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ABSTRACT
Limone is a new coordination model and middleware that
enables rapid application development for wireless ad hoc
networks entailing logical mobility of agents and physical
mobility of hosts. Designed to function in open environ-
ments, Limone performs automatic agent discovery but fil-
ters the results to define for each agent an individualized
acquaintance list in accordance with run-time policies that
are customizable by the application. This asymmetry among
participants represents a new direction in coordination re-
search and is dictated by the need to accommodate settings
involving large numbers of agents and hosts that come and
go freely. The coordination context is limited to the specific
needs of the individual agent and its coordination activi-
ties are restricted to tuple spaces owned by peers present
in the acquaintance list. Designed for wireless ad hoc net-
works, Limone tailors Linda-like primitives to address the
challenges of mobile environments. This entails the elim-
ination of remote blocking operations and the addition of
timeouts to all distributed operations since disconnection
with the affected agents may occur at any time. It also
entails the addition of reactions that are triggered by the
presence of information of interest on agents listed in the
acquaintance list. Finally, to ensure performance and ease
of deployment on small devices the granularity of atomic op-
erations and the assumptions about the environment have
been minimized. This paper introduces Limone, explains its
key features, illustrates its usage, and explores its effective-
ness as a software engineering tool.

1. INTRODUCTION
Mobile computing devices having wireless capabilities have

experienced rapid growth in recent years due to advances in
technology and social pressures from a highly dynamic so-
ciety. Many of these devices are beginning to allow for the
formation of ad hoc networks in which connected commu-
nities are formed without the aid of a wired network in-
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frastructure. Applications for ad hoc networks are expected
to quickly grow in importance because they address chal-
lenges set forth by several important application domains.
By eliminating the reliance on the wired infrastructure, ad
hoc networks can be rapidly deployed in disaster situations
where the infrastructure has been destroyed or in military
applications where the infrastructure belongs to the enemy.
Ad hoc networks are also convenient in day-to-day scenarios
where the duration of the activity is too brisk and localized
to warrant the establishment of a permanent infrastructure.
The salient properties of ad hoc networks create signifi-

cant new challenges for the application developer. The in-
herent unreliability of wireless signals and the mobility of
nodes result in frequent unannounced disconnections and
message loss. In addition, mobile devices are typically lim-
ited in battery and computational power, further exacerbat-
ing the difficulties associated with application development.
The limited functionality of mobile devices often leads to
strong mutual dependencies. Devices may have to cooper-
ate to achieve a common goal, resulting in a greater need
for coordination support. For example, in a planetary ex-
ploration setting ad hoc networking enables miniature rovers
each equipped with a single sensor to perform experiments
that demand data from any arbitrary combination of sen-
sors.
Mechanisms that address the complexities of ad hoc net-

works include enhancements to the operating system, spe-
cialized languages, and middleware. Among these, middle-
ware is the most popular. Operating systems are tightly in-
tegrated with low-level communication services (e.g., TCP
sockets) and expose too many details in the design of dis-
tributed applications. The development and use of new pro-
gramming languages typically require too great an invest-
ment and entail too high a risk. In contrast, middleware
provides higher level abstractions while minimizing risk by
using the existing software infrastructure. When designed
properly, middleware can divert attention from mundane
concerns like protocol development to more fruitful areas
like models, algorithms, and applications.
Of the numerous models for mobile environments that

have been developed, Lime [1, 2] is the only model to sup-
port ad hoc mobility. It is a coordination model that uses
distributed transactions to provide strong atomicity and con-
sistency guarantees provided that certain assumptions about
the environment are met. Unfortunately, many of these as-
sumptions, such as the ability to predict when a disconnec-
tion is about to occur, are impossible to meet. Furthermore,



it does not make sense for applications that rely on strong
atomicity and consistency guarantees (e.g., anything dealing
with monetary transactions) to use wireless ad hoc networks.
Thus, applications for such an environment should not re-
quire the high levels of atomicity and consistency guarantees
that Lime provides. It is this observation that motivated
this research effort.
In this paper we introduce Limone (Lightly-coordinated

Mobile Network), a new lightweight coordination model and
middleware for mobile environments supporting logical mo-
bility of agents and physical mobility of hosts. Limone
agents are software processes that represent the unit of mod-
ularity, execution, and mobility. In a significant departure
from existing coordination research, the individuality of each
agent is emphasized by focusing on asymmetric interactions
among agents. Each agent contains a new abstraction called
the acquaintance list which defines a personalized view of
remote agents within range. For each agent, Limone per-
forms remote agent discovery and updates its acquaintance
list according to policies that are customizable by the appli-
cation.
As in most coordination models, traditional Linda-like

primitives over tuple spaces [3] facilitate the coordination
of agent activities. However, Limone allows each agent to
maintain strict control over its local data, provides advanced
pattern matching capabilities, permits agents to restrict the
scope of their operations, and offers a powerful repertoire
of reactive programming constructs. The autonomy of each
agent is maintained by the exclusion of transactions and
remote blocking operations. Furthermore, Limone ensures
that all distributed operations contain built-in mechanisms
to prevent deadlock in the case of packet loss or disconnec-
tion. By emphasizing minimality of concepts and feasibility,
Limone is resilient to message loss and unexpected discon-
nection. This allows Limone to function in realistic ad hoc
environments where existing models cannot.
The paper starts with an overview of Limone in Section 2.

Section 3 presents a motivational example that describes
how Limone can be used to provide a spatially-directed mul-
ticast. Section 4 presents Limone’s run-time environment
which describes the functionality of the constructs Limone
provides for the application. We then proceed with a dis-
cussion in Section 5 of the assumptions and vulnerabilities
of Limone, and elaborate on its implementation. We end
with a section on related work (Section 6) that describes
how Limone can be used to implement existing coordina-
tion models, and we draw conclusions in Section 7.

