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Figures and Tables 
 

 
Figure 3- 1. Profiles of meiotic divisions during sporulation. The frequency of bi-nucleates (solid) and 

tetra-nucleates (dashed) is shown for S. cerevisiae (A), S. paradoxus (B), and their hybrid (C) over a 24 

hour time-course. The area between the bi-nucleate and tetra-nucleate curves is shown in gray and 

numerically labeled. The sampling of T0, M1, M1/M2 and M2 stages is shown by the arrows above each 

species' graph. 
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Figure 3- 2. Principal coordinate analysis of 352 differentially expressed genes. Ovals show the 

95% confidence interval of S. cerevisiae (C), S. paradoxus (P), and hybrid (H) principal coordinates at 

each meiotic stage and are centered on the mean values. Meiotic stages are T0 (red), M1 (orange), 

M1/M2 (blue), and M2 (green). The first and second principal coordinate explain 42% and 13% of the 

variation among samples, respectively. 
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Figure 3- 3. Temporal changes in misexpressed genes during sporulation. Boxplots of 21 genes 

expressed lower in the hybrid than either parent at M1 (A), and 26 genes expression higher in hybrid than 

either parent at M1/M2 (B). Boxes indicate the span of the second and third quartiles and dashed lines 

indicate an estimate of the 95% confidence of the median. Boxes are shown for S. cerevisiae (Scer), S. 

paradoxus (Spar) and the hybrid at each stage (T0, M1, M1/M2 and M2). Expression levels are the 

normalized log2 number of reads. 
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Figure 3- 4. Genes classified into different categories of cis- or trans-acting expression 

differences. Each plot shows the difference in the log2 normalized expression level between the parental 

species, relative to S. cerevisiae and S. paradoxus alleles in the hybrid (C = S. cerevisiae and P = S. 

paradoxus) for the T0 (A), M1 (B), M1/M2 (C), and M2 (D) stages. Each circle shows one of 389 genes 

classified into five categories of expression divergence: cis-only (red), trans-only (green), cis+trans (blue), 

cis*trans (orange), compensatory (black). Genes without significant expression differences are shown in 

gray. Inset within each panel shows the number of genes classified into each category. 
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Table 3- 1. Number of hybrid genes significantly different from both parents 

Hyrid expression relative to 

parent1 

T0 M1 M1/M2 M2 

Lower 10 21 26 3 

Intermediate 22 4 1 2 

Higher 1 1 26 3 

1Hybrid expression is significantly different from both parents (t-test P < 0.05). 

 
Table 3- 2. Genes with opposing and compensatory cis-trans expression divergence. 

Stage Meiosis/Cell cycle  Mitochondrial 

function 

rRNA 

processing 

Translation 

related 

processes 

Essential 

genes 

T0 HST4 IDP1 RPS8B, 

PWP1 

RPS8B, 

RPL26A 

PWP1 

M1 STE5 GCV2, COX26, 

SHH4, COX6, 

GDS1, MRS3, 

TUF1 

RIO2 SUI2, TUF1 SEC14, 

FAS2, 

RIO2, SUI2 

M1/M2 KAR2, HED1 

STE18, SPA2, 

CDC60, SPO12,  

APC11, CDC26 

MRPL37, ERV1, 

RSM27, CYT1, 

ALD6  

DBP8, 

RPS0B, 

RMP1 

DBP8, 

RPS0B, 

RPS17A, 

RPL31A 

SUI2, TEF1, 

PLP1 

SUI2, 

ERV1, 

KAR2, 

CDC60, 

GLN1, 

DBP8, 

APC11, 

RMP1 

M2 -- ECM10 BFR2 -- HIP1, 

GPI11, 

BFR2 
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Supplementary Figures and Tables 

 

Figure 3S- 1. Sporulation profiles of S. cerevisiae, S. paradoxus, and their hybrid.  The frequency of 

mononucleates (A), binucleates (B), and tetranucleates (C) is shown over a 24 hours period of 

sporulation for S. cerevisiae (red), S. paradoxus (blue), and their hybrid (green).  Bars show the standard 

deviation from replicates. 
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Figure S1. Sporulation profiles of S. cerevisiae, S. paradoxus, and their hybrid. The frequency of mono-

nucleates (A), bi-nucleates (B), and tetranucleates (C) is shown over a 24 hour period of sporulation for 

