
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-15

2003-03-18

Hash Tables for Embedded and Real-time systems Hash Tables for Embedded and Real-time systems

Scott Friedman, Anand Krishnan, and Nicholas Leidenfrost

Common collection objects such as hash tables are included in modern runtime libraries

because of their widespread use and efficient implementation. While operating systems and

programming languages continue to improve their real-time features, common implementations

of hash tables and other collection objects are not necessarily suitable for real-time or

embedded-systems. In this paper, we present an algorithm for managing hash tables that is

suitable for such systems. The algorithm has been implemented and deployed in place of Java’s

Hashtable class. We present evidence of the algorithm’s performance, experimental results

documenting our algorithm’s suitability for real-time, and lessons learned from... Read complete Read complete

abstract on page 2. abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Friedman, Scott; Krishnan, Anand; and Leidenfrost, Nicholas, "Hash Tables for Embedded and Real-time
systems" Report Number: WUCSE-2003-15 (2003). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1063

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1063?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1063

Hash Tables for Embedded and Real-time systems Hash Tables for Embedded and Real-time systems

Scott Friedman, Anand Krishnan, and Nicholas Leidenfrost

Complete Abstract: Complete Abstract:

Common collection objects such as hash tables are included in modern runtime libraries because of their
widespread use and efficient implementation. While operating systems and programming languages
continue to improve their real-time features, common implementations of hash tables and other
collection objects are not necessarily suitable for real-time or embedded-systems. In this paper, we
present an algorithm for managing hash tables that is suitable for such systems. The algorithm has been
implemented and deployed in place of Java’s Hashtable class. We present evidence of the algorithm’s
performance, experimental results documenting our algorithm’s suitability for real-time, and lessons
learned from migrating this data structure to real-time and embedded platforms.

https://openscholarship.wustl.edu/cse_research/1063?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1063?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1063&utm_medium=PDF&utm_campaign=PDFCoverPages

Hash Tables for Embedded and Real-Time Systems
�

Scott Friedman, Anand Krishnan, Nicholas Leidenfrost,

Benjamin C. Brodie, Ron K. Cytron, and Douglas Niehaus
�

Washington University Box 1045

Department of Computer Science

St. Louis, MO 63130 USA

March 18, 2003

Abstract

Common collection objects such as hash tables are included in modern runtime libraries because

of their widespread use and efficient implementation. While operating systems and programming lan-

guages continue to improve their real-time features, common implementations of hash tables and other

collection objects are not necessarily suitable for real-time or embedded-systems. In this paper, we

present an algorithm for managing hash tables that is suitable for such systems. The algorithm has

been implemented and deployed in place of Java’s Hashtable class. We present evidence of the

algorithm’s performance, experimental results documenting our algorithm’s suitability for real-time, and

lessons learned from migrating this data structure to real-time and embedded platforms.

�
Sponsored by DARPA under contract F33615–00–C–1697; contact author cytron@cs.wustl.edu�
This work was done while this author was on sabbatical from the EECS Department, University of Kansas

1

1 Introduction

With the advent of operating systems and programming languages that support predictable execution times

and reliable scheduling, the Real-Time and Embedded Systems (RTES) communities are beginning to

consider the use of higher-level systems and abstractions for software development. Most programming

languages have rich libraries that offer strong implementations of commonly used data structures. Similarly,

middleware [1] offers services, patterns, and frameworks that support the development of robust and portable

software. For both runtime libraries and middleware, the need for predictable resource usage can have

dramatic and widespread impact on the suitability of their offerings for RTES. The research community

has been involved in the specification and development of real-time aware functionalities associated with

programming languages [2] and middleware [10].

In this paper, we consider the adaptation to RTES of a data structure that is common to most runtime

libraries and middleware systems [11]. The hash table [4] is among the most popular of data structures,

occuring in systems code, tools, and application code. In Sun’s Java Virtual Machine (JVM) system, 7

hash tables are created before an application is even started; jack of the SPEC [5] benchmarks instantiates

18,805 additional hash tables. The theory [3, 6] of hash tables predicts nearly constant-time performance of

hash tables on average, and experience has verified this theoretical efficiency. However, for RTES systems,

reasonable bounds are needed for every method invoked on a hash table. Thus, for such systems, worst-case

behavior per-call is of greater concern than average performance.

