 1683. His work has always been credited as the start of microbiology, but it was simulta-

neously the origin of human microbiome studies. van Leeuwenhoek was curious about the white 

matter that persisted between his own teeth despite cleaning, so he mixed the matter with his saliva 

and placed it under the objective of his microscope. He was searching for a microscopic explana-

tion of taste, but instead witnessed “very many small living animals, which moved very prettily” 

(Bardell, 1983). van Leeuwenhoek called these organisms “animalcules,” and we now recognize 

by his drawings and descriptions that he was first human to see a bacterium.

He was also the first investigator to pursue a comparative study of host-associated mi-

crobiota. His report continued by studying tooth scrapings from four additional people; an adult 

woman, a young girl, a man who didn’t drink or smoke, and an older man who cleaned his few 

remaining teeth by rinsing his mouth with wine each day. van Leeuwenhoek reported that some of 

the rods he detected in his own mouth were seen in all of the samples, but the sober man also had 

spiral shaped “animals” not seen anywhere else, and the older man lacked certain long rods seen 

in the other samples.

Microbiology and bacteriology developed in the centuries after van Leeuwenhoek’s draw-

ings, and by the early 1900s many principles had been established that still guide our under-
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standing of the gut microbial community. The gastrointestinal tract was described as “a singularly 

perfect incubator” because it represented a warm, protected habitat for microorganisms with a 

nearly continuous supply of nutrients from the host diet (Kendall, 1909). The importance of diet 

in influencing bacterial communities had been established in animal models, where defined di-

ets were used in monkeys and dogs to identify elements of the microbiota responsive to specific 

food ingredients (Kendall, 1909; Torrey, 1919). Multiple studies had identified differences in the 

bacterial communities of nursing children compared to weaned children and adults, and Tissier’s 

isolation of Bifidobacterium bifidus from an infant’s stool led to the first “probiotic” trials using 

ingested live bacteria to ameliorate diarrheal disease (Schrezenmeir and de Vrese, 2001). Scientists 

at the turn of the century had already begun creating “germfree” animal models using laboratory 

animals born and maintained in sterile conditions lacking any microorganisms. Early studies in 

germfree guinea pigs, chickens, tadpoles, and turtles hinted at the role of the microbiota in shap-

ing host physiology because most of the animals became sick after several weeks of life without 

microbes (Kendall, 1915).

In the ensuing century, biologists have created increasingly detailed catalogs of the bacteria 

and other organisms in the gut microbiota, but an understanding of how those communities are 

controlled remains elusive. The typical study in this era relied on enumeration of bacterial spe-

cies with (increasingly sophisticated) anaerobic culture techniques. In some cases, these counts 

could be related to in vitro observations of how those organisms behaved, but in general these 

species catalogs provided very little insight into the biological properties of the microbes. Culture-

dependent counting studies carried several important limitations. First, it was well established that 

many organisms from the environment were not readily cultured in standard media and conditions, 

giving rise to the “plate count anomaly” (Staley and Konopka, 1985). These culture studies thus 

capture only a fraction of the naturally occurring microbial community. Second, the classifica-

tion of organisms by biochemical properties and visual appearance does not readily correlate to 

taxonomy. Closely related microorganisms can look and behave very differently, while distantly 

related organisms may be functionally and visually similar in a Petri dish (Eisen, 2007). One hun-
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dred years of culturing yielded much data but no overarching principles of how communities take 

root in the gut or respond to perturbations (Freter, 1983).

The metagenomic revolution

In the last thirty years, the study of microbial communities has been revolutionized by 

new technologies that allow the molecular characterization of organisms based on their genomes 

rather than growth in culture or visual inspection (Handelsman, 2004; Riesenfeld et al., 2004). 

The foundation for this shift towards molecular phylogeny was made when Woese and colleagues 

invented an approach to describe all organisms systematically using sequence similarity (Woese 

and Fox, 1977). They developed their phylogeny using the ribosomal RNA molecule because it is 

found in all living organisms and mutates slowly without selective pressure. Microbial ecologists, 

most notably led by Norm Pace and his trainees, leveraged this approach to characterize complex 

communities of microorganisms from environmental habitats like soil and ocean. They sequenced 

genes encoding bacterial small subunit ribosomal RNAs (16S rRNAs) without having to culture 

the component members (Lane et al., 1985; Stahl et al., 1984). The same technologies also al-

lowed researchers to sequence cloned DNA fragments from total community DNA, revealing the 

encoded metabolic traits of the organisms (Schmidt et al., 1991; Stein et al., 1996). The general 

approach of using DNA isolated from an environment to assess community membership and func-

tion without culturing came to be known as metagenomics (Handelsman et al., 1998).

Medical researchers interested in the complex microbial communities associated with the 

human body quickly adopted the culture-independent methods pioneered by environmental mi-

crobiologists. Seminal advances for host-associated studies include the first major descriptions of 

species (Eckburg et al., 2005) and functions (Gill et al., 2006) found in healthy human gut micro-

bial communities using metagenomic methods. These initial reports generated data from only two 

or three human individuals, but since then sequencing costs have plummeted while sequencing 

capacity has dramatically increased. The field has progressed to the stage where now it is possible 

to sequence hundreds to thousands of samples with current highly parallel instruments (Caporaso 

et al., 2011; Turnbaugh et al., 2008; Qin et al., 2010).
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Culture-independent methods are changing the nature of microbiome research. For the first 

time, the entire diversity and functional potential of the gut microbial community can be measured 

through targeted amplification of phylogenetic markers (i.e., rRNA genes) or direct shotgun gene 

sequencing of community DNA. These datasets provide resources to expand our knowledge of 

how host factors like diet influence the operation of the gut microbes, and in turn how microbes 

may be influencing the host’s nutritional status. For example, work from our lab has demonstrated 

that compared to lean controls, obese mice and humans have altered abundances of members of 

major bacterial phyla in their gut microbiota as well as reduced diversity (Ley et al., 2005, 2006), 

while obese microbiomes have more encoded potential in their genomes for energy harvest (Turn-

baugh et al., 2006).

Metagenomics is critical for a top-down systems level analysis of community structure and 

function. The same types of data can also be used to discover very specific interactions between 

ingested dietary components and the members of the gut community. A shotgun gene sequencing 

survey of Japanese human gut microbiomes revealed that a gut Bacteroidetes species possessed 

the genetic machinery to degrade seaweed polysaccharide. This gene function was not detected in 

other gut bacterial genomes or in the microbiomes of USA residents, but instead had homology 

to a Bacteroidetes normally found in the ocean, Zobellia galactanivorans. It seems likely that the 

marine bacterium entered the gut along with dietary seaweed and transferred its seaweed degrad-

ing gene to the gut specialist through horizontal gene transfer (Hehemann et al., 2010).

Culture-independent metagenomic methods can reveal associations and community opera-

tions that are impossible to detect with culture dependent methods. However, unless these new 

technologies are used to develop and test hypotheses of factors controlling microbiome operation, 

they will not be much more useful than the culture-dependent studies of the past. The remainder of 

this chapter will focus on what is currently known about how one such factor, host diet, influences 

the mammalian gut microbiome.
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Diet and the microbiome: variation across mammals

Mammals have evolved a stunning range of digestive strategies and gastrointestinal structures, and 

in many cases these anatomic variations are directly linked to microbial communities (Stevens and 

Hume, 1998). The original mammals were small carnivores, and mammalian genomes ever since 

have encoded peptidases and proteases needed to chemically digest a protein diet. These ances-

tors, along with most modern carnivores, have a relatively simple gut anatomy. As mammals radi-

ated into herbivorous niches, they lacked the encoded enzymatic repertoire to degrade complex 

plant polysaccharides like cellulose. Herbivorous animals instead came to rely on microorganisms 

in their GI tract to generate useable energy and nutrients from plants by anaerobic fermentation 

producing short chain fatty acids (SCFA). These types of mammals evolved specialized anatomic 

structures to house their microbial bioreactors.

Ruminants such as cattle and sheep use a strategy of “foregut fermentation.” They have 

multi-chambered stomach that harbor diverse fermentative microbial communities; SCFA pro-

duced by these microbes account for more than 60% of the daily energy requirements for some 

ruminants and are completely essential for life (Stevens and Hume, 1998; Wolin, 1981). The al-

ternative evolutionary strategy used by herbivores ranging from rabbits to elephants is “hindgut 

fermentation.” In these animals, enlarged cecums and/or colons are the site for the largest portion 

of the gut microbiota. Humans ingest plants as part of an omnivorous diet, but our gastrointestinal 

tracts are relatively simple and lack the major fermentation structures found in strict herbivores. 

Some calculations suggest that microbial production of SCFA could contribute up to 5-10% of 

daily energy needs in humans, although this number would vary according to host diet (McNeil, 

1984). Aside from their role in host energy balance, it is certain that SCFA in the mammalian gut 

help to regulate intestinal physiology and immune responses through interactions with specific 

receptors expressed on the epithelial surface (Fukuda et al., 2011; Maslowski et al., 2009; Pryde 

et al., 2002).
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With the exception of domesticated ruminants, the microbial diversity in most mammalian 

guts has been poorly described. This changed with the first broad survey of mammalian gut mi-

crobes, using stool samples from 60 different mammalian species (Ley et al., 2008). The surveyed 

animals lived in two zoos and in the wild and represented a wide range of mammalian orders, gut 

physiologies, and diets. Bacterial 16S rRNA sequences were amplified by PCR from each mam-

mal’s fecal sample: the results showed that mammals sharing a diet had bacterial communities 

that were more phylogenetically similar to each other than the communities from mammals with 

different diets. Communities were also more similar in hosts from the same order. Even in very 

divergent mammals, this result shows a convergence of microbial species found in the gut as a 

function of host diet.

The open question remaining from this study was whether or not there is a similar diet-

driven convergence of microbial functions in mammalian guts. Additionally, it is unknown if the 

functional microbial communities of mammals have co-evolved with the host through evolution-

ary time. This would be reflected by the detection of bacterial functions that are highly associated 

with certain branches of the mammalian evolutionary tree. These questions could not be answered 

from the existing literature, because beyond humans and laboratory mice, very few mammalian 

gut microbiomes have been characterized by shotgun sequencing. All are reports of communities 

from a single host species; cattle (Brulc et al., 2009; Hess et al., 2011), pigs (Lamendella et al., 

2011), dogs (Swanson et al., 2011), and the Tamar wallaby (Pope et al., 2010). The goal in most 

of these studies was to describe biological systems for biomass conversion, not to understand how 

different mammalian microbiomes responded functionally to similar diets. To parse the contribu-

tions of host phylogeny and diet in shaping the functional microbiome, a broad comparison of the 

microbiomes from many mammals was required, inspiring the work described in Chapter 2 of this 

thesis.

Diet and the microbiome: successional changes during suckling and weaning

As discussed previously, changes in the gut bacterial community after birth have been studied 
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for more than a century. The topic has been comprehensively reviewed many times (Cooperstock 

and Zedd, 1983; Mackie et al., 1999). However, there are few culture-independent studies, and 

there are essentially no reports of comparative shotgun metagenomic studies of a large number of 

infants. This section of Chapter 1 briefly addresses what is known about bacterial succession dur-

ing the dietary changes of infancy, with special emphasis on changes in bacterial taxonomy and 

relation to life events. The next section will review what is known about how the gut microbiome 

matures functionally during the same time period.

Successional patterns have been much more clearly delineated in lab mice than in human 

infants, primarily in a series of elegant reports from the Rockefeller Institute in the 1960s using an-

aerobic culture techniques. The group initially reported the species composition of the mouse gut 

over the first 20 days of life, demonstrating the early appearance of lactobacilli and streptococci 

in all regions of the alimentary canal, and the eventual replacement of those groups by anaerobic 

Bacteroides species and coliforms in the large intestine (Schaedler et al., 1965). They went on 

demonstrate that different bacterial populations are associated with the intestinal epithelium com-

pared to the lumen (Savage et al., 1968) and introduced the concept of an “autochthonous biota” 

of species that seem specialized for stable colonization of the host (Dubos et al., 1965).

The most significant report moved beyond description to experimental manipulation of the 

environment, trying to test which environmental factors drove the observed changes in microbial 

population levels (Lee et al., 1971). They reared a group of pups in a cage where the only available 

source of food was whole milk powder devoid of complex polysaccharides found in normal mouse 

diets. Unlike the control animals weaned onto standard chow, the emergence of the “Fusiform” 

group of Gram variable tapered rods (likely Firmicutes) and decline in coliforms did not occur at 

the weaning transition in the milk weaned pups. However, Bacteroides organisms expanded at the 

time of weaning in both groups with similar kinetics. This data showed that some changes in the 

bacterial community at weaning can be specifically attributed to diet, but other changes cannot be 

related solely to the ingested food. To this day, few if any infant succession studies have seriously 
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considered the non-nutritive factors associated with weaning (e.g., maturation of the gut and with-

drawal of passive immunity) that may also be driving bacterial community changes.

At the same time, Smith was characterizing the successional pattern in a range of infant 

mammals. A survey of the bacterial communities in the stools of young cows, lambs, pigs, and 

humans demonstrated a similar pattern of succession in all of the mammalian hosts; Escherichia 

coli, Clostridium welchii, and streptococci were detected in stool within one day of birth, followed 

a few days later by the emergence of Bacteroides and lactobacilli species, which later became 

dominant (Smith and Crabb, 1961). While the bacterial communities were very similar in the dif-

ferent hosts immediately after birth and as long as the animals were consuming mother’s milk, the 

microbiome patterns diverged dramatically once the animals were weaned onto their adult diets. 

The researchers went on to show that all of the mammals surveyed possessed bacterial communi-

ties along the entire length of the alimentary canal, that each anatomic site harbored a unique col-

lection of bacterial species compared to other parts of the gut, and that the kinetics of succession 

varied in the different mammals studied (Smith, 1965).

In human studies, patterns of infant microbiome maturation are less clear. One chief prob-

lem is that most studies are anecdotal case reports, studying a few infants with a sporadic sampling 

schedule. Additionally, metadata on life events such as diet changes or diarrheal episodes are 

generally imprecise. This makes it very difficult to compare studies or to generate firm, testable 

hypotheses about causes of microbiome changes. A corollary to this problem is a trend in the lit-

erature to casually attribute all changes in aging infants to the dietary changes of food supplemen-

tation and weaning. Diet may be the driving factor for many or even most microbiome changes 

in the developing gut, but as the whole milk powder experiment showed in mice, there are likely 

some bacterial changes that are independent of diet. There are essentially no dose-response studies 

temporally linked to diet switches that prove which components of the microbiome are responding 

to the new substrates (Mackie et al., 1999). In general, the field lacks an ecological understand-

ing linking the environmental changes in infancy with species or functional responses. Similarly, 
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there have not been enough large studies with well-characterized samples to describe the variation 

across many humans or within a single community over time.

In a meta-analysis of culture-dependent human succession studies, Cooperstock and Zedd 

argued that there are at least four phases of microbiome assembly in human infants (Cooperstock 

and Zedd, 1983). Aerotolerant organisms not typically seen in adult guts initially colonize the 

human gut. This phase lasts for only 1 to 2 weeks, with tremendous interpersonal variation. The 

model argues that the next phases are all governed by host diet; phase 2 is the remaining time with 

exclusive breast feeding, phase 3 begins with the introduction of cereal or other supplements, and 

phase 4 marks the end of breast milk feeding and complete weaning onto an adult like diet. The 

bacteria detected in phase 2 are gut specialists adapted to lactose-rich diets; with the gradual re-

placement of breast milk by complex polysaccharides, bacteria capable of anaerobic fermentation 

become dominant.

Two culture-independent studies from the recent literature are especially noteworthy. The 

largest study of infants to date used quantitative real-time PCR (qPCR) to measure the abundance 

of bacterial phyla in the stool of 1,036 children at 1 month of age (Penders et al., 2006). The au-

thors demonstrated that children born by Caesarian-section had significantly lower bifidobacteria 

and Bacteroides fragilis group counts than vaginally delivered counterparts, and that children ex-

clusively fed formula instead of breast milk had more E. coli, Clostridum difficile, Bacteroides, 

and lactobacilli in their gut microbiota. The study has significant limitations, notably a single time 

point per child and the use of qPCR for bacterial abundance detection, but it is still a significant 

contribution because of the very large number of children sampled, and the quantitative data analy-

sis used to correlate host features with microbiota signatures.