S. cerevisiae (red), S. paradoxus (blue), and their hybrid (green). Bars show the standard deviation 

from three replicates.
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Figure 3S- 2. S. cerevisiae gene expression profiles across four meiotic stages.  The average 

expression level is shown for 12 Metabolic, 15 Early I, 12 Early II, 11 Early-middle, 19 Middle, and 5 

Middle-late genes defined by Chu et al. (1998) at T0, M1, M1/M2, and M2 stages. 
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Figure S2. S. cerevisiae gene expression profiles across four meiotic stages. The 
average expression level is shown for 12 Metabolic, 15 Early I, 12 Early II, 11 Early-
middle, 19 Middle, and 5 Middle-late genes defined by Chu et al. (1998) at T0, M1, 
M1/M2 and M2 stages. 
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Figure 3S- 3. Principal coordinate analysis of allele-specific expression. Principal coordinates are 

based on the Euclidean distance of 352 genes.  Ovals show the 95% confidence interval of S. cerevisiae 

(C), S. paradoxus (P) and hybrid coordinates at each meiotic stage (see legend) and are centered on the 

mean values.  Hybrid expression of S. cerevisiae (HC) and S. paradoxus (HP) alleles were treated as 

separate samples.  The first and second principal coordinates explain 42% and 14% of the variation 

among samples, respectively. 
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Figure  S3.  Principal  coordinate  analysis  of  allele-specific  expression.  Principal  
coordinates  are  based  on  the  euclidean  distance  of  352  genes.  Ovals  show  the  95%  
confidence  interval  of  S. cerevisiae (C), S. paradoxus  (P),  and  hybrid  coordinates  at  
each  meiotic  stage  (see  legend)  and  are  centered  on  the  mean  values.  Hybrid  
expression  of  S. cerevisiae  (HC)  and  S. paradoxus  (HP)  alleles  were  treated  as  
separate  samples.  The  first  and  second  principal  coordinate  explain  42%  and  14%  
of  the  variation  among  samples,  respectively.
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Effect Graph EP* EH* EH-P* Signs 

cis 

 

+ + - NA 

trans 

 

+ - + NA 

cis + trans 

 

+ + + same 

cis * trans 

 

+ + + opposite 

compensatory 

 

- + + opposite 

Figure 3S- 4.Classifications of cis and trans expression divergence categories. The definitions of 

five expression divergence categories along with a graphical representation. EP is the expression 

difference between the parents, S. cerevisiae and S. paradoxus. EH is the expression difference between 

the hybrid alleles from S. cerevisiae and S. paradoxus. EH-P is the expression difference between EP 

and EH. Significant and non-significant effects are indicated by ‘+’ and ‘-’. 
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Table 3S- 1.Strains used in this study 

Strain Species Parent(s) Genotype 
YJF153 S. cerevisiae YPS163 MATa ho::dsdAMX4  
YJF154 S. cerevisiae YPS163 MATα ho::dsdAMX4 
YJF850 S. cerevisiae YPS163 MATa ho::dsdAMX4  

MATα ho::dsdAMX4 
YJF851 S. cerevisiae YPS163 MATa ho::dsdAMX4 

MATα ho::dsdAMX4 
YJF852 S. cerevisiae YPS163 MATa ho::dsdAMX4 

MATα ho::dsdAMX4 
YJF777 S. paradoxus N17 MATa ho::NATMX4  
YJF778 S. paradoxus N17 MATα ho:: NATMX4 
YJF853 S. paradoxus N17 MATa ho:: NATMX4  

MATα ho:: NATMX4 
YJF854 S. paradoxus N17 MATa ho:: NATMX4 

MATα ho:: NATMX4 
YJF855 S. paradoxus N17 MATa ho:: NATMX4 

MATα ho:: NATMX4 
YJF843 Hybrid YJF153 + YJF778 S. cerevisiae MATa ho::dsdAMX4 

S. paradoxus MATα ho:: NATMX4 
YJF876 Hybrid YJF153 + YJF778 S. cerevisiae MATa ho::dsdAMX4 

S. paradoxus MATα ho:: NATMX4 
YJF842 Hybrid YJF842 + YJF874 S. cerevisiae MATα ho::dsdAMX4 

S. paradoxus MATa ho:: NATMX4 
YJF874 Hybrid YJF842 + YJF874 S. cerevisiae MATα ho::dsdAMX4 

S. paradoxus MATa ho:: NATMX4 
 
Table 3S- 2. Classification of genes into different categories of expression divergence 