2. MODEL OVERVIEW
The coordination model we present in this section has

been shaped by a set of highly pragmatics software engi-
neering concerns. Foremost among them is the desire to
facilitate rapid development of mobile applications in a mo-
bile setting under realistic assumptions regarding the envi-
ronment. While other models are willing to rely on strong
assumptions, such as precise knowledge about the status
of communication links, we readily acknowledge the unpre-
dictable and dynamic nature of wireless ad hoc networks.
As such, we do not presume to know when communication
links go up or down or the range of the wireless signals.
The model starts with the premise that a single round trip
message exchange is reliable and, under this minimalist as-
sumption, it offers a precise and reasonable set of functional
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Figure 1: An overview of the Limone model. Agents
are represented as ovals. Each agent owns a local
tuple space (LTS) and an acquaintance list (AQL).
In this example, agent C is shown as migrating to
host Y without a change in its acquaintance list,
which consists of B and D. The dotted rectangle
surrounding the tuples spaces of agents B, C, and D
highlight the tuples spaces that are accessible from
C.

guarantees. Moreover, even if this assumption is not met,
the system continues to function and tolerates possible mes-
sage losses through the use of timers.
The willingness to accommodate a high degree of uncer-

tainty about the physical state of the system raised impor-
tant research questions regarding the choice of coordination
style and associated constructs. A minimalist philosophy,
combined with the goal of achieving good levels of perfor-
mance, led to the emergence of a novel model whose elements
appear to support fundamental coordination concerns. Cen-
tral to the model is the organization of all coordination ac-
tivities around an acquaintance list that reflects the current
local view of the global operating context and whose compo-
sition is subject to dynamically changing admission policies.
From the application point of view all interactions with other
components take place by referring to individual members of
the acquaintance list. All operations are content-based, but
can be active or reactive. This perspective on coordination,
unique to Limone, offers an expressive model that enjoys an
effective implementation likely to transfer to small devices.
Limone assumes a computational model consisting of mo-

bile devices (hosts) that form ad hoc networks; mobile agents
that reside on hosts but can migrate from one host to an-
other; and data owned by agents that is shared through
Linda-like tuple spaces [3]. The relationship between hosts,
agents, and tuple spaces is shown in Figure 1. The features
of Limone can be broadly divided into four general cate-
gories: context management, explicit data access, reactive
programming and code mobility.
Central to the notion of context management is an agent’s

ability to discover neighbors and to selectively decide on
their relevance. Limone provides a beacon-based discovery
protocol that informs each agent of the arrival and departure
of other agents. Limone notifies each agent of its relevant
neighbors by storing them in individualized acquaintance
lists, where relevance is determined using an engagement

policy that is customizable by the application. Since each
agent has different neighbors and engagement policies, the
context of each agent may differ from that of its peers.
Existing coordination models for mobility in ad hoc envi-

ronments presume a symmetric and transitive coordination
relation among agents that is not scalable. If every node
must coordinate with every other node, the total computa-
tion required is the square of the number of nodes. Fur-
thermore, as the number of nodes increases, the likelihood



that some nodes move out of range also increases, generat-
ing frequent configuration changes. By allowing an agent to
restrict coordination to agents it is interested in, Limone is
better able to scale to dense ad hoc networks as well as to
devices with limited memory resources. For example, if an
agent is surrounded by hundreds of other agents but is in-
terested only in two of them, it can concentrate on these two
and ignore the rest, minimizing wasted memory and proces-
sor cycles. In addition, this asymmetry increases the level
of decoupling among agents and results in a more robust
coordination model that requires fewer assumptions about
the underlying transport layer [4].
Limone accomplishes explicit data access in a manner sim-

ilar to that employed by most other coordination models.
Each agent owns a single tuple space which offers opera-
tions for inserting and retrieving tuples through a pattern-
matching mechanism. Explicit data access spans at most
two agents. The agent initiating the data access (called the
reference agent) must have the remote agent in its acquain-
tance list. Our initial approach was to allow the reference
agent to perform operations on remote agent’s tuple space.
But upon further review, we decided for security and sim-
plicity reasons that the reference agent can only request a
remote agent to perform the operation for it. By doing this,
each agent maintains full control over its local data and can
implement policies for rejecting and accepting requests from
remote agents. This is accomplished using a remote opera-

tion manager.
The remote operation manager controls which re-

quests from remote agents are actually performed.
Implementation-wise, this manager is an interface that the
application can implement and configure Limone to use. By
default, all requests are allowed to be performed. This man-
ager greatly enhances the expressiveness of Limone since it
can be customized to perform relatively complex tasks such
as those dealing with security.
Suppose each agent creates a public/private key pair and

publishes its public key in a “read-only” tuple. The read-
only nature of this tuple can be enforced by the remote op-
eration manager, which can use the public and private keys
for secrecy and authentication. Suppose a reference agent
wishes to place a tuple onto a remote agent’s tuple space.
To do this, it can encrypt the data first by its private key,
then by the remote agent’s public key. The remote agent
can conclude with some degree of confidence that the tuple
is secret if it is able to decrypt it using its private key. It can
also conclude with some degree of confidence that the tuple
was sent by the reference agent if it can decrypt it using
the reference agent’s public key. While the analysis of the
degree of security is outside of the scope of this paper, the
intuition behind why total confidence is not possible is due
to the possibility of the man-in-the-middle attack where the
attacker injects fake public keys, confusing either or both
of the agents. The point is simply that the remote opera-
tion manager can be configured by the application to per-
form complex tasks, e.g., authentication, to decide whether
a particular operation should be performed.
Limone uses a single tuple space within each agent because

it is not limiting. Limone can mimic the behavior of multiple
tuple spaces á la Lime by utilizing special fields within each
tuple. This can be done without hurting time complexity
since the tuple space may be implemented as a hash table
keyed by a field in the tuple. Limone can also mimic a

single shared tuple space per host á la MARS by setting the
engagement policy to consider only agents on the local host.
Reactive programming constructs enable an agent to au-

tomatically respond to the appearance of particular tuples
within the tuple spaces of agents in its acquaintance list.
Two state variables within each agent, the reaction registry

and reaction list, support this behavior. A reference agent
registers a reaction by placing the reaction into its reaction
registry. Once registered, Limone automatically propagates
the reaction to all agents in the acquaintance list that satisfy
certain properties specified by the reaction (e.g., agent loca-
tion). At the receiving end, the operation manager is used
to determine whether to accept the reaction. If accepted,
the reaction is placed into the reaction list, which contains
the reactions that apply to the local tuple space.
When the tuple space contains a tuple satisfing the trigger

for a reaction in the reaction list, the agent that registered
the reaction is sent a notification consisting of a copy of
the tuple and an value identifying which reaction was fired.
If this agent receives this notification, it executes the code
associated with the reaction atomically. This mechanism,
originally introduced in Mobile UNITY [5], is distinct from
that employed in traditional publish/subscribe systems in
that it reacts to state properties rather than to data op-
erations. For instance, when a new agent is added to the
acquaintance list, its tuples may trigger reactions regardless
of whether the new agent performed any operations.
Code mobility is supported in Limone by allowing agents