The most comprehensive report of species changes in the gut used a microarray designed 

to resolve bacterial genuses and species using conserved regions of the 16S rRNA gene (Palmer et 

al., 2007). The study population included 13 infants, sampled intensively for the first three months 

of life with less frequent sampling thereafter until 1 year. The report demonstrated a remarkable 
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degree of fluctuation in the fecal microbiota of each child over time, and that there was also a great 

deal of variation between the children. Early in life, the microbiota of babies are not only different 

from adults, but also very different from the other babies.

Diet and the microbiome: functional changes during suckling and weaning

Compared to the numerous studies of bacterial species succession, there are very few community 

level studies of the functional properties of the developing gut microbiome. The studies that do 

exist fall into two main categories. The first group measure community metabolism, exemplified 

by the work of Tore Midtvedt characterizing “microflora-associated characteristics,” or MACs 

(Mackie et al., 1999; Midtvedt et al., 1987, 1988). These characteristics are metabolic or chemi-

cal processes, including SCFA production and mucin degradation, which are completely absent 

in germ-free animals but present in conventionally-raised animals. In a series of papers studying 

these properties in human infants and children, they described the emergence of these functions 

in small numbers of individuals; all MACs became more abundant in stools as the children aged 

(Midtvedt and Gustafsson, 1981; Midtvedt and Midtvedt, 1992; Midtvedt et al., 1994). The limita-

tion of these biochemical studies is that the organism (or organisms) responsible for the function 

can’t be determined. There is also no way to determine if the gene responsible for a characteristic 

is in the community unless it is being actively expressed.

The second and more recent group of studies used shotgun gene sequencing to interro-

gate community functional structure. All studies to date have been limited by a small number of 

infants under the age of 5 (mean=2, maximum=5) and relatively few time points with shotgun 

gene sequencing (mean=3.6, median=1, maximum=15) (Gupta et al., 2011; Koenig et al., 2011; 

Kurokawa et al., 2007; Morowitz et al., 2011; Vaishampayan et al., 2010). In a comparative study 

of Japanese infants, children, and adults, all human gut microbiomes were enriched with genes for 

carbohydrate metabolism compared to a database of all environmental and host associated bacte-

rial genomes. Compared to adult microbiomes, infant microbiomes had a relative enrichment in 

transporter systems and decreased abundance in anaerobic metabolism pathways. Some of the spe-
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cific carbohydrate metabolism suites enriched in adult microbiomes were also enriched in the in-

fants, but each age group also had a unique suite of glycoside hydrolases (Kurokawa et al., 2007).

In the only time series functional analysis of a single child over several months, samples 

obtained in the first week after birth were relatively enriched in genes for the utilization of the 

simple sugars lactose, galactose, and sucrose. Samples from the third and fourth months of life, 

when the infant was still exclusively breastfed, had a greater diversity of carbohydrate degradation 

genes. These included pathways for sialic acid and mucin degradation, and also the breakdown of 

complex polysaccharides not yet introduced to the diet. Samples obtained after weaning had ad-

ditional enrichment for “adult” -like functions including xenobiotic metabolism and a full array of 

vitamin biosynthetic pathways (Koenig et al., 2011).

Overview of the Thesis

The guiding hypothesis of my research is that the structure and function of the human gut micro-

biome is modulated by the consumption of food, and that this modulation is reproducible across 

diverse mammalian and human hosts consuming similar diets. In turn, we believe that the opera-

tion of the gut microbiome may interact with diet and other factors to influence human nutritional 

status. This interplay could predispose the host to health or disease, and we particularly focus on 

the important problem of infant malnutrition. Our goal was to determine general principles and 

mechanisms that mediate the response of gut microbial communities to ingested foodstuffs, as a 

precursor to future efforts to intentionally manipulate bacterial communities to improve human 

health.

To study these hypotheses, I leveraged recent advances in next-generation sequencing 

technology to conduct comparative metagenomic analyses of several populations with well-char-

acterized diets. We deployed novel computational methods to study the relationships between 

bacterial membership and functional profile of these fecal samples. This thesis describes the results 

of these studies.
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In Chapter 2, I present the results of a study addressing the influence of diet on the func-

tional microbiomes of adult humans and mammals. We extended the survey of bacterial species 

in diverse mammalian hosts by asking if there was a functional convergence of microbiomes from 

animals with similar diets. Fecal DNA was extracted from the stools of 39 adult mammals repre-

senting 33 distinct mammalian species. Animals spanned 10 orders of mammals and included car-

nivores, omnivores, and herbivores. We found that all mammalian gut microbiomes share a large 

core of genes, but host diet strongly influences the relative abundance of many of these functions. 

In particular, we demonstrated that carnivores and herbivores possessed distinguishable microbi-

omes, and that amino acid and pyruvate metabolic pathway abundances were significantly differ-

ent in the two groups. We then turned to a population of 18 adult humans with well-characterized 

diets to ask if the dietary variation within a single host species could be correlated to microbiome 

functional profiles. The data showed that total protein intake was significantly correlated with 

the functional profile of the community, while fiber intake was significantly related to the species 

composition. Together, these experiments demonstrated that diet causes reproducible changes in 

the gut microbiomes of diverse mammalian hosts. It also established the analytic tools necessary 

for large-scale comparative metagenomic analysis.

The second part of my thesis focused on the period of greatest dietary change in human 

life, the transition from maternal milk to a complex diet in early infancy. Chapter 3 describes our 

cohort study of 103 infants born in Bangladesh, with monthly stool sampling from birth through 

two years of life. The study was greatly enhanced by the precise clinical metadata collected by our 

collaborators in Bangladesh related to diet, nutritional status, and diarrhea. Bacterial community 

membership was determined by 16S rRNA gene sequencing for all samples, and for a subset of 

the children, the functional microbiome was characterized by shotgun gene sequencing. We found 

a stunning level of intrapersonal variation in the infant microbiota, with essentially a complete 

replacement of the bacterial species found in early life by two years of age. However, there were 

common patterns of development across the cohort including reproducible taxonomic shifts and 

the establishment of specific functional metabolic pathways. Increasing age and diet switches were 
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both significantly associated with these changes, but age appears to be the stronger predictor of 

community structure across all children. We characterized the emergence of a particular bacterial 

function for sialic acid degradation that is completely absent from the microbiomes in early life 

but is found in all children by the end of the study. This timing of the appearance is not clearly re-

lated to diet or other external stimuli, and hints that shifts in endogenous glycan expression during 

infancy may be an important means for the host to shape the development of the gut microbiome.
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mammalian phylogeny and within humans
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Diet drives convergence in gut microbiome functions across mammalian phylogeny and 

within humans

“It’s probably not a good idea to take too personal an interest in your microbes.”

Bill Bryson, A Short History of Nearly Everything, (2003), p. 302.

This chapter has been published as:

Muegge B.D., Kuczynski J., Knights D., Clemente J.C., González A., Fontana L., Henris-

sat B., Knight R., Gordon J.I. “Diet drives convergence in gut microbiome functions across mam-

malian phylogeny and within humans.” Science. 2011. 332(6032): 970-4.
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Abstract

Coevolution of mammals and their gut microbiota has profoundly affected their radiation into 

myriad habitats. We used shotgun sequencing of microbial community DNA and targeted sequenc-

ing of bacterial 16S ribosomal RNA genes to gain an understanding of how microbial communities 

adapt to extremes of diet. We sampled fecal DNA from 33 mammalian species and 18 humans 

who kept detailed diet records, and we found that the adaptation of the microbiota to diet is similar 

across different mammalian lineages. Functional repertoires of microbiome genes, such as those 

encoding carbohydrate-active enzymes and proteases, can be predicted from bacterial species as-

semblages. These results illustrate the value of characterizing vertebrate gut microbiomes to un-

derstand host evolutionary histories at a supraorganismal level.

Introduction

Comparative culture-independent metagenomic studies of the microbial species assemblages that 

compose mammalian gut microbiota, and the functions that these communities encode in their ag-

gregate genomes (microbiomes), can provide a complementary perspective to comparative studies 

of host genomes. A previous bacterial 16S ribosomal RNA (rRNA)-based study of 59 mammalian 

species revealed that their fecal microbiota clustered according to diet rather than host phylogeny 

(1). This finding raises several questions: What is the functional evolution of the gut microbiome in 

relation to diet? Is the process unique to each mammalian lineage? To what extent does microbial 

phylogeny predict function within microbial communities? Could analysis of interspecific differ-

ences among mammals create a pipeline for deciphering intraspecific differences among humans 

in response to varied diets or other factors? Therefore, we have extended our 16S rRNA studies to 

a broader sampling of microbial genes in total fecal community DNA prepared from herbivores, 

omnivores, and carnivores. 
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Methods

We generated shotgun pyrosequencing data sets from 33 mammalian species, along with newly 

collected bacterial 16S rRNA data. These adult animals represent 10 Orders and varied digestive 

physiologies (hindgut-fermenters, foregut-fermenters, and simple-gut). In some cases, free-living 

and captive representatives of a given species were sampled (Table 1,Table S1). Methods for clas-

sifying diets and for collecting and processing fecal samples for metagenomic analyses have been 

described (1). Multiplex pyrosequencing of amplicons generated from the V2 region of bacterial 

16S rRNA genes yielded 149,675 high-quality de-noised reads (average = 3838 ± 1080 per sample) 

(Table S2) (2). After chimera removal, 8541 operational taxonomic units (OTUs) were identified 

in the combined data set (an OTU was defined as reads sharing ≥97% nucleotide sequence iden-

tity). Shotgun sequencing of the same fecal DNA preparations produced 2,163,286 reads [mean = 

55,469 ± 28,724 (SD) per sample; 261 ± 83 nt per read] (Table S3) (2). Shotgun reads were func-

tionally annotated using three databases: KEGG [for KEGG Orthology (KO) groups and Enzyme 

Commission (E.C.) numbers], CAZy (for carbohydrate-active enzymes), and MEROPS (for pepti-

dases) (3-5). When shotgun reads were assigned to phylogenetic bins using the program MEGAN 

(6), the results revealed that fecal microbiomes were dominated by members of Bacteria, had low 

levels of Eukarya (0.15 to 5.35% of identifiable reads), and archaeons were variably represented 

(0 to 1.77% of assignable reads, with none detected in any carnivore microbiome). Seventeen 

samples had reads assigned to known viruses (Table S4) (2).

Results and Discussion

Concordance of microbiome structure and function

Procrustes analysis (least-squares orthogonal mapping) was used to test whether the functional 

properties of a microbiome can be predicted from the bacterial species that compose it (2). Pro-

crustes analysis attempts to stretch and rotate the points in one matrix, such as points obtained by 

principal coordinates analysis (PCoA), to be as close as possible to points in the other matrix, thus 



28

preserving the relative distances between points within each matrix (7, 8) (Fig. 1A). We first took 

the 16S rRNA data set and used the UniFrac metric to compare the overlap between each pair of 

communities in terms of their evolutionary distance (9). The similarity in functional profiles was 

then determined using the Bray-Curtis distance metric applied to KO groups, E.C.s, CAZYmes, 

or peptidases. Principal-coordinates reduction was performed separately on the 16S rRNA and an-

notated shotgun (microbiome) data sets, and the point clouds were aligned using Procrustes. For 

each comparison, the goodness of fit, or M2 value, of the transformed data sets was measured over 

the first three dimensions. The statistical significance of the goodness of the fit was measured by a 

Monte Carlo label permutation approach (2).

The agreement between phylogenetic and functional measurements was remarkable for all 

mammals, regardless of their diet, host lineage, or gut physiology. Figure 1, B to E, shows how the 

goodness of fit was robust to different functional databases. The analysis was also robust to taxon- 

or phylogenetic-based species classification, weighted or unweighted metrics, and whether one or 

more member of each mammalian species was considered (Fig. S1). For both bacterial 16S rRNA 

and whole community gene data sets, the PCoA plots separated carnivores and omnivores from 

herbivores, emphasizing the importance of diet in differentiating gut microbial communities (P < 

0.05) (2). Our previous study using full-length 16S rRNA sequences revealed that the fecal micro-

biota of conspecifics were significantly more similar than the communities of different host species 

(1). The V2 16S rRNA data generated in this study confirmed this result, using both weighted and 

unweighted UniFrac distances (P < 0.05 by 1000 Monte Carlo permutations) (2).

The Procrustes results prompted us to use a nearest-neighbor model to test whether the 

functional configuration of a microbiome could be predicted from its 16S rRNA sequences. Using 

a fecal sample’s nearest neighbor, as defined by unweighted or weighted UniFrac, to predict the 

sample’s functional profile generated a significantly better prediction than a random neighbor; this 

was true for KOs, E.C.s, CAZymes, and peptidases (P < 0.0001, 106 Monte Carlo permutations) 

(2).
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Testing for coevolution between mammalian phylogeny and microbiomes

The concordance of diet and microbiome structure and function raises the question of whether it 

is caused primarily by coevolution between mammals and their gut microbiota and microbiome, 

or by the many parallel dietary shifts that have occurred over the course of mammalian evolution 

(10). We tested which of these hypotheses, which have traditionally been viewed as competing but 

need not be mutually exclusive, were supported by looking for congruence between mammalian 

phylogeny and subsets of bacterial species, KOs, CAZymes, peptidases, or other enzymatic activi-

ties. Briefly, the mammalian phylogenetic tree defines sets of organisms that are monophyletic; 

that is, groups containing all and only the descendants of a common ancestor. We reasoned that 

if bacterial taxa or functions originated rarely, then these taxa or functions should be vertically 

transmitted during mammalian speciation. Therefore, there should be more cases in which a given 

taxon or function occurred in all members of a monophyletic mammalian group than chance would 

predict. Using this analytic approach (2), we found that the overall distribution of microbial spe-

cies and microbiome functions in the gut does not mirror mammalian phylogeny. 198 different 

named bacterial genera were detected in our data set; of these, only 3 were significantly associated 

with the mammalian phylogenetic tree more than would be expected by chance (Prevotella, Barne-

siella, and Bacteroides). No CAZymes or peptidases and only 18 of the 3866 KOs tested were as-

sociated with host phylogeny. We repeated the analysis using a more relaxed constraint that a taxon 

or function occurs in a given monophyletic group more frequently than expected by chance rather 

than requiring strict presence or absence agreement (2). The relaxed definition gave similar results; 

only three additional genera and a total of 90 KOs were detected as having a significant association 

with the mammalian tree. We concluded that bacterial taxa and functions are evolutionarily labile 

and do not explain the concordance between bacterial communities and microbiome functions.

Mammalian gut microbiomes share a functional core

Bipartite network analysis provided an additional tool for exploring the interrelationship between 

host diet, host lineage, gut physiology, and shared and unique bacteria taxa (1). Mammalian hosts 
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and bacterial OTUs were used as nodes in a bipartite graph, with edges connecting OTU nodes to 

the hosts in which they are found (2). Using 1900 V2 16S rRNA sequences from each mammalian 

host, the network shows clear separation of fecal communities by host diet (Fig. 2A), mirroring 

our earlier results based on smaller numbers of full-length 16S rRNA sequences (1).

We reasoned that the bipartite graph approach could also be used to connect mammalian 

samples to individual microbial gene functions from shotgun reads. The power of the bipartite 

graph approach is to represent both genes and mammalian species explicitly as nodes, thus visual-

izing which genes connect with which species. The clear separation by diet disappears when we 

consider gene functions (Fig. 2B, Fig. S2), suggesting that rather than a diet- or physiology-specif-

ic set of genes, the relationship among mammalian gut microbiomes is that they share a large core 

repertoire of functions. We confirmed this result by plotting the frequency of shared taxa in the 39 

mammalian fecal samples, and also species- and genus-level OTU bins (2). All of the curves dem-

onstrate an essentially exponential decay as successive samples are added, with no OTUs found 

in more than 30 samples (Fig. 2C). However, the plot of KO frequency flattens out, with 35 KOs 

found in all samples. This effect cannot be due to differences in the number of OTUs relative to 

KOs: There are more OTUs than KOs, and fewer assigned species or assigned genera, yet all the 

taxonomic curves show the same rapid decay, unlike the KOs.

