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Professor Paul H. Taghert, Chairperson 

 Neuroendocrine cells feature a large capacity for the processing, accumulation and 

regulated release of bioactive peptides and peptide hormones. The ultrastructural correlate of 

this regulated secretory pathway is a specialized organelle, called a dense core vesicle (DCV). 

DCVs are typically larger than conventional, small synaptic vesicles. Past work has identified 

intrinsic DCV proteins (non-cargo proteins, like the processing enzyme, carboxypeptidase) or 

ancillary ones that play a role in DCV trafficking and exocytosis (like CAPS, the Ca2+-

dependent activator protein for secretion). Currently, there is a lack of understanding of the 

developmental and physiological mechanisms that permit neurosecretory cells to coordinate and 

scale the regulated secretory pathway. In this context, the basic helix-loop-helix transcription 

factor dimmed (dimm) is especially important in the fruit fly Drosophila, but it is not involved in 

neuroendocrine cell fate determination.  

 Neuroendocrine cells require DIMM to accumulate, and process large amounts of 

secretory peptides, but DIMM does not target individual neuropeptide-encoding genes. Instead, 

we show that DIMM supports the complete resolution of NE-specific cellular properties by 

organizing the cellular machinery required to support a highly active RSP.  The mouse 

orthologue Mist1 likewise plays a role in supporting the RSP of serous exocrine cells. This 

thesis has three goals.  First, I evaluated a set of putative DIMM targets obtained by another 



xi 

scientist in the lab, and ask whether or not these are direct targets of this transcription factor. To 

accomplish this, I use in vivo chromatin immunoprecipitation (ChIP) followed by measuring 

DIMM binding to putative DIMM enhancers by quantitative Polymerase Chain Reaction (qPCR). 

This work is described in Chapter 2.  Secondly, I extend DIMM ChIP analysis to identify direct 

DIMM transcriptional targets on a genome-wide level in vivo in adult neurons. This was done by 

DIMM chromatin immunoprecipitation coupled to tiling microarrays (ChIP-chip), and also 

applying Fluorescence Activated Cell Sorting (FACS) and deep sequencing (RNA-seq) to define 

the transcriptome of DIMM neuroendocrine cells, as described in Chapter 3.  

 I then integrate the ChIP-chip and RNA-seq datasets to provide new viewpoints on how 

DIMM is used to coordinate and appropriately scale the RSP in NE cells. The intersection of the 

RNA-Seq and ChIP-chip data presents a list of genes that is likely to mediate the bulk of the 

transcriptional output of DIMM – i.e., its molecular “mechanism”. In order to conduct a functional 

assay and thus validate the list of intersected genes, I conducted a behavioral genetic screen. 

DIMM-expressing cells have previously been shown to regulate sleep amount in flies. I 

conducted an RNA interference-based screen, in which expression of individual DIMM target 

genes was knocked down in DIMM neurons and the effects of this manipulation on sleep were 

quantified. This in vivo validation provides an important filter with which to ascribe single gene 

functions and gives further insights into the general mechanisms by which DIMM operates.  
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Neuroendocrine Cells 

 Neuroendocrine (NE) cells are a specialized class of neurons dedicated to the production, 

storage and release of large amounts of peptide hormones (Park and Taghert 2009; Burgoyne 

and Morgan 2003). The Polish biologist Kopeć produced the first indication anywhere in the 

animal kingdom that the nervous system is capable of producing hormones (Kopeć 1917; Kopec 

1922; Scharrer B 1987a). Kopeć found the existence of a “pupation hormone,” which is 

produced in the brain of the gypsy moth Lymantria dispar in order for the animal to execute 

pupation (Scharrer B 1987a). Speidel was the first to describe NE cells in the spinal cord of 

elasmonbranchs and bony fishes as "gland-cells of internal secretion" (Speidel 1919; Scharrer B 

1987a). In addition to Kopec, Speidel, and Ernst and Bertha Scharrer, one other report identified 

a protein, called "Substance P," extractable from mammalian gut and the nervous tissue 

(Scharrer B 1987a; von Euler and Gaddum 1931).  

 In 1928, Ernst Scharrer reported discovering gland-like nerve cells in the hypothalamus of 

teleost fish (Scharrer B 1987a; Scharrer E 1952). At this time, a central dogma of neurobiology 

was that neuronal cells communicated strictly through electric signals (Scharrer B 1987a). Ernst 

Scharrer’s discovery was striking because this small group of hypothalamic cells contained 

impressive amounts of secretory material comparable to that of a pancreatic endocrine cell 

(Scharrer B 1987a; Scharrer E 1952). Therefore, the term NE neuron was coined, denoting the 

neural and endocrine capacities of this cell type (Scharrer E 1952; Scharrer B 1987a). These 

few early reports mark the early days of studying NE cells, before neuroendocrinology was a 

formal discipline. Ernst Scharrer was the first to formally propose the concept of neurosecretion 

in 1934 (Burbach 2011; Scharrer E and Scharrer B 1937). 

 One of the first classes of neuroendocrine neurons described were those neurons found in 

the supraoptic and paraventricular nuclei of the hypothalamus (Zupanc 1996). These neurons, 

also known as magnocellular neurons synthesize the posterior pituitary hormones oxytocin and 
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vasopressin (Zupanc 1996; Leng and Ludwig 2008). Oxytocin and vasopressin are transported 

along the axons of the hypothalamic-hypophysial tract, and end up stored in nerve endings in 

the posterior lobe of the pituitary gland, where they are finally exocytosed in response to stimuli 

(Zupanc 1996; Leng and Ludwig 2008). 

 The idea that neurons may be capable of dispatching blood-borne signals was initially met 

with great resistance (Scharrer B 1987a). In 1921, Loewi proposed the theory of the chemical 

transmission of the nervous impulse, which provided no tangible support for the concept of 

neurosecretion (Scharrer B 1987a; Loewi 1921). In the early studies, neurohormones appeared 

to be distinct from classic neurotransmitters in their proteinaceous character, the large amount 

of material produced and the extracellular pathway from site of release to site of action 

(Scharrer B 1987a).  

 Founding work by Ernst and Berta Scharrer in vertebrates and invertebrates, respectively, 

has showed the virtually universal occurrence of distinctive peptide-producing NE cell groups 

throughout the animal kingdom (Scharrer B 1987a). This work established that the vertebrate 

hypothalamic-hypophysial system was remarkably analogous to the insect brain-corpus 

cardiacum-corpus allatum system (Scharrer B 1987a; Scharrer B and Scharrer E 1944). The 

workhorse of both of these types of systems is the NE cell. NE cells, while they may express 

different neuropeptides, and control completely different physiologic processes, are 

nevertheless “wired” in the same way to accommodate a large secretory capacity.   

 Within the technical limitations of their time, extensive cytophysiologic studies by Ernst 

and Berta Scharrer provided the first evidence for a functional role of NE products in the control 

of developmental, reproductive, and metabolic functions in animals (Scharrer B 1987a). The age 

of electron microscopy allowed Palay, Bargmann, Bodian and the Scharrers to precisely 

characterize the sites of synthesis and release of peptidergic NE products (Scharrer B 1987a). 

This work showed that the NE material consisted of strikingly electron-dense, membrane-
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bounded granules that were easily identified and localized (Scharrer B 1987a). Further 

demonstration that the Golgi apparatus was the site of dense core granule formation in 

packaged form, as well as findings of their axonal release by exocytosis provided evidence in 

support of a close similarity with the products of other protein-secreting gland cells (Scharrer B 

1987a; Scharrer E and Brown 1961).  

Protein secretion systems 

 Cells deliver proteins to the cell membrane or secrete them to the extracellular 

environment in two general ways: classic secretory systems and non-conventional systems that 

traffic proteins with special characteristics (Nickel 2010). The common entry point for proteins 

meant for extracellular release is the endoplasmic reticulum (ER) (Arvan and Castle 1998). 

Proteins destined for secretion are folded and processed in the ER and the Golgi apparatus, 

similar to all other proteins (Burgess and Kelly 1987; Mellman and Simons 1992; Zupanc 1996). 

After the initial processing in the cis-Golgi apparatus, secretory proteins enter the trans-Golgi 

network (TGN), where they are segregated from lysosomal enzymes and trafficked to the cell 

membrane in various types of organelles (Burgess and Kelly 1987; Zupanc 1996).  

 The TGN portion of the Golgi has come to be recognized as a major branch point from 

which distinct classic anterograde membrane traffic pathways emanate (Arvan and Castle 1998; 

De Matteis and Luini 2008; Tooze et al. 2001). These classic pathways include constitutive 

traffic via small vesicles to the plasma membrane, lysosomal biogenesis via the endosomal 

system and the regulated secretory pathway (RSP) via large dense core granules (LDCVs), 

used by specialized cell types (Arvan and Castle 1998; Morvan and Tooze 2008). Amongst 

classic anterograde secretory systems, the most commonly employed is the constitutive 

secretory pathway, believed to be utilized by all cells (Schmidt and Stephens 2010; Thiele and 

Huttner 1998; Tooze and Stinchcombe 1992). Constitutive secretion is the ubiquitous process 

by which proteins of general importance, such as those of the extracellular matrix, are 
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continuously released from the cell (Meldolesi et al. 2004). In addition to constitutive secretion, 

various specialized secretory systems have been described: constitutive-like secretion, 

regulated secretion, secretion of small permeable mediators by diffusion (nitric oxide, 

endocannabinoids) as well as non-conventional secretion (Arvan and Castle 1998; Nickel 2010; 

Südhof 2007; Vazquez-Martinez et al. 2011).  

 NE cells package peptide hormones, neuropeptides and specific neurotrophins into 

secretory vesicles for release in a regulated manner upon stimulation - also known as the 

regulated secretory pathway (RSP) (Park and Loh 2008). Constitutive-like secretion is a 

specialized secretory pathway first detected in exocrine tissues as a pathway of protein 

discharge attributable to neither constitutive nor regulated exocytosis (Arvan and Castle 1998). 

During maturation of the secretory vesicle, the RSP proteins are retained in the maturing vesicle 

by binding to a retention receptor (Park and Loh 2008). At the same time, constitutively secreted 

proteins are removed from the vesicle by a clathrin-mediated budding mechanism to yield 

constitutive-like vesicles for secretion (Park and Loh 2008). Non-conventional secretion 

examples include the export of cytoplasmic proteins such as fibroblast growth factor 2 mediated 

by direct translocation across plasma membranes, or export involving intracellular transport 

intermediates as shown for acyl-CoA binding protein (Nickel 2010). Gases such as nitric oxide 

and small lipophilic molecules are also known to diffuse directly out of the cell (Südhof 2007). 

The neuroendocrine system 

 NE cells are capable of storing high concentrations of secretory proteins (Arvan and 

Castle 1992; Tooze and Stinchcombe 1992). These proteins are stored in a specialized type of 

vesicles with dense cores, the LDCVs (Tooze and Stinchcombe 1992; Scharrer E and Brown 

1961). Their cargo is released only upon stimulation by a secretagogue, thereby giving rise to 

the name “regulated” secretory pathway (Burgess and Kelly 1987). Like other cells, NE cells 

engage in constitutive secretion, but they have also evolved the RSP. The primary function of 
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this pathway is the secretion of substances (mainly neuropeptides) that produce modulatory 

changes in target neurons and other cells (De Camilli and Jahn 1990; Hökfelt et al. 1986). In 

most cases these changes appear to involve the generation of intracellular second messengers 

(De Camilli and Jahn 1990; Winkler and Fischer-Colbrie 1998).  

 In order to execute a complicated secretory program that uses the RSP, NE cells have 

distinct cell biologic organelles and properties. These individual components, together, have 

allowed NE cells to assume important roles in the survival and evolution of metazoan organisms. 

NE cells control critical processes such as: growth of cells and organisms, homeostatic 

adaptation to environmental changes and stress, reproduction, circadian rhythms and sleep, 

metabolism and nutrient storage, defense against predators and other survival mechanisms 

(Kalra and Kalra 2010; Tsigos and Chrousos 2002).   

 Neurosecretory control over these processes is achieved through precise triggers, 

controlled modulation with on and off switches and with finely tuned timing. One excellent 

example of how precise and cued the neuroendocrine system is comes from insect molting. A 

remarkable cascade of endocrine factors regulates this seemingly simple task of shedding the 

cuticle called ecdysis (Mesce and Fahrbach 2002). Nevertheless, ecdysis involves a complex 

sequence of behaviors, called the ecdysis sequence (Truman 2005). A large body of work by 

Riddiford, Truman and others has identified the several hormones implicated in this process: 

Ecdysis Triggering Hormone (ETH), Eclosion Hormone (EH), Crustacean Cardioactive Peptide 

(CCAP), Bursicon and Corazonin (Truman 2005; Horodyski et al. 1989; Reynolds et al. 1979; 

Horodyski et al. 1993; Truman and Riddiford 1970; Taghert and Truman 1982).  

 Although the ecdysis mechanism is still subject to debate, it is widely accepted that EH 

and ETH regulate the timing of ecdysis and that they form an endocrine positive feedback 

system (Ewer 2005; Truman 2005). EH released into the circulation causes ETH release, which 

in turn feeds back on the CNS, to cause further release of EH (Ewer 2005). The positive 
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feedback between EH and ETH causes a massive surge of both peptides during which the 

stores of both are completely exhausted (Truman 2005). This provides an all‐or‐nothing 

signal that irreversibly commits the insect to an ecdysis attempt (Truman 2005). Occurrence of 

ecdysis behavior is strictly confined to the end of the molt (Ewer 2005). The EH/ETH loop is 

non-functional prior to this time, thereby restricting the occurrence of ecdysis behavior to the 

appropriate developmental time (Ewer 2005). An early attempt or a delayed attempt at ecdysis 

would have major consequences for the animal’s metabolism and its ability to successfully 

shed cuticle. This example shows that without sophisticated control over neurosecretion, 

species would likely be impaired in their ability to withstand evolutionary pressures.  

 Similar to insects and other metazoans, human development and survival depend on NE 

cells, as judged by the multitude of pediatric and adult endocrine disorders. Diabetes mellitus, a 

disease that arises from destruction of the pancreatic beta cell is one of the most rapidly 

developing chronic diseases of the twenty-first century and is now one of the main threats to 

human health (Naser et al. 2006; Zimmet et al. 2001). The other increasingly common problem 

that frequently occurs together with diabetes is central and childhood obesity, both of which are 

now of epidemic proportions (Havas et al. 2009; Knecht et al. 2008; Levin 2009). 

Neuroendocrine signals originating from hypothalamus in the brain, the gastrointestinal system 

and adipose tissue play major roles in the pathogenesis of obesity, as they provide cues for 

cessation of meals and the coordination of caloric intake with maintenance of stable body weight 

(de Kloet and Woods 2010).  

 It is now well established that the hypothalamus plays a critical role in the regulation of 

energy balance through multiple output pathways (Abizaid and Horvath 2008). NE cells that 

respond to hormones leptin, insulin and ghrelin from the periphery and integrate various outputs 

into behavioral and neurohumoral cues are required to maintain body weight and adiposity 
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within relatively narrow limits in many individuals (Levin 2009). While diabetes and obesity are 

two of the gravest, there are a multitude of other neuroendocrine disorders with harmful effects 

on human health, many of which lack proper treatments. Therefore, to treat neuroendocrine 

diseases properly, it is important to understand the molecular basis of neuroendocrine system’s 

function.  

 Invertebrate systems have played a major role in our understanding of how hormones 

adjust the functioning of the nervous system (Truman 2005). The episodic events, including the 

molting cycle and metamorphic transformations that lead to the emergence of adult insects, are 

programmed with greater precision than the developmental steps leading to maturity in most 

vertebrates (Scharrer B 1987b). The fruitfly Drosophila melanogaster is an excellent model 

organism for the study of NE cells. It is estimated that roughly 75% of fly genes have 

homologous sequences in the human genome (Bier 2005). Therefore, conclusions reached in 

flies are readily applicable to questions in human biology, as well as disease conditions. Flies 

are a workhorse of modern genetics with an experimental history exceeding one hundred years. 

Their rapid development, small size, fewer paralogous and redundant genes than humans, and 

remarkable functional conservation make Drosophila an excellent model system for the study of 

neurosecretion. With regards to NE cells, flies are a great model system for two reasons: i) the 

fly neuroendocrine system is highly analogous to the human neuroendocrine system ii) in 

addition to the principles on which the NE system is built, the building blocks themselves (genes 

encoding processing enzymes, LDCV constituents, RSP factors and neuropeptides) are highly 

conserved with human genes (Jiang et al. 2000; Han et al. 2004; Hwang et al. 2000; Kolhekar et 

al. 1997; Littleton 2000; Nässel 2002; Rayburn et al. 2003; Sidyelyeva et al. 2006; Siekhaus and 

Fuller 1999). 

Cell biology of NE cells 
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  NE cells possess a robust RSP, which acts through the subcellular compartment 

consisting of: i)LDCVs), ii) cellular processing machinery necessary for synthesis, processing 

and storage of large amounts of neuropeptides and iii) the ability to release cargos only in 

response to precise stimuli (Arvan and Castle 1998; Burgess and Kelly 1987). It is believed that 

NE cells, like all other cells, possess a constitutive secretory pathway alongside the RSP (Tooze 

and Stinchcombe 1992; Bauerfeind and Huttner 1993). These two pathways, while not mutually 

exclusive, are thought to utilize different mechanisms of protein trafficking.  

  The “two pathway hypothesis” was originally proposed by Kelly in 1985, based on a set 

of elegant experiments in a pituitary cell line (Gumbiner and Kelly, 1982). This work showed that 

AtT-20 pituitary-derived cells use two remarkably different cellular pathways for the delivery of 

two types of cargo: a viral protein versus the mature form of the adrenocorticotropic hormone 

(ACTH) (Gumbiner and Kelly, 1982). The viral protein, as well as the ACTH precursor were 

delivered to the cell surface and released soon after synthesis in a constitutive-like manner. On 

the other hand, the mature form of ACTH was stored in special vesicles and not readily 

released. Secretion of the matured ACTH occurred in response to a secretagogue, whereas the 

same secretagogue had little effect on the release of the viral protein or the immature form of 

ACTH (Gumbiner and Kelly, 1982). These experiments solidified the concept of distinct post-

Golgi pathways for proteins targeted for constitutive versus regulated secretion (Morvan and 

Tooze 2008). It is now known that there are several other types of secretion systems (both 

conventional, such as the constitutive-like secretory pathway) and the non-conventional systems 

that accomplish protein secretion (Nickel 2010).  

 LDCVs are the main subcellular compartment used by cells to execute the RSP (Arvan 

and Castle 1998; Tooze and Stinchcombe 1992; De Camilli and Jahn 1990). NE cells can 

achieve a remarkable concentration and condensation of secretory products into LDCVs (Arvan 

and Castle 1992; Tooze and Stinchcombe 1992; Salpeter and Farquhar 1981). NE cells can 
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concentrate secretory proteins from the ER to the LDCVs by a factor as high as 200-fold 

(Salpeter and Farquhar, 1981). In contrast, a constitutively releasing cell, such as a plasma cell 

shows at most a two-fold concentration factor (Burgess and Kelly 1987; Hearn et al. 1985). This 

likely also reflects the temporal dynamics of these two different types of secretory systems. One 

(constitutive) is meant for constant trafficking, delivery and release of proteins into the 

extracellular environment or the cell membrane, thereby making cargo concentration 

unnecessary. The other (regulated) system works over longer time periods and its cargos are 

super-concentrated inside LDCVs, awaiting release at a precise moment in time (Arvan and 

Castle 1998).  

 It has been shown that NE cells store neuropeptide-filled LDCVs within their cytoplasm 

for long periods of time, thus acquiring large pools of intracellular mature secretory product 

(Burgess and Kelly 1987; Zupanc 1996; Burbach 2011). Cells that employ a robust RSP are 

therefore designed to synthesize and store one or a few secretory products and to discharge 

rapidly a large fraction of these products in response to physiologically specific stimulation, even 

in the absence of new protein synthesis (Burgess and Kelly 1987; Arvan and Castle 1998; 

Zupanc 1996).  

LDCVs 

 LDCVs are membrane-enclosed spherical organelles with diameters of up to several 

hundred nanometers (Borgonovo et al. 2006). LDCVs have electron-opaque content that forms 

the “dense core” seen on electron microscopy (EM, Morvan and Tooze 2008; De Camilli and 

Jahn 1990; Peters et al. 1991). In NE cells, this core is separated from the membrane by a halo 

of “space” (Fuller et al. 1985; Geuze et al. 1983; Griffiths et al. 1981; Griffiths et al. 1984; Pothos 

et al. 2002). Little is known about the structure or assembly of this material itself (Burgess and 

Kelly 1987). The dense cores are stable, since empty unloaded cores have been observed even 

after exocytosis (Tooze and Tooze 1986). Additionally, when detergent is used to remove the 
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LDCV membrane, secretory products remain bound to the dense cores (Zanini et al. 1980). 

 Therefore, it can be generalized that cells that employ an RSP condense their secretory 

products, whereas those lacking an RSP do not (Kelly 1985). Constitutive secretion can also 

occur by means of various transport granules, which have distinct appearance and 

characteristics compared to LDCVs. Such constitutively secreted granules readily fuse with the 

cell membrane. Thus, in constitutively secreting cells, newly synthesized protein is not stored 

but leaves the Golgi apparatus in short-lived membrane vesicles that fuse immediately with the 

plasma membrane in the absence of any extracellular signal (Moore and Kelly 1985). In 

contrast, LDCVs are prevented from fusing with the plasma membrane until an intracellular 

messenger, such as calcium, undergoes a significant change in levels (Kelly 1985). 

 In addition to the rate of exocytosis, NE cells can also concentrate the sites of 

exocytosis. Some secretory cells, such as mast cells or neutrophils are not polarized and they 

traffic and release their products towards any part of the plasma membrane that is stimulated 

(Kelly 1985). NE cells, on the other hand, appear to be highly polarized. Hypothalamic neurons, 

for example, release neuropeptides exclusively from terminals located in the posterior pituitary 

gland (Kelly 1985; Leng and Ludwig 2008).  

Secretory cargo sorting in the TGN 

 The TGN is the key exit point not only for RSP proteins and cargo, but for all other 

proteins that are destined for various locations, such as the plasma membrane, constitutive 

secretory vesicles, endosomes and immature secretory granules (Morvan and Tooze 2008). 

The mechanism of RSP sorting has been a matter of controversy. Two dominant hypotheses 

have been put forth: sorting-at-entry, and sorting-by-retention (Dikeakos and Reudelhuber 

2007). There are several lines of evidence supporting both hypotheses, so it is possible that 

they are not mutually exclusive. In the sorting-at-entry mechanism, cargo proteins aggregate 

together in the acidic, calcium-enriched environment of the TGN (Park and Loh 2008). Certain 
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RSP cargoes such as the secretogranins are thought to be more prone to aggregation, and they 

in turn “seed” precipitation of other regulated cargoes (Borgonovo et al. 2006). Further support 

for this hypothesis comes from results showing complete spatial segregation of different pituitary 

hormones inside LDCVs found in single acidophilic bovine pituitary cells (Hashimoto et al. 

1987). Thus, this study demonstrates the sorting of three different hormones to distinct LDCVs 

with separate storage within distinct granule types.  

 In the sorting-by-retention model, on the other hand, immature granules contain proteins 

meant for both constitutive and regulated secretion (Arvan and Castle 1998). As vesicles 

mature, proteins destined for constitutive secretion are extruded in low-density vesicles, 

ultimately leaving only the “correct” RSP cargo in the mature LDCV (Dikeakos and Reudelhuber 

2007). Thus, in this model, non-secretory proteins are removed due to receptor-mediated 

sorting and/or their inefficient retention properties such as the inability to form aggregates 

(Vazquez-Martinez et al. 2011). 

Enzymatic processing of neuropeptide precursors 

 Certain molecular characteristics are hallmarks of neuropeptides. Although 

neuropeptides are small protein molecules, they are still about 50 times larger than low-

molecular-weight classical neurotransmitters (Salio et al. 2006). As a consequence, 

neuropeptides possess several more recognition sites for receptors than smaller 

neurotransmitter molecules and are capable of eliciting a biological effect when released in 

lower quantities (Salio et al. 2006). There are three commonly used criteria to denote 

neuropeptides: gene expression and biosynthesis by neurons, storage and regulated release 

upon demand, and the ability to modulate neural functioning directly through neural receptors 

(Burbach 2011).  

 Neuropeptides are generally synthesized as proteins with a pre and a pro region at the 

N-terminal (Docherty and Steiner 1982). The pre-region signal peptide is the 15-30 amino acid 
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long amino acid extension at the N-terminal of the precursor, the pre-propeptide (Zimmermann 

et al. 2011; Burbach 2011). The pre-region signal is required for import into the ER, and 

therefore is key for entry into secretion routes (Zimmermann et al. 2011; Burbach 2011). After 

ER entry, the pre-region is cleaved and the proneuropeptide can undergo appropriate 

biochemical processing. Since peptide precursors contain basic amino acids separating the 

various bioactive or spacer regions, it was hypothesized that a trypsin-like endopeptidase 

initially cleaved the precursors, thereby generating intermediates with C-terminal basic residues 

(Fricker 2005; Docherty and Steiner 1982). These basic residues would then be removed by a 

carboxypeptidase B-like enzyme, in many cases producing the final peptide (Fricker 2005).  

 Indeed, two such trypsin-like endopeptidases, prohormone convertase 1 and 2 (PC1 and 

PC2) are involved in the production of neuropeptides (Fricker 2005; Zhou et al. 1999; Seidah 

and Prat 2002). PC1 and PC2 were identified based on their similarity to the yeast enzyme 

Kex2p, the endoprotease responsible for cleaving pro-alpha-mating factor at paired basic amino 

acid sites (Eipper et al. 1993; Seidah and Chrétien 1999; Seidah et al. 1991; Smeekens and 

Steiner 1990). PCs cleave at the C-terminal side of dibasic residues, leaving peptides with a pair 

of basic amino acid residues (Lysine (K) and Arginine (R)) extending from their C-terminus 

(Perello and Nillni 2007; Fricker 2005).  

 The intermediates produced by PC1 and PC2 are subsequently cleaved by 

exopeptidases, such as carboxipeptidase E, which removes the C-terminal basic amino acids 

(Perello and Nillni 2007; Fricker and Snyder 1982). Cleavage of the neuropeptide precursor 

leads to the generation of specific peptides with different activities and functions, as well as non-

functional byproducts (Burbach 2011). Cell-specific differences in PCs lead to different sets of 

peptides from the same precursor (Burbach 2011). While immature LDCVs are initially formed at 

the TGN, subsequent maturation steps occur beyond this compartment (Burgoyne and Morgan 

2003; Tooze and Huttner 1990; Arvan and Castle 1987). 
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Peptide amidation  

In addition to cleavage, many neuropeptides undergo additional posttranslational 

processing steps such as C-terminal amidation, N-terminal acetylation, or other modifications 

such as glycosylation, sulfation, and phosphorylation (Fricker 2005; Eipper et al. 1992; Burbach 

2011). These extra steps may provide longer stability and stronger activity. C-terminal amidation 

is especially common (Eipper et al. 1993). At least 50% of all examined neuropeptides 

regardless of species have an alpha-amide moiety at their carboxyl end (Eipper et al. 1992). 

More than 90% of Drosophila neuropeptides are predicted to be amidated (Park and Taghert 

2009). For many neuropeptides, the presence of the alpha-amide moiety is essential for biologic 

activity (Eipper et al. 1992; Tazi et al. 1987). Other speculations about the role of amidation 

have included a role in protecting peptides from enzymatic degradation (half-life) and increasing 

binding affinity (Fuhlendorff et al. 1990; Kreil 1985).   

 Peptide amidation is carried out by a bifunctional enzyme that can only act after PCs and 

carboxypeptidases have acted (Eipper et al. 1993).  The precursors to alpha-amidated peptides 

always contain a Gly residue to the COOH-terminal side of the residue to be alpha-amidated 

(Eipper et al. 1992). The first step of the two-part amidation reaction is carried out by a 

peptidylglycine alpha-hydroxylating monooxygenase (PHM), which catalyzes the copper, 

ascorbate, and molecular oxygen dependent conversion of peptidylglycine substrates into an 

alpha-hydroxyglycine intermediate (Eipper et al. 1991; Eipper et al. 1992; Eipper et al. 1993). A 

peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) activity catalyzes the conversion of 

these intermediates into alpha-amidated products along with the production of glyoxylate 

(Eipper et al. 1993; Katopodis et al. 1991; Kato et al. 1990). PAL and PHM are contained within 

a single bifunctional enzyme in mammals, whereas in Drosophila, these enzymes are encoded 

by one or more separate genes (Kolhekar et al. 1997; Jiang et al. 2000; Han et al. 2004). 
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Newly synthesized neuropeptides move through the RSP while the various endoproteolytic 

cleavages are occur (Eipper et al. 1993). The subcellular location in which each enzyme 

functions is not fully clear, but it is known that although the TGN marks the beginning of 

processing, the majority of the cleavages occur in LDCVs (Eipper et al. 1993; Schnabel et al. 

1989; Glembotski 1981). Finally, neuropeptides can undergo various other chemical 

modifications including N- and O-glycosylation, phosphorylation, sulfation, and acetylation, all of 

which have various biological effects (Burbach 2011). 

