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 Accumulated data from animal models and human cancer patients strongly 

support the concept that immunity cannot only function as an extrinsic tumor suppressor, 

but also shape tumor immunogenicity.  These observations led to the development of the 

cancer immunoediting hypothesis that stresses the dual host-protective and tumor-

sculpting actions of immunity on developing cancers.  We previously demonstrated 

important roles for lymphocytes and type I (IFN-α/β) and type II (IFN-γ) interferons in 

cancer immunoediting.  In the present work, we confirmed the role of IFN-γ in sculpting 

tumor immunogenicity and provide evidence that antigens expressed by tumors drive the 

destructive or sculpting actions of immunity on cancers. 

 Initial studies confirmed the finding that IFN-γ is a critical mediator of cancer 

immunoediting.  Wild type mice treated with antibodies that neutralize IFN-γ developed 

more sarcomas than control mice.  Furthermore, a subset of sarcomas generated in IFN-γ 

neutralized mice spontaneously reject when transplanted into wild type mice. Finally, 
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these unedited tumors had differential requirements for IFN-γ responsiveness at the level 

of the host and the tumor to mediate tumor rejection. 

Although many immune components that participate in cancer immunoediting are 

known (e.g. IFN-γ), its underlying mechanisms remain poorly defined. We used 

massively parallel sequencing to characterize the expressed mutations in a highly 

immunogenic sarcoma, d42m1, and identified mutant spectrin-β2 as the major rejection 

antigen.  Moreover, we demonstrate that editing of d42m1 tumor cells occurs via a T cell-

dependent immunoselection process that promotes outgrowth of variants lacking mutant 

spectrin-β2.  Thus, the strongly immunogenic characteristic of an unedited tumor can be 

ascribed to expression of a highly antigenic mutant protein.  

 Subsequent studies established that antigen loss variants of d42m1 and edited 

sarcomas from wild type mice exhibit residual immunogenicity and respond to 

checkpoint blockade immunotherapy (anti-CTLA-4).  Exome sequencing of these tumors 

has laid the groundwork for the eventual identification of the antigens targeted for 

destruction by this form of cancer immunotherapy.  Taken together, these studies 

demonstrate that antigens drive the cancer immunoediting process and point to the future 

potential that cancer genome sequencing may have on the fields of tumor immunology 

and cancer immunotherapy. 
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CHAPTER 1 

 

Introduction to Cancer Immunoediting 
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AN INTRODUCTION TO CANCER AND GENERAL MECHANISMS OF 

CANCER SUPPRESSION 

 

The fundamental mechanisms of cellular division and DNA replication carry the 

inherent danger that the replication machinery will inevitably make mistakes, which 

could compromise the integrity of the genome and potentially results in cancer formation.  

Extensive research over the last half-century has revealed cancer to be a genetic disease 

that arises by an evolutionary process where somatic cells acquire multiple mutations 

overwhelming the barriers that normally restrain their uncontrolled expansion. The 

devastation wreaked by cancer cells can be lethal, but fortunately, a number of intrinsic 

and extrinsic tumor suppressor mechanisms exist to prevent their development.  

A variety of intrinsic tumor-suppressor mechanisms attempt to repair genetic 

mutations and will trigger senescence or apoptosis should repairs fail and cellular 

proliferation become aberrant. Cellular senescence, a state characterized by permanent 

cell-cycle arrest with specific changes in morphology and gene expression that 

distinguish it from quiescence (reversible cell-cycle arrest), is induced by a number of 

cellular proteins (e.g., p53) that sense genomic disturbances caused by mutagenic insults 

(1). In addition, cellular senescence is also triggered by activated oncogenes and it is now 

becoming more evident that escape from oncogene-induced senescence is a prerequisite 

for cellular transformation such that cancer cells must acquire cooperating lesions that 

uncouple mitogenic Ras signaling from senescence to proliferate indefinitely (2). Other 

intrinsic tumor suppressor mechanisms, including p53, sense the activity of oncogenes 

and initiate the programmed cell-death machinery.  In response to cellular stress, injury 
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or lack of survival signals, alterations in mitochondria integrity results in the release of 

pro-apoptotic effectors that trigger cell death by terminal activation of executioner 

caspases (3). In contrast, a second cell-death pathway is activated through ligation of cell-

surface death receptors such as tumor necrosis factor receptor (TNFR), tumor necrosis 

factor apoptosis-inducing ligand (TRAIL) receptor 2 (TRAIL-R2, DR5), and Fas/CD95 

(4) with their corresponding ligands of the TNF superfamily to induce the formation of a 

signaling complex that activates the apical caspase 8 to initiate apoptosis.  Additionally, 

increasing attention is being placed on alternative cell death pathways such as necrosis, 

autophagy and mitotic catastrophe that may halt the transformation process (3). In 

general terms, both senescence and apoptosis prevent the acquired capability of cells to 

proliferate without environmental cues and act as a potent barrier to the further 

development of any pre-neoplastic cell. These cell-intrinsic prerequisite steps for the 

transformation of normal cells into cancer cells were graphically illustrated and included 

along with sustained angiogenesis, limitless replicative potential and tissue invasion and 

metastasis by Hanahan and Weinberg in their landmark review “The Hallmarks of 

Cancer” (5). 

Since this famous review, at least three general extrinsic tumor suppressor 

mechanisms have been identified by which cells and their adjacent tissues 'sense' the 

presence of cancerous cells.  All of these, to some extent, can be included under the 

umbrella of mechanisms that prevent cancer cells from invading and spreading to other 

tissues in the host. The first rests upon the mandatory dependency of cells for specific 

trophic signals in the microenvironment that quell their innate suicidal tendencies such as 

the epithelial cell – extracellular matrix association that when disrupted results in cell 
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death (6). A second appears to involve key links between cell polarity genes that control 

cellular junctions and proliferation, preventing cell cycle progression in the face of 

dysregulated junctional complexes (7).  A third extrinsic tumor suppressor mechanism 

involves the limitation of transformation or tumor cell growth by effector leukocytes of 

the immune system.  

The immune system has three primary roles in the prevention of tumors. First, it 

can protect the host from virus-induced tumors by eliminating or suppressing viral 

infections. Second, the timely elimination of pathogens and prompt resolution of 

inflammation can prevent the establishment of an inflammatory environment conducive 

to tumorigenesis. Finally, the immune system can specifically identify and eliminate 

tumor cells in certain tissues on the basis of their expression of tumor-specific antigens. 

This third process, referred to as cancer immunosurveillance, occurs when the immune 

system identifies transformed cells that have escaped cell-intrinsic tumor suppressor 

mechanisms and eliminates them before they can establish malignancy.  These effector 

immune cells employ extremely diverse mechanisms to control tumor targets including 

the induction of tumor cell death by mitochondrial and cell death receptor pathways and 

thus, evasion of immunosurveillance is acknowledged to be an additional hallmark of 

cancer (8-11). However, the immune system not only acts as an extrinsic tumor 

suppressor, but paradoxically, also promotes cancer outgrowth. Together, the dual host-

protective and tumor-promoting actions of immunity are referred to as cancer 

immunoediting. 
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A MODERN HISTORY OF CANCER IMMUNOSURVEILLANCE AND 

CANCER IMMUNOEDITING 

 

 The idea that the immune system, which so effectively protects the host from 

microbial pathogens, might also recognize and destroy tumor cells was conceived 50-100 

years ago (12-14). For over a century, the concept of cancer immunosurveillance has 

been wrought with controversy (reviewed in detail in (8)) and by the early 1990s, little 

attention was paid to the idea that natural immunity could eliminate tumors de novo. 

However, interest in this aspect of tumor immunology was rekindled in the mid-1990s by 

the observations that transplanted tumors grew more robustly in mice treated with 

neutralizing monoclonal antibodies specific for interferon-γ (IFN-γ) (15) and that 

immunodeficient mice which lacked either IFN-γ responsiveness (IFNGR1, a component 

of the IFN-γ receptor) or an intact T cell compartment were more susceptible to 3’-

methylcholanthrene (MCA)-induced sarcoma formation (16-18).  

 In the last decade, work from many laboratories including our own have validated 

the concept of cancer immunosurveillance, demonstrating, unequivocally, that the 

immune system can indeed protect mice from outgrowth of many different types of 

primary and transplantable tumors (15, 16, 19-25). An important study in 2001 provided 

evidence that the immune system not only controlled tumor quantity but also tumor 

quality (i.e., immunogenicity) (19).  Immunodeficient mice lacking either IFN-γ 

responsiveness or recombination activating gene-2 (RAG2) (the latter fail to generate T, 

B, and natural killer T lymphocytes) develop more spontaneous neoplasia upon aging and 

are more susceptible to MCA carcinogen-induced sarcomas compared to wild-type mice.  
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In addition, a significant portion (40%) of MCA sarcomas derived from immunodeficient 

Rag2-/- mice were spontaneously rejected when transplanted into naïve syngeneic WT 

mice, while all MCA sarcomas derived from immunocompetent WT mice grew 

progressively when transplanted into naïve syngeneic WT hosts (19).  Thus, tumors 

formed in the absence of an intact immune system are, as a group, more immunogenic 

than tumors that arise in immunocompetent hosts.  These results show that the immune 

system not only protects the host against tumor formation, but also “edits” tumor 

immunogenicity.  These new data prompted a refinement of the cancer 

immunosurveillance concept and led to the formulation of the cancer immunoediting 

hypothesis, which stresses the dual host-protective and tumor-sculpting actions of 

immunity on developing tumors. 

 We now view cancer immunoediting as a dynamic process comprised of three 

distinct phases: elimination, equilibrium and escape (8, 26-32). Elimination is a 

modernized view of cancer immunosurveillance where molecules and cells of both innate 

and adaptive immunity work together to detect the presence of a developing tumor and 

destroy it long before it becomes clinically apparent. In some instances, where tumor cell 

destruction goes to completion, the elimination phase represents an endpoint of cancer 

immunoediting. However, tumor cell variants may sometimes not be completely 

eliminated but rather enter into an equilibrium phase where the immune system controls 

net tumor cell outgrowth.  In this equilibrium phase, tumor cells can become functionally 

dormant and remain clinically unapparent for the life of the host. Thus, equilibrium also 

represents a potential second stable endpoint of cancer immunoediting. Finally, either as 

a result of changes occurring (a) in the tumor cell population due to an active 
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immunoediting process or (b) in the host immune system, resulting from increases in 

cancer-induced immunosuppression or immune system breakdown due to the natural 

aging process, the functional dormancy of the tumor cell population may be broken, 

leading to progression of these cells into the escape phase, where they begin to grow in 

an immunologically unrestricted manner and emerge as clinically apparent disease.  The 

concept of cancer immunoediting is thus, a comprehensive interpretation of previous and 

current clinical and experimental data, which integrates the immune system’s capacity to 

both protect the host from cancer and promote cancer outgrowth through a multitude of 

mechanisms. The observations that have led to the concept of cancer immunoediting are 

reviewed here, with a particular focus on experimental data from various mouse models 

of cancer and clinical data from human cancer patients.  

 

THE ELIMINATION PHASE: CANCER IMMUNOSURVEILLANCE 

 

Immune-mediated Cancer Elimination in Mice 

In the first phase of the cancer immunoediting process, the elimination phase, 

immune cells locate, recognize and destroy nascent transformed cells and prevent the 

development of malignancy.  This process has never been visualized in vivo, but rather 

has been inferred from the earlier onset or greater penetrance of neoplasia in mice 

defective for certain immune cell subsets, recognition molecules, effector pathways or 

cytokines. Predominantly through the use of gene-targeted mice or by employing 

neutralizing monoclonal antibodies (mAbs) in wild-type mice, this approach has 

demonstrated that a number of immune effector cells and pathways are important for the 
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suppression of tumor development. For the purposes of this introduction we will not 

discuss a large literature where such mice have been challenged by transplanting a bolus 

of tumor cells derived from wild-type (WT) mice, since these tumor cells originated by 

escaping host immunity and therefore have already undergone cancer immunoediting. 

There are three basic mouse models of cancer that are relevant to the discussion of cancer 

immunoediting that illustrate the important role of immunity in eliminating developing 

tumors: 1) carcinogen-induced tumors; 2) spontaneous tumors that arise upon aging; and 

3) tumor development in mice genetically predisposed to cancer. 

 

Carcinogen-induced Tumors in Immunodeficient Mice  

 Historically, the concepts of cancer immunosurveillance and immunoediting have 

predominantly been demonstrated by exposing WT and immunodeficient mice to 

carcinogens and comparing their relative tumor incidences. The advantages of regulating 

tumor penetrance, tissue involvement and location in carcinogen-induced tumor models 

is one reason why these models are widely employed by researchers and in some cases 

they represent good mouse models of human cancer (e.g., asbestosis). The two most 

commonly employed carcinogen-induced tumor models are sarcomas induced using 3’-

methylcholanthrene (MCA) and skin papillomas induced by a combination of 7,12-di-

methylbenz[a]-anthracene (DMBA) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA). 

To date, a number of mice with defined immunodeficiencies have been tested for their 

susceptibility to carcinogens (31).  

 Cells of both the innate and adaptive immune system have been shown to be critical 

for the elimination (i.e., cancer immunosurveillance) of primary MCA-induced sarcomas. 
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Lymphocyte-deficient Rag1-/-, Rag2-/-, severe combined immunodeficient (SCID) and 

nude mice all display an increased susceptibility to tumor induction after MCA exposure 

(17-19, 33).  Interestingly, 40% of tumors derived from Rag2-/- mice are rejected when 

transplanted into WT recipients, but grow progressively in either Rag2-/- hosts or WT 

hosts depleted of CD4+ and CD8+ T cells, whereas tumors derived from WT mice grow 

readily when transplanted into either WT or Rag2-/- hosts. These observations 

demonstrate that carcinogen-induced sarcomas derived from immunodeficient mice are 

more immunogenic than those arising in mice with a functional immune system and 

formed the basis for the cancer immunoediting concept (19). Subsequent studies found 

that mice deficient for either αβ or γδ T cells display increased susceptibility to tumor 

induction, indicating that	  both lymphocyte populations are important in suppressing 

MCA-induced tumors (23, 34). In addition, the innate-like lymphocytes are also critical 

players in eliminating transformed cells. For example, mice lacking CD1d-restricted T 

cells (Cd1d-/-) are more susceptible to MCA-induced sarcomas (35) suggesting that these 

cells, which bridge the innate and adaptive arms of the immune system, also have a role 

in suppressing MCA-induced sarcomas. Furthermore, mice lacking the Jα18 T cell 

receptor (TCR) component are unable to generate the semi-invariant Vα14-Jα18–

containing TCR expressed by natural killer T (NKT) cells, resulting in the absence of 

NKT cells, and rendering these mice more susceptible to MCA-sarcoma induction (36). 

Consistent with a role for the innate immune cells in cancer immunosurveillance, mice 

chronically depleted of NK cells displayed increased tumor incidence (37). One striking 

study revealed that CD8α+ dendritic cells (DCs) of the innate immune compartment are 

absolutely required for antitumor immunity and mice lacking these cells (Batf3-/-) 
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displayed similar antitumor deficiencies as Rag2-/- mice (38).  This may be explained in 

part, due the role of CD8α+ DCs in cross-presenting antigens to lymphocytes.  Even 

eosinophils, whose role is more clearly defined in host-defense against helminths, can 

protect the host from tumor development.  Mice deficient in eosinophils (more 

specifically eotaxin-, CCL11- and/or IL-5-deficient or ΔdblGATA) were more susceptible 

to MCA-induced sarcoma formation than WT mice in both C57BL/6 and BALB/c 

backgrounds (39). Remarkably, mice transgenic for IL-5 have greater circulating 

numbers of eosinophils and were more resistant to MCA-sarcomas compared to WT 

mice, strongly suggesting an immunosurveillance role for these innate immune cells (39).  

 A number of mice deficient for specific immune effector molecules and recognition 

pathways have also been examined in the context of MCA-induced tumor susceptibility, 

including mice lacking perforin (40), IFN-γ (40), IFNGR1 (16, 19), IFNAR1 or IFNAR2 

(components of the type I IFN receptor) (24, 41, 42), TRAIL (43, 44), IL-12 (45), TNF-α 

(42), and (DNAX accessory molecule-1) DNAM-1 (46). Each of these mouse strains 

demonstrated enhanced susceptibility to sarcoma induction after MCA treatment, 

suggesting that interferons and cytotoxic lymphocytes suppress tumor initiation in vivo. 

Although WT mice treated with blocking antibodies specific for NKG2D  (an activating 

receptor expressed by CD8+ T cells, γδ T cells and NK cells) was reported to increase the 

incidence of MCA-induced sarcomas	  in two different mouse strains (47), C57BL/6 

NKG2D-deficient mice had comparable numbers of MCA-induced sarcomas to WT mice 

(48). In addition, although the rate of MCA-induced tumor formation was similar in the 

presence or absence of the NK cell natural cytotoxicity receptor NKp46, the expression 

of its unknown ligands was NKp46-dependent, suggesting some level of immunoediting 
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by cells expressing this receptor (49).  

 Interferons can contribute to antitumor effects in a number of ways. IFN-γ can exert 

direct effects on tumor cells (16) and a major effect of IFN-γ on these cells is to enhance 

MHC class I expression, rendering them better targets for tumor-specific CD8+ T cells 

(19, 50). In addition, IFN-γ signaling in host immune cells (51) and host stroma cells (52) 

also plays an important role in the elimination of tumor cells, indicating that IFN-γ’s 

effects in multiple cellular compartments generates antitumor immunity. Others have 

proposed that IFN-γ contributes to an inflammatory foreign body reaction that results in 

the encapsulation of injected MCA, limiting its spread and thereby reducing its 

carcinogenic effects (53). However, this mechanism does not explain the findings of IFN-

γ preventing the formation of lymphomas induced by the soluble carcinogen N-methyl-N-

nitrosourea (54), where encapsulation of the carcinogen is not possible.  Furthermore, a 

recent report demonstrated that MCA exposure induced more squamous cell carcinomas 

(SCC) in the skin of IFN-γ-deficient mice than WT controls (55), indicating that MCA 

delivery in a different tissue type than the previous subcutaneous injections also supports 

a role for IFN-γ in mediating cancer immunosurveillance.  In contrast to the antitumor 

effects of IFN-γ occurring at both the level of the tumor and the host, the antitumor 

effects of type I IFNs (IFN-α/β) are mediated only at the level of the host’s 

hematopoietic system (24, 25, 56). Specifically, CD8α+ DCs of the innate immune 

compartment are critical responders of type I IFNs such that selective deletion of 

IFNAR1 in CD8α+ DCs results in tumor outgrowth of highly immunogenic sarcomas 

(25). These results suggest that the ability of type I IFNs to induce antitumor activity in 

immune cells might be the critical mode of action for this cytokine family and that IFN-γ 
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and IFN-α/β have distinct, potentially non-overlapping mechanisms of action in 

antitumor immunity.  

   As will be discussed later in this introduction, recent studies reveal that initiation of 

MCA-induced sarcomas requires an inflammatory event.  Along similar lines, skin 

carcinomas induced by the topical application of DMBA (tumor initiator) followed by 

repetitive doses of TPA (tumor promoter) are known to require inflammatory 

components for tumor initiation and promotion.  For example, the induction of 

DMBA/TPA skin carcinomas is MyD88- (42), mitogen-activated protein kinase-activated 

protein kinase-2 (MK2)- (57), TNF-α−	  (58), receptor for advanced glycation end-

products (RAGE)- (59), and IDO-dependent (60). Lesions progress from benign 

papillomas to metastatic SCC, and both the number of lesions and extant of tumor 

progression is dependent on the mouse strain. Despite an inflammatory component, 

DMBA/TPA induced tumors are also detected and destroyed by effector cells and 

molecules of innate and adaptive immunity. For example, γδ T cells and CD8+ T cells 

confer protection from DMBA/TPA-induced papillomas (23, 61). In contrast, CD4+ T 

cells promote tumor progression, implying opposite roles for αβ T cell subsets in the 

protection or promotion of DMBA/TPA skin carcinogenesis (61). One mechanism by 

which γδ T cells and activated CD8+ T cells might regulate tumor development is through 

recognition by NKG2D of the stress ligand retinoic acid early transcript 1 (RAE1) that is 

induced in the skin after DMBA/TPA treatment and has been found to be upregulated in 

transformed cells by the DNA damage pathway (23, 62). NKG2D-expressing dendritic 

epidermal γδ T cells can kill RAE1-expressing targets in vitro (23), but in transgenic 

mice expressing RAE1 in the skin, NKG2D expression is down modulated on 
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lymphocytes and consequently these mice are more susceptible to papilloma induction 

than WT mice (63). A follow up study using inducible RAE1 transgenic mice have 

provided further insight into the previous observation, where acute upregulation of 

NKG2D ligands triggered a swift reorganization of the local skin immune compartment, 

resulting in local Vγ5Vδ1+ T cells limiting carcinogenesis, but unexpectedly Langerhans 

cells promoted DMBA/TPA carcinogenesis	  (64). Another innate recognition receptor, 

DNAM-1 also protects tumor formation as Dnam1-/- mice develop more papillomas than 

their WT counterparts (46).     

 In addition to cellular subsets and recognition receptors, effector molecules and 

cytokines also have a critical function in controlling DMBA/TPA-induced skin tumors. 

For example, although DMBA/TPA-treated TRAIL-R-deficient mice did not show an 

increase in the number of benign papillomas or the rate of progression to squamous cell 

carcinoma when compared to WT mice, metastasis to lymph nodes was significantly 

enhanced, indicating a role for TRAIL-R specifically in the suppression of metastasis	  

(65). One cytokine, IL-12, has been shown to protect mice against DMBA/TPA-induced 

tumors, where mice that lack functional IL-12 (Il12a-/-) develop increased numbers of 

papillomas compared to WT mice (66, 67).	  Interestingly, mice that lack functional IL-23 

(Il23a-/-) are resistant to tumor development (66, 67), however, the mechanism by which 

IL-23 suppresses innate immunity and promotes tumor growth requires further 

clarification since it was unexpectedly IL-17A-independent (67).  Nevertheless, IL-17A-

deficient mice also develop fewer skin papillomas than WT mice after DMBA/TPA 

exposure, suggesting a tumor-promoting role for this cytokine (67).  One peculiarity of 

the DMBA/TPA model is that a loss of IFN-γ or IFNGR1 unexpectedly results in reduced 
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tumorigenesis, hence playing and opposite role than in the MCA tumor model (68). 

These observations demonstrate the pleiotropic effects that a single immune cell or 

molecule can have during carcinogenesis and stress the importance of a multimodal 

analysis.  The interplay between antitumor immunity and cancer-promoting inflammation 

suggested by the above studies is discussed at greater length below. 

 In addition to the demonstration of cancer immunosurveillance by immune effector 

cells and molecules against tumors induced by chemical carcinogens, tumors induced by 

physical carcinogens such as ultraviolet (UV) radiation also seem to be controlled by the 

immune system (69). Interestingly, UV-induced immune suppression is an important 

factor in the development of UV-induced tumors, and these tumors are often 

immunogenic when transplanted into naïve hosts but grow in immunosuppressed or 

CD8+ T cell-depleted (70). These data show that immunoediting can also be observed in 

the UV radiation tumor model as well as the MCA chemical carcinogen model.  

 

Spontaneous Tumor Development In Immunodeficient Mice 

An elegant approach to examine the role of the immune system in controlling 

tumor development is to simply remove specific components of the murine immune 

system and monitor mice as they age for the development of spontaneous tumors. Mice 

have long telomeres and display a very low incidence of spontaneous tumor 

development. For example, we observe incidences of cancer in a variety of inbred WT 

mouse strains that range from only 0-20% over a two-year period. While many 

immunodeficient mice also do not develop cancers over a two-year observation period, 

ageing studies have clearly demonstrated a critical role for certain cytotoxic pathways, 



	   15 

lymphocyte cellular subsets, and cytokines in the prevention of spontaneous tumor 

development. One striking example is the penetrance of immunogenic B cell lymphomas 

in aged mice (>1 yr) on either C57BL/6 or BALB/c backgrounds that increases from 0-

6% in wild-type mice to 40-60% in perforin-deficient mice (20, 22). Mice lacking this 

key T cell and NK cell cytotoxic effector pathway develop an even greater prevalence of 

B cell lymphomas with an earlier onset when they additionally lack the MHC class I 

accessory molecule β2-microglobulin (β2m) or IFN-γ compared with perforin alone (22, 

71). The absence of other lymphocyte cytotoxic pathways such as TRAIL or FasL also 

increased the susceptibility of mice to spontaneous lymphomas (72, 73). Collectively, 

these data provide very strong evidence that critical cytotoxic molecules in lymphocytes 

protect the host from spontaneous tumor development.  Intriguingly, human patients with 

specific mutations in perforin that develop adult onset familial hemophagocytic 

lymphohistocytosis (FHL) have recently been identified to also develop leukemia and 

lymphoma, suggesting the possibility that perforin may protect against hematological 

malignancies in humans (74).  

 Ageing experiments have also been performed in mice that lack one or more 

lymphocyte subsets. Although, early studies in athymic nude mice did not document an 

increase in spontaneous tumor development (75), one later study suggested that germ-free 

nude mice did develop a low frequency of B cell lymphoma compared with heterozygote 

littermates (76). Unlike other genetic models of immunodeficiency (e.g., SCID mice), the 

absence of RAG-2 does not affect DNA damage repair pathways in non-immune cells 

undergoing transformation. Helicobacter-negative 129/Sv Rag2-/- mice aged in a specific 

pathogen-free mouse facility and maintained on broad-spectrum antibiotics developed 
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significantly more spontaneous epithelial tumors (35% gastrointestinal and 15% lung of 

all mice analyzed at 15–16 months of age) than their WT counterparts (19).  Consistent 

with these observations, 129/Sv RAG-2-deficient mice that also lack STAT1 (an 

important mediator of signaling induced by both type I and type II IFNs) showed an 

earlier onset and broader spectrum of malignancy, including the development of colon 

and mammary adenocarcinomas (19). The role of specific lymphocyte subsets in the 

prevention spontaneous tumor development has yet to be reported in mice lacking NKT 

cells, γδ+ T cells or NK cells, but C57BL/6 β2m-deficient mice that lack NKT cells and 

many CD8+ T cells did not have elevated tumor formation upon aging (71), suggesting 

that distinct lymphocyte populations may play distinct roles, if any, during cancer 

immunosurveillance of spontaneous tumors. 

Similar to chemical carcinogen models of tumor induction, cytokines are critical 

for the activation of immune effector mechanisms that limit spontaneous tumor 

development. In one study, a small proportion (<15%) of BALB/c IFN-γ deficient mice 

developed lung adenocarcinomas whereas almost half the IFN-γ-deficient mice on a 

C57BL/6 background developed a spectrum of various T cell lymphomas, indicating 

strain-specific differences in the contribution of IFN-γ to prevent spontaneous tumors 

from occurring (22). In addition, C57BL/6 mice deficient for both perforin and IFN-γ 

develop more B cell lymphomas with earlier onset than Pfp-/- mice, suggesting that in the 

absence of perforin, IFN-γ can play a role in controlling lymphomas (22). Finally, female 

mice deficient for the IFN-γ-inducible immunoproteasome subunit LMP2 develop 

spontaneous uterine neoplasms with a disease prevalence of approximately 36% by 12 



	   17 

months of age	  (77). This observation suggests that IFN-γ inducible proteasome function 

may be essential for MHC class I-mediated tumor rejection.  

In addition to the role of cytokines in cancer immunosurveillance of spontaneous 

tumors, a possible link between tumor immunity and autoimmune or infection-induced 

inflammation has been raised by several studies.  For example, 50% of mice lacking the 

β2 subunit of the IL-12 receptor (IL-12Rβ2) develop plasmacytomas or lung carcinoma 

concurrently with immune complex mesangial glomerulonephritis	  upon aging (78). It is 

presently unclear why IL-12p40–deficient mice on the same genetic background as the 

IL-12Rβ2–deficient mice do not display either autoimmunity or spontaneous tumor 

development	  (22). Furthermore, mice deficient for both IFN-γ and GM-CSF have been 

found to develop spontaneous tumors in a variety of tissues with age and, in this case, 

tumor development is associated with acute or chronic inflammatory lesions (79). 

Maintaining Gmcsf-/-Ifng-/- mice on a regimen of antibiotics delays tumor onset	  

suggesting that in addition to potentially eliminating tumor cells directly, the immune 

system might also prevent tumor growth by the timely elimination of infections, thereby 

limiting inflammation, which is known to facilitate tumor development (80). However, 

this finding cannot be generalized to all immunodeficient mice that develop spontaneous 

malignancies since heightened tumor incidence was observed in Rag2-/- and Rag2-/-Stat1-/- 

mice maintained on the same antibiotics regimen (as mentioned above).  

 

Genetic Tumor Models in Immunodeficient Mice 

 Data supporting the ability of the immune system to suppress tumor development in 

genetic models of mouse cancer are accumulating rapidly. Mice heterozygous for the 
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tumor suppressor p53 (Trp53+/–) are genetically predisposed to tumor development, but in 

the additional absence of IFNGR1 (16), perforin (20), TRAIL (72), or NKT cells (35), 

more aggressive tumors develop with an earlier onset, providing very strong evidence 

that these immune components participate in the elimination of nascent transformed cells. 

More recently, a key role for perforin in immunosurveillance of B cell malignancies has 

been validated in three different genetic models of B cell malignancies in C57BL/6 mice.  

Similar to Pfp-/-Trp53+/- mice, perforin-deficient mice also heterozygous the tumor-

suppressor Mlh1 developed more B cell lymphomas with faster kinetics than mice 

lacking perforin alone (81).	  Additionally, perforin protects against the development of 

oncogene-driven tumors on a transgenic background, including v-abl-driven 

plasmacytomas, and bcl2-driven follicular lymphomas (81). 

 Other transgenic mice that express oncogenes under the control of tissue-specific 

promoters have also revealed immune-mediated protection from tumor formation.  In one 

example, IFN-γ suppresses tumor development in mice expressing the human T cell 

leukemia virus (HTLV) type 1–derived oncogene Tax under the control of a granzyme B 

promoter (HTLV-Tax transgenic mice) (82). Loss of a single TRAIL-R allele on the 

lymphoma-prone Eµ-myc genetic background significantly reduced median lymphoma-

free survival corroborating an extrinsic tumor suppressor role for this cell death pathway 

(83). The conclusion that NKG2D plays a critical role in cancer immunosurveillance is 

further supported by the fact that mice defective in NKG2D are more susceptible to Eµ-

myc driven pre-B cell lymphomas (48). More recently, in a study using transgenic 

adenocarcinoma of the mouse prostate (TRAMP) mice, investigators assessed whether 

NKG2D controlled the growth of spontaneous oncogene-driven prostate cancer. NKG2D-
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deficient mice developed more aggressive tumors than WT mice and interestingly, these 

aggressive tumors arising in NKG2D-deficient mice expressed higher amounts of 

NKG2D ligands than did similar tumors in wild-type mice, suggesting an NKG2D-

dependent immunoediting mechanism (48). Also in the same prostate cancer model, the 

lack of NKT cells in TRAMP Jα18-/- mice correlated with more aggressive 

adenocarcinoma development (84). Despite the presence of a traceable tumor antigen-

specific T cell response in these mice, no evidence was found to support a correlation 

between the presence of NKT cells and the efficacy of CTL responses in this setting. 