Metabolic differences in microbiomes from carnivores and herbivores

This result does not imply that there are no differences among the functional configurations of 

microbiomes of host species having different diets. Rather, it suggests that the differences between 

microbiomes probably stem from differing abundances of shared functions, such as enzymes that 

break down chemical substrates in the host diet. We identified 495 E.C.s with significantly differ-

ent proportional abundance in the 7 carnivorous and 21 herbivorous mammalian microbiomes, 

using the program Shotgun FunctionalizeR (adjusted P < 0.001 after multiple hypothesis correc-

tion) (Table S5) (11). Many of the enzymes distinguishing carnivorous and herbivorous fecal mi-
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crobiomes are involved in amino acid metabolism. Microbiomes from herbivores were enriched in 

enzymes that map to biosynthetic reactions for 12 amino acids, whereas no carnivore samples were 

enriched in amino acid biosynthetic enzymes (Table S6). In contrast, nine amino acid degradation 

pathways contained enzymes that were significantly increased in carnivores, whereas the only 

degradative enzymes whose representation was significantly greater in herbivores were those in-

volved in the breakdown of branched-chain amino acids (Val, Leu, and Ile). Glutamate metabolism 

is particularly illustrative of these trends. Both the adenosine triphosphate (ATP)-dependent and 

ATP-independent pathways for glutamate biosynthesis are significantly increased in herbivore mi-

crobiomes, whereas the catabolic reactions to break down glutamate and glutamine are increased 

in carnivores (Fig. 3A). These results suggest that carnivorous microbiomes have specialized to 

degrade proteins as an energy source, whereas herbivorous communities have specialized to syn-

thesize amino acid building blocks.

The distinctiveness of carnivorous and herbivorous microbiomes was also revealed at a 

central anaplerotic node (Fig. 3B). When gluconeogenesis is required, oxaloacetate (OAA) can be 

converted to phosphoenolpyruvate (PEP) and pyruvate. When tricarboxylic acid cycle intermedi-

ates are withdrawn for biosynthesis, they are replenished by converting PEP and pyruvate directly 

to OAA (12). All of the genes encoding enzymes catalyzing OAA production from pyruvate or 

PEP are significantly increased in the carnivore microbiomes, whereas the reverse reactions are 

catalyzed by enzymes whose representation is increased in herbivore microbiomes.

Association of human diet with microbiome variation

Our studies comparing mammalian species revealed a relationship between host diet and gut mi-

crobial community structure and function. We next asked whether similar trends could be detected 

using diet variation within a single free-living host species, namely humans. Quantitative studies 

of diet in most human populations are complicated by the known inaccuracy of self-reported data 

(13), so we turned to a group of adults known to keep meticulous records about their daily food 

composition and consumption. The selected cohort consisted of 18 lean members of the Calorie 
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Restriction Society who typically measure and record all components of their diets on a daily basis 

with computer software to insure optimal nutrition despite reduced energy intake (14, 15). We col-

lected their dietary records for a 4-day period (conservatively encompassing at least one complete 

intestinal transit time) before obtaining a single fecal sample, and analyzed macro- and micronutri-

ent consumption using a validated protocol (2, 16). An average of 3642 ± 3826 bacterial V2 16S 

rRNA reads and 54,295 ± 28,086 shotgun reads were obtained per sample (tables S7-S10).

Procrustes analysis revealed a significant association between the bacterial phylogenetic 

structure of their fecal communities (16S rRNA) and the functions encoded in their microbiomes 

[P < 0.05 for KOs, E.C.s, and CAZymes (glycoside hydrolases)]; not significant for peptidases (P 

= 0.061) (Fig. S3). These results suggest that the processes that drive the functional differentiation 

of microbiomes within an individual host species may be fundamentally similar to those that drive 

their differentiation across mammalian evolution.

Documentation of the weight of each ingredient in each meal consumed by these individu-

als (Table S7) allowed us to perform a follow-up analysis examining the impact on fecal bacterial 

community configuration of three dietary components (total protein, carbohydrate, and insoluble 

fiber intake). We chose these diet categories because protein intake is markedly different between 

carnivores and herbivores, and because an extensive literature exists about the impact of ingested 

polysaccharides and fiber on the gut microbiota (17). Linear regression of the three dietary catego-

ries against the position of each individual’s microbiome along principal coordinate 1 of the PCoA 

plots revealed that total protein intake was significantly associated with KO data [adjusted linear 

regression coefficient of determination (R2) value = 0.307, adjusted P value = 0.030] (2). In con-

trast, insoluble dietary fiber was significantly associated with bacterial OTU content (Bray-Curtis 

metric; adjusted R2 value = 0.371; adjusted P value = 0.013) (Table S11). These results confirm 

that within a single free-living species, both the structure and function of the gut microbiome are 

significantly associated with dietary intake.
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Prospectus

Taken together with our prior work (1), these results teach us that even fecal samples from mam-

mals living in zoos and human samples from a single self-selected population can provide insights 

into the factors driving the evolution of the gut microbiome. They also compel us, at a time when 

complete genomes are to be sequenced for 10,000 vertebrates (18), to take the next step and per-

form systematic studies that rigorously test specific mechanisms that drive the evolution of hosts 

and their (gut) microbial symbionts. These studies should be guided by experts who can choose 

taxa that radiated at different points in their evolutionary history, with parallel shifts in their diet, 

morphology, biogeography, or other key factors known or hypothesized to influence evolution. 

The results should help address questions such as what functional features in host intestinal envi-

ronments (including the biochemical characteristics of mucosal surfaces) are related to the repre-

sentation of specific bacterial taxa and microbiome functions, and how readily microbial popula-

tions have been acquired and reacquired during the course of vertebrate evolution. Additionally, 

our findings emphasize the need to sample humans across the globe with a variety of extreme diets 

and lifestyles, including relatively ancestral hunter-gatherer lifestyles, in order to provide new 

insights into the limits of variation within a host species and the possibility that our microbes, in 

coevolving with our bodies and our cultures, have helped shaped our physiological differences and 

environmental adaptations.
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Figure Legends

Figure 1. Procrustes analysis shows that mammalian gut bacterial lineages and microbiome 

gene content give similar clustering patterns. (A) Cartoon illustrating Procrustes analysis. The 

Procrustes transformation of the blue and red data types (i) results in a good fit, while the trans-

formation of the green and red data (ii) yields a worse fit with large distances separating data from 

samples B and C. (B-E) Procrustes analysis of 16S rRNA sequences (weighted UniFrac) against 

KEGG Orthology (KO) groups, CAZymes (glycoside hydrolases), MEROP peptidases, and E.C.s. 

Every sphere represents a single mammalian fecal community and is colored by host diet. The 

black end of each line connects to the 16S rRNA data for the sample, while the orange end is con-

nected to the functional annotation data. The fit of each Procrustes transformation over the first 

three dimensions is reported as the M2 value.

Figure 2. Mammalian gut bacterial communities share a functional core. (A-B) Bipartite net-

work diagrams of evenly sampled bacterial 16S rRNA-derived OTUs (A) or KOs (B). Edges con-

necting mammalian nodes (circles) to species-level OTUs or KOs found in that sample are colored 

by host diet. Sample labels are removed from the KO diagram for legibility (high-resolution im-

age of removed labels presented in Fig. S2). (C) Mammalian gut communities share a core suite 

of KOs. Using evenly subsampled OTU or KO datasets, the distribution of counts is plotted as a 

function of the number of mammalian host microbiomes where the KO or phylotype was detected. 

The results demonstrate exponential decay for the 16S rRNA data (OTU, species, and genus), with 

no OTU or bacterial species found in all samples, although a “core” set of KOs is detectable in all 

fecal communities sampled.

Figure 3. Differences in metabolic features encoded in fecal microbiomes among herbivores 

versus carnivores. (A) Carnivorous and herbivorous microbiomes indicate opposing directional-

ity for amino acid metabolism. Colored arrows denote enzyme functions whose representation 

is signficiantly (P < 0.001) greater in the fecal microbiomes of herbivores (green) or carnivores 

(red). (B) Carnivorous and herbivorous microbiomes suggest opposing directionality at the central 
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PEP-Pyruvate-Oxaloacetate node. Coloring scheme as in panel A. Abbreviations: 2-OG, alpha-ke-

toglutarate; Ck, carboxykinase; Cx, carboxylase; DH, dehydrogenase; Dx, decarboxylase; GABA, 

γ–aminobutyrate; GDH, Glu DH; OAA, oxaloacetate; ODx, OAA Dx; PEP, phosphoenolpyruvate; 

PPDk, Pyr-Phosphate Dikinase; Pyr, Pyruvate; SSA, Succinate-Semialdehyde.
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Figures

Figure 1.
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Figure 2.
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Figure 3.
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Tables

Table 1. Overview of mammals in this study. Sample abbreviations used in figures and tables are 

noted in parentheses. See Table S1 for additional details.
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Supplemental Information

Interactive Plots on the Web

The kinemage files used to generate Figure 1 have been posted on our lab website (19), together 

with links for panels in that figure. Clicking the links will open java applets that contain an interac-

tive, labeled PCoA plot of the Procrustes analysis used to generate the panel. The viewer can rotate 

the plot in 3-dimensions, and can also view the first 10 principal coordinate axes. The coloring and 

naming conventions online are consistent with Figure 1.

Materials and Methods

Subjects

Table S1 lists the mammalian species included in this study and their diet group. Further details 

about their diets, dietary group classification, plus methods used to recover and store fecal samples 

have been published previously (1). Eighteen members of the Calorie Restriction Society were 

recruited for the present study using a procedure approved by the Washington University Hu-

man Studies Committee. The volunteers had practiced calorie restriction for an average of 7.6 

yrs (range 3.5-21 years). The average age of the study cohort was 59.6±10.6 years and their body 

mass index was 19.4±1.3 kg/m2 (mean±S.D.). None of these individuals had consumed antibiotics 

in the four months prior to enrollment and none had a history of gastrointestinal disorders. Each 

participant provided a fecal specimen that was frozen at -20oC within 30 min after its production. 

Samples were maintained at this temperature until they were received (within 24h) at a biospeci-

men repository where they were anonymized and stored at -80oC prior to metagenomic analyses. 

The participants kept detailed diet records for four days prior to fecal collection. A dietician ana-

lyzed these diet records to quantify macro- and micronutrient content using the Nutrition Data 

System for Research (NDS-R; version 4.03_31) (16).
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Isolation of fecal DNA and multiplex pyrosequencing

All mammalian and human samples were subjected to a common protocol for DNA extraction. Fe-

cal samples were pulverized with a mortar and pestle at -80oC. A 500 mg aliquot of each frozen pul-

verized sample was re-suspended in a solution containing 500µL of extraction buffer [200mM Tris 

(pH 8.0), 200mM NaCl, 20mM EDTA], 210µL of 20% SDS, 500µL of phenol:chloroform:isoamyl 

alcohol (25:24:1) and 500µL of a slurry of 0.1-mm diameter zirconia/silica beads. Cells were then 

mechanically disrupted using a bead beater (Biospec, maximum setting; 3 min at room tempera-

ture), followed by extraction with phenol:chloroform:isoamyl alcohol and precipitation with iso-

propanol. An aliquot of the DNA was used for PCR amplification and sequencing of bacterial 16S 

rRNA genes. ~330bp amplicons, spanning variable region 2 (V2) of the gene were generated by 

using (i) modified primer 8F (5´- GCCTTGCCAGCCCGCTCAGTCAGAGTTTGATCCTGGCT-

CAG-3’) which consists of 454 FLX Amplicon primer B (underlined), a two base linker (bold) 

and the universal bacterial primer 8F (italics) and (ii) modified primer 338R (5’ GCCTCCCTC-

GCGCCATCAGNNNNNNNNNNNNCATGCTGCCTCCCGTAGGAGT 3’) which contains 454 

FLX Amplicon primer A (underlined), a sample specific, error correcting 12-mer barcode (N’s), a 

two base linker (bold), and the bacterial primer 338R (italics). Three replicate polymerase chain 

reactions were performed for each fecal DNA sample: each 20-mL reaction contained 100 ng of 

gel-purified DNA (Qiaquick, QIAGEN), 8 ml 2.5X HotMaster PCR Mix (Eppendorf) and 0.2 μM 

of each primer. PCR conditions consisted of an initial denaturation step performed at 95 °C for 

2 min, followed by 30 cycles of denaturation (95°C, 20 s), annealing (52°C, 20 s) and amplification 

(65°C, 1 min). Amplicons generated from each set of three reactions were subsequently pooled and 

purified using Ampure magnetic purification beads (Agencourt). The amount of DNA was quanti-

fied using Picogreen (Invitrogen), and equimolar amounts of barcoded samples were pooled for 

each subsequent multiplex 454 FLX pyrosequencer run.

For multiplex shotgun 454 FLX pyrosequencing, each fecal community DNA sample was 

randomly fragmented by nebulization to 400-800 bp (FLX standard) or 500-800 bp (FLX Tita-



45

nium), and then labeled with a distinct MID (Multiplex IDentifier; Roche) using the MID manu-

facturer’s protocol (general library preparation for FLX standard, Rapid Library preparation for 

FLX Titanium). Equivalent amounts of up to 12 MID-labeled samples were pooled prior to each 

pyrosequencer run (454 FLX and Titanium chemistry).

16S rRNA data processing and analysis

16S rRNA amplicon sequences were processed using the QIIME (v1.1) suite of software tools 

(20); fasta files, quality files and a mapping file indicating the sequence of the 12 nt barcode that 

corresponded to each sample were used as inputs. QIIME bins pyrosequencer reads by samples 

according to their barcode, de-noises pyrosequencer data (21), and classifies reads into OTUs on 

the basis of sequence similarity [e.g., species level phylotypes share ≥97% identity (ID)]. QIIME 

builds a de novo taxonomic tree of the sequences based on their similarity and creates a table of 

samples versus OTUs that can be used, together with the tree, to calculate alpha and beta diversity. 

Reads were aligned using PyNAST, and chimeric OTUs were removed using the ChimeraSlayer 

program (22). Procrustes analysis and network analysis were also performed in QIIME, using code 

made available in release 1.2.0. The network analysis was visualized using Cytoscape v2.6.3 (23), 

and the nodes and edges were placed using Cytoscape’s spring-embedded algorithm.

Taxonomic assignments were made using SILVA-VOTE, an algorithm designed for im-

proved accuracy in taxonomic assignments of V2 16S rRNA reads. Briefly, a non-redundant ref-

erence database of 34,181 bacterial 16S rRNA V2 regions was created by clustering the Silva 

database (release 102). Taxonomic assignment was made at each taxonomic level if more than 

75% of the sequences in the cluster had an identical designation at that level (otherwise, the level 

was designated “unknown”). A representative sequence from each QIIME-identified OTU was 

compared by BLAST against this custom database, retaining hits with e-value < 10-30. All BLAST 

hits within 10% of the best score (up to 100 hits) were used to generate a taxonomic assignment 

at each taxonomic level. If greater than 50% of the hits shared a designation, this annotation was 

assigned to the OTU. Otherwise, the OTU was noted as “nonidentified” at that level. Note that 
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sequences were binned into OTUs with ≥97% sequence identity in lane-masked V2 regions. In 

accord with common convention (24), when 97%ID OTUs had identical taxonomic assignments, 

they were binned as a single ‘species-level phylotype’. When 97%ID OTUs were assigned to the 

same bacterial genus, they were treated as a single ‘genus-level phylotype’.