 While Work by Kelly and subsequent work established the basis for the RSP, the 

mechanism by which the RSP operates from cargo’s entry into the pathway to its delivery to the 

extracellular environment is still largely unknown. Furthermore, we currently lack extensive 

knowledge of the mechanism that establishes the RSP inside developing NE cells, and then 

maintains it in mature NE cells. What is clearly known is that the RSP appears to be conserved 

across species and genera. NE cells are commonly studied in worms, flies and other insects, 

frogs, fish and various mammalian species.  

Fast neurotransmission versus slow neuropeptide-mediated neurotransmission 

 Although neuroendocrine signaling is very important for the nervous system, 

quantitatively, synaptic vesicle-mediated synaptic transmission is the dominant form of 

communication between neurons (Südhof 2007). Nevertheless, this does not mean that synaptic 

transmission is more important than the other types of neurotransmission: the two principally 

different signaling pathways play distinct roles in information processing by the brain, and both 

are essential for brain function (Südhof 2007).  

 Synaptic vesicles (SVs) have a characteristic cross-sectional diameter of 30-40 

nanometers, appear clear by EM and contain classical neurotransmitters, such as acetylcholine, 

gamma-amino-butyric acid (GABA) or glutamate (Craige et al. 2004; Edwards 1998; Südhof 

2007). SVs and LDCVs can be readily distinguished by EM: unlike LDCVs, SVs have a clearly 
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electron-lucent appearance, which is due to the absence of protein or peptides in their lumen 

(Craige et al. 2004). LDCVs and SVs are further distinguished by the mode of stimulation 

required for release, the type of calcium channels involved in the exocytotic process, and the 

time course of recovery after stimulation (Zupanc 1996). 

 In addition to morphology and composition, the two vesicle types are also quite different 

functionally: SVs cluster over synaptic active zones, respond to high micromolar calcium 

concentrations and release their contents rapidly, within a millisecond (Edwards 1998; Katz 

1969; Südhof 2007). In addition to the rapid pace of release, neurons release SVs in a highly 

localized manner, restricted to an area of less than a square micrometer (Südhof 2004; Südhof 

2007). SV release occurs mainly at the presynaptic terminal into the synaptic cleft (Ludwig and 

Leng 2006).  

 As with all phenomena in biology, there are exceptions to all rules. In most neurons for 

any single event, a single vesicle per synapse fuses with the membrane following action 

potential invasion, and this exocytotic event is limited to the ultrastructurally defined presynaptic 

active zone (Biro et al. 2005; Matsui and Jahr 2006; Sargent et al. 2005; Silver et al. 2003). 

Nevertheless, at certain synapses, more than a single vesicle can be released per action 

potential, and in rare circumstances neuronal exocytosis can occur from sites that are 

unremarkable in electron micrographs (Ceccarelli et al. 1979; Matsui and Jahr 2006; Zenisek et 

al. 2000). It is important to note that the above-mentioned example is an exception and not a 

rule. 

 When an action potential depolarizes a terminal, calcium enters into the terminal through 

voltage-gated channels at the “active zone” and causes SV exocytosis with resultant release of 

classic neurotransmitters into the synapse (Ludwig and Leng 2006; Owald and Sigrist 2009; 

Südhof 2004). Calcium concentration upon entry in the vicinity of the channels can be very high, 

but it does not penetrate far due to rapid sequestration by high-capacity buffers (Ludwig and 
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Leng 2006). SV exocytosis involves sensors with a low affinity for calcium, likely due to high 

calcium concentrations found close to the site of calcium entry (Ludwig and Leng 2006). Since 

LDCVs are frequently located deeper inside the cell, at sites distant from active zones and are 

not exposed to such calcium high concentrations, LDCV exocytotic machinery has a high 

calcium affinity and so might be activated by calcium entry when a high rate of entry is induced 

by intense activation (Ludwig and Leng 2006; Zupanc 1996). 

 In contrast to SVs, LDCVs have a diameter of 80–200 nanometers and exhibit a 

characteristic electron-dense core that contains neuropeptides (Edwards 1998; Crivellato et al. 

2005; Crivellato et al. 2006). SVs have dedicated release sites that are associated mainly with 

synapses, but LDCVs are released from all parts of a neuron, including the axon, soma and, 

especially, the dendrites (Ludwig and Leng 2006; Morris and Pow 1991; Salio et al. 2006; 

Südhof 2007). When LDCVs pool in in neuronal cell bodies, dendrites as well as the axonal 

terminals, they await a proper signal that would instruct their release (Arvan and Castle 1998).  

 Once triggered, LDCVs release their contents relatively slowly, taking more than 50 

milliseconds and they do so in response to low micromolar calcium concentrations (Edwards 

1998; Martin 2003). Compared to SVs, LDCV exocytosis requires more sustained calcium 

transients, but is slower and longer lasting than SV exocytosis (Südhof 2007; Stjarne 2000; 

Martin 2003). For example, calcium-initiated chromaffin granule exocytosis is 10-fold slower 

than SV exocytosis, but otherwise the two systems are similar (Südhof 2007). Though fast, SV-

mediated and slow, LDCV-mediated neurotransmission are built on many of the same 

principles, NE cells are known to have evolved special adaptations for LDCV-mediated slow 

neurotransmission (Fukuda et al. 2004). 

 Similar to exceptions to the rule seen for SVs, there are such exceptions for LDCVs as 

well. Occasionally, LDCVs have been observed undergoing exocytosis at typical active zones of 

nerve terminals in stimulated synapses of frog sympathetic ganglia and of rat trigeminal 
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subnucleus caudalis (Pécot-Dechavassine and Brouard 1997). In the majority of examined 

cases, classic neurotransmitters and peptides are not stored together: the former are stored in 

SVs, which are densely clustered in synaptic terminals, whereas peptides reside in LDCVs, 

which are more rare in terminals (Ludwig and Leng 2006).  

 After mature LDCVs are formed by budding from the TGN, they are transported from the 

cell body to axons or dendrites or they can remain in the cell body (Südhof 2007). A calcium-

based signal triggers the translocation and fusion of LDCVs with the plasma membrane outside 

of the active zone (Rutter and Tsuboi 2004; Südhof 2007). There still exists a certain amount of 

uncertainty and controversy regarding the precise mechanism of LDCV fusion with the 

membrane. After exocytosis, empty LDCVs recycle and refill by transport to the cell body and 

recycling via the Golgi complex (Südhof 2007).  

 The mechanism of coordination and maintenance of NE cell properties 

 Many cell-intrinsic regulatory mechanisms that help establish specific transmitter 

phenotypes have been discovered (Park and Taghert 2009; Ding et al. 2003; Cheng et al. 

2004). Nevertheless, what is not known is how NE cells develop their mature properties (Park 

and Taghert 2009). A host of transcription factors such as Mash1, Otp, Brn2, Sim1 and Sim2 

have been shown to regulate the early differentiation of hypothalamic neuroendocrine centers 

by their expression in neuronal progenitors and in pre-migratory neurons (Acampora et al. 1999; 

Goshu et al. 2004; Hosoya et al. 2001; Michaud et al. 1998; Nakai et al. 1995; Park and Taghert 

2009; Schonemann et al. 1995; Wang and Lufkin 2000).  

 The above mentioned factors are important early in specification of their corresponding 

NE cell lineages, as well as in proliferation and migration of NE precursors (Park and Taghert 

2009). Very little is known about factors acting in post-mitotic cells, once they are restricted to 

their appropriate lineages. This is a time point in the life of a newly born neuron when the 

neuron needs to start developing properties of the mature cell type it is destined to become. In 
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the case of NE cells, a central question is: what are the intrinsic regulatory factors that directly 

organize the maturation of peptidergic cellular properties (Park and Taghert 2009)? Such 

properties involve proper scaling and modulation of the RSP by which peptides and peptides 

hormones are packaged and released, as well as active maintenance of the RSP and proper 

homeostatic response to various environmental and internal perturbations (Park and Taghert 

2009; Mills and Taghert 2011). 

 Although several groups have reported on identification of individual factors that operate 

in the RSP, the genetic basis of RSP establishment, scaling and maintenance is largely 

unknown (Arvan and Castle 1998; Beuret et al. 2004; Kim et al. 2001; Park and Taghert 2009). 

Clonal isolates of particular cell lines (AtT-20 and PC12) have been identified as lacking 

particular molecular or subcellular features of the RSP (Day et al. 1995; Malosio et al. 1999). 

Various groups have reported several independently derived neuroendocrine cell variants that 

lacked regulated secretory organelles or failed to express genes known to be functionally 

important for secretory cells (Pance et al. 2006; Matsuuchi and Kelly 1991; Borgonovo et al. 

1998; Leoni et al. 1999; Pance et al. 1999).  

 The transcription factor RE1-silencing transcription factor (REST), is the only known 

transcription factor known to play a role in the mammalian RSP (Pance et al. 2006). For 

example, the A35C PC12 clone lacks markers for both SVs and LDCVs at the protein and 

mRNA level (Pance et al. 1999). Hybrid cells created by fusing A35C with normal PC12 also 

failed to accumulate LDCVs, suggesting the existence of a transcriptional repressor that blocks 

the existence of a functional RSP (Pance et al. 1999; Pance et al. 2006). This further indicates 

that neurosecretion could perhaps be controlled in a modular way (Borgonovo et al. 1998; 

Pance et al. 2006). REST is necessary but not sufficient to suppress the NE phenotype in A35C 

cells, which implies that other transcription factors or signaling proteins may need to act 

together with REST to repress the RSP (Pance et al. 2006). It is therefore possible that RSP 
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regulation in other systems also requires factors acting transcriptionally, as well as post-

transcriptionally. 

 Work in Drosophila has suggested that there is a genetic basis underlying development 

and maintenance of the NE cell fate (Park and Taghert 2009). A single transcription factor 

named dimmed (DIMM) has been shown to act as a dedicated pro-secretory factor (Hewes et 

al. 2003; Park and Taghert 2009). The orthologue of DIMM, named Mist1 in mammals, has 

been shown to be a dedicated pro-secretory factor in the serous exocrine cells (Johnson et al. 

2004; Moore et al. 2000; Pin et al. 2000; Ramsey et al. 2007). As in hypothalamic and pituitary 

development in mammals, there is a whole cascade of transcription factors implicated in the 

specification of Drosophila neuroblasts and their transition to post-mitotic NE cells destined to 

give rise to mature peptidergic cells (Allan et al. 2005; Benveniste et al. 1998; Baumgardt et al. 

2009; Kohwi and Doe 2009; Park et al. 2004). These factors include the transcription factors 

apterous, squeeze, eyes absent, grainyhead, collier and other early factors. By employing 

transcription factor cascades and loops, Drosophila neural stem cells generate many distinct 

neuronal and glial subtypes over time (Kohwi and Doe 2009). Nevertheless, there are only two 

known Drosophila transcription factors involved in development of the mature phenotype of a 

CNS cell type: the neuroendocrine-specific factor dimmed and the pan-glial factor repo (Hewes 

et al. 2003; Freeman et al. 2003).  

Past work has demonstrated the existence of transcription factors acting to set up 

specialized intracellular circuits and pathways that distinguish one cell type over another (Mills 

and Taghert 2011). Two known cases of transcriptional organizers of the developmental 

programs of neuronal cell subtypes are factors PET-1 and AST-1 (Park and Taghert 2009; 

Hendricks et al. 1999; Flames and Hobert 2009). AST-1 is an ETS transcription factor that 

controls expression of all dopamine pathway genes in all dopaminergic cell types in 

Caenorhabditis elegans (Flames and Hobert 2009). PET-1 is another ETS domain transcription 
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factor that appears to control expression of serotonin pathway genes in mammalian 

serotonergic neurons (Hendricks et al. 1999). Both of these factors control major elements of 

the biosynthetic machinery known to distinguish their respective neuronal subtypes from 

neurons expressing other biogenic amines or classic neurotransmitters. Neither factor, however, 

is necessary for the initial fate specification or survival of the respective neuron type that they 

control (Park and Taghert 2009). There is also no evidence as of yet that either of these factors 

controls a whole subcellular compartment, such as LDCVs, endosomes or synaptic vesicles. 

 One known factor that controls a whole subcellular compartment is Transcription Factor 

EB (TFEB) (Sardiello et al. 2009). TFEB exerts coordinated transcriptional control over most 

mammalian lysosomal genes (Sardiello et al. 2009). In vitro, TFEB induces lysosomal 

biogenesis and increases degradation of lysosomal complex molecules (Sardiello et al. 2009). 

Another factor, Peroxisome proliferator–activated receptor Gamma Coactivator-1 (PGC-1), has 

been shown to control the number of mitochondria inside heart cells, as well as their function in 

response to energy demands (Finck and Kelly 2007; Lehman et al. 2000). Though it has been 

convincingly shown that PGC-1 is a master regulator of myocardial energy metabolism, this 

protein is a not a sequence-specific transcription factor, but rather a co-activator for such factors 

(Finck and Kelly 2007). The above examples demonstrate master regulators / scaling factors 

that control the biogenesis, maintenance and homeostasis of lysosomes and mitochondria 

(Lehman et al. 2000; Sardiello et al. 2009). Based on previous and current work, evidence 

points to DIMM acting as a scaling factor on the RSP of NE cells, through the morphological 

correlate of the RSP, the LDCV compartment (Mills and Taghert 2011; Park et al. 2011). 

Overview of DIMM biology 

 DIMM was identified by Hewes et al. in 2003 as a neuroendocrine-specific basic helix 

loop helix (bHLH) transcription factor in Drosophila. The original dimmed loss-of-function 

phenotype was a severe reduction of neuropeptide staining intensity, with normal survival of NE 
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neurons (Hewes et al. 2003). These early results pointed to a role of DIMM in regulating the 

differentiation of neuroendocrine lineages (Hewes et al. 2003; Park et al. 2004). Furthermore, 

DIMM was proposed to be an integral component of a novel mechanism by which diverse 

neuroendocrine lineages differentiated and maintained their pro-secretory state (Hewes et al. 

2003). DIMM is a member of the Atonal subfamily of transcription factors and its bHLH domain 

displays 78% identity with the mouse Mist1 mammalian protein (Moore et al. 2000; Pin et al. 

2000). The predicted DIMM protein consists of a single 390 amino acid open-reading frame with 

a centrally-positioned bHLH domain (Park and Taghert 2009).  

 DIMM was originally identified thanks to Drosophila P-element based enhancer trap 

screening that yielded a GAL4-containing P-element named c929-GAL4 inserted 13 kilobases 

upstream of the DIMM transcription start site (Hewes et al. 2003). c929-GAL4 drives gene 

expression in a pattern that overlaps to a large extent with DIMM, based on in situ hybridization 

and immunohistochemical analysis (Hewes et al. 2003; Park et al. 2008a). c929-GAL4 and 

DIMM expression overlap in many peptidergic cells in the CNS, and in peripheral endocrine 

cells of the corpora cardiaca as well as in the Inka cells of the epitracheal endocrine system 

(Park and Taghert 2009; Park et al. 2008a). DIMM is essential for survival as dimm null animals 

die late in embryonic stages or rarely as first instar larvae (Park and Taghert 2009; Hewes et al. 

2003). This phenotype is strikingly similar to that of animals null for the Drosophila PHM gene 

(Jiang et al. 2000).  

 The developmental time course of DIMM expression has been explored in detail (Hewes 

et al. 2003; Allan et al. 2005). Except for maternal DIMM expression and a transient embryonic 

stage 11 expression, the first time point at which DIMM is stably expressed in the developing 

embryonic nervous system is in stage 12 embryos (Allan et al. 2005; Hewes et al. 2003; Park 

and Taghert 2009). Interestingly, there are cases of post-mitotic neurons born in the embryo that 

do not display characteristics of mature NE cells until metamorphosis (Park et al. 2004). Such 



Chapter 1. 
	
  

23 

cells lack DIMM expression preceding metamorphosis, but they acquire DIMM expression 

immediately before differentiation (Park et al. 2004; Park and Taghert 2009). Importantly, once 

DIMM expression commences in the embryonic CNS, the vast majority of DIMM-expressing 

neurons maintain persistently high-level DIMM expression throughout all developmental stages 

and from beginning to the end of their adult life (Park et al. 2008a). In late third instar larvae, 

there are ~306 DIMM-positive CNS cells, most of which are NE cells (Park et al. 2008a; Park 

and Taghert 2009).  

 The expression of DIMM was surveyed against that of 26 different neuropeptide markers 

(Park et al. 2008a). This study found that 64% of DIMM cells within the larval CNS could be 

identified by one or more of the 24 CNS peptide gene markers. Furthermore, there was 

remarkable overlap between NE neurons expressing high levels of PHM and DIMM (Park and 

Taghert 2009). Outside the CNS, 73% of the 53 prominent DIMM-positive cells in the larva are 

associated with one or more neuropeptide markers (Park et al. 2008a). Therefore, most (if not 

all) DIMM-expressing neurons are peptidergic (Park et al. 2008a). DIMM expression is restricted 

to NE neurons of the neuroendocrine, as well as interneuronal subtypes (Park and Taghert 

2009). On the other hand, motor and sensory neurons do not express appreciable levels of 

DIMM (Park and Taghert 2009).  

 Although most DIMM+ cells are peptidergic, the corollary is not necessarily true and 

varies on a peptide-to-peptide basis (Park and Taghert 2009; Park et al. 2008a). Of the 26 

neuropeptide markers, 8 are >90% DIMM-positive, 18 are >40% DIMM-positive and 2 peptide 

markers do not overlap with DIMM (Park et al. 2008a). There are ~1,000 NE cells in the larval 

brain that express any of the 26 neuropeptide markers, and ~30 - 40% of them are DIMM-

positive (Park et al. 2008a). This selective overlap of DIMM with particular subpopulations of NE 

cells, even within populations expressing the same neuropeptide, likely provides a clue to DIMM 
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function. There are several features that unite the subtypes of cells that express DIMM that will 

be further described below. 

 Work in this thesis aims to show the mechanism by which DIMM operates to ensure 

proper development and dynamic maintenance of the NE cell fate. In addition to the 

homologous roles of DIMM and Mist1 in LDCV biogenesis and maintenance, conclusions 

reached from studying DIMM could be broadly applicable to other systems due to the high 

degree of conservation of RSP factors. The majority of processing enzymes, LDCV trafficking, 

biogenesis and release-implicated genes, as well many neuropeptides are conserved in 

Drosophila and mammals (Han et al. 2004; Hwang et al. 2000; Jiang et al. 2000; Kolhekar et al. 

1997; Littleton 2000; Nässel 2002; Rayburn et al. 2003; Sidyelyeva et al. 2006; Siekhaus and 

Fuller 1999). 

 In order to decipher the mechanism of DIMM operation, various genomic techniques can 

be employed to examine the role of DIMM on a genome-wide level. A review of literature shows 

that there are only a few reports of in vivo transcriptional profiling of particular NE cell 

populations. One such example comes from transcriptional profiling of normal and osmotically 

stressed rats (Hindmarch et al. 2006; Hindmarch and Murphy 2010). Here, the authors tried to 

understand the hypothalamo-neurohypophyseal system’s response to dehydration. The 

hypothalamo-neurohypophyseal system is a NE center responsible for the production of the 

antidiuretic peptide hormone vasopressin (Hindmarch et al. 2006). Dehydration evokes a 

massive release of the vasopressin from magnocellular neuron axon terminals in the posterior 

pituitary, which is accompanied by a plethora of changes in the morphology and 

electrophysiological properties, as well as biosynthetic and secretory activity of the 

hypothalamo-neurohypophyseal system (Hindmarch et al. 2006). The authors employed 

microarray technology to globally identify transcripts that were regulated as a consequence of 

dehydration as well as RNAs that were enriched in specific hypothalamic nuclei under normal 
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conditions (Hindmarch et al. 2006; Hindmarch and Murphy 2010). Similarly, the role of DIMM in 

NE cells can probably be best understood with a genome-wide approach aimed at 

understanding its genomic targets and the NE cell transcriptome. 

DIMM and the concept of LEAP cells 

 Among peptidergic cells, several attributes set DIMM cells apart (Park and Taghert 2009). 

These properties are: i) the relatively large size of DIMM-expressing NE cells compared to other 

NE cells (L), ii) their pattern of episodic release of peptides (E), iii) their specific production of 

amidated peptides (AP) (Park and Taghert 2009). Therefore, the acronym LEAP was coined 

(Park and Taghert 2009).  

 Among the peptidergic cells of the fly CNS, LEAP cells have relatively large cell bodies, 

as well as larger and more complex branching patterns (Park and Taghert 2009). Episodic 

release of peptides is a property of LEAP cells that is currently largely speculative or indirect, as 

release has not been documented for many LEAP cells (Park and Taghert 2009). During 

episodic release, discrete release events have ballistic rising phases and decay phases lasting 

many minutes, with the majority of stored peptides released (Reynolds et al. 1979). Such 

release has been documented for several subpopulations of LEAP cells that have important 

roles in ecdysis (Reynolds et al. 1979). Finally, LEAP cells specialize in the production of 

amidated peptides. DIMM expression is highly correlated with C-terminal alpha-amidation of 

secretory peptides (Park and Taghert 2009). Several lines of evidence support this notion: 

DIMM directly controls the expression of the amidating enzyme PHM and their expression 

patterns overlap highly (Hewes et al. 2003; Park et al. 2008b).  

Mechanism of DIMM action 

 DIMM loss-of-function mutants show reduced neuropeptide staining, but also reduced 

levels of neuropeptide processing enzymes (Hewes et al. 2003; Park et al. 2008b). On the other 

hand, DIMM loss appears to have no effect on the survival or arborization or morphology of NE 
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neurons that normally express DIMM (Hewes et al. 2003). Selective DIMM misexpression in the 

CNS can increase the steady state peptide accumulation in NE cells (Hewes et al. 2003; Allan 

et al. 2005; Miguel-Aliaga et al. 2008). Furthermore, misexpression of DIMM confers high-level 

PHM expression onto all neurons (Allan et al. 2005). This suggests that DIMM acts as a “master 

regulator” of the peptidergic cell fate. On the other hand, work in the Drosophila embryo and 

larvae suggests that DIMM also participates in combinatorial codes with various other 

transcriptional regulators to promote unique subtypes of NE cells (Allan et al. 2005; Baumgardt 

et al. 2009; Miguel-Aliaga et al. 2008). These two modes of operation are not mutually exclusive 

and can be reconciled with each other, even in the same cell.  

 DIMM is a class 2 bHLH protein in the Atonal superfamily (Moore et al. 2000). Class 2 

bHLH transcription factors function mostly as heterodimers with a class 1 ubiquitous bHLH 

protein such as E12/E47 in mammals and daughterless in flies (Massari and Murre 2000; Park 

and Taghert 2009). DIMM appears to favor functioning as a homodimer as opposed to forming 

heterodimers with DAUGHTERLESS, as other members of its superfamily (Allan et al. 2005). 

The simplest prediction for how DIMM functions is that as a transcription factor, it binds to 

enhancers in the genome and activates expression of target genes (Powell and Jarman 2008). 

Prior to work presented in Chapters 2 and 3 of this thesis, there was a single known direct 

DIMM target - the Drosophila amidation enzyme PHM (Park et al. 2008b).  

 The function of DIMM and PHM is tightly linked, both in vitro and in vivo (Park and 

Taghert 2009). Careful analysis has identified precise enhancers in the first intron of PHM that 

DIMM binds to and transactivates PHM expression (Park et al. 2008b). In vitro, DIMM controls 

PHM transcription by binding to each of three adjacent E boxes within the first PHM intron (Park 

et al. 2008b; Park and Taghert 2009). The three identified E-boxes also contribute equally to 

proper expression of a PHM transgenic reporter (Park et al. 2008b). Therefore, prior to this 
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thesis work, PHM was the single bona fide direct DIMM target, in vitro and in vivo (Park et al. 

2008b; Park and Taghert 2009). 

  More recent studies have shown additional evidence in support of DIMM as a master 

regulator of peptidergic cell fate (Hamanaka et al. 2010; Park et al. 2011). When DIMM is 

misexpressed in non-peptidergic neurons such as photoreceptors, the morphology and 

physiology of these neurons changes dramatically (Hamanaka et al. 2010). Normally, non-

peptidergic neurons fail to accumulate ectopically expressed neuropeptides (Hamanaka et al. 

2010; Helfrich-Förster et al. 2000; Rao et al. 2001). Nevertheless, when non-peptidergic 

neurons are forced to express a neuropeptide and DIMM, they can successfully express high 

levels of neuropeptides (Hamanaka et al. 2010). Furthermore, when DIMM is co-misexpressed 

with a neuropeptide, photoreceptors can successfully make bioactive peptides, as measured by 

mass spectrometry (Hamanaka et al. 2010). Ultrastructural analysis of photoreceptors 

misexpressing DIMM and/or neuropeptide showed a dramatic appearance of an LDCVs inside 

photoreceptors (Hamanaka et al. 2010). When DIMM and a neuropeptide are co-misexpressed, 

the resultant novel LDCVs package PDF inside ectopic LDCVs, as shown by immunogold EM 

(Hamanaka et al. 2010). Normally, photoreceptors package histamine inside SVs and do not 

produce any LDCVs (Borycz et al. 2005; Hamanaka et al. 2010). 

 In addition to DIMM causing LDCV biogenesis when expressed ectopically, it also 

appears to repress features required for classic histamine neurotramission in photoreceptors, 

including T bar ribbons, sites for vesicle exocytosis, and capitate projections, sites for vesicle 

endocytosis, as well the normal architecture of the terminal itself (Hamanaka et al. 2010). 

Although classic neurotransmitters and neuropeptides coexist in most neurons, these results 

suggest the possibility that DIMM effects an extreme peptidergic phenotype with a near 

exclusive dedication of the cell to the accumulation and release of neuropeptides (Hamanaka et 

al. 2010). 
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Exploring DIMM’s mechanism of action 

 A precise interplay between cis-acting elements and trans-acting factors allows signaling 

pathways to activate or repress the expression of specific genes and to maintain these 

expression patterns in differentiated tissues (Carrera and Treisman 2008). In the eukaryotic 

genome, RNA polymerase II transcribes most genes, which requires assembly of a pre-initiation 

complex, consisting of general transcription factors (Carrera and Treisman 2008; Fuda et al. 

2009). In addition to general transcription factors, there are many sequence specific 

transcription factors that function in cell-specific and tissue-specific ways (Macquarrie et al. 

2011). Such transcription factors enable Pol II to gain access to promoters and to initiate RNA 

synthesis at transcription start sites (Fuda et al. 2009). This is accomplished by transcription 

factor binding in a sequence-specific manner to cis-regulatory modules (enhancers, promoters) 

found throughout the non-coding portions of the genome (Biggin and Tjian 2001; Levine and 

Tjian 2003; Li et al. 2008).  

 There are several techniques for studying how transcription factors interact with the 

genome (Southall and Brand 2007; Nègre et al. 2006; Sandmann et al. 2007). Chromatin 

immunoprecipitation (ChIP) has become the technique of choice to investigate protein–DNA 

interactions inside the cell (Collas 2009; Lee et al. 2006; Sandmann et al. 2007). During ChIP, a 

protein of interest is selectively immunoprecipitated from a chromatin preparation to determine 

the DNA sequences associated with it (Collas 2009; Gilmour and Lis 1984). ChIP was 

developed independently by Gilmour and Lis to study the distribution of RNA Polymerase and 

histones in bacteria and flies, and by Solomon and Varshavsky to study the binding of 

Drosophila heat shock protein 70 to DNA (Gilmour and Lis 1984; Gilmour and Lis 1987; 

Solomon et al. 1988). Since then, ChIP has been applied to sequence specific transcription 

factors and other chromosome-associated proteins (Collas 2009).   
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 For ChIP, DNA and proteins are reversibly cross-linked with formaldehyde (which is heat-

reversible) to covalently attach proteins to target DNA sequences (Collas 2009). A specific 

antibody is then used to immunoprecipitate the protein of interest (Nègre et al. 2006). 

Formaldehyde crosslinks proteins and DNA molecules within 2 Angstroms of each other, and 

thus is suitable for crosslinking proteins which directly bind DNA (Collas 2009; Toth and Biggin 

2000). Traditionally, DNA sequences isolated by ChIP were quantified or identified by Southern 

blotting or quantitative polymerase chain reaction (qPCR) (Mukhopadhyay et al. 2008; Toth and 

Biggin 2000; Nègre et al. 2006).  

 In the past decade, ChIP has been coupled to microarray hybridization (ChIP-chip) and to 

high-throughput sequencing (ChIP-Seq, Park 2009). This has enabled determination of the 

precise, genome-wide distribution of transcription factor binding sites (Macquarrie et al. 2011). 

These advances have allowed an unbiased detection of protein–DNA interactions without 

having to “select” certain candidate binding and control regions for interrogation (Sandmann et 

al. 2007).  

 Although individual genomic data sets are highly informative, integrating them together 

with global profiles of transcription or protein interactions offers the exciting potential to answer 

many long-standing questions such as how enhancers contribute to gene expression variation 

(Hawkins et al. 2010).  As with ChIP-chip, microarrays were also the first technology allowing 

genome-wide quantification of gene expression (Watson et al. 1998; Epstein and Butow 2000). 

High throughput sequencing has improved on microarrays with higher precision, dynamic range 

and genome coverage, and lower background (Wang et al. 2009; Ozsolak and Milos 2011).  

 Transcriptomes produced by RNA-Seq or microarrays can be integrated with genome-

wide binding information from ChIP-chip or ChIP-Seq studies. Identifying the set of promoters or 

enhancers where factor binding correlates with gene expression increases the probability that 

the factor binding site is associated with adjacent gene expression (Ren et al. 2000; Simon et al. 
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2001; Wyrick and Young 2002). Additionally, this integration helps resolve potential ambiguities 

that occur in cases of intergenic ChIP binding in areas containing the promoters for two 

divergently transcribed genes (Wyrick and Young 2002). Furthermore, the sets of promoters / 

genes found within the intersection of ChIP-chip binding and expression datasets contains fewer 

false positives due to a reduction in noise (Wyrick and Young 2002).  