Nevertheless, this study extends the list of spontaneously arising tumors in mice in which 

NKT cells are critical for natural immune surveillance.  

 In summary, various cell types including αβ T cells, γδ T cells, NKT cells and NK 

cells have all been implicated in the processes of elimination and immunoediting, along 

with a number of effector molecules, including perforin and TRAIL, as well as the 

cytokines IFN-γ, type I IFNs, and IL-12.  More is known about the physiologically 

relevant targets of IFN-γ's actions than the other effector molecules or cells during cancer 

immunosurveillance.  Both host and tumor cells are important targets of IFN-γ during the 

development of protective antitumor immune responses and the data substantiating this 

conclusion has already been extensively reviewed (8, 26, 27). It is important to note that 

the effector cells and cytokines thought to be involved in elimination and immunoediting 

differ among models, demonstrating that the success of immunoediting and the evidence 

of its occurrence varies among experimental systems. Indeed, there are models in which 

the immune system seems to have little influence on the rate of tumor onset or 

progression	  (85) and models in which the immune system has a distinct protective role, 
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such as the carcinogen-induced and genetically-predisposed tumor models outlined 

above. The level of immune regulation and tolerance (a state of non-responsiveness to 

specific antigens) imparted by the tumors in each of these models might explain, at least 

in part, why in some cases the effect of subtracting immune elements on tumor 

progression is less overt. Blocking these tolerance mechanisms might reveal the true 

mechanisms of tumor suppressor immunity.  Moreover, recent studies have lent great 

support for the cancer immunoediting hypothesis by validating the existence of the 

equilibrium phase in multiple models and demonstrating that the immune sculpting 

actions on tumor immunogenicity occur during this phase. 

 

THE EQUILIBRIUM PHASE: IMMUNE-MEDIATED TUMOR DORMANCY 

 

Historically, tumor dormancy is the term used to describe latent tumors present in 

patients for decades that may eventually recur as local lesions or form distant metastases 

(86). Tumors in the equilibrium phase are a subset of dormant tumors that are specifically 

controlled by components of the immune system.  In the equilibrium phase, the host 

immune system and tumor cells enter a dynamic balance, wherein powerful antitumor 

immunity contains, but does not fully eradicate, a heterogeneous population of tumor 

cells, some of which have acquired means of evading immune-mediated recognition and 

destruction. The equilibrium phase was originally hypothesized to exist in order to 

explain the long latency period from the initial transformation event to the escape phase 

and emergence of malignant disease.  In this manner, equilibrium may be the longest of 

the immunoediting phases where sculpting forces of immunity select for the tumor cells 
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acquiring the most immunoevasive mutations, potentially leading to clinically detectable 

disease. 

Using a low-dose regimen of the carcinogen MCA, we reported the first 

experimental demonstration that immunity maintains primary occult cancer lesions in an 

equilibrium state (87).  Treatment of naïve WT mice with low doses of MCA led to overt 

tumors in only a low proportion of mice. When the remaining carcinogen-treated mice 

were rendered immunodeficient via depletion of CD4+ and CD8+ cells and/or 

neutralization of IFN-γ, sarcomas rapidly grew out at the original carcinogen injection 

site in approximately 50% of the group. Strikingly, tumor outgrowth was not observed to 

any significant extent (<10%) in similar MCA treated WT or RAG2-deficient mice 

injected weekly with control mAb starting at day 200. Subsequent analyses revealed that 

mAbs that depleted cells of adaptive immunity (such as CD4+ and CD8+ T cells) or 

blocked cytokines that promote adaptive immunity (such as IFN-γ and IL-12) caused 

dormant tumor cells to grow out. In contrast, mAbs that deplete NK cells (anti-NK1.1), 

block NK cell recognition (anti-NKG2D) or inhibit NK cell effector function (anti-

TRAIL) failed to cause the emergence of progressively growing tumors (87). These 

results support the conclusion that adaptive immunity, but not innate immunity, is 

responsible for maintaining the equilibrium phase. They also help to mechanistically 

distinguish this phase from elimination, where both innate and adaptive immunity are 

required.  Histological examination of occult tumors revealed the presence of atypical 

fibroblasts surrounded by a dense infiltration of leukocytes. These atypical fibroblasts 

were truly transformed since they formed progressively growing tumors when 

transplanted into immunodeficient Rag2-/- mice.  Moreover, occult tumors controlled by 
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immunity displayed fewer Ki67+ atypical fibroblasts and more terminal deoxynucleotidyl 

transferase dUTP end nick labeling (TUNEL) staining cells than progressively growing 

sarcomas.  The visualization of fewer proliferating tumor cells accompanied by more 

cells undergoing apoptosis is supportive of an active immune response controlling 

equilibrium tumors. Occult tumors arising after immunodepletion were, on the whole, 

highly immunogenic with 40% of the cell lines rejecting after transplantation into WT 

mice.  In contrast, the rare spontaneous tumors that grew out of mice treated with control 

mAbs were poorly immunogenic and grew progressively when transplanted into WT 

recipients. Thus, tumor cells held in equilibrium by adaptive immunity remained highly 

immunogenic and displayed an unedited phenotype while dormant sarcoma cells that 

spontaneously escaped immune control to become actively growing tumors displayed 

reduced immunogenicity, indicating that they had undergone editing.   

In hindsight, these findings explain previously reported models of immune-

mediated tumor dormancy. In the past, most experimental models of tumor dormancy 

relied heavily on a vaccination-and-challenge strategy with tumor cell lines to induce 

latent tumor cells. For example, in the BALB/c B cell leukemia/lymphoma 1 (BCL1) 

model of tumor dormancy, mice were immunized with BCL1-derived Ig to create an anti-

idiotype vaccine against the B cell Receptor (BCR) expressed by the lymphoma cells.  

Naïve, non-immunized mice injected with BCL1 tumor cells succumbed to malignancy 

within 30 days.  In contrast, mice initially immunized with BCL1-derived Ig and 

subsequently challenged with BCL1 tumor cells did not develop malignancy although 

tumor cells could be detected in the circulation of cancer-free mice hundreds of days after 

transplantation (88).  Over an extended period of time, vaccinated mice challenged with 
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live BCL1 tumor cells spontaneously developed malignancy, suggesting an escape from 

dormancy.  Interestingly, when mice harboring dormant BCL1 tumor cells were depleted 

of CD8+ T cells or IFN-γ using mAbs, the incidence and duration of dormancy were 

reduced, suggesting that the immune system plays an important role in controlling these 

dormant tumor cells (88).   

 Using a BCR-ABL mouse model of leukemia, dormancy was also achieved via a 

vaccination-and-challenge strategy.  The longer the DA1-3b tumor cells remained 

dormant within the vaccinated host, the greater the expression of programmed cell death 

1 ligand 1 (PD-L1) on the tumor cells, which acted to confer resistance to cytotoxic T 

lymphocyte (CTL)-mediated killing (89). Consistent with the concept of the equilibrium 

phase, DA1-3b tumor cells acquired advantageous changes over time such that those cells 

which remained dormant longer were more resistant to attack by CD8+ T cells. 

Recently, two additional studies using different mouse models of cancer 

corroborated our findings for the existence of the equilibrium phase by additionally 

demonstrating that immunity can control primary carcinomas and metastases for 

extended periods of time.  The first study involved a new mouse model of cancer 

immunosurveillance and equilibrium using ultraviolet B (UVB)-radiation to induce 

squamous cell carcinomas of the skin.  Here, the authors used mice genetically deficient 

in E3 ligase Casitas B-lineage lymphoma b (Cbl-b), which is known to limit the effector 

functions of CTLs (90).  Thus, mice lacking Cbl-b exposed to UVB-radiation developed 

fewer spontaneous squamous cell carcinomas compared to WT mice due to the enhanced 

antitumor activity of CD8+ T cells that lack the Cbl-b regulator.  Cblb-/- mice that failed 

to form carcinomas 400 days after UVB treatment were then divided into two 
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experimental groups.  One group received mAbs that depleted CD8+ T cells, while the 

other group received control mAbs.  Only 10 days after starting mAb treatment, nearly 

50% of mice depleted of CD8+ T cells developed rapidly growing tumors whereas none 

of the mice receiving control mAb developed detectable tumors (90). It will be interesting 

to determine in the future whether WT CD8+ T cells can also maintain occult UVB-

induced carcinomas in an equilibrium state. 

A second study demonstrates that immunity can prevent the outgrowth of 

micrometastases for an extended period of time in an oncogene-driven model of 

melanoma.  In this model, transgenic mice that express the human RET oncogene and a 

chimeric mouse/human MHC antigen (91) specifically in melanocytes were found to 

develop extensive disseminated metastases (92).  Depletion of CD8+ T cells in RET.AAD 

mice significantly accelerated the outgrowth of metastatic lesions to visceral organs, 

indicating that immunity is one significant barrier disseminated tumor cells must 

overcome in order to establish metastatic disease (92).  Interestingly, these CD8+ T cells 

did not seem to directly kill the tumor cells, but rather mediated cytostatic effects on the 

disseminated tumor cells.  One likely mechanism underlying control of disseminated 

tumor cell outgrowth may be via IFN-γ produced by tumor antigen-specific T cells, 

which has been shown in other systems to inhibit cellular proliferation and curtail 

angiogenesis (93-95).  For example, in a pre-clinical model of pancreatic cancer using 

RIP-Tag2 mice, the transfer of IFN-γ producing TNFR1+ CD4+ T cells specific for Tag 

prevented the progression of pancreatic islet cancer (95).  In this study, transferred Tag-

specific T cells arrested tumor cell proliferation and prevented angiogenesis, curtailing 

tumor growth and resulting in the inhibition of multistage carcinogenesis and induction of 
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a period of extended tumor dormancy. In the absence of either TNFR1 signaling or IFN-γ 

receptor signaling, the same T cells paradoxically promoted angiogenesis and multistage 

carcinogenesis.  Currently, the adoptive transfer of cancer-reactive T cells into human 

cancer patients is an experimental therapy with promising results (96) and it will be 

interesting to see if these therapies can be optimized as a viable therapeutic endpoint to 

induce an equilibrium state in some patients. 

 

THE ESCAPE PHASE: FAILURE OF CANCER IMMUNOSURVEILLANCE 

 

 While the processes of cancer elimination and equilibrium largely occur “behind 

the scenes”, a more dramatic result of cancer immunoediting can occur when tumors 

escape immune control, leading to the appearance of overt cancer. Thus, the escape phase 

represents the failure of the immune system to either eliminate or control transformed 

cells, allowing surviving tumor cell variants to grow in an immunologically unrestricted 

manner.  Cancer cells undergoing stochastic genetic and epigenetic changes generate the 

critical modifications necessary to circumvent both innate and adaptive immunological 

defenses. Moreover, the immune system contributes to tumor progression by selecting 

more aggressive tumor variants, suppressing the antitumor immune response, or 

promoting tumor cell proliferation.  The interaction between a heterogeneous population 

of cancer cells undergoing rapid genetic modifications and the constant immunological 

pressure exerted by immune cells allows for the Darwinian selection of the most fit tumor 

variants to survive and form overt cancer in immunocompetent hosts.  Thus, nearly all 

human cancers and experimental cancer cell lines are those that have evaded 
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immunological control. The focus of this section on tumor escape is not to provide an 

exhaustive list of escape mechanisms that have been extensively reviewed elsewhere (8, 

9, 26, 27, 29, 97) but rather to shape the framework of how tumor cells achieve 

immunological escape.  Although, the mechanisms for tumor escape are varied, they can 

be categorized generally as cell-autonomous modifications at the level of the tumor cell 

that directly evade immune detection and destruction or modifications in immune cells 

effected by tumor cells to generate an immunosuppressive network.  

 

Tumor Cell Modifications to Evade Immune Detection or Destruction 

 Tumor escape can result from changes that occur at the level of the tumor by 

directly inhibiting tumor recognition or cytolysis by immune effector cells. In some 

cases, immune evasion by tumors is absolute and the immune system has little impact on 

tumor progression, while in other cases tumor growth is delayed before the immune 

system is overwhelmed, leading to tumor progression. In its simplest form, tumor cells 

that express very weak antigens can evade detection due to the induction of central or 

peripheral tolerance. Central tolerance is a process whereby self-reactive T cells are 

eliminated or converted to a regulatory phenotype in the thymus (98). In this case, and in 

the absence of neoantigen expression, tumors may remain “invisible” to the adaptive 

immune system and are free to grow unhindered. Peripheral tolerance is an important 

process whereby T cells reactive with self-antigens not expressed in the thymus are 

deleted or rendered non-responsive in the periphery. In this case, some level of antitumor 

immune response may be initiated transiently before tolerance is induced leading to 

tumor progression (85, 99). 
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 In addition to tolerance induction, tumor cells can acquire defects in antigen 

processing and presentation pathways that facilitate evasion from adaptive immune 

recognition.  Specifically, loss of TAP1, MHC class I molecules, β2-microglobulin, 

LMP2, LMP7 and the development of IFN-γ or IFN-α/β insensitivity by tumor cells 

prevents T cell-mediated elimination, resulting in tumor progression (28, 100-102). An 

extreme version of this escape process occurs when tumors lose the ability to respond to 

IFN-γ either through mutation or epigenetic silencing of genes encoding the IFN-γ 

receptor signaling components (IFNGR1, IFNGR2, JAK1, JAK2 and STAT1) (103). In 

this case, the affected tumor cells not only fail to upregulate MHC class I proteins but 

also are unable to produce the intracellular machinery that facilitate antigen processing 

and presentation (i.e., TAP1, TAP2 and components of the immunoproteasome). In 

addition, genomic instability within tumor cells may result in the loss of tumor-specific 

antigens creating antigen loss variants that are no longer detectable by antigen-specific 

CD8+ T cells. Similarly, tumors can become unrecognizable to cells of the innate immune 

system through loss of ligands for the NK cell effector molecule, NKG2D (104), or 

suppressing the production of proinflammatory danger signals to impair dendritic cell 

maturation (105). Thus, tumors cells may avoid recognition by adaptive or innate 

immune cells by multiple mechanisms.   

 Additionally, tumor cells that are unable to avoid immune cell detection may 

develop mechanisms to evade immune-mediated killing. Even when antigens continue to 

be expressed, tumors can evade effector lymphocytes by upregulating expression of anti-

apoptotic molecules such as FLIP and BCL-XL (106, 107). Alternatively, resistance to 

lysis by immune cells can be acquired through expression by tumors of mutated inactive 
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forms of death receptors including the TRAIL receptor, DR5 (108), and Fas (109). 

 The above strategies of immune escape can be viewed as passive, involving the loss 

of recognition or reduced sensitivity to apoptosis. However, tumor cells can take a more 

active and direct role in subduing immunity through expression of immune-inhibitory 

ligands on their surface that inhibit the cytotoxic actions of immune cells after tumor cell 

recognition in a cell-contact mediated manner. The expression of B7-H1 (PD-L1) (110), 

HLA-G (111), and HLA-E (112) on the cell surface of tumor cells interacts with 

receptors on the cell surface of T cells to dampen the cytotoxic actions of T cells or 

induce apoptosis within the T cell itself. In addition, tumor cell expression of HLA-E or 

HLA-G can modify the actions of innate immune cells by inducing tolerance in antigen-

presenting cells and inhibiting NK cell-mediated killing (111). The actions of tumor cells 

to impede the development of antitumor immune responses is not limited to changes that 

occur directly at the level of the tumor, but also result from the elaboration of cytokines 

and molecules that act at a distance to generate an extensive immunosuppressive network 

that facilitates tumor progression. 

 

Generating an Immunosuppressive Tumor Microenvironment 

 The development of an immunosuppressive environment concomitantly with tumor 

development is evidenced by observations in which protective responses against 

transplantable tumors can be generated when immunotherapies are delivered prior to 

tumor challenge, but fail against established tumors (113). Importantly, failure of therapy 

against established tumors seems to be due to local immunosuppression in the tumor 

microenvironment since tumor-bearing mice can often respond normally to other antigens 



	   29 

(114). The development of an immunosuppressive state is achieved by tumor cells that 

inhibit the function of effector immune cells or recruit the efforts of regulatory immune 

cells to evade immunological elimination in a paracrine or endocrine manner. 

 Tumor cells secrete factors to directly inhibit the function of sentinel immune cells 

of both the innate and adaptive arms of immunity. For example, tumor cells can block T 

cell and NK cell function through secretion of soluble forms of ligands for effector 

molecules, as has been reported for shed ligands of NKG2D (115).  In addition, antitumor 

immunity can be subverted at an early stage by tumor-derived factors that inhibit 

dendritic cell (DC) function. In response to danger signals and cellular stress, DCs are 

stimulated to mature, migrate, and carry tumor antigens to lymph nodes to alert the 

adaptive arm of immunity to the presence of transformed cells. To inhibit this initial 

immune priming event, tumor cells secrete sterol metabolites to suppress the expression 

of CCR7 on the cell surface of DCs, thereby disrupting DC migration to the lymph nodes 

(116). A recent study demonstrates that unknown tumor-derived factors induce the 

expression of scavenger receptor A on DCs, resulting in excessive uptake of extracellular 

lipids that reduces their capacity to process antigens (117). Furthermore, many tumors 

produce VEGF, which is critical for the establishment of one of the hallmarks of cancer 

development, angiogenesis, but also prevents endogenous DC function. Targeted 

monoclonal antibodies against VEGF improve DC function in vivo and improve the 

efficacy of cancer immunotherapies (118). 

 Simultaneous inhibition of multiple stages in the development of antitumor 

immunity can be achieved through the liberation of immunosuppressive cytokines by 

tumor cells. For example, TGF-β secretion by tumor cells leads to inhibition of DC 
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activation as well as direct inhibition of T cell and NK cell function (119). Similarly, IL-

10 present within tumors can suppress DC function and skew T cell responses toward a 

type 2 immune response that is less effective against malignant cells (120). However, the 

role of IL-10 in tumor immunity remains somewhat obscure because it has also been 

shown to enhance immune destruction of tumors (121). 

 Other tumor-derived factors can be more selective in inhibiting particular 

components of immune responses but can still effectively suppress immunity. For 

example, production of galectin can impede T cell activity and survival, and blocking this 

factor can aid tumor rejection in mice (122). In addition to using cytokines and lectins to 

down-regulate immune responses, tumors can secrete enzymes that metabolize amino 

acids within the tumor microenvironment. Specifically, expression of indoleamine 2,3-

dioxygenase (IDO) by tumor cells metabolizes tryptophan to generate kynurenines and 

inhibits CD8+ T cell proliferation and promotes CD4+ T cell apoptosis (123). Two 

potential mechanisms of immune inhibition include starvation, where depletion of this 

important amino acid weakens T cells, and metabolite cytotoxicity, where metabolic 

products of tryptophan degradation inhibit T cell function (124). 

 In addition to the mechanism described above, a variety of immunosuppressive 

regulatory leukocytes can suppress immune function leading to tumor escape. Regulatory 

T cells (Tregs), largely expressing CD4, CD25 and Foxp3 and have been demonstrated to 

inhibit CTL function in a number of ways including IL-10 and TGF-β production, 

CTLA-4 and PD-L1 expression and IL-2 consumption (125). This regulatory lymphocyte 

is the critical mediator of peripheral tolerance under physiological settings, but is often 

recruited to the tumor site where it suppresses antitumor immunity. Furthermore, TGF-β 
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production by tumor cells can induce effector T cells into regulatory T cells that now 

suppress other effector T cells infiltrating the tumor mass (126). Experimental tumor 

models that eliminate regulatory T cells, results in robust antitumor immune responses 

and the rejection of transplanted or primary tumors (127). In addition to Tregs, other 

regulatory lymphocyte populations can be found in subsets of natural killer T cells and B 

cells that inhibit effector responses against transformed cells (128, 129). 

 The production and elaboration of GM-CSF, IL-1β, VEGF, and PGE2 by tumors 

leads to expansion of myeloid-derived suppressor cells (MDSCs) and their accumulation 

within the tumor mass (130). MDSCs are a heterogeneous group of myeloid progenitor 

cells and immature myeloid cells that can inhibit lymphocyte function by a number of 

mechanisms including the production of immunosuppressive cytokines (TGF-β) (131), 

the depletion or sequestration of amino acids arginine or cysteine that are required for T 

cell function (132), the inhibition of T cell activation by TCR nitrosylation (133) and the 

induction of regulatory T cells (134).  The multiplicity of mechanisms that inhibit 

lymphocytes in either an antigen-specific or antigen-nonspecific manner most likely 

reflects distinct cellular subsets within the MDSC heterogeneous population (135).  

 In addition to MDSCs, plasmacytoid dendritic cells (pDCs) are recruited to the 

tumor mass and become key players in the immunosuppressive network.  Ovarian cancer 

cell products activate pDCs, which in turn, induce the expansion of IL-10 producing 

CD8+ regulatory T cells (136).  A potentially novel subset of DCs, sometimes referred to 

as vascular leukocyte cells (VLCs) or Tie2+ monocytes, is recruited to the tumor bed by 

β-defensins and induce their endothelial-like specialization, where they in enhance 

vasculogenesis and suppress conventional DC function through the secretion of VEGF 
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and other pro-inflammatory cytokines (137).  A recent study by Shields et al. identified 

lymphoid tissue inducer (LTi) cells that are recruited by CCL21-secreting melanomas 

and contribute to the development of an immunosuppressive tertiary lymphoid structure 

within the tumor mass that recruits MDSCs, regulatory T cells, and polarizes monocytes 

to M2 macrophages (138).  Many tumors attract tumor-associated macrophages (TAMs) 

by IL-4 and IL-13. M2 macrophages can inhibit antitumor immunity through the 

production of TGF-β and IL-10, and can promote stromal development and angiogenesis 

through secretion of platelet-derived growth factor (PDGF) (139). 

 Together, these examples demonstrate that, in addition to central and peripheral 

tolerance, failure of antitumor immunity can be due to the development of an 

immunosuppressive microenvironment. Any one, or combination of several, of the above 

cellular and molecular mechanisms can contribute to suppression of tumor immunity. The 

balance between these inhibitory mechanisms and immune stimulating conditions 

determines whether or not tumors escape immune responses and the rate of tumor 

progression. In human cancer patients, immunosuppression of lymphocytes within the 

tumor microenvironment has also been widely observed for a variety of cancer types 

(140).  In the next section we will discuss the evidence for cancer immunoediting in 

humans, with particular emphasis on the elimination and equilibrium phases. 

 

EVIDENCE FOR CANCER IMMUNOEDITING IN HUMANS 

 

The extensive studies discussed above clearly demonstrate that the immune 

system not only protects against tumor development, but also shapes tumor 
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immunogenicity in mouse models of cancer. The question therefore naturally arises 

whether cancer immunoediting occurs in humans. Humans are not clean models of 

immune deficiency such as those that exist in experimental mice that live in controlled 

environments. Nevertheless, compelling clinical data support the existence of cancer 

immunoediting in humans. Here, we will not discuss the mechanisms of tumor escape in 

humans since they greatly overlap with those observed in mice (discussed above) and 

have been extensively reviewed elsewhere (8, 9, 26, 27, 29, 97), but rather we will review 

data supporting an active immune response eliminating or controlling cancer in humans. 

 

Acquired Immunodeficiency and Cancer Risk  

While severely immunodeficient humans succumb to infections relatively early, 

advances in the management of acquired immunodeficiencies have led to extended 

survival of patients with partly compromised immune systems. Evidence for 

immunosurveillance can be found in patients with AIDS who have an increased 

frequency of malignancies (141). Most often, these malignancies are virus-associated and 

initiated by viral oncogenes, including lymphomas (Epstein-Barr virus), Kaposi’s 

sarcoma (herpesviruses) and urogenital cancers such as cervical cancer (human papilloma 

viruses) (142). While the antigenic targets of the above malignancies are not fully 

characterized, viral antigens can certainly be expressed, and an argument can be made 

that the increased frequency of virus-associated cancers reflects a breakdown in anti-viral 

immunity rather than reduced immunosurveillance of cancer. However, support for 

immunosurveillance can be found in malignancies of non-viral origin. 
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The incidence of non-virally-induced tumors in AIDS patients is less well 

documented, but, there is evidence of an increased incidence of solid cancers in AIDS 

patients, particularly lung adenocarcinomas (143). While a large proportion of HIV-

infected individuals may be exposed to other lifestyle risk factors, including smoking, the 

association of lung cancer in AIDS patients has been demonstrated to be independent of 

smoking (144), with a 3.5-fold elevated risk of lung cancer for AIDS patients compared 

to the wider population. 

 

Immunosuppressed Organ Transplant Recipients and Cancer Risk 

Some level of immunodeficiency can be induced in humans by the use of 

immunosuppressants following organ transplantation, and an increase in the incidence of 

malignancies in these patients suggests a role for immunosurveillance in humans. Greater 

cancer prevalence among transplant recipients has been observed in a range of transplant 

situations using a variety of immunosuppressants. For example, patients receiving kidney 

transplants display a 3-fold increase over the general population in the overall incidence 

of malignancy. While virus-associated malignancies predominate, there was also an 

increased risk for developing non-infectious cancers of the colon, lung, pancreas, kidney 

and endocrine system (145). Additionally, a dramatic increase in risk (200-fold) of non-

melanoma skin cancers has been demonstrated in renal transplant patients, suggesting a 

particularly important role for cancer immunosurveillance at this site exposed to 

ultraviolet irradiation (146). Finally, melanomas have also been observed to increase in 

frequency in these renal transplant patients, but to a lesser degree (2-10 fold) than other 

skin cancers (146, 147).  
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Interestingly, incidences of some cancers including breast, prostate, ovarian, brain 

and testicular have not been observed to increase in the context of pharmacologically-

induced immunosuppression, but it is not clear if these malignancies are less 

immunogenic or simply take longer to develop. These data support the notion that de 

novo malignancies arise due to the permissive environment created by 

immunosuppressive regimens, which inhibit cancer immunosurveillance mechanisms. 

Further supporting the link between immunosuppression and malignancy are 

observations of spontaneous remissions of lymphomas after cessation of 

immunosuppression (148).  

 

Spontaneous Immune Responses to Cancer 

The spontaneous recognition and destruction of human cancers by cells of the 

adaptive immune system substantiates the occurrence of cancer immunosurveillance in 

humans. As early as the 1970s, screening cancer cell lines with autologous patient serum 

identified spontaneous antibody responses to autologous cancers in a subset of patients 

(149, 150). Antibody responses in patient serum have been reported for over 100 tumor-

associated antigens, although only 8 antigens have been identified in multiple reports 

suggesting that many immunogenic mutations might be unique for each individual cancer 

(reviewed in (151)). Among the shared antibody responses were those against the cancer-

testis antigen NY-ESO-1 and the mutant forms of tumor suppressor p53, which are often 

overexpressed in many different types of human malignancies (152, 153). The high 

frequency of antibodies specific for tumor-associated antigens in cancer patients 

compared to healthy individuals suggests that immunity has been induced in response to 
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malignancy.  The reasons for spontaneous antibody responses in cancer patients are not 

known, but may include an over-abundance of antigen or its enhanced presentation to 

generate immunogenicity in the malignant setting.  

 The phenomenon of spontaneously regressing melanoma lesions accompanied by 

the clonal expansion of T cells is arguably the strongest evidence for the elimination 

phase of cancer immunoediting in humans	  (154-156). These responses, observed in the 

absence of specific immunotherapy, support the ability of the immune system to 

spontaneously recognize antigens on/in tumors. Specific CD4+ and CD8+ T cell activity 

against tumor-associated antigens, including NY-ESO-1, are known to develop 

spontaneously in human cancer patients (157, 158). However, spontaneous T cell 

responses specific for some tumor-associated antigens (TAA) such as the MAGE family 

are very rare (159), while those specific for the melanocyte differentiation antigen 

MART-1/Melan-A have been found in a relatively high percentage (>50%) of healthy 

individuals (160). Thus, there is a strong correlation between spontaneous T cell 

responses and some tumor-associated antigens but not others, and it is not clear whether 

the presence of TAA-specific T cells in healthy individuals reflects past exposure to 

transformed cells expressing the antigen. More studies are needed to identify tumor-

associated and tumor-specific antigens in a variety of cancers to determine the relative 

abundance and uniqueness of tumor antigens. 

 Other spontaneous immune responses against malignant cells have been 

demonstrated in patients with paraneoplastic autoimmune disorders (PND) caused by 

cross-reactivity between the antitumor immune response and neurologic antigens (161). 

In addition to antibody responses, tumor-specific T cells have also been identified in 
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patients with PND (162). Nearly all patients with PND die from cancer or neurologic 

disease; however, the few surviving patients have complete tumor remission in response 

to therapy and no longer manifest any neurological impairment.  These dramatic clinical 

cases demonstrate that the tumor antigens are the driver of both beneficial immune 

responses against neoplastic tissues and pathological immune responses against normal 

tissues (i.e., neurons). Interestingly, PND symptoms can precede tumor diagnosis by a 

number of years (163), indicating that antitumor responses might be primed by 

undetectable, microscopic tumors early in their evolution. It remains to be determined 

whether the antitumor immune response substantially delays tumor growth in patients 

with PND and such analysis is likely to be confounded by the lethality of the neurologic 

complications. Nevertheless, the presence of anti-neuronal antibodies has been reported 

to correlate with improved prognosis at least for some neurological malignancies (164), 

and there are some case reports of spontaneous complete remission in the absence of 

specific treatment (165). Spontaneous tumor regression accompanied by lymphocyte 

infiltration has also been noted for a number of other tumor types (reviewed in (30)) 

however, the role of the lymphocyte infiltrate in tumor regression has not been 

established in these cases due to their rarity.  Even in the absence of spontaneous tumor 

regression, tumor-infiltrating lymphocytes (TILs) appear to be controlling tumor 

outgrowth and enhancing patient survival, as discussed below. 

 

Tumor-Infiltrating Lymphocytes as a Prognostic Indicator  

 Further support for cancer immunoediting can be found in reports that correlate the 

frequency of tumor-infiltrating lymphocytes (TILs) with patient survival. Tumor 
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infiltration by T cells, NK cells, or NKT cells have been associated with an improved 

prognosis for a number of different tumor types (91, 166-172). However, tumor 

infiltration by some leukocytes, such as macrophages and regulatory T cells, has a 

detrimental impact on patient survival (173).  The initial association between favorable 

patient prognosis and TILs was first observed in patients with melanoma (166, 167), 

where it was reported that patients with high levels of CD8+ T cell infiltration survive 

longer than those whose tumors contain low numbers of lymphocytes.  Since then, 

various melanoma-specific antigens have been identified in addition to melanoma-

specific T cells in patients with melanoma (reviewed in (174)).  