Geneset* Stage cis-only trans-only cis+trans cis*trans Compensatory 
266 T0 1 51 4 1 3 
 M1 11 12 4 2 6 
 M1M2 13 12 3 5 12 
 M2 14 3 0 0 2 
1102 T0 3 172 5 3 10 
 M1 23 36 9 2 16 
 M1M2 37 38 8 6 37 
 M2 40 15 1 0 9 
*Geneset refers to 1102 genes found to differ between our null and full model (with terms for species, 
allele and stage) including all interaction terms, and to 266 genes found to differ between our full model 
with and without interaction terms 
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Chapter 4: Conclusion 
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A major objective of evolutionary genetics is to understand the mechanistic basis of speciation.  

As such I focused my dissertation on understanding the dysfunctional regulation of genes in a sterile, 

interspecific yeast hybrid during meiosis, a process that is susceptible to RI. The field of speciation 

genetics has traditionally used forward genetic approaches to isolate genetic incompatibilities, but due to 

the lack of sterile of viable F1 hybrid progeny, it has been difficult to gain a general view of how genome-

wide divergence between species contributes to RI.  I discussed the complications with traditional 

approaches and yeast speciation in Chapter 2, as well as outlined potential experiments to verify a single 

gene’s contribution to RI. Fortunately the advent of next-generation sequencing has brought new 

opportunities to expand our knowledge of the connection between genome-wide divergence and RI. In 

Chapter 3 I presented my findings from an RNA-Seq assay to specifically understand the relationship 

between expression divergence and RI between two yeast species, S. cerevisiae and S. paradoxus, 

which can form sterile hybrids under laboratory conditions. Here I deepen my discussion about my 

research in the context of previous literature, consider possibilities of the future direction of yeast 

speciation genetics and genomics, and conclude with my final thoughts. 

The relationship between dysfunctional hybrid expression and reproductive isolation 
 

Hybrid misexpression can either be a consequence or a cause of RI, although the connection 

between regulation and RI is rarely deduced.  From previous studies, we know that hybrids have a lack of 

recombination in hybrids64,68,74, which in S. cerevisiae, leads to a precocious ending of meiosis I87.  Both 

my phenotypic and expression data corroborate that the hybrid procedes through meiosis I more quickly 

than both of its parents (Chapter 3). However I was not able to identify misexpression of a single master 

regulator that would lead to either a lack of recombination or an accumulation of misexpression.  Thus I 

could not identify a specific genetic incompatibility that could contribute to RI during meiosis.  Despite 

differences in the timing of each step, the gene expression patterns in the parents and hybrid are largely 

similar. Hence the simplest explanation is that the hybrid’s lack of recombination results in faster 

advancement of the hybrid meiotic program. Any further gene misexpression in the yeast hybrid is a 

consequence of RI and the lack of recombination during occurring in meiosis I. 

My RNA-seq study brings us a step closer to understanding the relationship between hybrid gene 

regulation and RI, but neither answers what causes a lack of recombination in yeast nor distinguishes 
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whether hybrid sterility is occurring in early or late meiosis I.  As stated in the introduction, an 

incompatibility that causes anti-recombination may still exist. More expression studies and functional 

assays are needed to determine whether anti-recombination is due to sequence divergence or a genetic 

incompatibility.  Some of the experiments that I propose in this chapter utilize multiple genetic 

manipulations, and would need to be performed carefully and tested for spore viability and recombination 

rates beforehand (outlined in Chapter 2) before conclusions could be drawn.  

To further study gene expression in meiosis I, I propose two experiments.  First, my RNA-Seq 

experiment can be performed on mismatch repair mutant and tetraploid hybrids as controls (Chapter 1). 