1.1 The Hash Table Interface

Essentially, a hash table is an implementation by memoization of a series of partial functions; a hash table

can also be regarded as a mutable set of ���������
	��������� pairs. More informally, a hash table provides

an implementation of a dictionary interface. Hash table implementations vary as to their Application

2

Programming Interface (API), but most resemble the following methods, called on an instance of a hash

table we denote as ��� :

GET(��� �) returns the 	������� currently associated with ����� , if ����� � �
	����� � ������� ; otherwise, a predeter-

mined value (null in Java) is returned to indicate that � � 	�������	�����������
	��� � � �
����� .

PUT(�������
	�������) causes ��� to become the set

�������� �����
	���� ��� ������� ����� ���������
	�����������

REMOVE(�����) causes ��� to become �������� �����
	 ��� ��� ������� �

Textbook treatments [4] of hash tables sometimes expose internal data structures for maintaining ����� � �
	���������

pairs. The resulting API can avoid successive lookups of the same key, because the container for the

���������
	��������� pair is exported for subsequent manipulation.

The above API closely matches Java’s early Hashtable and later HashMap classes—differences are

discussed in Section 4 where they become relevant. Java’s API deals only with keys and values and avoids

exposing container objects that hold a given key and value. Because of the strength of its design and because

our experiments are based on a Java system, we adopt Java’s hash table API as articulated above, without

significant loss in generality.

1.2 Hash Functions

In this section we review the basics of hash functions and describe the role such functions play in common

implementations of hash tables. We also discuss the relevance of those implementations for RTES.

A hash table is typically implemented by mapping the space of all possible keys to a relatively small

3

sequence of integers—suitable for indexing a table. A hash function � is defined as

����� �������	�

where
��� is a finite sequence of integers. Following standard practice, we say that a key � hashes to

index � if � ��� � ��� .

1.2.1 Collision Resolution

Open Addressing The domain for the ����� -space of a hash table is typically large as compared with the

size of the hash table. It is therefore inevitable that two different keys hash to the same index, or collide.

Collisions can be resolved using open addressing, which stores all entries in the hash table itself. Collisions

are resolved by checking for the next available slot in the table following the index provided by the hash

function. The indices at which a given key can be found in this manner is termed a probe sequence.

With open addressing, hash tables are expanded by allocating a table with more slots and then hashing

the old table’s entries into the larger table.

Chaining Another common approach for conflict resolution is chaining. Here, the entries that hash to the

same index are placed in a linked list (commonly called a bucket). Hash tables managed in this fashion can

grow without expanding the index space, because each new entry is added to the linked list at its hash index.

However, when the number of entries in a hash table becomes too large, the average time to locate a key

suffers, and the table itself is typically expanded as in the open-addressing case.

Comparison Open addressing does not require linked lists for each table index, and thus provides a

smaller footprint. However, in searching for a given key, the probe sequence can include entries that do

not collide with the key at hand, but happen to have hashed near the key’s table index. The time to find (or

4

not find) a given key cannot be bounded by the number of keys that hash to a particular index. For example,

to discover that a key is not in a nearly full table requires searching the entire table. With chaining, the

search is limited to the number of entries that hash to the key’s index. Moreover, removal of an entry is

complicated with open addressing, because an empty slot usually ends the search for a given key.

With RTES in mind, we therefore do not further consider open addressing but instead adopt chaining for

resolving conflicts.

1.2.2 Universal Hash Functions

Since any fixed hash function is vulnerable to worst-case behavior, an effective way to improve the average-

case performance was suggested by Carter and Wegman [3]. The choice of a hash function is made in

a random fashion, independent of the keys, from a pool of hash functions designed at the beginning of

execution. If there are � hash functions to choose from, this scheme guarantees that the probability of

collision by using a randomly chosen hash function to map two distinct keys is at most ����� where � is the

total number of slots in the hash table.

1.2.3 Perfect Hash Functions

If the set of keys inserted into a hash table is known a priori, then perfect hashing [4] allows lookups to

be peformed in worst-case constant-time. A function is developed that immediately maps each known key

to an index of the table. If the index is occupied, it contains the entry for that key; otherwise no entry is

currently present in the table for that key.