to migrate from one host to another. When an agent mi-
grates, Limone automatically updates its context and reac-
tions. There are many benefits to allowing an agent to mi-
grate. For example, if a particular host has a large amount
of data, an agent that needs to operate on it over an ex-
tended period of time can relocate to the host holding the
data and thus have reliable and efficient access to it despite
frequent disconnection among hosts. Another example of
agent mobility is software update deployment. Suppose an
agent is performing a certain task and a developer creates a
new agent that can perform the task more efficiently. The
old agent can be designed to shutdown when the new agent
arrives. Thus, simply having the new agent migrate to the
same host as the old agent updates the application. To date,
such updates are common practice on the Internet. How-
ever, agent migration promises to be even more beneficial in
the mobile setting.

3. MOTIVATING EXAMPLE
In this section we illustrate some of the capabilities of

Limone by focusing on a simple problem involving a geo-
cast [6]. Consider a source agent and a group of agents
as shown in Figure 2. Each dot is an agent on a separate
host physically distributed in space as shown in the figure.
The lines connecting two agents indicate the existence of
a communication link between them. In this example, the
distinctively marked agent in the lower-left corner needs to
multicast a message to all agents located in the rectangle
appearing in the upper-right corner of the figure. The dot-
ted arrows indicate the path the message takes in reaching
the destination agents.
Geocast can be easily implemented in Limone using a

combination of reactions and explicit data accesses. Sup-
pose the initiating agent places a message in the form of
a tuple containing a destination location and data into its



Delivery Zone

Figure 2: This figure shows the topology of an
ad hoc network and an example geocast applica-
tion. For illustration purposes, the topology is fixed.
Each dot is an agent. In this example, the circled
agent sends a message to all agents encompassed
within the rectangle. The arrows depict the path
by which agents along the way pull the message un-
til it reaches the delivery zone, at which point the
message is propagated to all nodes in the zone using
a reaction mechanism.

tuple space. Special “delivery” agents have reactions sensi-
tive to this tuple. As the delivery agents move, they engage
with neighboring agents. If the neighboring agent has a mes-
sage tuple, the delivery agent’s reaction will fire. When this
occurs the delivery agent will consider its present location,
and the message’s present and destination locations. If the
delivery agent is closer to the destination, it will pull the tu-
ple from its current location and place it into its own tuple
space.
In Figure 2, the dotted arrows depict the path of the

message from the origin to the destination agents under a
simplified scenario in which no movement occurs. Assum-
ing agents move randomly and eventually encounter other
agents, the message will gradually move closer to its des-
tination and eventually reach it. While the message is in
transit, multiple remote agents may react to the tuple at
each step. This is not a problem because tuple removal is
done atomically by the agent that holds the tuple, mean-
ing only one agent will successfully grab the tuple. When
the message reaches one of the destination agents, it can
place the tuple into its own tuple space firing the reactions
of other destination agents. These destination agents can
repeat the process causing more destination agents to react
to the message. Eventually, all of the destination agents will
receive a copy of the message.
The success of this implementation depends upon essential

features of the mobile system, including movement patterns
and the probability of certain encounters among agents. It
is possible for a message to be grabbed by a delivery agent,
only to move away from the destination. However, the appli-
cation will continuously try to move the message towards the
destination and should eventually succeed provided there are
enough delivery agents moving towards the destination. The
entire geocast implementation entails only one replicated de-

livery agent whose code consists of essentially one reaction,

one input operation, and one output operation. The reac-
tion is used to notify the agent of a message tuple; the input
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Figure 3: The overall structure of Limone.

operation is used to pull the message towards the correct
region in space; and the output operation is used to further
transmit or propagate the message. An example implemen-
tation of geocast is given in Section 4. An analysis of its
performance is extremely complex and is outside the scope
of this paper. The point is: from the application developer’s
perspective, implementing geocast in a wireless ad hoc en-
vironment using Limone is trivial.

4. RUN-TIME ENVIRONMENT
Limone provides an environment for agents to operate via

the Limone Server, a software layer between the agent and
the underlying network transport layer. By using different
ports, multiple Limone servers may operate on a single host.
However, for the sake of simplicity, we will talk as if each
host were restricted to have a single Limone server.
An application uses Limone by interacting with an agent.

Each agent contains a tuple space, acquaintance list, re-
action registry, reaction list, and operation manager. The
overall structure of Limone is shown in Figure 3. An agent
allows the application to customize its profile, engagement
policy, and operation manager. An agent’s profile is a set of
objects that describe its properties. Its engagement policy
specifies which agents are of interest based on their pro-
files. The operation manager specified which remote op-
eration requests are allowed to be executed. This section
describes how Limone fulfills its responsibilities and is orga-
nized around the key elements of the run-time environment,
i.e., agent discovery, tuple space management, reactions, and
agent mobility.
Discovery Mechanism. Since network connectivity be-

tween hosts in ad hoc networks can form and break at any
time, Limone provides a discovery protocol based on bea-
cons to allow an agent to discover the arrival and departure
of other agents.
The beaconing mechanism is the most costly but neces-

sary construct in Limone because it requires periodic broad-
casts, consuming a significant amount of network band-
width, processor resources, and battery power. Each beacon
contains a profile for each agent running on top of the partic-
ular Limone server. A profile is a collection of triples each
consisting of a property name, type, and value. The two
system-defined entries include the host the agent is on and
a unique agent identifier. Additional entries can be added by
the application. When the Limone server receives a beacon,
it forwards it to each of its agents.



ABSTRACT STATE:

— A set of profiles, {p1, p2, . . .}

INTERFACE SPECIFICATION:

boolean add(Profile profile)
— Adds an agent’s profile into the list.

void clear()
— Removes all profiles from the acquaintance list.

boolean contains(AgentID aID)
— Returns true if the list contains a profile that has

the specified AgentID.
Profile[] getApplicableAgents(ProfileSelector[] pss)

— Returns all of the profiles within the list that match
any of the specified profile selectors.

void remove(ProfileSelector ps)
— Removes the matching profile(s) from the list.

Figure 4: Acquaintance list.