Both types of hybrids would be predicted to not have a heterochronic shift in their meiotic program in 

comparison to their parents, as they proceed through recombination normally64,66,68. Additionally we could 

completely synchronize cells at G1 to study early meiosis I, and synchronize cells with an inducible 

promoter for NDT80 to study late meiosis I59.  NDT80 is expressed after recombination and serves as the 

master regulator of middle sporulation and the cell’s commitment to meiosis.  If RI occurs before the cell’s 

commitment to meiosis, I would expect to observe an increase in misexpression before NDT80 is 

induced.  On the other hand, if RI occurs after the cell’s commitment to meiosis, I would expect to 

observe and increase in misexpression after NDT80 is induced.  Again the experiment can be performed 

on mismatch repair mutant and tetraploid hybrids as controls (Chapter 1). Both types of hybrids would be 

predicted to have no misexpression in their DNA damage and anti-recombination pathways, since they 

can recombine their chromosomes during meiosis I64,68,74.  

If sequence divergence plays a role in RI, I would specifically expect to see misexpression before 

NDT80 is induced.  I would expect an increase in the hybrid expression of DNA damage and anti-

recombination pathways, and a decrease in the hybrid expression of homologous recombination proteins 

relative to the parents. I was not able to see a change in these pathways in my study detailed in Chapter 

3, likely because variations in these pathways are nonexistent, the statistical power was too low, or the 

time points in my study are too far apart.   

The possibility remains that by using completely synchronized hybrids with an inducible version of 

NDT80, we could identify candidate genes with misexpression before or after the commitment to meiosis.  

To verify if a candidate gene contributes to RI, functional experiments would still need to be performed. 
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Assays described in Chapter 2 could reveal that a loss of recombination is caused by either sequence 

divergence or a genetic incompatibility (Chapter 1).  Three specific predictions can be made in either 

scenario for the effects of manipulating a candidate gene. If sequence divergence activates the anti-

recombination pathway, (1) deletions of a candidate gene would not increase hybrid spore viability; (2) 

generating a hybrid homozygous for either parent’s copy of the gene would not increase hybrid spore 

viability; and (3) insertion of one parent’s homolog of the candidate would rescue a gene deficiency in the 

other parental background.  On the other hand, if an incompatible genes (rather than sequence 

divergence) result in the lack of recombination, I would expect the opposite results. Specifically (1) 

deletions of the candidate gene would increase hybrid spore viability; (2) a hybrid that is homozygous for 

the candidate gene would not increase hybrid spore viability, while a hybrid that is homozygous for the 

other parent’s homolog of the candidate gene would increase spore viability; and (3) the candidate gene 

would not complement its homolog’s deficiency in the other parental background.   

Dysfunctional pathway regulation in hybrids and genetic incompatibilities  
 

With the massive amount of data from next-generation sequencing experiments, it is difficult to 

determine candidate genes, which may be involved with RI. Thus as of yet, we have not formed a global 

view of the relationship between gene regulation and hybrid sterility.  Therefore I chose a conservative 

analysis to narrow down a list of differentially expressed candidate genes that could promote hybrid 

sterility (Chapter 3). Non-additive cis/trans interactions are of particular interest because they present 

novel phenotypes only observed in the hybrids, and thus could be genes that contribute to RI38. Given my 

stringency, the number of misexpressed genes and genes with cis/trans interactions is small enough to 

test for individual genetic contributions to RI. Chapter 2 outlines specific assays to verify a candidate 

gene, and the previous paragraphs outline how I would expect an incompatible gene to function during 

those assays. 

In Chapter 3 I demonstrated that genes from four major processes’ consistently have non-additive 

cis/trans and compensatory changes that are uncovered in the hybrid. The four processes are 

sporulation, mitochondrial function, rRNA processing and translation.  Sporulation and rRNA have also 

been described as rapidly evolving pathways77,103. Additionally sporulation and mitochondrial function are 

closely involved in meiosis and have been previously associated with RI in multiple species.   
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 Both theoretical and empirical arguments have been made suggesting that incompatibilities are 

rapidly evolving4,12,20,22,25,29,49,104, and I detect two pathways that are thought to be under positive 

selection. As such, I detected two pathways that are thought to be under positive selection.  In Chapter 3, 

I discussed genes in the sporulation pathway, such as HED1 and the APC/C complex as genes of 

interest.  At this point it is not clear whether these genes are misexpressed because of the hybrid’s 

heterochronic meiotic program, or they are in be incompatibilities.  Bullard et al.103 detected rRNA 

processing as a pathway under cis-regulatory selection.  I detect the same pathway, and if any of these 

genes could be verified as incompatibilities, it would lead to further credence of the notion that 

incompatibilities are rapidly evolving.   