 In a landmark study in ovarian cancer, the presence of TILs in ovarian cancer tissue 

specimens correlated with better prognosis. Specifically, 38% of patients with high 

numbers of TILs survived over 5 years as compared to 4.5% of patients with low 

numbers of TILs (168). These findings have been confirmed in subsequent studies for 

ovarian cancer (169) and for other malignancies including melanoma (175) and colon 

cancer (170-172). Particularly elegant studies on colon and lung cancers reveal a tight 

correlation between the quality and quantity of intratumor immune responses and patient 

survival (171, 172). Remarkably, the type and density of lymphocytes infiltrating these 

cancers was a more powerful prognostic indicator than previous pathological criteria for 

tumor staging, underscoring the need for clinical pathologists to consider infiltrating 

immune cells when determining a patient’s prognosis. In fact, the results of these studies 

provide strong evidence for the equilibrium phase of cancer immunoediting in humans. 

Enhanced survival of some cancer patients is associated with particular subsets of T cells 

such as the intratumor localization of CD8+ T cells and Tregs (91, 169, 170). A 
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particularly interesting disagreement concerns the significance of Tregs in tumors, where 

some groups find a correlation between the presence of Foxp3+ Tregs in tumors with a 

poor prognosis (176, 177), while other studies report better prognosis if Tregs are present 

in tumor tissue samples (178, 179). Reasons for these different outcomes are not clear, 

but may be related to the type of malignancy involved.  

 

Immunogenicity of Cancers with Microsatellite Instability  

 All cancers are inherently genetically unstable and this instability seems to be a 

contributing factor in the capacity of immune cells to detect and control tumor cells. For 

example, the infiltration of colorectal cancer by CD8+ T cells is associated with a 

favorable prognosis (170-172), as discussed above, and this association is further 

strengthened in cases where tumors exhibit high levels of a particular type of genetic 

instability referred to as microsatellite instability (MSI), where defects in DNA mismatch 

repair mechanisms lead to the duplication or deletion of short repeated sequences of 

DNA known as microsatellites (180, 181). Strikingly, MSI-high (MSI-H) tumors are 

often strongly infiltrated with lymphocytes, including activated CD8+ T cells (181), and 

contain tertiary-lymphoid follicles (180) indicative of a potent local immune response. 

The high rate of mutation in MSI-H tumors has been shown to result in the generation of 

a number of novel tumor antigens that can be recognized by B cells, CD4+ T cells, and 

CD8+ T cells. Together, these findings suggest that the generation of antigenic peptides 

as a result of genomic instability might result in the priming of a protective CD8+ T cell–

mediated immune response in patients with MSI-H colorectal cancers. An interesting 

possibility is that these findings are not unique to colorectal cancers, but apply to other 



	   40 

human cancers as well (182).  

 

Cancer Equilibrium in Human Patients 

A plethora of clinical evidence suggests that occult cancers can lay dormant in 

patients for many years, sometimes exceeding 20 years, before malignant disease 

progresses to clinically detectable levels (183).  For example, 20-45% of patients with 

breast or prostate cancer will relapse years or even decades later (184-186). Such a 

lengthy and protracted period from initial cancer remission to cancer recurrence may, in 

part, be explained by immunological constraints placed on the remaining cancer cells. In 

some cases, circulating disseminated cancer cells exist for decades after treatment 

without the re-establishment of clinical disease from these persistent cancer cells (187).  

This is known as minimal residual disease and it appears to be a common reservoir of 

cancer cells for most cancer types after the initial therapeutic intervention, but whose 

mechanisms for maintenance are poorly understood.  Minimal residual disease is of 

critical importance since the vast majority of morbidity and mortality associated with 

cancer is due to metastatic lesions that are presumed to be seeded by these persistent 

cancer cells. There is evidence that immunosuppressive intervention for various 

conditions can be associated with a greatly increased risk of cancer relapse even after 

long periods of time. In one study, three out of eight patients (37%) experienced cancer 

relapse following immunosuppression after more than 10 years of remission while cancer 

patients in remission for 10 years or more that had not undergone immunosuppressive 

treatment had only a 2% relapse rate (183).  
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One remarkable clinical scenario that suggests immunity can prevent the 

outgrowth of occult lesions is the unintentional transplantation of cancer cells from organ 

donor to immunosuppressed recipient.  In these scenarios, organs were harvested from 

deceased donors, who either had no previous clinical history of malignancy or were in 

cancer remission and had no overt signs of disease at the time of organ donation and 

transplantation into recipients.  The recipient patients undergoing immunosuppression for 

organ engraftment later developed clinically detectable cancers of donor origin (188, 

189). A subset of these donor-derived malignancies were from donors with no previous 

history of cancer, suggesting a state of equilibrium operating between cancer cells in the 

primary lesion and the donor’s immune system that subsequently broke down after 

transplantation into immunosuppressed recipients.  

Clinicians have long-observed that the immune system mounts a response against 

pre-neoplastic cells in monoclonal gammopathy of unknown significance (MGUS) but 

does not eliminate them, eventually allowing MGUS to progress to multiple myeloma 

(190). The ability to detect this premalignant phase of disease allows for immunologic 

monitoring throughout disease progression	  and such monitoring has revealed that T cells 

derived from the bone marrow of patients with MGUS mount strong responses to 

autologous premalignant cells, but these responses are absent in patients with multiple 

myeloma (191). These findings are consistent with the idea that T cells may hold pre-

malignant cells in check for an extended period of time (i.e., equilibrium) but eventually 

fail to control some abnormal plasma cell clones that ultimately give rise to multiple 

myeloma (i.e., escape). Additionally, treatment of low-grade B cell lymphoma by 

administering antibodies specific for the idiotype expressed by the malignant cells results 
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in remission of disease without entirely eliminating the tumor cells and that these 

circulating lymphoma cells are detected up to 8 years after treatment without any other 

signs of progressive disease (192). These results suggest that equilibrium may be a viable 

therapeutic endpoint for the treatment of cancer, and in such a case, interventions may be 

necessary to stabilize the equilibrium phase indefinitely and prevent the immunoselection 

of tumor cell variants possessing novel mutations that eventuate in resistance to immune 

attack.   

 

Summary of Human Cancer Immunoediting 

As discussed above, there is considerable clinical evidence for the cancer 

immunoediting process in humans even though cancer patients are a genetically and 

immunologically diverse population. The confluence of these very complex factors may 

explain why spontaneous immune responses occur in only a proportion of individuals and 

why some patients respond better to certain immunotherapies. The differences in an 

individual’s immune repertoire, the capacity to process and present antigens, the quality 

and quantity of tumor antigens generated as well as the ability of cancer to suppress 

antitumor immunity all help to determine the overall outcome. Future advances in gene 

expression and proteomics of human cancers and their antigens will provide greater 

insight into the mechanism of cancer immunoediting in humans, which may be critical in 

determining which patients benefit from particular treatments. 
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CANCER-RELATED INFLAMMATION AND CANCER IMMUNOEDITING: 

INTERDEPENDENT PROCESSES  

 

Inflammation is a broad and complex physiological process that maintains tissue 

homeostasis in response to tissue stressors such as infection or tissue damage (193). 

Rudolph Virchow, who established the cellular basis of pathology, was the first to 

propose the link between inflammation and cancer in the 1860s when he observed 

leukocytes infiltrating neoplastic tissues (194). We now appreciate that chronic 

inflammation can contribute to cancer initiation by generating genotoxic stress, cancer 

promotion by inducing cellular proliferation, and cancer progression by enhancing 

angiogenesis and tissue invasion. On the other hand, there is overwhelming evidence that 

immunity against transformed cells can develop to protect the host from cancer formation 

as discussed above. Each of the six cell-intrinsic hallmarks of cancer can influence the 

immune system (9) and the cancer immunoediting process attempts to describe the varied 

outcomes of tumor-immune system interactions including immunosurveillance (anti-

tumor), immunoselection (pro-tumor) and immunosubversion (pro-tumor). We maintain 

that cancer immunoediting and tumor-promoting inflammation are not mutually 

exclusive processes, but rather potentially overlapping immune algorithms (195).   

 This overlap was most clearly demonstrated in the MCA model where sarcoma 

induction was shown to depend on immune cells and molecules that promote 

inflammation including MyD88, IL-1β, IL-10, IL-23 and regulatory T cells (42, 67, 127, 

196, 197), but then led to the development of host-protective immune responses that 

resulted in tumor destruction (e.g., IFN-γ, IFN-α/β, T cells, etc.). For example, the 
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functionally related heterodimeric cytokines, IL-23 and IL-12, both contain the IL-12p40 

subunit but activate distinct receptors that share the IL-12Rβ1 subunit and play different 

roles in response to transformed cells. Specifically, loss of IL-23 reduced the incidence of 

MCA-induced sarcomas, while IL-12-deficient mice developed more sarcomas when 

compared to WT mice (67). 

 Similarly, the DMBA/TPA model of skin carcinogenesis is known to have a major 

inflammatory component contributing to tumor development, however, γδ T cells, IL-12 

and DNAM-1 all participate in immunosurveillance and prevent skin carcinoma 

formation (23, 46, 66). Therefore, tumor-promoting inflammation and cancer 

immunosurveillance can co-exist within the same tumor models at the same tissue site, 

although they may be temporally distinct. For example, both MyD88 and IL-1β have 

been shown to promote tumorigenesis in a number of primary carcinogen models (42, 

196, 198, 199), but MyD88 and IL-1β are also critical in the development of antitumor 

immunity against established tumors through the recognition of dying tumor cells 

undergoing ‘immunological death’ (200-202). Furthermore, the same component of the 

immune system may promote or prevent tumor formation depending on the biological 

context in which it acts. For example, mice genetically-deficient for TNF-α develop more 

sarcomas than WT mice after exposure to MCA (42), indicating a host-protective role for 

this cytokine, while TNF-α-deficient mice develop fewer skin carcinomas than wild-type 

mice after exposure to DMBA/TPA (58), indicating a tumor-promoting role for TNF-α. 

One mechanism for TNF-α’s ability to protect the host against tumor formation is the 

priming, proliferation, and recruitment of tumor-specific T cells that was observed in an 

oncogene-driven pancreatic cancer model (203). 
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 Finally, inflammation participates in the cancer immunoediting process during the 

tumor escape phase, where inflammatory cells and regulatory immune cells are recruited 

and activated by cancer-derived products to dampen antitumor immunity and subvert 

immune cells to promote cancer progression. To develop more effective 

immunotherapies, immunologists must identify the cellular and molecular players that 

either eliminate or promote cancer development and what conditions influence that fate. 

For this reason, inhibitors of the pro-inflammatory transcription factors NF-κB and 

STAT3 may be therapeutically useful in switching the nature of the tumor 

microenvironment from one of tumor-promoting inflammation to that of tumor-

eliminating immunity (204, 205).   

 

LESSONS FROM CANCER IMMUNOEDITING 

 

As our molecular understanding of cancer immunoediting increases, strategies can 

be developed to harness the power of immunity to protect against cancer development. 

Targets for therapeutic intervention can be found at each stage of the immunoediting 

process from elimination to equilibrium to escape. The identification of key immune 

molecules and cells important in the elimination of nascent transformed cells may 

provide opportunities to boost specific aspects of immunity to induce tumor regression.  

Furthermore, development of therapeutic strategies that stabilize tumor masses by 

inducing an equilibrium state is a viable clinical endpoint that has not been fully 

implemented by oncologists, but could greatly enhance patient survival.  Another 

potential strategy targeting the equilibrium phase are those that attempt to stabilize tumor 
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cell genetic instability, thereby halting progression from tumor equilibrium to tumor 

escape. The inhibition of tumor escape mechanisms may render tumor cells visible for 

immune-mediated destruction and thus many pharmacological agents have been 

generated for this end.  

Targets of tumor escape mechanisms currently in clinical trials or in the pipeline 

include antibody blockade of the immunosuppressive moieties CTLA-4, PD-L1, and PD-

1. In the case of CTLA-4 blockade, a recent Phase 3 clinical trial reported that patients 

with metastatic melanoma survived longer after treatment with CTLA-4 blocking 

antibodies, making this drug one of the most successful immunotherapies that targets the 

immune system (206). Furthermore, strategies to inhibit immunosuppressive cytokines 

such as VEGF, enzymes such as IDO and anti-apoptotic molecules such as Bcl-2 are also 

being pursued. Undoubtedly, chronic inflammation contributes to both cellular 

transformation and tumor progression, but less is known about what aspects specifically 

induce cancer formation. Inhibitors of pro-inflammatory transcription factors may reduce 

tumor development and switch the tumor microenvironment from tumor-promoting 

inflammation to tumor-eliminating immunity. 

Ultimately, high-throughput screening of cancer genomes and proteomes are 

required to identify polymorphisms and mutations in immune pathways that limit human 

cancer development and progression. Insights gained from deciphering the molecular 

underpinnings of the cancer immunoediting process could lead to strategies for 

manipulating the cellular and molecular microenvironment of tumors in the hope of 

inducing immune-mediated eradication or stabilization of malignant disease.   
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CHAPTER 2 

 

Global Neutralization of IFN-γ  Confirms its 

Role in Preventing Primary Tumors and 

Shaping Tumor Immunogenicity 
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INTRODUCTION 

 

IFN-γ  in Tumor Immunity 

IFN-γ Protects the Host from Transplantable and Primary Tumors 

 Over a decade ago, renewed interest in cancer immunosurveillance came from 

several studies that revealed a critically important role for IFN-γ in host tumor immunity.  

The first was the demonstration that endogenously produced IFN-γ protected the host 

against the growth of transplanted tumors and the formation of primary chemically 

induced and spontaneous tumors. Using tumor transplantation approaches, the LPS-

dependent rejection of the MethA fibrosarcoma was abrogated in mice treated with 

neutralizing antibodies specific for IFN-γ (clone H22) (15).  Second, using models of 

MCA-induced tumor formation, 129/SvEv mice lacking either the IFN-γ receptor or 

STAT1 were found the be approximately 10-20 times more sensitive than wild type mice 

to tumor formation after carcinogen exposure.  Specifically, IFN-γ insensitive mice 

developed more tumors than their wild type counterparts and showed a shortened tumor 

latency period (16). These results were confirmed by subsequent independent 

experiments using mice on a different genetic background that lacked the gene encoding 

IFN-γ itself (40). Similarly, mice lacking both the p53 tumor suppressor gene and 

IFNGR1 formed a wider spectrum of tumors compared to IFN-γ-sensitive mice lacking 

only p53 (16). In addition, Ifng-/- mice on a C57BL/6 background showed an increased 

incidence of disseminated lymphomas despite the presence of a normal p53 tumor 

suppressor gene (22). Taken together, data from transplantation approaches as well as 
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chemical and spontaneous tumor induction studies clearly demonstrate a physiologically 

important role for IFN-γ in host-protection against tumors. 

 

IFN-γ Acts Directly on Tumor Cells to Exert its Antitumor Effects 

 The demonstration that endogenous IFN-γ is critical to protect the host from both 

transplantable and primary tumors prompted a search for the physiologically important 

targets of the antitumor actions of IFN-γ. Due to fact that nearly every host cell expresses 

the IFN-γ receptor and that IFN-γ is very pleiotropic, there are many likely cellular 

targets in vivo that are important for the direct actions of IFN-γ in the tumor rejection 

process. A recently published study from our lab used bone-marrow chimera approaches 

to demonstrate that IFN-γ sensitivity in both non-hematopoietic and hematopoietic host 

tissues are contributing to the antitumor response of IFN-γ (25). A fellow graduate 

student in lab, Sang-hun Lee, has recently generated a conditional floxed IFNGR1 mouse 

to address which hematopoietic and non-hematopoietic cells of the host are targets of 

IFN-γ’s antitumor effects.  Future studies using this mouse will elucidate which host cells 

require IFN-γ sensitivity to mediate tumor rejection, but there is also evidence that IFN-γ 

acts directly on tumor cells to exert its antitumor effects.  In one study, MethA tumor 

cells described above were engineered to be unresponsive to IFN-γ by overexpression in 

these cells of a mutant dominant-negative IFNGR1 (IFNGR1ΔIC) (15). The paralysis of 

cellular IFN-γ responsiveness abrogated the LPS-dependent rejection of MethA when 

transplanted into syngeneic wild type mice.  In a second study, an opposite approach was 

employed using a tumor generated in an Ifngr1-/- mouse. When transplanted into wild 

type mice, the Ifngr1-/--derived tumor, RAD.gR28, grew progressively.  However, the 
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reconstitution of IFNGR1 expression in this tumor resulted in its rejection upon 

transplantation into syngeneic immunocompetent mice (16). These results have 

subsequently been corroborated by the observed increases in tumorigenicities of the SCK 

mammary adenocarcinoma and K1735 melanoma when both tumors were significantly 

impaired in their IFN-γ responsiveness using the dominant-negative IFNGR1ΔIC (207).  

Taken together, these data from different tumor systems show that IFN-γ acts directly on 

tumor cells to exert its antitumor effects. 

Although there is a plethora of data demonstrating that IFN-γ is critical to mediate 

protection against primary and transplantable tumors, there is less direct evidence of IFN-

γ as an immunoeditor.  In this study, we globally neutralize IFN-γ in wild type mice with 

an anti-IFN-γ mAb (clone H22) and treat these mice with the chemical carcinogen, MCA, 

to generate sarcomas that developed in the absence of IFN-γ, but retain sensitivity to IFN-

γ (as opposed to tumors generated in Ifngr1-/- mice).  A subset of these sarcomas are 

rejected in wild type mice and thus are highly immunogenic tumors that resemble 

unedited tumors derived from Rag2-/- mice (19). These results provide definitive evidence 

that IFN-γ edits primary MCA sarcomas.  
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MATERIALS AND METHODS 
 

Mice.  Ifngr1-/- mice (208) on a 129/Sv background were originally provided by Dr. 

Michel Aguet and were bred in our specific pathogen-free animal facility. Wild type and 

Rag2-/- mice were purchased from Taconic Farms. All mice were on a C57BL/6 

background and were housed in our specific pathogen-free animal facility.   For all 

experiments, mice were 8-12 weeks of age and performed in accordance with procedures 

approved by the AAALAC accredited Animal Studies Committee of Washington 

University in St. Louis. 

 

Generating primary MCA sarcomas. 3-methylcholanthrene (MCA) (Sigma) was 

dissolved in corn oil at a concentration of 0.66 µg/ml by placing a polystyrene container 

in a water bath that is just below boiling temperature for 3-4 hrs.  Stock MCA was then 

diluted with additional corn oil to desired concentration and injected into the shaved 

flanks of mice in a volume of 150 µl as previously described (16). 

 

Tumor cell lines.  3-methylcholanthrene (MCA) induced sarcomas used in this study 

were generated in C57BL/6 strain wild type or Rag2-/- mice and banked as low passage 

tumor cells as previously described (19).  Tumor cells derived from frozen stocks were 

propagated in vitro in RPMI media (Hyclone, Logan, UT) supplemented with 10% FCS 

(Hyclone) and injected subcutaneously in 150 µl of endotoxin-free PBS into the flanks of 

recipient mice.  Tumor cells were >90% viable at the time of injection as assessed by 

trypan blue exclusion and tumor size was quantified as the average of two perpendicular 

diameters. 
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Antibodies.  Anti-IFN-γ (H22), anti-CD4 (GK1.5), anti-CD8α (YTS169.4) mAbs and 

control immunoglobulin (PIP, a mAb specific for bacterial glutathione S-transferase) 

were produced from hybridoma supernatants and purified in endotoxin-free form by 

Protein G affinity chromatography (Leinco Technologies, St. Louis, MO).  IFNGR1-PE, 

H-2Db-PE, H-2Kb-PE and purified anti-CD16/32 were purchased from BioLegend (San 

Diego, CA).  

 

Expression vectors. The dominant negative version of the IFNGR1 subunit 

(IFNGR1ΔIC) was expressed into H31m1 and d42m1 tumor cells as previously described 

(15). 

 

Measurement of MHC class I expression. Tumor cells were treated with 100U/ml IFN-

γ for 48-72 hrs. MHC class I expression on the cell surface was analyzed by flow 

cytometry using H-2Kb or H-2Db antibodies conjugated to PE. 

 

Flow cytometry.  For flow cytometry, cells were stained for 20 minutes at 4°C with 500 

ng of Fc block (anti-CD16/32) and 200 ng of H-2Kb, H-2Db, or IFNGR1 in 100 µL of 

staining buffer (PBS with 1% FCS and 0.05% NaN3 (Sigma)).  Propidium iodide (PI) 

(Sigma) was added at 1 µg/mL immediately before FACS analysis. Events were collected 

on a FACSCalibur (BD Biosciences) and analyzed using FloJo software.  

 

Statistical Analysis.  Samples were compared using an unpaired, two-tailed Student’s t 

test and Mantel-Cox for tumor incidence.   
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RESULTS 

 

Global Neutralization of IFN-γ  Prevents Primary MCA Sarcoma Formation  

Using IFN-γ neutralizing antibodies (H22), we sought to corroborate the finding 

that mice lacking IFN-γ are more susceptible to MCA-sarcoma induction.  A key 

distinction from the previous studies that used gene-targeted mice lacking either IFN-γ 

responsiveness (Ifngr1-/-) or IFN-γ itself  (Ifng-/-) is that tumors generated in anti-IFN-γ 

mAb treated mice will be of wild type origin and have normal IFN-γ sensitivity. Two 

cohorts of 15 female C57BL/6 mice were injected with 25 µg of the MCA chemical 

carcinogen.  One cohort was treated with 750 µg of anti-IFN-γ mAb (H22) on Day -1 and 

then 250 µg of anti-IFN-γ mAb weekly for the duration of the experiment.  The second 

cohort was treated with a similar dosing schedule, but was treated with control 

immunoglobulin (PIP).  When wild type C57BL/6 mice injected with 25 µg of MCA 

were chronically treated with the control Ig, 67% (10/15) of mice developed 

progressively growing sarcomas.  In contrast, wild type C57BL/6 mice chronically 

treated with neutralizing anti-IFN-γ mAbs developed more MCA sarcomas (14/15; 93%) 

with a shorter latency than control mice, confirming that IFN-γ protects the host from 

primary carcinogenesis (Mantel-Cox p=0.0373) (Figure 1). This result verifies that IFN-γ 

is a critical player in the immunosurveillance against primary MCA sarcomas. 
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Figure 1.  Global neutralization of IFN-γ  protects against primary MCA sarcoma 

formation. Two cohorts of 15 C57BL/6 mice were each treated with 25 µg of the 

carcinogen MCA.  One cohort received weekly injections of control antibodies (PIP) 

(black) while the other cohort received weekly injections of neutralizing IFN-γ antibodies 

(H22) (red). Tumor incidence was monitored weekly and compared using Mantel-Cox 

(p=0.0373). 

 



	  
	  

	  

55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  
	  

	  

56 

Global Neutralization of IFN-γ  Shapes MCA Sarcoma Immunogenicity 

 To test whether IFN-γ edits MCA sarcomas from wild type mice, tumors from 

mice treated with control mAbs or anti-IFN-γ mAbs were harvested, disaggregated, 

collagenase-treated, and cultured to generate tumor cell lines.  All MCA-sarcoma cell 

lines were frozen after four in vitro passages, subsequently thawed and injected into both 

wild type and Rag2-/- recipients.  All of the tumors derived from control Ig treated wild 

type mice grew progressively when transplanted into both wild type and Rag2-/- hosts 

(data not shown). Similarly, all tumors derived from IFN-γ-neutralized mice grew 

progressively when transplanted into Rag2-/- mice (Figure 2).  In contrast, 30% (3/10) of 

cell lines derived from IFN-γ-neutralized mice were spontaneously rejected upon 

transplantation into wild type mice, indicating that these tumors are highly immunogenic 

unedited sarcomas (Figure 2) similar to MCA sarcomas generated in Rag2-/- or Ifnar1-/- 

immunodeficient mice (19, 24). These data suggest that IFN-γ sculpts tumor 

immunogenicity and, to date, is the best evidence that endogenous IFN-γ can alter tumor 

immunogenicity during primary tumor development.  In addition, this is the first 

demonstration that unedited sarcomas can be generated using blocking monoclonal 

antibodies in wild type mice. 

 

Highly Immunogenic Sarcomas that Developed in the Absence of IFN-γ  Require 

CD4+ T cells, CD8+ T cells and IFN-γ  for Their Rejection 

 Three highly immunogenic sarcomas from wild type mice chronically treated with 

neutralizing IFN-γ antibodies are spontaneously rejected when transplanted into wild type 

mice (Figure 2).  We have designated these three tumors (H22-28027, H22-28030, and 



	  
	  

	  

57 

H22-28032) collectively as H22 regressor tumors since they display an unedited 

phenotype similar to a subset of tumors derived from immunodeficient Rag2-/- mice that 

we have termed Rag2 regressors (19).  The fact that these H22 tumors grow progressively 

in Rag2-/- mice, strongly suggests that lymphocytes are critical mediators of their 

rejection.  We next explored what specific components of adaptive immunity are required 

to reject each of these highly immunogenic H22 regressor tumors.  For the first tumor, 

wild type mice were transplanted with 1x106 H22-28027 tumor cells and subsequently 

treated with antibodies that neutralize IFN-γ (H22), deplete CD4+ T cells (GK1.5) or 

CD8+ T cells (YTS-169.4) and were monitored for tumor growth. The unedited H22-

28027 tumor grows progressively in wild type mice that were treated with antibodies that 

neutralize IFN-γ, deplete CD4+ T cells or CD8+ T cells, suggesting that all of these 

adaptive immune components are required for tumor rejection (Figure 3).  Similar results 

were obtained for the other two H22 regressor tumors H22-28030 and H22-28032 (Figure 

3), suggesting that IFN-γ, CD4+ and CD8+ T cells are required for the rejection of all 

three immunogenic tumors derived from MCA-treated, IFN-γ-neutralized wild type mice.  

The requirement of adaptive immunity to specifically target these highly immunogenic 

sarcomas is identical for the subset of unedited sarcomas derived from Rag2-/- mice, 

providing further evidence that these H22 regressors are unedited due to the blockade of 

IFN-γ signaling in the host. 
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Figure 2. Tumors from IFN-γ-neutralized mice show an unedited phenotype. In a 

panel of 10 MCA sarcomas from wild type mice that were chronically treated with anti-

IFN-γ mAbs (H22), three (30%) tumor cell lines were spontaneously rejected upon 

transplantation into wild type recipients (highlighted in blue). 
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Figure 3. Highly immunogenic sarcomas require components of adaptive immunity 

for their rejection in wild type hosts.  a, All three highly immunogenic H22 regressors, 

H22-28027, H22-28030, and H22-28032 grow progressively when transplanted (1 x 106 

cells) into wild type mice that are treated with mAbs that deplete CD4+ T cells (GK1.5), 

deplete CD8+ T cells (YTS-169.4), or neutralize IFN-γ. b, Percentage of mice with 

progressively growing tumors from 2-3 independent tumor transplantation experiments. 
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Differential Requirements for Tumor Cell and Host Cell IFN-γ  Responsiveness for 

the Rejection of Each Individual H22 Regressor Tumor 

The finding that highly immunogenic H22 regressors grow progressively in wild 

type mice treated with IFN-γ neutralizing antibodies (Figure 3) established that IFN-γ is 

critical for the rejection of these tumors.  However, IFN-γ can exert its antitumor effects 

on both cells of the host and well as the tumor cell itself (15, 16, 25).  To test whether 

IFN-γ responsiveness was required at the level of the host, tumor cells were transplanted 

into Ifngr1-/- recipients.  Both H22-28027 and H22-28030 were mostly rejected upon 

transplantation into mice lacking host IFN-γ responsiveness.  In contrast, H22-28032 

grew progressively when transplanted into Ifngr1-/- mice (Figure 4).  These results 

suggest that H22-28032 requires host IFN-γ sensitivity for its rejection while H22-28027 

and H22-28030 tumors do not require IFN-γ sensitivity at the level of the host alone for 

their rejection.  Given that global neutralization of IFN-γ through the use of anti-IFN-γ 

mAbs results in the growth of all three H22 regressors, but only H22-28032 requires IFN-

γ sensitivity at the level of the host for its rejection, we next addressed whether IFN-γ 

sensitivity at the level of the tumor is required for tumor rejection.   

To generate IFN-γ-insensitive variants of the H22 regressors, each tumor was 

transduced with a dominant negative version of the IFNGR1 subunit, which lacks the 

intracytoplasmic domain required for IFN-γ receptor mediated signaling (IFNGR1ΔIC) 

that has been previously described (15).  Each tumor cell line expressing IFNGR1ΔIC 

upregulates H-2Db and H-2Kb class I proteins in response to recombinant murine IFN-α5 

and IFN-β, but fails to express any class I proteins on its cell surface after treatment with 

recombinant murine IFN-γ, indicating that IFNGR1ΔIC tumors are selectively and 
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completely insensitive to IFN-γ (Figure 5).  H22-28027 tumor cells lacking IFN-γ 

responsiveness (H22-28027ΔIC) grow progressively when transplanted into wild type 

mice in a manner that is indistinguishable from growth in Rag2-/- mice (Figure 6).  Thus, 

IFN-γ responsiveness at the level of tumor, but not the host, is necessary for the rejection 

of H22-28027 tumor cells.  Interestingly, H22-28030ΔIC tumor cells are rejected upon 

transplantation into wild type mice suggesting that neither IFN-γ sensitivity at the level of 

the host nor at the level of the tumor alone is sufficient for tumor rejection.  To test 

whether IFN-γ sensitivity at the level of the host and tumor are both required for tumor 

rejection, H22-28030ΔIC tumor cells should be transplanted into Ifngr1-/- mice.  Unlike 

H22-28027 and H22-28030 tumors, which are rejected upon transplantation into Ifngr1-/- 

mice, host IFN-γ responsiveness alone is required to mediate tumor rejection of H22-

28032 as this tumor grows progressively in Ifngr1-/- mice. Nevertheless, we investigated 

whether IFN-γ responsiveness at the level of the tumor was also contributing to rejection 

of H22-28032 tumors. H22-28032ΔIC tumor cells that are insensitive to IFN-γ display a 

partial growth phenotype when transplanted into wild type mice (Figure 6). Overall, in 

two independent experiments, H22-28032ΔIC tumors grew in half of wild type mice 

(5/10) upon transplantation (Figure 6), suggesting that there is a role for IFN-γ sensitivity 

at the level of the tumor and the host.  Similar to H22-28030, IFN-γ responsiveness at the 

level of the tumor and the host may both be required to achieve maximal protection from 

H22-28032 tumors. 
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Figure 4. H22-28032 grows progressively in Ifngr1-/- hosts.  Mice deficient for 

IFNGR1 and thus lack IFN-γ responsiveness in host cells were injected with 1 x 106 cells 

of H22-28027, H22-28030, or H22-28032. (Experiments performed by Sang Hun Lee, a 

pre-doctoral candidate in the Schreiber laboratory). 
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Figure 5.  H22 regressor sarcoma cells rendered insensitive to IFN-γ .  H22-28027, 

H22-28030, H22-28032 tumor cells were transduced with a dominant negative version of 

the IFNGR1 subunit (IFNGR1ΔIC) or control retrovirus (RV) and tested for capacity to 

upregulate expression of cell surface MHC class I molecules (H-2Db) using flow 

cytometry after the addition of murine recombinant IFN-α5, IFN-β, or IFN-γ for 48 hrs in 

vitro. 
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Figure 6.  H22-28027 and H22-28032 require tumor cell responsiveness to IFN-γ  for 

tumor rejection.  a, Dominant negative versions of the IFNGR1 receptor subunit were 

expressed in H22-28027, H22-28030, and H22-28032 unedited sarcomas and 

transplanted into wild type mice (blue) or Rag2-/- mice (red).  In addition tumors 

transduced with an empty retrovirus vector were transplanted into wild type mice (black) 

as a control. b, Percentage of mice with progressively growing tumors from two 

independent tumor transplantation experiments.
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DISCUSSION 

 

 Several studies from our lab and others have demonstrated that IFN-γ is critical in 

mediating anti-tumor immunity, especially from primary tumor formation.  Mice 

deficient in IFN-γ (Ifng-/-), IFN-γ responsiveness (Ifngr1-/-), or IFN-γ signaling (Stat1-/-) 

all develop more chemically induced MCA sarcomas and spontaneous tumors upon aging 

than their wild type counterparts (16, 19, 22, 34). Recently, a new study reported that 

IFN-γ also protects from primary skin carcinomas induced by intradermal injection of 

MCA (55). This study confirms earlier reports that IFN-γ is necessary for the prevention 

of skin carcinomas and papillomas in the DMBA/TPA inflammatory model (23).  Due to 

the powerful antitumor actions of IFN-γ, one would expect that tumors would evolve 

mechanisms of immune escape by rendering components of IFN-γ signaling ineffective.  