 Work on this thesis started out with trying to understand the precise mechanism of DIMM 

function. The most logical and technically feasible approach was to perform in vivo DIMM ChIP 

in adult fly heads. Experimental success was confirmed by testing for DIMM occupancy at its 

known enhancers in the first intron of PHM. Additionally, a set of genes whose expression was 

upregulated upon DIMM misexpression in embryonic neurons and downregulated in DIMM loss-

of-function mutants was also tested for direct DIMM binding to putative enhancers. This gene list 

was integrated with a list of genes known to be enriched in normal adult DIMM-expressing 

neurons (Kula-Eversole et al. 2010). A portion of this work is presented in Chapter 2.  

 Upon demonstrating DIMM ChIP success, analysis was then extended to a genome-wide 

level by in vivo ChIP-chip. This revealed a set of 156 binding peaks that revealed a rich 

repertoire of 284 genes. ChIP-chip analysis provided new clues for how DIMM establishes and 

maintains the secretory capacity of a NE cell. A way to enhance the ChIP-chip data further was 

to obtain a gene expression profile of LEAP cells, which was not unknown. This was done by 

purifying normal DIMM+ adult neurons and profiling their transcriptome by deep sequencing. 

The two data sets were then intersected: genes enriched in DIMM+ cells compared to DIMM- 

cells were integrated with genes adjacent to or overlapping with DIMM binding peaks.  

 The resulting data set of 116 genes likely increased the quality of the data set by 

decreasing ambiguities behind intergenic binding and its assignment to peaks (Wyrick and 

Young 2002). Finally, many of the genes from the intersected list were tested in a functional 
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behavioral essay for DIMM-dependent sleep phenotypes, presented in Chapter 4. Due to the 

multidisciplinary and diverse nature of analysis, the integrated DIMM transcription network likely 

represents one of the first such networks revealed for a “master regulator” gene. This work is 

presented in Chapter 3.  
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ABSTRACT 

In Drosophila the bHLH protein DIMM coordinates the molecular and cellular properties 

of all major neuroendocrine cells, irrespective of the secretory peptides they produce. When 

expressed by non-neuroendocrine neurons, DIMM confers the major properties of the 

Regulated Secretory Pathway and converts such cells away from fast neurotransmission and 

towards a neuroendocrine state. We first identified 134 transcripts upregulated by DIMM in 

embryos, then evaluated them systematically using diverse assays (including embryo in situ 

hybridization, in vivo ChIP, and cell-based transactivation assays). We conclude that of 11 

strong candidates, six are strongly and directly controlled by DIMM in vivo. The six targets 

include several large dense-core vesicle (LDCV) proteins, but also proteins in non-LDCV 

compartments such as the RNA-associated protein MAELSTROM. In addition, a functional in 

vivo assay, combining transgenic RNAi with MS-based peptidomics, revealed that three DIMM 

targets are especially critical for its action: These include two well-established LDCV proteins, 

the amidation enzyme PHM and the ascorbate-regenerating electron transporter Cytochrome-

b561-1. The third key DIMM target, CAT-4 (CG13248), has not previously been associated with 

peptide neurosecretion – it encodes a putative cationic amino acid transporter, closely related to 

the SLIMFAST Arginine transporter. Finally, we compared transcripts upregulated by DIMM with 

those normally enriched in DIMM neurons of the adult brain and found an intersection of 18 

DIMM-regulated genes, which included all six direct DIMM targets. The results provide a 

rigorous molecular framework with which to describe the fundamental regulatory organization of 

diverse neuroendocrine cells.  

INTRODUCTION 

 Neuroendocrine (NE) cells embody highly dedicated secretory cell states. While different 

NE cells express unique arrays of neuropeptide/ neurohormone-encoding genes, all peptidergic 
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NE cells nevertheless share many critical cellular functions. These functions reflect a common 

need for enzymes that conduct the post-translational processing of numerous neuropeptide 

precursors, and a need for the structural and regulatory components that execute large dense-

core vesicle (LDCV) biogenesis, packaging, maturation and trafficking [1-2]. They also exhibit a 

choreographed capacity to modify their cell properties in response to changing physiological 

needs [3]. Many proteins are normally enriched in neuroendocrine tissues, and these may be 

coordinately regulated under different physiological states [4-5]. Hence, NE programs of cell 

differentiation must reflect the operations of complex regulatory circuits, the details of which are 

only beginning to emerge. Examining the intracellular regulatory pathways that organize and 

modulate these specialized properties is an important question for cell biology, and specifically 

is also critical to understanding NE cell physiology. 

Important clues to understanding peptidergic cell biology may come from parallel studies 

of other neuronal secretory systems. Developmental programs of neurotransmitter expression 

are governed by dedicated transcriptional organizers. For example, serotonergic neuron 

differentiation (but not fate specification or survival) is substantially controlled by an ETS domain 

transcription factor called PET-1 [6]. Likewise, dopaminergic (DA) neuron maturation is 

promoted by the ETS transcription factor, AST-1, although it is not necessary for DA neuron 

generation or survival [7]. To what extent therefore, do peptidergic secretory cells rely on similar 

transcriptional regulatory controls?  

In the Drosophila model system, the transcription factor DIMM operates in peptidergic 

NE cells in many ways similar to PET-1 and AST-1 in aminergic cells. DIMM is specifically 

expressed in peptidergic NE cells [8-12] – termed LEAP cells (Large, Episodically- Releasing, 

Amidating Peptide producing [13]. Notably, DIMM acts like a master cell regulator for 

professional secretory cell properties. It confers two cardinal features of the Regulated 

Secretory Pathway (RSP) [14] onto neurons that otherwise do not display such properties [15]. 
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The first property is generation and accumulation of large dense core vesicles (LDCV), which 

can house neuropeptides if these are available. Second it activates the complete post-

translational processing machinery, which is sufficient to produce biologically active peptides 

from neuropeptide precursors. These cell biological observations raise important questions as to 

how DIMM, a single transcription factor, can efficiently organize a complete and functional sub-

cellular domain like the RSP. A large part of the answer must lie in the nature of the target 

genes that DIMM activates, and this has motivated our current efforts. 

We reasoned that direct targets provide the most compelling basis to describe DIMM 

action mechanisms. Here we describe a genome-wide screen to define candidate targets for 

DIMM regulation and found 11 genes rapidly up-regulated following DIMM over-expression in 

the embryo. We then extended the analysis with several independent measures and concluded 

that at least six of the 11 genes are authentic direct DIMM targets. Further, we show that three 

of these six are essential to the promotion of neuroendocrine cell properties by DIMM. The novel 

targets and the molecular details of DIMM transcriptional regulation provide a molecular 

foundation to help define the development and physiology of NE cells. 

RESULTS 

Identification of candidate genes as putative direct DIMM targets. To amass 

candidate DIMM targets in addition to Phm [12], we used genome-wide microarray profiling by 

over-expressing DIMM throughout the embryonic nervous system. We compared profiles from 

experimental (elav>dimm) and control (elav-GAL4) embryos at 22-26 hr and 28-32 hr after egg 

laying (AEL). The design was intended to identify transcripts consistently up-regulated shortly 

after the induction of DIMM, reasoning that the targets most likely to be directly affected by 

DIMM would be the earliest changed. We focused on genes that were up-regulated at least 1.5 

fold following DIMM over-expression, at both time points: this process identified 134 candidate 

DIMM targets (Table S3). Many genes were also down-regulated (Table S4), but we did not 
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study these further. 

We used quantitative real time PCR to verify the authenticity of genes affected in the 

embryo by DIMM-over-expression: by this method, 22 genes were confirmed to be up-regulated 

at least 1.5-fold by DIMM overexpression and of these, 18 genes up-regulated at least 2-fold 

(Table S5). Many of the 134 candidates were not tested based on low expression levels, or 

were tested but not detected by qPCR at this stage, or had primer sets that failed quality control 

tests. Finally, we focused on the 18 most highly-elevated transcripts and reasoned that if these 

18 genes were true DIMM targets, they would be expressed in the central nervous system 

(CNS), and their RNA levels would decline in a dimm loss-of-function mutant. Using 

conventional PCR, we found that transcripts of all 18 genes were in fact expressed in CNS 

(Table S5). In addition, in 1st instar larvae of severe dimm hypomorphs (Rev4/Rev8: [8]), 

transcript levels for 11 of the 18 genes were significantly decreased. We therefore focused on 

these 11 genes: their identities, and GO terms, are listed in Table S6.  

Consistent with previous findings, Phm is included in the 11-gene list, providing critical 

internal validation to the profiling method just described. In addition, CG1275 is notable because 

it encodes a cytochrome (Cyt) trans-membrane electron transporter most related to the b561-1 

protein [16]. The Cyt-b561-1 is a specific to dense-core secretory vesicles that contain 

catecholamines or amidated peptides, as are found in chromaffin cells and elsewhere. Cyt-b561-1 

regenerates ascorbate which is an essential co-factor to support the biosynthetic functions of 

peptidylglycine-a-hydroxylating monooxygenase (PHM) [17-18] from within the vesicles. The 

remaining nine candidates were not as readily associated with participation in the peptidergic 

secretory pathway; however, we have also evaluated them experimentally and discuss that work 

below.  

Evaluating the 11 candidate DIMM targets. We performed three independent 

experiments to evaluate the degree to which the 11 candidate targets are strongly regulated by 
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DIMM, and devised a functional screen to determine the potential contributions of the 

candidates to DIMM action mechanisms. Figure 1 presents an overview of the work plan. As 

summarized in Table 1 and argued in the Discussion, these experiments suggest the 11 targets 

are divisible into a “strongly-regulated” set of six genes (direct regulation), two additional ones 

that may be directly-targeted, and another set of three likely indirect targets.  

Experiment I. Embryonic RNA in situ hybridization. We first analyzed transcript distributions 

for each of the 11 candidates in embryos of diverse stages, and of two different genotypes 

(control and elav>dimm – see Methods for precise genotypes). Representative specimens are 

shown in Figure 2; control specimens are on the left and dimm over-expression specimens are 

on the right of each column. By Stage 16-17 in control embryos, we observed a clear cell-

specific pattern of dimm transcripts in the CNS ([8]; Figure 2A). Up-regulation of dimm by 

elavGAL4 produced the expected pan-neuronal activation of dimm transcripts (Figure 2A’). 

Transcripts for the only previously known direct DIMM target, Phm, display a moderate level of 

expression in control embryonic tissues (Figure 2B) and clear up-regulation with DIMM over-

expression (Figure 2B’), although the up-regulation was not as pronounced as the one shown by 

dimm transcripts.  

Seven other candidates (CG1275, CG13248, mael (CG11254), CG17293, CG7785, 

CG32850 and CG6522) displayed weak-to-moderate expression levels in control embryos 

(Figure 2C-H). In the case of CG6522, transcripts were moderately to broadly expressed in 

normal tissues, and were modestly increased with dimm over-expression (data not shown). 

None of these candidate targets displayed a normal expression pattern exactly matching that of 

dimm. CG13248 (Figure 2D) and CG32850 (Figure 2H) were broadly expressed with very 

prominent accumulation in paired mid-line cells of the ventral nerve cord. In the cases of Phm 

and CG13248, those patterns were present early (~Stage 13) but resolved to stronger staining 

in lateral CNS regions later in embryogenesis that resembled that of dimm (Figure S1). mael 
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(CG112545) transcripts were not clearly detected in normal CNS (Figure 2E) although we 

clearly observed mael in normal germ cells (cf. [19]). CG17293 was weakly expressed 

throughout the CNS (Figure 2F), and CG7785 moderately expressed (Figure 2G).  

DIMM over-expression resulted in heightened target RNA accumulation for seven of the 11 

candidate targets. The dimm-stimulated transcript patterns varied, but did show some 

similarities: most prominently, many patterns included heavy accumulation in the paired midline 

cells (Figures 2B’, C’, D’, E’, G’ and H’). Such mid-line cells do not normally express high levels 

of dimm (Figure 2A). Transcripts for the three other candidate targets (CG14621, CG31346, and 

pastrel (CG8588) were not detectable in control CNS (although some were evident in non-

neuronal tissues). Likewise, we could not detect them following dimm over-expression (data not 

shown).  

In summary, seven of the 11 candidate genes are regulated by DIMM according to 

embryonic stage in situ hybridization experiments – Phm, Cyt-b561-1, CG13248, mael, CG17293, 

CG7785, and CG32850.  

Experiment II. In vitro trans-activation assay: Our second test for strength of regulation 

measured DIMM’s ability to trans-activate regulatory fragments of the candidate gene targets 

using Luciferase levels as a readout. We generated test constructs containing the luciferase 

reporter downstream of a mini-SV promoter and the putative DIMM-binding locus of the gene. 

Putative DIMM binding sites were selected by the presence and locations of specific E-box 

sequences (CATATG or CAGCTG) based on our previous analysis [12]: therefore, we focused 

especially on E-boxes within the first intron. Most candidate genes contained either CATATG or 

CAGCTG E-box sequences throughout the gene locus (Figure S2). In addition, we also 

combined the data from ChIP analysis (see below). Although our earlier work on DIMM 

regulation of Phm utilized mammalian hEK-293 cells [12], we wished to approximate a more 

homologous cellular context, and so tested a Drosophila neuronal cell line, BG3-c2 [20]. First, 
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we confirmed that the positive control (Phm-sv-Luc) displayed the expected responsiveness 

(~10 fold induction) when dimm is co-transfected, but not when a mutant dimm isoform was co-

transfected, all such results consistent with our previous observations [12]. Next, we measured 

dimm-responsiveness for each of the candidate genes. We found that in addition to Phm, five 

candidate DIMM targets (CG1275, CG13248, mael, CG17293, and CG6522) all displayed 

significant transactivation responses to DIMM (Figure 3).  

 To evaluate DIMM transactivation in more detail, we constructed a series of sequence 

variants of the CG13248 responsive fragment – the ~1 kB fragment that comprises the 1st 

intron and which contain three E boxes. We mutated three of the six consensus bases of the E 

boxes: we tested each mutated E box in single, double and triple format: the positions of the E 

boxes and the results obtained are shown in Figure 3B. Once again, the wild type CG13248 

sequence produced an activity level comparable to that of Phm. Of the three single E box 

mutations, only E3 proved necessary for full DIMM transactivation. Furthermore, all mutant 

combinations containing the E3 mutation were not at all transactivated. Finally, the E1/E2 

double mutant showed a diminished level of transactivation. In summary, the evidence points to 

the involvement of multiple E boxes in the transactivation of CG13248, with the E3 sequence 

playing the largest role. 

Experiment III. In vivo Chromatin immunopreciptation (ChIP). To determine the potential 

occupancy by DIMM at candidate target gene binding sites in vivo, we used an epitope-tagged 

dimm transgene and ChIP methods. The transgene - UAS-dimm-MYC (II) - was selectively 

expressed in dimm-containing neurons by using the c929-GAL4 driver. Furthermore, we 

restricted GAL4: UAS activities to adult stages using temperature-sensitive GAL80 (tub-gal80ts) 

to avoid the lethality that results from dimm over-expression at earlier stages (T Hadzic, 

unpublished). After raising the flies at the restrictive temperature (18oC), 1-3 day old adults were 

transferred to 29oC for a three-day period to permit expression of DIMM-MYC protein. We 
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confirmed DIMM-MYC expression under these conditions by Western blot analysis of fly head 

extracts, and an absence of such without transfer to 29oC (data not shown).  

In a previous report, we demonstrated that DIMM activates Phm directly via three 

palindromic E-boxes located in the Phm 1st intron (having sequences – CATATG and CAGCTG) 

[12]. Therefore, as a positive control, we asked whether DIMM is resident at this Phm intron and 

took a comparative approach by testing each of two sites in the Phm gene locus for DIMM 

occupancy – the E-box-containing test site within the 1st intron, and a control site located about 

6 kb upstream (See Figure S2; control sites listed in Table S2). Across two biological replicates, 

DIMM-MYC CHIP’ed samples for the Phm gene showed a strong (~32 fold) average enrichment 

over samples from the negative control genotype (c929-GAL4; tub-gal80ts). This difference was 

significantly different (p < 0.05) from the average enrichment found at its negative control site. 

We then asked whether DIMM is resident at the other target genes in vivo and selected test 

sites based on inclusion of potential DIMM-binding E-boxes in the immediate 5’ upstream or 1st 

intronic regions. Two of these candidates displayed a statistically higher level of enrichment 

compared to controls – CG1275 and CG6522. For seven other genes - CG13248, CG11254 

(mael), CG17293, CG7785, CG32850, CG14621 and CG31436 - we observed a trend for DIMM 

enrichment at the E-box containing site (Figure 4; Table 1). However, these seven other 

examples did not achieve statistical significance.  

In summary, ChIP analysis suggests that DIMM protein is normally resident in adult 

head DIMM cells in vivo in the regulatory DNA of at least three (Phm, CG1275, CG6522) and 

likely as many as ten, of the 11 candidate targets. Furthermore, through all three independent 

tests of validation, ten of 11 candidate target genes subsequently scored positive in at least one 

independent assay for direct DIMM regulation (Summarized in Table 1). Five genes were 

responsive in all three (Phm, CG1275, CG13248, mael, and CG17239) and two others, CG7785 

and CG6522, were responsive in two of the assays. CG32850, CG14621, CG31436 all showed 
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DIMM residency in vivo by ChIP, but of these three candidates, only CG32850 also displayed 

mRNA induction by DIMM in embryos. Only the eleventh candidate, pst, failed to show 

significant responsiveness in any test. 

Experiment IV. Adult in vivo RNAi and LC-MS. To determine if DIMM target genes 

contribute to its action mechanisms, we devised a functional screen to extend our analyses of 

gene regulation. We previously demonstrated that ectopic expression of DIMM in photoreceptor 

neurons confers peptidergic neuroendocrine properties onto them – photoreceptor neurons do 

not normally display such properties of the Regulated Secretory Pathway. When such cells are 

also forced to express a heterologous neuropeptide precursor (ppMII), the MII peptide is fully 

processed [15]. We therefore used the DIMM-dependent accumulation of processed MII peptide 

as an end-point assay to measure potential contributions of single candidate targets to the 

DIMM-generated secretory pathway. We used transgenic RNAi methods to knock down 

individual DIMM targets exclusively within photoreceptor cells and employed quantitative mass 

spectrometry to analyze the processing of MII. In the control condition (GMR> UAS-dimm, UAS-

ppMII), fully-processed MII peptide is detected at 1710.69 m/z ratio [15]. To normalize the 

results of MII peptide accumulation across conditions, we also measured an endogenous 

Drosophila brain peptide, not found in photoreceptors, as an internal standard. For this, we 

chose the Drm-MT2 peptide derived from the HUGIN neuropeptide precursor (SVPFKPRLamid

e, m/z 942.59: [21], because hugin-expressing neurons do not express the RNAi transgene in 

this experimental design. We predicted that levels of MT2 peptide should not change as a 

function of condition. An additional negative control in this design tested the effect of an RNAi 

transgene for a neuropeptide precursor never found in photoreceptors – ecdysis triggering 

hormone (eth); eth is normally expressed in the endocrine Inka glands, which are cells that 

normally express DIMM [8]. 

We used both labeling and label-free quantitative mass spectrometry approaches to 
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analyze MII and MT2 peptide levels in Drosophila head extracts using CapLC-MALDI-TOF/TOF 

MS. The MS-based labeling method is well validated [22-23] but involves multiple, sample-

handling steps and is less effective for samples with low concentrations and small volumes. 

While we were able to quantify MT2 with the labeling approach (Figure S3), MII was not 

observed after labeling. We therefore turned to label-free quantitation because isolated peak 

heights can be directly compared across conditions for the following reasons: the instrument 

parameters are kept constant, the chemical environment of the peptide of interest is similar, and 

the total ion acquisition is equivalent for each measurement. 

Using the label-free quantitation, MT2 levels showed equal intensities in the control 

(GMR>dimm;>ppMII) and experimental (GMR>dimm; >ppMII; Phm-RNAi) samples (Figure 5A), 

consistent with labeling results (Figure S3) and supporting its use as an internal standard. MII 

levels in the experimental sample (GMR>dimm, >ppMII; > Phm-RNAi) were significantly 

decreased from those in the control sample (GMR>dimm; >ppMII) (Figure 5B). After 

normalization to MT2, relative MII levels were quantified and we then determined if its 

production was significantly affected by the RNAi mediated knockdown of ten of the 11 

candidate targets. As shown in Figure 5C, MII levels were significantly lower following RNA 

interference knockdown of Phm, CG1275 and CG13248 (Figure 5C). CG17293 RNAi displayed 

less fully-processed peptide and CG11254 (mael) RNAi showed a trend of up-regulation, but 

their final values did not exceed statistical significance. MII levels in the other six RNAi tests 

were very similar to control values.  

In summary, three of ten candidate DIMM targets (Phm, CG1275 and CG13248) make 

critical contributions to DIMM mechanisms, as tested in vivo under conditions in which the 

peptide secretory pathway is completely organized by DIMM. Two candidates (Phm and 

CG1275) are clearly involved in processing, while CG13248 may as well be involved in overall 

organization of the secretory pathway (see Discussion). The functional assay we employed was 
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sensitive to disturbances of processing, but that is not the only interpretation for a reduction in 

the level of the secretory peptide. A reduced level could also result from an inability to 

accumulate, properly traffic or retain secretory peptides. We did not detect a build up of 

intermediates with CG13248 RNAi and this likely indicates a defect at a stage different from 

processing. 

The CG13248 protein is enriched in DIMM-neurons and dependent on dimm. 

CG13248 encodes a putative cationic amino acid transporter, orthologous to mammalian 

cationic amino acid transporter 4 (CAT-4; SLC7a4), and closely related to Drosophila slimfast 

(CAT-1). CG13248 protein has not previously been associated with NE cells and so to confirm 

this prediction, we analyzed its normal expression (anti-CAT-4). We detected immunoreactivity 

(IR) for CAT-4 in both the adult brain in the 3rd instar larval brain and evaluated CAT-4-like IR in 

the context of DIMM expression.  

First, we performed double immunostaining with dimm neurons labeled by anti-GFP (in 

c929-GAL4>GFP brains). In both developmental stages, CAT-4-like IR is heavily enriched in 

DIMM-positive neurons; Figure 6A shows an example of an adult brain. We also noted 

minorities of DIMM-only and CAT-4-only stained neurons. CAT-4-like IR was found mainly in cell 

bodies and terminals (not shown), and very little within axonal tracts. CAT-4-like IR was specific 

in that it was greatly reduced by the action of a CG13248 RNAi transgenic construct: when 

driven by 386y-GAL4 CAT-4-like IR was lost, while DIMM-like-IR was unaffected (Figure 6C and 

C’). 386y-GAL4 is an insertion in the prohomone convertase gene dPC2 and its drives 

expression in most or all of dimm neurons, as well as in other cells [24].  

We next asked whether CAT-4 expression is dependent on DIMM in loss-of-function and 

gain-of-function dimm states. We generated UAS-dimm RNAi flies, confirmed the ability of these 

transgenes to produce a large-scale reduction of DIMM-like IR (Figure 6D and D’) and observed 

a concomitant reduction of CAT-4-like IR (Figure 6D-E). This result indicates that high level 
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CAT-4 expression in dimm-positive neurons depends on DIMM. To test the effects of DIMM 

over-expression, we turned to the four-cell Tv cluster of the larval CNS. CAT-4-like IR is 

normally found in the two of the four Tv cluster neurons – the peptidergic Tv and Tvb, but not in 

the Tva or Tvc neurons (Figure 6E, cf., [25]). We used an ap-GAL4 driver to misexpress DIMM 

in all four Tv cells and observed ectopic CAT-4-like expression within the Tva and Tvc cells as 

well (Figure 6F). These results confirm that in vivo CAT-4 is specifically enriched in DIMM-

positive cells and that it is regulated by dimm. The distribution of CAT-4-like immunoreactivity 

within DIMM neurons was studied in various identified peptidergic neurons of the adult brain 

(Figure S4), including in diverse neurons of the Pars Intercerebralis, HUG-positive neurons of 

the sub-esophageal neuromeres, and PDF-positive large LNv. In these neurons, CAT-4-like IR 

was strongly expressed by many DIMM neurons and weakly by others. It appeared principally 

cytoplasmic, and displayed heterogeneous accumulations. 

A computational analysis afforded by prior transcript profiling of mature DIMM 

neurons. A recent microarray analysis of identified neurons from the adult Drosophila brain 

provided a fortuitous means to independently assess the authenticity of the original 134-gene 

list [26]. Importantly it was conducted on wild type brains containing normal DIMM levels, and so 

it serves as a useful counterpoint to our study of DIMM over-expression. Kula-Eversole et al. 

[26] profiled three types of neurons – the large lateral neuron ventral (l-LNv) and the small 

lateral neuron ventral (s-LNv). These two identified neuron groups are similar in that both are 

circadian pacemakers and both are neuropeptide PDF-expressing cells [27]. However they are 

different in that only the large LNv are DIMM-positive, while the small-LNv are not ([24]; Figure 7, 

and see [13]). Kula-Eversole et al. [26] compared l-LNv and s-LNv with a generic (ELAV-

positive) brain neuron type for ~19,000 transcripts. Using that primary data set, we identified 

579 genes enriched in large over small LNv. By comparing our 134-gene list derived from DIMM 

over-expression in embryonic stages to those ~579 transcripts normally enriched in DIMM-
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positive cells from adult stages, we find an intersection of 18 putative DIMM direct target genes 

specifically enriched in adult l-LNv versus s-LNv (Figure 7; Table S3). Significantly, the six 

DIMM targets we identified by experimental analysis are all included in this intersection – Phm, 

CAT-4, mael, CG17293, CG7785, and Cyt-b561-1. 

DISCUSSION 

The experiments reported here address the mechanisms underlying DIMM’s regulatory 

functions within peptidergic neuroendocrine cells in Drosophila. The results from a genome-wide 

screening revealed a diverse array of potential DIMM targets and illustrated that the scope of 

DIMM actions is likely broad. The actions of its direct targets appear to extend from the nucleus 

(CG17293) to regulation of mRNAs (CG11254) to the ER and Golgi (CG13248) to peptide-

containing LDCVs (Phm and CG1254). We found no neuropeptide–encoding genes on any of 

our lists, even the larger 134-gene list of transcripts exhibiting up-regulation with DIMM over-

expression. We showed previously that DIMM is very inefficient by itself at driving ectopic 

neuropeptide gene expression [8-10]. Together these findings are consistent with our previous 

speculation that in Drosophila, specific neuropeptide expression is controlled by differing sets of 

transcription factors working within complex combinatorial codes [9, 13]. In contrast, DIMM 

provides parallel instructions for the cell biological machinery within which neuropeptides can be 

made, stored and trafficked [9, 13, 15].  

Because we used an over-expression screen to generate a primary list of candidate 

targets, it was important to authenticate those results by reference to genes enriched in “normal” 

DIMM cells (i.e., cells in which DIMM levels were not artificially manipulated). We were fortunate 

to have access such information from the recently published Gene array study of Kula-Eversole 

et al. [26], from which we found that 13% of the 134 gene candidates were in fact highly-

enriched in DIMM-positive neurons (versus DIMM-negative peptidergic neurons). While several 

candidates performed well in many of these tests and exhibit properties of direct DIMM targets, 
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most did not score positive in all tests employed (only Phm, CG1275, CG13248, CG11254 and 

CG17293 did). The results emphasize the importance of employing multiple tests to fully 

evaluate and properly interpret lists of regulated transcripts. Of the 11 genes passing the first 

test, we then used diverse experimental criteria to divide them into sets of six direct targets, two 

likely-direct targets, and three indirect targets (Table 1). We emphasize that our categorization 

of direct targets is based on highly stringent criteria and here discuss the significance of the 

findings for neuroendocrine cell biology.  

Phm, Cyt-b561-1 and CG13248 are key and direct DIMM mediators. The inclusion of 

Phm and Cyt-b561-1 genes in the original list of 11 candidates increased our confidence in the 

list’s authenticity because both play well-established roles in LDCVs [18]. Furthermore, we had 

previously demonstrated that Phm is a true transcriptional DIMM target both in heterologous 

cells and in vivo [12]. Likewise the subsequent strong performance of Phm and Cyt-b561-1 in all 

four downstream assays provided further support for the validity of the experimental design to 

identify authentic DIMM targets.  

CG13248 is a direct DIMM target and encodes a putative arginine transporter, 

CAT-4. In addition to Phm and Cyt-b561-1, these studies show that a third bona fide DIMM target 

gene, CG13248 is critical to normal regulation of neuroendocrine cell properties. Notably, in 

results described by Kula-Eversole et al. [26], Phm, Cyt-b561-1 and CG13248 all ranked near the 

top for absolute transcript abundance in DIMM-positive neurons. The identification of CG13248 

as an integral component of neuroendocrine physiology is a significant new finding, but its 

specific contribution is a mystery because its precise molecular functions are not known. It is the 

clear sequence orthologue to mammalian cationic amino acid transporter 4 (CAT-4) and is 

therefore a candidate member of the system y+ (Na+ and pH-independent) cationic amino acid-

preferring transport activities [28].  
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CAT proteins form a branch of the solute carrier family 7 (SLC7) [29]. Murine CAT-1, -2 

and -3 all display arginine transporter activity when heterologously expressed, but to date, CAT-

4 does not [30]. Notably, the Drosophila orthologue of the CAT-1 protein is the transporter 

SLIMFAST, which mediates arginine transport in fat body, couples to the mTOR pathway and 

helps that tissue function as a nutrient sensor that restricts global growth through a humoral 

mechanism [31]. In murine pancreatic acinar cells (which are regulated by the DIMM orthologue 

MIST1, [32], CAT-4 is a membrane-associated protein of secretory granules [33]. Future pursuit 

of the exact mechanisms and pathways in which CAT-4 operates in DIMM-expressing neurons 

will help illuminate fundamental neuroendocrine cell physiology.   