As discussed in Chapter 1, mitochondrial genes are predicted to be a class of genes susceptible 

to become incompatibilities, and interestingly I detect many genes involved in mitochondrial function to be 

differentially expressed in the hybrid.  Mitochondrial genes are associated in RI in plants, copepods, and 

wasps, and are known to cause hybrid breakdown in Saccharomyces.  Further genetic analyses of the 

genes listed in Table 3-2 could provide more insight as to whether mitochondrial-encoded genes 

contribute to RI more often than nuclear-encoded genes.  There is a possibility that we would not observe 

an affect on hybrid sterility affecting the F1 hybrid generation, but we could observe an affect on hybrid 

breakdown in the F2 generation.  In this case, we would observe dysfunctional gene regulation in the 

hybrid before a reproductive barrier appeared, whereas in Chapter 3, we found dysfunctional regulation of 

the whole meiotic program to occur after one barrier, a lack of recombination. 

Although I state that it is hard to make predications as to which specific genes could play a role in 

RI, I cannot miss the opportunity to offer my humble opinion.  Given that incompatible genes may prevent 

recombination in the hybrid, I expect the components of the synaptonemal initiation complex (SIC), which 

binds homologous chromosomes together for crossover, to be candidates.  The proteins Zip1, Zip2, Zip3, 

Zip4/Spo22, Mer3, Msh4, and Msh5 form the SIC, which is antagonistic of anti-recombination 105. Many 

lines of evidence support my prediction. First Zip2 is a rapidly evolving protein between S. cerevisiae and 

S. paradoxus77. Second ZIP1 and ZIP2 have allele specific expression in the hybrid, although they do not 

show signs of cis- or trans- interactions (Supplemental data file). Third there is evidence that complex D-

M incompatibilities of three or more genes can exist74.  As the SIC contains more than three genes, it fits 
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this model of a complex incompatibility.  Lastly silver staining of hybrid chromosomes during meiosis 

show homologous chromosomes form SIC but also have unpaired axial elements, cohesion containing 

structures that bind together homologous regions of chromosomes67.  Zip1p is integral to the SIC, and S. 

cerevisiae zip1 mutants also have an increase of unpaired axial elements, much like interspecific yeast 

hybrids106.  Thus the SIC could be dysfunctional in hybrids rather than anti-recombination being active in 

hybrids. As I mentioned, the same functional genetic studies would need to be performed to verify these 

genes as incompatibilities. Yet, as I also cautioned in Chapter 2, predictions of incompatible genes is 

extremely difficult, and more expression data would help clarify whether this is a avenue that is sensible 

to pursue. 

Future directions for yeast speciation 

Traditional and modern approaches to speciation genomics studies 
 

My work in yeast provides a good example of the advantages and disadvantages to both 

traditional and modern approaches to the field of speciation genomics.  While yeast research typically 

leads the field of genetics and genomics, speciation is one part of the field in which this has not been the 

case.  One potential explanation is that the Saccharomyces sensu stricto group is extremely divergent. 

The two closest relatives S. cerevisiae and S. paradoxus are 10 – 15% divergent, which is the same 

amount of divergence between human and mouse.   Since such strong RI exists between species of 

Saccharomyces, it is difficult to conduct traditional screens to identify single genes that contribute to 

hybrid sterility (Chapter 2). Two studies have been able to examine the genetics of hybrid breakdown, 

although not at a genome-wide level17,18. Thus I do not believe using traditional screening methods to 

identify genetic incompatibilities between Saccharomyces species at a genome-wide level is the best 

method. However traditional screening methods may prove useful in genome-wide identification of 

incompatibilities between species’ strains of any one species. A large number of both S. cerevisiae and S. 

paradoxus strain have been isolated around the world, and on average, are 1 - 5% divergent from each 

other.  This amount of divergence is similar to Drosophila, a model organism that has been successfully 

utilized to understand the genetic contribution to post-zygotic RI. 