This is the best solution for real-time applications if the keys are known a priori.

5

1.3 Hash Table Organization

For reasons described above, we use chaining to resolve hash function conflicts. A hash table is thus

constructed to have ��� �
 � buckets, denoted � � � � ��� ��� � ������� ��� ��� � . Given a ����� , the hash function �

indicates that bucket � � � � should be consulted to find the ����� and its value, if � ����� ��� � � . We follow

standard practice [4] of assuming the simple uniform hash property: � maps its inputs uniformly across the

range of buckets, so that the probability of hash collisions follows a binomial distribution [7].

Each bucket contains a set of ����� � �
	��������� pairs, with each ����� occuring at most once in all the

buckets. We can then perform GET(�����) (more generally, LOCATE(��� � ���
	 � � ����)) by searching the

bucket � � � ������� �
� for an entry with the specified ��� � . The hash table ��� maintains that

GET(��� �) � 	����� ��� 	 � � ������� � � � 	 ����� � �
	������������� � � �
�

We say that ��� � hashes to bucket � using the hash function � . A ����� is located in a hash table by searching

the bucket � � � ����� ���
� for a �����
	��������� pair such that � � ��� � .

The domain of a hash function � is typically much larger than its range. It is therefore likely that

multiple keys of interest will hash to the same bucket. From the above, we can see that a bucket � � � �	�

� ���������
	��������� ����� � � ������� � ��� � . As the number of entries in ��� increases, the number of entries per

bucket increases correspondingly. If the simple uniform hash assumption holds, then the increases are spread

uniformly among the buckets.

The average and worst-case times to access ��� are determined by the average and worst-case sizes of

the buckets in the hash table. When a table’s contents reaches some predetermined size, it is common pratice

to consider redistributing that table’s contents into a larger table with the goal of reducing and balancing the

buckets’ sizes. Because this typically occurs in response to a PUT() call, it is possible that some PUT() calls

will be much more expensive than others. It is this behavior that makes extant hash table implementations

6

unsuitable for RTES applications.

1.4 Implementing the API

We implement each of the API’s methods using the Command pattern [8], so that each method can make

incremental progress when a rehash operation is in progress. We have a generic method call interface,

LOCATE() that is described as follows:

LOCATE(���������
	 � � ������ ����� � �) runs the supplied �
	 � � � �� which requires locating the entry for the

supplied ����� , if such an entry exists.

All three of the API’s methods involve determining if the hash table contains an entry ���������
	������� � for the

supplied ����� . Our mechanism for enlarging the hash table takes action upon accessing such an entry. The

LOCATE() method allows us to perform additional work on behalf of the �
	�� � � �� at the supplied ��� � ’s

bucket. We elaborate on this in Section 2.

1.5 RTES Concerns

Operating systems such as Linux/RT1 and languages such as Real-Time Specification for Java (RTSJ) [2]

offer interfaces for declaring real-time concerns, such as a task’s cost, periodicity, and deadline. Based on

scheduling theory [9], a scheduler can determine whether a given set of tasks is feasible, in the sense that

the tasks’ deadline requirements are guaranteed to be accommodated on a given platform.

Because feasibility testing requires each task to declare its cost, it is important to state such costs as

precisely as possible. Consider a task that records the progress of a nuclear reaction in a controlled reactor

at intervals of various frequencies. This would merit the use of a hashtable for storing data pertaining to the

sampling rate of various kinds of data which could be accessed by other tasks in the system in the process

of controlling the nuclear reaction. The task provisioning that should occur in this case comprises in itself

1See URL http://www.timesys.com/products/linux2.html

7

the provisioning for performing a PUT() on a hash table. As described above, most PUT() operations are

performed relatively quickly; however, an occasional PUT() causes the hash table to be resized, with all its

entries redistributed according to a new hash function. At a given PUT(), it is difficult to determine whether

a hash-table resize would occur. How should the time for a PUT() operation be provisioned?

� Provisioning for the average or typical case is dangerous. The resulting requirements may be deemed

feasible by a scheduler, but the PUT() in question may greatly exceed its stated cost. As a result,

deadlines can be missed and an application can fail.

� Provisioning for the worst case is safe, but the resulting requirements are wasteful and may be

infeasible on a given platform—every PUT() operation is provisioned as if a rehash operation is

necessary.