When an agent receives a beacon, it takes the profiles
within it and passes them to its acquaintance handler . The
acquaintance handler uses the agent’s engagement policy to
decide which profiles are of interest, and places them in the
agent’s acquaintance list. Also, if any of the profiles rep-
resent agents already in the acquaintance list, the acquain-
tance handler ensures that the profile in the acquaintance
list is up to date. If a profile is not, the acquaintance handler
updates the profile and ensures that the new profile satisfies
the engagement policy.
Once an agent’s profile is added to the acquaintance list,

the acquaintance handler continuously monitors the agent’s
beacons. If a beacon is not received for an application-
customizable period of time, the acquaintance handler re-
moves the profile from the acquaintance list.
Another way a remote agent’s profile can be removed from

the acquaintance list is if a remote operation involving the
remote agent fails due to a time-out. If a timeout occurs, it is
assumed that the agent is no longer within range, justifying
the removal of the agent’s profile from the acquaintance list.
The acquaintance list, shown in Figure 4, contains a set of

agent profiles representing the agents within range that have
satisfied the engagement policy. The addition of a profile
into the acquaintance list signifies an engagement between
the reference agent and the agent represented by the profile.
Once the reference agent has engaged with another agent,
it gradually propagates its relevant reactive patterns (the
non-callback function portion of the reaction) to the remote
agent. While the addition of the profile to the acquaintance
list is done atomically, the propagation of reactive patterns
is gradual. The removal of a remote agent’s profile from
the acquaintance list signifies disengagement between the
reference agent and the remote agent. When this occurs,
the reference agent removes all the remote agent’s reactive
patterns from its reaction list. The removal of the profile
from the acquaintance list and the reactive patterns from
the reaction list is performed atomically, which is possible
because it is done locally.
Tuple Space Management. Any data available for co-

ordination among agents is stored in individually owned tu-
ple spaces. Each tuple space contains a set of tuples. Limone
tuples contain data fields distinguished by name and store
user-defined objects and their types. The ordered list of
fields characterizing tuples in Linda is replaced in Limone

by unordered collections of named fields. This results in a
more expressive pattern matching mechanism that can han-
dle situations in which a tuple’s arity is not known in ad-
vance. In open systems, this is a highly desirable feature.
For example, the following tuple may represent the message
in the geocast example:

tuple{〈“type”, String, “Directed Multicast”〉,
〈“message”, String, “TAKE COVER!”〉,
〈“destination”, GPSCoord, (90.45N, 34.23W)〉,
〈“area”, Meters, 10.5〉,
〈“deadline”, T ime, 14:15:30Z〉}

Agents use templates to specify tuples of interest in the
tuple space. A template is a collection of named constraints,
each defining a name and a predicate over the field type and
value called the constraint function. A template matches a
tuple if each constraint within the template has a matching
field in the tuple, i.e., a field having the same name is present
in the tuple and the value and type stored in the field satisfy
the constraint function. For example, the following template
matches the message tuple give above:

template{〈“type”, String, valEql(“Directed Multicast′′)〉,
〈“message”, String, defaultConst(true)〉}
〈“destination”, GPSCoord, defaultConst(true)〉}1

〈“area”, Meters, defaultConst(true)〉}

The bottom three constraints having default constraint func-
tions that always return true specify that all matching tu-
ples must contain fields with the individual names and types
(i.e., a field named “message” with a value of type String, a
field named “destination” with a value of type GPSCoord,
and a field named “area” with a value of type Meters must
be part of the tuple). Since this template did not contain
a constraint named “deadline,” a tuple need not have this
field to match the template. Notice that the tuple may con-
tain more fields than the template has constraints. As long
as each constraint in the template is satisfied by a field in the
tuple, the tuple matches the template. This powerful style
of pattern matching provides a higher degree of decoupling
since it does not require prior knowledge of the ordering of
fields within a tuple nor its arity to create a template for it.
Local Tuple Space Operations. The operations al-

lowed on the local tuple space are shown in Figure 5. The
out operation places a tuple into the tuple space. The oper-
ations in and rd block until a tuple matching the template
appears in the tuple space. When this occurs, in removes
and returns the tuple, while rd returns a copy without re-
moving it. The operations inp and rdp are the same as in
and rd except they do not block. If no matching tuple exists
within the tuple space, ε is returned. The operations ing
and rdg are similar to in and rd except they find and return
all matching tuples within the tuple space. Similarly, ingp
and rdgp are identical to ing and rdg except they do not
block. If they do not find a matching tuple, ε is returned.
All of these operations are performed atomically, which can
be guaranteed without a costly transaction because they are
performed locally on a single agent.
1Both valEql(p) and defaultConst(p) are constraint func-
tions that determine whether a tuple’s field satisfies the tem-
plate’s constraint. In this case, valEql(p) returns true if the
value within f is equal to p while defaultConst(p) always
returns p.



INTERFACE SPECIFICATION:

void out(Tuple t)
— Places a tuple, t, into the tuple space.

Tuple rd(Template template)
— Blocks until a tuple matching the template is found

within the tuple space. Returns a copy when found.
Tuple rdp(Template template)

— Returns a tuple from within the tuple space that
matches the template, or ε if
none is found.

Tuple[] rdg(Template template)
— Blocks until a tuple matching the template is found

within the tuple space. When this occurs, a copy of
all matching tuples are returned.

Tuple[] rdgp(Template template)
— Returns all tuples from within the tuple space that

match the template, or ε none is found.
Tuple in(Template template)

— Blocks until a tuple matching the template is found
within the tuple space. When this occurs, the tuple
is removed and returned.

Tuple inp(Template template)
— Removes and returns a tuple from within the tuple

space that matches the template, or ε if none is
found.

Tuple[] ing(Template template)
— Blocks until a tuple matching the template is found

within the tuple space. When this occurs, all
matching tuples are removed and returned.

Tuple[] ingp(Template template)
— Removes and returns all tuples from within the tuple

space that match the template, or ε if none is found.

Figure 5: Operations on the local tuple space.