Indeed, many human and mouse cancers have lost responsiveness to IFN-γ due to 

mutations in signaling components downstream of the IFN-γ receptor (16, 97). For 

example, JAK1 is epigenetically silenced in the human prostate cancer cell line LNCaP 

and thus is unable to upregulate class I antigen processing and presentation machinery in 

response to IFN-γ and IFN-α/β (103). 

 In addition to the tumor-preventing roles of IFN-γ, there are a few studies that 

also provide evidence for the tumor-sculpting roles of IFN-γ on developing cancers. One 

such study generated cell lines from MCA-treated Ifngr1-/- mice and showed that 

reconstitution of these cell lines with IFNGR1 results in tumor rejection when 

transplanted into naïve wild type mice (16). Subsequent studies demonstrated that these 

cell lines could also be rendered immunogenic by enforcing expression of TAP1 (19) or 
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H-2Db (A.T. Bruce and R.D. Schreiber, unpublished results). However, spontaneous 

lymphomas that formed in C57BL/6 Ifng-/- mice were found not to be immunogenic and 

grew progressively when transplanted into wild type recipients (22).  In contrast, 

spontaneous lymphomas from perforin-deficient mice were immunogenic and were 

rejected when transplanted into wild type mice (20, 22). Thus, although there is evidence 

that IFN-γ is important for sculpting tumor immunogenicity, it is mostly inferred either 

from (a) already edited tumors that have lost IFN-γ sensitivity, or (b) tumors that lack 

functional IFN-γ receptors rendered immunogenic by reconstitution of functional 

receptors. Here, we unequivocally demonstrate that IFN-γ is involved in editing tumor 

immunogenicity in a primary tumor model and confirm its actions on both host cells and 

tumor cells to mediate host-protective, anti-tumor functions. 

 Using neutralizing antibodies against IFN-γ, we chronically treated wild type 

mice exposed to MCA and documented that these mice develop more primary MCA 

sarcomas than control Ig treated mice, further validating IFN-γ’s role in preventing 

primary tumors.  Importantly, we generated 10 tumor cell lines from these mice and 

found that 3/10 (30%) sarcomas spontaneously rejected in wild type mice—a finding that 

is remarkably similar to Rag2-/- mice and Ifnar1-/- mice where 40% and 36% of the MCA 

sarcomas are highly immunogenic regressors, respectively (19, 24). In addition, these 

highly immunogenic H22 regressors resemble typical unedited sarcomas generated in 

Rag2-/- mice in that they require IFN-γ, CD4+ T cells and CD8+ T cells for their rejection. 

As these tumors require IFN-γ for tumor rejection, we next explored whether host cells or 

tumor cells were the critical targets for IFN-γ. In support of previous studies, we found 

IFN-γ responsiveness is required on both tumor cells and host cells for tumor rejection 
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(15, 16, 25). However, each of the three H22 regressors had different combinations of 

host and tumor cell requirements for IFN-γ responsiveness to mediate tumor rejection, a 

result that is in contrast to Rag2-/- MCA sarcomas generated on a 129/Sv background 

where either IFN-γ responsiveness at the level of the host or the tumor alone is sufficient 

to mediate tumor rejection (25) (C.M. Koebel and R.D. Schreiber, unpublished results). 

 Taken together, these data suggest that IFN-γ sculpts tumor immunogenicity and, 

to date, is the best evidence that endogenous IFN-γ can alter tumor immunogenicity 

during primary tumor development.  In addition, this is the first demonstration that 

unedited sarcomas can be generated using blocking monoclonal antibodies in wild type 

mice. Although we do not yet know the host cell targets and thus the mechanisms of 

action for IFN-γ, one likely mechanism is IFN-γ’s role in facilitating the recognition of 

tumor-specific antigens by lymphocytes that leads to tumor cell destruction. The 

remainder of this thesis dissertation will explore the role that tumor antigens play in 

driving the cancer immunoediting process. 
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CHAPTER 3 

 

Exome Sequencing of the Highly 

Immunogenic, Unedited d42m1 Sarcoma 

Identifies its Major Rejection Antigen 
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INTRODUCTION 
 

A central tenet of tumor immunology in general, and the cancer immunoediting 

process in particular, is that tumor cells express antigens that distinguish them from their 

non-transformed counterparts, thus permitting their recognition by T cells and their 

ultimate destruction by immunological mechanisms. Since the first human tumor antigen 

was identified in 1991 (209), several tumor antigens have been cloned and can be 

classified in the following five categories: 1) differentiation antigens (e.g., melanocyte 

differentiation antigens, tyrosinase); 2) mutational antigens (e.g., abnormal forms of p53); 

3) overexpressed/amplified normal proteins (e.g., HER2/neu); 4) cancer-testis antigens 

(e.g., NY-ESO-1); and 5) viral antigens (e.g., human papilloma virus) (8).  Subsequent 

studies have also identified tumor antigens in the murine system (210, 211).  

Inherit genomic instability of tumor cells allows some variants to acquire 

additional mutations that are able to evade immunological detection. Specifically, tumor 

cells may lose sensitivity to the interferons, resulting in the reduction of tumor antigen 

processing and presentation (97, 101).  Furthermore, numerous studies have 

demonstrated that the immune system can select for tumor variants better suited for 

survival in an immunologically intact environment.  Specifically, when P815 

mastocytoma or ultraviolet-induced 1591 fibrosarcoma cells are serially transplanted into 

immunocompetent hosts, tumor variants emerge with reduced immunogenicity (211, 

212). 

Although a deep understanding of human and mouse tumor antigens currently 

exists (32), it comes nearly entirely from analyses of tumor cells derived from 
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immunocompetent hosts which were likely subjected to the sculpting forces of cancer 

immunoediting.  Little is known about the antigens expressed in nascent tumor cells, 

whether they are sufficient to induce host-protective, anti-tumor immune responses or 

whether their expression is modulated by the immune system. We realized that these 

questions might be answered by defining the antigens expressed in unedited sarcoma cell 

lines derived from 3’-methylcholanthrene (MCA) treated, immunodeficient Rag2-/- mice 

since these tumors phenotypically resemble highly immunogenic, nascent primary tumor 

cells (87). However, current methods to identify tumor antigens using expression cloning 

approaches (209, 211) are time and effort intensive and are not well suited to establishing 

a tumor’s antigenic profile.  Recent advances in the field of genome sequencing have 

made possible rapid and cost effective methods to define cancer genomes and have 

established that whereas cancer cells acquire some mutations involved in the 

transformation process (driver mutations), they also express many passenger mutations 

that develop, in part, as a consequence of genomic instability (213). These tumor-specific 

mutant proteins have been proposed, but never proven, to represent tumor-specific 

antigens for T cells (214).    

Herein, we use a modified from of exome sequencing to define the mutational 

profile of two independent, unedited MCA sarcomas (d42m1 and H31m1). This 

technique, involving cDNA capture by biotinylated mouse exome probes (Agilent) 

followed by deep sequencing (hereafter referred to as cDNA Capture Sequencing or 

cDNA CapSeq) showed that the two tumor cell lines display largely non-overlapping 

patterns of mutations. By pipelining the cDNA CapSeq data for one of these tumors 

(d42m1) into MHC class I epitope prediction algorithms, we identify a potential major 
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antigen of this unedited tumor, validate its identity as the major rejection antigen using 

expressing cloning techniques, and show that antigen-loss via a T cell dependent 

immunoselection process represents the mechanism underlying cancer immunoediting of 

this tumor. This study, thus, provides mechanistic insights into the process of cancer 

immunoediting and points to the future potential that cancer genome analysis may have 

on the fields of tumor immunology and cancer immunotherapy.  

 

This study was performed in a combined and equal effort with Dr. Hirokazu Matsushita, 

a post-doctoral fellow in the lab and thus, his data and my own are presented here 

together for clarity.  
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MATERIALS AND METHODS 

 

Mice.  Ifngr1-/- mice (208) and Ifnar1-/- mice (215) on a 129/Sv background were 

originally provided by Dr. Michel Aguet and were bred in our specific pathogen-free 

animal facility. Wild type and Rag2-/- mice were purchased from Taconic Farms. All 

mice were on a 129/Sv background and were housed in our specific pathogen-free animal 

facility.   For all experiments, mice were 8-12 weeks of age and performed in accordance 

with procedures approved by the AAALAC accredited Animal Studies Committee of 

Washington University in St. Louis. 

 

Tumor transplantation.  3-methylcholanthrene (MCA) induced sarcomas used in this 

study were generated in 129/Sv strain wild type or Rag2-/- mice and banked as low 

passage tumor cells as previously described (19).  Tumor cells derived from frozen stocks 

were propagated in vitro in RPMI media (Hyclone, Logan, UT) supplemented with 10% 

FCS (Hyclone) and injected subcutaneously in 150 µl of endotoxin-free PBS into the 

flanks of recipient mice.  Tumor cells were >90% viable at the time of injection as 

assessed by trypan blue exclusion and tumor size was quantified as the average of two 

perpendicular diameters. 

 

Isolation of normal skin fibroblasts.  Skin fibroblasts were isolated from three 

independent 129/Sv Rag2-/- pups by harvesting skin and incubating in 0.25% trypsin 

(Hyclone) at 37°C for 30 minutes prior to washing in DMEM media (Hyclone).  After 

washing, chunks of skin were filtered to achieve single cell suspensions and cultured in 
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vitro with DMEM media. After 3 passages, skin fibroblasts were harvested to isolate 

genomic DNA and total RNA. 

 

Extraction of genomic or complementary DNA.  Genomic DNA from sarcoma cells 

and normal skin fibroblasts was extracted using DNeasy Blood & Tissue Kit (Qiagen).  

For cDNA isolation, total RNA from sarcoma cells and normal skin fibroblasts was 

isolated using RNeasy Mini kit (Qiagen) and cDNA was synthesized using oligo (dT) 

primers and SuperScript II Reverse Transcriptase (Invitrogen). 

 

cDNA capture, sequencing, and alignment (cDNA CapSeq).  cDNA samples from 

each tumor (100 ng) were constructed into Illumina libraries according to the 

manufacturer’s protocol (Illumina Inc, San Diego, CA) with the following modifications:  

1) cDNA was fragmented using Covaris S2 DNA Sonicator (Covaris, Inc. Woburn, MA) 

in 1X end-repair buffer followed by the direct addition of the enzyme repair cocktail 

(Lucigen, Madison, WI).  Fragment sizes ranged between 100 and 500 bp.  2) Illumina 

adapter-ligated DNA was amplified in four 50 µl PCRs for five cycles using 4 µl adapter-

ligated cDNA, 2X Phusion Master Mix and 250 nM forward and reverse primers, 

5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT

CCGATC and 5’	  

CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTC

CGATC, respectively.  3) Solid Phase Reversible Immobilization (SPRI) bead cleanup 

was used to purify the PCR-amplified library and to select for 300-500 bp fragments. 500 

ng of the size-fractionated Illumina library was hybridized with the Agilent mouse exome 
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reagent.  After hybridization at 65°C for 24 hrs, we added 50 µl of DynaBeads M-270 

Streptavidin-coated paramagnetic beads (10 mg/ml) to selectively remove the 

biotinylated Agilent probes and hybridized cDNA library fragments.  The beads were 

washed according to manufacturer’s protocol (Agilent) and the captured library 

fragments were released into solution using 50 µl of 0.125 N NaOH and neutralized with 

an equal volume of neutralization buffer (Agilent). The recovered fragments then were 

PCR amplified according to the manufacturer’s protocol using 11 cycles in the PCR.  

Illumina library quantification was completed using the KAPA SYBR FAST qPCR Kit 

(KAPA Biosystems, Woburn, MA). The qPCR result was used to determine the quantity 

of library necessary to produce 180,000 clusters on a single lane of the Illumina GAIIx.  

One lane of 100 bp paired-end data was generated for each captured sample (since cDNA 

was used as the source for sequencing, we refer to this process as cDNA Capture 

Sequencing or CapSeq). Illumina reads were aligned to the NCBI build 37 (Mm9) mouse 

reference sequence using BWA (216) v0.5.5 (with –q 5 soft trimming). Alignments from 

multiple lanes for the same sample were merged together using SAMtools r599, and 

duplicates were marked using Picard v1.29.   

 

Mutation detection and annotation.  Putative somatic mutations were identified using 

VarScan 2 (v2.2.4) (217) with the parameters “--min-coverage 3 --min-var-freq 0.08 --p-

value 0.10 --somatic-p-value 0.05 --strand-filter 1” and specifying a minimum mapping 

quality of 10. Variants whose supporting reads exhibited read position bias (average read 

position <10 or >90), strand bias (>99% of reads on one strand), or mapping quality 

(score difference >30, or mismatch quality sum difference >100) relative to reference 
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supporting reads were removed as probable false positives. We also required that the 

variant allele be present in at least 10% of tumor reads and no more than 5% of normal 

reads. The single nucleotide variants (SNVs) meeting these criteria were annotated using 

an internal database of Genbank/Ensembl transcripts (v58_73k). In the event that a 

variant was annotated using multiple transcripts, the annotation of most severe effect was 

used. Non-silent coding mutations (missense, nonsense/nonstop, or splice-site) were 

prioritized for downstream analysis. 

 

Mutation rate and overlap comparisons.  Mutation rates were estimated for each tumor 

sample using the number of putative “tier 1” SNVs (missense, nonsense/nonstop, splice 

site, silent, or noncoding RNA). To account for variability in coverage between samples, 

the SNV count for each tumor sample (S) was divided by a coverage factor (F), computed 

as the fraction of all tier 1 SNVs identified in any tumor sample (n=16,991) that were 

covered by at least 4 reads in a given sample. For example, in the d42m1 parental sample, 

15,852 of 16,991 tier 1 SNV positions were covered, for a coverage factor of 93.30%. 

The number of coverage-adjusted mutations in each sample was divided by the total size 

of tier 1 space in the mouse genome (43.884 Mbp) to determine the number of coding 

mutations per megabase (R).  

R = (S / F) / (43.884 Mbp) 

For the mutation overlap comparisons and relatedness-to-parental-tumor analysis, only 

high-confidence missense mutations were used (i.e., 20X or above). A mutation was 

considered “shared” between two samples if both samples had a predicted mutation at the 

same genomic position. For the comparison of mutated genes between d42m1 and 
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H31m1 parental lines, a gene was considered “shared” if both d42m1 and H31m1 

samples had a predicted missense mutation in that gene, even if the mutations did not 

occur at the same position. 

 

MHC class I epitope prediction.  All missense mutations for each d42m1 tumor variant 

were analyzed for the potential to form MHC class I neoepitopes that bind to either H-

2Db or H-2Kb molecules. The artificial neural network (ANN) algorithm provided by the 

Immune Epitope Database and Analysis Resource (www.immuneepitope.org) was used 

to predict epitope binding affinities (218) and the results were ultimately expressed as 

“Affinity Values”  (Affinity Value = 1/IC50 X 100). 

 

Antibodies.  Anti-H-2Kb (B8-24-3) and anti-H-2Db (B22/249) mAbs were generously 

provided by Dr. Ted H. Hansen (Washington University School of Medicine). Anti-CD4 

(GK1.5), anti-CD8α (YTS169.4) mAbs and control immunoglobulin (PIP, a mAb 

specific for bacterial glutathione S-transferase) were produced from hybridoma 

supernatants and purified in endotoxin-free form by Protein G affinity chromatography 

(Leinco Technologies, St. Louis, MO).  Purified Rat IgG was purchased from Sigma (St. 

Louis, MO).  CD45-FITC, CD45-PE, CD8-APC, and purified anti-CD16/32 were 

purchased from BioLegend (San Diego, CA).  

 

cDNA library construction and screening.  To generate a d42m1 tumor cell cDNA 

library, mRNA was isolated from parental d42m1 tumor cells using a QuickPrep mRNA 

Purification kit (Amersham), converted into cDNA using SuperScript II First Strand 
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Synthesis System (Invitrogen) and inserted into the EcoRI site of the expression vector 

pcDNA3 (Invitrogen).  The cDNA library was divided into pools of 100 bacterial 

colonies with 200-300 ng of DNA from each pool transfected into 2.5 x 104 monkey COS 

cells engineered to ectopically express mouse H-2Db (COS-Db) cells using Lipofectamine 

2000.  After 48 hr, 5 x 103 C3 CTL cells were added, and supernatants were assayed for 

IFN-γ release 24 hrs later by ELISA.  A single positive cDNA clone was isolated after 

screening 120,000 cDNA colonies.  The putative H-2Db-binding peptide VAVVNQIAL 

was predicted using the algorithm available at the Immune Epitope Database and 

Analysis Resource, http://www.immuneeptiope.org/.  The peptides were kindly produced 

by Dr. Paul Allen and Steve Horvath (Washington University School of Medicine).  

 

Expression vectors.  Full length cDNA encoding wild type spectrin-β2 and mutant 

spectrin-β2 were cloned from parental d42m1 tumor cells by RT-PCR using primer pairs 

5’-TGAGACAGTCAAGATGACGACCACGGTAGCCACA-3’ and 5’-

CGGGACAACAGGGAAGTTCACTTCTTCTTGCCGA-3’.  Wild type and mutant 

spectrin-β2 cDNA were subcloned from the TOPO-XL vector (Invitrogen) into the RV-

GFP vector (219).  To generate the RV-RFP vector, full length cDNA encoding RFP was 

cloned from the pTurboRFP-C vector (Evrogen) by RT-PCR using primer pairs 5'- 

ATCTCAGAATTCATGAGCGAGCTGATCAAGGA - 3' and 5'- 

ATCTCAGGATCCTTATCTGTGCCCCAGTTTGCTAG - 3'.  RFP cDNA was then 

cloned into the RV vector.  To remove candidate T cell epitopes in RFP, the nucleotide A 

was replaced by G at position 334 in the cDNA, resulting in amino acid substitution 

N112D.  Coding sequences of the constructs were verified by DNA sequencing (Big Dye 
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method; Applied Biosciences). The dominant negative version of the IFNGR1 subunit 

(IFNGR1ΔIC) was expressed into H31m1 and d42m1 tumor cells as previously described 

(15). 

 

Establishment of CTL lines and clones.  To generate the d42m1 specific C3 CTL clone, 

wild type mice were injected with 1 x 106 parental d42m1 tumor cells.  Fourteen days 

later, the spleen was harvested from a mouse that rejected the tumor and a CTL line was 

established by stimulating 40 x 106 splenocytes with 2 x 106 parental d42m1 tumor cells 

pre-treated for 48 hr with 100 U/ml of recombinant murine IFN-γ and irradiated (100 

Gy). After CD8+ T cell purification using magnetic-beads (Miltenyi Biotec) and limiting 

dilution, the CTL clone C3 was obtained. 

 

Measurement of IFN-γ  production.  To generate target cells, tumor cells were treated 

with 100U/ml IFN-γ for 48 hrs and irradiated with 100 Gy prior to use.  The C3 CTL 

clone was co-cultured at the indicated ratios with target tumor cells (10,000 or 5,000 

cells) in 96-well round-bottomed plates overnight.  IFN-γ in supernatants was quantified 

using an IFN-γ ELISA kit (eBioscience).  For blocking assays, 10 µg/ml of α-CD8 (YTS-

169.4), α-CD4 (GK1.5), or control immunoglobulin (PIP) were added to the cell culture 

of effector (C3 CTL clone) and target cells (tumors). 

 

Fluorescence-activated cell sorting analysis.  For flow cytometry, cells were stained for 

20 minutes at 4°C with 500 ng of Fc block (anti-CD16/32) and 200 ng of CD45, CD4, or 

CD8α in 100 µL of staining buffer (PBS with 1% FCS and 0.05% NaN3 (Sigma)).  
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Propidium iodide (PI) (Sigma) was added at 1 µg/mL immediately before FACS analysis. 

For quantitative analysis of tumor-infiltrating lymphocytes/leukocytes (TIL) and lymph 

node populations, a CD45+PI– gate was used and gated events were collected on a 

FACSCalibur (BD Biosciences) and analyzed using FloJo software.  

 

Tumor, draining lymph node, and spleen harvest.  After tumor cell transplantation, 

established tumors were excised from mice, minced and treated with 1 mg/ml type IA 

collagenase (Sigma) in HBSS (Hyclone) for 2 hrs at room temperature.  The ipsilateral 

inguinal tumor-draining lymph nodes and spleen were also harvested and crushed 

between two glass slides and vigorously resuspended to make single-cell suspensions.  

 

Tetramers.  H-2Db tetramers conjugated to phycoerythrin (PE) were prepared with 

mutant spectrin-β2 peptides and produced by the NIH Tetramer Core Facility (Emory 

University, Atlanta, GA). 

 

Mutation specific RT-PCR and real-time RT-PCR.  Total RNA from tumor cells was 

isolated by RNeasy Mini kit (Qiagen) and cDNA was synthesized from the total RNA 

using oligo (dT) primers and SuperScript II Reverse Transcriptase (Invitrogen). Real-

time PCR specific for wild type spectrin-β2, mutant spectrin-β2 and GAPDH using the 

SYBR Green Mastermix kit (Applied Biosystems) were performed on ABI 7000.  The 

primer sequences for used for mutant spectrin-β2 are 5’-GGTGAACCAGATTGCACT-

3’ and 5’-TGTCCACCAGTTCTCTGAACT-3’.   
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Detection of mutation in spectrin-β2 cDNA.  The point mutation in the spectrin-β2 

gene creates a PstI restriction site (CGGCAG to CTGCAG, underlined italic letters 

indicate the site of mutation).  To amplify spectrin-β2 cDNA we used a forward primer 

(ACCCTGGCCCTGTACAAGAT) and reverse primer 

(TAGACTCGATGACCTTGGTCT).  The PCR conditions used were 94°C for 2 min, 

followed by 35 cycles of 94°C for 30s, 55°C for 30s and 72°C for 30s.  The PCR 

products were digested for 2 hrs at 37°C with PstI restriction enzyme, which cleaved 

mutant spectrin-β2, but not wild-type spectrin-β2, and generates a 200 bp fragment from 

cDNA.  The products were resolved by electrophoresis on a 1.2% agarose gel and 

visualized by ethidium bromide staining. 

 

Isolation of non-transformed cells from frozen primary d42m1 tumor chunk.  A 

frozen d42m1 tumor chunk from the original d42m1 tumor was thawed and treated with 1 

mg/ml type IA collagenase (Sigma) in HBSS for 2 hrs at room temperature. After 

filtration, single-cell suspensions were stained for 20 minutes at 4°C with 500 ng of Fc 

block (anti-CD16/32) and 200 ng of CD45-PE in 100 µL of staining buffer.  Propidium 

iodide was added at 1 µg/mL immediately before sorting. A CD45+PI– gate was used and 

the top 15% percent and the bottom 15% of gated events were collected using a 

FACSAria II (BD Biosciences). 

 

Statistical Analysis.  Samples were compared using an unpaired, two-tailed Student’s t 

test.   
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RESULTS 

 

cDNA CapSeq of Unedited MCA Sarcomas Reveals a Similarity to Carcinogen-

induced Human Cancers  

For this study, we chose two representative, highly immunogenic, unedited MCA 

sarcoma cell lines, d42m1 and H31m1, that grow progressively when transplanted 

orthotopically into Rag2-/- mice, but are immunologically rejected when transplanted into 

naive wild type mice (19) (Figure 1 and 2).  Using cDNA CapSeq, we identified 3,737 

non-synonymous mutations in d42m1 cells (3,398 missense, 221 nonsense, 2 nonstop and 

116 splice site mutations) and 2,677 non-synonymous mutations in H31m1 cells (2,391 

missense, 160 nonsense, 3 nonstop and 123 splice site mutations) (Figure 3a and Figure 

4). However, d42m1 and H31m1 share only 119 identical missense mutations when 

comparing sequences with at least 20X coverage (Figure 3b), thus explaining the unique 

antigenicity that each cell line displays (Figure 3c). Whereas d42m1 and H31m1 had 

mutations in 73 and 42 cancer-associated genes (220), respectively, most of these do not 

correspond to known activating or inactivating gene mutations in human cancers (221). 

However, d42m1 and H31m1 display mutations in Kras (d42m1 Kras G12C; H31m1 

Kras G12D) and in Trp53 (d42m1: Trp53 E295stop; H31m1: Trp53 S152R and S258I) 

that are frequently observed in human and mouse cancers, including edited MCA 

sarcomas from wild type mice (222). These same mutant proteins have been shown to 

induce cancers de novo when co-expressed in transgenic mice (223, 224).   
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Figure 1. d42m1 is a highly immunogenic, unedited tumor.  d42m1 tumor cells were 

injected at a dose of 1x106 into syngeneic wild type (a-d), Rag2-/- (a and c), Ifnar1-/- (c), 

or Ifngr1-/- (d) mice.  b, Groups of wild type mice injected with 1x106 d42m1 tumor cells 

were treated with control IgG, anti-CD4, or anti-CD8α mAbs.  d, d42m1 tumor cells 

were rendered insensitive to IFN-γ (d42m1ΔIC) by expressing a dominant-negative 

version of IFNGR1 (IFNGR1ΔIC) and were then transplanted (1x106 cells) into wild type 

mice.  Data are presented as average tumor diameter ± s.e.m. of 3-5 mice per group and 

are representative of at least three independent experiments. Samples were compared 

using an unpaired, two-tailed Student’s t test (*p<0.05, **p<0.01, and ***p<0.001).   
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Figure 2. H31m1 is a highly immunogenic, unedited tumor.  H31m1 tumor cells were 

injected at a dose of 1x106 into syngeneic wild type (a-d), Rag2-/- (a and c), Ifnar1-/- (c), 

or Ifngr1-/- (d) mice.  b, Groups of wild type mice injected with 1x106 H31m1 tumor cells 

were treated with control IgG, anti-CD4, or anti-CD8α mAbs.  d, H31m1 tumor cells 

were rendered insensitive to IFN-γ (H31m1ΔIC) by expressing a dominant-negative 

version of IFNGR1 (IFNGR1ΔIC) and were then transplanted (1x106 cells) into wild type 

mice.  Data are presented as average tumor diameter ± s.e.m. of 4-9 mice per group and 

are representative of at least three independent experiments. Samples were compared 

using an unpaired, two-tailed Student’s t test (*p<0.05, **p<0.01, and ***p<0.001). 
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Figure 3. d42m1 and H31m1 are distinct antigenic and immunogenic tumors. a, 

Number of somatic, non-synonymous mutations (missense, nonsense, nonstop, and splice 

site) in d42m1 and H31m1 tumor cells as detected by cDNA CapSeq. b, Venn diagram 

comparing the number of unique and shared missense mutations expressed in d42m1 and 

H31m1 tumor cells that had at least 20x sequencing coverage for each genomic site. c, 

IFN-γ ELISA assay using the bulk CTL lines developed against either parental d42m1 

(left panel) or H31m1 (right panel) and tested against unedited MCA sarcoma cell lines, 

d42m1, H31m1, F510, 1773, 1782, and 1779 or the edited F244 MCA sarcoma derived 

from a wild type 129/Sv mouse.  Data are representative of at least two independent 

experiments and are presented as average IFN-γ release ± s.e.m. Samples were compared 

using an unpaired, two-tailed Student’s t test (*p<0.05, **p<0.01, and ***p<0.001). 
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Figure 4. Exome sequencing coverage.  Percentage of exome sequence coverage (20x, 

15x, 10x, 5x, 1x, 0x) is displayed for the MCA sarcoma cell lines and normal skin 

fibroblasts that were isolated from three independent syngeneic 129/Sv Rag2-/- mice. 
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When we compared the cDNA CapSeq data of d42m1 and H31m1 sarcoma cells 

to those of human cancer genomes (225-233), two similarities were observed.  First, the 

overall mutation rates of d42m1 and H31m1 most closely resemble those of carcinogen-

induced lung cancers from smokers, and particularly of “hypermutators” whose smoking 

induced-lung cancers develop mutations in genes encoding DNA repair components 

(Figure 5a). Interestingly, d42m1 and H31m1 also have mutations in DNA repair genes, 

including Trp53, Atm, Brca2, Brip1, Fancd2, Fancg and Xpc.  Second, 46% and 47% of 

mutations in d42m1 and H31m1, respectively, are C/A or G/T transversions and thus 

represent typical carcinogen signatures (229, 230) similar to those established for lung 

cancers from smokers (44-46%), but distinct from those for other human cancers, 

including lung cancers from individuals who never smoked (15%) (Figure 5b). Thus, the 

current genomic analyses reveal the oft-proposed, but never documented similarity 

between MCA sarcomas in mice and carcinogen-induced human cancers.  