Shotgun sequencing data processing and annotation

Metagenomic data was annotated using custom Perl scripts. Shotgun reads were filtered using cus-

tom Perl scripts and publicly available software to remove (i) all reads less than 60 bases in length, 

(ii) reads with degenerate bases (N’s), (iii) all duplicates (a known artifact of pyrosequencing), 

defined as sequences whose initial 20 nucleotides are identical and that share an overall identity 

of >97% throughout the length of the shortest read (25) and (iv) in the case of human fecal DNAs 

from the calorically restricted individuals, all sequences with significant similarity to human refer-

ence genomes (BLASTN with e-value < 10-5, bitscore > 50, percent identity > 75%) to ensure the 

continued anonymity of samples.

Searches against the KEGG (version 52) and MEROPS (release 9.1) databases were car-

ried out with BLASTX. A sequence read was annotated as the best hit in the database if (i) the 

E-value was < 10-5, (ii) the bit score was > 50, and (iii) the alignment was at least 50% identical be-

tween query and subject. In the event that two entries in the database had equivalent BLAST scores 

as the best hit, the read was annotated with both entries. The KO, E.C., and KEGG Pathways 

associated with each KEGG sequence were determined using the “ko” file provided by KEGG. 

Reads were annotated against the CAZy database using procedures described previously (26). For 

each functional annotation schema, statistical analysis was performed on a matrix containing the 

count of annotated reads in each sample; e.g., for the KEGG KO data, the matrix contained the list 

of all possible KOs in the rows of the first column and the sample names in the column headers. 

The value in each “cell” of the matrix was the number of times that KO was detected as the best 

BLAST hit of a shotgun read from the sample. All dissimilarity metrics and related calculations 

were generated with QIIME. For every functional data type, an evenly rarefied matrix of func-
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tional assignments was created, a distance matrix using the Bray-Curtis metric was calculated, and 

results were visualized with Principal Coordinates and Procrustes Analysis.

Taxonomic composition of shotgun sequencing data

The taxonomic distribution of metagenomic reads was determined using version 3.9 of MEGAN 

(6). Metagenomic reads were searched against the NCBI non-redundant protein database with 

BLASTX. We used the additional BLAST parameter –F “m S” as suggested by the authors of the 

software. The search results were processed in MEGAN with default parameters to generate the 

taxonomic profile for each sample.

Detecting differences in E.C. abundance and amino acid metabolism

E.C. analysis comparing the microbiomes of herbivores and carnivores was implemented with ver-

sion 1.0.3 of Shotgun Functionalize R (11). As described in the main text, 495 E.C.’s were identi-

fied with significantly different relative abundance between carnivore and herbivore microbiomes, 

using a Benjamini-Hochberg adjusted p-value of 0.001 as our threshold for significance. These 

E.C.’s were mapped onto KEGG metabolic pathways and inspected visually. For every amino 

acid, biosynthetic and degradative reaction pathways were identified using both KEGG annota-

tions and the experimentally confirmed metabolic information collated in the MetaCyc database 

(27, 28). For every significantly different E.C. that was detected in a major amino acid biosynthetic 

or catabolic reaction, the relative abundance of the E.C. in the microbiomes was plotted. The ob-

jective was to eliminate statistically significant results from the final analysis if there were not a 

sufficient number of annotations for biological confidence. The following statistically significant 

E.C.s were not included in the summary analysis: (i) E.C.2.1.4.1 (glycine amidinotransferase) was 

found in only two microbiomes with low abundance (four total assignments in Bush Dog, two total 

assignments in Hyena), and (ii) E.C.2.6.1.57 (aromatic amino-acid transferase) which was found 

in only 7 microbiomes with low abundance (maximum of 15 assignments in Polar Bear, median of 

two assignments). The results of this analysis are summarized in Table S6. For every amino acid, 
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E.C.s detected in biosynthetic or degradative reactions are noted, as well as reversible reactions 

where likely direction cannot be determined based on available information.

Using Procrustes analysis to test whether the functional properties of a microbiome can be 

predicted from the bacterial species

Procrustes analysis, named after the son of the Greek god Poseidon who fit unsuspecting travelers 

to a fixed-size bed by stretching them or removing their feet, is a technique for comparing the rela-

tive positions of points in two multivariate datasets. The method was first introduced by Hurley 

and Cattell (7), then generalized by Gower (8), for comparing psychometric datasets. The method 

has since been employed in macro-ecology (29, 30), and in a recent report used to compare datas-

ets obtained from different regions of the same 16S rRNA sequence (31). We used the implemen-

tation of Procrustes analysis in the open-source QIIME microbial community analysis pipeline 

(20), built using the PyCogent libraries (32) and the Python programming language. As noted in 

the main text, this procedure yields a measure of fit, M2, which is the sum of squared distances 

between corresponding data points after the transformation. The significance of the association is 

obtained by a Monte Carlo procedure in which the point labels are randomized, M2 is recomputed, 

and the M2 value of the actual pair of datasets is compared to the empirical distribution of M2 val-

ues observed for the permuted datasets. Because M2 depends on the sample size and the structure 

of the data, M2 values typically cannot be directly compared between datasets, and the statistical 

significance must be computed for each pair of datasets separately. In these studies, we used 1,000 

replicates for calculating P-values.

We applied the Bray-Curtis distance metric to the functional data to obtain PCoA coordi-

nates for comparison with the 16S rRNA data. We also tested additional qualitative (Jaccard) and 

quantitative (Canberra, Gower) distance metrics on the KO data. All of these distance metrics led 

to the same essential conclusion; the agreement between the weighted UniFrac distances and the 

KO distance matrix was significant over the first three dimensions of the Procrustes plot (p<0.05).
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Assessing clustering using the Monte Carlo procedure

Monte Carlo simulations allow researchers to directly determine the probability of obtaining a 

result more extreme than the observed metric with random sampling of the data. Importantly, 

this test makes no a priori assumptions of the underlying structure of the data (e.g, a parametric 

distribution) and can thus be powerfully deployed with a range of experimental results. To assess 

sample clustering by diet, we computed the t-statistic of the UniFrac distances of 16S rRNA data 

and (separately) the Bray-Curtis distances of KO data, comparing the average distance between 

the fecal bacterial communities of herbivores to the average distance between carnivore communi-

ties. This t-statistic was treated as the “observed” result. Then, the pairwise distance matrix was 

randomly permuted a set number of times by shuffling the sample labels; in this study, we always 

performed 1,000 independent permutations. For each permutation, the t-statistic was recalculated 

using the new permuted labels. The distribution of the t-test statistic for the permutations was 

compared to the “observed” metric from the real data. The fraction of times a permutation resulted 

in a metric more extreme than the observed metric is the p-value, the probability that the observed 

result could have arisen by chance from the underlying data. For example, if 11 of the 1,000 ran-

dom permutations comparing the average UniFrac distance of herbivore fecal bacterial communi-

ties to the average UniFrac distance of carnivore communities had a t-statistic more extreme than 

the actual observed statistic, the reported p-value would be 11/1000, or 0.011. All Monte Carlo 

simulations were implemented using QIIME scripts. The same procedure was employed to assess 

the clustering of conspecific samples, here comparing unweighted and weighted UniFrac distances 

between animals of the same species to distances between animals of different species.

Regression analysis of data obtained from human subjects

Linear regression was carried out using the R statistical software package with a simple linear 

model (33). Principal Coordinates were generated using QIIME as described previously for the 

16S rRNA OTU data and functional KO data using the Bray-Curtis distance metric, and for the 

16S rRNA data using the weighted and unweighted UniFrac distances. Principal Coordinates for 
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the other types of functional annotation were calculated but not included in linear regression model 

because they had a high Pearson correlation coefficient with the KO Principal Coordinates and 

thus did not represent independent response variables (E.C correlation=0.97, CAZyme correla-

tion=0.87, peptidase correlation=0.73).

For each individual, the average daily intake of carbohydrates, proteins, and insoluble fiber 

was calculated based on the dietary records from the four days proceeding fecal sample dona-

tion. The position for each calorie-restricted individual’s gut bacterial community along Principal 

Coordinate 1 was regressed against each of the three dietary components using a simple linear 

model. The p-value resulting from the analysis was multiplied by three to adjust for the multiple 

hypotheses tested (Bonferroni adjustment). We also implemented a multiple linear regression us-

ing all three dietary components and their interactions as explanatory variables, with the Principal 

Coordinate positions as the response variable. We used backwards stepwise selection to remove 

non-significant terms from the model. In no case did a mixed model generate significant interac-

tions beyond the simple linear models tested previously.

The average daily calories consumed by our cohort ranged from 1207-2551 kCal/day 

(mean 1673, standard deviation 395 kCal/day). We regressed total kilocalories consumed against 

the PC1 coordinate of our samples for all data categories (16S rRNA and functional data). After 

correcting for multiple-hypothesis testing, total calories were not significantly associated with any 

of these categories (p >0.05).

Results

Prediction of community functional profiles from species assemblage data using a nearest-

neighbor model

As noted in the main text, the strong correlation between bacterial 16S rRNA and functional pro-

files made us wonder if the functional configuration of a microbiome could be predicted from 

its 16S rRNA sequences. To test this idea, we developed a nearest-neighbor model. For a given 
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sample, we predicted its functional composition to be the same as that sample’s nearest neighbor 

(using the weighted UniFrac distance comparison of 16S rRNA data). To assess the quality and 

significance of these predictions, we compared the average root mean squared error (RMSE) of 

our model to the average RMSE for one million Monte Carlo trials where each sample’s near-

est neighbor was chosen at random from the remaining samples. The UniFrac nearest neighbor 

generated a significantly better functional prediction than a random neighbor for all four types of 

functional; for KOs, E.C.s, peptidases, and CAZymes, no permutation in the one million trials had 

a lower RMSE than the UniFrac prediction (p=0). Using the unweighted UniFrac distances also 

led to predicted functional profiles that were significantly better than would be expected by chance 

(KOs, p=0; E.C.s, p=0; proteases, p=0.000252; CAZymes, p=0).

Phylogenetic congruence testing

We examined the congruence between host phylogeny and the presence of bacterial taxa or par-

ticular enzymatic (or other protein) functions in host microbiomes by comparing host phylogeny 

to both the OTUs and KOs present in the fecal samples. We first generated a table of each OTU’s 

or KO’s presence or absence in each sample, and selected a number of sequences (without replace-

ment) from each sample’s sequences to avoid biases associated with uneven sequencing effort 

among samples (we selected 1,000 bacterial 16S rRNA sequences from each sample for the OTU 

analysis, and 5,000 assigned shotgun sequences for the KO analysis). We then eliminated OTUs 

or KOs present in only one sample, as they were not useful for assessing the congruence between 

fecal microbiomes and host phylogeny. We then searched for OTUs or KOs that were present in 

all members of any distinct monophylogenetic lineage and absent in all other samples included 

in this study. We compared this result to the results obtained on a randomized host phylogeny 

where the samples we obtained were associated with randomly chosen tips of the host phylogeny. 

To summarize the results, we grouped OTUs with assignments to identical bacterial genera, and 

looked for bacterial genera enriched for OTUs matching the mammalian phylogeny. Of the 198 

different genera assignments detected in the subsampled OTU dataset, three (Prevotella, Barnesi-

ella, and Bacteroides) were found to be significantly enriched in matching OTUs (see main text; 
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p<0.05 relative to a binomial distribution using the overall abundance of matching OTUs). OTUs 

that lacked a genera assignment were not reported when identifying bacterial genera congruent 

with mammalian phylogeny. Of the 668 OTUs not assigned to a named genera, 29 (4%) matched 

a monophyletic group in the mammalian tree, a similar proportion found in the genus-assigned 

OTUs.

To account for OTUs and functions whose presence/absence pattern did not exactly match 

a monophyletic group of mammals, we performed a test for increased presence within a mono-

phyletic group relative to the expected value given the overall abundance of the OTU or function 

over all samples, using a binomial distribution. Categorizing these OTUs into genera as before, 

Prevotella, Barnesiella, and Bacteroides were significantly enriched for OTUs whose presence was 

congruent with the mammalian phylogeny, as well as Ureaplasma, Paludibacter and Pedobacter. 

Employing this method, we found 90 KOs, 2 CAZymes (of 119 tested), and 1 (of 274 tested) pro-

teases congruent with host phylogeny.

Additionally, we employed the method of Ochman et. al. (34) as another test for co-phy-

logeny. Their study examined four wild primates species and their fecal microbiota, and created 

a maximum parsimony tree of the gut communities using a character matrix of bacterial species 

normalized abundances that was compared to the primate phylogeny (as determined by mitochon-

drial DNA sequence). To implement their approach, we used MESQUITE rather than PAUP for 

parsimony inference and eliminated bacterial taxa that appeared in only a single sample (non-

parsimony-informative sites). We also tried a variety of parsimony variants (ordered states based 

on discretized z-scores, with SPR and NNI heuristics for tree search). We were able to reproduce 

their results for the four primate species using their source data. However, when applied to our 

larger mammalian tree of 33 species, we did not see an overall match between the host tree and the 

parsimony tree inferred from fecal bacterial communities, providing further evidence supporting 

our conclusion that the distribution of bacterial species does not mirror host phylogeny over the 

whole of the mammalian tree. We did not sample any one closely related clade with sufficient den-
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sity to perform extensive tests of whether the bacterial community signal Ochman and coworkers 

identified dissipates once a particular evolutionary depth is reached.
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Supplemental Figure Legends

Figure S1. Procrustes analysis is robust to a variety of computational approaches. Procrustes 

analysis of 16S rRNA sequences (weighted UniFrac, unweighted UniFrac, OTU counts) against 

KO annotation of shotgun pyrosequencing reads. Every sphere represents a single mammalian 

fecal community and is colored by host diet. The black end of each line connects to the 16S data 

for the sample, while the orange end is connected to the functional annotation data. The fit of each 

Procrustes transformation over the first three dimensions,is reported as the M2 value. (A) Pro-

crustes analysis of 16S rRNA data (unweighted UniFrac) against KEGG Orthology (KO) groups. 

(B) Procrustes analysis of OTU counts (Bray Curtis metric) against KOs. (C) Procrustes analysis 

of 16S rRNA data (weighted UniFrac) against KOs, using only one animal sample from each of 

the 33 mammalian species.

Figure S2. Bipartite network analysis. (A) Close-up of animal node labels for KO bipartite 

graph from Fig. 2B in main text. (B-C) Bipartite network diagrams of evenly sampled CAZymes 

[glyoside hydrolases] (B) ot peptidases (C) Labeled circles (nodes) denote animal hosts, and are 

colored by host diet. Lines (edges) radiating from the host nodes connect to microbiome gene 

nodes representing a single glycoside hydrolase or peptidase found in the host fecal microbiome.

Figure S3. Procrustes analysis shows that the bacterial lineages and microbiome gene content 

from humans who practice caloric restriction with adequate nutrition give similar clustering 

patterns. (A-D) Procrustes analysis of bacterial 16S rRNA sequences (weighted UniFrac) against 

KOs, CAZymes (glycoside hydrolases), MEROPS (peptidases), and Enzyme Commission num-

bers (E.C.s). Every sphere represents a single mammalian fecal community and is colored by host 

diet. The black end of each line connects to the 16S data for the sample, while the orange end is 

connected to the functional annotation data. The fit of each Procrustes transformation over the first 

three dimensions is reported as the M2 value. Spheres are colored differently for each human host.
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Supplemental Figures

Figure S1.
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Figure S2.
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Figure S3.
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Supplemental Tables

Table S1. Metadata on 39 non-human mammals included in this study, including provenance, 

diet, gut physiology, and phylogenetic order.

Table S2. Mammal 16S rRNA sequencing statistics.

Table S3. Mammal fecal community DNA shotgun pyrosequencing datasets: statistics.

Table S4. Mammal fecal community DNA shotgun pyrosequencing datasets: phylogenetic as-

signments. (A) Summary of total hits against the NCBI non-redundant (nr) database. (B) Percent-

age of all reads assigned to the major phylogenetic divisions (normalized to total number of reads 

with hit in NCBI nr database).