Remote LTS Operations. To allow for inter-agent co-
ordination, agents allow remote agents to request that cer-
tain operation be performed on their tuple space. To do this,
Limone provides operations out, inp, rdp, ingp, and rdgp, as
shown in Figure 6. These methods differ from the local oper-
ations in that they require an AgentLocation parameter that
specifies which agent should perform the operation. When
one of these operations are executed, the agent on which it
is executed sends a request to the remote agent specified by
the AgentLocation, sets a timer, and remains blocked till ei-
ther a response is received or the timer times out. When the
remote agent receives the request, it passes it to the opera-
tion manager, which may reject or approve it. If rejected, an
exception is returned to allow the initiating agent to distin-
guish between a rejection and a communication breakdown.
If accepted, the operation is performed atomically on the
remote agent, and the results are sent back to the initiating
agent. The timer is necessary to prevent deadlock due to
message loss. If the request or response is lost, the remote
LTS operation will time-out and return ε. To resolve the
case when an operation times out while the response is still
in transit, the initiating agent enumerates each request, and
the remote agent includes this value in its response.
Reaction Mechanism. Limone reactions enable an

agent to inform other agents within its acquaintance list that
it is interested in tuples that match a particular template.
A reaction contains a user-defined call-back function that is
executed by the agent that created it when a tuple of inter-
est appears in a tuple space it is registered on. Reactions fit

INTERFACE SPECIFICATION:

[NOTE THAT THESE ARE ONLY REQUESTS]
void out(AgentLocation loc, Tuple t)

— Asks the agent located at loc to place a tuple in its
tuple space.

Tuple rdp(AgentLocation loc, Template template)
— Returns a tuple matching the template from within

the tuple space of the agent located at loc, or ε if
none is found or the operation times out.

Tuple[] rdgp(AgentLocation loc, Template template)
— Returns all tuples matching the template from within

the tuple space of the agent located at loc, or ε if
none is found or the operation times out.

Tuple inp(AgentLocation loc, Template template)
— Removes and returns a tuple matching the template

from within the tuple space of the agent located at
loc, or ε if none is found or the operation times out.

Tuple[] ingp(AgentLocation loc, Template template)
— Removes and returns all tuples matching the template

from within the tuple space of the agent located at
loc, or ε if none is found or the operation times out.

Figure 6: Operations on a remote tuple space.

particularly well with ad hoc networks because they provide
an asynchronous form of communication between agents by
transferring the responsibility of searching for a tuple from
one agent to another.
A reaction consists of a reactive pattern and a call-back

function. The reactive pattern contains a template that in-
dicates which tuples trigger it and a list of profile selec-
tors that determine which agents the reaction applies to.
The call-back function executes when the reaction fires in
response to the presence of a tuple matching its template
within the LTS it is registered on. The firing of a reaction
consists of sending back to the issuing agent a copy of the
tuple that triggered the reaction. Since message loss can oc-
cur at any time, the message sent to the issuing agent may
be lost, meaning there is no guarantee that a reaction will
fire even if a tuple matching the reactive pattern is found.
If the issuing agent receives the message tuple, it will exe-
cute the reaction’s call-back function. To prevent deadlock,
the call-back function cannot perform blocking operations.
If the call-back function were allowed to block, it would re-
main blocked forever because the call-back function is by
definition atomic.
The list of profile selectors within the reactive pattern de-

termines where to register (i.e., propagate) the reactive pat-
tern. Implementation-wise, a profile selector is a template
while a profile is a tuple. They are subject to the same
pattern matching mechanism but are functionally different
because profiles are not placed in tuple spaces. A reaction’s
reactive pattern propagates to a remote agent if the remote
agent’s profile matches any of the reactive pattern’s profile
selectors. Multiple profile selectors are used to lend the de-
veloper greater flexibility in specifying a reaction’s domain.
For example, returning to our example scenario, a delivery
agent would have the following profile:

profile{〈“type”, String, “Delivery Agent”〉,
〈“location”, GPSCoord, (90.45N, 34.23W)〉}

and its reactive pattern would contain the following profile
selector to restrict its propagation to delivery agents:

profile selector{〈“type”, String, valEql(“Delivery Agent”)〉}



ABSTRACT STATE:

— A set of reactions, {r, . . .}

INTERFACE SPECIFICATION:

ReactionID addReaction(Reaction rxn)
— Adds a reaction to the reaction registry and returns

the reaction’s ReactionID.
Reaction removeReaction(ReactionID rID)

— Removes and returns the reaction with the specified
ReactionID from the reaction registry or ε if no
reaction matching the ReactionID exists in the
reaction registry.

Reaction get(ReactionID rID)
— Retrieves the reaction with the specified ReactionID

from the reaction registry or ε if no reaction matching
the ReactionID exists in the reaction registry.

Reaction get(Profile profile)
— Retrieves all reactions containing profiles that match

the given profile or ε if no reaction matches.

Figure 7: Reaction Registry.

In this case the reactive pattern will propagate to any
agent whose profile contains a property called “type,” with
a String value equal to “Delivery Agent .” Notice that the
profile selector did not consider the agent’s location. This is
because restrictions on the location of an agent can be done
more elegantly using the engagement policy. If an agent
wants to restrict reaction propagation to agents within 50m,
it will set its engagement policy such that all agents within
its acquaintance list are located within 50m.
Reactions may be of two types: ONCE or

ONCE PER TUPLE. The type of the reaction deter-
mines how long it remains active once registered on a
tuple space. A ONCE reaction fires a single time on each
tuple space it is registered on and automatically deregisters
itself after firing. When a ONCE reaction fires and the
reference agent receives the resulting tuple(s), it deregisters
the reaction from all other agents, preventing the reaction
from firing later. If a ONCE reaction fires several times
simultaneously on different tuple spaces, the reference
agent chooses one of the results non-deterministically and
discards the rest. This does not result in data loss because
no tuples were removed from any tuple space. In contrast
to ONCE reactions, ONCE PER TUPLE reactions remain
registered after firing, thus firing once for each matching
tuple. ONCE PER TUPLE reactions are deregistered at
the agent’s request or when network connectivity to the
agent is lost. To keep Limone as lightweight as possible,
no history is maintained regarding where reactions were
registered. Thus, if network connectivity breaks and
later reforms, the formerly registered reactions will be
re-registered and will fire again.
Two additional state components, the reaction registry

and reaction list, are required for the reaction mechanism.
The reaction registry, shown in Figure 7, holds all reactions
created and registered by the reference agent. An agent uses
its reaction registry to determine which reactions should be
propagated following an engagement and to obtain a reac-
tion’s call-back function when it fires.
The reaction list, shown in Figure 8, contains the reactive

patterns registered on the reference agent’s tuple space. The
reactive patterns within this list may come from any agent

ABSTRACT STATE:

— A set of reactive patterns, {rp1, rp2, . . .}

INTERFACE SPECIFICATION:

boolean addReactivePattern(ReactivePattern rp)
— Adds a reactive pattern to the reaction list, returns

true if it was successfully added.
void clear()

— Clears the reaction list by removing all reactive
patterns within it.