 

cDNA CapSeq of d42m1 Tumor Variants  

The d42m1 sarcoma cell line displays a sporadic tendency to produce escape 

variants following transplantation into naïve, syngeneic wild type mice (Figure 6a).  In 

fact, escape variants are observed in about 20% of naïve wild type mice injected with 

parental d42m1 tumor cells (Figure 6c).  Cell lines made from three such escape variants 

(d42m1-es1, d42m1-es2 and d42m1-es3) consistently formed progressively growing 

tumors when transplanted into naïve syngeneic recipients (Figure 6d and 7).  In contrast, 

parental d42m1 tumor cells passaged through immunodeficient Rag2-/- mice retained 
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their immunogenicity (Figure 6b, d). Thus, unedited d42m1 tumor cells can undergo 

immunoediting when transplanted into wild type mice. 

To determine the basis for the heterogeneous behavior of d42m1 tumor cells in 

naive immunocompetent mice, we generated single cell clones from the parental cell line 

and tested the immunogenicity of each.  Whereas 8 of 10 clones were rejected when 

transplanted into wild type mice, two (d42m1-T3 and d42m1-T10) grew progressively 

and displayed growth kinetics similar to the d42m1 escape variants (Figure 7). Thus, the 

parental d42m1 cell line consisted of a disproportionate mixture of regressor and 

progressor tumor cell clones. 

cDNA CapSeq of d42m1 clones and escape variants revealed that all expressed 

similar numbers of mutations compared to parental d42m1 tumor cells (Figure 8a). 

Moreover, the missense mutations in clones and escape variants were similar to parental 

d42m1 cells, but distinct from those in H31m1 parental cells (Figure 8b). However, a 

greater percentage of mutations in d42m1 regressor clones were shared with parental 

d42m1 tumor cells (71-78%) than those shared between parental d42m1 tumor cells and 

d42m1 progressor clones (48%) or escape variants (33-35%) (Figure 8b), a result that 

further supports the conclusion that the d42m1 cell line consists of a related, but 

heterogeneous population of tumor cells. 
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Figure 5. Unedited MCA sarcomas, d42m1 and H31m1, resemble carcinogen-

induced human cancers. a, Log mutation rate/10 Mbp for d42m1 and H31m1 sarcomas 

as compared to previously generated data from a panel of human cancers including acute 

myelogenous leukemia (225, 226) (AML), chronic lymphocytic leukemia (232) (CLL), 

breast cancer (breast-lobular (228), breast-basal (227), aromatase inhibitor (AI)-resistant, 

and AI-sensitive (Ding et al., manuscript in review)), ovarian cancer (OVC1, 3, 4, 5) 

(manuscript in preparation), liver cancer (Hepatitis C Virus (HCV)-positive) (231), 

melanoma (ultraviolet (UV)-induced) (233), and lung cancers (non-small cell (NSC) 

(229), small cell (SC) (230), Never-Smoker, Smoker, and Hypermutator (manuscript in 

progress)). Only protein-coding alterations (Tier 1 SNVs) were used to calculate mutation 

rates. b, Spectrum of DNA nucleotide transitions and transversions detected in d42m1 

and H31m1 sarcomas and human cancers described in a.
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Figure 6.  Escape variants of d42m1 display reduced immunogenicity and an edited 

growth phenotype. a, d42m1 tumor cells (1x106) were transplanted into wild type (solid 

lines) or Rag2-/- (dashed lines) mice.  b, The escape variant d42m1-es3 (harvested from 

the wild type mouse bearing an escaped d42m1 tumor in a and generated into a cell line) 

(n=5, diamonds) or d42m1-RagPass (n=5, squares) were transplanted (1x106 cells) into 

wild type mice. Data presented as average tumor diameter ± s.e.m of 5 mice per group 

over time. c, Wild type mice or Rag2-/- mice were challenged with 1x106 d42m1 tumor 

cells. Data presented as percent tumor positive from 2-4 independent experiments (n=4-6 

mice per group).  d,  Wild type mice were challenged with 1x106 d42m1-RagPass, 

d42m1-es1, d42m1-es2, or d42m1-es3 tumor cells. Data presented as percent tumor 

positive from two independent experiments (n=4-5 mice per group). Samples were 

compared using an unpaired, two-tailed Student’s t test (**p<0.01 and ***p<0.001) 
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Figure 7. d42m1 tumor cell clones display heterogeneous growth characteristics. 

d42m1 tumor clones (d42m1-T1, -T2, -T3, -T4, -T5, -T6, -T7, -T8, -T9, and -T10) and 

escape variants (d42m1-es1, -es2, and -es3) were transplanted at a dose 1 x 106 cells into 

wild type mice (n=5, squares). Data are presented as average tumor diameter ± s.e.m. and 

are representative of two-three independent experiments.  
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Figure 8. d42m1 tumor cell clones are closely related to d42m1 parental cells. a, 

Number and type of non-synonymous somatic mutations (missense, nonsense, nonstop, 

and splice site mutations) in d42m1 tumor variants. b, Percent of shared missense 

mutations expressed in each d42m1 tumor cell variant when compared with d42m1 

parental cells (left) or H31m1 parental cells (right).
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Identifying Potential d42m1 Tumor Antigens From Genomic Data 

We next assessed the theoretical capacity of peptides containing each missense 

mutation to bind to MHC class I proteins (i.e., to function as neoantigens) by in silico 

analysis (218).  As these tumors were generated on a 129/Sv genetic background, we 

restricted our analysis to H-2Db and H-2Kb.  Remarkably, among the large number of 

potential mutant epitopes examined for binding to H-2Db or H-2Kb, only 32 (0.06%) and 

138 (0.27%) displayed high affinity binding potential (IC50 < 50nM; Affinity Value > 2) 

to H-2Db and H-2Kb, respectively (Figure 9).  

To further simplify the pattern, we asked whether all of the d42m1 regressor 

variants shared a common rejection antigen.  Using a d42m1 specific CD8+ cytotoxic T 

lymphocyte (CTL) clone (C3) derived from a wild type mouse that had rejected parental 

d42m1 tumor cells, we observed reactivity in vitro (as evidenced by IFN-γ production) 

with parental d42m1 tumor cells and with regressor d42m1 tumor cell variants, but not 

with progressor d42m1 tumor cell variants or unrelated MCA sarcoma cells (Figure 10a, 

b). Together, these results reveal that the regressor d42m1 tumor cell variants, indeed, 

share a common rejection antigen. This conclusion was supported by the additional 

finding that the original CD8+ T cell line from which the C3 clone was derived displayed 

a limited oligoclonality, as evidenced by Vβ usage limited only to Vβ6 and Vβ8.1/8.2.  

This result suggests that d42m1 expresses only a limited number of rejection antigens, 

perhaps even a single immunodominant antigen. Therefore, we focused on the limited 

number of epitopes that were common to all d42m1 regressor variants (Figure 11). 

Furthermore, recognition of all d42m1 regressor variants by the C3 clone was restricted 

by H-2Db (Figure 12). Based on these results, the R913L mutation in spectrin-β2 
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represents the best potential rejection antigen candidate because of its high affinity for H-

2Db (Figure 11). The mutation in spectrin-β2 most likely represents a passenger rather 

than a driver mutation since (a) spectrin-β2 is a cytoskeletal protein whose only known 

role is maintaining plasma membrane integrity, (b) expression of mutant spectrin-β2 is 

not required for the neoplastic phenotype of d42m1 tumor cell clones, and (c) it is not on 

the list of known human cancer genes (220). 

 

Mutant spectrin-β2 is a d42m1 Specific Tumor Antigen 

To verify the predicted importance of mutant spectrin-β2 on d42m1 antigenicity, 

we used a T cell based expression cloning approach (209) to independently identify the 

tumor antigen recognized by the C3 CTL clone. After three rounds of screening 120,000 

cDNA clones, a single positive cDNA was identified encoding a 1,722 bp fragment with 

a sequence identical to spectrin-β2 except for a single G to T point mutation resulting in 

an amino acid substitution of arginine to leucine at position 913. Thus, conventional 

antigen expression cloning identified the same sequence that was predicted using the 

cDNA capture sequencing/in silico approach. 

To establish whether mutant spectrin-β2 represents a tumor-specific antigen, we 

first assessed expression of mutant spectrin-β2 mRNA in the various d42m1 cell variant 

populations by mutation specific qRT-PCR.  Mutant spectrin-β2 mRNA was expressed in 

parental d42m1 cells and d42m1 regressor clones, but not in d42m1 progressor clones or 

escape variants (Figure 13).  Moreover, the mutant form of spectrin-β2 was not observed 

in normal tissue derived from the very same mouse as the d42m1 tumor, revealing that 

the mutation was truly tumor cell specific and not due to a mouse-specific polymorphism. 
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We then asked whether T cells could discriminate between the mutant and native 

spectrin-β2 905-913 peptide sequences when presented on H-2Db.  For this purpose, we 

synthesized wild type (VAVVNQIAR) and mutant (VAVVNQIAL) 905-913 spectin-β2 

peptides and tested their ability to stimulate IFN-γ production from the C3 clone when 

presented on an unrelated H-2Db expressing cell line.  Whereas the mutant peptide 

stimulated C3 CTL cells in a dose-dependent manner, the wild type peptide did not, even 

when added in 1000-fold excess (Figure 14).  

To document that the anti-R913L spectrin-β2 response occurred under 

physiologic conditions, we used labeled H-2Db tetramers generated with the 905-913 

spectrin-β2 mutant peptide to identify CD8+ T cells in d42m1 variant tumors.  Mutant 

spectrin-β2 specific CD8+ T cells were detected in parental d42m1 tumors and draining 

lymph nodes (DLNs) as early as 6 days after tumor injection and gradually increased in 

numbers until day 11 (just prior to tumor rejection), where they reached a maximum of 

5% and 0.5% of the CD8+ T cells in the tumor and DLN, respectively (Figure 15). In 

contrast, no mutant spectrin-β2 specific CD8+ T cells were detected in d42m1-es3 tumors 

or DLNs (Figure 15). Together these data demonstrate that a mutated gene expressed 

selectively in unedited d42m1 tumor cells, gives rise to a mutant protein that evokes a 

naturally occurring T cell response in naïve wild type mice. Thus mutant spectrin-β2 is 

an authentic tumor-specific antigen of d42m1 sarcoma cells.     
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Figure 9. Affinity value profiles of predicted MHC class I epitopes from tumor-

specific mutations. All missense mutations for each d42m1 tumor variant were analyzed 

for the potential to form MHC class I neoepitopes that bind to either H-2Db or H-2Kb 

molecules. The artificial neural network (ANN) algorithm provided by the Immune 

Epitope Database and Analysis Resource was used to predict epitope binding affinities 

and the results were ultimately expressed as “Affinity Values”  (Affinity Value = 1/IC50 

X 100). Mutant epitopes present in each individual d42m1 tumor variant are displayed.  

Arrow is pointing to one of the H-2Db epitopes created by the R913L point mutation in 

spectrin-β2 that is expressed only in d42m1 cell variants that are rejected in wild type 

mice.  
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Figure 10.  CD8+ T cells selectively recognize highly immunogenic d42m1 tumor 

variants. a, b, IFN-γ ELISA assay of C3 CTL cells generated from splenocytes of a 

mouse that rejected d42m1, against five different unedited sarcoma cell lines (a) or 

against d42m1 tumor clones and escape variants (b). Data are representative of two 

independent experiments. Samples were compared using an unpaired, two-tailed 

Student’s t test (*p<0.05 and **p<0.01; n.s. is non-significant).
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Figure 11. Shared epitopes among highly immunogenic d42m1 variants.  MHC class 

I epitopes predicted to be shared in all of the highly immunogenic d42m1 tumor variants 

(d42m1 parental, -T1, -T2, and -T9), but not in d42m1 tumor variants that display 

reduced immunogenicity (d42m1-T3, -T10, -es1, -es2, and -es3) for H-2Db (top) and H-

2Kb (bottom). One of the H-2Db epitopes created by the R913L point mutation in 

spectrin-β2 is highlighted in red.
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Figure 12. CD8+ T cell recognition of d42m1 parental tumor cells is H-2Db 

restricted.  IFN-γ ELISA assay of C3 CTL cells against d42m1 parental tumor cells with 

the addition of antibodies that block CD4, CD8α, H-2Db, or H-2Kb. Data are 

representative of two independent experiments. Samples were compared using an 

unpaired, two-tailed Student’s t test (**p<0.01). 
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Figure 13. Expression of mutant spectrin-β2 is restricted to highly immunogenic 

d42m1 tumor variants.  qRT-PCR analyses using primer pairs specific for mutant 

spectrin-β2 in d42m1 parental, d42m1 clones and escape variants and 1773, an unrelated 

unedited sarcoma. 
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Figure 14. C3 CTL clone recognizes mutant 905-913 spectrin-β2 peptide. a, 

Estimation of IC50 (nM) for wild type and mutant spectrin-β2 epitopes on H-2Db by 

Immune Epitope Database and Analysis Resource. b, IFN-γ ELISA assay of C3 CTL 

cells against COS-Db cells pulsed with wild type (circles) or mutant (squares) spectrin-β2 

peptides. Data are representative of two independent experiments. Samples were 

compared using an unpaired, two-tailed Student’s t test (*p<0.05 and **p<0.01).
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Figure 15. Mutant spectrin-β2 specific CD8+ T cells infiltrate d42m1 parental 

tumors, but not d42m1-es3 tumors. Time course of tetramer positive CD8α+ T cells in 

tumors and DLNs from d42m1 or d42m1-es3 tumor-bearing mice.  Tumors and DLNs 

were harvested from d42m1 (n=3, circles) or d42m1-es3 (n=3, squares) -bearing mice at 

days 6, 9, 11, and 13.  Data includes results from 3 mice per group and is representative 

of two independent experiments (left). Tumors and draining lymph nodes (DLNs) were 

harvested at day 11 and CD8α+ T cells were stained with mutant spectrin-β2 tetramers 

(right). Data are representative of two independent experiments. Samples were compared 

using an unpaired, two-tailed Student’s t test (*p<0.05 and **p<0.01).
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Mutant spectrin-β2 is the Major Rejection Antigen of d42m1 Tumor Cells 

In order to explore whether mutant spectrin-β2 represents the major rejection 

antigen of parental d42m1 tumor cells, we enforced expression of either the mutant or 

wild type forms of spectrin-β2 into d42m1-es3 cells (Figure 16). When injected into wild 

type mice, d42m1-es3 tumor cell clones expressing GFP alone or GFP plus wild type 

spectrin-β2 (WT.1 and WT.3) grew progressively and displayed similar growth kinetics 

to the parental d42m1-es3 cell line (Figure 17a, c).  In contrast, d42m1-es3 tumor cell 

clones expressing GFP plus mutant spectrin-β2 (mu.6 and mu.14) were rejected in wild 

type mice, but not in Rag2-/- mice (Figure 17b, c, d).  CD8+ T cells specific for mutant 

spectrin-β2 did not infiltrate d42m1-es3 tumors expressing wild type spectrin-β2 (WT.3), 

but were detected by tetramer staining in rejecting d42m1-es3 tumors that had been 

reconstituted with mutant spectrin-β2 (mu.14) (Figure 17e).  The frequency of antigen-

specific T cells infiltrating mutant spectrin-β2 expressing tumors was similar to that in 

mice rejecting parental d42m1 tumors.  These results demonstrate that expression of 

mutant spectrin-β2 is both necessary and sufficient for the rejection of d42m1 tumors and 

thus, validates it as the major rejection antigen of d42m1 sarcoma cells.          

 

Immunoselection is the Immunoediting Mechanism for d42m1 Tumor Cells   

The results presented thus far identified mutant spectrin-β2 as the major rejection 

antigen of d42m1, established that the d42m1 tumor cell line is heterogeneous in its 

expression of mutant spectrin-β2, and showed that loss of mutant spectrin-β2 in d42m1 

cells following exposure to an intact immune system results in tumor cell variants that 

escape immune control.  Since our cDNA CapSeq analyses were performed on cDNA 
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derived from tumor cells, we tested whether these observations could be explained by 

epigenetic silencing of the mutated form of the spectrin-β2 gene. We therefore, treated 

clones and escape variants of d42m1 that did not express mutant spectrin-β2 with 

methyltransferase and histone deacetylase inhibitors (i.e., 5-azacytidine and trichostatin 

A, respectively) alone or in combination and assessed expression of mutant spectrin-β2 

mRNA. Mutant spectrin-β2 expression was not induced in d42m1 progressor clones or 

escape variants (H. Matsushita and R.D. Schreiber, data not shown). We therefore 

formulated the hypothesis that T cell dependent immunoselection was a likely 

mechanism favoring outgrowth of tumor variants that lack strong rejection antigens.  This 

possibility is consistent with our finding that every d42m1 clone that expresses mutant 

spectrin-β2 was rejected while every clone or variant that lacks mutant spectrin-β2 

formed progressively growing tumors.  To formally test this hypothesis, we assessed the 

in vivo behavior of a disproportionate mixture of a highly immunogenic d42m1 tumor 

cell clone expressing mutant spectrin-β2 (i.e., d42m1-T2) and a limiting amount of a 

d42m1 tumor cell clone lacking mutant spectrin-β2 (i.e., d42m1-T3).  To distinguish 

between these two cell populations in vivo we labeled d42m1-T2 with an altered, non-

immunogenic form of RFP that lacked class I epitopes and labeled d42m1-T3 with GFP. 

We first documented that the inherent in vivo growth characteristics of the two cell lines 

were not altered (Figure 18a).  We then tested several different ratios of the two clones 

and found that we could recapitulate the tumor growth phenotype of parental d42ml at a 

ratio of 95% regressor d42m1-T2RFP cells to 5% progressor d42m1-T3GFP cells (Figure 

18b).  At this ratio, 100% of Rag2-/- mice developed progressively growing tumors. 

Similar results were obtained using wild type mice depleted of either CD4+ or CD8+ T 
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cells (Figure 18c).  In contrast, 5/20 (25%) wild type mice injected with the tumor cell 

mixture developed escape tumors, a result that closely resembles the behavior of parental 

d42m1 tumor cells in wild type recipients.  Tumors harvested from Rag2-/- mice were 

comprised of 84% RFP+ d42m1-T2 tumor cells and 14% GFP+ d42m1-T3 cells (Figure 

18d) as detected by flow cytometry, a ratio that is very similar to the initial 95:5 mixture 

that was injected. At tumor harvest, the cell mixture expressed mutant spectrin-β2 as 

detected by mutation specific qRT-PCR (Figure 18e).  In contrast, tumors that grew out 

in wild type mice consisted of 98% GFP+ d42m1-T3 tumor cells and lacked mutant 

spectrin-β2 expression.  Thus, escape variants of parental d42m1 tumor cells develop as a 

consequence of a T cell dependent immunoselection process that favors the outgrowth of 

tumor cell clones that lack the major rejection antigen. 
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Figure 16.  Enforced expression of mutant spectrin-β2 in d42m1 escape variant 

tumor cells. qRT-PCR analysis using a primer pair specific for mutant spectrin-β2 in 

d42m1-es3 tumor cell clones that have been engineered to express either wild type or 

mutant spectrin-β2. Data is displayed as relative expression after normalization to control 

GAPDH expression and is representative of two independent experiments 
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Figure 17. Mutant spectrin-β2 is the major rejection antigen of d42m1 tumor cells. 

a, b, d, d42m1-es3 tumor cell clones reconstituted with wild type or mutant spectrin-β2 

and control d42m1-es3 expressing only GFP were transplanted at a dose of 1x106 cells 

into five-member groups of wild type (a, b) or Rag2-/- mice (d). Data are presented as 

average tumor diameter ± s.e.m. over time.  c, Percent tumor positive with five wild type 

mice per group from 2-3 independent experiments is shown.. e, d42m1-es3 tumors 

reconstituted with wild type (WT.3) or mutant spectrin-β2 (mu.14) were harvested at day 

11 (a) and CD8α+ T cells were stained with mutant spectrin-β2 tetramers. Samples were 

compared using an unpaired, two-tailed Student’s t test (*p<0.05, **p<0.01, and 

***p<0.001; n.s. is non-significant). 



	  
	  

	  

128 

 



	  
	  

	  

129 

 

 

Figure 18.  Immunoselection of d42m1 tumor cell clones that lack mutant spectrin-

β2 results in tumor escape.  a, d42m1-T2 clone labeled with RFP (d42m1-T2RFP) 

(n=5, squares) or d42m1-T3 clone labeled with GFP (d42m1-T3GFP) (n=5, triangles) 

were transplanted (1 x 106 cells) into wild type mice.  Data are presented as average 

tumor diameter ± s.e.m. and are representative of three independent experiments.  b, A 

mixture of d42m1-T2RFP (95%) and of d42m1-T3GFP (5%) was transplanted at a total 

dose of 1 x 106 cells into wild type (solid lines) or Rag2-/- (dashed lines) mice. c, Rag2-/- 

mice or wild type mice left untreated or treated with antibodies that deplete CD4+ or 

CD8+ T cells  were challenged with 1x106 d42m1 mixture (95% T2RFP and 5% T3GFP). 

Data presented as percent tumor positive from 2-4 independent experiments (n=2-5 mice 

per group.  d, GFP and RFP expression was analyzed in the d42m1-T2RFP/d42m1-

T3GFP tumor cell mixture before injection and from tumors that grew out in Rag2-/- mice 

or escaped in wild type mice by flow cytometry.  Data are representative of two 

independent experiments.  e, Mutation specific qRT-PCR analysis for mutant spectrin-β2 

in the d42m1-T2RFP/d42m1-T3GFP tumor cell mixture before injection and from tumors 

that grew out in Rag2-/- mice (RagPass) or escaped in wild type mice. Data are 

representative of two independent experiments. Samples were compared using an 

unpaired, two-tailed Student’s t test (**p<0.01 and ***p<0.001). 
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DISCUSSION 

 

Recent advances in genome sequencing have resulted in unprecedented 

opportunities to assess genetic influences on disease development.  For cancer, most 

genome sequencing studies have focused on identifying new driver mutations that 

promote neoplastic development and metastasis in the hope of obtaining insights that lead 

to novel cancer-targeted therapeutics or that provide prognostic value. However, we show 

herein that this same technology, when combined with in silico epitope prediction 

algorithms, can be used to identify expressed mutations in cancers that may result in 

formation of tumor-specific antigens which function as targets for immune-mediated 

elimination. To our knowledge, the current study is the first to use cDNA capture 

sequencing (CapSeq) analysis of expressed genes to assess the spectrum of non-

synonymous mutations in unedited tumors derived from immunodeficient mice and 

provide information pointing to potential antigens that may be responsible for immune-

mediated tumor rejection. We also demonstrate that the immunoediting of a tumor 

studied here in detail is the result of T cell dependent immunoselection for tumor cell 

variants that fail to express this mutation.  These results thus not only provide definitive 

evidence for at least one mechanism underlying the cancer immunoediting process, but 

also demonstrate the key role that tumor-specific mutations play in development of a 

tumor’s immunogenic phenotype and subsequent fate.  

 For d42m1 tumor cells, we show that an immunoselection process acting on an 

oligoclonal parental tumor cell population leads to the outgrowth of tumor cell variants 

that lack the major tumor rejection antigen—mutant spectrin-β2.  Currently, we are 
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unable to distinguish between the possibility that d42m1 clones in the parental d42m1 

sarcoma line that lack mutant spectrin-β2 either never expressed this antigen or lost 

expression. Nevertheless, the immunoselection that occurs upon exposure to an intact 

immune system is dependent on adaptive immunity since neither parental d42m1 tumor 

cells nor the mixture of regressor and progressor d42m1 tumor cell clones undergo 

editing when passaged through Rag2-/- mice, but are indeed edited following 

transplantation into immunocompetent wild type mice.  Additional experiments involving 

depletion of CD4+ or CD8+ lymphocytes point strongly to T cells as the specific effectors 

of this editing. These results are consistent with the finding that both T cells and perforin 

are required for editing of primary MCA sarcomas (87), primary lymphomas (22), and 

UV-induced tumors (212), although the targets of editing in these earlier studies were not 

defined.  Thus, in the case of d42m1, the target of the immunoselection process has been 

clearly identified as the major rejection antigen.  However, this finding does not rule out 

the possibility that similar immunoediting mechanisms might select for mutations in 

other critical components of the MHC class I antigen processing and presentation 

pathway such as the class I heavy chain (97), β2 microglobulin (100), or components of 

IFN-γ receptor signaling (27), all of which are known to regulate tumor cell recognition 

by tumor-specific CD8+ T cells.    

We find it surprising that a single mutant protein functions as the sole major 

rejection antigen in d42m1 tumor cells despite the fact that these tumor cells contain 

thousands of mutations.  Thus, the immunodominance of the mutant spectrin-β2 derived 

epitope, in some ways, resembles the known immunodominance of certain viral antigens 

(234).  Many factors may contribute to the immunodominance of mutant spectrin-β2.  On 
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the basis of in silico analysis, the mutant 905-913 sequence is predicted to interact with 

H-2Db with very high affinity, as opposed to the corresponding wild type sequence that is 

predicted to bind only weakly.  However, several other factors may also contribute to the 

immunodominance of mutant spectrin-β2 including (1) antigen abundance, (2) antigen 

cross-presentability, (3) T cell repertoire, or (4) presence of epitopes recognized by 

regulatory T cells.  Clearly, more work is needed in order to refine our capacity to 

accurately predict the ultimate antigenicity of a mutated protein.  

 Chemically induced tumors have played a critical role in the history of tumor 

immunology, providing the first unequivocal evidence for the existence of tumor-specific 

antigens (235-237).  It is therefore surprising that so little attention has been given to 

identifying the transplantation rejection antigens of this class of tumors.  Despite the 

widely held assumption that mutations account for the immunogenicity of these tumors, 

only one study thus far has identified a mutant protein recognized by CD8+ T cells (238). 

 In contrast, other studies of mouse and human tumors have chosen to focus on antigens 

that are shared among different tumors and sometimes even normal tissues.  With the 

growing recognition of the importance of mutational antigens as tumor-specific targets 

for immune recognition, there is a critical need to develop experimental systems that 

facilitate their identification.  The approach we have taken in this study, combining deep 

sequencing, algorithm analysis, and T cell epitope cloning, provides a new use for the 

powerful data that is rapidly accumulating from analyses of cancer genomes. We predict 

that this approach may not only provide new insights into basic mechanisms underlying 

cancer immunoediting, but also new opportunities for individualized cancer 

immunotherapy. It may also be useful in identifying subsets of cancer patients whose 



	  
	  

	  

134 

tumors express antigens that can be most effectively targeted by checkpoint blockade 

immunotherapy, such as that involving anti-CTLA-4 or anti-PD-1.  Finally, this approach 

may provide a mechanism to longitudinally evaluate changes in a tumor’s antigenic 

profile as a consequence of ongoing immunotherapy.  
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CHAPTER 4 

 

Exome Sequencing of d42m1 Escape Variants 

as an Approach to Identify the Antigenic 

Targets of Checkpoint Blockade Therapy 
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INTRODUCTION 

 

 The previous chapter in this dissertation established that exome sequencing of a 

highly immunogenic, unedited sarcoma (d42m1) could be used to identify the major 

rejection antigen of this tumor (R913L spectrin-β2 mutant).  Nevertheless, d42m1 escape 

variants that lack mutant spectrin-β2 emerge that can grow in an immunologically 

unrestricted manner.  In this chapter, we will explore whether the many thousands of 

mutations still expressed by d42m1 escape variants and progressor clones exhibit residual 

immunogenicity.  Specifically, we will use antibodies that block negative co-stimulators 

that have recently been very successful in human cancer patients (206) to determine 

whether the potential antigens identified by exome sequencing of d42m1 escape variants 

and progressor clones can be targeted by this form of cancer immunotherapy. 

 

Checkpoint Blockade Therapy 

 Mechanisms of tumor escape from immune control may be directly at the level of 

the tumor, whereby alterations at the tumor cell surface results in decreased recognition 

(i.e. loss of MHC components) by immune cells or tumors may indirectly impede 

immunosurveillance through the recruitment of cells (i.e. regulatory T cells) or the 

liberation of cytokines (i.e. IL-10 or TGF-β) involved in immunosuppression.  The 

negative co-stimulatory molecules cytotoxic T lymphocyte-associated protein 4 (CTLA-

4) and programmed cell death 1 (PD-1) and its ligand (PD-L1) are likely candidates that 

may be facilitating tumor escape due to their potent ability to attenuate cytotoxic T cell 

responses. The blockade of these negative co-stimulatory molecules to boost anti-tumor 
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immunity and overcome cancer-induced immunosuppression is termed “checkpoint 

blockade” therapy. 

 

CTLA-4 in Inhibiting Tumor Immunity 

 These negative co-stimulatory molecules attenuate T cell responses during the 

physiological contraction phase of an immune response and help maintain peripheral 

tolerance.  CTLA-4 is a homologue of CD28 binds to the same receptors as CD28, both 

B7.1 (CD80) and B7.2 (CD86) (239, 240). The profound ability of CTLA-4 to inhibit T 

cell responses is dramatically displayed by gene-targeted mice deficient for CTLA-4, 

which succumb to lethal lymphoproliferative disease as a result of excessive T cell 

activation (241).  Subsequent studies have demonstrated that CTLA-4 expression on 

regulatory T cells (Tregs) and effector T cells is critical to prevent autoimmune 

lymphoproliferative disease (242, 243).  There are two general mechanisms proposed to 

explain how CTLA-4 is regulating immunity.  The first general mechanism involves 

CTLA-4 reducing the threshold of activation required for T cells to become activated in 

response to stimuli (threshold model).  The second general mechanism involves CTLA-4 

reducing or attenuating T cell proliferation after it has become activated (attenuation 

model) (244).  Substantial evidence exists for both models as CTLA-4 prevents binding 

of CD28 to CD80/CD86, recruits and activates phosphatases to the immunological 

synapse which degrade T cell receptor mediated signaling and inhibits cell cycle 

progression (245).  These data formed the basis for the concept that CTLA-4 could be 

blocked in the presence of an established tumor to reduce the threshold for T cell 

activation, enhance T cell proliferation, and boost anti-tumor activity.   
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 Considerable evidence exists for both mice and humans for using CTLA-4-

specific blocking monoclonal antibodies to eradicate or limit the growth of established 

tumors.  Initial studies in mice were promising as CTLA-4 blockade resulted in tumor 

rejection in a number of pre-clinical models of lymphomas, colon, renal, and prostatic 

carcinomas (246-249).  When CTLA-4 mAb treatment failed to lead to the rejection of 

poorly immunogenic tumors, synergistic strategies proved very effective.  Most often, 

CTLA-4 immunotherapy was combined with irradiated tumor vaccines engineered to 

secrete particular cytokines such as GM-CSF, to cause rejection of poorly immunogenic 

tumors (250).  In human cancer patients, both CTLA-4 monotherapy and combinatorial 

therapies have been successful in reducing melanoma, prostate and renal carcinoma 

tumor burdens and occasionally eliminating cancer altogether (206, 245). 