Additional direct DIMM targets. Regarding the other direct DIMM targets, we make 

special mention of a few for potential novel insights into mechanisms of neuroendocrine cell 

regulation. CG11254 (mael): By transcript profiling, Kula-Eversole et al. [26] report that mael is 

highly enriched in the DIMM-positive l-LNv’s. It was originally characterized in nuclei and 

perinuclear particles of germ cells. MAEL helps localize components of the microRNA pathway 

and contributes to cellular polarization [19]. CG17293 encodes a protein highly related to 

mammalian WDR82, and CG7785 encodes a protein highly related to CCLD6 – both of which 

suggest a connection of DIMM mechanisms to chromatin-modifying properties [34].  

There were two genes we concluded likely to be directly targeted (Table 1: “Maybe 

Direct”) - CG6522 encodes a member of the Testin/ Prickle family of proteins. Notably, the 

Prickle-like protein RILP interacts with REST and acts as a nuclear translocation factor [35]. The 

significance of potential Prickle-REST interactions is that REST displays a suppressive effect on 

neurosecretory properties of PC12 cells [e.g., 36]. In addition, CG32850 encodes a protein 

orthologous to Ring Finger protein 11, which is a membrane-associated E3 ligase that is 

expressed widely in brain [37]. Finally, in the larger list of 18 genes representing the intersection 

of the embryonic and adult DIMM-regulated transcripts (Figure 1), there was sizable 
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representation of genes encoding proteins previously implicated in regulated neuropeptide 

secretion (Rph) and probable elements of the secretory pathway (PPADC1, RCN2 and Rabx4). 

DIMM directs a core program for neuroendocrine cells. These results define 

principal elements of what we anticipate will be a core program for neuroendocrine cell 

organization. Among mammalian bHLH proteins, DIMM is most similar to MIST1 [32]. Mills and 

colleagues have identified several candidate MIST1 targets, including RAB3D [38]. We note that 

five of the six DIMM targets that responded to DIMM in the trans-activation assay contained E 

boxes in their first exon-intron regions. The importance of 1st intron E boxes was already 

established for the case of Phm [12] and is also true for MIST1 target genes so far identified [38]. 

Furthermore, studies of Phm and CG13248 suggest they can define a consensus DIMM binding 

profile: they both contain three boxes within the first intron, two of which have the sequence 

CATATG, all of which contribute synergistically, and one of which appears to have the strongest 

contribution to DIMM transactivation. We predict many other DIMM targets will display a similar 

E box profile. Furthermore, how individual target gene products contribute to the DIMM program, 

and how many more genes are involved, are now pertinent questions that will require additional 

studies. We anticipate that further analysis of this core DIMM program will help explain the 

regulatory organization of neuroendocrine cells and their evolution in different phyla. Because 

DIMM protein persists for the life of neuroendocrine cells in Drosophila, this work may also 

inform studies of neuroendocrine cell physiology and plasticity.  

Developmental Generation of Peptidergic Phenotypes. In the case of neurons that 

utilize fast conventional neurotransmitters, transcriptional regulatory systems typically exert 

direct control over genes that encode biosynthetic enzymes, as well as ones for key transporter 

proteins that retrieve and recycle transmitters back into the lumen of synaptic vesicles [39]. For 

example, PET-1 supports serotonergic differentiation and directly targets genes that encode the 

critical biosynthetic enzyme TBH-1 and the serotonin transporter SERT1 [6]. It is striking 
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therefore that our limited but highly validated list of DIMM targets similarly includes genes 

essential for neuropeptide biosynthesis (Phm and Cyt-b561-1) as well as a transporter that is 

specifically expressed by neuroendocrine cells (CAT-4). We propose that there may exist an 

unexpected but essential parallelism in the developmental regulation of secretory systems for 

small transmitters and for small amidated peptides. This hypothesis can help design 

experiments to further illuminate the mechanisms that underlie the developmental generation of 

peptidergic phenotypes. 

EXPERIMENTAL PROCEDURES 

 Fly stocks. Details of the fly lines used are provided in Supplemental 

Information. 

 Microarray analysis and quantitative real-time PCR. We combined UAS-

dimm-myc (II) with elav-GAL4; for microarray analysis, these were compared to elav-GAL4. 

Crosses were maintained 18oC to minimize lethality. Details of the RNA preparation [40] and 

qPCR analysis are provided in Supplemental Information. All primer sets are listed in Table S1. 

All microarray data are publically available (GEO accession # GSE31113). 

 Whole mount in situ hybridizations. We followed general methods previously 

described [41]; details are provided in Supplemental Information.  

Transactivation. Assays followed the general methods previously described [12]; 

details are provided in Supplemental Information.  

Immunocytochemistry and Imaging. We generated antibodies and used 

immunostaining methods as previously described [8]; details are provided in Supplemental 

Information.  

Chromatin Immunoprecipitation (ChIP). ChIP was performed as described by Menet 

et al. [42]. w1118; c929-GAL4;tub-GAL80ts females were crossed to y1w1; UAS-dimm-myc (II) 

males at 18oC. Further details are available in Supplemental Information. 
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Real-time quantitative PCR (qPCR) following ChIP. The PCR mixture contained 

Platinum Taq polymerase (Invitrogen) and optimized concentrations of Sybr-Green (Invitrogen). 

The sequences of primers used are listed in Table S2; further details are available in 

Supplemental Information. 

Quantitative mass spectrometry. Fly heads of the control (GMR>UAS-ppMII; UAS-

dimm) and experimental (GMR>UAS-ppMII; UAS-dimm; UAS-RNAi) transgenic lines were 

collected in frozen state. MS-based quantitation was based on prior quantitative measurement 

approaches [22-23, 43]. Further technical details are provided in Supplemental Information. 
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Figure 1. A schematic overview of the workplan for this study. A genome wide search for 

dimm targets performed by Genechip, then evaluated by three downstream analyses of DIMM 

regulation, and further evaluated by a functional in vivo assay. 
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Figure 2. RNA in situ hybridization in control embryos and embryos that over-express 

dimm. Left - control (w1118); Right - elav> dimm; Probes: A, B) dimm; C,D) Phm; E,F) CG13248; 

G,H) CG11254 (mael); I,J) CG17293; K,L) CG6522. See also Figure S1. 
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Figure 3. Trans-activation by DIMM of genomic fragments of candidate genes in 

Drosophila BG3-c2 neuronal cell lines. Fold ratios represent Luciferase levels with dimm co-

transfection divided by those without. Histograms represents means and SEMs of at least three 

independent replicate assays. (A). Results of testing ten DIMM targets. (B) Results from 

analysis of E box sequence requirements within the CG13248 regulatory region. E1, E2 and E3 

indicate three separate E boxes, which were mutated singly, doubly or in triple-format. In (A), * 

p<0.05; ** p< 0.01 vs empty vector, by student’s T-test. In (B), * p< 0.01 vs CG13248 WT 
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sequence, by student’s T-test. See also Figure S3 which illustrates E box positions in and 

around these candidate targets. 
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Figure 4. ChIP analysis in vivo of putative DIMM binding at E-boxes within dimm-

dependent candidates genes. Darker histograms show the level of enrichment of the putative 

DIMM binding sites defined by the value in experimental versus control genotypes (see 

Methods). Lighter histograms show the level of enrichment of arbitrarily chosen sites ~6 kB 

upstream of the putative DIMM-binding sites, in the same experimental versus control 

genotypes. Histograms represents average and SEMs at least two independent assays (two 

biological replicates). 
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Figure 5. MS-based label-free quantitative analysis of alterations in MII peptide 

accumulation in photoreceptors following RNA interference of candidate DIMM targets. 

(A) Mass spectra of MII in the control (GMR>UAS-ppMII; UAS-dimm, red) and 

experimental (GMR>UAS-ppMII; UAS-dimm; UAS-PHM-RNAi, blue) samples. The intensity 

ratio of MII in experimental versus control samples in these spectra is 0.54. B) Mass 

spectra of MT2 in the control and experimental samples. The intensity ratio of MT2 in 

experimental to control in these spectra is 1.02. C) Exogenous MII level in the experimental 

samples with RNAi compared to that in the control samples. Histograms represents means 

and SEMs, * p<0.05; vs control (GMR>UAS-dimm), by student’s T-test. N, biological 

replicates. See also Figure S3 for analysis of MS-based quantitation of the endogenous 

peptide Drm-MT2. 
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Figure 6. Enrichment of CG13248 (CAT-4) in DIMM neurons and its regulation by dimm in 

vivo. 
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A) DIMM-like and CAT-4-like IR are extensively co-localized in the adult brain. c929>UAS-GFP 

(anti-GFP, green), anti-CAT-4 (red); bottom: merged image. B-D) CAT-4-like IR following RNAi 

knock-down of dimm. B, B’) parental control (386Y-GAL4); C, C’) 386Y>UAS-DCR2/UAS-CAT-

4-RNAi; D, D’) 386Y>DCR2/ dimm-RNAi; (B-D) anti-DIMM (green), (B’-D’) anti-CAT-4 (red). (E-

F) CAT-4-like IR is normally present in the two DIMM-positive neurons of the four-cell Tv-cluster; 

following DIMM mis-expression throughout the cluster, CAT-4 appears in all four cells. E) ap> 

GFP, anti-GFP (green), anti-CAT-4 (red), F) ap> dimm, anti-MYC (=DIMM) (green); anti-CAT-4 

(red). See also Figure S4 for high power images of cDAT-4-like immunoreactivity in different 

adult brain DIMM neurons.  
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Figure 7. Comparison of transcripts upregulated by DIMM in embryos with transcripts 

enriched in DIMM-positive peptidergic neurons of the adult brain. Top: A Venn diagram 

illustrating the identification of 18 genes (13% of 134) of those up-regulated by DIMM over-

expression among the 537 normally enriched in DIMM-positive large LNv [29]. Bottom lists the 

18-gene intersection, asterisks mark those genes that were shown to be direct DIMM targets by 

current experiments. 
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Table 1. Summary of Results to Determine the Validity of Eleven Candidate Direct DIMM 

Genes 
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SUPPLEMENTARY INFORMATION  

 

 

 

 

 

Figure S1. Similar spatial distribution of RNAs for dimm, Phm and CG13248 in late stage 

control embryos. These data support the spatial analysis of DIMM target RNAs illustrated 

in Figure 2. 
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Figure S2. The distribution of CATATG and CAGCTG E-boxes within and around the 

candidate gene loci. 

The schematic cartoon shows the putative DIMM binding sites within eleven candidate genes. 

Each box represents an E-box, CANNTG; Two nucleotides on the top of box indicate the 

sequence of NN. This information supports the study of DIMM trans-activation illustrated in 

Figure 3. 
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Figure S3. MS-based quantitation results from endogenous peptide Drm-MT2.  

MALDI-TOF/TOF mass spectrum of labeled MT2 with light form of succinic anhydride in the 

control (GMR>UAS-ppMII; UAS-dimm) and with heavy form of succinic anhydride in the 

experimental (GMR>UAS-ppMII; UAS-dimm; UAS-Phm-RNAi) samples. The relative intensity 
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ratio of MII in experimental versus control genotypes is 0.95. This data supports the analysis 

illustrated in Figure 5. 
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Figure S4. DIMM-positive adult brain neurons double stained for c929-GAL4 (green) and dCAT-

4-like immunoreactivity (red). Note that the latter is primarily cytoplasmic and within individual 

cell bodies, appears heterogeneous (spotty). These images support the data presented in 

Figure 6. 
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Table S1. Information on primers used for analysis of cDNAs identified by genome-wide 

microarray screen of embryos following DIMM-over-expression. Please see attached / uploaded 

Microsoft Excel spreadsheet file. 

 

Table S2. Information on primers used for ChIP analysis. Please see attached / uploaded 

Microsoft Excel spreadsheet file. 

 

Table S3. Probes for 134 genes enriched > 1.5 fold change in DIMM overexpressing samples 

(ED34-E34) & (ED12-E12) over controls. Ordered from most to least enriched (average fold 

change, both developmental time points). The meaning of limma - calculated parameters is 

explained in the spreadsheet. Please see attached / uploaded Microsoft Excel spreadsheet file. 

Excel file also available from: http://www.sciencedirect.com/science/MiamiMultiMediaURL/1-

s2.0-S0960982211008906/1-s2.0-S0960982211008906-

mmc2.xls/272099/html/S0960982211008906/7502adb188d50fc94acf32597de56d44/mmc2.xls 

 

Table S4. Probes for 23 genes down-regulated < 0.5 fold in DIMM over expressing embryos 

(ED34-E34) & (ED12-E12) over controls. Ordered from most to least down-regulated (average 

fold change, both developmental time points). The meaning of limma calculated parameters is 

explained in the spreadsheet. Please see attached / uploaded Microsoft Excel spreadsheet file. 

Excel file also available from: http://www.sciencedirect.com/science/MiamiMultiMediaURL/1-

s2.0-S0960982211008906/1-s2.0-S0960982211008906-

mmc2.xls/272099/html/S0960982211008906/7502adb188d50fc94acf32597de56d44/mmc2.xls 
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Table S5. qRT-PCR analysis of the 135 genes up-regulated by dimm over-expression in the 

embryonic CNS. 53 genes were tested and 18 showed greater than 2-fold levels following DIMM 

over-expression. The 11 genes selected for further study are marked in yellow. NT – not tested; 

ND – not detected. Please see attached / uploaded Microsoft Excel spreadsheet file. 

 

Table S6. The eleven candidate DIMM-regulated genes – identification, mammalian orthologues 

and GO annotations. Please see attached / uploaded Microsoft Excel spreadsheet file. 

 

Table S7. Probes for 535 genes enriched > 1.5 fold change and satisfying a 5% False 

Discovery Rate in large LNvs versus small LNvs. Ordered from most to least enriched (average 

fold change). The meaning of limma-calculated parameters is explained in the spreadsheet. 

Please see attached / uploaded Microsoft Excel spreadsheet file. Excel file also available from: 

http://www.sciencedirect.com/science/MiamiMultiMediaURL/1-s2.0-S0960982211008906/1-

s2.0-S0960982211008906-

mmc2.xls/272099/html/S0960982211008906/7502adb188d50fc94acf32597de56d44/mmc2.xls 

 

Table S8. Probes for 537 genes enriched > 1.5 fold change and satisfying a 5% False 

Discovery Rate in small LNvs versus large LNvs. Ordered from most to least enriched (average 

fold change). The meaning of limma-calculated parameters is explained in the spreadsheet. 

Please see attached / uploaded Microsoft Excel spreadsheet file. Excel file also available from: 

http://www.sciencedirect.com/science/MiamiMultiMediaURL/1-s2.0-S0960982211008906/1-

s2.0-S0960982211008906-

mmc2.xls/272099/html/S0960982211008906/7502adb188d50fc94acf32597de56d44/mmc2.xls 
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SUPPLEMENTARY EXPERIMENTAL PROCEDURES 

Fly stocks. The following fly lines were used: dimm deletion mutant alleles (Rev4 and 

Rev8); UAS-dimm-myc (II or III) [1]; UAS-ppMII [2], UAS-2X EGFP and the pan-neuronal driver, 

elav-GAL4 (III), GMR-GAL4 (II). For quantitative mass spectrometry, we used UAS-RNAi 

transgenic lines obtained from the Vienna RNAi stock center (VDRC) to knockdown target 

genes (See Supplemental Information), combined with UAS-DCR2 (obtained from Stefan Thor, 

Linkoping Univ., Sweden). The following strains were used for quantitative mass spectrometry: 

w, UAS-DCR2;pGMR-GAL4 (II); UAS-ppMII (III) 

w; UAS-dimm-myc (II or III);UAS- dsRNAi lines (II or III). 

The following strains were used for ChIP analysis: 

w1118; c929-GAL4/UAS-dimm-myc (II);;tub-GAL80ts 

w1118; c929-GAL4;tub-GAL80ts (as a negative control strain) 

 Microarrays. We combined UAS-dimm-myc (II) with elav-GAL4; for microarray analysis, 

these were compared to elav-GAL4. Crosses were maintained 18oC to minimize lethality. RNA 

was prepared from embryos collected at 22-26 hr (~ embryo Stage 14) and at 28-32 hr (~ 

embryo Stage 16). A pair of GeneChip® Drosophila Genome 2.0 arrays (Affymetrix Co., Santa 

Clara, CA) were tested with each RNA sample (two experimental and two control, for each of 

two time points). Eight microarrays were used to hybridize cDNAs from experimental 

dimm::myc-expressing and control flies, sampled at two different embryonic stages. Four 

microarrays were hybridized with cDNA from the dimm::myc-expressing embryos of genotype 

w;UAS-dimm-myc (II)/+;elav-GAL4/+; (prefix "ED"). Another four microarrays were hybridized 

with cDNAs from the parental control strain: w;;elav-GAL4 (prefix “E”). Samples ED3 and ED4, 

E3 and E4 were hybridized with cDNA from stage 14 embryos (24-26hr development). Samples 

ED1 and ED2, E1 and E2 were hybridized with cDNA from stage 16 embryos (28-32 hr old 

embryos). A pair of GeneChip® Drosophila Genome 2.0 arrays (Affymetrix Co., Santa Clara, 
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CA) were tested with each RNA sample (two experimental and two control, for each of two time 

points). All microarray data are publically available (GEO accession #GSE31113). 

 Affymetrix CEL files raw probe intensity data was loaded into the statistical computing 

language R v. 2.12.1 for Snow Leopard (32-bit build) with the affy / simpleaffy libraries 

(ReadAffy). Microarrays were quality checked with the affyPLM and affycoretools libraries. 

Probe intensities were then log2 normalized with the gcrma algorithm version 2.22.0 (default 

settings). All eight arrays were gcrma-normalized together as one data set. Gcrma-normalized 

data sets were then processed with the limma package (Linear Models for Microarray Data) v. 

3.6.9 and default limma settings [3]. Contrast matrices were set up to look for probes that were 

differentially expressed in the ED samples compared to E samples for each age: (ED3,ED4)-

(E3,E4) and (ED1,ED2)-(E1,E2).  

 Limma comparison results are displayed in terms of linear scale fold changes when ED 

probes are compared to E probes. The ED34-E34 comparison yielded 360 probes that were at 

least 1.5 fold up-regulated. There were 48 probes that were below 0.5 fold in the ED34-E34 

comparison, indicating down-regulation. The ED12-E12 comparison yielded 342 ED probes that 

were at least 1.5 fold above E probes and 97 ED probes below 0.5 fold of E probes.  

 In order to correct for multiple comparisons, Benjamini-Hochberg False Discovery Rate 

(FDR) corrections implemented in limma were used. There were 880 and 912 differentially 

expressed genes with conventional p-values < 0.05 in the ED34-E34 and ED12-E12 

comparisons, respectively. Of these, 21 / 880 and 44 / 912 satisfied a 5% FDR cutoff. Failure to 

obtain a higher number of significant hits after Benjamini-Hochberg correction at 5% FDR was 

likely related to the relatively small number of replicates (two) in the experiment. Furthermore, 

sampling whole embryos as opposed to only elav-positive cells yielded a low signal to noise 

ratio.  
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 We therefore decided to use the 1.5 fold enrichment cutoff in identifying differentially 

expressed genes. We first sought to identify overlapping probes that were above 1.5 fold 

enriched in both the early and late embryos. To obtain the intersection of these probe sets, 

queries were run in Galaxy, an open platform for genomic research [4-5]. Galaxy queries were 

setup to find which of the 360 ED34-E34 enriched probes overlapped with the 342 ED12-E12 

enriched probes. This intersection yielded a list of 136 probes (135 genes, Supplementary Table 

3). We also identified overlap between the 48 probes below 0.5-fold in ED34-E34 and the 98 

probes in ED12-E12. This intersection included 22 probes that were downregulated in both early 

and late embryos at 0.5-fold level or less (Supplementary Table 4). 

 We compared the list of DIMM overexpression-enriched genes generated in this study 

with the data generated by Kula-Eversole et al. [6] obtained from purified “normal” DIMM 

neurons (adult LNv). In order to directly compare our study with theirs, we reanalyzed the raw 

data from [6], with the same methods used for the embryo data. Additionally, Kula-Eversole et 

al. compared large LNv and small LNv probe data to elav cells sat different circadian time 

points. We wanted to compare large LNv neurons directly to small LNv neurons regardless of 

circadian time. For these reasons, data from Kula-Eversole et al. were reanalyzed as follows: all 

CEL files from the study were obtained from the Gene Expression Omnibus depository under 

the accession number GSE22308. The 24 CELs were gcrma-normalized together followed by 

limma analysis of probes enriched in Large-Small LNv neurons.  

 We analyzed all Large LNv (10 samples) and small LNv (4 samples) files regardless of 

the circadian time when RNAs from purified LNv neurons were harvested. For this analysis, we 

assumed that DIMM is not involved directly in the circadian system and that therefore those 

genes that DIMM activates directly should be enriched in Large LNv neurons across circadian 

time points. Limma was used to identify differentially expressed probes in the Large LNv-small 

LNv comparison at a Benjamini-Hochberg FDR of 5% and a 1.5 fold minimum fold enrichment. 
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535 probes were 1.5 fold enriched in Large LNvs over small LNvs with a 5% FDR 

(Supplementary Table 7). 537 Large LNv probes were below 0.5 fold of small LNv with a 5% 

FDR (Supplementary Table 8).  

 Next, the goal was to identify overlapping probe sets that are enriched upon embryonic 

DIMM overexpression and in normal adult DIMM-positive Large LNv neurons when compared to 

DIMM-negative small LNvs. Galaxy queries were run to find the intersection of 136 enriched 

probes from the embryo and the 535 Large LNv-enriched probes from the adult. The 

intersection of these data sets yielded a set of 18 genes (Figure 7; Supplementary Table 3). 

There were no overlapping hits when 22 probes that were <0.5 fold in both embryonic samples 

(Supplementary Table 4) were compared to probes that are <0.5 fold and 5% FDR in the Large-

small comparison (Supplementary Table 8). The term DIMM-negative is used as a descriptor 

and is not meant to suggest that the small LNv have no DIMM expression. 

qPCR analyses. To evaluate candidate genes, quantitative real time-PCR (qPCR) was 

performed using RNA derived from 24-32hr embryos collected at 18oC and mis-expressing 

either DIMM (UAS-dimm) or CD8-EGFP (UAS-CD8-EGFP) driven by elav-GAL4. To analyze 

dimm mutants, first instar larvae trans-heterozygous for two dimm alleles (rev4/rev8 – [1]), or 

first instar larvae from the control w1118, were collected at RT. To analyze neural RNAs, one 

hundred third instar larval CNS of w1118 were manually dissected. Total RNA was isolated with 

Trizol reagent (Sigma, St Louis, MO), digested with RNase-free DNase I, and purified with 

RNAeasy columns (Qiagen, Madison, WI). Reverse transcription reactions were performed 

following the manufacturer’s protocols (NEB). We measured transcript quantities using SYBR-

green incorporation on an ABI 7000 machine and made genotypic comparisons with the double 

delta Ct method [7]. Levels of RP49 RNA were used for normalization control. The primers used 

are listed in Supplementary Table 1. 
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In situ hybridizations and antibody staining of embryos. We followed general 

methods previously described [8]. Clones containing the cDNA of interest were obtained from 

the PCR of the cDNA template. For probe synthesis, plasmids were linearized with appropriate 

restriction enzymes at the 5’ end of the coding sequence. Transcription reactions used the digU 

RNA labeling mix (Roche, final concentrations 1mM each ATP, CTP and GTP, 0.65 mM UTP, 

0.35 mM DIG-11-UTP) and the appropriate RNA polymerase (NEB, Roche, or Promega) for 2 

hrs at 37oC. Probes were then hydrolyzed in carbonate buffer (final concentration 60 mM 

Na2CO3, 40mM NaHCO3, pH 10.2) for 40 minutes at 65oC. The reactions were neutralized with 

stop solution (final concentration 0.1 M sodium acetate pH 6.0), and the RNA is precipitated with 

LiCl and re-suspended in 150 ml hybridization solution (see below). Typically, between 2 and 4 

ul of probe was used in a 100 ml hybridization reaction.  

Embryos were collected and aged on yeasted grape plates. Due to embryonic lethality at 

room temperature, for the dimm overexpression studies all collections and aging was done at 

18oC. Embryos were dechorionated in 50% bleach and fixed in 50:50 heptane: embryo fix buffer 

(1xPBS, 50 mM EGTA pH 8.0, 10% formaldehyde) for 25 minutes with vigorous agitation, 

followed by devitellinization with MeOH. The embryos were cleared using Xylenes, postfixed in 

5% formaldehyde in PBT (1xPBS + 0.1% Tween 20) and then treated with proteinase K (Roche, 

4 ug/ml in PBT) for 10 minutes. This was followed by another postfix and prehybridization for 1 

hr in hybridization solution (50% de-ionized formamide (American Bioanalytical), 5x SSC, 100 

ug/ml sonicated, boiled salmon sperm DNA (Sigma), 50 ug/ml heparin (Sigma), 0.1% Tween 20 

(Fisher)) at 55oC. The embryos were then hybridized with antisense RNA probes in hybridization 

solution for 18 hrs at 55oC. After washing with hybridization solution at 55oC and PBT at room 

temperature, the embryos were incubated with alkaline phosphatase labeled anti-digoxygenin 

antibody (Fab fragments, Roche, pre-absorbed, diluted at 1:2,000) overnight at 4oC. After 

washing with PBT, the staining was developed with 4-nitro blue tetrazolium (NBT, Roche, 
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0.675mg/ml) and X-phosphate (Roche, 0.35mg/ml) in AP staining buffer (100mM NaCl, 50mM 

MgCl2, 100mM Tris pH 9.5, 0.1% Tween 20). Embryos were mounted in permount (Fisher) or 

70% glycerol in PBS and viewed using a Zeiss Axioplan2 microscope. Images were obtained 

with an Olympus DP71 camera and manufacturer’s software. 

Transactivation. Assays followed the general methods previously described [9]; 

Genomic fragments from the loci encoding candidate genes were subcloned into the pGL3 

vector (Promega, Madison WI). Drosophila BG3-c2 neuronal cells (1x 106 cells per well) were 

transiently transfected with a total 1.5mg of DNA by mixing with 5 ul of FuGENEHD (Roche) and 

incubating for two days at RT. Transactivation was measured by a Luciferase assay system 

(Promega, Madison, WI). For each experiment, a vector containing pActin-LacZ was co-

transfected to normalize the transfection efficiency, and each transfection was performed at 

least three times independently. The significance was tested by the student’s T-test (two tailed).  