Table S5. E.C.s encoded by genes whose representation is significantly different between 

herbivorous and carnivorous microbiomes. *= Poisson model coefficient. †=Akaike Informa-

tion Criterion, smaller values denote better agreement between model and data. ‡= Benjamini-

Hochberg corrected. §=”NA” E.C. with no specific annotation.

Table S6. Summary of differences in amino acid metabolism between herbivore and carni-

vore microbiomes.

Table S7. Metadata on 18 calorie restricted humans included in this study, including host 

BMI and intake of major food categories.

Table S8. 16S rRNA sequencing statistics from calorie restricted humans.

Table S9. Shotgun pyrosequencing datasets obtained from fecal DNA prepared from calorie 

restricted humans: statistics.

Table S10. Shotgun pyrosequencing datasets obtained from fecal DNA prepared from calorie 

restricted humans: phylogenetic assignments. (A) Summary of total hits against the NCBI non-

redundant (nr) database. (B) Percentage of all reads assigned to the major phylogenetic divisions 

(normalized to total number of reads with hit in NCBI nr database).
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Table S11. Results of regression analysis comparing position on Principal Coordinate 1 with 

host dietary intake.
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Chapter 3

Assembly of the functional gut microbiome in healthy and malnourished children
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Chapter 3

Assembly of the functional gut microbiome in healthy and malnourished children

“Tell me what you eat, and I will tell you what you are.”

Jean Anthelme Brillat-Savarin, The Physiology of Taste, 1825
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Introduction and Background

The previous chapter showed that variations in diet between adult humans are associated with dif-

ferences in the organismal and gene content of their gut microbial communities. Enormous dietary 

changes occur during infancy. It is well established that the gut microbiota changes over this same 

period; it is less clear how the functional properties of the bacterial community evolves during 

the period of exclusive breast feeding, during the period of supplemental feeding and as the child 

is fully weaned. A better understanding of assembly dynamics in the infant gut microbiome is re-

quired to develop a basic model of factors controlling microbiome operation. Understanding this 

period of assembly also promises to inform us about the origins of normal variations in supraor-

ganismal (host plus microbial) metabolic and physiologic phenotypes within and between human 

populations, as well as the origins of pathologic states, including those associated with microbial 

community level disturbances (e.g., enteropathogen infection or antibiotic associated diarrhea).

In many parts of the world, children in early infancy are afflicted by malnutrition and di-

arrheal disease. One fifth of the world’s population is undernourished, a broad term that includes 

states of stunting and wasting along with any deficiency of micro- and macronutrients (Black et 

al., 2008). The impact of undernutrition is particularly severe in children under the age of five; 

one third of the deaths in this group are caused at least in part by undernutrition (Horton, 2008). 

Nutritional status affects health directly through altered metabolism, and also by causing immu-

nodeficiency and predisposition to infection (Katona and Katona-Apte, 2008; Kau et al., 2011). In 

turn, the infectious process often exacerbates the nutritional imbalance. For instance, children who 

are malnourished are more likely to suffer enteropathogen infection and diarrhea, and diarrhea in 

turn can increase the sequelae of malnutrition.

With this background, we were motivated to study the development of the gut microbial 

communities in healthy and malnourished infants. To our knowledge, there has been only one 

culture-independent characterization of infant gut communities focusing on malnutrition (Gupta 

et al., 2011). That study was limited because it included a single time point from one malnourished 
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child and an aged matched control. Although the recent literature is sparse, there is a significant 

body of work using culture methods to study patterns of gut microbial community assembly in 

the developing world, with some emphasis on alterations in malnutrition. The most notable series 

of studies was led by Leonardo Mata, working in rural Guatemala and Central America. He and 

his colleagues were also interested in the interaction of malnutrition and infection as a cause of 

morbidity in children (Mata, 1975), and thus studied the successional pattern in these “unsanitary 

conditions” to understand how the normal bacterial community in the gut might influence disease 

(Mata et al., 1969; Mata and Urrutia, 1971). Like infants in developed nations, E. coli was found 

in all children in the first few days of life, and Bifidobacteria reached dominance by the end of 

the first week and persisted for the duration of breast feeding. Bacteroides were variably found 

in babies who were exclusively breast fed, but when they were present, they were present in high 

levels. Bacteroides became dominant once solid foods became the sole dietary source. A separate 

group compared microbial community profiles from infants, children, and adults living in Nigeria 

and the United Kingdom (Tomkins et al., 1981). Babies from both countries had similar communi-

ties, but stronger geographical differences were apparent in weaned children and adults. They also 

demonstrated that the levels of Bacteroidetes increased in the Nigerian infants when the diet was 

supplemented with cereal.

Mata also looked at differences in the bacterial communities of children with malnutrition 

(Mata et al., 1972). He studied a cohort of 13 children presenting with acute malnutrition, rang-

ing in age from 1 to 6 years, along with a control group of 4 children who were not malnourished, 

ranging in age from 10 to 22 months. In addition to the age difference between the groups, the 

cohort had the confounding variable that 10 of 13 cases presented with diarrhea. Nonetheless, the 

fecal microbiota of the two groups was found to be different, with lower abundance of Bifidobac-

teria and more frequent detection of atypical organisms like Proteus and Pseudomonas species in 

the malnourished children. The malnourished children also had a greater number of facultative 

anaerobes in their stools. Jejunal aspirates from the malnourished children showed higher bac-

terial loads in these children than in the controls (the jejunum is thought to harbor a very small 
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community under normal conditions). Heyworth and Brown also studied the jejunal microbiota in 

25 malnourished children from Gambia (Heyworth and Brown, 1975). They too observed higher 

bacterial loads in children with chronic diarrhea and malnutrition. Furthermore, the jejunal com-

munities of children suffering from chronic disease tended to dominated by only 1 or 2 culturable 

organisms, while controls had a relatively more diverse bacterial collection.

This chapter describes our metagenomic study of the functional development of the gut 

microbiome in children living in Dhaka, Bangladesh. Our work was done as part of a larger study 

of childhood malnutrition and infection sponsored by the Bill and Melinda Gates Foundation. 

The site in Dhaka was chosen because of the remarkable scientific and clinical infrastructure in 

the International Center for Diarrhoeal Disease Research, Bangladesh. Researchers there enrolled 

the cohort, performed regular surveillance and clinical phenotyping of the children, and did initial 

DNA extraction from the collected stools.

Monthly stool samples were collected from 103 children from birth through the first two 

years of life using a uniform protocol for prompt freezing at -20oC followed by storage at -80oC. 

For all samples, we generated and sequenced amplicons from the V2 region of bacterial 16S rRNA 

genes present in the fecal microbiota. For a subset of the children, we performed shotgun gene 

sequencing to characterize the functional features represented in the microbiome. Several ques-

tions motivated our analysis. Studies in western adults have demonstrated a high level of stability 

of a person’s microbiota over time: at what point during the first two years of life, if any, does the 

gut community reach a stable state with a ‘personal’ community profile? Are there environmental 

factors, such as diet or malnutrition that cause reproducible changes in microbial communities 

across many children? Are there any signatures in the microbiota or microbiome that reflect host 

nutritional status? Conversely, are there states of the bacterial community that predict the future 

development of undernutrition? Is there a functional core of genes found in infant microbiomes, 

and if so, what are the predicted properties of this community? Are there any consistent functional 

differences in the microbiomes of children who are stunted versus those who are healthy?
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Cohort Characteristics and Sequencing Results

Samples from 103 children were used for this study; 98 of these children remained in the cohort for 

two full years. Nutritional status for each child was classified using height-for-age or weight-for-

age Z scores (HAZ and WAZ, respectively). For both HAZ and WAZ, a score greater than or equal 

to -2 is considered normal, while scores less than -2 denote “stunting” (HAZ) or “underweight” 

(WAZ) status. Children born with a low score at birth were classified as “Born Stunted” or “Born 

Underweight.” Of the children born with a normal score, those who had a score < -2 at 12 months 

of age were classified as “Stunted at 12 months” (HAZ) or “Underweight at 12 months” (WAZ). 

The remaining children were classified as “Healthy.” Two children lost from the cohort before 12 

months of age were excluded from the classification (Supplementary Table 1). In Bangladesh, the 

stunting classification has more significant clinical implications than their underweight classifica-

tion, and thus most of our analysis related to malnutrition focuses on HAZ and stunting.

By 12 months of age, the average child not in the “Healthy” bin was malnourished by both 

measures and remained so for the duration of the study period. Even the “Healthy” children be-

come significantly more stunted as they aged (paired U-test of HAZ at birth vs. HAZ at 24 months; 

P value < 0.001) (Figure 1). Healthy versus malnourished infants and children in our cohort did 

not differ significantly in terms of the number of days they had documented diarrhea, the number 

of diarrheal episodes, or the age at which food other than breast milk was first introduced (U-test; 

P value>0.05) (Table 1).

Children were enrolled in the study shortly after birth and the first fecal sample was col-

lected at the time of enrollment (mean=6.8 ± 3.2 days old at first sample). A single fecal sample 

was collected every month thereafter for a total of 24 samples. Bacterial 16S rRNA datasets were 

generated by multiplex 454 FLX Titanium pyrosequencing from 1,892 stool samples (mean=18.4 

± 3.5 samples per child; 2,657 ± 856 high-quality 16S reads/sample; average processed read length 

241 nt). A total of 242 shotgun pyrosequencing datasets were generated using the same fecal DNA 

from 14 children born at a normal height-for-age Z score; 8 of them had normal HAZ scores at 12 
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months of age and 6 had become stunted (17.3 ± 3.5 samples/child; 86,209 ± 40,360 high-quality 

reads/microbiome; total size of the dataset, 7.57 Gbp).

Results and Discussion

Bacterial taxonomic succession with aging

The average relative abundance of bacterial class-level phylotypes was calculated from samples at 

each month of life (Figure 2). Consistent with the literature, the class Actinobacteria (predominant-

ly composed of bifidobacteria species) was most abundant during the earliest months of infancy 

and declined as the children aged. Actinobacteria were replaced almost entirely by rising levels 

of Bacteroidia. The total abundance of bacteria in the Firmicute phylum also increased over time; 

while the class Bacilli declined approximately 50% from birth to the second year of life, Clostridia 

expanded 10-fold over the same interval.

Although the aggregate pattern of succession is relatively smooth, the successional chang-

es within a single child are much less predictable (Supplementary Figure 1). The composition of 

each individual’s microbiota can fluctuate dramatically from monthly sample to monthly sample. 

To quantify this change, pairwise distances between all samples were calculated using the UniFrac 

metric, which compares each pair of samples in terms of their evolutionary distance (Lozupone 

and Knight, 2005). Considering only the pairwise comparisons of a child with him- or herself, we 

asked what fraction of times the nearest neighbor for an individual timepoint came from the sam-

ples immediately before or after that time point in the child’s life. On average, only 28% (weighted 

UniFrac) to 43% (unweighted UniFrac) of the samples had an adjacent month time point as the 

nearest neighbor. Even more dramatically, when considering pairwise comparisons between all 

children, only 7% (weighted UniFrac) to 14% (unweighted UniFrac) of samples had a nearest 

neighbor from the same child (Supplementary Figure 2). This contrasts with a previous study 

of 14 USA infants that demonstrated a relatively high level of nearest neighbor matching within 

samples from a single child (Palmer et al., 2007). It is possible that the difference arises because 
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most samples in that study were collected over a period of several weeks, and almost all samples 

were collected in the first 3 months of the child’s life. The lower level of similarity in our monthly 

sampling suggests that whatever intrapersonal stability exists within an infant may be limited to 

periods of days or weeks.

Bacterial community changes with aging and diet switches

We next asked if there were any events in the life of the children that explained the changes in the 

bacterial community over time. Given the high level of variation within and between individu-

als, we chose to analyze each child separately. We reasoned that a combined analysis would be 

complicated by the differences between children, while analyzing each child separately allowed 

us to ask if there were common responses to external factors across many independent replicates. 

Both diet and age of the child had profound effects on community composition. As a case study, 

we highlight the data from Child 7114, one of the children classified as “Healthy” and selected 

for shotgun gene sequencing (Figure 3). The position of each sample on Principal Coordinate 1, 

the axis of maximal variation between samples, was significantly correlated with the child’s age 

(Figure 3a and Figure 3c).

The principal coordinate values were also significantly different between diet categories 

(Figure 3b and Figure 3d). We tested the impact of a single host characteristic, presence of family 

food in the diet, as a discriminator of microbial community differences in each child separately. 

In 85% of the children, the average unweighted UniFrac distance between samples with the same 

exposure to family food was significantly lower than the average distance between samples with 

different exposures (Monte Carlo permutation test with 1000 iterations, p-value < 0.05).

Of course the progression of an infant’s diet is highly conflated with aging, so it is difficult 

to tease apart the relative contributions of both factors. If the introduction of family food to the diet 

is causing a reproducible shift in fecal microbial community configuration, we reasoned that chil-

dren who had family food introduced at early ages should have an altered community configura-

tion compared to children who experienced a later introduction. We selected the ten children with 
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the earliest introduction of family food and compared them to the ten children with the latest age 

of introduction. For both groups of children, the major variation along PC1 was associated with 

host age rather than diet (Figure 4a). Children who had family food introduced at a very early age 

followed a nearly identical trajectory along PC1 compared to children who did not receive family 

food. Similarly, we wondered if the withdrawal of breast milk at weaning was responsible for ma-

jor changes in community structure. In Bangladesh, children are often breast fed for several years; 

only 11 of the children in our cohort were totally weaned within the study period (Supplementary 

Table 1). Of those children who were weaned, we selected the 5 children weaned at the earliest age 

and plotted change in Principal Coordinate 1 compared to host age (Figure 4b). The withdrawal of 

breast milk from these infants was not reliably associated with any changes in community struc-

ture along PC1.

Taken together, these results demonstrate that the developing infant gut microbiota is high-

ly dynamic, and in general highly associated with age. Diet could be the cause of these changes; 

however, comparing children with different diet patterns did not reveal any diet-associated chang-

es that were reproducible across the members of the cohort. The major limitation to our analysis 

of diet is that we treat the food groups as monotonous bins (e.g, “breast milk”). We have no data 

on the quantity or quality (composition) of these foods and are thus unable to make any conclu-

sions about dose-dependent affects. Additionally, the composition of milk changes over the course 

of lactation (e.g., alterations in Human Milk Oligosaccharides), as do immunoactive compounds. 

These changes may play an important role in shaping the microbial community of the gut (Sela 

and Mills, 2010).

Impact of HAZ on community differences

To test for an association of malnutrition status with microbial community structure, we gener-

ated a series of age-matched comparisons. Anthropometric measurements were recorded every 

three months by the field workers; for each quarterly time point, we collected bacterial 16S rRNA 

data from all stool samples provided within 30 days of the child’s anthropometric measurement. 
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We categorized the samples in two ways for comparison. The first method was the ‘nutrition bins’ 

described earlier, where each child was assigned a status (“Healthy,” “Born,” or “Became” stunted 

or underweight at 12 months of life). The second method was to transform all of the Z scores to 

quintiles based on the distribution of values recorded over the first two years in all children. A Z 

score in the lowest 20% of all measurements was scored as “1”, while a Z score in the highest 20% 

was scored as “5”. The first method allowed us to ask if children with different nutritional fates 

had any age-matched differences in their fecal microbiota. The second method allowed us to ask 

if the nutritional status at each timepoint was associated with microbial community differences, 

regardless of past or future occurrences.

Our test for association was Monte Carlo permutation analysis. We calculated the aver-

age pairwise unweighted UniFrac distance of samples within an age-matched nutrition category 

compared to the average pairwise distance between samples in that category and samples outside 

of the category (e.g., the average pairwise distance between samples assigned to HAZ quintile 1, 

compared to the average pairwise distance between quintile 1 and quintile 5 samples). The statis-

tical significance of the difference was determined by comparing the observed difference to the 

distribution of differences measured with 1000 random permutations of category assignments. 