  

PD-1/PD-L1 Axis in Inhibiting Tumor Immunity 

Similar to CTLA-4, PD-1 and its ligand, PD-L1, regulate the contraction phase of 

the immune response and maintain peripheral tolerance. Additionally, PD-1 expression 

by antigen-specific CD8+ T cells induces exhaustion during chronic viral infections 

(251).  Initial studies investigating the role of PD-L1 as a mechanism of tumor escape 

involved enforced expression of PD-L1 on murine tumor cell lines.  In these studies it 

was observed that T cell activation and tumor killing were diminished in vitro and tumors 

grew more aggressively in vivo (252, 253).  Using the 4T1 mammary carcinoma model, 

tumor cells were found to upregulate the expression of PD-L1 in vivo, rendering the 

immunotherapy with anti-4-1BB mAb ineffective (254).  Furthermore, PD-L1 blockade 
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using anti-PD-L1 mAb delayed the growth of a myeloma cell line known to 

endogenously express PD-L1 (253).   

 Recent studies are now beginning to explore the use of combining PD-1, PD-L1, 

and CTLA-4 antibodies to boost the anti-tumor immune response and enhance the 

efficacy of these immunotherapies (255).  Although it is well established that these 

antibodies enhance the proliferation and cytokine secretion of both CD4+ and CD8+ T 

cells, the exact mechanism of how these antibodies mediate tumor rejection remains 

unknown.  There is some evidence that pre-existing immunity to tumor antigens prior to 

CTLA-4 therapy in human patients results in better outcomes (256). This suggests that 

tumors that express antigens of moderate strength may be capable of eliciting a robust 

immune response in the absence of immunosuppression or if the threshold for T cell 

activation is lowered in some manner. 
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MATERIALS AND METHODS 

 

Mice.  Batf3-/- mice (38) on a 129/Sv background were originally provided by Dr. 

Kenneth Murphy and were bred in our specific pathogen-free animal facility. Wild type 

and Rag2-/- mice were purchased from Taconic Farms. All mice were on a 129/Sv 

background and were housed in our specific pathogen-free animal facility.   For all 

experiments, mice were 8-12 weeks of age and performed in accordance with procedures 

approved by the AAALAC accredited Animal Studies Committee of Washington 

University in St. Louis. 

 

Tumor transplantation.  3-methylcholanthrene (MCA) induced sarcomas used in this 

study were generated in 129/Sv strain wild type or Rag2-/- mice and banked as low 

passage tumor cells as previously described (19).  Tumor cells derived from frozen stocks 

were propagated in vitro in RPMI media (Hyclone, Logan, UT) supplemented with 10% 

FCS (Hyclone) and injected subcutaneously in 150 µl of endotoxin-free PBS into the 

flanks of recipient mice.  Tumor cells were >90% viable at the time of injection as 

assessed by trypan blue exclusion and tumor size was quantified as the average of two 

perpendicular diameters. 

 

MHC class I epitope prediction.  All missense mutations for each d42m1 tumor variant 

were analyzed for the potential to form MHC class I neoepitopes that bind to either H-

2Db or H-2Kb molecules. The artificial neural network (ANN) algorithm provided by the 

Immune Epitope Database and Analysis Resource (www.immuneepitope.org) was used 
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to predict epitope binding affinities (218) and the results were ultimately expressed as 

“Affinity Values”  (Affinity Value = 1/IC50 X 100). Missense mutations were detected 

using tumor cDNA exome capture and Illumina deep sequencing as previously described 

in Chapter 3 of this dissertation. 

 

Antibodies.  Anti-H-2Kb (B8-24-3) and anti-H-2Db (B22/249) mAbs were generously 

provided by Dr. Ted H. Hansen (Washington University School of Medicine). Anti-CD4 

(GK1.5), anti-CD8α (YTS169.4), anti-IFN-γ (H22) mAbs and control immunoglobulin 

(PIP, a mAb specific for bacterial glutathione S-transferase) were produced from 

hybridoma supernatants and purified in endotoxin-free form by Protein G affinity 

chromatography (Leinco Technologies, St. Louis, MO).  Purified Rat IgG was purchased 

from Sigma (St. Louis, MO).  CD45-FITC, CD45-PE, CD8-APC, and purified anti-

CD16/32 were purchased from BioLegend (San Diego, CA).  Anti-CTLA-4 (9H10), anti-

PD-1 (RMP1-14), and anti-PD-L1 (10F.9G2) were purchased from BioLegend (San 

Diego, CA). 

 

Establishment of CTL lines and clones.  To generate the d42m1 escape variant specific 

CTL lines, wild type mice were injected with 1 x 106 d42m1-T3 or d42m1-es3 tumor 

cells and treated with antibodies against CTLA-4, PD-L1, or PD-1.  Fourteen days after 

the tumor had been rejected, the spleen was harvested and a CTL line was established by 

stimulating 40 x 106 splenocytes with 2 x 106 d42m1-T3 or d42m1-es3 tumor cells pre-

treated for 48 hr with 100 U/ml of recombinant murine IFN-γ and irradiated (100 Gy). 

CTL lines were purified using CD8+ magnetic-beads (Miltenyi Biotec). 
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Measurement of IFN-γ  production.  To generate target cells, tumor cells were treated 

with 100U/ml IFN-γ for 48 hrs and irradiated with 100 Gy prior to use.  A CTL line was 

co-cultured at the indicated ratios with target tumor cells (10,000 or 5,000 cells) in 96-

well round-bottomed plates overnight.  IFN-γ in supernatants was quantified using an 

IFN-γ ELISA kit (eBioscience).  For blocking assays, 10 µg/ml of α-H-2Kb (B8-24-3) 

and/or α-H-2Db (B22/249) were added to the cell culture of effector (CTL lines) and 

target cells (tumors). 

  

Checkpoint blockade therapy.  Mice transplanted with tumors were treated with 200 µg 

of anti-CTLA-4, anti-PD-1, or ant-PD-L1 on day 3, 6, 9, 12, 15, and 18 post transplant.  

 

Tumor and spleen harvest.  After tumor cell transplantation, established tumors were 

excised from mice, minced and treated with 1 mg/ml type IA collagenase (Sigma) in 

HBSS (Hyclone) for 2 hrs at room temperature.  The spleen was also harvested and 

crushed between two glass slides and vigorously resuspended to make single-cell 

suspensions.  

 

Statistical Analysis.  Samples were compared using an unpaired, two-tailed Student’s t 

test.   
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RESULTS 

 

d42m1 Variants Lacking Mutant Spectin-β2 Exhibit Residual Immunogenicity 

To test whether d42m1 tumor variants that lack the major rejection antigen, 

mutant spectrin-β2, would exhibit residual immunogenicity, we transplanted tumors into 

wild type mice and treated them with blocking antibodies specific for PD-1, PD-L1, or 

CTLA-4. When transplanted into wild type mice and treated with control Ig, both d42m1-

T3 and d42m1-es3 grew progressively (Figure 1).  In contrast, d42m1-T3 and d42m1-es3 

were rejected in wild type mice that were treated with anti-PD-1, anti-PD-L1, or anti-

CTLA-4 (Figure 1). These data reveal that antigen loss variants of the unedited sarcoma 

d42m1 manifest residual immunogenicity and are rejected in wild type mice when treated 

with antibodies specific for negative co-stimulatory molecules. 

We next determined what are the critical immune components required to reject 

d42m1 antigen loss variants in this therapeutic setting.  Specifically, neutralizing 

antibodies against IFN-γ, depleting antibodies against CD4+ T cells and CD8+ T cells, 

and gene-targeted Rag2-/- mice that lack lymphocytes and Batf3-/- mice that lack CD8α+ 

(38) and CD103+ (257) dendritic cells were used for the characterization of the immune 

response involved in the rejection of d42m1-T3 after anti-PD-L1 or anti-CTLA-4 

treatment.  As previously shown, d42m1-T3 grows progressively when transplanted into 

wild type mice but is rejected when mice are treated with anti-PD-L1.  In contrast, 

d42m1-T3 grows progressively in wild type mice treated with anti-PD-L1 when mice are 

additionally treated with anti-CD4, anti-CD8, anti-CD4/CD8 combined, or anti-IFN-γ 

(Figure 2).  Additionally, d42m1-T3 grows progressively when transplanted into Rag2-/-  
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and Batf3-/- mice treated with anti-PD-L1 (Figure 2).  Thus, CD4+ and CD8+ T cells, IFN-

γ and CD8α+/CD103+ dendritic cells are required to mediate d42m1-T3 rejection after 

PD-L1 blockade therapy. Similar findings were obtained with d42m1-T3 after anti-

CTLA-4 treatment (Figure 2).  Furthermore, a memory response develops against the 

tumors after rejection due to checkpoint blockade therapy.  Specifically, mice that 

initially rejected d42m1-T3 or d42m1-es3 tumors with anti-PD-1 therapy are protected 

from secondary challenge with the same tumor several weeks later without any additional 

therapy (Figure 3).  Secondary challenged mice reject d42m1-T3 or d42m1-es3 tumors 

rapidly with tumors reaching a smaller peak size, results that are consistent with a 

memory response (Figure 3).  Taken together, all of these adaptive immune components 

are required to detect unveiled antigens and eliminate poorly immunogenic tumor cells 

after PD-L1 or CTLA-4 blockade and establish a memory response to the tumor antigens 

expressed in these antigen loss variants of d42m1. 
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Figure 1.  d42m1-es3 and d42m1-T3 are rejected in mice treated with antibodies 

that block CTLA-4, PD-L1, or PD-1. Cohorts of five mice were transplanted with 1 x 

106 d42m1-T3 (left) or d42m1-es3 (right) tumor cells and subsequently were treated with 

200 µg of anti-CTLA-4 (9H10), anti-PD-1 (RMP1-14), anti-PD-L1 (10F.9G2) or control 

Ig (PIP) on day 3, 6, 9, 12, 15, and 18 post transplant.   
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Figure 2.  Adaptive immune components are required to mediate rejection of 

d42m1-T3 after checkpoint blockade therapy. Cohorts of Rag2-/-, Batf3-/-, or wild type 

mice treated with control Ig (PIP), anti-CD4, anti-CD8α, or anti-IFN-γ mAbs were 

transplanted with 1 x 106 d42m1-T3 tumor cells and subsequently treated with 200 µg of 

anti-CTLA-4 (9H10) (top) or anti-PD-L1 (10F.9G2) (bottom) on day 3, 6, 9, 12, 15, and 

18 post transplant.   
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Figure 3.  Checkpoint blockade therapy induces a memory immune response against 

d42m1 antigen loss variants. Cohorts of wild type mice were transplanted with 1 x 106 

d42m1-T3 (top) or d42m1-es3 (bottom) tumor cells and treated with 200 µg of control Ig 

(PIP) or anti-PD-1 (RPM1-14) mAbs on days 3, 6, 9, 12, 15, and 18 post transplant.  

Mice that rejected d42m1-T3 or d42m1-es3 tumors after anti-PD-1 therapy were 

subsequently challenged with same tumor (d42m1-T3 or d42m1-es3) several weeks later. 
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d42m1 Variants Confer Cross-protective Immunity to One Another 

To test whether d42m1 tumor variants share similar antigens that may be cross 

protective, we first transplanted d42m1-T3 into wild type treated with antibodies specific 

for PD-1 to induce rejection.  Several weeks later, these mice were challenged 

secondarily with d42m1-T3, d42m1-es3, or F244 (Figure 4).  Mice initially challenged 

with d42m1-T3 tumor cells and treated with anti-PD-1 were able to reject d42m1-T3 and 

d42m1-es3 upon secondary challenge, suggesting that these tumors share antigens strong 

enough to mediate cross-protection (Figure 4).  In contrast, secondary transplantation 

with F244 resulted in tumor outgrowth. The converse was also true, where d42m1-es3 

was initially transplanted into wild type mice treated with anti-PD-1 and then the same 

mice were subsequently transplanted with d42m1-es3, d42m1-T3, and F244. Again, 

d42m1-es3 and d42m1-T3 cells were rejected, but F244 tumor cells grew in an 

unrestricted manner (Figure 4).  Finally, when wild type mice that had spontaneously 

rejected parental d42m1 tumor cells were challenged with d42m1-T3, d42m1-es3, or 

F244 tumor cells, both d42m1-T3 and d42m1-es3, but not F244, were rejected. 

Importantly, when mice that had rejected F244 after treatment with anti-PD-1 were 

subsequently challenged with F244, d42m1-T3 or d42m1-es3, only F244 tumor cells 

were rejected, demonstrating that d42m1-T3 and d42m1-es3 do not share antigens with 

F244 (Figure 5).  Taken together, these data show that the antigens expressed by d42m1-

T3 and d42m1-es3 that may be the targets of checkpoint blockade are most likely shared. 

We previously established through exome sequencing that all of the d42m1 

variants including d42m1 parental, regressor d42m1 variants (d42m1-T1, d42m1-T2, and 

d42m1-T9), progressor d42m1 variants (d42m1-T3 and d42m1-10), and escape variants 
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(d42m1-es1, d42m1-es2, and d42m1-es3) share a high percentage of missense mutations 

with one another.  Thus it is likely that these tumor variants may share similar antigens.  

In serial transplantation experiments, d42m1-T3, d42m1-es3 and parental d42m1 tumor 

cells appear to share antigens that can protect against secondary challenges.  We sought 

to extend this analysis to one additional progressor d42m1 clone (d42m1-T10) and one 

additional d42m1 escape variant (d42m1-es2).  Wild type mice initially transplanted with 

d42m1-es3 and treated with anti-CTLA-4 to induce the rejection of d42m1-es3 cells were 

subsequently challenged with d42m1-T10 or d42m1-es2 tumor cells.  Both d42m1-10 

and d42m1-es2 tumor cells were rejected, suggesting that d42m1-es3 cells share common 

antigens with d42m1-T10 and d42m1-es2 cells that are strong enough to mediate 

rejection, even when challenged several months after the initial d42m1-es3 challenge 

(Figure 4).  These results demonstrate the d42m1 variants express common antigens that 

are strong enough to mediate protection from secondary challenges of distinct, but related 

d42m1 variants.   
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Figure 4.  Serial transplantation of related but distinct d42m1 tumor variants 

results in cross-protective immunity.  Cohorts of wild type mice were transplanted with 

1 x 106 d42m1-T3 or d42m1-es3 tumor cells and treated with 200 µg of control Ig (PIP), 

anti-CTLA-4 (9H10) or anti-PD-1 (RPM1-14) mAbs on days 3, 6, 9, 12, 15, and 18 post 

transplant.  Mice that rejected d42m1-T3 or d42m1-es3 tumors after anti-PD-1 or anti-

CTLA-4 therapy were subsequently challenged with d42m1-T3, d42m1-T10, d42m1-es2, 

d42m1-es3, or F244 tumor cells several weeks later.  Also, mice that rejected d42m1 

parental tumors spontaneously were transplanted with d42m1-T3, d42m1-es3, or F244 

tumor cells several weeks later. 
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Figure 5.  Serial transplantation of F244 does not cross-protect against d42m1 

tumor variants. Cohorts of wild type mice were transplanted with 1 x 106 F244 tumor 

cells and treated with 200 µg of control Ig (PIP) or anti-PD-1 (RPM1-14) mAbs on days 

3, 6, 9, 12, 15, and 18 post transplant.  Mice that rejected F244 tumors after anti-PD-1 

therapy were subsequently challenged with d42m1-T3, d42m1-es3, or F244 tumor cells 

several weeks later.   
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Exome Analysis Limits the Number of Candidate Antigens Targeted by 

Immunotherapy 

Although we do not have direct evidence that the antigens targeted by checkpoint 

blockade therapy are expressed by all the d42m1 tumor variants, the ability of d42m1 

tumor variants to protect against other d42m1 tumor variants upon secondary 

transplantation suggests that they do indeed share common antigens.  Thus, we decided to 

mine our exome sequencing data we had recently generated that catalogues all the 

mutations expressed in the d42m1 tumor variants to see how many potential antigens 

were shared among all the variants. When we combined all the mutations sequenced that 

were found to be shared in all d42m1 variants (d42m1 parental, d42m1-T1, d42m1-T2, 

and d42m1-T9 regressor variants and well as d42m1-T3, d42m1-T10, d42m1-es1, 

d42m1-es2, and d42m1-es3 progressor variants), there were only a limited number of 

shared mutations that may be acting as the immunotherapeutic targets of progressor 

d42m1 variants (e.g., d42m1-T3 and d42m1-es3).  When the shared missense mutations 

were submitted to the immunoepitope database (218), very few mutations resulted in 

potential H-2Kb epitopes and only three formed potential H-2Db epitopes (Figure 6a). 

Since the most antigenic tumor-specific mutations most likely create peptides that bind 

with higher affinity to class I molecules than the wild type form of the peptide, we 

analyzed the potential antigen candidates for whether the mutant form of the peptide 

created a much stronger MHC class I binder than the wild type form (Affinity Value x 

Fold-Change).  When this additional filter was used, only three mutations resulted in 

potential H-2Kb epitopes and none formed potential H-2Db epitopes (Figure 6b).  Thus, 
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these results would predict that if the antigenic target of checkpoint blockade were shared 

among all the d42m1 variants that it would be restricted to H-2Kb. 

Next, we isolated and purified CD8+ T cells from the spleens of mice that had 

rejected d42m1-T3 after treatment with anti-CTLA-4/PD-L1 to generate CTL lines that 

recognize these tumor cells. To determine the MHC restriction of this bulk CTL line, we 

incubated the CD8+ T cells with irradiated d42m1-T3 tumor cells in the presence of 

antibodies that block H-2Db or H-2Kb.  IFN-γ production was detected when CD8+ T 

cells were co-cultured with d42m1, d42m1-T3, and d42m1-T3 in the presence of 

blocking H-2Db antibodies.  In contrast, IFN-γ production was blocked when antibodies 

specific for H-2Kb were added to the culture, indicating that the putative antigen 

expressed in d42m1-T3 tumor cells and recognized by this CTL line is presented on H-

2Kb (Figure 7).  This result corroborates the finding that shared antigens among the 

d42m1 tumor variants that were predicted by exome sequencing coupled to MHC class I 

epitope prediction algorithms would most likely be H-2Kb restricted. 

Of the limited number of H-2Kb restricted peptides common to all the d42m1 

tumor variants, the three peptides with the greatest change in H-2Kb binding represent the 

best candidate antigens targeted by checkpoint blockade (Figure 6b).  Among the three 

(Gpr108 R101L; Olfr684 D72Y; Olfr1239 C177S), one mutant peptide (Gpr108 R101L, 

SVRSYRSL) is of particular interest due to its high affinity binding for H-2Kb (predicted 

IC50 < 11 nM) and it resembles mutant spectrin-β2 in that it has an R to L change at the 

anchoring residue (position 8 for H-2Kb) (Figure 7).  Thus, we speculate that the CTL 

line generated against d42m1-T3 recognizes this R101L mutation in G-protein receptor 

108 (Gpr108).  Additional CTL lines have been generated against both d42m1-T3 and 
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d42m1-es3 using various combinations of checkpoint blockade antibodies that will be 

tested first, for their capacity to recognize d42m1 tumor variant cells and secondly, for 

their capacity to recognize synthesized mutant peptides (e.g. Gpr108 SVRSYRSL) 

presented on an unrelated H-2Kb expressing cells.   

 Although exome sequencing has provided a short list of putative epitopes that 

may be the targets of checkpoint blockade therapy for d42m1-T3 and d42m1-es3, more 

work is needed to identify the specific antigens and demonstrate its capacity to stimulate 

antigen-specific T cells in vivo.  Nevertheless, the approach described herein that 

combines deep sequencing of tumor exomes and class I prediction algorithms with 

isolation of CD8+ T cells has greatly limited the number of potential antigens to three, 

and particularly one that most likely functions as the target of immune-mediated 

elimination of tumor cells by checkpoint blockade therapy. 
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Figure 6.  Potential antigens shared among all the d42m1 tumor cell variants.  a, 

Common missense mutations shared by all d42m1 tumor cell variants (d42m1 parental, 

d42m1-T1, d42m1-T2, d42m1-T3, d42m1-T9, d42m1-T10, d42m1-es1, d42m1-es2, and 

d42m1-es3) and detected using cDNA capture sequencing were analyzed for their 

capacity to form neoantigens to H-2Db (top) or H-2Kb (bottom) using the class I 

prediction algorithm available from the Immune Epitope and Analysis Resource Center.  

Predicted IC50 values were expressed as “Affinity Values” (Affinity Value = 1/IC50 X 

100).  b, Affinity Values for H-2Db (top) and H-2Kb (bottom) were multiplied by the 

fold-change of predicted IC50 values from the wild type form to mutant form of the 

peptide. 
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Figure 7.  A CTL line generated against d42m1-T3 after checkpoint blockade 

therapy is restricted to H-2Kb.  CD8+ T cells isolated from a mouse that had rejected 

d42m1-T3 after anti-CTLA-4 and anti-PD-L1 combination therapy were incubated with 

irradiated (100 Gy) d42m1 parental, d42m1-T3, or H31m1 tumor cells pre-treated with 

100 U/ml IFN-γ for 48 hrs.  CTLs and target tumor cells were co-cultured overnight in 

the presence or absence of antibodies that block H-2Db or H-2Kb and supernatants were 

collected for IFN-γ ELISA assay.
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Figure 8.  Best potential antigen candidates for H-2Kb shared among all the d42m1 

tumor cell variants.  The top three antigen candidates that are predicted to bind to H-2Kb 

with high affinity and are shared among all d42m1 tumor cell variants are listed.  For 

comparison, the major rejection antigen of the regressor d42m1 variants, mutant spectrin-

β2, is listed. 
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DISCUSSION  

 

These data reveal that antigen loss variants of the unedited sarcoma d42m1 

manifest residual immunogenicity and are rejected in wild type mice when treated with 

antibodies specific for negative co-stimulatory molecules.  The rejection of d42m1 

tumors that lack mutant spectrin-β2 by checkpoint blockade therapy requires CD4+ T 

cells, CD8+ T cells, IFN-γ, and CD8α+/CD103+ dendritic cells.  Moreover, rejection of 

d42m1-T3 or d42m1-es3 by anti-PD-1 therapy establishes a long-lasting memory 

response to the original tumor such that secondary tumor challenge results in spontaneous 

rejection.  Thus, edited d42m1 tumor cells retain expression of antigens that can serve as 

functional targets for immunotherapuetically induced anti-tumor immune responses.  

We next established through serial transplantation experiments that d42m1 escape 

variants (d42m1-es2 and d42m1-es3), progressor d42m1 clones (d42m1-T3 and d42m1-

T10) and parental d42m1 tumor cells confer cross-protective immunity for one another.  

Thus, both highly immunogenic d42m1 tumor cells and poorly immunogenic d42m1 

tumor cells share common antigens strong enough to confer protective immunity.  In 

contrast, cross-protective immunity was not observed between d42m1-related cells and 

an unrelated edited MCA sarcoma, F244, confirming previous exome sequencing 

analyses described in Chapter 3 that d42m1 tumor variants are a closely related, but 

heterogeneous group of tumor cell lines.  Using the exome sequencing data, we found 

that only a limited number of antigens predicted to bind to H-2Db or H-2Kb with high 

affinity are shared in the d42m1 tumor variants that induce cross-protective immunity.  

And when we apply an additional filter to identify those mutant proteins that form mutant 
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peptides with high binding affinity to class I molecules that have very low binding 

affinity as wild type peptides (i.e., neoantigens), we find only three potential antigens for 

H-2Kb and none for H-2Db.  In fact, a CTL line generated from a mouse that rejected 

d42m1-T3 when treated with anti-CTLA-4 and anti-PD-L1 combination therapy 

recognized d42m1 parental and d42m1-T3 tumor cells in a H-2Kb restricted manner.  

Thus, these results point to an H-2Kb restricted mutant peptide functioning as the 

antigenic target of checkpoint blockade therapy.  

Among the three best antigen candidates restricted to H-2Kb, one seems very 

promising based on its high affinity for H-2Kb and its point mutation creates an amino 

acid substitution (R to L) at anchoring residue position 8 known to physiologically 

stabilize the peptide-MHC complex.  Although exome sequencing has provided a short 

list of putative epitopes (one in particular – R101L mutation in G-protein receptor 108) 

that may be the targets of checkpoint blockade therapy for d42m1-T3 and d42m1-es3, 

more work is needed to identify the specific antigens and demonstrate its capacity to 

stimulate antigen-specific T cells in vivo. To this end, additional CTLs lines have been 

generated and the wild type and mutant forms of the peptides (Gpr108 R101L; Olfr684 

D72Y; Olfr1239 C177S) have been synthesized.  Specifically, three distinct CTL lines 

have been generated from mice that rejected d42m1-T3 or d42m1-es3 tumors in response 

to checkpoint blockade therapy.  Next, the specificity of these CTL lines will be tested 

using the synthesized candidate peptides.  If any mutant peptides presented on unrelated 

H-2Kb expressing cells activates one of these CTL lines, then these peptides will be used 

to assemble soluble H-2Kb MHC class I tetramers to track mutation-specific CD8+ T cells 

in vivo.  Additionally, mutant peptides will be used to immunize wild type mice prior to 
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d42m1-T3 or d42m1-es3 tumor cell challenge to test if the peptide can be used to 

vaccinate against d42m1 antigen loss variants.   

Although the identification of the antigens targeted by checkpoint blockade 

therapy are have yet to be identified, the approach described herein that combines deep 

sequencing of tumor exomes and class I prediction algorithms with isolation of CD8+ T 

cells has greatly limited the number of potential antigens to three, and particularly one 

that most likely functions as the target of immune-mediated elimination of tumor cells by 

checkpoint blockade therapy.  We predict that the additional experiments outlined above 

will demonstrate which of the candidate antigens functions as the target for 

immunotherapeutically induced anti-tumor immune responses.
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CHAPTER 5 

 

Residual Immunogenicity of a Subset of 

Edited Sarcomas is Revealed by Checkpoint 

Blockade Therapy 
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INTRODUCTION 

 

The findings from the previous chapter provide additional support to the growing 

body of evidence that checkpoint blockade can induce powerful anti-tumor responses in 

both mice and humans (206, 245, 258).  Although the underlying mechanism of this type 

of immunotherapy remains to be elucidated, it seems likely that antigen expression by the 

tumor cells is critical to allow for tumor-targeted, immune-mediated destruction of 

transformed cells.  In fact, human cancer patients that had the best clinical responses to 

anti-CTLA-4 therapy, had pre-existing immunity to the cancer-associated antigen, NY-

ESO-1 (259, 260).  Despite dramatic reductions in tumor-burden in some cancer patients 

treated with anti-CTLA-4, the majority of individuals treated do not respond to this from 

of therapy for reasons that remain unknown (206).   

A number of pre-clinical studies have explored whether edited tumors that 

develop in immunocompetent mice can respond to checkpoint blockade therapy to 

determine the quality of the immune response necessary to induce tumor rejection.  For 

example, one earlier study in mice demonstrated that a transplanted edited sarcoma could 

be successfully treated with antibodies specific for CTLA-4 (249), and laid the 

groundwork for future investigations into using these antibodies to boost anti-tumor 

immunity.  Many poorly immunogenic tumors studied to date require additional therapies 

to be used in combination with checkpoint blockade therapy to induce host-protective 

immune responses.  Specifically, the experimental tumor B16 melanoma does not 

respond to anti-CTLA-4 monotherapy or a GM-CSF expressing DC vaccine (GVAX) 

alone, but in combination this therapy causes tumor rejection that provides long-lasting 
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immunity against B16 melanoma cells (250).  In this study, we sought to determine 

whether a large panel of edited, poorly immunogenic tumors derived from MCA-treated 

wild type mice also exhibit residual immunogenicity and respond to checkpoint blockade 

therapy. 

In contrast to d42m1 antigen loss variants, where all tumor variants tested 

responded to checkpoint blockade therapy, only 70% (9/13) of edited MCA sarcomas 

were rejected from wild type mice treated with anti-CTLA-4 therapy.  Moreover, the four 

different edited sarcomas that failed anti-CTLA-4 therapy also failed combinatorial 

therapies with anti-CTLA-4/PD-1 mAbs and thus, appear to be non-immunogenic.  These 

results suggest tumor-specific mutations in edited tumors most likely arise stochastically 

and therefore express different levels of antigenicity/immunogenicity.  To address this 

question, we used massively parallel sequencing of the exons from a panel of ten edited 

sarcomas, eight of which respond to anti-CTLA-4 therapy and two of which do not, and 

found that they display similar numbers of mutations.  Current analysis is underway to 

determine whether there are differences in the number of potential neoantigens that form 

from these mutations between tumors that exhibit residual immunogenicity and tumors 

that appear to be non-immunogenic and fail checkpoint blockade therapy.  Thus, it is 

tempting to speculate that the level of residual antigenicity remaining in a naturally 

immunoedited tumor and not the mutational load plays an important role in determining 

whether it can be effectively controlled by checkpoint blockade therapy.  
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MATERIALS AND METHODS 

 

Mice.  Wild type and Rag2-/- mice were purchased from Taconic Farms. All mice were 

on a 129/Sv or C57BL/6 background and were housed in our specific pathogen-free 

animal facility.   For all experiments, mice were 8-12 weeks of age and performed in 

accordance with procedures approved by the AAALAC accredited Animal Studies 

Committee of Washington University in St. Louis. 

 

Tumor transplantation.  3-methylcholanthrene (MCA) induced sarcomas used in this 

study were generated in 129/Sv or C57BL/6 strain wild type and banked as low passage 

tumor cells as previously described (19).  Tumor cells derived from frozen stocks were 

propagated in vitro in RPMI media (Hyclone, Logan, UT) supplemented with 10% FCS 

(Hyclone) and injected subcutaneously in 150 µl of endotoxin-free PBS into the flanks of 

recipient mice.  Tumor cells were >90% viable at the time of injection as assessed by 

trypan blue exclusion and tumor size was quantified as the average of two perpendicular 

diameters. 

 

Isolation of normal skin fibroblasts from wild type mice.  Skin fibroblasts were 

isolated from three independent 129/Sv wild type pups by harvesting skin and incubating 

in 0.25% trypsin (Hyclone) at 37°C for 30 minutes prior to washing in DMEM media 

(Hyclone).  After washing, chunks of skin were filtered to achieve single cell suspensions 

and cultured in vitro with DMEM media. After 3 passages, skin fibroblasts were 

harvested to isolate genomic DNA and total RNA. 
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Extraction of genomic or complementary DNA.  Genomic DNA from sarcoma cells 

and normal skin fibroblasts was extracted using DNeasy Blood & Tissue Kit (Qiagen).  

For cDNA isolation, total RNA from sarcoma cells and normal skin fibroblasts was 

isolated using RNeasy Mini kit (Qiagen) and cDNA was synthesized using oligo (dT) 

primers and SuperScript III Reverse Transcriptase (Invitrogen). 