Next-generation sequencing gives the opportunity to study RI between more divergent species, 

and we have the advantage of genomic tools available for yeast to deduce pathways that are disrupted in 
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the hybrid.  I demonstrated in Chapter 3 the utility of RNA-Seq in yeast, as I am able to compile a list of 

candidate genes that may contribute to RI in Saccharomyces.  Earlier in this chapter and Chapter 2, I 

detailed genetic assays, which would be required to verify a single candidate gene’s contribution to RI.  

Thus the combination of next-generation sequencing and the arsenal of traditional yeast genetic tools 

provides us with the best opportunity to understand the total contribution of genetic incompatibilities to 

post-zygotic RI between two species.  

Reassessment of the anti-recombination model 
 

Although the anti-recombination model of RI is thought to completely isolate Saccharomyces 

species from one another61,64-66,68, scientists continue to search for genetic incompatibilities that contribute 

to RI.  As discussed in the introduction, the numerous caveats of the anti-recombination model allow the 

possibility that incompatibilities play a role in RI between yeast species.  From my research, I have 

uncovered an additional limitation to the anti-recombination model.  I showed that interspecific yeast 

hybrids are sensitive to background mutations that can artificially increase spore viability.  Other authors 

have also found that genetic manipulations confound results in studies of RI in yeast62,63,70.  Since the 

original experiments that contributed to the anti-recombination model utilized highly manipulated yeast 

strains68 and only one study utilized biological replicates66, I would not be surprised if results would differ 

when strains with at most one mutation are used. Thus the initial experiments that support the anti-

recombination model should be revisited.  

Why do null mutants in some laboratory backgrounds increase spore viability? 
 

As I discussed in Chapter 2, transformations cause background mutations that can artificially 

rescue hybrid sterility.   However with the dropping costs of sequencing, we can compare the genomes of 

the hybrids that have high spore viability to those that do not. I hypothesize two outcomes, either or both 

of which could explain the artificial rescue of hybrid sterility. The first is that increased hybrid spore 

viability occurs via a complex incompatibility between three or more genes.  As the hybrids with high 

spore viability should at most have 40 mismatches than hybrids with low spore viability (Chapter 2), it 

should be relatively easy to find candidates for a complex incompatibility. The second outcome is that 

mutations in hybrids with high spore viability have mutations that increase the frequency of 
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autotetraploidy.  Tetraploid hybrids are much more fertile than their diploid counterparts65.  Flow 

cytometry experiments could rapidly determine ploidy level in yeast107.  An increase in tetraploidy in a 

culture of hybrids with high spore viability would support the anti-recombination model.  

What are the evolutionary forces driving dysfunctional regulation in hybrids? 
 

As I have a short list of candidate genes that contribute to RI, I could not quantitatively answer 

whether certain genes or pathways are more susceptible to dysfunctional regulation.  However the data 

can be analyzed in such a fashion.  For my initial analysis in Chapter 3, I filtered genes using a 

conservative measurement for differential expression, and then measured for misexpression and cis/trans 

interactions.  However the same analyses could be conducted on an unfiltered list of genes to help attain 

a more general view of hybrid misexpression or cis- and trans- divergence. 

To verify a cis- or trans- interaction, we can perform promoter-swapping assays, in which 

chimeric constructs with one species’ promoter and another species’ genes can be placed in either 

parental background108. If different promoters have different expression levels in the same parental 

background, this would be a cis- effect. If the promoters have the same expression levels in the same 

background, this would be a trans- effect. Promoter expression can be compared in the yeast hybrid 

background and parental backgrounds to confirm more complicated interactions. 

 As the cells progress through meiosis, I see a shift from trans- to cis- divergence between the 

parents.  With this shift, there is an increase of cis*trans and compensatory interactions in the hybrid.  