The results of this analysis require further validation, but there is some evidence of statistical dif-

ferences between children who are healthy at 12 months of life and children who are stunted. At 

several different time points, the average distance within the “Healthy” category is significantly 

different than the distance between “Healthy” and “Born Stunted” or “Stunted at 12 months” (p-

value < 0.05). However, the magnitude of the average distance differences is small, and there is 

no obvious separation of the samples by category in Principal Coordinate space over the first 10 

dimensions. Furthermore, the differences are not consistent over time. Healthy children are sig-

nificantly different than children born stunted at the birth, 6 month, and 12 month recordings, but 

not at 3 months or 9 months. The significance of these findings needs to be tested in at least two 

additional ways. First, we will randomly assign samples to one of the three groups, and repeat the 

Monte Carlo analysis. The distribution of p-values obtained from these analyses will help us to 
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establish the False Discovery Rate for the method. Second, we will use machine learning methods 

(Knights et al., 2011) to look for bacterial species in the dataset that separate the age-matched nu-

tritional categories. The validity of the modeling can be tested by using some of the samples for 

training and withholding other samples for testing.

Change in community functional profile with age

We used the metadata from the cohort to select 14 children for shotgun gene sequencing. We first 

selected 8 children who were classified as “Healthy” by HAZ scores at 12 months of life, with 

preference given to children with diarrheal incidence and history of diet switches that were fairly 

representative of population averages. The goal was to create a dataset of fairly similar children as 

a reference for “normal” development. We then selected 6 children who were born healthy but who 

were classified as “Stunted” at the 12th month of life. Where possible, these children were selected 

to match our healthy subset in terms of diarrheal burden and age at diet switches so that the major 

distinguishing characteristic between the children was nutritional status (Supplementary Table 1).

Shotgun gene sequencing datasets were generated for all 14 children using fecal samples 

from birth through the 24th month of life. Only 5 of the samples provided at the time of enrollment 

yielded enough DNA for shotgun library preparation; for the remaining 23 months, we generated 

an average of 10.3 ± 1.6 shotgun libraries per time point. Datasets were annotated using the KEGG 

database. Principal coordinate analysis shows that the major axis of community variation is cor-

related with the children’s age and diet (Figure 5a and Figure 5b). It is interesting to note that the 

samples from the first 14 days of life (“Life Phase 1” in the Cooperstock and Zedd model) span 

the entire range of PC1 (Figure 5c) (Cooperstock and Zedd, 1983). By the second month of life, 

samples are much more tightly clustered by Life Phase. This argues that although the infant gut 

can initially be colonized by a range of organisms with widely varied functional capabilities, there 

is rapid equilibration and selection for organisms with functional similarity.	
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Functional maturation of the gut microbiome during postnatal development

To understand the metabolic functions that change in the developing gut microbiome, we aggre-

gated the counts of KO’s into KEGG metabolic pathways. Using data from the 8 healthy children, 

we correlated the abundance of each pathway in the samples with the age of the host using the 

Spearman non-parametric correlation coefficient. Of the 129 pathways included in the analysis, 83 

were significantly correlated with age (Supplementary Table 2). We visualized the pathways and 

their correlation with age using iPath (Yamada et al., 2011). Consistent with a previous time series 

study of a single healthy USA infant (Koenig et al., 2011), younger microbiomes were function-

ally enriched in genes encoding proteins involved in fatty acid metabolism and ABC transporters. 

Older microbiomes were enriched in a variety of metabolic pathways, notably for amino acid and 

carbohydrate utilization. One of the enriched ‘superfamilies’ of pathways was for glycan metabo-

lism (Figure 6). The gut epithelium is covered by a glycan-rich mucus layer, and it is known that 

many bacteria in the microbiota can degrade these mucins (e.g., members of Bacteroides). While 

no glycan biosynthetic pathways were enriched in the microbiome, a variety of degradative path-

ways were significantly and positively correlated with host age.

The Spearman analysis is particularly well suited to detect components of the data that 

increase monotonically with age. Alternatively, functions in the microbiome may follow a dis-

crete progression, where they are found with a certain level of abundance in early life and then 

increase or decrease after an environmental trigger. We looked for genes encoding enzymes that 

were significantly different in early life (0-3 months) compared to later life (6-9) months using a 

Poisson model (Kristiansson et al., 2009). We analyzed the healthy and stunted infants separately. 

In both groups, the most significantly different enzyme function was sialate-o-acetylesterase (En-

zyme Commission number 3.1.1.53). This function is not detected in any microbiome before the 

130th day of life, but is present in most microbiomes by the first year of life and in all children by 

2 years (Figure 7). It is likely that this enzyme is used by bacteria to metabolize sialic acid decora-

tions on secreted host mucins. The expression of glycans, and the carbohydrate modifications of 

these glycans, changes over the course of infant development (Biol et al., 1992). It will be fasci-
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nating to relate changes in an individual child’s gut mucosal glycan profile to the capacity of their 

gut microbiome to degrade those glycans. This also raises the intriguing possibility that structural 

variation in the host mucosa is one of the non-diet based factors driving the changes seen in the 

microbiota as infants age.

Conclusions and Future Directions

Our study of microbiota succession in 103 human infants demonstrates some common patterns 

of community assembly in these children. Dietary change is associated with changes in a single 

individual’s community; however, when children are compared to each other, the age of the infant 

is a better predictor of community similarity than shared diet. The relative importance of age and 

the limited ability of diet switches to differentiate communities from different children suggests 

that stochastic processes are likely important during infant assembly, and that non-nutritive envi-

ronmental or host events also act to shape the community. At the same time that the assemblage of 

species in the microbiota is evolving, the functional capacity of that community is maturing. Nu-

merous pathways, including those needed for amino acid, carbohydrate, and glycan metabolism, 

are positively associated with the age of the child. We are in the process of identifying specific 

enzymatic functions that change in these communities over time, and relating those functions to 

the occurrence of life events such as the introduction of family food.

Several areas of this project require additional work. First, preliminary analysis suggests 

that there are differences between the bacterial phylogenetic composition of malnourished and 

healthy children. These results need to be confirmed by comparison to null models, and the re-

sponsible OTUs identified with machine learning methods. Second, we are continuing to classify 

the patterns of assembly for bacterial functions in these infants. Our focus will be on identifying 

functions that change in the same way in all or most members of the cohort, as these most likely 

represent the functional core requirements of the gut community. We are also working to develop 

appropriate paired statistical models that will allow us to look at the changes from one timepoint 

to the next; these methods will be used to classify the functional and taxonomic changes associated 
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with discrete life events. Lastly, the work will be enhanced by establishing quantitative models that 

describe bacterial species and gene abundance as a function of host age and diet. It is clear that diet 

is associated with the change of the community within a single individual, but it is not clear if simi-

lar diet transitions have the same affect in different host. If diet is truly associated with reproduc-

ible changes across diverse infants, then discriminant analysis should be able to accurately classify 

microbiota from hosts with the same diet. If diet is not associated with reproducible changes, it will 

strongly argue that there are additional factors changing in infancy that may be more proximal in 

driving community evolution.
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Figure Legends

Figure 1. Nutritional status of cohort infants during the first two years of life. Height-for-

age (HAZ) and weight-for-age (WAZ) Z scores were measured every three months, beginning at 

birth. Children with normal Z scores (>-2) at birth and also at 12 months of life were classified 

as “Healthy.” Children with normal scores at birth but low scores (<-2) at 12 months of life were 

classified as “Stunted at 12 months” (HAZ) or “Underweight at 12 months” (WAZ). Children with 

a low score at birth were classified as “Born Stunted” or “Born Underweight.” Error bars represent 

95% confidence intervals. (a) Mean HAZ scores over time for each stunting category. (b) Mean 

WAZ scores over time for each underweight category.

Figure 2. Change in relative abundance of bacterial classes over first two years of life.Op-

erational Taxonomic Units (OTUs) were determined using a 97% nucleotide sequence similarity 

threshold for the V2 region of the 16S rRNA gene, and taxonomy was assigned using the RDP da-

tabase. The OTU taxonomy was cut at the class level, and the abundance of each bacterial class was 

determined in every sample. This plot charts the average abundance of the major bacterial classes 

from all of the samples collected in the same month of life. The bacterial phyla is noted in paren-

theses after the class name: A=Actinobacteria, B=Bacteroides, F=Firmicutes, P=Proteobacteria, 

T=Tenericutes, TM=TM7.

Figure 3. Community changes in child 7114 are associated with age and diet. Principal coor-

dinates analysis (PCoA) was performed using the unweighted UniFrac distances between all sam-

ples from child 7114. (a) Principal coordinates plot, colored by age. (b) Principal coordinates plot, 

colored by diet category. Diet categories: “BM” = breast milk only, “BM/CM” = breast milk and 

cow’s milk, “BM/CM/RP”= breast milk and cow’s milk and rice powder, “BM/FF” = breast milk 

and family food, “FF’ = family food only. (c) Linear regression of child age against microbiota 

position on principal coordinate 1. (d) Spread of data on principal coordinate 1, grouped by diet.

Figure 4. Impacts of diet and age in children with different exposure to family food. (a) Data 

from the 10 children with the earliest first exposure to family food (mean age 167 days) were plot-
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ted together with data from the 10 children with the latest first exposure to family food (mean age 

375 days). Samples are colored according to diet category as in Figure 3. (b) The 5 children with 

the earliest age of complete weaning (mean age 421 days) are plotted together. Each sample is 

colored by “Life Phase”: Phase 1= first 14 days of life, Phase 2= exclusive breast feeding, Phase 

3= breast feeding with food supplement, Phase 4 = completely weaned.

Figure 5. Changes in fecal microbiome functional profiles are strongly associated with host 

age and diet. The Bray-Curtis metric was used to calculate the pairwise distances between all 

shotgun datasets. (a) Principal coordinates plot of all microbiomes. Samples are colored by host 

age. (b) Linear regression of host age versus position of the microbiome along principal coordinate 

1. (c) Variation of samples along PC1, grouped by Life Phase.

Figure 6. Glycan degradation pathways increase in aging microbiomes. Shotgun reads from 

the healthy children were annotated with the KEGG database and assigned to pathways. The abun-

dance of each pathway in each sample was correlated with the age of the host at the time of sam-

pling using the non-parametric Spearman method. Those pathways that were statistically signifi-

cantly correlated with age were visualized in iPath; green pathways are negatively correlated with 

age, while red pathways are positively correlated.

Figure 7. Presence of sialate-o-acetylesterase in infant microbiomes. Microbiomes were grouped 

by host age into bins for every 75 days of life. The average relative abundance of EC.3.1.1.53 in 

the samples in the bin was calculated (red bars, left axis). The prevalence of the E.C. in samples 

from the 8 healthy children and 6 stunted children is also plotted for each bin (green and blue lines, 

right axis).
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Figure 2.
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Figure 3.

PC
2 

(1
4%

)

PC
1 

(3
3%

)
PC

1 
(3

3%
)

PC
2 

(1
4%

)

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

-0.4-0.20.00.2

A
ge

 (d
ay

s)

PC1 position

B
M

B
M

/C
M

B
M

/C
M

/R
P

B
M

/F
F

FF

-0.4-0.20.00.2

D
ie

t C
at

eg
or

y

PC1 Position

A
B

C
D

B
M

B
M

/C
M

B
M

/C
M

/R
P

B
M

/F
F

FF

B
irt

h
2 

yr
s

A
dj

us
te

d 
R

2 =
0.

76
24



81

Figure 4.
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Figure 5.
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Figure 6.

m
et

ab
o
lis

m
Li

n
o
le

ic
 a

ci
d

N
−

g
ly

ca
n
 b

io
sy

n
th

es
is

H
ig

h
−

m
an

n
o
se

 t
yp

e

m
et

ab
o
lis

m
S
p
h
in

g
o
lip

id

b
io

sy
n
th

es
is

O
−

M
an

n
o
sy

l 
g
ly

ca
n

B
en

zo
at

e 
d
eg

ra
d
at

io
n

vi
a 

C
o
A
 l
ig

at
io

n

b
io

sy
n
th

es
is

Pe
p
ti
d
o
g
ly

ca
n

Fa
tt

y 
ac

id
 e

lo
n
g
at

io
n

in
 m

it
o
ch

o
n
d
ri
a

d
eg

ra
d
at

io
n
 o

f
K
et

o
n
e 

b
o
d
ie

s

S
yn

th
es

is
 a

n
d

Ph
o
to

sy
n
th

es
is

Fa
tt

y 
ac

id
b
io

sy
n
th

es
is

m
et

ab
o
lis

m
D

−
A
la

n
in

e

Li
p
o
p
o
ly

sa
cc

h
ar

id
e

b
io

sy
n
th

es
is

g
an

g
lio

se
ri
es

G
ly

co
sp

h
in

g
o
lip

id
b
io

sy
n
th

es
is

 −

G
al

ac
to

se
m

et
ab

o
lis

m

E
th

yl
b
en

ze
n
e

d
eg

ra
d
at

io
n

m
et

ab
o
lis

m
Pr

o
p
an

o
at

e

B
ip

h
en

yl
 d

eg
ra

d
at

io
n

C
it
ra

te
 c

yc
le

(T
C
A
 c

yc
le

)

Fl
av

o
n
o
id

b
io

sy
n
th

es
is

m
et

ab
o
lis

m
S
ta

rc
h
 a

n
d
 s

u
cr

o
se

C
ar

b
az

o
le

d
eg

ra
d
at

io
n

N
ap

h
th

al
en

e 
an

d
an

th
ra

ce
n
e

d
eg

ra
d
at

io
n

P4
5
0
 S

u
b
st

ra
te

s
[B

] 
C
yt

o
ch

ro
m

e

p
h
o
sp

h
o
ry

la
ti
o
n

O
xi

d
at

iv
e

Fr
u
ct

o
se

 a
n
d

m
an

n
o
se

 m
et

ab
o
lis

m

b
io

sy
n
th

es
is

Pr
im

ar
y 

b
ile

 a
ci

d

In
o
si

to
l 
p
h
o
sp

h
at

e
m

et
ab

o
lis

m

[B
] 

Li
p
id

s

b
io

sy
n
th

es
is

M
o
n
o
te

rp
en

o
id

Ph
o
to

sy
n
th

es
is

 −
an

te
n
n
a 

p
ro

te
in

s

[B
] 

Pr
o
te

o
g
ly

ca
n
s

g
am

m
a−

H
ex

ac
h
lo

ro
cy

cl
o
h
ex

an
e

d
eg

ra
d
at

io
n

d
eg

ra
d
at

io
n

Fl
u
o
re

n
e

Ly
si

n
e

d
eg

ra
d
at

io
n

R
ed

u
ct

iv
e

ca
rb

o
xy

la
te

 c
yc

le
(C

O
2
 f
ix

at
io

n
)

xy
le

n
e 

d
eg

ra
d
at

io
n

T
o
lu

en
e 

an
d

G
ly

co
sa

m
in

o
g
ly

ca
n

b
io

sy
n
th

es
is

 −
ch

o
n
d
ro

it
in

 s
u
lf
at

e

d
eg

ra
d
at

io
n

S
ty

re
n
e

[B
] 

Ph
yt

o
ch

em
ic

al
C
o
m

p
o
u
n
d
s

an
sa

m
yc

in
s

B
io

sy
n
th

es
is

 o
f

b
io

sy
n
th

es
is

N
−

G
ly

ca
n

B
io

sy
n
th

es
is

 o
f 
ty

p
e 

II
p
o
ly

ke
ti
d
e 

b
ac

kb
o
n
e

b
io

sy
n
th

es
is

In
se

ct
 h

o
rm

o
n
e

m
et

ab
o
lis

m
R
et

in
o
l

fi
xa

ti
o
n

C
ar

b
o
n

Pe
n
to

se
 a

n
d
 g

lu
cu

ro
n
at

e
in

te
rc

o
n
ve

rs
io

n
s

p
o
ly

ke
ti
d
e 

p
ro

d
u
ct

s
B
io

sy
n
th

es
is

 o
f 
ty

p
e 

II

m
et

ab
o
lis

m
Py

ru
va

te

u
n
it
 b

io
sy

n
th

es
is

Po
ly

ke
ti
d
e 

su
g
ar

(G
PI

)−
an

ch
o
r 

b
io

sy
n
th

es
is

G
ly

co
sy

lp
h
o
sp

h
at

id
yl

in
o
si

to
l

O
th

er
 g

ly
ca

n
d
eg

ra
d
at

io
n

m
et

ab
o
lis

m
G

ly
ce

ro
lip

id

G
lu

co
n
eo

g
en

es
is

G
ly

co
ly

si
s 

/

G
ly

co
sa

m
in

o
g
ly

ca
n

h
ep

ar
an

 s
u
lf
at

e
b
io

sy
n
th

es
is

 −

3
−

C
h
lo

ro
ac

ry
lic

 a
ci

d
d
eg

ra
d
at

io
n

b
io

sy
n
th

es
is

S
tr

ep
to

m
yc

in

b
io

sy
n
th

es
is

O
−

G
ly

ca
n

T
er

p
en

o
id

 b
ac

kb
o
n
e

b
io

sy
n
th

es
is

b
io

sy
n
th

es
is

Is
o
fl
av

o
n
o
id

[B
] 