ReactivePattern[] getApplicablePatterns(Tuple tuple)
— Retrieves all of the reactive patterns within the list

that should fire on the specified tuple.
void removeReactivePattern(ReactivePattern rp)

— Removes the specified reactive pattern from the list
if it is in the list.

void removeReactivePatterns(AgentID aID)
— Removes all reactive patterns from the list that were

registered by the agent with the specified AgentID.

Figure 8: Reaction List.

within communication range, including agents not in the
acquaintance list. Thus, to maintain the validity of the re-
action list, the acquaintance handler notifies its agent when
any agent moves out of communication range, not just the
agents within its acquaintance list. The reaction list deter-
mines which reactions should fire when a tuple is placed into
the local tuple space or when a reactive pattern is added.
A simple illustration of how the geocast example could

be implemented is given in Figure 9. The agent’s construc-
tor creates and registers a reaction that is sensitive to mes-
sage tuples. Since the reaction is created using an empty
ProfileSelector, it is propagated to all agents in the ac-
quaintance list, which the engagement policy limits to other
delivery agents. The call-back function of the reaction is
defined in the reactsTo method. It determines whether to
pull or place the tuple into its tuple space based on the
destination of the message as specified within the tuple.
Agent Mobility. Coordination within Limone is based

on the logical mobility of agents and physical mobility of
hosts. Agents are logically mobile since they can migrate
from one host to another. Agent mobility is accomplished
using a package called µCode [7]. µCode provides primitives
to support light-weight mobility preserving code and state.
Of particular interest is the µCodeServer and mobile agent.
A mobile agent maintains a reference to a µCodeServer and
provides a go(String destination) method that moves the
agent’s code and variable state to the destination. The
thread state of the agent is not preserved because doing
so would require modification to the Java virtual machine,
limiting Limone to proprietary interpreters. Thus, after an
agent migrates to a new host, it will start fresh with its vari-
ables initialized to the values they were prior to migration.
Limone cooperates with µCode by running a µCodeServer

alongside each Limone Server and having the Limone agent
extend µAgent. By extending µAgent, the Limone agent
inherits the go(String destination) method. However,
Limone abstracts this into a migrate(HostID hID) method
that moves the agent to the destination host by translating
the HostID to the string accepted by µCode. Just prior to
migration, the agent first deregisters all of its reactive pat-
terns from remote agents, and stops its beaconing. By not



public class DeliveryAgent extends Agent implements ReactionListener {
public DeliveryAgent (AgentID aID) {

EConstraint c1 = new EConstraint("type", String.class,
new EquivalencyConstraintFunction("Directed Multicast"));

EConstraint c2 = new EConstraint("message", String.class,
new DefaultConstraintFunction());

EConstraint c3 = new EConstraint("destination", GPSCoord,
new DefaultConstraintFunction());

ETemplate template = new ETemplate();
template.addConstraint(c1).addConstraint(c2).addConstraint(c3);
ReactivePattern rPat = new ReactivePattern(new ProfileSelector(),

Reaction.ONCE_PER_TUPLE, template);
Reaction rxn = new Reaction(rPat, this); // create the reaction
ReactionID rID = null;
try {

reactionRegistry.registerReaction(rxn); // register the reaction
} catch(TupleSpaceException e) { e.printStackTrace(); }

}
public void reactsTo(ReactionEvent e) { // the call-back function

Tuple msg = e.getTuple();
GPSCoord dest = (GPSCoord)msg.getField("Destination").getValue();
if (isToMe(dest)) tupleSpace.out(msg);
else{

AgentLocation cLoc
= getLoc(msg.getField("AgentID").getValue());

if (iAmCloser(dest, cLoc)) {
Tuple grabbed = tupleSpace.inp(aLoc,msg.getTemplate());
if (grabbed != null) tupleSpace.out(grabbed);

}
}

}
}

Figure 9: Example implementation of a delivery agent. Due to space constraints, the setting of the engage-
ment policy is not shown. In the actual implementation, a ProfileSelector would be created and used to
limit engagement only with other DeliveryAgents.

broadcasting beacons, neighboring agents will assume the
migrating agent has moved out of range and thus disengage
with it. Once on the new host, the agent is passed to the
Limone Server which restarts it and resumes the broadcast-
ing of its beacons. This allows remote agents to re-engage
with the agent at its new location.

5. DISCUSSION
A prototype implementation of Limone has been devel-

oped using Java. The prototype strictly adheres to the
model given in Section 2, where each construct is a distinct
object that implements the interface and behavior described
in Section 4.
For a host to participate in Limone, it must create and

activate a Limone Server. When a Limone Server is created
it is initially inactive, does not open any ports, and does not
support any agents. The application activates the Limone
Server by calling boot() on it. Prior to booting the server,
the application may customize various parameters of the
server such as the ports used, its multicast group address,
beacon broadcast period, and even the single-cast protocol
used (either TCP or UDP). Allowing the Limone Server to
use either protocol makes it more scalable to small devices
that cannot support the overhead of TCP or applications
that do not require the additional delivery guarantees that
TCP provides. The limitation is that a Limone Server can
only communicate with other Limone Servers that use the
same single-cast protocol. When booted, the Limone Server

opens and listens to a single cast port for incoming messages
and starts broadcasting beacons on the multicast port. For
efficiency purposes, broadcasting of beacons is relegated to
the Limone Server instead of to individual agents. Thus,
each beacon contains a profile for each agent residing on the
server. Even if no agents are on the server, it must still
broadcast beacons for its presence to be known to agents
residing on neighboring servers.
Once a Limone Server has been created and booted, the

application can load agents onto the server. This can either
be done by calling loadAgent(...) on the Limone Server,
or by using a special Launcher object that communicates to
the server through its single-cast port. The Launcher allows
new agents to be loaded onto the Limone Server at any time,
possibly from a remote device.
Limone provides a default implementation of an Agent.