Immunocytochemistry and Imaging. We generated antibodies and used 

immunostaining methods as previously described [1, 10, 11]. Affinity purified guinea pig anti-

DIMM (1:200; [10]), rabbit anti-FMRFa (1:1000; [11]), mouse monoclonal anti-GFP 3E6 (1:800, 

Molecular Probes, Carlsbad CA) and rabbit anti-GFP (1:500; rabbit polyclonal, #AB3080 

Chemicon, Temecula, CA) were used as primary antibodies. Cy3-conjugated- (Jackson 

Immunoresearch, West Grove, PA) or Alex-488-conjugated- (Molecular Probes, Carlsbad CA) 

secondary antibodies were used for immunocytochemistry. To generate an antibody against the 

CG13248 protein product, we constructed a GST-fusion containing the predicted C-terminal 

(cytoplasmic) region of the protein (596-669 A.A.; 75 amino acids) and produced GST-CAT-4 in 

E. coli. Guinea pig anti-CAT-4 protein was used for immunostaining, using methods previously 

described [1, 10, 11]. Confocal images were acquired on an Olympus FV500 laser scanning 

confocal microscope and manipulated by ImageJ and Adobe Photoshop software to adjust 

contrast. 
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Chromatin Immunoprecipitation (ChIP) analysis. ChIP was performed as described 

by Menet et al. [12]. w1118; c929-GAL4;tub-GAL80ts females were crossed to y1w1; UAS-dimm-

myc (II) males at 18oC. To control for non-specific antibody binding, non-specific DNA 

enrichment (through binding to sepharose beads, reaction surfaces etc. [13]), ChIPs were also 

performed on the w1118; c929-GAL4; tub-GAL80ts parental strain that lacks the dimm::myc 

transgene. Progeny developed at 18oC through adult eclosion. Two to five day old adults of the 

following two genotypes (y1 w1/ +; c929-GAL4/UAS-dimm-myc (II); tub-GAL80ts/+ and w1118; 

c929-GAL4; tub-GAL80ts) were shifted to 30oC for 3 days. Flies were collected on dry ice, and 

heads were sieved the following day through 25 and 40 micron sieves. One milliliter of fly heads 

was homogenized in 7 ml Wheaton-Dounce homogenizers with the type B (tight) pestle in 3 mL 

of NEB buffer (10 mM HEPES-Na at pH 8.0, 10 mM NaCl, 0.1 mM EGTA-Na at pH 8.0, 0.5 mM 

EDTA-Na at pH 8.0, 1 mM DTT, 0.5% Tergitol NP-10, 0.5 mM Spermidine, 0.15 mM Spermine 

plus protease inhibitor cocktail [Roche mini]) for a total of 30 min (2-min homogenization 10 

times, 1 min on ice 10 times). Homogenate was dumped into a 70-mm cell strainer placed in a 

50-mL falcon tube and centrifuged at 300g for 2 min. Filtered homogenate was split into three 

fractions, transferred to microfuge tubes and centrifuged at 6,000 x g for 10 min. The nuclei-

containing pellets were resuspended in 1 mL of NEB and centrifuged at 20,000 x g for 20 min on 

sucrose gradient (0.65 mL of 1.6 M sucrose in NEB, 0.35 mL of 0.8 M sucrose in NEB). The 

pellet was resuspended in 1 mL of NEB and 11% formaldehyde (diluted in Schneider’s media; 

Sigma) was added to a final concentration of 1%. Nuclei were cross-linked for 10 min at room 

temperature on a rotator before cross-linking was quenched by adding 1/10 vol of 1.375 M 

glycine for 5 min. The nuclei were collected by centrifugation at 6,000 x g for 5 min. All 

centrifugations steps were carried out at 4oC. Nuclei were washed twice in 1 mL of NEB and 

resuspended in 450 mL of Sonication buffer (10 mM HEPES-Na at pH 7.5, 2 mM EDTA at pH 

8.0, 1% SDS, 0.2% Trition X-100, 0.5 mM Spermidine, 0.15 mM Spermine plus Roche mini 
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protease inhibitor cocktail). Two biological replicates of nuclei were sonicated using a 

Fisherbrand Sonic Dismembranator at setting 2 (57 W) five times for 15 sec on and 2 min off 

(set on ice). Three other biological replicates were sonicated on a Misonix 3000 sonicator fitted 

with a microtip at setting P=5.0 (12-15W) 6 - 12 times for 15 sec on and 1 minute off (set in ice-

ethanol bath). Sonicated nuclei were centrifuged at 15,000 x g for 10 min and frozen at -80°C in 

150 μl aliquots. The majority of the sonicated chromatin had a unimodal sequence length 

distribution with a peak around 500 base pairs. Twenty-five microliters of sonicated chromatin 

were removed for the input sample. The remaining 125μl of chromatin was diluted in 1.1 mL of 

IP buffer (50 mM HEPES/KOH at pH 7.6, 2 mM EDTA, 1% Triton, 0.1% NaDeoxycholate in 

PBS). Samples were rotated overnight at 4°C after adding antibodies: 15 μl of anti-c-MYC tag 

goat antibody (Abcam ab9132). Protein G-Sepharose beads (Zymed) or protein G-sepharose 

beads (Sigma, Saint Louis, MO) were blocked overnight in 0.1 mg/mL yeast tRNA and 1 mg/mL 

BSA in IP buffer. After overnight incubation, the beads were washed once in IP buffer, added to 

the chromatin/antibody mixture, and then incubated for an additional 2 h at 4°C. 

Beads were spun down at 10,000 rpm for 20 sec and were washed once in 1.5 mL of 

ChIP Wash buffer (50 mM HEPES-KOH at pH 7.6, 1 mM EDTA, 1% Triton, 0.1% 

NaDeoxycholate, 0.1% Sarkosyl, 0.1% BSA, 0.5 M KCl in PBS). Beads were resuspended in 1 

mL of ChIP Wash buffer and rotated for 30 min at 4°C. Beads were then washed once in Li 

Wash Buffer (10 mM Tris-Cl at pH 8.0, 0.25 M LiCl, 0.5% NP40, 0.5% NaDeooxychoalte, 1 mM 

EDTA) and once in cold TE (pH 8.0) before being eluted with 150 mL of ChIP Elution buffer (50 

mM Tris-HCl at pH 8.0, 10 mM EDTA, 1% SDS, 1 mM DTT, 0.1 mg/mL Proteinase K). ChIP 

Elution buffer (150 mL) was also added to the input sample. Both IP and input samples were 

incubated for 2 h at 37°C. The sepharose beads were removed from the IP samples and then all 

samples were decrosslinked overnight at 65°C. DNA was isolated from the samples using PCR 

purification kit (Qiagen). 
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Real-time quantitative PCR (qPCR) following ChIP. The PCR mixture contained 

Platinum Taq polymerase (Invitrogen) and optimized concentrations of Sybr-Green (Invitrogen). 

The sequences of primers used are listed in Table S2qPCR was performed in triplicate on at 

least two, in most cases three independent biological replicates of chromatin obtained from 

different sets of fly heads on different days. For each primer set, 1:10 dilutions of ChIP and input 

DNA from both strains were prepared from the same master mix. Additionally, for each primer 

set, one of the inputs was further diluted to make 1:100 and 1:1,000 dilutions. This was 

necessary to create calibration curves to ensure reaction linearity. Fluorescence intensities were 

plotted versus the number of cycles by using an algorithm provided by Corbett Research 

(Qiagen). For each gene, at least two primer sets were designed. Only reactions whose R2 

values were > 0.99 were considered valid. Real-time qPCR was performed a Corbett Research 

Rotor-Gene 3000 real-time cycler or a RotorGene Q real-time PCR machine with cycling 

parameters: 3 min at 95°C, followed by 40 cycles of 30 sec at 95°C, 45 sec at 55°C, and 45 sec 

at 72°C. One set amplified regions around or immediately adjacent to CANNTG canonical E-

boxes in genes’ first introns or first exons / 5’ UTR. A second set amplified genomic regions 

approximately 6 kilobases upstream of E-box primer sets. Each ChIP was normalized to its 

input by delta-Ct value. Delta-delta-Ct value was then calculated by subtracting delta-Ct of 

negative control from delta-Ct of the tagged strain. The fold-difference between experimental 

and control samples was obtained by 2^(-delta-deltaCt). The properties of the primers used are 

listed in Supplementary Table 2. 

Quantitative Mass Spectrometry. Fly heads of the control (GMR>UAS-ppMII; UAS-

dimm) and experimental (GMR>UAS-ppMII; UAS-dimm; UAS-RNAi) transgenic lines were 

collected in frozen state. MS-based quantitation was based on prior quantitative measurement 

approaches [14-16]. Frozen heads were homogenized in acidified acetone (40:6:1, 

acetone:water:concentrated HCl, v/v/v; 10 ul/head). The homogenate was centrifuged at 12,000 
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rpm for 5 min: supernatants were concentrated by drying in a SpeedVac (Thermo Electron Co.), 

and then reconstituted with 2% acetonitrile aqueous solution (containing 0.1% FA and 0.01% 

TFA) for subsequent analysis. The quantitative analysis on MII fully processed from ppMII was 

performed using capillary liquid chromatography coupled to matrix-assisted laser/desorption 

ionization time-of-flight mass spectrometry (CapLC-MALDI-TOF/TOF MS). We performed 

relative quantitation using two approaches. For the labeling approach, the samples were labeled 

with succinic anhydride as previous described [14-15]. Briefly, 2 µl of 2 M light and heavy forms 

of succinic anhydride (Sigma Aldrich) in DMSO were used to label the control and experimental 

samples, and the sample solutions were adjusted to be basic. After the reaction, the labeled 

control and experimental samples were combined before being desalted using spin columns 

(Pierce, Rockford, IL). The combined and desalted samples were then analyzed with CapLC-

MALDI-TOF/TOF MS (Bruker Daltonics, Billerica, MA). 5 µl samples were separated with a 

reverse phase column (Alltech Associates Inc., Alltima HP C18, 150 mm × 300 um, 3 µm 

particle diameter, 100 Å pore size) at a flow rate of 2 µl/min. Solvent A contains 95% water, 5% 

acetonitrile, 0.1% FA, and 0.01% TFA, and Solvent B contains 5% water, 95% acetonitrile, 0.1% 

FA, and 0.01% TFA. The 45-min gradient started from 2% B to 20% B over 10 min, to 40% B in 

another 15 min, continued to 80% B in 7 min, and stayed at 80% B for 3 min before ramping 

back to 2% B. The fraction collection started at 20 min, and a total of 24 one-minute fractions 

were collected on a MALDI target for each sample. 1 µl of a-cyano-4-hydroxycinnamic acid 

(Sigma Aldrich) in 70/30 (v/v) acetonitrile/ water solution was used as matrix, and MALDI-

TOF/TOF mass spectra were acquired in the mass range of 600-5000 Da. The relative peak 

intensities in the peak pair were used to indicate the relative amount of peptides between control 

and experimental samples. 

In the label-free quantitation approach, Drosophila head extracts were analyzed with 

CapLC-MALDI-TOF/TOF MS described earlier just after they were reconstituted. Endogenous 
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peptide Drm-MT2 (hugin (CG6371) (m/z 942.59) and exogenous peptide MII (m/z 1710.69) 

have been well studied in Drosophila previously [2, 17], and their presence was determined by 

mass matching between the theoretical masses and the experimental masses at signal-to-noise 

ratio above 3 within 20 ppm. MT2 and MII were respectively isolated with MALDI-TOF/TOF 

tandem MS, and the intensity of the isolated parent ion was used to reflect the amount of the 

peptide after normalization. Student’s t-test was used for statistics with at least three biological 

replicates. 

RNAi transgenic lines used in this study.   

CG#   GENE     RNAi line  

CG13248   CAT-4    GD5384 (VDRC) 

CG1275   Cyt-b561-1   GD4103 (VDRC) 

CG11254   mael    GD18198 (VDRC) 

CG7785   cddl6    GD36650 (VDRC) 

CG32850   rnf11    JF01121 (Harvard) 

CG6522       GD22500(VDRC) 

CG14321       GD29814 (VDRC) 

CG17293   wdr82    GD25246 (VDRC) 

CG31436       GD21341 (VDRC)  

CG14621       GD8661 (VDRC) 
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Integrative analysis of the gene regulatory interactome and 

transcriptome of the neuroendocrine scaling factor DIMMED 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter will be adapted for the manuscript: 
T. Hadžić, K.C. Abruzzi, D. Park, J.S. Trigg, M. Rosbash and P. Taghert: Integrative analysis of 
the gene regulatory interactome and transcriptome of the neuroendocrine scaling factor 
DIMMED. In preparation. 
 
 
I performed the following experiments presented in this chapter: ChIP-chip (genetic crosses, 
collections and temperature shift, Western blots, ChIP, tiling array hybridization (with help from 
KCA for the first biological replicate), bioinformatic analysis of ChIP-chip data: MAT and Galaxy 
analysis, intersection, conservation, genomic annotation, selection of enhancer fragments for 
luciferase testing), RNA-Seq (genetic crosses, dissection (with help from PHT, DP, Laura Duvall 
and Seol Hee Im), cell dissociation for FACS, RNA purification, bioinformatics analysis of RNA-
Seq data: enrichment quantification, heat map generation and  intersection of ChIP-chip and 
RNA-Seq data.) 
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INTRODUCTION 

 Neuroendocrine (NE) cells possess features characteristic of neurons and glandular 

tissue (Scharrer B 1987). They have evolved specialized adaptations to synthesize, process 

and store large amounts of neuropeptides until they receive an appropriate signal for their 

release (Dannies 1999; Kim et al. 2006). To accomplish this, NE cells possess a repertoire of 

neuropeptide processing enzymes, as well as a special subcellular compartment, the Large 

Dense Core Vesicles (LDCVs, Dannies 1999; Kim et al. 2006). LDCVs house most of the 

processing enzymes and the neuropeptide cargo (Dannies 1999; Kim et al. 2006). LDCVs are 

also the key intracellular sites for neuropeptide processing, for long-term storage, for transport 

and ultimately for the secretion of the biologically active peptides (Burbach et al. 2001). LDCVs 

inside NE cells are made, stored, trafficked and exocytosed out of the cell thanks to a large 

complement of structural and regulatory components that ensure precisely timed release in 

response to stimuli (Crivellato et al. 2010). With the exception of a few proteomic studies, LDCV 

components remain largely undefined by high throughput studies (Gauthier et al. 2008; Wegrzyn 

et al. 2010). By utilizing this special subcellular compartment, NE cells have developed a unique 

mode of protein secretion, the Regulated Secretory Pathway (RSP; Dannies 1999; Kim et al. 

2006). The primary function of this pathway is the secretion of substances (mainly 

neuropeptides) that produce modulatory changes in target neurons and other cells (De Camilli 

and Jahn 1990). NE cells, through the RSP, engage in episodic release of cargo that has the 

potential to affect cells located very far away (Burbach et al. 2001). Although fast 

neurotransmission is the dominant form of neural signaling, NE cells have evolved in parallel 

with neurons (Südhof 2007). NE cells integrate inputs and adapt their responses to various 

stimuli in order to maintain long-term homeostasis in living organisms (Burbach et al. 2001). 

 Thus far, little is known about how LDCVs and the RSP are established and developed 

in NE precursor cells during their maturation into professional secretory cells. Only a few groups 
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have used microarrays to obtain gene expression profiles of several normal and stimulated NE 

tissues in mammals and Drosophila (Yue et al. 2006; Hindmarch et al. 2006; Kula-Eversole et 

al. 2010; Nagoshi et al. 2010). Whereas Yue et al. (2006) used laser capture microdissection to 

collect individual cells from the hypothalamic supraoptic nucleus, Hindmarch et al. (2006) used 

more heterogeneous tissues from whole hypothalamic nuclei. These two studies suggest the 

existence of coordinately regulated NE-specific gene batteries whose function is to ensure 

proper secretion from NE tissues (Park and Taghert 2009). 

 In Drosophila, two groups have examined gene expression profiles of purified Drosophila 

circadian neurons, some of which are neuroendocrine (Kula-Eversole et al. 2010; Nagoshi et al. 

2010). In both papers, manual collection of freshly dissociated cells was used to source the 

RNA material (Kula-Eversole et al. 2010; Nagoshi et al. 2010). Both studies focused on the 

portion of the transcriptome that cycles with circadian time in clock cells. The advantage that 

these studies had over others is that the circadian system in Drosophila is one of the most well 

understood systems implicated in the control of behavior (Nitabach and Taghert 2008). On the 

other hand, what remains unanswered is how cells such as the hypothalamic thirst-controlling 

NE neurons and the Drosophila circadian NE neurons establish those properties required of 

professional secretory cells: a robust RSP with an appreciable LDCV subcellular compartment 

and an appropriately regulated transcriptome and epigenome. 

 Generally speaking, the transcriptome of NE cells likely consists of those genes that are 

required in all cells, and others that allow NE cells to perform their unique roles. Although the 

“house keeping” portion of the transcriptome is likely not identical in all cells, it probably consists 

of a core set of genes with some quantitative variations in their expression (Doyle et al. 2008). 

On the other hand, each cell type has a unique portion of its transcriptome that orchestrates its 

functions. The definition of “unique” changes depending on the reference cell type to which the 

cell population of interest is being compared to (Dougherty et al. 2010). Thus, the degree of 
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transcriptome uniqueness changes depending on whether a cell type is being compared against 

a related cell type (e.g. one type of neuron against another) or against a distantly related cell 

type (e.g. neurons against germ line cells). Regardless of the characteristics, there likely exist 

specialized intracellular circuits and pathways that set up, amplify and maintain a particular 

distinguishing cell feature, such as the RSP in NE cells, synaptic vesicles in neurons or 

mitochondria in cardiomyocytes (Mills and Taghert 2011). Furthermore, such master regulators, 

transcriptional organizers and scaling factors are likely not static, but must be able to adapt to 

the ever changing environment (Mills and Taghert 2011. 

 Two known transcriptional organizers of the developmental programs of neuronal cell 

subtypes are factors PET-1 and AST-1 (Park and Taghert 2009; Hendricks et al. 1999; Flames 

and Hobert 2009). AST-1 is an ETS transcription factor that controls expression of all dopamine 

pathway genes in all dopaminergic cell types in Caenorhabditis elegans (Flames and Hobert 

2009). PET-1 is another ETS domain transcription factor that appears to control expression of 

serotonin pathway genes in mammalian serotonergic neurons (Hendricks et al. 1999). Both of 

these factors control major elements of the biosynthetic machinery known to distinguish their 

respective neuronal subtypes from neurons expressing other biogenic amines or classic 

neurotransmitters. Neither factor, however, is necessary for the initial fate specification or 

survival of the respective neuron type that they control (Park and Taghert 2009). There is also 

no evidence as of yet that either of these factors controls a whole subcellular compartment, 

such as LDCVs, endosomes or synaptic vesicles. 

 One known factor that controls a whole subcellular compartment is Transcription Factor 

EB (TFEB, Sardiello et al. 2009). TFEB exerts coordinated transcriptional control over most 

mammalian lysosomal genes (Sardiello et al. 2009). In vitro, TFEB induces lysosomal 

biogenesis and increases degradation of lysosomal complex molecules (Sardiello et al. 2009). 

Another factor, Peroxisome proliferator–activated receptor Gamma Coactivator-1 (PGC-1), has 
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been shown to control the number of mitochondria inside heart cells, as well as their function in 

response to energy demands (Lehman et al. 2000; Finck and Kelly 2007). Though it has been 

convincingly shown that PGC-1 is a master regulator of myocardial energy metabolism, this 

protein is a not a sequence-specific transcription factor, but rather a co-activator for such factors 

(Finck and Kelly 2007). 

 The above examples demonstrate master regulators / scaling factors that control the 

biogenesis, maintenance and homeostasis of lysosomes and mitochondria (Sardiello et al. 

2009; Lehman et al. 2000). Another subcellular compartment of great consequences for human 

health is the LDCV compartment. Peptide hormone insulin is stored in LDCVs of pancreatic beta 

cells and any pathologic changes in LDCVs can lead to beta cell disease and diabetes (Liu et al. 

2009). In general, LDCVs are found in NE, endocrine, as well as other secretory cells such as 

exocrine and hematopoetic mast cells (Crivellato et al. 2010; Kim et al. 2006). A known NE-

specific master regulator and scaling factor that is likely responsible for the establishment and 

dynamic maintenance of the RSP in NE cells is the Drosophila basic helix loop transcription 

(bHLH) factor dimmed (DIMM) (Park and Taghert 2009; Hewes et al. 2003; Park et al. 2008b; 

Hamanaka et al. 2010; Park et al. 2011). DIMM coordinates the molecular and cellular 

properties of all major NE cells, irrespective of the secretory peptides they produce (Park et al. 

2011). DIMM is a well conserved protein, with a mammalian orthologue called Mist1 (Moore et 

al. 2000). Mist1 is the transcriptional organizer of serous exocrine cell-specific secretory 

features in mammals (Pin et al. 2000; Ramsey et al. 2007; Johnson et al. 2004).  

 The goal of this thesis was to identify the precise mechanism of DIMM action in vivo. 

Since DIMM is a transcription factor, it functions by binding to and activating expression of a set 

of genes. Therefore, I took the specific aim of defining all DIMM genomic targets.  Chromatin 

immunoprecipitation (ChIP) has become the technique of choice to identify direct genomic 

targets of a transcription factor (Collas 2009; Lee et al. 2006; Sandmann et al. 2007). DNA 
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sequences from DNA-protein adducts isolated by ChIP can be globally analyzed by microarray 

hybridization (ChIP-chip, Lee et al. 2006; Southall and Brand 2007). ChIP-chip allows for 

unbiased detection of protein–DNA interactions, as it requires no prior knowledge of candidate 

binding sites for any particular transcription factor (Sandmann et al. 2007). In a previously 

published study, (Chapter 2), I demonstrated the application of in vivo ChIP to analyze 

candidate DIMM binding sites in the enhancers of a few genes (Park et al. 2011). In Chapter 2, 

a broad multidisciplinary approach was undertaken to validate a small number of candidate 

DIMM-dependent genes as bona fide targets with functional consequences for NE cell 

physiology (Park et al. 2011). Nevertheless, the study was limited to evaluating a selection of 

134 genes that were derived from a DIMM-over-expression paradigm in the embryonic nervous 

system (Park et al. 2011).  

 In this chapter, I extend the ChIP analysis to the whole genome by ChIP-chip. This in 

vivo approach allows for identification of the full complement of potential DIMM regulated sites in 

the Drosophila genome in an unbiased, systematic fashion. As I will describe, the ChIP-chip 

data yielded a stringent DIMM gene regulatory interactome of at least 156 high fidelity cis-

regulatory modules, which is highly interesting by itself. Although Sardiello et al. (2009) used in 

vitro expression profiling to identify many lysosomal genes as TFEB targets, they did not 

conduct a genome-wide survey of TFEB binding. There have so far been no reports of scaling 

factor regulatory interactomes being revealed by ChIP-chip or ChIP coupled to deep sequencing 

(ChIP-Seq).  

Once I successfully identified the gene regulatory interactome of DIMM, it became 

evident that DIMM’s interactome could be greatly enhanced by integrating it with the 

transcriptome of DIMM-expressing LEAP cells. Therefore, I also describe herein how I purified 

DIMM+ and DIMM- cells by Fluorescence Activated Cell Sorting (FACS) in order to profile their 

gene expression by deep sequencing (RNA-Seq). Once the LEAP transcriptome was 
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successfully obtained, I intersected the DIMM gene regulatory interactome with the newly 

derived transcriptome of DIMM+ LEAP cells. This yielded a set of genes that are high fidelity 

direct DIMM targets. 

MATERIALS AND METHODS 

ChIP-chip 

ChIP was conducted as described previously (Chapter 2, Park et al. 2011; Menet et al. 2010). 

Briefly, tagged ChIP was carried out with a DIMM::MYC-tag fusion transgene that can rescue 

diminished neuropeptide levels in DIMM null animals (Hewes et al. 2003). This transgene was 

expressed in a spatiotemporally controlled manner by using a GAL4 driver that overlaps to a 

great extent with DIMM (c929-GAL4; Hewes et al. 2003; Park et al. 2008a). Furthermore, I 

restricted GAL4 activity to DIMM-expressing neurons in adult animals by using a temperature 

sensitive allele of a ubiquitously expressed GAL80 protein (tub-GAL80ts) – TARGET (McGuire et 

al. 2003; Brand and Perrimon 1993). In this system, GAL4 activation of transcription from the 

UAS element is inhibited by GAL80 as long as the animal is kept at the restrictive temperature 

(18°C, McGuire et al. 2003). Shifting the animals to 30°C (permissive temperature) results in a 

derepression of GAL4 activity and transcription from the UAS element. Two sets of animals 

were used for this experiment: i) c929-GAL4/UAS-DIMM::MYC; tub-GAL80ts/+ [experimental 

group] and ii) c929-GAL4; tub-GAL80ts maternal strain [negative control]. Both sets of animals 

were raised at 18°C to allow for normal development, as well as to prevent the lethality that 

results from DIMM overexpression in LEAP cells (unpublished results). Freshly eclosed adult 

flies were then shifted to 30°C to induce expression of the DIMM::MYC transgene  only in adult 

DIMM+ cells. Specific induction of the DIMM::MYC protein within 72 hours was confirmed by 

Western blotting (Figure 1). I performed tagged ChIP 72 hours later, using methods described in 

Chapter 2 (Park et al. 2011). 
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 One limitation of ChIP is that it requires a high quality antibody that can recognize fixed 

antigens in solution (Orlando 2000; Lee et al. 2006; Sandmann et al. 2007). A second limitation 

is that ChIP requires at least one million cells for success (Collas 2009). c929-GAL4 is 

expressed in about 300 NE cells in the adult brain, which is less than 1% of all CNS cells (D 

Park and P Taghert, unpublished observations). As expected from these technical limitations, 

ChIP with a native DIMM antibody failed to produce successful results. Therefore, I employed a 

“tagged ChIP strategy based on the availability of the MYC-tagged DIMM transgene. Affinity 

tags such as MYC are increasingly used in ChIP assays to detect in vivo binding of transcription 

factors to their target genes in chromatin (e.g., Kolodziej et al. 2009). 

Following crosslink reversal, DNA was processed according to the Affymetrix® 

Chromatin Immunoprecipitation Assay Protocol (P/N 702238 Rev. 3). For each sample, 10 

microliters of undiluted ChIP DNA or 1:10 diluted input DNA was amplified by linear PCR-based 

amplification. Quantitative PCR was used to show that DIMM occupancy at its known binding 

site in PHM was preserved after amplification. Identical amounts (6.0 micrograms) of each 

amplified sample were then fragmented and biotin-labeled by Terminal Deoxynucleotidyl 

Transferase. Labeled samples were then hybridized to Affymetrix GeneChip® Drosophila 2.0 

Tiling Arrays and scanned according to Affymetrix protocols at the National Center for 

Behavioral Genomics (Brandeis University).  

Bioinformatic analysis of ChIP-chip data 

To detect statistically significant DIMM binding peaks throughout the genome, an analysis 

algorithm titled Model-based Analysis of Tiling-arrays (MAT) was used (Johnson et al. 2006). 

MAT considers the 600-basepair window surrounding each tiling array probe and computes a 

trimmed mean of all of the t values in the window (Johnson et al. 2006). Additionally, MAT 

models baseline probe behavior by considering the 25-mer probe sequence and copy number of 

all probes on a single tiling array (Johnson et al. 2006). MAT detects ChIP regions using an 
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enrichment measure known as MAT score, which is calculated for each 600 bp window and 

assigned to the probe at the center of the window. Essentially, MAT score, which is calculated 

from normalized probe intensities, represents a statistical likelihood that a particular genomic 

region is enriched in the immunoprecipitated relative to the control sample (Abruzzi et al. 2011). 

MAT analysis was carried out with MAT source build 2.11272006 on a 32-bit Linux machine. 

Genome visualization .bar files produced by MAT are incompatible with the University of 

California in Santa Cruz (UCSC) Genome Browser. Therefore, UCSC Genome Browser-

compatible files were obtained by running an implementation of MAT (rMAT) in the statistical 

computing language R (Droit et al. 2010). This analysis produces a graphic representation of 

MAT scores in sliding windows on a log2 scale. Visual output from all three MAT analyses 

performed (DIMM ChIP/Input, NEG ChIP/Input and DIMM ChIP / NEG ChIP) can be directly 

compared to each other as long as the window minima and maxima are identical. This is true 

because an identical number of arrays was used for experimental and control samples, with the 

same number of biological replicates and DNA amounts hybridized to tiling arrays. 

Genomic annotation of DIMM binding sites 

Annotation of DIMM binding sites with respect to introns (Figure 3A) was performed in the 

Galaxy, an open platform for genomic research (Goecks et al. 2010). A data table describing all 

Drosophila introns from the UCSC dm3 Drosophila genome build (UCSC Main on D. 

melanogaster: flyBaseGene: Introns) was downloaded from the UCSC Genome Browser 

database. Galaxy queries were then run to identify the percent of overlap between DIMM-bound 

regions and all known introns from the dm3 genome build (Figure 3A). To annotate DIMM 

binding sites against exons, introns and promoters, PinkThing was used (Figure 3B). PinkThing 

is an open-source software for quick annotation of a set of genomic regions against transcription 

start sites and gene features (TSSs, PinkThing.cmbi.ru.nl, F. Nielsen, M. Kooyman and M. 

Huynen; Kramer et al. 2011). PinkThing was used under default parameters to annotate DIMM 
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binding sites against genomic features defined as: gene body (introns versus exons), as well as 

upstream and downstream regions. A DIMM-bound region was classified as: Near Upstream or 

Downstream = 5 kb upstream or downstream of a TSS; Far Upstream = 5 – 25 kb from the 

closest TSS and Distant Upstream = >25 kb from the closest TSS). Furthermore, precise 

distance of ChIP-chip binding sites from transcription start sites was calculated and plotted in 

the statistical programming language R v. 2.14.0 with the BioConductor package ChIPpeakAnno 

(Zhu et al. 2010). ChIPpeakAnno allows for visual representation of peak distance from 

annotated TSSs (Zhu et al. 2010). 

Binding motif identification and conservation analysis 

Binding motif analysis was carried out in the Cistrome project with the SeqPos motif finding tool 

(He et al. 2010; Liu et al. 2011). DIMM binding peaks with 1% - 100% of intron overlap were 

analyzed with the following settings: region width = 600 bp; p-value cutoff = 0.05. For 

conservation analysis, Galaxy queries were used to extract Multiple Alignment File (MAF) blocks 

for the set of 156 DIMM-bound genomic intervals and a 15-way multiZ (dm3) alignment with the 

genomes of twelve other Drosophila species, as well as the bee (Apis mellifera) and mosquito 

(Anopheles gambiae) genomes (Blankenberg et al. 2011). A query to calculate MAF Coverage 

Stats was then run in Galaxy and the resulting coverage reported on a scale from 0 (no 

conservation) to 1 (100% conservation). 

In vitro luciferase DIMM transactivation assays 

Luciferase assays were performed as in Chapter 2 (Park et al. 2011. DIMM-bound genomic 

fragments that were tested in these assays were selected based on their MAT scores, and in 

some cases based on their intronic location. Assays were performed with at least n=3 biological 

replicates with the exception of the crc-F fragment. 

Preparation of cells for FACS sorting 
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Brains of homozygous w1118,UAS-dcr2; c929-GAL4, UAS-CD8::EGFP; flies were used to 

harvest cells for FACS sorting and subsequent RNA-Seq. UAS-dcr2 was included in the genetic 

background because of plans to carry out the same type of analysis in a dimm RNAi loss-of-

function background. This strain (w1118,UAS-dcr2; c929-GAL4, UAS-CD8::EGFP;) is essentially 

wild-type with respect to DIMM physiology, as evidenced by normal neuropeptide staining (data 

not shown). Young flies (5-12 days old) of both sexes were grown at 25°C on standard 

Drosophila cornmeal media. They were anesthetized with carbon dioxide and collected on ice. 