Based on the above, the suitability of a hash-table implementation can be judged by the amount of over-

provisioning it imposes on a real-time application. This in turn can be quantified by an implementation’s

ratio of its worst- to average-case performance: as that ratio approaches � , so does the implementation’s

suitability for RTES applications. In Section 4 we measure this ratio for our implementation and for Java’s

reference implementation.

For embedded systems, storage behavior can be a determining factor. Hash tables adapt to greater load

typically by reprovisioning the space in which ���������
	��������� pairs are kept. For languages like Java, this

can imply the following actions.

1. allocation of a new table (sometimes twice as large as the old (extant) table)

2. rehashing of extant entries into the new table

3. deallocation of the old table

Such storage behavior momentarily increases the program’s footprint as items are copied, and then decreases

8

the footprint as the old table is deallocated. This behavior is not well suited to embedded systems for the

following reasons.

� The program exhibits a storage blip during rehashing. The size of this blip is typically 50% of the

new table’s size. For an embedded system, this can be unacceptable.

� The deallocation of old hash tables can leave holes in the runtime storage heap. Such holes can cause

the heap to be fragmented and thus trigger heap compaction.

As explained in Section 2.2, our approach avoids the temporary increase in storage footprint caused by

allocating the new table before deallocating the old one.

2 Approach

To avoid burdening a single call with the overhead of an entire rehash, we spread the transition between table

configurations over multiple operations. During a rehash, we maintain two hash functions, one “old” and

one “new”. The old function applies to the old table configuration and will be used to locate data that was

mapped prior to the rehash and has not yet been relocated according to the new hash function. Rehashing

does not occur in the context of a single hash-table method-call, but is instead amortized over as many calls

as are necessary to complete the transition to the new hash function. We analyze the requisite number of

calls in Section 3.

Although an implementation could feasibly maintain more than two hash functions, and thus perform

multiple simultaneous rehashes, an unbounded number of such functions leads to unbounded time for

LOCATE(���������
	 � � ����)—this is unacceptable given our requirements. We therefore restrict our design

and implementation to allow only one transition in effect at any time: from the old to the new hash functions.

9

2.1 Incremental Rehashing

To complete the rehashing process, every element must be removed from its old location and correctly

mapped to its new location using the new hash function. Since we resolve collisions by chaining, this

involves rehashing each element in a linked list. We refer to the process of rehashing a bucket’s contents

according to the new hash function as cleaning that bucket. We perform cleaning in the following two ways:

operation-driven cleaning: Whenever the user performs an operation on the hash table (GET(), PUT(),

REMOVE()), we rehash the elements contained in the bucket located by the old hash function.

methodical cleaning: To ensure progress toward completion of the rehashing, we cannot depend only

on operation-driven cleaning: it is possible that the operations at-hand avoid a particular bucket.

Therefore, methodical cleaning is also performed at each operation. Here, the bucket chosen for

cleaning is based on the state of an incremental sweep of the hash table.

While implementations may vary, it is essential that a bucket record whether it has been cleaned and that a

table record whether any of its buckets are still dirty.

Bucket-cleaning is implemented as part of the Command-pattern. Specifically, if the hash table is mov-

ing from hash function ������� to ���	��
 , then our implementation does the following when LOCATE(��������� 	 � � � ��)

is called:

1. The bucket � � ������� ����� ���
� is cleaned.

2. The bucket � � � ���
 ����� ���
� is cleaned.

3. The next bucket in the methodical list is cleaned.

4. The � 	 � � � �� is executed.

10

Figure 1: Two-level hashing scheme.

2.2 Space Utilization

Because of the constraints of RTES systems, particularly the embedded-systems concerns, our hash table

does not allocate and populate a new hash table and free old storage when moving to the new hash function.

Instead, the hash table grows by adding more tables to a two-dimensional hash scheme, as shown in Figure 1.

Thus, the old subtables continue to participate as the hash table increases in size by adding additional

subtables.

The benefit of our approach is that the hash table does not temporarily blow up in size while the rehash

takes place; instead, new space is added to the existing table, and the new hash function maps into the

enlarged space.