 

cDNA capture, sequencing, and alignment (cDNA CapSeq) with Roche NimbleGen 

Exome Capture Array.  cDNA samples from each tumor (100 ng) were constructed into 

Illumina libraries according to the manufacturer’s protocol (Illumina Inc, San Diego, CA) 

with the following modifications:  1) cDNA was fragmented using Covaris S2 DNA 

Sonicator (Covaris, Inc. Woburn, MA) in 1X end-repair buffer followed by the direct 

addition of the enzyme repair cocktail (Lucigen, Madison, WI).  Fragment sizes ranged 

between 100 and 500 bp.  2) Illumina adapter-ligated DNA was amplified in four 50 µl 

PCRs for five cycles using 4 µl adapter-ligated cDNA, 2X Phusion Master Mix and 250 

nM forward and reverse primers, 

5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT

CCGATC and 5’	  

CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTC

CGATC, respectively.  3) Solid Phase Reversible Immobilization (SPRI) bead cleanup 

was used to purify the PCR-amplified library and to select for 300-500 bp fragments. 500 

ng of the size-fractionated Illumina library was hybridized with the Agilent mouse exome 

reagent.  After hybridization at 65°C for 24 hrs, we added 50 µl of DynaBeads M-270 

Streptavidin-coated paramagnetic beads (10 mg/ml) to selectively remove the 
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biotinylated Agilent probes and hybridized cDNA library fragments.  The beads were 

washed according to manufacturer’s protocol (Roche NimbleGen) and the captured 

library fragments were released into solution using 50 µl of 0.125 N NaOH and 

neutralized with an equal volume of neutralization buffer (Roche NimbleGen). The 

recovered fragments then were PCR amplified according to the manufacturer’s protocol 

using 11 cycles in the PCR.  Illumina library quantification was completed using the 

KAPA SYBR FAST qPCR Kit (KAPA Biosystems, Woburn, MA). The qPCR result was 

used to determine the quantity of library necessary to produce 180,000 clusters on a 

single lane of the Illumina GAIIx.  One lane of 100 bp paired-end data was generated for 

each captured sample (since cDNA was used as the source for sequencing, we refer to 

this process as cDNA Capture Sequencing or CapSeq). Illumina reads were aligned to the 

NCBI build 37 (Mm9) mouse reference sequence using BWA (216) v0.5.5 (with –q 5 

soft trimming). Alignments from multiple lanes for the same sample were merged 

together using SAMtools r599, and duplicates were marked using Picard v1.29.   

 

Mutation detection and annotation.  Putative somatic mutations were identified using 

VarScan 2 (v2.2.4) (217) with the parameters “--min-coverage 3 --min-var-freq 0.08 --p-

value 0.10 --somatic-p-value 0.05 --strand-filter 1” and specifying a minimum mapping 

quality of 10. Variants whose supporting reads exhibited read position bias (average read 

position <10 or >90), strand bias (>99% of reads on one strand), or mapping quality 

(score difference >30, or mismatch quality sum difference >100) relative to reference 

supporting reads were removed as probable false positives. We also required that the 

variant allele be present in at least 10% of tumor reads and no more than 5% of normal 
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reads. The single nucleotide variants (SNVs) meeting these criteria were annotated using 

an internal database of Genbank/Ensembl transcripts (v58_73k). In the event that a 

variant was annotated using multiple transcripts, the annotation of most severe effect was 

used. Non-silent coding mutations (missense, nonsense/nonstop, or splice-site) were 

prioritized for downstream analysis. 

 

Mutation rate and overlap comparisons.  Mutation rates were estimated for each tumor 

sample using the number of putative “tier 1” SNVs (missense, nonsense/nonstop, splice 

site, silent, or noncoding RNA). To account for variability in coverage between samples, 

the SNV count for each tumor sample (S) was divided by a coverage factor (F), computed 

as the fraction of all tier 1 SNVs identified in any tumor sample (n=16,991) that were 

covered by at least 4 reads in a given sample. For example, in the d42m1 parental sample, 

15,852 of 16,991 tier 1 SNV positions were covered, for a coverage factor of 93.30%. 

The number of coverage-adjusted mutations in each sample was divided by the total size 

of tier 1 space in the mouse genome (43.884 Mbp) to determine the number of coding 

mutations per megabase (R).  

R = (S / F) / (43.884 Mbp) 

 

MHC class I epitope prediction.  All missense mutations for edited wild type sarcoma 

were analyzed for the potential to form MHC class I neoepitopes that bind to either H-

2Db or H-2Kb molecules. The artificial neural network (ANN) algorithm provided by the 

Immune Epitope Database and Analysis Resource (www.immuneepitope.org) was used 

to predict epitope binding affinities (218) and the results were ultimately expressed as 
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“Affinity Values”  (Affinity Value = 1/IC50 X 100). An additional analysis using Affinity 

Value multiplied by the Fold Change (wild type IC50/mutant IC50) was also used. 

 

Antibodies.  Anti-CTLA-4 (9H10) was generously provided by Dr. James Allison, anti-

PD-1 (RMP1-14) by Dr. Hideo Yagita, and anti-PD-L1 (10F.9G2) by Drs. Arlene Sharpe 

and Gordon Freeman.  Subsequent quantities of these clones were purchased from 

BioLegend (San Diego, CA).  Distinct clones of anti-CTLA-4 (9D9), anti-PD-1 (4H2), 

and anti-PD-L1 (14D8) were provided by Bristol Myers Squibb (New York, NY). 

  

Checkpoint blockade therapy.  Mice transplanted with tumors were treated with 200 µg 

of anti-CTLA-4, anti-PD-1, or ant-PD-L1 on day 3, 6, 9, 12, 15, and 18 post transplant.  

 

Statistical Analysis.  Samples were compared using an unpaired, two-tailed Student’s t 

test.   
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RESULTS 

 

A Subset of Edited Sarcomas from Wild Type Mice Manifest Residual 

Immunogenicity 

As opposed to d42m1 antigen loss variants, where all progressor clones and 

escape variants are rejected with checkpoint blockade therapy, when a panel of edited 

MCA sarcomas derived from wild type mice were tested for anti-CTLA-4 sensitivity, 

only 70% (9/13) of sarcomas were rejected in wild type mice after transplantation of 

sarcoma cells and treatment with anti-CTLA-4 mAbs (Figure 1).  Specifically, 10 edited 

sarcomas derived from 129/Sv strain mice (F279, F244, F236, H118m1, d4m3, d22m1, 

d22m2, c20m1, c1m2, and H128m8462) (19) and three edited sarcomas derived from 

C57BL/6 strain mice (9609, 9614, and 1956) (C.M. Koebel, J.D. Bui and R.D. Schreiber, 

unpublished results) were transplanted into syngeneic hosts and treated with anti-CTLA-

4.  Of the nine edited sarcomas that responded, eight were 129/Sv tumors (F244, F236, 

H118m1, d22m1, d22m2, c20m1, c1m2, and H128m8462) and one was a C57BL/6 

tumor (1956), leaving two edited 129/Sv tumors (F279 and d4m3) and two edited 

C57BL/6 tumors (9609 and 9614) that did not respond to anti-CTLA-4 therapy (Figure 

1).  These results suggest that edited MCA sarcomas have varying levels of residual 

immunogenicity that can be revealed by checkpoint blockade therapy.  

All edited sarcomas tested that are rejected with anti-CTLA-4 therapy are also 

rejected by either anti-PD-L1 mAb alone, anti-CTLA-4 mAb alone, or anti-PD-L1 and 

anti-CTLA-4 mAbs in combination.  Thus, F244, F236, and 1956 edited sarcomas exhibit 

residual immunogenicity and are rejected when mice harboring these tumors are treated 
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with any checkpoint blockade antibodies (Figure 2).  On the other hand, d4m3, F279, 

9614, and 9609 appear to be non-immunogenic when assayed by this method since 

treatment with other checkpoint blockade antibodies did not restrain tumor growth in any 

manner, even when used in combination (Figure 3).  Therefore, there is a subset of edited 

MCA sarcomas derived from wild type mice that appear to be non-immunogenic.   

 

Exome Sequencing of Edited MCA Sarcomas  

It is unknown whether the varying levels of residual immunogenicity remaining in 

naturally immunoedited tumors is determined by varying levels of antigenicity and thus, 

helps determine whether a tumor can be effectively controlled by checkpoint blockade 

therapy.  Therefore, we performed exome sequencing on eight edited MCA sarcoma cell 

lines that respond to checkpoint blockade therapy (F244, F236, H118m1, d4m3, d22m1, 

d22m2, and H128m8462) and two edited MCA sarcoma cell lines that do not respond to 

checkpoint blockade therapy (F279 and d4m3) in order to characterize the mutations and 

identify the array of potential antigens expressed in edited sarcomas.  These ten edited 

sarcomas were chosen to be sequenced among the panel of 13 edited sarcomas because 

they were all derived from wild type 129/Sv mice treated with 100 µg of MCA, and thus 

are genetically- and carcinogen-load–matched.  In addition, three normal skin fibroblast 

cell lines derived from wild type mice were generated and cDNA was isolated, exome 

captured and sequenced to serve as the reference sequence for the identification of non-

synonymous mutations in the sarcoma cell lines.  Specifically, cDNA was isolated from 

all 10 of these sarcoma cell lines and 3 normal fibroblast lines, constructed into Illumina 
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libraries, hybridized to mouse exome probes (Roche NimbleGen) and submitted for 

Illumina sequencing. 

Exome sequencing revealed that edited sarcomas display a range of protein-

coding mutations (tier 1 SNVs).  The average number of non-synonymous mutations in 

all ten edited sarcomas was 2,267 with a range from 1,317 to 3,380 mutations for 

individual edited sarcomas (Figure 4).  As a control, d42m1 parental cells, which are 

highly immunogenic and were derived in a Rag2-/- immunodeficient mouse was included 

in this cDNA CapSeq experiment and found to express 2,707 non-synonymous 

mutations.   Thus, there does not appear to be a significant difference in the number of 

mutations present in edited sarcomas when compared to those in unedited sarcomas.   

However, using two rounds of exome capture with Agilent mouse exome probes with 

d42m1 parental cell cDNA, we detected 3,737 non-synonymous mutations.  Here we 

used a single round of exome capture with Roche NimbleGen mouse exome probes and 

detected nearly 1,000 fewer mutations.  This discrepancy may be due in part to 

differences in the percentage of genes captured by the two different commercial exome 

mouse probe reagents (Agilent and Roche NimbleGen) as well as the differences in 

sequencing coverage that can be minimized by repeating cDNA CapSeq.  Clearly, one 

approach is to perform cDNA CapSeq with the NimbleGen mouse exome probe reagent 

an additional time for parental d42m1 and edited sarcoma samples to enhance exome 

sequencing coverage and enhance mutation call accuracy.    

Nevertheless, this preliminary sequencing data does provide some initial insight 

into the mutational landscape of edited sarcomas.  First, it appears that there is no 

difference between edited and unedited MCA sarcomas, suggesting that the mutational 
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load present in these tumor cells is not greatly influenced by the host’s immune status.  

Secondly, there is a very broad range of mutations detected in edited sarcomas with some 

tumors having nearly three times the number of mutations (Figure 4).  For example, 

1,317 mutations were detected in F279 tumor cells and 3,380 mutations were detected in 

c1m2 tumor cells.  Interestingly, F279 tumors cannot be controlled in immunocompetent 

hosts treated with checkpoint blockade antibodies, while c1m2 tumors are rejected 

following anti-CTLA-4 treatment (Figure 1).  However, the other edited sarcoma that 

fails checkpoint blockade, d4m3, has 2089 mutations which is comparable to the other 

sarcomas that do respond to anti-CTLA-4 therapy such as F236 which has 1,606 

mutations.   Thus, although there is a trend for edited sarcomas that fail anti-CTLA-4 

therapy (F279 and d4m3) to have fewer mutations than those that do respond to 

immunotherapy, there is no statistical difference between the numbers of mutations in the 

two subsets of edited sarcomas (Figure 4).  Current analysis is underway to determine if 

the number of potential antigens is distinct between sarcomas that respond and sarcomas 

that fail to respond to checkpoint blockade therapy by pipelining the exome sequencing 

data into MHC class I prediction algorithms.   
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Figure 1.  A subset of edited MCA sarcomas derived from immunocompetent wild 

type mice respond to anti-CTLA-4 therapy.  A panel of 13 edited MCA sarcomas were 

transplanted into wild type mice treated with 200 µg of control Ig (PIP) (black) or anti-

CTLA-4 (9D9) (red) on days 3, 6, 9, 12, 15, and 18 post transplant.  Ten of the 13 tumors 

are 129/Sv strain tumors (F279, F244, F236, H118m1, d4m3, d22m1, d22m2, c20m1, 

c1m2, and H128m8462) (19) and the remaining three edited sarcomas were derived from 

C57BL/6 strain mice (9609, 9614, and 1956) (C.M. Koebel, J.D. Bui and R.D. Schreiber, 

unpublished results).
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Figure 2.  Edited MCA sarcomas that respond to anti-CTLA-4 therapy also respond 

to anti-PD-1 and anti-PD-L1 therapy.  F244, F236, and 1956 were transplanted into 

wild type mice at a dose of 1 x 106 cells and treated with 200 µg of control Ig (PIP) 

(black), anti-CTLA-4 (9H10) (red), anti-PD-L1 (10F.9G2) (blue), anti-PD-1 (RMP1-14) 

(green) or combination of anti-CTLA-4/PD-L1 (purple) on days 3, 6, 9, 12, 15, and 18 

post transplant.
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Figure 3.  Edited MCA sarcomas that fail to respond to anti-CTLA-4 therapy also 

fail to respond to anti-PD-1 and anti-PD-L1 therapy or anti-CTLA-4/anti-PD-L1 

combination therapy.  F279, d4m3, 9606, and 9614 were transplanted into wild type 

mice at a dose of 1 x 106 cells and treated with 200 µg of control Ig (PIP) (black), anti-

CTLA-4 (9H10) (red), anti-PD-L1 (10F.9G2) (blue) or combination of anti-CTLA-4/PD-

L1 (green) on days 3, 6, 9, 12, 15, and 18 post transplant.
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Figure 4.  Number of mutations present in edited sarcomas as detected by exome 

sequencing.  Number of mutations detected by exome sequencing on eight edited MCA 

sarcoma cell lines that respond to checkpoint blockade therapy (“Edited Sarcomas (+)” = 

F244, F236, H118m1, d4m3, d22m1, d22m2, and H128m8462) and two edited MCA 

sarcoma cell lines that do not respond to checkpoint blockade therapy (“Edited Sarcomas 

(+)” = F279 and d4m3).  In addition, the unedited sarcoma d42m1 parental was included 

as a positive control for the NimbleGen mouse exome capture reagent (“Unedited 

Sarcoma”). 
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DISCUSSION 

 

In this study, we have examined a set of edited sarcomas derived from MCA-

treated immunocompetent wild type mice for residual immunogenicity by using 

checkpoint blockade therapy.  When cohorts of wild type mice were transplanted with 13 

different edited MCA sarcomas and subsequently treated with anti-CTLA-4 therapy, 9/13 

(70%) sarcomas were rejected, suggesting that not all edited sarcomas exhibit residual 

immunogenicity.  In addition, the four sarcomas that failed anti-CTLA-4 therapy also 

failed anti-PD-L1, anti-PD-1 therapy and anti-CTLA-4/PD-1 combination therapy. 

Similar to this panel of edited sarcomas, it is unclear why significant clinical responses to 

CTLA-4 blockade have been noted in some, but not all cancer patients (206).  Perhaps 

the stochastic nature of the process that gives rise to antigens derived from tumor-specific 

mutations will produce edited tumors that express different levels of 

antigenicity/immunogenicity.   

 To address this issue, the exomes of MCA sarcomas derived from 

immunocompetent wild type mice were sequenced to first ask how many mutations are 

present in these tumors and second, whether the number of mutations differ between 

tumors generated in wild type mice (edited) versus tumors derived from Rag2-/- mice 

(unedited)?  First, there is a very broad range of mutations detected in edited sarcomas 

with some tumors have nearly three times the number of mutations.  For example, 1,317 

mutations were detected in F279 tumor cells and 3,380 mutations were detected in c1m2 

tumor cells.  Secondly, it appears that there is no difference between the number of 

mutations in edited and unedited MCA sarcomas, suggesting that the mutational load 
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present in these tumor cells is not greatly influenced by host’s immune status.  

Interestingly, there was a slight trend for edited sarcomas that fail anti-CTLA-4 therapy 

(F279 and d4m3) to have fewer mutations than those that do respond to immunotherapy, 

but there was no statistical difference between the numbers of mutations in the two 

subsets of edited sarcomas.   

Pipelining the mutations identified by next-generation sequencing into MHC class 

I epitope prediction programs will be used to generate the antigenic profiles of tumors 

that have escaped immune control.  It will be very interesting to use these antigenic 

profiles of edited tumors to correlate the quantity and quality of the potential antigens 

with response to immunotherapy.  Current analyses are in progress to generate the 

antigenic profiles of all the edited sarcomas and results are pending. The ultimate test will 

be to use the antigenic profiles of experimental tumors to predict which respond to 

immunotherapy, which could have potential ramifications for human cancer 

immunotherapy. 

In future studies, we will generate CD8+ CTL lines against edited sarcomas that 

respond to checkpoint blockade therapy, determine the MHC restriction of these CTL 

lines and synthesize peptide epitope candidates recognized by these CTL lines to identify 

the antigen(s) expressed in edited tumor cells that are putatively targeted by checkpoint 

blockade therapy.  To confirm whether an identified antigen candidate is targeted by 

checkpoint blockade therapy in vivo, MHC class I tetramers specific for the mutant 

peptide recognized by the CTL lines will be generated to track endogenous mutant-

specific CD8+ T cells.  Ultimately, we will enforce expression of the mutant antigen from 

a susceptible tumor cell line in a tumor line that is not normally rejected by checkpoint 
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blockade therapy and will assess whether it now drives rejection following anti-CTLA-4 

or anti-PD-1 therapy. 
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CHAPTER 6 

 

Summary and Future Directions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  
	  

	  

193 

SUMMARY AND CONCLUSIONS 

 

The research presented in this dissertation represents a significant transition in the 

evolution of the cancer immunoediting concept.  In the past, our efforts mostly centered 

on demonstrating that the process occurs, identifying the key players in it and attempting 

to define the positions that they play.  We now enter a new phase in which we can begin 

to elucidate the molecular mechanisms that drive the process.  We shifted our focus from 

the immune components that edit tumor immunogenicity, to the tumor cells themselves to 

ask whether the quality or quantity of tumor antigens expressed in nascent transformed 

cells determines immune-mediated elimination or sculpting.  Thus, the overarching goal 

of this thesis was to understand what drives the editing of highly immunogenic tumor 

cells to those of reduced immunogenicity that grow in an immunologically unrestricted 

manner. 

In the first study, we set out to further examine the editing of tumor 

immunogenicity by IFN-γ.  Although other studies have shown that IFN-γ is critical to 

mediate immunosurveillance against primary tumors, these tumors lacked IFNGR1 and 

thus required additional manipulations to unmask their highly immunogenic character 

(16, 19).  In fact, lymphomas that spontaneously form in gene-targeted mice deficient in 

IFN-γ do not reject when transplanted into wild type mice, suggesting that have been 

edited by non-IFN-γ mechanisms (22).  To unequivocally demonstrate that IFN-γ plays a 

critical role in shaping tumor immunogenicity, we took the “gold standard” approach of 

generating primary MCA-induced sarcomas in an environment that lacks IFN-γ, 

harvested those tumors, generated cell lines, and transplanted them into wild type hosts to 
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see whether any unmanipulated sarcomas spontaneously reject in immunocompetent 

recipients.   

Using a cohort of C57BL/6 mice exposed to MCA, we chronically treated these 

mice with neutralizing IFN-γ antibodies (H22) to generate sarcomas that developed in the 

absence of IFN-γ, but retained normal IFN-γ receptor signaling.  These IFN-γ neutralized 

mice developed more MCA-induced sarcomas than their control counterparts, confirming 

previous reports that IFN-γ prevents development of primary tumors (16, 19, 55).  In 

addition, 3/10 (30%) of MCA-induced sarcomas from IFN-γ neutralized mice 

spontaneously rejected when transplanted into naïve wild type hosts—a finding that is 

remarkably similar to Rag2-/- mice and Ifnar1-/- mice where 40% and 36% of the MCA 

sarcomas are highly immunogenic regressors, respectively (19, 24).  These three highly 

immunogenic sarcomas, termed “H22-regerssors” required CD4+ T cells, CD8+ T cells, 

and IFN-γ for their rejection, providing further evidence that they phenotypically 

resemble unedited tumors.  Each of the three individual H22-regressors had different 

requirements for IFN-γ responsiveness at the level of the host and/or tumor to mediate 

tumor rejection, a result that is in contrast to Rag2-/- MCA sarcomas generated on a 

129/Sv background where either IFN-γ responsiveness at the level of the host or the 

tumor alone is sufficient to mediate tumor rejection (25) (C.M. Koebel and R.D. 

Schreiber, unpublished results).  Taken together, these data suggest that IFN-γ sculpts 

tumor immunogenicity and, to date, is the best evidence that endogenous IFN-γ can alter 

tumor immunogenicity during primary tumor development.  In addition, this is the first 

demonstration that unedited sarcomas can be generated using blocking monoclonal 

antibodies in wild type mice.  
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In the second study of this thesis, we show that cancer exome sequencing 

technology when combined with in silico epitope prediction algorithms can be used to 

identify expressed mutations in cancers that result in formation of tumor-specific antigens 

which function as targets for immune-mediated elimination.  Initial work revealed that 

the highly immunogenic Rag2-/- unedited tumors, H31m1 and d42m1, share a similar 

mutational landscape as carcinogen-induced human lung cancers.  Although d42m1 and 

H31m1 display largely non-overlapping mutations that helps explain their distinct 

immunogenicities, they do share mutations in Kras (d42m1 Kras G12C; H31m1 Kras 

G12D) and in Trp53 (d42m1: Trp53 E295stop; H31m1: Trp53 S152R and S258I) that are 

frequently observed in human and mouse cancers (222-224).  Next, we combined deep 

sequencing, algorithm analysis, and T cell epitope cloning to identify mutant spectrin-β2 

as a potential rejection antigen for d42m1 tumor cells.  CD8+ T cells specific for mutant-

spectrin-β2 infiltrate d42m1 tumors just prior to rejection, but do not infiltrate d42m1 

escape variants that lack mutant spectrin-β2 expression.  However, enforced expression 

of mutant spectrin-β2 into these escape variants induces the infiltration of mutant-specific 

CD8+ T cells and tumor rejection, demonstrating that mutant spectrin-β2 is the major 

rejection antigen of d42m1. 

To our knowledge, this is the first study to identify an antigen from an unedited 

tumor (d42m1) that is responsible for tumor rejection.  Moreover, we show that a T cell-

dependent immunoselection process acting on an oligoclonal parental tumor cell 

population leads to the outgrowth of tumor cell variants that lack the immunodominant, 

tumor-specific rejection antigen—mutant spectrin-β2.  These results are consistent with 

the finding that both T cells and perforin are required for editing of primary MCA 
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sarcomas (87), primary lymphomas (22), and UV-induced tumors (212), although the 

targets of editing in these earlier studies were not defined.  Thus, in the case of d42m1, 

the target of the immunoselection process has been clearly identified as the major 

rejection antigen.  Certainly, similar mechanisms might also produce tumor variants with 

defects in MHC class I antigen processing and presentation or IFN-γ receptor signaling, 

which have been observed in clinically apparent human cancers (27, 97). 

 The apparent singular importance of mutant spectrin-β2 in driving rejection of 

d42m1 in many ways resembles the known immunodominant behavior of certain viral 

antigens (234).  However, preliminary analyses of other unedited MCA sarcomas (such 

as H31m1) reveal that some express multiple strong antigens.  Thus, it is possible that the 

presence of one or more highly antigenic protein contributes to deciding whether a 

nascent tumor is eliminated or undergoes editing.  Our results thus not only provide 

definitive evidence for at least one mechanism underlying the cancer immunoediting 

process, but also demonstrate the key role that tumor-specific mutations play in 

development of a tumor’s immunogenic phenotype and subsequent fate.   

In the third study, we examined whether d42m1 antigen loss variants exhibit 

residual immunogenicity.  Since exome sequencing of d42m1 tumor variants detected 

thousands of mutations that result in protein-coding alterations and since one mutant 

protein (the R913L spectrin-β2 mutant) was responsible for immune-mediated 

elimination of regressor d42m1 tumor cells, we asked whether these other mutations 

formed antigens that conferred residual immunogenicity.  To test this, we used antibodies 

that block negative co-stimulatory molecules to boost anti-tumor immunity and overcome 

cancer-induced immunosuppression.  Currently, this form of cancer immunotherapy, 
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termed “checkpoint blockade” therapy, has been the most successful form of 

immunotherapy to date (245).  Specifically, anti-CTLA-4 therapy is quickly becoming a 

frontline therapeutic against malignant melanoma (206).  When we transplanted d42m1-

T3 and d42m1-es3 tumor cells into wild type mice and subsequently treated these mice 

with anti-CTLA-4, anti-PD-1, or anti-PD-L1 mAbs, both tumors were readily rejected.  

Rejection of d42m1-T3 and d42m1-es3 in the context of checkpoint blockade therapy 

required CD4+ T cells, CD8+ T cells, CD8α+/CD103+ DCs, and IFN-γ.  Thus, antigen 

loss variants of d42m1, indeed, express antigens that confer residual immunogenicity 

and, presumably, these antigens are targeted by checkpoint blockade therapy.  In 

addition, distinct d42m1 tumor variants could induce cross-protective immunity in serial 

transplantation experiments, suggesting that d42m1-related cells share common antigens.  

In contrast, d42m1 tumor variants could not protect against secondary challenge by an 

unrelated sarcoma, F244, indicating that there are unique antigens shared by the d42m1 

variants capable of inducing protective immunity.  

Based on these results, we mined our previous exome sequencing/in silico 

analysis for mutations that form potential antigens that are shared among the d42m1 

variants.  We found that there were only three potential antigens for H-2Kb and none for 

H-2Db.  In fact, a CTL line generated from a mouse that rejected d42m1-T3 when treated 

with anti-CTLA-4 and anti-PD-L1 combination therapy recognized d42m1 parental and 

d42m1-T3 tumor cells in a H-2Kb restricted manner.  Thus, these results point to an H-

2Kb restricted mutant peptide functioning as the antigenic target of checkpoint blockade 

therapy.  Although exome sequencing has provided a short list of putative epitopes (one 

in particular – R101L mutation in G-protein receptor 108) that may be the targets of 
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checkpoint blockade therapy for d42m1-T3 and d42m1-es3, more work is needed to 

identify the specific antigens and demonstrate its capacity to stimulate antigen-specific T 

cells in vivo.  To this end, additional CTLs lines have been generated and the wild type 

that rejected d42m1-T3 or d42m1-es3 tumors in response to checkpoint blockade therapy 

and mutant forms of the peptides (Gpr108 R101L; Olfr684 D72Y; Olfr1239 C177S) have 

been synthesized.  We predict that the additional experiments outlined above will 

demonstrate which of the candidate antigens functions as the target for 

immunotherapeutically induced anti-tumor immune responses. 

In the final study of this thesis, we explored whether edited MCA-induced 

sarcomas that developed in immunocompetent wild type mice also exhibited residual 

immunogenicity.  Using the checkpoint blockade therapy, we found that 9/13 (70%) of 

edited sarcomas respond to anti-CTLA-4 therapy.  Edited sarcomas that are rejected due 

to CTLA-4 therapy also rejected in mice treated with anti-PD-1 or anti-PD-L1 mAbs.  In 

contrast, the four edited sarcomas that fail anti-CTLA-4 therapy (F279, d4m3, 9609, and 

9614) do not respond to anti-PD-1 or anti-PD-L1 mAbs, even when used in combination 

with anti-CTLA-4 therapy.  Thus, a subset of edited sarcomas respond to checkpoint 

blockade therapy and a subset of edited sarcomas fail to respond to checkpoint blockade 

therapy, a situation that resembles the clinical scenario.  Currently, it is unknown why 

certain human cancer patients respond or fail to respond to anti-CTLA-4 therapy, but one 

study demonstrated that the patients that had the best clinical responses had pre-existing 

immunity to a cancer-associated antigen, NY-ESO-1 (259, 260).  This result suggests that 

antigen expression by the tumor cells may be critical to allow for tumor-targeted, 

immune-mediated destruction of transformed cells by checkpoint blockade therapy.  
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To attempt to address this question, we sequenced the exons of ten edited wild 

type sarcomas, two of which fail to respond to anti-CTLA-4 therapy (F279 and d4m3).  

Although there was a trend for fewer numbers of mutations in F279 and d4m3 than the 

other eight edited sarcomas that do respond to anti-CTLA-4 therapy, it was not 

statistically significant.  Moreover, the number of mutations in edited sarcomas was 

similar to the number detected in the highly immunogenic, unedited tumors (H31m1 and 

d42m1).  These results suggest that the number of mutations present in MCA-induced 

sarcomas is due to the carcinogen-load, location, and tissue-type involved and not due to 

the immune status of the host.  Thus, it is tempting to speculate that the level of residual 

antigenicity remaining in a naturally immunoedited tumor plays an important role in 

determining whether it can be effectively controlled by checkpoint blockade therapy.  We 

are currently analyzing whether the mutations present in edited sarcomas form 

neoantigens using class I prediction algorithms. 

Taking together, the data presented in this thesis has attempted to further our 

understanding of the factors that drive the cancer immunoediting process.  We show that 

tumor-specific antigens of high affinity are targeted by the cancer immunosurveillance 

network to eliminate tumors cells and that antigen loss variants of reduced 

immunogenicity emerge due to a T-cell dependent immunoselection process.  

Furthermore, residual antigenicity is unmasked in antigen loss variants of d42m1 and 

edited wild type sarcomas using checkpoint blockade therapy.  The approach of exome 

sequencing, in silico analysis, and CD8+ T cell cloning used in this thesis may be of 

beneficial use to both basic and clinical scientists.  By defining the specific antigenic 

targets of immunotherapeutically-induced, immune-mediated tumor cell elimination, we 
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should obtain new levels of understanding of host responses to tumors during ongoing 

therapy that may facilitate the development of new therapeutic opportunities to direct the 

power and specificity of the immune system into controlling and/or destroying cancer.  It 

may also be useful in identifying subsets of cancer patients whose tumors express 

antigens that can be most effectively targeted by checkpoint blockade immunotherapy 

and may provide a mechanism to longitudinally evaluate changes in a tumor’s antigenic 

profile as a consequence of ongoing immunotherapy.  Therefore, we predict that a 

genomic approach to tumor antigen identification such as the one reported here may, in 

the future, facilitate the development of individualized cancer immunotherapies directed 

at tumor-specific—rather than cancer-associated—antigens. 
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FUTURE DIRECTIONS 

 

What are the host targets for IFN-γ  mediated tumor rejection? 