RNA was isolated from brains dissected on two separate occasions, in order to get as much 

material as possible, to minimize RNA amplification. Brains of 140 (first experiment) and 180 

flies (second experiment) were dissected within a two to three hour time period. Adult heads 

were detached from ventral nerve cords and dissected in cold saline as in Nagoshi et al. (2010) 

with some modifications. Sterile, ice-cold Modified Dissecting Saline (MDS) was used for 

dissection (9.9 mM HEPES-KOH buffer, 137 mM NaCl, 5.4 mM KCl, 0.17 mM NaH2PO4, 0.22 

mM KH2PO4, 33 mM glucose, 43.8 mM sucrose, pH 7.4; Jiang et al. 2005). After dissection, 

brains were immediately transferred into sterile, chilled modified SMactive medium and pooled 

(SMactive medium containing 5 mM Bis-Tris; Küppers-Munther et al. 2004).  

At the end of dissection, brains were pooled in a 2 ml Eppendorf DNA LoBind nuclease-

free tube and washed with 1 ml of chilled MDS. Fly brains were then centrifuged at 1,000g for 

30 seconds in a microcentrifuge. Frozen L-cysteine-activated papain (50 units/ml in dissecting 

saline; Worthington) was thawed at the beginning of dissection and activated at 37°C for 20 

minutes immediately prior to the end of dissection. Four hundred and fifty microliters of activated 

papain were then added to the brains. Fly brains were gently resuspended and incubated with 

papain for 20 minutes at room temperature. Papain digestion was quenched by adding 1.5 ml of 

Schneider’s medium supplemented with 1% heat inactivated Fetal Calf Serum. The sample was 

centrifuged at 500g for 30 seconds at room temperature. Brains were washed two more times 
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and were finally resuspended in 600 microliters of Schneider’s medium supplemented with 1% 

FCS.  

Papain-digested brains were then triturated 30 times with a flame-rounded P1000 filter 

tip (medium tip opening), 30 times with a flame-rounded P1000 filter tip (small opening), 30 

times with a flame-rounded P200 filter tip (large opening), 40 times with a flame-rounded P200 

filter tip (medium tip opening) and 20 times with a flame-rounded P200 filter tip (small opening). 

Pipette volumes used for trituration were 500 microliters and 150 microliters for the P1000 and 

P200 pipettes, respectively. Trituration efficiency was such that very small pieces of brain tissue 

were still visible under a dissection microscope.  

Brain homogenate was then strained through a sterile 70 micron cell strainer (Fishersci) 

mounted on a 50 ml Falcon, then centrifuged briefly at 400 rpm at 4℃. Flow through containing 

filtered dissociated cells was then strained through a 35 micron sterile cell strainer (BD Falcon) 

mounted on a 50 ml Falcon, then centrifuged briefly at 200 rpm. Four hundred and fifty 

microliters of dissociated single cells were collected in a 6 ml BD Falcon tube. Cells were then 

transported on ice to the Washington University Siteman Flow Cytometry Core for FACS sorting. 

FACS sorting 

Cell sorting was performed on a DAKO-Cytomation MoFlo High Speed Sorter at the Siteman 

Flow Cytometry Core, Washington University in St Louis. The Green Fluorescent Protein 

(GFP+) gate was set based on established criteria and experience of the Core’s personnel with 

the sorter (Figure 5). Sorting GFP+ and GFP- cells was completed within on hour of the start of 

sorting. Roughly, 1% - 3% of all cells in the samples were GFP+, which is consistent with the 

number of c929+ cells in the adult fly brain (Park and Taghert 2009). In order to establish the 

viability of cells after dissociation, a pilot sorting experiment was performed in which cells were 

sorted for GFP, as well as their ability to exclude the vitality dye 7-Amino-Actinomycin D. This 
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nucleic acid dye allows detection of dying cells by entering such cells thanks to fragmentation of 

their membranes. (Schmid et al. 1992). The pilot experiment showed that the majority of gated 

GFP+ and GFP- cells were excluding 7-AAD, and were therefore alive at the time of sorting. The 

fact that sorted DIMM+ cells were viable shortly before RNA capture increased confidence that 

any subsequent expression profiling would faithfully reproduce the transcriptome of live DIMM+ 

cells. Because double sorting against GFP and 7-Amino-Actinomycin D doubled the amount of 

time needed for sorting, sorting experiments for RNA collection were conducted without 7-

Amino-Actinomycin D. The combined number of cells sorted from the two experiments was 3.0 x 

105  GFP+ cells and 1.35 x 106 GFP- cells.  

RNA isolation, processing and Illumina HiSeq 2000 sequencing 

At the end of sorting, cells were transferred directly into Qiagen’s RLT buffer 

supplemented with beta-mercaptoethanol (Qiagen RNA MinElute kit). Most investigators 

harvesting nano scale RNA samples for microarray gene expression profiling use the Arcturus 

PicoPure kit (Borghese et al. 2006; Nagoshi et al. 2010; Ramsey et al. 2007; Tian et al. 2010). 

This kit contains a poly(dI:dC)-based proprietary nucleic carrier embedded in the column. This 

carrier does not interfere with microarray applications, but could interfere with deep sequencing 

of RNAs isolated this way. Therefore, we decided to use the Qiagen kit for small samples, which 

lacks carriers. After transferring cells into RLT buffer, they were vortexed for 6 seconds, and 

lysed by passing the suspension five times through a 21.5 gage needle mounted on a 3 ml 

syringe. RNA was isolated as recommended by Qiagen’s MinElute protocol, with the exception 

of using 65°C-heated water for enhanced RNA recovery. Next, DNA in the sample was digested 

with the DNaseI Turbo DNA-free kit (Ambion). After DNA removal, RNAs isolated from GFP+ 

and GFP- cells from each of the two experiments were pooled.  

Samples with pooled GFP+ and GFP- RNAs were then submitted to the Genome 

Technology Access Center (Washington University Genetics Department). RNA quality was 
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then checked by Qubit (Invitrogen), NanoDrop (GE Health) and Bioanalyzer (Agilent) quality 

control assays. Neither sample showed signs of degradation or DNA contamination, and the 

samples were moved into the deep sequencing pipeline at the same facility. After taking sample 

aliquots for quality control, there were ~35 nanograms of RNA from GFP+ cells left and ~100 

nanograms of GFP- RNA. Since the two samples would be directly compared to each other, the 

GFP- sample was diluted in order to have equal quantities of both samples. The samples were 

sequenced on Illumina’s HiSeq 2000 platform (Han et al. 2011).  

Because Illumina’s deep sequencing protocols require 10 micrograms of RNA, the 

samples had to be amplified. Although various oligo dT-based RNA amplification protocols have 

been used, a new product emerged recently, which foregoes this type of amplification. The 

NuGen Ovation RNA-Seq system is a single primer-based RNA amplification product that uses 

isothermal amplification (Kurn et al. 2005; Dafforn et al. 2004). In this system, the RNA is 

reverse transcribed, then partially degraded in order to synthesize a second DNA strand from 

the first-strand cDNA template (Kurn et al. 2005; Dafforn et al. 2004). Double-stranded DNA is 

purified and amplified using single primer isothermal amplification. This amplification process 

starts with RNase H cleaving RNA in DNA/RNA heteroduplexes located on the ends of double-

stranded DNA. Next, the proprietary primer binds to cDNA and polymerase starts replication at 

the end of the primer by displacing the existing forward strand. Finally, random hexamers initiate 

linear amplification of the second-strand cDNA (Kurn et al. 2005; Dafforn et al. 2004). After 

amplification with the NuGen system, samples were prepared for deep sequencing according to 

standard Illumina procedures. This included a poly-A selection step with beads, as well as linker 

ligation with unique multiplexed ends. Multiplexing allowed each sequenced read to be 

distinguished by a 6 basepair (bp) tag at the end of the sequencing adaptor. Sequencing was 

performed in a single lane of an Illumina HiSeq 2000 machine. Base calls were made by 
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Illumina’s software (Eland). Next, reads were de-multiplexed to allow the GFP+ sample’s reads 

to be distinguished from the GFP- sample.  

An algorithm called Tophat was then used to align raw sequence reads to the reference 

genome and to map splice junctions (Ensembl Drosophila BDGP5.25.62 release; Trapnell et al. 

2009). Tophat output was then used as input for the algorithm Cufflinks v. 1.0.3, which 

assembled whole transcripts and estimated their abundance (Roberts et al. 2011). Cuffdiff was 

then used to test for differential expression in RNA-Seq samples. Cuffdiff identified 4,846 out of 

22,872 transcripts that were enriched at 1.5-fold or higher in the GFP+/GFP- sample. Tophat-

generated alignments of RNA-Seq data in BAM format were indexed and sorted for visualization 

in the Integrated Genomics Viewer (Robinson et al. 2011). Indexed RNA-Seq reads were 

visualized as coverage tracks. In order to be able to compare samples directly, coverage tracks 

were always graphed with identical y-axis coordinates. Heat maps were generated in 

MultiExperiment Viewer (MeV; Saeed et al. 2006). 

ChIP-chip and RNA-Seq data integration 

ChIP-chip and RNA-Seq gene lists were integrated using Galaxy (Goecks et al. 2010). In order 

to establish whether or not the statistical overlap was due solely to chance, a cumulative 

hypergeometric probability was calculated as follows: population size = 22,872 total transcripts; 

number of successes in population = 4,846 enriched transcripts; sample size = 597 ChIP-chip 

associated transcripts; number of successes in the sample = 170 ChIP-chip transcripts that are 

enriched at 1.5-fold or higher in the population. Instead of a simple hypergeometric probability, 

the more stringent cumulative probability of obtaining 170 or more hits due to chance alone was 

calculated: P(X ≥	
 170) was equal to 1.21 x 10-5. 
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RESULTS 

Genome-wide identification of direct DIMM targets by in vivo ChIP-chip 

detection of genome-wide DIMM binding 

 To identify in vivo DIMM occupancy at binding sites throughout the genome, a tagged 

ChIP-chip strategy was employed (Ezhkova and Tansey 2006; see Materials and Methods). 

Success of the tagged ChIP approach was measured by examining DIMM occupancy at its 

known binding site in the first intron of PHM and lack of occupancy at a nearby (control) site 

(Park et al. 2011). Once I could confirm the specificity of DIMM binding to PHM intron 1, I 

initiated  ChIP-chip analysis. 

 I performed anti-MYC ChIPs from both experimental and control Drosophila head 

extracts. DIMM-bound DNA fragments were identified using Drosophila Tiling Arrays 2.0 

(Affymetrix). For each genotype, arrays were hybridized with ChIPed DNA, as well as pre-ChIP 

genomic input DNA (n=2 biological replicates for each genotype and sample type). Thus, I used 

a total of eight arrays: two ChIP arrays, two input arrays per genotype. I identified DIMM binding 

peaks using the MAT algorithm (Johnson et al. 2006).  

 In order to identify true DIMM binding in a rigorous way, I employed three different types 

of MAT comparative analyses: i) DIMM::MYC ChIP sample was compared against its input 

(DIMM ChIP/Input), ii) the control (maternal strain) ChIP sample was compared against its own 

input (NEG ChIP/Input), and iii) DIMM ChIP sample was compared against the control ChIP 

sample (DIMM ChIP / NEG ChIP). The last comparison (DIMM ChIP / NEG ChIP) was 

scientifically valid because an identical amount of DNA was hybridized to each tiling array, 

regardless of sample type or genotype. Each of these MAT analyses, including the second 

analysis (NEG ChIP/Input) yielded enriched regions at a commonly accepted p-value of 1 x 10-5: 

i) DIMM ChIP/Input - 5,644 bound regions ii) NEG ChIP/Input - 3,177 regions and iii) DIMM ChIP 

/ NEG ChIP - 258 regions. 
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 Although ChIP-chip from the NEG ChIP/Input (control) sample was theoretically 

supposed to yield no specifically-bound regions by MAT, many regions was detected as 

significant (3,177 regions). This likely happened due to the MYC-tag antibody binding non-

specifically to DNA, or due to specific interactions between genomic DNA and agarose beads, 

and other reaction vessels (Sandmann et al. 2007). Nevertheless, increasing the statistical 

stringency of MAT analysis of both samples by progressively decreasing the p-value eventually 

reduces the number of bound regions in the NEG ChIP/Input to a few, while leaving many more 

bound regions in the DIMM ChIP/Input sample intact. Based on the need to fairly compare all 

three analyses against each other, I left the p-value cutoff unchanged. Instead, after 

consultations with the author of MAT (X. Liu, personal communication), I decided that the most 

prudent way to analyze the data was to subtract NEG ChIP/Input bound regions from the DIMM 

ChIP/Input bound regions, and then intersect the resulting regions with the 258 bound peaks in 

the DIMM ChIP / NEG ChIP comparison.  

 The resulting intersection of the DIMM ChIP/Input bound regions lacking any NEG 

ChIP/Input overlap with DIMM ChIP / NEG ChIP bound regions yielded a total of 156 bound 

peaks (Table 1). As with ChIP-qPCR in Chapter 2, I again used DIMM occupancy in the first 

intron of PHM as an internal positive control. Indeed, by DIMM ChIP / NEG ChIP analysis, the 

DIMM binding peak in the first intron of PHM was the fifth highest scoring peak (MAT score 

139), and it was the 25th most highly scoring peak in the DIMM ChIP/Input comparison (MAT 

score 280.8). Visualization of this previously known bona fide DIMM enhancer in the genome 

browser is shown in Figure 2. Lack of any significant binding in the NEG ChIP/Input comparison 

is striking. I therefore submit that the subtraction and intersection of the three MAT analyses 

yields a high quality data set of DIMM-occupied regions. 
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Genomic annotation of DIMM-bound peaks  

 Having identified DIMM-occupied genomic regions, I then annotated them with respect to 

various genomic features such as transcription start sites (TSSs), exons and introns. It has been 

well documented that bHLH transcription factors bind not only to promoters, but also to introns, 

where they can recruit the basal transcriptional machinery (Cao et al. 2010; Tian et al. 2010; 

Menet et al. 2010). DIMM binds to specific palindromic E-boxes (CATATG and CAGCTG) that 

are located in introns of target genes in addition to PHM (Park et al. 2008; Park et al. 2011). 

Similarly, its mammalian orthologue Mist1 binds to CATATG E-boxes located in the first intron of 

6 of its targets (Tian et al. 2010).  

 Of the 156 high stringency DIMM-bound peaks, 51 (33%) do not overlap with introns, 

although some might be in their vicinity. Another 43 peaks (28%) have a degree of intron 

overlap ranging between 1% and 50% of their length. 26 more peaks have 50% - 97% overlap 

with an intron. Finally, 36 peaks (23%) have 100% overlap with an intron (Figure 3A). Binding 

sites were also annotated with respect to introns, exons and promoters by using a gene 

structure annotation algorithm (PinkThing, Figure 3B). This analysis showed that the majority of 

the peaks overlap with introns (39%) and promoters (23%).  

 Next, a search for statistically overrepresented sequence binding motifs was conducted 

and one E-box motif was isolated. The E-box motif with the consensus sequence 

CATATGKTTS was isolated with a z-score -2.6297 and a p-value of 0.004273. Statistical 

overrepresentation of a motif containing the CATATG E-box is entirely consistent with the E-

boxed that DIMM binds to in the first intron of PHM (Park et al. 2008b). When conservation 

status of all 156 DIMM-bound peaks was examined by employing pairwise alignment 

comparisons between DIMM-bound regions and homologous regions in 13 insect species, a 

high degree of conservation was observed (Figure 3D). Nucleotide scores ranging from 0.956 
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for droSec1 genome to 0.513 for the droGri2 Drosophila species, and lower conservation with 

bees and mosquitoes (0.11 - 0.15; Figure 3D).  

 The 156 DIMM-bound peaks that passed the high stringency criteria were annotated by 

using tools from the open source Galaxy platform for genomic analysis (Goecks et al. 2010). 

Peaks were annotated by fetching the closest non-overlapping genomic features from: all 

Drosophila exons, introns, 5 kilobase upstream regions and 5’ untranslated regions (UTRs). 

Using this annotation strategy, 156 peaks as input produced a total of 284 DIMM ChIP-chip 

binding-associated genes (Table 2). Additionally, the 284 genes that are associated with DIMM-

bound regions produce a total of 598 transcripts.  

DIMM transactivation of enhancers identified by in vivo ChIP-chip 

 Based on previous evidence, DIMM and Mist1 likely function as transcriptional activators 

(Park et al. 2008b; Park et al. 2011; Tian et al. 2010). To support that supposition, we tested 

DIMM’s ability to transactivate ChIP-chip-identified-regulatory fragments of the candidate gene 

targets, using luciferase levels as a readout. This assay (carried out by Ms. Jennifer Trigg) used 

the BG3 Drosophila neuronal cell line as described in Chapter 2 (Park et al. 2011). 39 of 156 

DIMM-bound regions were tested in luciferase transactivation assays (Figure 4). DIMM 

transactivated 19 out of 39 fragments with reporter induction ranging from 5.9 to 93-fold (p-value 

< 0.05). Interestingly, many of the tested enhancers produced inductions that were many fold 

higher than the strongest inductions recorded previously (genes PHM, mael and CG6522, Park 

et al. 2011). The remaining enhancers showed mild induction or their induction was 

indistinguishable from controls. These data suggest that DIMM can indeed directly activate gene 

expression from a considerable fraction of enhancers identified by in vivo ChIP-chip. 

Deep sequencing the LEAP transcriptome 

The usefulness of a gene regulatory interactome can be greatly enhanced with 

information about the gene expression landscape operating in the same cells as the 



Chapter 3. 
	
  

117 

transcription factor of interest. In order to obtain a transcriptional profile of LEAP cells, DIMM+ 

cells were labeled with GFP, and GFP+ cells from adult fly brains were FACS sorted. GFP+ 

cells and a group of randomly chosen GFP- cells of similar size (likely a stochastic mixture of 

neurons and glia) were sorted, their RNAs isolated and profiled by deep sequencing (RNA-Seq). 

All data analysis was done by comparing the DIMM+/GFP+ transcriptome directly to the DIMM-

/GFP- transcriptome. This was a fair comparison because the samples were processed 

identically, in parallel and yielded similar numbers of RNA-Seq reads: 36.9 million 42-bp reads 

from the GFP+ sample and 39.6 million 42-bp reads from the GFP- sample. The majority of the 

reads mapped to the Drosophila genome (23.9 million / 36.9 million GFP+ reads and 32.3 

million / 39.6 million GFP- reads). Furthermore, 34.8% of GFP+ reads were unique reads (one 

alignment in the genome) and 29.99% were multiple alignments (likely to genomic repeat 

regions). The GFP- sample had 56.33% uniquely aligned reads and 25.45% multiply aligned 

reads. The algorithm for comparing gene expression levels between RNA-Seq data 

standardizes all samples in terms of fragments per million base pairs sequenced (Roberts et al. 

2011). Despite some differences in the total number of aligned reads between the GFP+ and 

GFP- samples, the two samples are directly comparable by Cufflinks. 

After determining that the RNA-Seq datasets contained high quality sequence that 

aligned to the Drosophila genome, the DIMM+/GFP+ sample’s transcriptome was compared to 

the DIMM-/GFP- transcriptome. Initial analysis showed that 4,676 isoform-specific transcripts 

out of 22,872 total transcripts were enriched in LEAP cells at a minimum 1.5-fold enrichment. 

The first specific measure examined was the enrichment of DIMM transcripts in the GFP+ 

against the GFP- sample. Indeed, DIMM transcripts were enriched at 138-fold in the 

GFP+/GFP- comparison. Next, I examined a group of genes known to be enriched in DIMM 

cells compared to other cell types. In all cases, the enrichment prediction matched the real data 

(Figure 6). For example: several of the seven Insulin-like peptides (Ilps) are known to be 
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enriched in LEAP cells, whereas other family members are expressed outside of the CNS (Park 

et al. 2008a; Brogiolo et al. 2001). The known LEAP cell-enriched Ilps were indeed enriched by 

RNA-Seq (Ilp5: 1.6-million fold, Ilp3: 688-fold, Ilp2: 489-fold, Ilp6: 26-fold; Figure 6A,C), whereas 

Ilps with known lack of CNS expression were not enriched (Ilp1: 0.3-fold enrichment, Ilp4 and 

Ilp7: no expression in either sample; Figure 6A,C). While DIMM overlaps with many peptides, 

the extent of DIMM overlap depends on the peptide (Park et al. 2008a). A few peptides have low 

or almost no overlap with DIMM (Park et al. 2008a). As expected, such peptides did not show 

significant RNA-Seq enrichment (Proctolin: 4% of larval LEAP cells and 1.3-fold enrichment; 

Ptth: 0% larval LEAP cells and 1.5-fold enrichment, Dh31: 5.3% of larval LEAP cells and 1.6-fold 

enrichment; Figure 6A). Half of Pigment dispersing factor (PDF+) neurons overlap with DIMM in 

the adult brain, which matches RNA-Seq data (Figure 6B; Park and Taghert 2009). Previous 

reports have indicated that while PHM overlaps extensively with DIMM, the overlap is not 

exclusive (Park and Taghert 2009). In accordance with this fact, RNA-Seq data showed that 

Phm was enriched 3.5-fold in LEAP cells over non-LEAP cells (Figure 7). CAT-4, another DIMM 

bona fide target was enriched at 2.77-fold (Park et al. 2011). Overall, these data confirm the 

high fidelity and quality of the RNA-Seq data set.  

Integration of transcriptome (RNA-Seq) and interactome (ChIP-chip) results 

 The resolved LEAP cell transcriptome is an excellent resource that can be directly 

integrated with the ChIP-chip data set. The basic hypothesis here is that DIMM activates gene 

expression. Therefore, those LEAP-cell enriched genes that are adjacent to DIMM binding 

peaks likely represent the true targets of DIMM’s transcriptional activity. DIMM binds to 156 

regions in the genome, which corresponds to 284 genes and a total of 598 transcripts from 

those genes (Table 1). The LEAP transcriptome has 4,676 transcripts out of 22,872 total 

transcripts that are enriched at 1.5-fold or higher (Table 2). Of the 598 ChIP-chip-associated 

transcripts, 170 transcripts are amongst the 4,676 LEAP-cell-specific transcripts (Table 3, 
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Figure 7). This overlap is more than that due to chance alone (hypergeometric probability 

P(x≥170)= 1.21 x 10-5. As in previous analyses, PHM is included on the list of intersected genes 

and its inclusion could serve as another quality control measure (Park et al. 2011).  

DISCUSSION 

DIMM gene regulatory network 

 Scaling factors allow cells to scale subcellular resources (such as organelles) to become 

specialists in certain physiological functions or to adapt to changing daily conditions (Mills and 

Taghert 2011). These factors are conserved through evolution and once expressed, their 

expression persists for the lifetime of the cell (Mills and Taghert 2011). Identifying their mode of 

operation is an important task since their dysfunction might contribute to human diseases of 

adult onset (Mills and Taghert 2011). Furthermore, up until now, there has been a focus on 

understanding transcription factors acting in the early specification of progenitors and lineage 

development. While the information gleaned from such studies is beneficial to our understanding 

of how cells are constructed, we must also understand how cells acquire their mature 

properties. Studying scaling factors such as DIMM provides insight into this process. 

 Although I could have pursued a variety of biochemical, molecular and genetic 

approaches to better understand the mechanism of DIMM action, I felt that the best systematic 

approach was to define the full scope of DIMM targets on a genome-wide level. Thus, I 

identified sites of DIMM binding in the genome of adult NE cells in vivo. This allowed me to 

pursue identification of genes that DIMM targets for transcriptional activation. With the exception 

of a recent TFEB study, genome-wide identification of scaling factor direct targets has not been 

previously reported in literature (Palmieri et al. 2011). The ChIP-chip gene regulatory 

interactome that I identified in this study is one of the first genome-wide studies to identify direct 

targets of a scaling factor in vivo. The technical approach I pursued allowed for ChIP-chip to be 
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performed in a highly selected cell population (e.g. directed expression of the DIMM::MYC 

transgene only in 300 DIMM+ adult NE cells).  

In order to focus my attention on DIMM target genes that contribute most highly to 

DIMM-dependent NE physiology, I decided to use extra-rigorous binding site identification 

methods. I first compared the DIMM ChIP sample and the negative control sample to their 

respective input samples. The negative control sample likely contains ‘background’ binding that 

is a common artifact of ChIP due to unexpected ‘‘off-target effects’’ of the antibodies, non-

specific enrichment of chromatin through binding to unrelated immunoglobulins, as well as non-

specific binding to agarose beads, reaction surfaces and other reagents (Sandmann et al. 

2007). As a first step in data analysis, the coordinates of genomic regions enriched at 

statistically significant levels in the negative control were subtracted from the genomic regions 

bound by DIMM. This subtraction resulted in 2,914 regions enriched in the DIMM ChIP/Input 

sample but not in the NEG ChIP/Input sample (or 6,869 “bits” of regions with no such overlap). It 

is possible that a significant fraction of these peaks represent DIMM targets. In order to increase 

analysis stringency further, MAT results from DIMM ChIP tiling arrays were directly compared to 

results from negative control ChIP tiling arrays. This analysis yielded 258 DIMM-bound regions 

that were significantly enriched in the DIMM ChIP condition compared to the negative control 

ChIP. Finally, the intersection of the two sets of regions produced a set of 156 genomic regions 

that are the most likely enhancers that DIMM binds in vivo in adult NE cells. 

By performing this rigorous bioinformatic identification of DIMM ChIP-chip binding sites, 

the certainty of uncovering true DIMM targets was raised at the expense of false negatives. 

Nevertheless, the estimated number of binding sites for DIMM (156 peaks) closely resembles 

the estimated number of lysosomal genes that are controlled by TFEB (on the order of 200 

genes; Sardiello et al. 2009). It is unlikely that scaling factors, such as DIMM or TFEB control a 

large fraction of the genome. Furthermore, it is plausible that scaling factors, similar to other 
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transcription factors, lie at the top of a gene regulatory hierarchy involving multiple transcription 

factors acting in loops or cascades (Macquarrie et al. 2011). Therefore, a limited number of 

gene targets (on the order of 200) does not necessarily rule out more genes involved in scaling 

factor physiology, by means of activation by downstream transcription factors. 

The assignment of genes to ChIP-chip peaks (Table 1) is not perfect due to many 

factors, including: close packing of genes in the genome, the incomplete annotation of 

transcription units, and the ability of enhancers to act over large distances that sometimes skip 

intermediate genes (Li et al. 2008). In fact, the c929-GAL4 element that overlaps extensively 

with DIMM expression is located 13 kilobases upstream of DIMM, in an alternative intron of 

another gene (cryptocephal; Hewes et al. 2003). Despite these caveats, it is believed that most 

transcription factors bind their gene targets in stereotypically close association to TSSs and 

long-range enhancers appear to be the exception rather than the rule (Arnosti 2003). 

LEAP cell transcriptome 

To the best of my knowledge, this high quality data set is the first NE transcriptome 

obtained by next generation sequencing. Although DIMM-expressing NE cells are highly diverse 

with respect to their peptidergic identity, they share in common a high secretory capacity and a 

robust RSP (Park and Taghert 2009). In Drosophila, these cells were previously subjected to 

limited peptidomic profiling (Yew et al. 2009), and a single identified set of DIMM neurons (the 

eight circadian pacemakers called large LNvs) was profiled transcriptionally (Kula-Eversole et 

al. 2010; Nagoshi et al. 2010). Nevertheless, there are currently no reports of RNA-Seq-derived 

transcriptomes of any known NE cell population. Unlike microarrays, deep sequencing allows for 

a more detailed examination of the transcriptome with the ability to distinguish allelic expression 

and transcriptional isoforms of genes (Wang et al. 2009). Due to the focus on using RNA-Seq to 

interpret ChIP-chip data, a detailed analysis of the RNA-Seq data is out of the scope of this 

chapter but will be pursued in detail later.  
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NE cells in mammals and insects represent the minority of CNS cells in terms of 

absolute numbers (Zupanc 1996; Park and Taghert 2009). Despite low absolute numbers, loss 

of DIMM expression from LEAP cells is not compatible with survival past embryonic stages 

(Hewes et al. 2003). There are several available methods of profiling gene expression in a cell 

population with sparse numbers: manual collection of individual cells, laser capture 

microdissection and FACS (Ozsolak and Milos 2011). While each method has advantages and 

disadvantages, the primary goal of the current study was to collect a highly purified cell 

population and maximize the amount of input material. Therefore, FACS was chosen as the 

method of choice due to its high speed and ability discriminate cellular fluorescence levels easily 

(Givan 2011).  

Interactome – Transcriptome integration 

A natural progression in data analysis was to integrate the DIMM gene regulatory 

interactome obtained by ChIP-chip and the LEAP cell transcriptome obtained by RNA-Seq of 

purified DIMM-expressing cells. When the list of 156 ChIP-chip regions that were mapped to 

284 genes and a total of 598 transcripts was intersected with the list of genes enriched in LEAP 

cells, 170 transcripts (116 genes) fell into both categories. This likely represents a high quality, 

stringent list of direct DIMM targets. The observed overlap was greater than overlap due to 

chance, as shown by the cumulative hypergeometric probability. Thus, genes on this cross-

sectional list are not only direct DIMM targets in LEAP cells by ChIP-chip, but their expression is 

enriched in LEAP cells compared to DIMM-negative cells.  

The caveat to this intersectional assignment is that it assumes that DIMM acts as a 

transcriptional activator in all cases. This assumption is based on previous experiments that 

demonstrated that DIMM acts as an activator of PHM transcription (Park et al. 2008b). 