2.3 Rehash Trigger Design

Our redesign of the hash table does not assume that all clients necessarily require real-time behavior. To

allow control of the implementation’s real-time behavior, while providing the intended functionality, we

seperate the idea of the hash table mechanism—which implements the API and cleaning functionality—

from the strategy that decides when the hash table should perform a rehash. We introduce a Point Of Design

(POD) object, through which an Observer of the hash table may call for rehashing. Such an Observer

11

could subscribe to certain statistics about the hash table that are of interest, and based on those statistics

decide to ask for a rehash, as shown in Figure 2. For example, an application that cares more about average

performance might want to trigger a rehash based on the current load factor of the hash table, defined as the

ratio of number of elements to the number of buckets in the hash table.

Figure 2: Observer can request a rehash.

2.4 Adapting to java.util.Hashtable

The class java.util.Hashtable implements java.util.Mapand extends java.util.Dictionary.

Because one of our criteria for the hash table is a small footprint, we decided not to burden our primary im-

plementation with all methods found in java.util.Hashtable. Instead, we created a wrapper around

our hash table that provided the necessary functionality, but maintained real-time compliant properties. We

are thus able to substitute our implementation for Java’s, and the experiments of Section 4 are based on this

approach.

3 Analysis

We use the following notation. We are interested in the state of the hash structure prior to rehashing, during

rehashing, and just after rehashing.

12

�
is the total number of buckets, across all tables, just prior to rehashing.

���
is the total number of buckets during and after rehashing.

Rehash Triggering Length (RTL) is the bucket-chain length that triggers a rehash operation, going from
�

to
� �

total buckets.

� is the number of ���������
	������� � pairs in the hash structure just prior to rehash.

�
�

is the number of ����� � �
	����� � � pairs in the structure just after rehashing.

Definition 1 Let � � � � be the load factor of the hash structure just prior to rehashing. Similarly, let � � � ���� �
be the load factor of the hash structure just after rehashing.

We provide analysis that identifies a lower bound on hash structure expansion to provide a bounded

expected maximum-chain length.

Lemma 1

� � �	��
����� � ��� ����� ����� �� ��� ��� 	�� ��� � ���
Proof: Consider the hash structure just prior to rehashing. One bucket has exactly

� ��� entries, but all other

buckets have fewer than
� ��� entries. Thus

�! � � � � � � ��� � �"� � ���
Simplifying, we obtain

�! � � � ��� � �"� � (1)

13

Once rehashing begins, it is guaranteed to complete within
�

hash structure operations. The number of

entries after rehashing, � � , is therefore bounded as follows:

�
� � � �

Rearranging, we obtain

�
� � � (2)

By transitivity (1) and (2)

�
� � �

� � � � ��� � �"� �

we obtain

�
� � � � � ��� � � � �

Rearranging, we obtain

�
� � � � ��� � � � � � �

which reduces to

�
� ��� � ��� � �

By assuming the lemma’s antecedent
� � �

we can divide both sides of the above inequality to obtain

� �� � � � � ��� � �� � (3)

14

By assuming the lemma’s antecedent
� � � � ���������
	�������	 we can rearrange to obtain

�� � � ��� ������ ��� � �

The above can be reduced to � ��� ����� �� � � ��� � (4)

By transitivity of (3) and (4)

� �� � � ���������
	� �� ���������
	� � � ��� �

we obtain

� �� � � ��� � (5)

Since � � � � �� � by definition, we obtain

� � � � ���
�

Theorem 1 Just after rehashing, � �� � � � � ��������� � � � � � � ��� .

Proof: By Lemma 1, we have � � � � ��� . The rehashing algorithm runs every element in the hash structure

through the new hash function; the new hash function is a simple uniform hash function. We can therefore

expect that elements are distributed uniformly among the
� �

buckets.
�

Corollary 1 During rehashing, � �� � � � � ����� � � � � � � � � � � ���
15

Proof: From (5), we expect the number of elements per bucket to be bounded as shown. Because rehashing

is triggered when some bucket reaches
� ��� in size, any bucket during rehashing can only have a maximum

of
� ��� � � � ���� � � elements on the average. Hence no bucket is expected to contain more than � � � ���

entries.
�

Corollary 2 Between the end of a rehash and the beginning of the next, � � � � � � � ��������� � � � � � � ��� .