An application can interact with an agent either directly
by passing the agent a reference to it upon creation, or by
subclassing the agent and overriding the agent’s methods to
include the behavior it desires.
As a testament to how lightweight Limone is, its jar file is

111.7KB, compared to Lime’s 655.8KB jar file. To analyze
the performance of Limone, we calculated the round trip
time for a tuple containing eight bytes of data to be pulled
onto a remote agent and back using reactions as triggers.
The experiment is as follows: Given two agents, A and B,
A has a global reaction registered for red tuples, while B
has a global reaction registered for green tuples. A places
a green tuple into its tuple space. When agent B reacts to



Model Lines of Code Time (ms)
Limone 250 50.3
Lime 170 73.6
Raw Sockets 695 44.6

Figure 10: Application code size and round-trip
message passing time using reactions as a trigger,
averaged over 100 rounds.

it, it places a red tuple into its tuple space. Both types of
tuples carry eight bytes of data. The actual time measured
begins at the insertion of the green tuple by A to the firing
of its reaction. The test was performed using two 750MHz
laptops running Java 1.4.1 in 802.11b ad hoc mode with a
one second beaconing period. The laptops were located in
a “clean room” environment where the laptops are station-
ary and sitting next to each other. To compare Limone’s
performance, we also performed the same operation using
Lime and raw TCP sockets. Averaged over 100 rounds, the
results of our tests are shown in Figure 10. One can easily
observe that, Limone adds some overhead over raw sockets,
but not as much as Lime. Interestingly, while Limone de-
creases the amount of code the application developer must
write, it still requires more code than Lime. This is due to
Limone’s more expressive pattern matching mechanism and
engagement policy.
Limone assumes that the rate of configuration changes is

small relative to the network latencies. This is a universal
assumption made by all distributed applications. If con-
figuration changes are so rapid that they exceed message
latencies, then the majority of messages will be lost, making
coordination activities impossible.
In a wireless ad hoc network, it is possible for different

devices to have different broadcast ranges. If this occurs,
it may be possible for an agent to discover another agent,
but not be able to send it messages because of its limited
broadcast range. This anomaly is elegantly addressed by
Limone since the remote agent’s profile will be automatically
removed upon communication failure.

6. RELATED WORK
This section explores the expressive power of Limone by

comparing it to several other coordination models and, when
possible, demonstrating how Limone can offer identical or
similar support for key concepts and constructs. The models
considered here include JEDI [8], Lime [1], MARS [9], and
PeerWare [10].
JEDI. JEDI is a model based on the event subscription

paradigm where components create and subscribe to events.
It consists of active objects that interact with each other
through a logically centralized event dispatcher. Active ob-
jects subscribe to, or unsubscribe from, events on the event
dispatcher. When an active object registers an event on
the event dispatcher, it gives the event dispatcher an event
that it passes to all active objects to which it subscribes.
This provides a powerful decoupling among the active ob-
jects (i.e., the active object that created the event need not
know which active objects received it). Logical mobility is
possible in JEDI since active objects can unsubscribe from
an event dispatcher on one host, and resubscribe to another
one on another host.

The behavior of JEDI’s event subscription mechanism can
be captured in Limone through reactions that apply to all
agents in the acquaintance list. These reactions would be
sensitive to special event tuples. JEDI events can be repre-
sented in Limone using these event tuples.
Lime. Lime is another coordination model implemented

as middleware for mobile environments. Lime, which pre-
ceded Limone, supports ad hoc networks, utilizes logically
mobile agents running on physically mobile hosts, and co-
ordinates through Linda-like tuple spaces enhanced with re-
active programming. Unlike Limone which was designed to
be as light-weight as possible, Lime provides strong atomic-
ity and functional guarantees. Lime follows a transactional
paradigm where operations often occur as a single atomic
transaction. For example, when two groups of hosts merge,
the engagement and reaction propagation is done between
all hosts as a single atomic step through a distributed trans-
action. This level of atomicity comes at a cost. Since it
requires every host to send a message to every other host,
the amount of unnecessary message-passing is higher. It
also requires all hosts to remain in contact with each other
throughout the transaction, which may be difficult to guar-
antee, particularly in highly dynamic environments with a
high density of hosts. In contrast, Limone follows an incre-
mental paradigm where engagements between two groups
of agents are performed gradually by each agent indepen-
dently. Once an agent engages with another agent, reaction
propagation follows suit in a similar gradual manner.
A key difference between Lime and Limone is the engage-

ment policy and the number of tuple spaces used. Lime’s
engagement policy is symmetric and built into the model
whereas Limone’s policy is application-customizable and
asymmetric. In Limone each agent has an individual tu-
ple space whereas in Lime all agents on a host share multi-
ple host-level tuple spaces that are differentiated by name.
When a group of hosts forms in Lime, their identically
named tuple spaces merge into one in a single atomic step.
Using a single tuple space simplifies Limone without reduc-
ing its functionality since multiple tuple spaces can be sim-
ulated using a field within each tuple to identify which “vir-
tual” tuple space it belongs to.
Due to fundamental differences between the two models,

Limone cannot easily provide the level of atomicity guaran-
tees that Lime provides. However, it can provide the general
functionality of Lime’s distributed operations with relaxed
atomicity guarantees. For example, Lime provides a global
in operation that atomically searches the tuple space on all
hosts within a group. It guarantees that if a matching tuple
exists, it will be found. Although Limone cannot provide
such a guarantee, it can sequentially perform an inp oper-
ation on each acquaintance until it finds a match. While
this does not guarantee the match will be found, the prob-
ability of success is high. This reflects the highly pragmatic
oriented approach the design of Limone has followed.
MARS. MARS consists of a multiplicity of nodes each

containing a tuple space. Agents located on a particular
node coordinate by placing tuples into and removing tuples
from the node’s tuple space and a reaction mechanism sen-
sitive to actions performed by an agent. Since agents can
only access their node’s tuple space, they can only coordi-
nate with other agents located on the same node. Migration
is required for inter-node communication. MARS adapts to
mobile environments by allowing agents to “catch” connec-



tion events that indicate the presence of a remote node, to
which they may migrate.
The general behavior of a MARS node can be achieved in