Nevertheless, certain bHLH proteins are known to act as repressors (Stevens et al 2008). Such 

repressive bHLHs were first identified in Drosophila (Stevens et al. 2008). In accordance with 
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this possibility, 50 out of 598 ChIP-chip associated transcripts are expressed in DIMM+/GFP+ 

cells at 50% of their level in the DIMM-/GFP- cells (and only 3 out of 50 are found at 10% of 

their level in DIMM-/GFP- cells). In contrast, 170 out of 598 ChIP-chip transcripts are enriched in 

DIMM+/GFP+ cells over DIMM-/GFP- cells, which gives credibility to the hypothesis that DIMM 

operates as a transcriptional activator in all cases. A precise answer to this question can be 

obtained by pursuing RNA-Seq of DIMM loss-of-function cells, which is one of the planned 

follow-up studies. 

DIMM, like many transcription factors acts as an activator of transcription (Allan et al. 

2005). By this logic, if a DIMM binding site is located in a dense milieu of TSSs and only one of 

the surrounding genes is enriched in LEAP cells, then, this increase the likelihood that DIMM is 

activating this particular gene and not its neighbors. Overall, transcriptome/interactome 

integration reduces the false positives in ChIP-chip gene regulatory data due to a reduction in 

gene assignment noise (Wyrick and Young 2002). 

Classifying DIMM target genes into functional categories 

 The integrated data set consists of a variety of genes with certain subsets clustering in a 

few categories (Table 4). One such category are neuropeptide processing enzymes: the 

peptidylglycine hydroxylating alpha-monooxygenase PHM, the peptidyl-alpha-hydroxyglycine 

alpha-amidating lyase PAL1, the prohormone convertase amontillado, and the 

carboxypeptidase D silver. All these enzymes reside in LDCVs, where they are indispensible for 

the proper processing of neuropeptides. Their appearance on this high quality list confirms and 

extends the supposition that DIMM targets peptide biosynthetic enzymes (Park et al. 2008).  It 

also provides important “quality control” assurance that the procedure is generating targets 

expected to be on the list.  Slamdance is a Drosophila aminopeptidase with a bang-sensitive 

paralytic mutant phenotype (Zhang et al. 2002). Human aminopeptidase N, the mammalian 

orthologue of slamdance, is in involved neuropeptide processing and degradation (Montiel et al. 
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1997; Solhonne et al. 1987). Thus, the inclusion of slamdance as a likely DIMM target 

represents the first indication that it could be involved in neuropeptide processing in Drosophila 

as well as mammals.  

Slamdance also establishes a link between neuropeptide signaling and epilepsy, which 

is a relatively new concept with a seminal paper reporting a knockout mutation of neuropeptide 

Y leading to epileptic phenotypes in the mouse (Baraban et al. 1997). Furthermore, expression 

of a PHM / Pal1 and a number of amidated neuropeptides increases after seizures induced by 

electroconvulsive shock, kainate, or pentylenetetrazole (Ma et al. 2002; Bhat et al. 2003; 

Baraban et al. 1997). Additional genes that fall into the endopeptidase/metallopeptidase 

category with possible role in neuropeptide processing or degradation are: CG4933, Rpn9 and 

Atg4. This work shows that a whole battery of secretory processing enzymes is under 

transcriptional control of a single transcription factor, DIMM. Although the fact that DIMM 

controls processing enzymes may not be a surprising, it is, nevertheless, a completely novel 

finding. No single transcription factor has been revealed to possess the ability to control all or 

most neuropeptide processing factors.  

Another category of genes under direct DIMM control includes fly orthologues of those 

mammalian genes whose protein products have been shown by proteomic studies to be 

constituents of LDCVs (Table 4; Gauthier et al. 2008; Wegrzyn et al. 2010). Genes in this 

category include: 14-3-3zeta, 14-3-3epsilon, jaguar, Translationally controlled tumor protein and 

betaTubulin56D. The two members of the 14-3-3 family of adaptor proteins are a highly 

conserved family of acidic molecules present in all eukaryotes (Aitken 2006). Both 14-3-3zeta 

and 14-3-3epsilon have been implicated in the response of the hypothalamic-neurohypophyseal 

system to osmotic stress (Gouraud et al. 2007). The expression of 14-3-3zeta and 14-3-

3epsilon is increased in the rat supraoptic nucleus, a NE center, after three days of water 

deprivation. Furthermore, 14-3-3epsilon has a crucial role in antimicrobial peptide secretion 
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(Shandala et al. 2011). Jaguar, a Drosophila myosin VI homologue is another gene with LDCV 

localization and known role in secretory vesicle fusion at the plasma membrane (Bond et al. 

2011). Jaguar is a unique member of the myosin superfamily of actin-based motor proteins 

because it is the only myosin known to move towards the minus or pointed ends of actin 

filaments (Kisiel et al. 2011). Drosophila larvae lacking jaguar have altered synaptic vesicle 

localization: instead of peripherally located synaptic vesicles, jaguar mutants have diffusely 

located vesicle across the entire bouton area (Kisiel et al. 2011). After budding from the trans-

Golgi network, LDCVs are transported to the secretion sites at the plasma membrane via 

microtubule-based transport systems (Park and Loh 2008). LDCVs are then loaded onto an 

actin/myosin system for distal transport through the actin cortex to just below the plasma 

membrane (Park and Loh 2008). Therefore, it is plausible that DIMM would activate the 

expression of those genes necessarily for LDCVs to properly traffic to their designated location 

at the cell periphery where they await release signals. 

Transcription. In addition to secretory enzymes and LDCV constituents, DIMM also 

targets transcription factors, in particular members of the Atf/CREB superfamily of basic leucine 

zipper (bZIP) genes: the Drosophila Atf-4 orthologue cryptocephal (significant for being 

immediately adjacent to DIMM), the pro-secretory transcription factor CrebA, the stress-

response gene Atf-2, as well as the circadian-implicated transcriptional repressor vrille. bZIP 

proteins contain a leucine zipper, an alpha-helical coil structure required for dimerization, as well 

as a neighboring basic domain needed for direct contact with DNA (Foulkes et al. 1997). Two 

non-bZIP transcription factors are the circadian regulator clockwork orange, as well as the 

Per/Arnt/Sim-domain containing bHLH similar. Cryptocephal (Atf-4) is important for 

metamorphosis and molting in Drosophila, and in oxidative stress, amino acid synthesis, 

autophagy, unfolded protein response and long-term memory in mammals (Hewes et al. 2000; 

Ameri and Harris 2008). Mammalian Atf-2 and Atf-4 regulate emotional behavior in the nucleus 
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accumbens by unknown mechanisms (Green et al. 2008). It is currently unknown how 

cryptocephal might play a role in the secretory capacity of NE cells.  

CrebA is major and direct regulator of secretory capacity of a variety of cell types at the 

level of the Golgi apparatus (Fox et al. 2010). CrebA can upregulate expression of the general 

protein machinery required in all cells for secretion, as well as certain secreted proteins that are 

cell-type specific (Fox et al. 2010). In Drosophila, CrebA is important for elevated secretory 

activity in the salivary gland, as well as in the developing cuticle (Abrams and Andrew 2005). 

Thus CrebA is adaptable, in different cellular contexts, to promote a high capacity secretory 

state. CrebA appears to activate expression of genes encoding proteins required for ER 

targeting and translocation, and proteins that mediate transport between the ER and Golgi 

(Abrams and Andrew 2005). Thus, similar to other secretory cell types, it is plausible that NE 

cells need high levels of CrebA, which is recruited to the purpose by DIMM as a part of its 

general action mechanisms. Interestingly, there is very little overlap between genes thought to 

be CrebA targets and DIMM target genes that I have identified.  

Furthermore, it may be notable that DIMM activates two factors that are known for the 

their potent ability to antagonize bHLH actions: vrille and clockwork orange. Vrille is a bZIP 

transcriptional repressor that acts by inhibiting expression of the core circadian bHLH gene 

Clock, as well as the circadian blue light photoreceptor cryptochrome (Glossop et al. 2003). As 

a part of the circadian system, VRILLE competes with a related bZIP protein PDP1 for binding to 

the Clock promoter. Whereas VRILLE represses Clock expression, PDP1 activates expression 

of Clock and thereby actively competes with vrille (Cyran et al. 2003). In addition to vrille, DIMM 

targets another repressive factor, the basic helix–loop–helix ORANGE family member clockwork 

orange. Clockwork orange forms its own negative feedback loop and directly suppresses the 

expression of other clock genes through the E-box sequences (Matsumoto et al. 2007; Kadener 

et al. 2007). It is possible that by targeting vrille and clockwork orange, DIMM uses complex 
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gene regulatory logic, beyond simple transcriptional activation. According to this line of thinking, 

the genetic logic of the mechanisms activated by the bHLH DIMM is similar that of the molecular 

clockwork instigated by the bHLH proteins Clock and cycle: both may use feedforward and / or 

feedback negative regulation by vrille and clockwork orange to modulate the amplitudes of the 

target gene expression. 

Endocytosis.  Genes involved in endocytosis and Notch signaling represent another 

category of DIMM targets: nicastrin, Gp150, I’m not dead yet, TRAM and CG31064. Nicastrin is 

a part of the gamma-secretase core complex required for cleavage of transmembrane proteins 

such as Notch and presenillin (Hass et al. 2009; Steiner et al. 2008). Gp150 is an endosomal 

protein that regulates Notch activity (Li et al. 2004). Since the Notch protein itself is high in 

LEAP cells, it is possible that Gp150 and nicastrin are performing a role in DIMM-dependent NE 

cell physiology in a manner that also involves Notch signaling in mature cells.  

RNA-binding proteins. A separate family of DIMM targets includes genes that are 

implicated in RNA processing or metabolism: alan shepard, ELL-associated factor, Ef1α48D, 

Not1, U4-U6-60K and eIF-4A. Alan shepard is a single-stranded RNA-binding protein isolated 

in a genetic screen for gravitaxis mutants (Bjorum and Beckingham 2007). RNA-binding 

proteins such as alan shepard engage in pre-mRNA processing, which includes splicing, 

editing and polyadenylation of messages (Glisovic et al. 2008). At the structural level, RNA-

binding proteins are highly modular, with one or more RNA-binding and auxiliary domains 

(Glisovic et al. 2008). DIMM binding frequently occurs in areas that are promoters of certain 

isoforms and introns of other isoforms of the same RNA-binding protein. Furthermore, RNA-

Seq data show that only certain isoforms of RNA-binding proteins are enriched in LEAP cells 

by RNA-Seq, whereas other isoforms of the same gene are not enriched, or could even be 

repressed. Therefore, it is possible that DIMM targets certain isoforms of RNA-binding proteins 

with desired sequence-binding specificities for expression in LEAP cells. 
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RNA-binding proteins function in every aspect of RNA biology, from transcription, pre-

mRNA splicing and polyadenylation to RNA modification, transport, localization, translation and 

turnover (Glisovic et al. 2008). Therefore, it is possible that RNA-binding proteins that DIMM 

targets play a major role in the ability of LEAP cells to correctly traffic or localize 

neuropeptides. Certain RNA-binding proteins are known to be potent repressors of translation 

of certain sequence-specific RNA targets (Horisawa et al. 2009). Since neuropeptides are 

translated in very large quantities inside NE cells, it is plausible that translation of other RNA 

messages needs to be reduced or halted from time to time in order to achieve necessary levels 

of neuropeptide translation. RNA-binding proteins could play a role of in translation of such 

RNA messages that are perhaps of secondary importance during particular physiologic states. 

Alternatively, the splicing of neuropeptide RNAs or their stability might need to be enhanced, 

therefore requiring RNA-binding proteins to carry this function out with high selectivity.  

Before this work was initiated, Hamanaka et al. (2010) investigated what happened to 

photoreceptors, a class of conventional, non-peptidergic neurons, when they are forced to 

express DIMM. This work showed DIMM’s remarkable ability to convert non-peptidergic cells 

into peptidergic cells possessing LDCVs, the morphologic correlate of the RSP. Therefore, we 

had a great insight into the ultrastructural changes that DIMM can set off once activated 

ectopically in a cell. What was lacking, however, was the molecular framework of how this 

remarkable cellular transformation is achieved. Collectively, therefore the results presented in 

this chapter provide a fundamental road map to define exactly how DIMM is able to organize, 

scale up and maintain an active RSP in NE cells. 
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Figure 1. Detection of DIMM::MYC induction in adult heads by Western blotting. (A) Flies 

overexpressing DIMM::MYC (left panel, labeled “DIMM”) or GFP (right panel, labeled “GFP”) in 

DIMM+ (c929-GAL4-expressing cells) developed normally at the restrictive temperature (18°C). 

Following eclosion, both genotypes were shifted to 30°C for 3-5 days. This allowed for a specific 

induction of DIMM::MYC expression in DIMM::MYC-overexpressing heads (top left panel) and 

lack thereof in GFP-overexpressing heads (top right panel). In contrast to DIMM::MYC induction, 

GFP was induced in GFP-overexpressing heads (middle right panel) but not in DIMM::MYC-

expressing heads (middle left panel). Adult head extracts were analyzed by Western blotting 

with indicated antibodies. Tubulin was used as a loading control (bottom). Genotype: yw/w; 

c929-GAL4/UAS-DIMM::MYC; tub-GAL80ts/+ (left panel) and yw/w; c929-GAL4/UAS-2xEGFP; 

tub-GAL80ts/+ (right panel). (B) Time course of DIMM::MYC induction following the shift from 

restrictive to permissive temperature. Genotype: yw/w; c929-GAL4/UAS-DIMM::MYC; tub-

GAL80ts/+. Tubulin was used as a loading control. Hours after shift to 30°C are indicated above 

each lane. Adult head extracts were analyzed by Western blotting with indicated antibodies. 
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Figure 2. DIMM Binding to its known enhancer in the first intron of PHM by ChIP-chip. MYC 

antibody ChIP-chip was performed in flies expressing a DIMM::MYC transgene in normally 

DIMM+ cells. The negative control strain, lacked the DIMM::MYC transgene, but was otherwise 

identical to the experimental strain. ChIP and input DNA were analyzed using Affymetrix tiling 

arrays and MAT. The PHM locus is displayed inside the UCSC Genome Browser. In order to 

rigorously identify true DIMM binding, three types of MAT comparisons were used. Genomic 

enrichment in the DIMM::MYC ChIP DNA was compared to enrichment in its input (DIMM 

ChIP/Input, shown in pink). Negative control ChIP DNA enrichment was compared to 

enrichment of its input (NEG CONT ChIP/Input, shown in dark blue). Finally, ChIP DNA 



Chapter 3. 
	
  

140 

enrichment in the DIMM::MYC samples was directly compared to DNA enrichment in the 

negative control (DIMM ChIP / NEG CONT ChIP, shown in red). In order to identify true DIMM 

binding, peaks from NEG CONT/Input were first subtracted from DIMM ChIP/Input peaks. 

Secondly, the resulting list of binding regions was then intersected with regions identified in the 

DIMM ChIP / NEG CONT ChIP comparison. In order for a peak to pass this cutoff, genomic 

regions in the subtracted list had to have at minimum 1 bp overlap with genomic regions in the 

DIMM ChIP / NEG CONT ChIP list. 
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Figure 3. Genomic annotation, motif identification and conservation of DIMM binding peaks. (A) 

Overlap of DIMM ChIP-chip peaks with introns calculated as percentage of their length. (B) 

PinkThing software annotation of ChIP-chip peaks against Drosophila gene structural elements 

(exons, introns, promoter and downstream elements. (C) CATATG E-box motif enriched in 
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DIMM ChIP-chip peaks found in introns (p-value 0.004273). (D) Conservation analysis (Multi 

Alignment blocks on 15 insect species) of ChIP-chip peaks between D. melanogaster (dm3, 

shown on the bottom ) and 14 other insect species. (E) Distance of ChIP-chip peaks from 

transcription start sites. 
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Figure 4. DIMM transactivation of 39 genomic fragments with significant DIMM ChIP-chip 

binding in a Drosophila BG3-c2 neuronal cell line. Luciferase reporter was placed downstream 

of a mini-SV promoter and a ChIP-chip derived enhancer. Fold ratios represent Luciferase 

levels with DIMM co-transfection divided by those without. Histograms represents means and 

SEMs of at least three independent replicate assays except for the crc-F fragment. *p-val<0.05 

student t-test 
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Figure 5. FACS sorting of DIMM+ and DIMM- cells. Brains were dissected from UAS-dcr2; c929-

GAL4, UAS-CD8; flies and dissociated into single cells. DIMM+ cells (as marked by c929>GFP 

expression) and randomly selected GFP- cells were FACS sorted. Top left panel shows the 

distribution of c929>GFP signal in an adult brain. Examples of GFP+ cells (bottom right panel) 

and GFP- cells (bottom left panel) are shown. 
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Figure 6. The neuroendocrine transcriptome of LEAP cells revealed by deep  

sequencing. (A) Enrichment of known Drosophila neuropeptides by RNA-Seq in the GFP+/GFP- 

sample is depicted as fold change (left) and in the form of a heat map (right). Neuropeptide 

names are indicated in the center of the figure. Overlap of DIMM+ cells with some of the 

neuropeptides in the larval CNS is given on the right (Park et al. 2008a). (B-D) Integrated 

Genomics Viewer was used to visualize RNA-Seq tracks from GFP+ and GFP- cells. (B) 

Pigment dispersing factor (PDF) locus. (C) Ilp1, Ilp2 and Ilp3 loci. (D) short Neuropeptide F 

(sNPF) locus. 
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Figure 7. Intersection of DIMM targets detected by ChIP-chip and transcripts  

enriched in DIMM+ LEAP cells. Venn diagram depicts the intersection of DIMM interactome and 

LEAP transcriptome genes (top, not drawn to scale). Integrated Genomics Viewer view of the 

PHM gene locus (bottom). The top three tracks depict ChIP-chip results (DIMM ChIP/Input, pink; 

NEG CONT ChIP/Input, blue; DIMM ChIP / NEG CONT ChIP, red). The bottom two tracks 

depict RNA-Seq signal: DIMM+/GFP+ signal is shown in green, and DIMM-/GFP- signal is 

shown in gray. PHM gene locus structure is shown at the bottom of the window in blue.  
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Table 1. List of 156 DIMM binding sites identified by ChIP-chip. Genomic coordinates given 

based on the dm3 genomic scaffold. ChIP-chip sites were obtained by subtracting NEG CONT 

ChIP/Input sites from DIMM ChIP/Input sites, and by intersecting the resulting sites with the 

DIMM ChIP / NEG CONT ChIP sites. Please see attached / uploaded Microsoft 

Excel spreadsheet file.	
  

 

Table 2. List of 284 DIMM ChIP-chip binding region-associated genes. Please see attached / 

uploaded Microsoft Excel spreadsheet file. 

 

Table 3. Intersection of the 598 ChIP-chip-associated transcripts and the 4,676 LEAP-cell-

specific transcripts. Each entry is described by: gene symbol, CG#, Flybase Gene ID, Flybase 

Transcript ID and enrichment in DIMM+/GFP+ cells compared to DIMM-/GFP- cells (reported as 

fold change). Please see attached / uploaded Microsoft Excel spreadsheet file. 

 

Table 4. ChIP-chip / RNA-Seq-derived genes grouped into functional categories based on 

known gene function reported in literature. Please see attached / uploaded Microsoft 

Excel spreadsheet file. 
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Chapter 4. 

 

Assessing the contribution of individual DIMM targets to  

DIMM-dependent LEAP cell physiology by an RNAi-based genetic 

screen for sleep defects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
I performed the sleep experiments in this chapter: genetic crosses, behavioral monitoring and 
data analysis with some technical help from Neely Williams. 



Chapter 4 

	
  167 

INTRODUCTION 

 LEAP cells express neuropeptides, many of which function in modulating various 

behaviors (Nässel 2002). DIMM-expressing neuropeptides control metabolism and a variety of 

behaviors, such as ecdysis and sleep (Park et al. 2008a; Kim and Rulifson 2004; O’Brien and 

Taghert 1998; Sheeba et al. 2008; Shang et al. 2008). I have chosen to evaluate the functional 

consequences of DIMM target knockdown using sleep as a regulated behavior in Drosophila 

that has been an established paradigm (Shaw et al. 2000). A subset of LEAP cells, the large 

LNv neurons have been implicated in the control of sleep and light-mediated arousal (Sheeba et 

al. 2008; Shang et al. 2008). When DIMM+ large LNv and DIMM- small LNv neurons are 

chronically hyperexcited, nocturnal activity is increased (Sheeba et al. 2008). Furthermore, 

when the authors hyperexcited LEAP cells but excluded PDF-positive Large and Small LNv 

neurons, flies exhibited increased daytime and nighttime locomotor activity with decreased sleep 

(Sheeba et al. 2008). Another study showed that activation of DIMM- small LNvs had no effect 

on sleep or arousal (Shang et al. 2008). This study provides the best evidence the effect of PDF 

neuron hyperexcitation on sleep and arousal is attributed solely to the DIMM+ large LNv 

neurons and not to the DIMM- small 

A direct connection between DIMM and sleep has not been established in the literature 

and is reported for the first time in this chapter. When DIMM expression is reduced in small and 

large LNv neurons, this leads to an increase in sleep compared to controls (Figure 1A). 

Therefore, a functional genetic screen for sleep defects was conducted by RNAi-mediated gene 

knockdown specifically in LEAP cells. This allowed for interrogation of the intersected 

interactome / transcriptome data set by evaluating individual gene targets in a functional, RNA 

interference (RNAi) based screen. This would be relatively feasible considering the ease of 

conducting genetics in Drosophila. 
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MATERIALS AND METHODS 

Sleep 

Sleep assays were performed according to standard procedures (Andretic and Shaw 2005). 

Conditions were standardized to avoid any inconsistencies since behavior can be affected by 

many factors. Virgin females of genotype w,UAS-dcr2; c929-GAL4; were crossed to males from 

the Vienna Drosophila RNAi Center (VDRC; Dietzl et al. 2007). The screen was carried out with 

the VDRC KK library, which was made by inserting UAS-RNAi casettes into a single attP 

genomic site on chromosome II. As controls, w,UAS-dcr2; c929-GAL4; virgins were crossed to 

the yw; attP; males. The yw; attP; stock was originally used to create the VDRC KK RNAi library 

and is isogenic with the UAS-RNAi lines. Two or more crosses were done for each genotype in 

each biological replicate in order to be able to collect 20 female offspring within 48 hours. For 

each cross, 15 virgin females were crossed to 5 males at 25°C in standard Drosophila vials. 

Males and females were allowed to mate for 5 days, and were then transferred out of the vials. 

Daughters from each cross were collected within 12 hours of eclosion and were in almost all 

cases virgins. After collection, virgin flies were housed in regular fly vials with ~20 flies per vial 

for three days under 12 hour light / 12 hour dark (LD) conditions. In all cases, flies were raised 

and aged on the same food medium (standard Drosophila medium). On day four, flies were 

placed in 65 mm x 5 mm glass tubes (VWR glass) containing standard Drosophila medium. 

Thus, flies were raised and their sleep tested while being fed the same medium. Flies were then 

transferred to behavior incubators, where they spent one day acclimating to LD conditions. Light 

emitting diodes (LEDs) were used as a light source. Light intensity was tightly controlled to be in 

the range of 40 – 50 Lux for all flies. Locomotor activity was collected with second generation 

Drosophila Activity Monitoring (DAM2) System monitors in one-minute bins (Trikinetics, 

Waltham, MA). Fly sleep was measured for five days, and analysis was done on the first day of 

behavior. Although data consistency from day one to day five is relatively high, a minority of flies 
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died during recording (from desiccation due to an accidental breach of the wax plug integrity, or 

other unknown factors). Therefore, the first full day of behavior is used for all sleep analyses. 

Sleep analysis was done with Excel macros provided by Dr. Paul Shaw (Washington 

University). Per convention, sleep was measured as bouts of uninterrupted inactivity lasting 5 

minutes (Andretic and Shaw 2005). Daytime sleep is defined as the total amount of sleep during 

the first twelve hours of the day (this is the period during which lights are on). Daytime sleep is 

defined as the total amount of sleep during the first twelve hours of the day (this is the period 

during which lights are on). Sleep data shown in Figure 1A were provided by Dongkook Park 

and were obtained by crossing UAS-dcr2; pdf-GAL4; females to UAS-dimm RNAi males. Two 

different DIMM RNAi lines from the VDRC library were tested: a KK line with precisely inserted 

UAS-RNAi, as well as DIMM RNAi from the GD library, which was created by random insertion 

transgenesis (Dietzl et al. 2007). 

RESULTS 

Functional genetic screen of integrated DIMM targets  

 The 170 transcripts that were identified by integrating DIMM ChIP-chip targets and the 

LEAP transcriptome are encoded by a total of 116 genes (Chapter 3 Table 3). Therefore, this list 

of 116 “integrated” genes likely represents true DIMM targets. In addition to in vivo binding and 

expression, DIMM can directly transactivate at least 12 of these target genes in luciferase in 

vitro transactivation assays (Chapter 3 Figure 4). Nevertheless, it is currently not known how 

DIMM target genes might affect the physiology of LEAP cells. Therefore, the role of these genes 

in DIMM-dependent LEAP cell functions was tested in a genetic screen for sleep defects. When 

DIMM expression is reduced in PDF-expressing LNv neurons, flies exhibit increased daytime 

sleep (Figure 1A). This effect can be solely attributed to DIMM+ large LNv neurons, which are a 

subset of LEAP cells (Sheeba et al. 2008; Shang et al. 2008). DIMM- small LNv neurons do not 
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express DIMM and likely have no role in sleep (Park et al. 2008; Sheeba et al. 2008; Shang et 

al. 2008).  

 In order to test the effect of DIMM target gene knockdown on sleep, RNAi was used to 

trigger gene knockdown in LEAP cells and the effect of this manipulation on sleep was 

monitored. Of the 116 DIMM target genes identified by integrating ChIP-chip and RNA-Seq data, 

62 were available from the VDRC KK RNAi library. These 62 isogenic RNAi lines were created 

by precise P-element insertion were tested 2 – 4 times as independent biological replicates in 

sleep assays. Results showed that manipulating many of DIMM target genes had an effect on 

one or more sleep parameters. Various sleep parameters examined included: sleep latency 

(time to the first sleep episode of the night), length of sleep episodes (bouts) during the day and 

night, length of the longest sleep episode during the day and night, as well as the number of 

sleep episodes during the day and night (Andretic and Shaw 2005). The most obvious effect of 

DIMM knockdown in PDF+ neurons is an increase in daytime sleep. Therefore, this was the first 

parameter examined in the sleep screen (Figure 1B). Indeed, knockdown of many of the high 

confidence DIMM targets in LEAP cells showed a tendency towards increased daytime sleep, 

which partially phenocopied DIMM loss-of-function sleep phenotype (Figure 1A). This effect was 

not significant by a one-way ANOVA with a Bonferroni correction except in the case of Tango14 

knockdown. A third of the crosses tested had daytime sleep changes that were significant by an 

unpaired student t-test (p-value 0.05). By visual inspection, RNAi lines clearly cluster in the right 

half of the graph, whereas control flies (shown in black) sleep ~100 minutes during the first 

twelve hours of the day (Figure 1B, 1C). RNAi manipulations with some of the most extreme 

deviations in daytime sleep were: Tango14, CG15394, jaguar (Myosin VI), and Rpn9 (Figure 

1C). Additionally, many genes had strong effects on other sleep parameters (data not shown).  
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DISCUSSION 

 When genome-wide studies yield lists of genes implicated in a certain process, it is 

commonly useful to evaluate the validity of such genes in a functional screen. Since LEAP cells, 

and in particular the large LNv DIMM+ neurons, have been implicated in sleep control, I chose 

to conduct an RNAi-based screen for sleep defects induced by loss of DIMM target gene 

expression in LEAP cells. The sleep screen showed that knockdown of a significant portion of 

the DIMM target genes identified by interactome/transcriptome integration produced sleep 

defects. In particular, a third of tested RNAi lines phenocopied DIMM RNAi sleep defects with 

statistical significance.  

There are several explanations available for explaining why all RNAi lines did not 

phenocopy DIMM RNAi sleep defects. Many DIMM target genes could function redundantly with 

several other proteins, so it is unlikely that knockdown of any one gene would be able to 

phenocopy the DIMM loss-of-function sleep phenotype. Indeed, only a few genes produced a 

sleep phenotype across all the various sleep parameters such as daytime and nighttime sleep, 

sleep latency, the number and length of sleep episodes. Nevertheless, many genes produced 

defects in at least one of these categories compared to controls. Furthermore, due to the 

inherent variability in sleep time results that exists even after the most rigorous controls, it is 

entirely possible that finishing the screen with 4 biological replicates for each tested genotype 

could lead to increased ability to determine statistical significance (Andretic and Shaw 2005).  