Proof: From the above proof of Theorem 1, we assume that the elements are distributed uniformly among

the
� �

buckets so that � � � � ��� . In this phase, once an element is inserted in such a manner that its bucket

exceeds a capacity of RTL, we begin rehashing.
�

4 Experiments

In this section we report on the results obtained from our implementation. These include careful timings

to verify the real-time properties of our approach, as well as experiments conducted by substituting our

algorithm for Java’s implementation.

Our experiments were conducted on a Sparc Ultra 5 with 128 Mbytes of primary memory. To avoid

unwanted interference, pages were locked into primary memory and our processes ran in real-time priority

mode. Garbage-collection was disabled during hash table methods—a situation akin to running real-time

threads under RTSJ.

4.1 Careful timings of contrived benchmarks

We generated hash table entries using � random integers (java.lang.Integer) as the keys, for ���

� �

 � �

 � �

 � �

 � � �

 � . Due to randomness, some integers occur multiple times. The set of

numbers is sequentially inserted, searched, and deleted from the data structures. The operations’ times were

gathered using Solaris’s gethrtime() function and Java Native Interface (JNI).

16

Avg Time Max Time Max/Avg
rh java rh java rh java

n = 100
Put: 181.83 11.11 363 162 2.01 14.58
Get: 56.68 5.81 342 13 6.03 2.24
Remove: 202.41 7.17 490 15 2.42 2.09
n = 1,000
Put: 185.83 9.76 446 1474 2.40 151.06
Get: 103.43 5.78 521 81 5.04 14.02
Remove: 208.72 7.11 435 71 2.08 9.99
n = 10,000
Put: 184.64 11.32 556 19916 3.01 1759.35
Get: 63.46 5.59 557 84 8.78 15.03
Remove: 209.89 7.07 535 287 2.55 40.61
n = 100,000
Put: 186.43 11.02 569 180138 3.05 16350.70
Get: 150.34 6.15 620 280 4.21 45.56
Remove: 209.70 7.23 800 274 3.81 37.89
n = 150,000
Put: 188.22 12.77 1059 370297 5.63 28983.27
Get: 74.96 6.16 698 269 9.31 43.70
Remove: 215.33 7.26 692 309 3.21 42.55

Figure 3: Comparison of our algorithm (rh) against Java’s (java) for the contrived benchmark. Times are
shown in microseconds.

17

Figure 3 shows that the average time for both implementations is independent of the number of entries—

nearly constant as predicted by theory. Also, the average time taken by Java’s implementation is less than

ours. This is a direct result of the resize-amortization feature of our implementation: it spreads the operations

of an entire resize over multiple calls to the table, so the average time per call suffers.

The maximum time over all calls in our implementation appears to climb, but settles at a reasonable

value; Java’s maximum times are much worse, and are clearly dependent on the number of entries. These

times are attributed to the single-call rehashing that occurs (during a Put) when its target load factor is

exceeded.

These results show that the ratio of maximum to average time for each operation is reasonably bounded

in our implementation while seemingly unbounded in Java’s.

4.2 SPEC benchmarks

As discussed in Section 2, we created an adapter class in our implementation so we could substitute it

for Java’s. This allowed us to test our implementation on the Java SPEC benchmarks jess, raytrace, db,

mpegaudio, mtrt, and jack.

The following methods of the Map class were timed and recorded:

Object put(Object key, Object value),
Object get(Object key),
Object remove(Object key),
boolean containsKey(Object key),
boolean containsValue(Object value),
Set entrySet(),
Set keySet(),
Collection values().

Figure 4 shows that our implementation provides more predictable performance (as measured by ratios

of worst-case to average times) for the SPEC benchmarks than does the standard implementation. We expect