C
yt

o
ch

ro
m

e 
P4

5
0

n
u
cl

eo
ti
d
e 

su
g
ar

m
et

ab
o
lis

m

A
m

in
o
 s

u
g
ar

 a
n
d

m
et

ab
o
lis

m
Li

p
o
ic

 a
ci

d

b
io

sy
n
th

es
is

S
te

ro
id

 h
o
rm

o
n
e

G
ly

co
sp

h
in

g
o
lip

id
b
io

sy
n
th

es
is

 −
la

ct
 a

n
d
 n

eo
la

ct
o
 s

er
ie

s

m
et

ab
o
lis

m
B
u
ta

n
o
at

e

Ph
o
sp

h
o
n
at

e 
an

d
p
h
o
sp

h
in

at
e 

m
et

ab
o
lis

m

b
io

sy
n
th

es
is

D
it
er

p
en

o
id

B
io

sy
n
th

es
is

 o
f

u
n
sa

tu
ra

te
d
 f
at

ty
 a

ci
d
s

E
th

er
 l
ip

id
m

et
ab

o
lis

m

T
et

ra
cy

cl
in

e
b
io

sy
n
th

es
is

b
io

sy
n
th

es
is

S
es

q
u
it
er

p
en

o
id

b
io

sy
n
th

es
is

 −
ke

ra
ta

n
 s

u
lf
at

e

G
ly

co
sa

m
in

o
g
ly

ca
n

A
sc

o
rb

at
e 

an
d

Ph
en

yl
p
ro

p
an

o
id

b
io

sy
n
th

es
is

B
en

zo
at

e 
d
eg

ra
d
at

io
n

vi
a 

h
yd

ro
xy

la
ti
o
n

S
el

en
o
am

in
o
 a

ci
d

m
et

ab
o
lis

m

d
eg

ra
d
at

io
n

A
tr

az
in

e

m
et

ab
o
lis

m
Pe

n
to

se
 p

h
o
sp

h
at

e

C
5
−

B
ra

n
ch

ed
d
ib

as
ic

 a
ci

d
m

et
ab

o
lis

m

d
eg

ra
d
at

io
n

Fl
u
o
ro

b
en

zo
at

e

Fa
tt

y 
ac

id
m

et
ab

o
lis

m

b
io

sy
n
th

es
is

C
ar

o
te

n
o
id

1
,1

,1
−

T
ri
ch

lo
ro

−
2
,2

−
b
is

(4
−

ch
lo

ro
p
h
en

yl
)

et
h
an

e 
(D

D
T
) 

d
eg

ra
d
at

io
n

S
te

ro
id

 b
io

sy
n
th

es
is

d
eg

ra
d
at

io
n

C
ap

ro
la

ct
am

Pr
o
te

in
s

[B
] 

Ph
o
to

sy
n
th

es
is

g
lo

b
o
se

ri
es

G
ly

co
sp

h
in

g
o
lip

id
b
io

sy
n
th

es
is

 −

S
ec

o
n
d
ar

y 
b
ile

 a
ci

d
b
io

sy
n
th

es
is

1
,4

−
D

ic
h
lo

ro
b
en

ze
n
e

d
eg

ra
d
at

io
n

1
,2

−
D

ic
h
lo

ro
et

h
an

e
d
eg

ra
d
at

io
n

m
et

ab
o
lis

m
al

p
h
a−

Li
n
o
le

n
ic

 a
ci

d

b
io

sy
n
th

es
is

Fl
av

o
n
e 

an
d

fl
av

o
n
o
l

m
et

ab
o
lis

m
M

et
h
an

e

g
lu

ta
m

at
e 

m
et

ab
o
lis

m
A
la

n
in

e 
, 

as
p
ar

ta
te

 a
n
d

A
n
th

o
cy

an
in

b
io

sy
n
th

es
is

B
ra

ss
in

o
st

er
o
id

b
io

sy
n
th

es
is

b
io

sy
n
th

es
is

Z
ea

ti
n

m
et

ab
o
lis

m
d
ic

ar
b
o
xy

la
te

G
ly

o
xy

la
te

 a
n
d

m
et

ab
o
lis

m
G

ly
ce

ro
p
h
o
sp

h
o
lip

id

m
et

ab
o
lis

m
A
ra

ch
id

o
n
ic

 a
ci

d

[B
] 

G
ly

co
sy

lt
ra

n
sf

er
as

es

2
,4

−
D

ic
h
lo

ro
b
en

zo
at

e
d
eg

ra
d
at

io
n

1
6
−

m
em

b
er

ed
 m

ac
ro

lid
es

B
io

sy
n
th

es
is

 o
f 
1
2
−

, 
1
4
−

 a
n
d

T
et

ra
ch

lo
ro

et
h
en

e 
d
eg

ra
d
at

io
n

B
u
ti
ro

si
n
 a

n
d

n
eo

m
yc

in
 b

io
sy

n
th

es
is

G
ly

co
sa

m
in

o
g
ly

ca
n

d
eg

ra
d
at

io
n

p
in

en
e 

d
eg

ra
d
at

io
n

Li
m

o
n
en

e 
an

d

M
et

ab
o
lis

m
 o

f
T
er

p
en

o
id

s 
an

d
 P

o
ly

ke
ti
d
es

C
ar

b
o
h
yd

ra
te

M
et

ab
o
lis

m

X
en

o
b
io

ti
cs

 B
io

d
eg

ra
d
at

io
n

an
d
 M

et
ab

o
lis

m

M
et

ab
o
lis

m
E
n
er

g
y

A
m

in
o
 A

ci
d

M
et

ab
o
lis

m

an
d
 M

et
ab

o
lis

m
G

ly
ca

n
 B

io
sy

n
th

es
is

M
et

ab
o
lis

m
Li

p
id

1.
0

-1
.0

C
or

re
la

tio
n 

w
ith

 a
ge

g
an

g
lio

se
ri
es

G
ly

co
sp

h
in

g
o
lip

id
b
io

sy
n
th

es
is

 −
[B

] 
Pr

o
te

o
g
ly

ca
n
s

b
io

sy
n
th

es
is

N
−

G
ly

ca
n

O
th

er
 g

ly
ca

n
d
eg

ra
d
at

io
n

G
ly

co
sp

h
in

g
o
lip

id
b
io

sy
n
th

es
is

 −
la

ct
 a

n
d
 n

eo
la

ct
o
 s

er
ie

s

g
lo

b
o
se

ri
es

G
ly

co
sp

h
in

g
o
lip

id
b
io

sy
n
th

es
is

 −

m
et

ab
o
lis

m
A
ra

ch
id

o
n
ic

 a
ci

d

[B
] 

G
ly

co
sy

lt
ra

n
sf

er
as

es

an
d
 M

et
ab

o
lis

m
G

ly
ca

n
 B

io
sy

n
th

es
is



84

Figure 7.
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Table

Table 1. Characteristics of cohort children by nutritional category. Nutritional catego-

ries were defined using HAZ and WAZ scores as described in the text. Diarrhea was defined as >3 

loose stools in a 24 hour period. Diarrheal events that occurred at least three days after the most 

recent diarrhea were considered to be new episodes.

A) Metadata by HAZ status
Healthy at 12 

months
Stunted at 12 

months
Born Stunted

# (%Male) 50 (52) 35 (60) 16 (56.3)

Mean #Diarrheal       
Days (SD)

28.6 (14) 35.1 (21.6) 33.7 (24.7)

Mean # Diarrheal 
Episodes (SD)

7.8 (3.3) 8.9 (3.7) 8.4 (4.7)

Mean HAZ                      
at Birth (SD)

-0.3 (1) -1 (0.6) -2.7 (0.6)

Mean HAZ                     
12 Months (SD)

-1 (0.7) -2.7 (0.5) -2.6 (0.9)

Mean HAZ                     
24 Months (SD)

-1.7 (0.8) -3.1 (0.6) -2.9 (1.1)

Mean Day of first Breast 
Milk Supplement (SD)

126.3 (71.7) 138.4 (87.9) 122.1 (80.9)

B) Metadata by WAZ status
Healthy at 12 

months
Underweight at 

12 months
Born 

Underweight

# (%Male) 51 (51) 19 (63.2) 31 (58.1)

Mean #Diarrheal       
Days (SD)

31.2 (17.6) 33.8 (17.6) 31 (21.9)

Mean # Diarrheal 
Episodes (SD)

8.2 (3.4) 9.1 (3.4) 8 (4.3)

Mean WAZ                     
at Birth (SD)

-0.8 (0.7) -1.3 (0.5) -2.6 (0.4)

Mean WAZ                   12 
Months (SD)

-1 (0.7) -2.8 (0.8) -2 (1.1)

Mean WAZ                   24 
Months (SD)

-1.3 (0.6) -2.9 (0.6) -2.3 (1.3)

Mean Day of first Breast 
Milk Supplement (SD)

133.8 (82.2) 131.1 (79.7) 122.5 (73.4)
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Supplementary Information

Material and Methods

Sample recruitment

Full details of the human subject recruitment have been described previously (Mondal et al, in sub-

mission). All work was conducted with approval and oversight by the Institutional Review Board 

at the University of Virginia and the Ethical Review Committee of the International Center for 

Diarrhoeal Disease Research, Bangladesh (ICCDR-B). Briefly, trained Field Research Assistants 

(FRA) working in Mirpur, an urban slum in Dhaka, Bangladesh, identified pregnant mothers in 

2007. Within 72 hours of the baby’s birth, a medical officer affiliated with the ICCDR-B evaluated 

the child and enrolled the baby in the study after obtaining appropriate written consent. The first 

stool sample was collected at this time. For the next two years, stool samples were collected every 

month in the child’s home by the FRAs. Additionally, FRAs visited each study household every 

two days to assess the child’s health with particular focus on diarrheal disease and feeding history. 

Height and weight were recorded every quarter and converted to Z scores using WHO standards.

Isolation of fecal DNA

Fecal samples were frozen at -20oC within 4h after they were produced by the child, and then 

maintained at -80oC prior to processing. Microbial community DNA was prepared from the fecal 

samples in two steps. First, crude DNA was isolated in Dhaka. Each fecal sample was pulverized at 

-80oC using a mortar and pestle. An aliquot (typically 500 mg) of frozen pulverized feces was com-

bined with 500ml of 0.1mm zirconium beads (BioSpec Products), 500ml ice cold Buffer A (200mM 

NaCl, 200mM Tris, 20mM EDTA), 210ml room temperature SDS (20% v/v, filter-sterilized), and 

500ml phenol:chloroform:isoamyl alcohol (25:24:1, Applied Biosystems). Samples were disrupted 

using a bead beater (BioSpec; 2 min on high setting at room temperature). After centrifugation 

(8000 rpm, 3 min, 4oC), the aqueous phase was removed and mixed by inversion with 500 ml of 

the phenol:chloroform:isoamyl alcohol solution. The samples were centrifuged again (13000 rpm, 
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3 min, 4 oC), and then the aqueous layer was extracted and mixed with 600 mL of chilled isopropa-

nol (-20oC). DNA was left to precipitate for 20 min on ice and then pelleted (13000 rpm, 20 min, 

4oC). The pellet was washed once with 500 ml cold 100% ethanol. DNA was resuspended in 100 

mL H20. At this point, crude DNA was shipped to St. Louis on dry ice; the courier service refilled 

the dry ice several times during transit to maintain the samples. DNA was cleaned in St. Louis us-

ing QIAquick 96 PCR purification plates (Qiagen). Buffer PM (Qiagen) was mixed with RNase 

A (Qiagen) to a final concentration of 1.33 mg/ml. Three volumes of this mixture were added to a 

volume of crude DNA and incubated at room temperature for 2 min. Following RNase digestion, 

samples were applied to the filter plate and processed according to the manufacturer's instructions 

using a QIAvac 96 manifold. DNA was eluted in Buffer EB (Qiagen).

Multiplex pyrosequencing

An aliquot of the cleaned DNA was used for PCR amplification and sequencing of bacterial 16S 

rRNA genes. ~330bp amplicons, spanning variable region 2 (V2) of the gene were generated by 

using (i) modified primer 8F (5´- CCTATCCCCTGTGTGCCTTGGCAGTCTCAG AGAGTTT-

GATCCTGGCTCAG-3’) which consists of 454 Titanium Shotgun Primer A (underlined) and the 

universal bacterial primer 8F (italics) and (ii) modified primer 338R (5’ CCATCTCATCCCT-

GCGTGTCTCCGACTCAGNNNNNNNNTGCTGCCTCCCGTAGGAGT 3’) which contains 

454 Titanium Shotgun Primer B (underlined), a sample specific, error correcting 8-mer Ham-

ming barcode (N’s)(Hamady et al., 2008), and the bacterial primer 338R (italics). Three replicate 

polymerase chain reactions were performed for each fecal DNA sample; each 20-mL reaction 

contained 25 ng of cleaned DNA, 8 ml 2.5X HotMaster PCR Mix (Eppendorf) and 0.2 μM of each 

primer. PCR conditions consisted of an initial denaturation step performed at 95 °C for 2 min, 

followed by 30 cycles of denaturation (95°C, 20 sec), annealing (52°C, 20 sec) and amplification 

(65°C, 1 min). Amplicons generated from each set of three reactions were pooled and quantified 

using the Quant-iT double stranded DNA High Sensitivity assay (Invitrogen). Barcoded samples 

were pooled in equimolar amounts, and the pool was cleaned with Ampure magnetic purification 
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beads (Agencourt).

For multiplex shotgun 454 FLX pyrosequencing, each fecal community DNA sample was 

randomly fragmented by nebulization to 500-800 bp (FLX Titanium), and then labeled with a dis-

tinct MID (Multiplex IDentifier; Roche) using the manufacturer’s protocol (Rapid Library prepa-

ration for FLX Titanium). Equivalent amounts of up to 12 MID-labeled samples were pooled for 

each pyrosequencer run (454 Titanium chemistry).

Sequencing libraries were prepared from the 16S rRNA or shotgun pools using the manu-

facturer’s Shotgun Library protocol. The only exception was reducing the amplification primer 

volume 75% in the 16S rRNA emulsion to reduce the occurrence of short reads.

For both amplicon and shotgun gene sequencing, PTP images were processed using the 

default shotgun analysis pipeline.

16S rRNA data processing and analysis

The 16S rRNA sequence data was processed using Qiime, v1.3.0 (Caporaso et al., 2010). The data 

from each 454 run was demultiplexed using the Hamming barcodes, and reads were removed if the 

sequence length was less than 150 nucleotides or if the average quality of the read was less than 

25 in sliding windows of 50 bases. The reads were processed with the program “otupipe,” which 

performs error correction and chimera removal of 454 amplicon reads, along with clustering into 

Operational Taxonomic Units (OTU) (http://www.drive5.com/usearch/). Bacterial taxonomy was 

assigned to each OTU using the Ribosomal Database Project classifier.

Shotgun sequence data processing and functional annotation

Shotgun metagenomic data was processed with publicly available software and custom Perl scripts. 