Another potential reason for why some of the tested 62 lines failed to show statistically 

significant sleep changes could be due to the GAL4 line used in the sleep study. Although c929-

GAL4 overlaps greatly with DIMM-expressing neurons, this collection of cells is highly 

heterogeneous with respect to neuropeptide expression. C929-GAL4 cells express at least 17 

different neuropeptides, and likely more (Park et al. 2008). It is possible that some 

neuropeptides could be sleep-promoting, whereas others, such as PDF, could be wake-
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promoting (Parisky et al. 2008). Therefore, interfering with synthesis, accumulation, storage or 

trafficking of sleep-promoting and wake-promoting neuropeptides could have neutralizing effects 

on sleep. In other words, sleep defects induced by RNAi-based knockdown of DIMM target 

genes in one subgroup of c929-GAL4 cells could be cancelled out by another subgroup of c929-

GAL4 cells. This could be correct by perhaps using pdf-GAL4 for a repeat sleep screen. This 

GAL4 line is only expressed by ~20 PDF-expressing peptidergic neurons that have clearly been 

implicated in wake-promoting activity (Sheeba et al. 2008; Shang et al. 2008). 
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Figure 1. Genetic screen for sleep defects induced by RNAi of DIMM targets derived from 

integrated interactome / transcriptome analysis (A) DIMM RNAi in PDF-expressing LNv cells 

increased daytime sleep compared to w1118 controls. Pdf-GAL4 was used to knock down DIMM 

expression with two different dimm RNAi constructs from the Vienna Drosophila RNAi Center 

(VDRC). (B and C) DIMM targets were knocked down by RNAi expressed in DIMM+ cells. UAS-

dcr2; c929-GAL4; females were crossed to UAS-RNAi males from the VDRC attP-based KK 

Library or the UAS-attP empty vector controls. (B) Knockdown of many of the integrated DIMM 

targets in DIMM-expressing cells shows a tendency towards increased daytime sleep, which 

partially phenocopies DIMM loss-of-function sleep phenotype. Daytime sleep values are 

displayed for 62 tested KK VDRC RNAi lines (blue) and the attP control progeny (shown in black 
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color). Histograms represents means and SEMs of at least two and in most cases three or four 

independent biological replicate assays (C) Sleep per hour depicted over a circadian day for 

selected genotypes from the same analysis as in (A). Control shown in black.  
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THESIS SUMMARY 

This thesis presents two approaches to understanding the mechanism that DIMM 

uses to instruct cells to produce LDCVs, scale up RSP components and develop most or 

all competencies required of a NE cell except for selection of neuropeptide cargo. In 

Chapter 2, I contributed molecular and bioinformatic efforts to a larger, multidisciplinary 

study. This study aimed to understand how DIMM functions by trying to identify a few 

crucial DIMM targets and to confirm the fidelity of these targets by multiple assays. The 

contribution of these individual gene targets to DIMM-dependent physiology was 

assessed by cellular, molecular and proteomic assays. This study provided the first 

specific clues about how DIMM functions in a molecular context. In Chapter 3, I took a 

genome-wide approach to understanding the mechanism of DIMM function. I first 

attempted to identify all direct genomic targets of DIMM by ChIP-chip. In order to 

correlate genome binding to gene activation, I profiled gene expression in LEAP cells by 

RNA-Seq. I then merged these two data sets by identifying ChIP-chip targets that were 

enriched in LEAP cells. The integration of these two data sets allowed me to obtain the 

most direct measure of DIMM direct gene targets. In Chapter 4, I carried a pilot genetic 

screen for sleep behavioral defects caused by RNAi-based knockdown of DIMM target 

gene expression. These results show preliminary effects on sleep that need to be further 

investigated. In sum I produced a body of information detailing precisely how DIMM 

operates in LEAP cells by identifying the genes that it regulates, their expression levels 

and preliminarily, some functional consequences of their knockdown. Here I discuss the 

overall scope of the work, including what I see as limitations and caveats, as well as a 

summary of the major conclusions and my opinions on potentially useful future 

directions. 
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Section on Limitations. 

Limitations of tagged DIMM::MYC ChIP-chip. 

 In Chapter 3, I carried out tagged ChIP-chip to identify direct DIMM binding 

targets. This approach is a modification of traditional ChIP-chip, which is carried out with 

native antibodies against the transcription factor of interest to immunoprecipitate DNA-

protein adducts after crosslinking. I resorted to tagged ChIP-chip after originally 

attempting ChIP with an anti-DIMM antibody that was developed in the laboratory, and 

which has shown specificity in tissue staining and Western blots. Unfortunately, this 

“native” antibody did not perform well in ChIP-chip in my hands. According to my reading 

of the literature, this is not an uncommon occurrence, as ChIP antibodies must be able 

to capture fixed epitopes in solution. I therefore adapted my approach by using the 

GAL4-UAS system to express a single copy of a DIMM transgene tagged at the C-

terminal with 6 copies of the human hexapeptide MYC tag. I used c929-GAL4 in 

combination with the TARGET system in order to achieve precise, spatiotemporally 

controlled induction of DIMM::MYC only in DIMM+ adult neurons (McGuire et al. 2003).  

Application of affinity-tagged transgenes is a frequently-used strategy for carrying 

out ChIP-chip in vivo (Kolodziej et al. 2009; Mazzoni et al. 2011). Tagged ChIP-chip is 

used when a ChIP-grade antibody is not available or when a native antibody recognizes 

several isoforms of a transcription factor, or also when it recognizes heterologous 

molecules (Harada and Nepveu 2012). Nevertheless, as with any approach, including 

native antibody ChIP-chip, there are drawbacks to tagged ChIP-chip. One major 

potential source of error (false positives) is genome-binding artifacts arising from 

overexpression of the transcription factor being studied. The hypothesis here is that 

increasing expression levels of the transcription factor under study, beyond those found 

in normal cells, leads to increased competition with other transcription factors for similar 
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binding sites in the genome. This, in turn, could cause promiscuous binding to occur at 

those loci not normally bound by the transcription factor in question. While this is a valid 

point, several experiment-specific conditions need to be examined. The main issues are 

those of space and time where the ChIP-chip transgene is induced. Is transgene 

induction global, e.g., in the whole brain, or is it more limited, as I performed my study in 

Chapter 3? Second, is the transgene induced from the birth of the animal, when 

chromatin structure is being established, or is the transgene induced in fully 

differentiated, adult cells, as in Chapter 3? In the latter example, the animal develops 

chromatin boundaries normally, and its cells express normal levels of transcription 

factors, until the transcription factor transgene is turned on in adult, post-mitotic cells. 

Overexpression artifacts are more likely to happen with broad overexpression that 

begins at birth and is maintained for the life of the animal. In order to avoid such artifacts, 

I selectively induced DIMM::MYC in adult cells that normally express DIMM.  

Another issue is the potential for off-target binding by a transcription factor that is 

expressed at supra-physiological levels. For example, it may compete with other similar 

transcription factors (in this case, other members of the Atonal superfamily of bHLHs) for 

related target sites. In theory, extraneous binding would be weaker than endogenous 

binding because affinity for sites normally bound by other bHLHs is presumably lower 

than the affinity for the sites that the particular bHLH under study binds on its own. False 

positives could also occur by binding to sites that match the native binding site but are 

normally not bound by any transcription factors. Since bHLHs are known to bind six-base 

pair long E-boxes (Powell and Jarman 2008), such sequences occur throughout the 

genome in all parts of a gene, as well as intergenically at a rate of approximately once 

every 2 kB. It is possible that some of these sites are found in open chromatin due to 

stochasticity or unrelated transcription. Hence, an overexpressed transcription factor 
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could bind to such sites more frequently than the same transcription factor at physiologic 

levels. Finally, it is possible that the affinity tag that is placed at the N or C-terminal of a 

transcription factor could interfere with the native function of the transcription factor in 

question, or it could cause some neomorphic interactions. The UAS-DIMM::MYC 

transgene used in Chapter 3 is capable of rescuing the dimm null mutants (Hewes et al. 

2003). Therefore, the possibility that the MYC hexapeptide interferes with the normal 

function of DIMM is less likely, due to the successful transgene rescue of the mutant.  

A recent study examined results obtained from tagged ChIP versus native 

antibody ChIP against the bHLH Olig2 at great length (Mazzoni et al. 2011). 

Comparisons between native antibody and tagged ChIP-seq showed that endogenous 

Olig2 and inducible Olig2-V5 ChIP-seq experiments were in agreement (Mazzoni et al. 

2011). Furthermore, the binding-site distribution found in both experiments was also 

highly concordant (Mazzoni et al. 2011). Comparing the read counts at enriched peaks 

showed that only 0.2% and 1.1% were differently enriched in the native Olig2 and Olig2-

V5 ChIP experiments, respectively (Mazzoni et al. 2011). This is the first study to 

systematically compare tagged ChIP and native ChIP results. The authors used a 

doxycycline-inducible system in differentiating embryonic stem cells and generated 24 

tagged lines. Interestingly, the authors observed that the efficiency and homogeneity of 

transgene induction declined in postmitotic neurons (Mazzoni et al. 2011). My DIMM 

ChIP-chip study (Chapter 3) likely does not suffer from the decreased postmitotic 

efficiency because ChIP-chip was carried out in vivo, in cells that were already 

expressing normal levels of DIMM. Therefore, the chromatin state of DIMM-positive cells 

already allowed for DIMM expression and DIMM target expression, with DIMM cell 

specification and progenitor delineation having occurred normally during DIMM::MYC-

unaffected development. Furthermore, DIMM is normally expressed only in postmitotic 
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neurons, with DIMM expression not commencing until the neuroblast daughter cell exits 

the cell cycle in the embryo (Allan et al. 2005; Hewes et al. 2003). Nevertheless, even 

though the experimental setup that I used in Chapter 3 differs from that of Mazzoni et al. 

(2011), both sets of experiments were carried out on tagged transcription factors that 

were induced from transgenes. Mazzoni et al. (2011) were fortunate to have ChIP-grade 

native antibodies available in addition to the tagged transgenes. The authors were 

therefore able to compare tagged ChIP-seq results directly to native antibody ChIP-seq 

results and observed a remarkable overlap in results.  

The above referenced study is an example of an excellent validation study that 

demonstrates the utility of tagged ChIP in identifying transcription factor binding 

(Mazzoni et al. 2011). Nevertheless, each system is different, so proper scrutiny would 

require that each tagged ChIP experiment be verified by native antibody ChIP. In most 

cases, this is not possible, because tagged ChIP is usually employed because native 

antibody ChIP failed or a native antibody is not available. In the case of DIMM, there 

currently is no ChIP-grade native antibody available. Therefore, DIMM::MYC ChIP-chip 

results cannot be compared against DIMM native antibody ChIP-chip. It is possible that 

some of the binding peaks identified by DIMM ChIP-chip could represent overexpression 

artifacts and not true DIMM binding sites. This possibility cannot be completely excluded, 

no matter how careful the experimental design is.  

Even with native antibody ChIP-chip, there is no guarantee that all identified 

binding sites represent true events. In most cases, authors test the performance of a 

certain number of binding sites in transcription factor luciferase reporter assays, such as 

the one employed in Chapter 3. This in vitro assay directly tests the ability of an 

activating transcription factor to activate luciferase expression from an enhancer 

fragment located on an episome. An alternative technique is the electrophoretic mobility 
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shift (EMSA) assay, which is even more devoid of a cellular context and can have a high 

rate of false positives. Ultimately, gene expression studies are another way to deduce 

the validity of ChIP-chip results. Optimally, a gene expression profile of the cell type in 

which the ChIP-chip transgene was induced should be obtained. Additionally, it is 

beneficial to have a loss-of-function gene expression profile, obtained from the cell type 

of interest lacking expression of the transcription factor under study. In Chapter 3, I 

presented the LEAP cell transcriptome but we currently do not have a DIMM loss-of-

function LEAP cell transcriptome. The normal transcriptome is useful in assessing the 

correlation of ChIP-chip peaks with gene expression. As outlined in Chapter 3, the basic 

assumption is that DIMM acts as an activator of gene expression. Therefore, DIMM 

binding in the proximity of a gene should correlate with the enrichment of that gene in 

LEAP cells.  

FACS sorted cells may be damaged 

 Preparation for FACS sorting requires that cells be disaggregated from each 

other and dissociated into single cells or clumps of a few cells (Givan 2011).  During 

FACS, cells are exposed to mechanical damage from high pressures and speeds. As a 

consequence, all information about tissue architecture and cell distribution is lost after 

FACS sorting (Givan 2011). Strictly speaking, such information is not required for gene 

expression profiling or ChIP-chip studies. These studies do not examine the morphology 

of cells, but rather their RNA or nuclear contents. Nevertheless, dissociation of cells in 

preparation for FACS can damage cells even before FACS is started. When fragile cells 

are put through a FACS machine that generates high pressures and speeds, the cells of 

interest can be further damaged. FACS can produce strong shearing forces, making it 

tricky to sort more fragile, adult neurons (Hempel et al. 2007). Whether or not this affects 

gene expression depends on the tissue and cell type, dissociation method, type and 
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speed of FACS sorting and other factors. Cell viability after FACS sorting can be 

checked by various vitality dyes that enter damaged cells that have initiated apoptosis. In 

order to assess cell vitality, I used a vital dye in Chapter 3, which showed that the 

majority of LEAP cells are alive after sorting. Although cells may be intact mechanically, 

it is still possible that they are quite altered due to FACS sorting. The key parameter here 

is the amount of time between tissue harvesting and the sorting endpoint, which is RNA 

capture in cell lysis buffer. This last step essentially freezes the cellular RNA contents in 

time by lysing cells and neutralizing RNase activities. In my experiments, I tried to keep 

this time as short as possible, to minimize any cell damage effects of cell sorting.   

 The major argument I can offer against the possibility that the quality of the RNA-

seq results I obtained were compromised by the FACS methods is that the DIMM-

positive collection of cells produced the heavy enrichment of DIMM and neuropeptides 

that was expected from our prior understanding of DIMM cell biology. For example, there 

are certain neuropeptides that are expressed exclusively in DIMM-positive LEAP 

neurons, whereas others are expressed in DIMM-negative ones exclusively, and yet 

others in both sets (Park et al. 2008).  My results were highly concordant with these 

three general categories.  Hence I submit that the possibility for a biasing of my results 

(due to disruption of gene expression by cell isolation) appears low. 

Section on Major Conclusions 

A delimited and defined number of transcription factors downstream of DIMM 

In Chapter 3, I showed that only a few transcription factors are found amongst 

DIMM targets. One transcription factor family appeared to be overrepresented: members 

of the Atf/CREB family of bZIP genes. The fact that several bZIP genes are DIMM 

targets is intriguing in light of the fact that DIMM only activates six transcription factors, 

and those six come from three transcription factor families. There are an estimated 451 
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sequence-specific transcription factors in Drosophila (The Drosophila Transcription 

Factor Database FlyTF.org, v1.0). Of 451 transcription factors, there are only 16 bZIP 

genes and 4 of the 16 bZIPs are DIMM targets. Compared to the relatively small bZIP 

gene family, other transcription factor families contain many more members: bHLHs (53 

members), homeodomain factors (73 members) and zinc finger transcription factors (91 

members). The fact that four of six DIMM-targeted transcription factors are bZIPs is likely 

telling of DIMM function. ATF/CREB bZIP factors control a wide variety of physiologic 

processes, but what they share in common is transcriptional control of stress-response 

genes (Persengiev and Green 2003).   

One member of the mammalian ATF/CREB family, Atf2 has been shown to 

interact with three beta cell enriched transcription factors to cause synergistic activation 

of the insulin promoter (Han et al. 2011). This is interesting in light of the fact that data 

presented in this thesis strongly argue against DIMM acting as a transcriptional activator 

of neuropeptide expression. Drawing parallels to Atf2 in the mammalian beta cell, it is 

possible that some of the ATF/CREB transcription factors that DIMM activates could 

contribute to the transcriptional activation of individual neuropeptide genes. Therefore, 

while DIMM does not activate neuropeptides, some of its downstream transcription factor 

targets could do so combinatorially with other factors. Another mammalian ATF/CREB 

factor, Atf-1, acts as a potent repressor of cyclic AMP-responsive element (CRE)-

mediated transcription. Atf-1, also known as Inducible cAMP early repressor (ICER) 

plays an important role in the mammalian neuroendocrine and circadian systems, where 

it regulates transcription of the neuropeptide melatonin (Foulkes et al. 1996; Foulkes et 

al. 1997). ICER also coordinates reaction to hypothalamic-pituitary-adrenal axis 

stimulation by inhibiting Corticotropin Releasing Hormone (CRH) transcription (Della 

Fazia et al. 1998; Borlikova and Endo 2009). The fact that several mammalian and fly 
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ATF/CREB factors play roles in the (neuro)endocrine system provide more support for 

the role of DIMM as the super-organizer of such factors, and thereby the secretory 

capacity of a cell. 

One view of scaling factor action is that such factors do not activate many 

transcription factors. If a scaling factor activated many downstream transcription factors, 

its effects would depend on the timing and ability of the downstream transcription factors 

to exert precise and coordinated effects on their genomic targets. This would delay 

action of the master scaling factor itself and would therefore not be a very effective way 

to exert its function. Instead, a scaling factor can act more immediately by activating 

‘terminal’ genes needed for specific functions in a subcellular compartment, such as 

LDCVs.  In addition to these “terminal” genes, a scaling factor would activate only a few 

key transcription factors that are also responsible for the function of a particular 

subcellular compartment.  

If DIMM had to control a large number of downstream transcription factors, its 

function would require a coordinated effort of multiple downstream DNA-binding activities 

that would have to produce a timely effect on the transcriptome of the cell. In contrast, I 

propose that if DIMM activates a few downstream factors and many direct RSP 

participants, this would allow for a more dynamic and direct function in the RSP. Some of 

the downstream transcription factors that DIMM activates are also known transcriptional 

repressors. This would be another point of regulation of the transcriptome. Instead of 

acting directly as a transcriptional repressor, DIMM could activate specific transcriptional 

repressors that would then inhibit certain pathways or genes, whose function might 

directly interfere with the expansion and operation of a robust RSP. The study of 

Hamanaka et al. (2010) showed that DIMM promoted the peptidergic cell fate at the 

expense of the classic neurotransmitter cell fate. The molecular arm of this repression 
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was never identified and work presented in Chapter 3 provides the first clues as to how 

this might be achieved. Furthermore, it is possible that DIMM activates several 

transcriptional repressors that function in negative feedback loops, similar to some 

members of the clock system (Nitabach and Taghert 2008). Two of the six transcription 

factors targeted by DIMM are already known to participate in negative feedback loops 

(Matsumoto et al. 2007; Kadener et al. 2007). 

Neuropeptides are not downstream of DIMM 

Analysis of DIMM targets in Chapter 3 shows that neuropeptides are not direct 

DIMM targets. Allan et al. (2005) had put forward the hypothesis that DIMM performs two 

related functions in individual DIMM cells: that DIMM directly activates its exclusive gene 

targets (like PHM) and that DIMM cooperates with different sets of other transcription 

factors to produce codes specific to activate different neuropeptide genes. Hamanaka et 

al. (2010) proposed an alternative hypothesis – that DIMM does not participate in 

neuropeptide (cargo) gene activation, but only in the support of the “peptidergic 

secretory machinery.” My systematic analysis now fully supports and validates the latter 

hypothesis. Work in Chapter 3 is one of the first demonstrations that scaling factors such 

as DIMM act on whole subcellular compartments instead of on the specific cargo inside 

those compartments. This is well in agreement with the idea of scaling factor action. 

Scaling factors are thought to act on whole subcellular compartments, regardless of the 

particular cell subtype. The idea is that many heterogeneous types of cells are found 

even within a single tissue. For example, DIMM-positive cells express at least 17 

different neuropeptides, and likely more (Park et al. 2008). Therefore, LEAP cells are 

highly heterogeneous with respect to their peptidergic identity, but they share the ability 

to make, store and release large amounts of neuropeptides. DIMM ensures this ability, 

but does not act as the master selector of peptidergic identity. Instead, there are likely 
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several other transcription factors that act combinatorially to select appropriate 

neuropeptides for expression in the dedicated cell type. This ensures that all LEAP cells 

have the cellular capacity for neuropeptide secretion, and can appropriately select the 

correct neuropeptide(s) for expression, and ultimately, for their dedicated NE function. 

DIMM activates the major neuropeptide biosynthetic enzymes 

 Results from Chapter 3 also demonstrated that DIMM activates all major 

neuropeptide biosynthetic enzymes. Although this finding is somewhat intuitive (meaning 

it would have been difficult to explain if it had not been true), demonstrating it, and 

demonstrating the extent to which it is true among all possible genes encoding modifying 

enzymes remains a valuable contribution.  In the case of peptidergic neurons, the 

biosynthetic and processing enzymes are located in the trans-Golgi and also packaged 

within immature LDCVs, where they operate directly on peptide precursors. Hamanaka 

et al. (2010) elegantly demonstrated DIMM’s capacity to instruct cells to make ectopic 

LDCVs. DIMM, along with Mist1, is the only known transcription factor able to scale up 

LDCVs inside a cell. Based on Chapter 3 results, one can predict that the ectopic LDCVs 

produced inside photoreceptors contain all major neuropeptide biosynthetic enzymes 

(Hamanaka et al. 2010).  The number of known or putative enzymes controlled by DIMM 

is five, and includes both ones whose roles in neuropeptide biosynthesis are well-

established (like Prohomone convertase 2) as well as ones not previously described as 

such (e.g., slamdance; Zhang et al. 2002). 

Unexpected roles of DIMM targets: endocytosis and RNA regulation 

 Amongst unexpected findings in Chapter 3, the inclusion of genes involved in 

endocytosis and RNA metabolism as direct DIMM targets were particularly novel. The 

endocytosis genes are intriguing because they are the first link between DIMM and 

processes that could be occurring after massive neuropeptide release (suggested to 
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normally occur in LEAP cells). Changes occurring at the cell membrane during 

prolonged and copious release of neuropeptides are not trivial as the cellular contents 

and architecture are rapidly changing. Such a cell likely needs to replenish numerous 

structural components, as well as major signaling factors, and orchestrate a highly 

choreographed re-capture of LDCV membrane from the plasma membrane for recycling. 

From work on classic neurons, it is known that endocytosis is one way of replenishing 

critical components that are lost during synaptic transmission (Südhof 2007). Following 

exocytosis, synaptic terminals must rapidly replenish their vesicle pool by locally 

recycling synaptic vesicles (Zhang 2003). Recent work has shown that in many 

synapses, exocytosis of neurotransmitter is coupled to endocytosis, and that synapses 

have evolved a specialized apparatus of scaffolding proteins to comply with these 

demands (Haucke et al. 2011). Exocytosed synaptic vesicle membrane proteins and 

lipids are recycled at the periactive zone that surrounds the release site, in order to 

restore functional synaptic vesicle pools for reuse and to ensure long-term functionality 

of the synapse (Haucke et al. 2011). It is therefore entirely possible that cellular sites of 

NE cargo release have similar requirements for the replenishment of basic building 

blocks necessary for their type of neurotransmission. DIMM could play a role in this 

process by directing transcription of proteins involved in endocytosis of specific cargo, 

which may be particularly important for the proper functioning of LEAP cells. By virtue of 

this significant target list, my work is the first to call attention to the fundamental 

importance of LDCV endocytosis in the biology of peptidergic neurons.   

RNA regulation is another process that was not previously implicated to be 

included in DIMM action mechanism. Several RNA-regulatory factors were identified as 

major DIMM targets in Chapter 3. How regulation of various RNA species affects LEAP 

cell physiology is entirely unknown at this point. There are several examples of bHLH 
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transcription factors activating RNA-binding proteins with key roles in the processes 

controlled by the bHLH in question. One such example is the bHLH MyoD and its RNA-

binding protein target Seb4/RBM24 (Li et al. 2010). MyoD activates RBM24 in the 

developing Xenopus embryos and loss of RBM24 produces a phenotype similar to a 

MyoD dominant negative mutant (Li et al. 2010). Therefore, the MyoD target gene 

RBM24 appears to be required for expression of myogenic genes in the frog embryo (Li 

et al. 2010). Another example comes from the mammalian bHLH NeuroD and its RNA-

binding protein target SRp38 (Liu and Harland 2005). NeuroD activates SRp38 and 

SRp38 inhibits neuronal differentiation at a step between neurogenin and neuroD activity 

(Liu and Harland 2005). SRp38 inhibits neural differentiation in the Xenopus embryo but 

it does not affect neural induction or competence (Liu and Harland 2005). SRp38 is a 

known mitotic splicing repressor, but it may also act by regulating ribosome biogenesis, 

via its binding to the 28S rRNA (Liu and Harland 2005). The examples of RBM24 and 

SRp38 illustrate that RNA-binding proteins that are transcriptionally activated by certain 

bHLHs may play important roles in biologic processes controlled by the bHLH in 

question. What is interesting about DIMM-targeted RNA-binding proteins is the fact that 

LEAP cells are a mature, post-mitotic lineage. Therefore, the RNA-binding proteins that 

DIMM targets do not function in the context of a developing, highly mitotic lineage. 

Nevertheless, the intracellular environment in NE cells might be similarly dynamic 

because NE cells are required to integrate many environmental stimuli and to produce 

long-lasting effects on the whole organism. It is possible that due to the highly complex 

nature of LDCV formation, storage, traffic and release, particular RNAs must be 

precisely modified with respect to their half-lives, biochemical modifications, translation 

and localization.  



Chapter 5 

 191 

The value of establishing all major gene targets for a regulatory transcription 

factor  

 Establishing a particular transcription factor’s gene regulatory interactome and 

interpreting these results in the context of a cell-specific transcriptome are important for 

various reasons. First, this will help us understand how a particular transcription factor 

acts inside a cell in order to accomplish its various functions. Specifically, for a scaling 

factor, this will allow us to understand how whole subcellular compartments are 

constructed inside of cells. Second, interactome / transcriptome identification is helpful 

because we currently lack complete models of transcription factor action in specific cell 

types, as opposed to whole tissues. Publicly supported group projects such as 

modENCODE and ENCODE have understandably focused on profiling whole tissues. 

Cell-type specific models of transcription factor actions are useful especially in 

evolutionary contexts: do Drosophilids use more or less complicated gene regulatory 

hierarchies to accomplish similar tasks as mammals? Does a fly scaling factor 

accomplish the same scaling effect as a homologous mammalian scaling factor by using 

the same types of tools, or by using completely different tools? If so, do both types of 

scaling factors arrive at their goal by completely different methods? Or is the gene 

regulatory logic required for scaling conserved between mammals and flies? Although 

these questions might seem esoteric, they have real life applications. For example, beta 

cells have LDCVs and a robust RSP. Attempts at understanding beta cell biology have 

been ongoing for decades, but we are still unable to effectively repair a defective RSP 

inside these cells. Diabetes is rapidly escalating as a 21st century epidemic, yet, we do 

not know understand in great detail how beta cells are constructed to make insulin. 

Section on Future Directions. 

Elucidating LEAP cell LDCV content and uniformity by ultrastructural methods 
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Transmitters are stored in vesicles and granules that have transmitter-specific 

morphological characteristics.  For example, glutamate-filled and acetylcholine-

containing vesicles are round, small (~35 nm in diameter) and display a clear core 

(Watson and Schürmann 2002; Honda and Semba 1995). GABA-containing vesicles are 

often small and clear, but flattened (Fabian-Fine et al. 2000; Hamori et al. 1990).  Amine 

containing granules are slightly larger and have a characteristic dense core (Shkolnik 

and Schwartz 1980).  Peptide-containing granules are significantly larger (80-200 nm) 

and also display a dense core (Borgonovo et al. 2006; Crivellato et al. 2005; Crivellato et 

al. 2006; Edwards 1998). Overall, LDCVs tend to be at least twice the size of small 

synaptic vesicles (Bruns et al. 2000). Given the association of DIMM with the biology of 

peptide LDCVs (Hamanaka et al. 2010), it is natural to inquire about the relationships 

between the individual genes that DIMM activates and the production, stabilization, 

trafficking, accumulation, release and or endocytosis of LDCVs. If DIMM instructs cells 

how to scale up the LDCV compartment, an obvious question pertains to the nature of 

the LDCVs formed. If DIMM acts through a single mechanism, the implicit assumption is 

that it will instruct the cells to produce a single type of LDCV. Since LDCVs are a 

subcellular structure, they can only be effectively visualized by electron microscopy 

(EM). It could therefore be useful to assess the consequences of DIMM action at the 

ultrastructural level by obtaining EM images of purified LEAP cells. The number, size 

and characteristics of LDCVs could be assessed in detail from EM images. If the 

prediction is true, LEAP cells should have a fairly homogenous pool of LDCVs that are 

produced in response to DIMM action. An interesting correlate is that peptide-containing 

granules in non-DIMM cells may have a distinct category of LDCVs (morphologically, 

biochemically, physiologically distinct).  On the other hand, LEAP cell LDCVs could be 

heterogeneous if their underlying peptide cargo has important consequences on the 
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size, shape and characteristics of the LDCVs that house the cargo. Just such a 

relationship between cargo content and LDCV morphology has been proposed for the 

case of granules containing the Atrial Natriuretic Factor (Baertschi et al. 2001).   

Identifying DIMM loss-of-function transcriptome  

In Chapter 3, I identified the normal LEAP cell transcriptome. While this is a 

useful first step in assigning ChIP-chip peaks to genes, its value will be even grater once 

it can be compared to the gene expression profile of LEAP cells that have acutely lost 

DIMM expression. This loss-of-function gene expression profile would be a snapshot of 

changes in transcript levels that occur with loss of DIMM support and help interpret the 

full list of DIMM targets identified in Chapter 3. The loss-of-function transcriptome would 

allow one to check whether or not LEAP cells lose expression of identified DIMM target 

genes when they lose DIMM expression. Furthermore, it is likely that numerous other 

genes will have perturbed levels, as an indirect / downstream consequence of DIMM 

loss. Changes in the expression of these genes would tell us about what downstream 

processes DIMM controls. This would be helpful in case that DIMM acts not only as a 

scaling factor, but also in other, as of yet, unknown ways. Furthermore, the DIMM loss-

of-function gene expression would be helpful in identifying any genes that DIMM might 

repress. In this case, such genes would be expected to be upregulated upon DIMM loss.  
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