18

Avg Time Max Time Max/Avg
rh java rh java rh java

size = 1
jess: 194.87 11.78 1023 2551 5.25 216.58
raytrace: 279.14 35.80 672 2248 2.4 62.79
db: 268.99 35.22 655 2499 2.44 70.95
mpegaudio: 284.46 36.39 702 1801 2.47 49.49
mtrt: 280.18 35.92 690 1665 2.46 46.36
jack: 26.28 5.55 834 1740 31.26 313.35
size = 10
jess: 59.25 6.08 1018 1708 17.18 280.85
raytrace: 281.62 34.57 699 1680 2.48 48.60
db: 272.91 34.95 737 2451 2.7 70.12
mpegaudio: 286.97 37.09 880 2463 3.07 66.40
mtrt: 280.19 36.23 577 1687 2.05 46.57
jack: 25.00 5.29 834 1704 33.35 322.42
size = 100
jess: 46.19 5.30 1177 2034 25.48 383.93
raytrace: 289.97 35.46 848 2241 2.92 63.19
db: 265.51 36.32 550 3423 2.07 94.24
mpegaudio: 286.27 36.24 704 2032 2.46 56.07
mtrt: 280.88 36.28 625 2068 2.23 57.00
jack: 5.25 1838 351.47

Figure 4: Results on SPEC benchmarks.

19

nothing less given the simple uniform hash assumption; thus, Figure 4 is in some sense a measure of the

uniformness of Java’s hashCode()method on the objects used as keys in those runs.

5 Conclusions

We have described an adaptation of a common data structure to real-time. From our experience, we offer

the following:

� Amortization of expensive operations can play an important role in migrating a data structure to real-

time.

� The API of a data structure can make a big difference concerning the feasibility of ever obtaining a

real-time implementation of that data structure. For example, some of the methods in Java’s API

insist on returning an array. Java cannot partially instantiate an array; thus, the full cost of allocating

and initializing an array (to zero) must be paid by any call that returns an array. This can lead to

unboundable behavior.

Our data supports our claim that the time to use our hash table is reasonably bounded. We are currently

proving the real-time properties of our implementation; such a proof must show

� Bounded behavior prior to resize

� Bounded behavior during resize

� No need to resize while already resizing

The last point can be proven only with respect to a reasonable strategy for picking the next table size. Our

early results indicate that it is not necessary to double the table size on rehash, as seems to be the common

wisdom, to obtain bounded behavior.

20

Acknowledgements

We thank Irfan Pyarali for suggesting this problem.

References

[1] David Bakken. Middleware. In J. Urban and P. Dasgupta, editors, Encyclopedia of Distributed

Computing. Kluwer, 2001. to appear.

[2] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turnbull. The Real-Time Specification for Java.

Addison-Wesley, 2000.

[3] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and System

Sciences, 18(2):143–154, 1979.

[4] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT

Press, Cambridge, Mass., 1990.

[5] SPEC Corporation. Java SPEC benchmarks. Technical report, SPEC, 1999. Available by purchase

from SPEC.

[6] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Mey auf der Heid, H. Rohnert, and R.E. Tarjan. Dynamic

Perfect Hashing: Upper and Lower Bounds. SIAM Journal of Computing, 23(4):738–761, August

1994.

[7] W. Feller. An introduction to probability theory and its applications. John Wiley & Sons, 1970.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[9] Jane W. S. Liu. Real-Time Systems. Prentice Hall, New Jersey, 2000.

21

[10] Realtime Platform SIG. Realtime CORBA. White Paper, Object Management Group, December 1996.

Editor: Judy McGoogan, Lucent Technologies.

[11] Douglas C. Schmidt and Stephen D. Huston. C++ Network Programming, Volume 1: Mastering

Complexity with ACE and Patterns. Addison-Wesley, Boston, 2002.

22

	Hash Tables for Embedded and Real-time systems
	Recommended Citation
	Hash Tables for Embedded and Real-time systems

	tmp.1471023011.pdf.LkN10

	Abstract: Abstract: Common collection objects such as hash tables are included in modern runtime
libraries because of their widespread use and efficient implementation. While operating systems and programming languages continue to improve their real-time features, common implementations of hash tables and other collection objects are not necessarily suitable for real-time or embedded-systems. In this paper, we present an algorithm for managing hash tables that is suitable for such systems. The algorithm has been implemented
and deployed in place of Java's Hashtable class. We present evidence of the algorithm's performance, experimental results documenting our algorithm's suitability for real-time, and lessons learned from migrating this data structure to real-time and embedded platforms.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: March 18, 2003
	Author: Authors: Friedman, S; Krishnan, A; Leidenfrost, N; Brodie, B. C; Cytron, R. K; and Niehaus, D
	Title: Hash Tables for Embedded and Real-time systems
	ReportNumber: 2003-15
	DepartmentName: Department of Computer Science & Engineering