Limone by restricting agents to engage only with agents on
the same host and configuring the operation manager to re-
ject requests coming from agents residing on another host.
In this case, a MARS node is essentially a Limone host.
The difference is tuples remain associated with a particular
agent, and move with it during migration. Limone’s reac-
tion mechanism can also be arranged to behave like those in
MARS. In MARS, a reaction fires due to an operation be-
ing performed. A Limone reaction can behave like a MARS

reaction by having the agent insert special “event tuples”
each time it performs an operation on the tuple space and
configuring the reaction to react to these tuples.
PeerWare. PeerWare is primarily concerned with the

creation and maintenance of a virtual tree data structure
that is built by virtual superimposition of numerous local
trees. The use of a tree helps PeerWare scale to large data
sets since, when looking for data in a particular branch, not
all of the data has to be searched. Each data object (or node)
in a local tree is named. Multiple nodes within a tree can
have the same name as long as they are not part of the same
branch and are not roots. The local trees are superimposed
upon each other based on the names of the nodes. Changes
in network configuration are represented as changes in the
global tree’s content. The operations that can be performed
on the global tree are similar to those allowed on the tuple
space (e.g., data insertion and extraction). Like Limone,
PeerWare does not provide any atomicity guarantees on
distributed operations but does guarantee that they will ex-
ecute atomically at the local level. PeerWare provides
an execute function that performs a user-defined operation
on a projection of the tree. This is useful especially when
the operation is relatively small and accesses large data sets
since the data does not need to be sent over the network.
The behavior of PeerWare can be accomplished using

Limone by adding special application-defined fields into each
tuple to indicate where it belongs in the tree. The fields
could then be used by an application to simulate the scoping
properties of a tree. Although this is less efficient, special-
ized implementations of a specific data structure will always
be more efficient. PeerWare’s execute function is provided
in Limone by creating an agent that performs the desired
operation, and migrating it to the remote host to perform
the operation.

7. CONCLUSIONS
Limone is a lightweight but highly expressive coordina-

tion model and middleware tailored to meet the needs of
developers concerned with mobile applications over ad hoc
networks. Central to Limone’s function is the management
of context-awareness in a highly dynamic setting. At first
glance, an agent’s context is a subset of the agents in di-
rect contact as they appear in the acquaintance list. At this
level, the context is transparently managed and subject to
policies imposed by each agent in response to its own needs
at a particular point in time. Explicit manipulation of the
context is provided by operations that access data owned
by agents in the acquaintance list. The agent retains full
control of the local tuple space since all remote operations
are simply requests to perform a particular operation for
a remote agent and are subject to policies specified by the

operation manager. This high degree of security encour-
ages a collaborative type of interaction among agents. An
innovative adaptation of the reaction construct facilitates
rapid response to environmental changes. As supported by
evidence to date, the result of this unique combination of
context management features is a coordination model and
middleware that promise to reduce development time for
mobile applications.

Acknowledgements This research was supported in part
by the National Science Foundation under grant No. CCR-
9970939 and the Office of Naval Research under MURI Re-
search Contract N00014-02-1-0715. Any opinions, findings,
and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the
views of the research sponsors.

8. REFERENCES
[1] Murphy, A., Picco, G., Roman, G.C.: Lime: A

middleware for physical and logical mobility. In: Proc.
of the 21st Int’l. Conf. on Distributed Computing
Systems. (2001) 524–533

[2] Picco, G., Murphy, A., Roman, G.C.: Lime: Linda
meets mobility. In: Proc. of the 21st Int’l. Conf. on
Software Engineering. (1999)

[3] Gelernter, D.: Generative communication in Linda.
ACM Trans. on Prog. Languages and Systems 7
(1985) 80–112

[4] Julien, C., Roman, G.C.: Egocentric context-aware
programming in ad hoc mobile environments. In:
Proc. of the 10th Int’l. Symp. on Foundations of
Software Engineering. (2002)

[5] McCann, P.J., Roman, G.C.: Compositional
programming abstractions for mobile computing.
IEEE Transactions on Software Engineering 24 (1998)
97–110

[6] Navas, J.C., Imielinski, T.: Geocast - geographic
addressing and routing. In: Proceedings of the Third
Annual International Conference on Mobile
Computing and Networking. (1997) 66–76

[7] Picco, G.P.: code: A lightweight and flexible mobile
code toolkit. In Rothermel, K., Hohl, F., eds.:
Proceedings of the 2nd International Workshop on
Mobile Agents. Lecture Notes in Computer Science,
Berlin, Germany, Springer-Verlag (1998) 160–171

[8] Cugola, G., Nitto, E.D., Fuggetta, A.: The JEDI
event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE Transactions
on Software Engineering 27 (2001) 827–850

[9] Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A
programmable coordination architecture for mobile
agents. Internet Computing 4 (2000) 26–35

[10] Cugola, G., Picco, G.: Peerware: Core middleware
support for peer-to-peer and mobile systems.
Technical report, Politecnico di Milano (2001)


	A Lightweight Coordination Model and Middleware for Mobile Computing
	Recommended Citation
	A Lightweight Coordination Model and Middleware for Mobile Computing

	tmp.1471023011.pdf.xD3yc

	Abstract: Abstract: Limone is a new coordination model and middleware that enables rapid

application development for wireless ad hoc networks entailing

logical mobility of agents and physical mobility of hosts.

Designed to function in open environments, Limone performs automatic

agent discovery but filters the results to define for each agent

an individualized acquaintance list in accordance with run-time

policies that are customizable by the application. This asymmetry

among participants represents a new direction in coordination

research and is dictated by the need to accommodate settings

involving large numbers of agents and hosts that come and go

freely.  The coordination context is limited to the specific needs

of the individual agent and its coordination activities are

restricted to tuple spaces owned by peers present in the

acquaintance list.  Designed for wireless ad hoc networks, Limone

tailors Linda-like primitives to address the challenges of mobile

environments. This entails the elimination of remote blocking

operations and the addition of timeouts to all distributed

operations since disconnection with the affected agents may occur

at any time. It also entails the addition of reactions that are

triggered by the presence of information of interest on agents

listed in the Acquaintance List. Finally, to ensure performance and ease of

deployment on small devices the granularity of atomic operations

and the assumptions about the environment have been minimized.

This paper introduces Limone, explains its key features, illustrates

its usage, and explores its effectiveness as a software

engineering tool.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes: 
	Email: 
	Date: March 17, 2003
	Author: Authors: Fok, Chien-Liang; Roman, Gruia-Catalin
	Title: A Lightweight Coordination Model and Middleware for Mobile Computing
	ReportNumber: 2003-12
	DepartmentName: Department of Computer Science & Engineering