Assuming an analysis on an unfiltered set of genes produces more cis*trans and compensatory 

interactions, we can determine whether these interactions belong to a rapidly evolving pathway as 

previously determined77.  If we are able to increase the list of genes that have cis-only affects, we can test 

for cis-regulatory evolution of a pathway103.  A combination of these analyses along with the functional 

analysis could reveal whether genes that contribute to RI are rapidly evolving and whether it is due to a 

cis- or trans- only or more complicated interaction.  

As stated before, it is difficult to predict what genes or types of divergence contribute to RI; thus 

interactions besides cis*trans may contribute to RI.  For instance I identified nuclear genes, MRS2 and 

MRS3 that splice mitochondrial genes, and have the same known incompatible gene, MRS118 (Chapter 

3). MRS2 has allele specific expression in the hybrid, but does not have a noticeable cis/trans interaction. 
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Rather cis- only factors appear to effect MRS2 and other mitochondrial genes’ expression (Supplemental 

Data File). However MRS3 does have cis*trans affects.  Assuming both MRS2 and MRS3 have the same 

results on RI as MRS1, we could not deduce what sorts of factors more often effect regulation and RI. If 

my analysis were to be performed on an unfiltered set of genes, we could identify more cis- and trans- 

divergence.  We could randomly choose a given number of genes from each interaction (cis-only, trans-

only, cis + trans, cis*trans, compensatory), and test their effect on RI in yeast using genetic methods, to 

ascertain which type of interaction, if any, is more likely to play a role in RI.  

Additionally we could determine whether cis- and trans- regulatory changes coevolved for the 

sporulation pathway. Knowing whether cis- and trans- mutations are coevolving would help understand 

the evolution forces that drive the regulatory divergence. My allele-specific analysis (Figure 3-4) uncovers 

a shift from trans- to cis- divergence between parents over the course of meiosis.  It has been suggested 

that the early significant regulatory changes between species arise in trans and have large effects on 

many genes, and subsequent cis-changes for genes affected by the original trans-effect can compensate 

for any deleterious effects or further contribute to any fitness advantage109.  Thus we observe more trans- 

changes between species, and more cis- changes within species86,94,110. It has recently been suggested 

that cis- and trans- mutations coevolve as compensatory interactions between species to conserve 

pathways111. 

My study shows that depending on when in a pathway species’ expression divergence is 

observed; we can observe either mostly cis- or trans- changes between species. In the context of a 

simple cascading pathway with a master regulator, such as yeast sporulation, it may not be a surprising 

result.  The two species are differentially regulating their genes during mitosis most likely in accordance to 

how they have evolved over time, as seen by the abundance of trans-divergence.  Once the parents reset 

their regulatory pathways to proceed through sporulation, they are expressing a similar pathway, which 

we see by the increase of cis- only divergence over time.  Whether these cis- changes evolved after or 

coevolved with the trans- effects is unknown. If these mutations are polymorphic within each species, we 

can determine whether these cis- changes evolved after or coevolved with the trans- effects by 

determining using mutation rates and generation times to estimate the age a mutation evolved112.  If 
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trans- mutations occurred first, those mutations will have occurred earlier than cis- mutations. If cis- and 

trans- mutations coevolved, their mutations on average will be the same age.   

Final Thoughts 
 
I believe we can understand the genetic contribute to RI by utilizing Saccharomyces as an evolutionary 

model. Genome-wide studies are excellent for speciation studies, because it gives us the opportunity to 

examine reproductive isolation in a powerful way. For the first time, researchers can study genomes and 

gene expression in organisms whose genomes are not yet sequenced.  When studying a model organism 

like yeast, I have shown through the course of my thesis work that we can relate RI to misexpression in a 

hybrid and that we can compile a list of genes that could contribute to RI.  Unsurprisingly next-generation 

sequencing has become extremely popular because of the amount of data it produces; however I would 

like to stress the point that our hypotheses that come from our genome-wide studies must be followed 

upon with functional assays.  Only by examining a multitude of individual examples, will we be able to 

derive a relationship between genetic incompatibilities and RI.  To this end, Saccharomyces serves as an 

excellent model to study speciation, with outstanding tools to study RI and speciation at both a genome-

wide and individual gene level.  Through a combination of these studies, we are in a position to more fully 

comprehend the genetic contribution to RI.  
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