First, the sequences associated with each barcoded sample were extracted from the multiplexed 

run using the 454 utilities sffinfo and sfffile. No mismatches were allowed in the Rapid Library 

barcode sequences. The data were filtered to remove (i) reads less than 60 bases in length and (ii) 
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reads with two contiguous and/or three total degenerate bases (N’s). Emulsion PCR is known to 

introduce duplication artifacts into pyrosequencing data; therefore, duplicate reads with exact se-

quence match over the initial 20 nucleotides and an overall identity of >97% throughout the length 

of the shortest read were identified and removed (Gomez-Alvarez et al., 2009). To insure the ano-

nymity of samples, shotgun gene datasets were scrubbed of all reads with homology to the human 

genome using BLASTN (e-value < 1e-5, bitscore > 50, percent identity > 75%).

Searches against the KEGG (version 58) and MEROPS (version 9.5) databases were car-

ried out using BLASTX with the bacterial translation table (minimum e-value < 1e-5, bitscore > 

50, and percent identity > 50%). For KEGG, the BLAST protein database was constructed using 

only the sequences that had a KO number assigned to the read. The effective database size of the 

blast search was adjusted with option ‘–z 2214788408’ to reflect the size of the entire database.

For each database search, an abundance tally was created with all database entries initially 

assigned a count of 0. Each time that an entry from the database was found to be the single best 

blast hit of a shotgun read, that entry’s count in the abundance tally was incremented by 1. If a 

read had n equivalent best BLAST hits, the count for each of the entries was incremented by 1/n 

in the tally. For KEGG, the database entry was annotated with one or more KO numbers, and each 

KO number was sometimes further associated with KEGG pathways or E.C. numbers. The count 

increment for the database entry was added to the abundance tally for each of these levels of an-

notation.

Taxonomic composition of the shotgun sequence data

Taxonomy was inferred with a database of 127 sequenced genomes from bacterial and archaeal 

isolates recovered from human intestine (Supplementary Table 3 for details). The search against 

the database was performed with BLASTN using previously published BLAST thresholds (e-

value < 1e-20, bitscore > 50, percent identity > 50, percent alignment > 80%) (Arumugam et al., 

2011). The effective abundance of each genome in the determined by normalizing the number of 

reads assigned to the genome by the genome length of that organism.



90

Other statistical analysis

Spearman analysis and hierarchical clustering were performed using R (R Development Core 

Team, 2011), and ecologically relevant data transformations and distance calculations were used 

as implemented in the vegan package (Oksanen et al., 2011). For analysis at the level of KEGG 

pathways, all samples with at least 30,000 shotgun reads were used. The pathway counts for each 

sample were evenly sampled without replacement. Pathways that had no variance across the sam-

ples were removed. Other pathways were retained if and only if they met one of the following 

criteria: (i) the pathway was found with at least 0.1% relative abundance in at least one half of the 

samples, or (ii) the pathway was found with a relative abundance of at least 0.4% in at least one 

sample. These filtering criteria left 129 pathways for analysis. The samples corresponding to chil-

dren binned as “Healthy” or “Stunted at 12 months” were processed separately. For each group, the 

pathway counts were correlated with the age of the child at the time of sample using the Spearman 

non-parametric method. The Spearman correlation coefficient, rho, was converted to a red-green 

color gradient for each pathway, where full red means perfect positive correlation of the pathway 

with increasing age, and full green means perfect negative correlation with increasing age. The 

pathways were visualized using iPath (Yamada et al., 2011).
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Supplementary Figure Legends

Supplementary Figure 1. Interpersonal variation in bacterial class changes over time in 8 

healthy children. The children presented in this figure are the “Healthy” members of the cohort 

(by HAZ status) who were chosen for shotgun gene sequencing. Plots are constructed as described 

in Figure 2. The bacterial phyla is noted in parentheses after the class name: A=Actinobacteria, 

B=Bacteroides, F=Firmicutes, P=Proteobacteria, T=Tenericutes, TM=TM7.

Supplementary Figure 2. Low intrapersonal stability of the gut microbiota over time. Un-

weighted UniFrac distances were calculated for all pairwise comparisons of samples. The heat-

map presents the percentage of samples from a child (row) whose nearest neighbor was found in 

a sample from the individual listed in the column. Entries on the diagonal represent the self-self 

comparisons.
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Supplementary Figures

Supplementary Figure 1.
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Supplementary Figure 2.
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Supplementary Tables

Supplementary Table 1. Metadata on all children in the birth cohort.

Supplementary Table 2. Spearman correlation of pathway changes in healthy children over 

time.

Supplementary Table 3. List of 127 gut-isolated bacterial and archael genomes used for 

shotgun taxonomy assignment.
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Chapter 4: Prospectus

“It is nice to think that there are so many unsolved puzzles ahead for biology, although I wonder 

whether we will ever find enough graduate students.”

Lewis Thomas (Thomas, 1978)
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Collectively, the studies described in this thesis demonstrate that the functional properties of the 

gut microbiome are influenced by host diet. We showed the power of comparative metagenomic 

analysis to reveal differences in microbial communities, and our work has created a list of several 

functional metabolic pathways that seem especially influenced by host diet. Yet as I conclude my 

graduate work, I am left with the belief that our research has opened more new questions to ex-

plore than we have answered; I hope that this means that my time in the lab was well spent. Much 

work remains before the effect of diet on the microbes in the gut can be predicted with any ac-

curacy, and we are even farther from being able to design diets that might modulate the operation 

of the community. In the next few pages, I will discuss three different research aims that would 

springboard from this thesis to study different aspects of the host-diet-microbe interaction.

Testing theories in gnotobiotic mice: focus on weaning and glycans

Broad human surveys such as the work presented in Chapter 3 are often the first step towards 

understanding new biology. However, human studies alone will never reveal the total picture. In 

the microbiome of infants, this is especially true because of the enormous interpersonal variation 

between the members of the cohort and our inability to intervene in their lives with dietary or other 

manipulation. Biology’s solution to these problems is to use animal models, and the stage is now 

set to move our studies of microbiome assembly and infant diets into gnotobiotic mice.

The highly controlled environmental conditions achievable in gnotobiotic isolators means 

that a single microbial community can be spread to multiple replicate animals, allowing hypoth-

esis testing with control animals gavaged with the exact same microbial community. When these 

animals are gavaged with small, defined communities of bacteria, modern sequencing technolo-

gies can be used to monitor community abundance and gene expression (Faith et al., 2010). For 

instance, Jeremiah Faith recently developed quantitative predictive models of the response to de-

fined diets by 10 sequenced human gut bacterial species in gnotobiotic mice (Faith et al., 2011). 

The bacteria transferred into mice can also represent a complex natural community. Work by our 

lab and others has shown that human fecal samples can be gavaged into mice and that most of the 
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microbial diversity present in the input is captured in the animals (Goodman et al., 2011; Turn-

baugh et al., 2009). Members of the lab have already transferred stool from the Bangladeshi cohort 

into gnotobiotic mice and are monitoring the effect of altered diets and the patterns of vertical 

inheritance at birth. That work and planned future experiments will also start to test the response 

of these communities to malnourished diets.

The study presented in Chapter 3 can be directly extended in mice to tease apart the contri-

butions of diet and other factors in early community assembly. This study should begin with a very 

simple question; are the kinetics of community assembly altered if weaning is delayed? Although 

the connection between weaning and microbial community changes is part of the dogma in the 

field, there are no studies that actually test this belief. The initial experiment to test this question is 

a simple one. Pups would be raised in a cage with their mother and another lactating dam. At the 

15th day of life (several days before the expected weaning transition), all solid food would be re-

moved from the cage; the dams would be alternately cycled between the cage with the pups and the 

cage with the food so that the pups always have access to milk. Fecal samples would be collected 

from pups and mothers every day, and the experiment would proceed until the pups stopped get-

ting adequate nourishment from the available milk. The composition of the microbiota in the fecal 

DNA would be quantified with 16S rRNA sequencing, along with complementary measurements 

of microbial gene abundance by shotgun sequencing, mRNA expression by microbial RNA-Seq, 

and cecal metabolites by mass spectrometry or NMR. The microbial community in the pups ex-

posed to extending suckling would be compared with a control group, born to mothers inoculated 

with the same bacterial community, but allowed to wean at the normal time.

I hypothesize that at least two groups of microbes would be identified by this analysis. The 

first will be a group of organisms that never become abundant until solid food is introduced in the 

diet (or conversely, a group that is abundant as long as milk is present but rarely thereafter). This 

group would represent the collection of microbes that are “diet” dependent. The second group will 

be the “age” dependent set of microbes that follow similar kinetics in the control and experimental 

groups of animals. If such an ensemble were identified, it would strongly suggest that one or more 
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developmental patterns in the mouse mucosa or immune system are shaping the bacterial species 

in the gut. Initial candidates for factors known to mature at weaning and interact with gut microbes 

include glycan modifications on the surface of the epithelium and in secreted mucus, intestinal 

angiogenesis, and the expression of defensin molecules by members of the innate immune system 

(Hooper, 2004). The potential impact of glycans is especially intriguing because of the significant 

changes in glycan metabolism identified in our human studies, and also because previous studies in 

gnotobiotic mice have demonstrated the intimate interrelationship between the prominent human 

saccharolytic bacterium, Bacteroides thetaiotamicron with production and harvesting of epithelial 

fucosylated glycoconjugates (Bry et al., 1996; Hooper et al., 1999).

This experimental base could give rise to a number of followup studies. Gnotobiotic ani-

mals could be humanized with samples from different infants to look for differences in intestinal 

mucosal glycan production or responses in the innate immune system due to these different mi-

crobial communities. The experiments could be extended by giving the mice diets representative 

of the human host’s diet that are either sufficient or deficient in specified micro- and/or macro-

nutrients. Bacteria that are responsive to different conditions could be isolated from the animals 

for genome sequencing and in vitro studies, and then reintroduced to mice for hypothesis testing. 

The role of host factors could be further addressed with genetically engineered mice with speci-

fied alterations in host factors postulated to play an important role in initial colonization of the gut 

or community dynamics. The combined goal of all of these studies should be to work towards a 

complete ecological model of the assembly process in the gut (Helmus et al., 2007; Robinson et 

al., 2010). Ecological models have been developed for environmental microbial communities, but 

none exist at a similar level of detail for complex host-associated communities. The set of experi-

ments outlined above could provide the first quantitative model of the factors that regulate host 

microbiome operation, at least in a one phase of life. They are also likely to provide new insight to 

the physiology of weaning.
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Microbiome hunters: in search of extreme communities

One enduring lesson from my project is that the discovery is much easier when the effect size is 

large. If mammalian diet has any role in changing the functional properties of a microbiome, than 

comparing echidnas to elephants seems like a good place to start the search. Similarly, our human 

studies in infants focused on the single most dynamic period of human microbial ecology and diet 

change.

To continue exploring the role of human diet in shaping the microbiome, there is still 

important work to be done characterizing the microbial response at the extremes of our diet. One 

approach would be to seek out populations of people with extremely unusual diets. For example, 

the Inuit people of Greenland and northern Canada depend on locally caught or harvested food, 

notably animal blubber. The traditional Inuit diet is almost devoid of carbohydrates and contains 

more than 50% of calories from fat; current research on the cardioprotective role of omega-3 fatty 

acids began when epidemiologists found that Inuits had lower rates of acute myocardial infarction 

than matched controls (O’Keefe and Harris, 2000). What are the responses of the human micro-

biome, which we think is geared towards the fermentation of complex polysaccharides, when the 

carbohydrates are absent from the diet? Are the microbial communities ‘plastic’ enough to adapt 

with the seasonal variation in Inuit diets? A study of this population would be even stronger if 

another pastoralist culture could be identified and included; similar microbial responses in both 

populations would likely be more directly linked to diet.

Another paradigm for biology at the extremes is to look at the change within a single host 

with extreme dietary shifts. Just as the Bangladeshi infant study was empowered by the ability 

to use each child as their own control, dietary interventions in adults should include a thorough 

characterization of the microbial community before any sort of manipulation. This is especially 

important at this point in time because the field does not have a firm understanding of the role that 

past exposures plays in shaping the operation of the gut microbiome.

These types of analyses should be aided and abetted by ‘translational’ studies involving 

gnotobiotic mice who (i) have received transplants of fecal microbiota from human donors (in-
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cluding those who normally consume various ‘extreme’ diets) and (ii) are fed the very extreme 

diets of the donor and various systematically manipulated derivatives of these diets.

Role of diet in disease: C. difficile colitis

The work of this thesis established that diet can and does change the structure of the gut microbi-

ome. We based these conclusions on the presence of genomic signatures in fecal DNA, represent-

ing the potential functional capacity of the system. However, there is another level of analysis 

needed: the regulation of gene expression under different conditions as a means to alter community 

operation. A microbe in the gut with a constant genome can demonstrate very different behaviors 

depending on the environmental conditions. For example, work from our lab in vitro and in gno-

tobiotic mice has demonstrated that the model gut symbiont B. thetaiotaomicron contains a vast 

repertoire of polysaccharide utilization loci and that these PULs are differentially regulated by dif-

ferent glycan structures (Bjursell et al., 2006; Martens et al., 2008, 2009; Sonnenburg et al., 2005)

Clostridium difficile is another organism that can behave very differently in the gut at dif-

ferent life stages. In adults, C. difficile is generally virulent and is the causative agent of pseudo-

membranous colitis after antibiotic therapy (Kyne et al., 2001). This bacterial species is undetect-

able or present at very low levels in healthy adults. By contrast, 40% or more of human infants are 

asymptomatic carriers of C. difficile, with a higher incidence when they are formula- compared to 

breast milk fed (Cooperstock et al., 1983). The reasons for this are completely unknown, although 

it is tempting to speculate that host diet may be part of the explanation. First, gnotobiotic animal 

studies have demonstrated that mice mono-associated with C. difficile have lower mortality and 

lower measurable levels of toxin when raised on high protein or low carbohydrate diets compared 

to normal chow (Mahe et al., 1987). Second, one of the unreported findings from our mammal 

study is that the guts of healthy adult carnivores are significantly enriched with OTU’s assigned as 

clostridial species, notably C. perfringens.

These facts lead to the hypothesis that the protein-rich, carbohydrate-deficient diet char-

acteristic of infancy may create a favorable environment for the growth of C. difficile, but with an 
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expressional profile that is not pathogenic to the human host. The basis for this may be that the 

availability of amino acid or lipid substrates as energy sources shifts the organism’s metabolism 

away from toxin production. These questions lend themselves to several microbiological experi-

ments. What are the differences in gene expression and toxin expression when C. difficile is grown 

in media with energy sources typical of the infant intestinal tract compared to the adult tract? Are 

the same expressional patterns observed when the organism is introduced into gnotobiotic mice 

fed different diets? Can C. difficile pathology in animal models be ameliorated with a switch to 

an infant-like diet devoid of complex polysaccharides and enriched for proteins and lipids? If this 

hypothesis is upheld in these experiments, then clinical trials using carbohydrate deficient diets as 

part of the management of C. difficile associated diarrhea may be warranted.

The idea of using food to alter gut microbial metabolism is a very old one. Many studies 

of the human microbiota at the dawn of the 20th century focused on the “proteolytic flora” and 

the metabolic products they created that were thought to damage host tissues. Kendall advocated 

the idea of “bromotherapy” where high carbohydrate diets would be administered to patients with 

active intestinal infection in an attempt to drive the pathogen’s metabolism towards a more benign 

state (Kendall, 1921, 625-628). Later in the century, bacterial metabolism of diet was again impli-

cated in disease, this time the onset of colon cancer though microbial production of carcinogens 

from diets rich in fats and red meat (Guarner and Malagelada, 2003). The theme in these studies is 

the enduring question that also motivated this thesis; how do the foods that we eat influence our gut 

microbes, and in turn our health? The proposed experiments enumerated in this chapter are simply 

the vanguard of many studies to come that will identify functional components of food that could 

be used as therapeutic interventions to enhance the physiologic or metabolic phenotype of the host 

by modulating the microbiome.
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