 

 We now have extensive evidence that IFN-γ is critical for preventing primary 

tumor formation and for sculpting tumor immunogenicity (16, 19, 22, 55).  In this thesis, 

we generated three unedited sarcomas from MCA-treated wild type mice chronically 

administered IFN-γ neutralizing antibodies (H22).  All three of these tumors required 

IFN-γ for their rejection and for one tumor, H22-28027, IFN-γ responsiveness at the level 

of the tumor alone was sufficient to mediate rejection, confirming previous results from 

our laboratory (15).  For H22-28032 tumors, IFN-γ responsiveness at the level of the host 

was sufficient to mediate tumor rejection, as H22-28032 tumor cells grew out in the 

majority of Ifngr1-/- recipients.  However, it has yet to be determined which host cells 

stimulated by IFN-γ are critical to mediate IFN-γ’s anti-tumor effects.  Currently, a 

fellow graduate student in the Schreiber laboratory, Sang-hun Lee, recently generated 

conditional Ifngr1 gene-targeted mice to selectively delete IFNGR1 in specific tissues to 

address this issue.  Unedited tumors will be transplanted into tissue-specific Ifngr1-/- mice 

to determine which IFN-γ responsive host cells are required for tumor rejection.  The two 

unedited tumors he will use for this analysis will be H22-28032 that was generated as 

part of this thesis and 1969 that, in addition to requiring host cell IFN-γ responsiveness, 

also requires type I (IFN-α/β) interferon responsiveness at the level of CD11c+ cells to 

mediate tumor rejection (25). 
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Identifying the antigenic targets of checkpoint blockade therapy in antigen loss 

variants 

 

Although exome sequencing and class I prediction algorithms has provided a 

short list of putative epitopes for d42m1-T3 and d42m1-es3, more work is needed to 

identify the specific antigens that are targeted by checkpoint blockade therapy.  

Specifically, CTL lines developed against d42m1-T3 and d42m1-es3 will be tested for 

their capacity to recognize candidate epitopes and if so, demonstrate that the mutant 

peptide stimulates antigen-specific T cells in vivo.  To this end, additional CTLs lines 

have been generated from wild type mice that rejected d42m1-T3 or d42m1-es3 tumors 

in response to checkpoint blockade therapy and mutant forms of the peptides (Gpr108 

R101L; Olfr684 D72Y; Olfr1239 C177S) have been synthesized.  The synthesized 

candidate peptides are currently being tested against the CTL line that recognizes d42m1 

and d42m1-T3 parental cells in an H-2Kb restricted manner.  If any mutant peptides 

presented on unrelated H-2Kb expressing cells activates this CTL line or any of the other 

CTL lines to be tested, then these peptides will be used to assemble soluble H-2Kb MHC 

class I tetramers to track mutation-specific CD8+ T cells in vivo.  Alternatively, mutant 

peptides will be used to immunize wild type mice prior to d42m1-T3 or d42m1-es3 tumor 

cell challenge to test if the peptide can be used to vaccinate against d42m1 antigen loss 

variants.  We predict that the additional experiments outlined above will demonstrate 

which of the candidate antigens functions as the target for immunotherapeutically 

induced anti-tumor immune responses. 
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Do edited sarcomas that respond to anti-CTLA-4 therapy have more potential antigens 

than edited sarcomas that fail to respond to anti-CTLA-4 therapy? 

 

Recently, we sequenced the exons of ten different edited sarcomas derived from 

immunocompetent 129/Sv wild type mice that were initially treated with 100 µg of the 

MCA carcinogen.  Two (F279 and d4m3) of the ten edited sarcomas (20%) do not 

respond to checkpoint blockade immunotherapy (i.e., anti-CTLA-4, anti-PD-1, or anti-

PD-L1) even when used in combination, suggesting that these edited sarcomas are non-

immunogenic.  Exome sequencing revealed that these tumors express slightly fewer 

mutations, but the mutational load is essentially the same between edited sarcomas that 

respond to anti-CTLA-4 therapy and those that do not respond to anti-CTLA-4 therapy.  

In fact, there appears to be no difference in the number of mutations between highly 

immunogenic, unedited sarcomas (d42m1 and H31m1) and edited sarcomas of reduced 

immunogenicity.  Thus, for MCA-induced sarcomas, the level of residual 

immunogenicity cannot be inferred from the mutational load or the number of mutations 

they express.  However, it is still possible that the potential antigenic array differs 

between unedited and edited sarcomas as well as between edited sarcomas that respond to 

anti-CTLA-4 therapy and those that fail anti-CTLA-4 therapy.  Currently, we are in the 

process of submitting our exome sequencing data from edited sarcomas into class I 

prediction algorithms to generate antigenic profiles for each individual tumor.  In order to 

correlate the quality and quantity of potential antigens of a tumor with sensitivity to 

checkpoint blockade immunotherapy, additional tumors may need to be sequenced to 

enhance the statistical power of the dataset.   
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Identifying the antigenic targets of checkpoint blockade therapy in edited tumors 

 

One approach to identifying the antigens expressed in transplantable, edited 

tumors that respond to checkpoint blockade therapy is to use the cDNA CapSeq/in silico 

analysis described in this thesis.  As detailed above, we have already sequenced the exons 

of a panel of edited sarcoma cell lines, some of which respond to anti-CTLA-4 therapy 

and some that do not.  Thus, any potential antigens predicted by class I algorithms can be 

synthesized and tested for their capacity to stimulate CTL lines generated from mice that 

reject edited tumors after checkpoint blockade therapy.  Any mutant epitope that 

positively stimulates a CTL could be used to generate soluble MHC class I tetramers to 

track endogenous antigen-specific CD8+ T cells in vivo.  

The second and more rigorous approach is to perform a similar analysis on 

primary MCA sarcomas in wild type mice.  Here, the same general principles apply in 

that tumor cDNA will be sequenced, potential antigens will be predicted, and tumor-

specific CTLs will be generated but, the tumor tissue will come from developing primary 

tumors undergoing tumor progression or immunotherapeutically induced tumor 

regression.  Specifically, tumor tissue will be harvested from at least 5 primary sarcomas 

that respond to checkpoint blockade therapy (as evidenced by tumor regression but before 

total elimination of the tumor) and at least 5 primary MCA sarcomas that do not respond 

to checkpoint blockade therapy (as evidenced by tumor progression), cDNA will be 

isolated, Illumina libraries will be generated, hybridized to mouse exome probes 

(Agilent) and submitted for sequencing. The study of primary MCA sarcomas as opposed 

to cell lines not only has the advantage of most closely resembling the clinical scenario of 
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anti-CTLA-4 therapy in terms of tumor development (autochthonous tumor model) and 

in terms of anti-CTLA-4 therapeutic responses, but also provides the opportunity to 

isolate normal tissue from the same individual mouse as the tumor for comparative 

genome analyses.  By pipelining the exome sequencing data into MHC class I epitope 

prediction algorithms, we will generate antigenic profiles for each individual sarcoma and 

compare whether the sarcomas that respond to immunotherapy have a greater number of 

potential high- to medium-binding affinity antigens than sarcomas that fail to respond to 

immunotherapy.  Finally, any mouse that rejects its primary MCA sarcoma during the 

course of checkpoint blockade therapy will be used to generate a CD8+ CTL line against 

the primary sarcoma cells in an attempt to identify the tumor-specific antigens targeted 

by this form of immunotherapy.  

 

Potential clinical implications for cancer genome sequencing on tumor immunology 

 

 Cancer genome sequencing analyses has provided many important insights into 

the nature of mutations that facilitate transformation (261).  Although, the primary focus 

of this field is to identify the “driver” mutations, it is becoming apparent that the vast 

majority of mutations present in cancer cells are “passenger” mutations that may function 

as targets for elimination by immunotherapy (213, 214).  The large datasets of 

information from the many cancer genome initiatives could be of extreme value to tumor 

immunologists to define the “antigen landscape” as opposed to the “mutational 

landscape” of human cancers (262).  One application of this approach is that it could be 

used to identify the subset of cancer patients whose tumors express antigens that can be 
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most effectively targeted by checkpoint blockade immunotherapy.  In addition, this 

approach may provide a mechanism to longitudinally evaluate changes in a tumor’s 

antigenic profile as a consequence of ongoing immunotherapy.  

  It is difficult to predict whether this type of analysis will yield prognostic value in 

the clinic, as genome analysis can be costly and requires streamlined computational 

analysis.  Nevertheless, third-generation sequencing technologies are already 

commercially available and costs for cancer genome sequencing are predicted to fall 

sharply over the next decade (263), thus this type of analysis may be feasible to perform 

on a individual patient’s cancer cells in the not-to-distant future.  Whether it proves 

useful will require extensive studies performed initially in pre-clinical models like the 

ones used in this thesis as well as retrospective and longitudinal clinical studies.   

 

 

 

 



	  
	  

	  

207 

 

 

 

REFERENCES 



	  
	  

	  

208 

1. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, 
Cordon-Cardo C, Lowe SW. 2007. Senescence and tumour clearance is triggered 
by p53 restoration in murine liver carcinomas. Nature 445: 656-60 

2. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. 1997. Oncogenic ras 
provokes premature cell senescence associated with accumulation of p53 and 
p16INK4a. Cell 88: 593-602 

3. Danial NN, Korsmeyer SJ. 2004. Cell death: critical control points. Cell 116: 205-
19 

4. Peter ME, Krammer PH. 2003. The CD95(APO-1/Fas) DISC and beyond. Cell 
Death Differ 10: 26-35 

5. Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100: 57-70 

6. Janes SM, Watt FM. 2006. New roles for integrins in squamous-cell carcinoma. 
Nat Rev Cancer 6: 175-83 

7. Humbert P, Russell S, Richardson H. 2003. Dlg, Scribble and Lgl in cell polarity, 
cell proliferation and cancer. Bioessays 25: 542-53 

8. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. 2002. Cancer 
immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3: 991-8 

9. Zitvogel L, Tesniere A, Kroemer G. 2006. Cancer despite immunosurveillance: 
immunoselection and immunosubversion. Nat Rev Immunol 6: 715-27 

10. Curiel TJ. 2007. Tregs and rethinking cancer immunotherapy. J Clin Invest 117: 
1167-74 

11. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 
144: 646-74 

12. Ehrlich P. 1909. Ueber den jetzigen stand der Karzinomforschung. Ned. Tijdschr. 
Geneeskd. 5: 273-90 

13. Burnet FM. 1957. Cancer - a biological approach. Brit. Med. J. 1: 841-7 

14. Thomas L. 1959. Cellular and Humoral Aspects of the Hypersensitive States. 
New York: Hoeber-Harper 

15. Dighe AS, Richards E, Old LJ, Schreiber RD. 1994. Enhanced in vivo growth and 
resistance to rejection of tumor cells expressing dominant negative IFN gamma 
receptors. Immunity 1: 447-56 



	  
	  

	  

209 

16. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD. 
1998. Demonstration of an interferon gamma-dependent tumor surveillance 
system in immunocompetent mice. Proc Natl Acad Sci U S A 95: 7556-61 

17. Engel AM, Svane IM, Mouritsen S, Rygaard J, Clausen J, Werdelin O. 1996. 
Methylcholanthrene-induced sarcomas in nude mice have short induction times 
and relatively low levels of surface MHC class I expression. Apmis 104: 629-39 

18. Engel AM, Svane IM, Rygaard J, Werdelin O. 1997. MCA sarcomas induced in 
scid mice are more immunogenic than MCA sarcomas induced in congenic, 
immunocompetent mice. Scand J Immunol 45: 463-70 

19. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD. 
2001. IFNgamma and lymphocytes prevent primary tumour development and 
shape tumour immunogenicity. Nature 410: 1107-11 

20. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA. 2000. 
Perforin-mediated cytotoxicity is critical for surveillance of spontaneous 
lymphoma. J Exp Med 192: 755-60 

21. Korner H, Cretney E, Wilhelm P, Kelly JM, Rollinghoff M, Sedgwick JD, Smyth 
MJ. 2000. Tumor necrosis factor sustains the generalized lymphoproliferative 
disorder (gld) phenotype. J Exp Med 191: 89-96 

22. Street SE, Trapani JA, MacGregor D, Smyth MJ. 2002. Suppression of lymphoma 
and epithelial malignancies effected by interferon gamma. J Exp Med 196: 129-34 

23. Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, 
Sutton B, Tigelaar RE, Hayday AC. 2001. Regulation of cutaneous malignancy 
by gammadelta T cells. Science 294: 605-9 

24. Dunn GP, Bruce AT, Sheehan KC, Shankaran V, Uppaluri R, Bui JD, Diamond 
MS, Koebel CM, Arthur C, White JM, Schreiber RD. 2005. A critical function for 
type I interferons in cancer immunoediting. Nat Immunol 6: 722-9 

25. Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault 
JM, Lee H, Arthur CD, White JM, Kalinke U, Murphy KM, Schreiber RD. 2011. 
Type I interferon is selectively required by dendritic cells for immune rejection of 
tumors. J Exp Med 208: 1989-2003 

26. Dunn GP, Old LJ, Schreiber RD. 2004. The immunobiology of cancer 
immunosurveillance and immunoediting. Immunity 21: 137-48 

27. Dunn GP, Old LJ, Schreiber RD. 2004. The three Es of cancer immunoediting. 
Annu Rev Immunol 22: 329-60 

28. Dunn GP, Koebel CM, Schreiber RD. 2006. Interferons, immunity and cancer 
immunoediting. Nat Rev Immunol 6: 836-48 



	  
	  

	  

210 

29. Smyth MJ, Dunn GP, Schreiber RD. 2006. Cancer immunosurveillance and 
immunoediting: the roles of immunity in suppressing tumor development and 
shaping tumor immunogenicity. Adv Immunol 90: 1-50 

30. Swann JB, Smyth MJ. 2007. Immune surveillance of tumors. J Clin Invest 117: 
1137-46 

31. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. 2011. Natural Innate and 
Adaptive Immunity to Cancer. Annu Rev Immunol 29: 235-71 

32. Schreiber RD, Old LJ, Smyth MJ. 2011. Cancer immunoediting: integrating 
immunity's roles in cancer suppression and promotion. Science 331: 1565-70 

33. Smyth MJ, Crowe NY, Godfrey DI. 2001. NK cells and NKT cells collaborate in 
host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13: 
459-63 

34. Girardi M, Glusac E, Filler RB, Roberts SJ, Propperova I, Lewis J, Tigelaar RE, 
Hayday AC. 2003. The distinct contributions of murine T cell receptor 
(TCR)gammadelta+ and TCRalphabeta+ T cells to different stages of chemically 
induced skin cancer. J Exp Med 198: 747-55 

35. Swann JB, Uldrich AP, van Dommelen S, Sharkey J, Murray WK, Godfrey DI, 
Smyth MJ. 2009. Type I natural killer T cells suppress tumors caused by p53 loss 
in mice. Blood 113: 6382-5 

36. Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA, Taniguchi M, Kawano T, 
Pelikan SB, Crowe NY, Godfrey DI. 2000. Differential tumor surveillance by 
natural killer (NK) and NKT cells. J Exp Med 191: 661-8 

37. Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, Kayagaki N, Yagita 
H, Okumura K. 2001. Tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL) contributes to interferon gamma-dependent natural killer cell protection 
from tumor metastasis. J Exp Med 193: 661-70 

38. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, 
Calderon B, Schraml BU, Unanue ER, Diamond MS, Schreiber RD, Murphy TL, 
Murphy KM. 2008. Batf3 deficiency reveals a critical role for CD8alpha+ 
dendritic cells in cytotoxic T cell immunity. Science 322: 1097-100 

39. Simson L, Ellyard JI, Dent LA, Matthaei KI, Rothenberg ME, Foster PS, Smyth 
MJ, Parish CR. 2007. Regulation of carcinogenesis by IL-5 and CCL11: a 
potential role for eosinophils in tumor immune surveillance. J Immunol 178: 
4222-9 

40. Street SE, Cretney E, Smyth MJ. 2001. Perforin and interferon-gamma activities 
independently control tumor initiation, growth, and metastasis. Blood 97: 192-7 



	  
	  

	  

211 

41. Swann JB, Hayakawa Y, Zerafa N, Sheehan KC, Scott B, Schreiber RD, Hertzog 
P, Smyth MJ. 2007. Type I IFN contributes to NK cell homeostasis, activation, 
and antitumor function. J Immunol 178: 7540-9 

42. Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, Smyth MJ. 
2008. Demonstration of inflammation-induced cancer and cancer immunoediting 
during primary tumorigenesis. Proc Natl Acad Sci U S A 105: 652-6 

43. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ. 2002. 
Increased susceptibility to tumor initiation and metastasis in TNF-related 
apoptosis-inducing ligand-deficient mice. J Immunol 168: 1356-61 

44. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H, Okumura 
K. 2002. Critical role for tumor necrosis factor-related apoptosis-inducing ligand 
in immune surveillance against tumor development. J Exp Med 195: 161-9 

45. Smyth MJ, Taniguchi M, Street SE. 2000. The anti-tumor activity of IL-12: 
mechanisms of innate immunity that are model and dose dependent. J Immunol 
165: 2665-70 

46. Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S, Honda S, 
Yasui T, Kikutani H, Shibuya K, Shibuya A. 2008. Accelerated tumor growth in 
mice deficient in DNAM-1 receptor. J Exp Med 205: 2959-64 

47. Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y. 2005. 
NKG2D function protects the host from tumor initiation. J Exp Med 202: 583-8 

48. Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, Knoblaugh S, 
Cado D, Greenberg NM, Raulet DH. 2008. NKG2D-deficient mice are defective 
in tumor surveillance in models of spontaneous malignancy. Immunity 28: 571-80 

49. Elboim M, Gazit R, Gur C, Ghadially H, Betser-Cohen G, Mandelboim O. 2010. 
Tumor immunoediting by NKp46. J Immunol 184: 5637-44 

50. Alimonti J, Zhang QJ, Gabathuler R, Reid G, Chen SS, Jefferies WA. 2000. TAP 
expression provides a general method for improving the recognition of malignant 
cells in vivo. Nat Biotechnol 18: 515-20 

51. Fallarino F, Gajewski TF. 1999. Cutting edge: differentiation of antitumor CTL in 
vivo requires host expression of Stat1. J Immunol 163: 4109-13 

52. Zhang B, Karrison T, Rowley DA, Schreiber H. 2008. IFN-gamma- and TNF-
dependent bystander eradication of antigen-loss variants in established mouse 
cancers. J Clin Invest 118: 1398-404 

53. Qin Z, Kim HJ, Hemme J, Blankenstein T. 2002. Inhibition of 
methylcholanthrene-induced carcinogenesis by an interferon gamma receptor-
dependent foreign body reaction. J Exp Med 195: 1479-90 



	  
	  

	  

212 

54. Liu J, Xiang Z, Ma X. 2004. Role of IFN regulatory factor-1 and IL-12 in 
immunological resistance to pathogenesis of N-methyl-N-nitrosourea-induced T 
lymphoma. J Immunol 173: 1184-93 

55. Wakita D, Chamoto K, Ohkuri T, Narita Y, Ashino S, Sumida K, Nishikawa H, 
Shiku H, Togashi Y, Kitamura H, Nishimura T. 2009. IFN-gamma-dependent 
type 1 immunity is crucial for immunosurveillance against squamous cell 
carcinoma in a novel mouse carcinogenesis model. Carcinogenesis 30: 1408-15 

56. Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, Gajewski 
TF. 2011. Host type I IFN signals are required for antitumor CD8+ T cell 
responses through CD8{alpha}+ dendritic cells. J Exp Med 208: 2005-16 

57. Johansen C, Vestergaard C, Kragballe K, Kollias G, Gaestel M, Iversen L. 2009. 
MK2 regulates the early stages of skin tumor promotion. Carcinogenesis 30: 
2100-8 

58. Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N, Holdsworth H, 
Turner L, Rollins B, Pasparakis M, Kollias G, Balkwill F. 1999. Mice deficient in 
tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med 5: 828-
31 

59. Gebhardt C, Riehl A, Durchdewald M, Nemeth J, Furstenberger G, Muller-
Decker K, Enk A, Arnold B, Bierhaus A, Nawroth PP, Hess J, Angel P. 2008. 
RAGE signaling sustains inflammation and promotes tumor development. J Exp 
Med 205: 275-85 

60. Muller AJ, Sharma MD, Chandler PR, Duhadaway JB, Everhart ME, Johnson 
BA, 3rd, Kahler DJ, Pihkala J, Soler AP, Munn DH, Prendergast GC, Mellor AL. 
2008. Chronic inflammation that facilitates tumor progression creates local 
immune suppression by inducing indoleamine 2,3 dioxygenase. Proc Natl Acad 
Sci U S A 105: 17073-8 

61. Yusuf N, Nasti TH, Katiyar SK, Jacobs MK, Seibert MD, Ginsburg AC, Timares 
L, Xu H, Elmets CA. 2008. Antagonistic roles of CD4+ and CD8+ T-cells in 
7,12-dimethylbenz(a)anthracene cutaneous carcinogenesis. Cancer Res 68: 3924-
30 

62. Gasser S, Orsulic S, Brown EJ, Raulet DH. 2005. The DNA damage pathway 
regulates innate immune system ligands of the NKG2D receptor. Nature 436: 
1186-90 

63. Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE, Girardi 
M, Hayday AC. 2005. Sustained localized expression of ligand for the activating 
NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor 
immunosurveillance. Nat Immunol 6: 928-37 



	  
	  

	  

213 

64. Strid J, Roberts SJ, Filler RB, Lewis JM, Kwong BY, Schpero W, Kaplan DH, 
Hayday AC, Girardi M. 2008. Acute upregulation of an NKG2D ligand promotes 
rapid reorganization of a local immune compartment with pleiotropic effects on 
carcinogenesis. Nat Immunol 9: 146-54 

65. Grosse-Wilde A, Voloshanenko O, Bailey SL, Longton GM, Schaefer U, Csernok 
AI, Schutz G, Greiner EF, Kemp CJ, Walczak H. 2008. TRAIL-R deficiency in 
mice enhances lymph node metastasis without affecting primary tumor 
development. J Clin Invest 118: 100-10 

66. Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, Basham B, 
McClanahan T, Kastelein RA, Oft M. 2006. IL-23 promotes tumour incidence 
and growth. Nature 442: 461-5 

67. Teng MW, Andrews DM, McLaughlin N, von Scheidt B, Ngiow SF, Moller A, 
Hill GR, Iwakura Y, Oft M, Smyth MJ. 2010. IL-23 suppresses innate immune 
response independently of IL-17A during carcinogenesis and metastasis. Proc 
Natl Acad Sci U S A 107: 8328-33 

68. Xiao M, Wang C, Zhang J, Li Z, Zhao X, Qin Z. 2009. IFNgamma promotes 
papilloma development by up-regulating Th17-associated inflammation. Cancer 
Res 69: 2010-7 

69. Norbury KC, Kripke ML. 1978. Ultraviolet carcinogenesis in T-cell-depleted 
mice. J Natl Cancer Inst 61: 917-21 

70. Ward PL, Koeppen HK, Hurteau T, Rowley DA, Schreiber H. 1990. Major 
histocompatibility complex class I and unique antigen expression by murine 
tumors that escaped from CD8+ T-cell-dependent surveillance. Cancer Res 50: 
3851-8 

71. Street SE, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM, 
Diefenbach A, Yagita H, Godfrey DI, Smyth MJ. 2004. Innate immune 
surveillance of spontaneous B cell lymphomas by natural killer cells and 
gammadelta T cells. J Exp Med 199: 879-84 

72. Zerafa N, Westwood JA, Cretney E, Mitchell S, Waring P, Iezzi M, Smyth MJ. 
2005. Cutting edge: TRAIL deficiency accelerates hematological malignancies. J 
Immunol 175: 5586-90 

73. Davidson WF, Giese T, Fredrickson TN. 1998. Spontaneous development of 
plasmacytoid tumors in mice with defective Fas-Fas ligand interactions. J Exp 
Med 187: 1825-38 

74. Chia J, Yeo KP, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I. 2009. 
Temperature sensitivity of human perforin mutants unmasks subtotal loss of 



	  
	  

	  

214 

cytotoxicity, delayed FHL, and a predisposition to cancer. Proc Natl Acad Sci U S 
A 106: 9809-14 

75. Stutman O. 1975. Immunodepression and malignancy. Adv Cancer Res 22: 261-
422 

76. Gershwin ME, Ohsugi Y, Castles JJ, Ikeda RM, Ruebner B. 1983. Anti-mu 
induces lymphoma in germfree congenitally athymic (nude) but not in 
heterozygous (nu/+) mice. J Immunol 131: 2069-73 

77. Hayashi T, Faustman DL. 2002. Development of spontaneous uterine tumors in 
low molecular mass polypeptide-2 knockout mice. Cancer Res 62: 24-7 

78. Airoldi I, Di Carlo E, Cocco C, Sorrentino C, Fais F, Cilli M, D'Antuono T, 
Colombo MP, Pistoia V. 2005. Lack of Il12rb2 signaling predisposes to 
spontaneous autoimmunity and malignancy. Blood 106: 3846-53 

79. Enzler T, Gillessen S, Manis JP, Ferguson D, Fleming J, Alt FW, Mihm M, 
Dranoff G. 2003. Deficiencies of GM-CSF and interferon gamma link 
inflammation and cancer. J Exp Med 197: 1213-9 

80. Coussens LM, Werb Z. 2002. Inflammation and cancer. Nature 420: 860-7 

81. Bolitho P, Street SE, Westwood JA, Edelmann W, Macgregor D, Waring P, 
Murray WK, Godfrey DI, Trapani JA, Johnstone RW, Smyth MJ. 2009. Perforin-
mediated suppression of B-cell lymphoma. Proc Natl Acad Sci U S A 106: 2723-8 

82. Mitra-Kaushik S, Harding J, Hess J, Schreiber R, Ratner L. 2004. Enhanced 
tumorigenesis in HTLV-1 tax-transgenic mice deficient in interferon-gamma. 
Blood 104: 3305-11 

83. Finnberg N, Klein-Szanto AJ, El-Deiry WS. 2008. TRAIL-R deficiency in mice 
promotes susceptibility to chronic inflammation and tumorigenesis. J Clin Invest 
118: 111-23 

84. Bellone M, Ceccon M, Grioni M, Jachetti E, Calcinotto A, Napolitano A, Freschi 
M, Casorati G, Dellabona P. 2010. iNKT cells control mouse spontaneous 
carcinoma independently of tumor-specific cytotoxic T cells. PLoS One 5: e8646 

85. Willimsky G, Blankenstein T. 2005. Sporadic immunogenic tumours avoid 
destruction by inducing T-cell tolerance. Nature 437: 141-6 

86. Aguirre-Ghiso JA. 2007. Models, mechanisms and clinical evidence for cancer 
dormancy. Nat Rev Cancer 7: 834-46 

87. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ, 
Schreiber RD. 2007. Adaptive immunity maintains occult cancer in an 
equilibrium state. Nature 450: 903-7 



	  
	  

	  

215 

88. Farrar JD, Katz KH, Windsor J, Thrush G, Scheuermann RH, Uhr JW, Street NE. 
1999. Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-gamma 
in establishing and maintaining the tumor-dormant state. J Immunol 162: 2842-9 

89. Saudemont A, Quesnel B. 2004. In a model of tumor dormancy, long-term 
persistent leukemic cells have increased B7-H1 and B7.1 expression and resist 
CTL-mediated lysis. Blood 104: 2124-33 

90. Loeser S, Loser K, Bijker MS, Rangachari M, van der Burg SH, Wada T, Beissert 
S, Melief CJ, Penninger JM. 2007. Spontaneous tumor rejection by cbl-b-deficient 
CD8+ T cells. J Exp Med 204: 879-91 

91. Schumacher K, Haensch W, Roefzaad C, Schlag PM. 2001. Prognostic 
significance of activated CD8(+) T cell infiltrations within esophageal 
carcinomas. Cancer Res 61: 3932-6 

92. Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M, Tan TG, Zheng L, Ong 
LC, Jin Y, Kato M, Prevost-Blondel A, Chow P, Yang H, Abastado JP. 2010. 
Tumor cells disseminate early, but immunosurveillance limits metastatic 
outgrowth, in a mouse model of melanoma. J Clin Invest 120: 2030-9 

93. Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell JE, Jr. 1996. 
Transcriptionally active Stat1 is required for the antiproliferative effects of both 
interferon alpha and interferon gamma. Proc Natl Acad Sci U S A 93: 7673-8 

94. Mandal M, Bandyopadhyay D, Goepfert TM, Kumar R. 1998. Interferon-induces 
expression of cyclin-dependent kinase-inhibitors p21WAF1 and p27Kip1 that 
prevent activation of cyclin-dependent kinase by CDK-activating kinase (CAK). 
Oncogene 16: 217-25 

95. Muller-Hermelink N, Braumuller H, Pichler B, Wieder T, Mailhammer R, Schaak 
K, Ghoreschi K, Yazdi A, Haubner R, Sander CA, Mocikat R, Schwaiger M, 
Forster I, Huss R, Weber WA, Kneilling M, Rocken M. 2008. TNFR1 signaling 
and IFN-gamma signaling determine whether T cells induce tumor dormancy or 
promote multistage carcinogenesis. Cancer Cell 13: 507-18 

96. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, 
Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries 
CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA. 2006. Cancer 
regression in patients after transfer of genetically engineered lymphocytes. 
Science 314: 126-9 

97. Khong HT, Restifo NP. 2002. Natural selection of tumor variants in the 
generation of "tumor escape" phenotypes. Nat Immunol 3: 999-1005 

98. Kyewski B, Klein L. 2006. A central role for central tolerance. Annu Rev 
Immunol 24: 571-606 



	  
	  

	  

216 

99. Schell TD, Knowles BB, Tevethia SS. 2000. Sequential loss of cytotoxic T 
lymphocyte responses to simian virus 40 large T antigen epitopes in T antigen 
transgenic mice developing osteosarcomas. Cancer Res 60: 3002-12 

100. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, 
Rosenberg SA. 1996. Loss of functional beta 2-microglobulin in metastatic 
melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 88: 
100-8 

101. Khong HT, Wang QJ, Rosenberg SA. 2004. Identification of multiple antigens 
recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape 
by antigen loss and loss of MHC expression. J Immunother 27: 184-90 

102. Jager E, Ringhoffer M, Karbach J, Arand M, Oesch F, Knuth A. 1996. Inverse 
relationship of melanocyte differentiation antigen expression in melanoma tissues 
and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-
loss variants in vivo. Int J Cancer 66: 470-6 

103. Dunn GP, Sheehan KC, Old LJ, Schreiber RD. 2005. IFN unresponsiveness in 
LNCaP cells due to the lack of JAK1 gene expression. Cancer Res 65: 3447-53 

104. Stern-Ginossar N, Gur C, Biton M, Horwitz E, Elboim M, Stanietsky N, 
Mandelboim M, Mandelboim O. 2008. Human microRNAs regulate stress-
induced immune responses mediated by the receptor NKG2D. Nat Immunol 9: 
1065-73 

105. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, 
Gabrilovich D, Heller R, Coppola D, Dalton W, Jove R, Pardoll D, Yu H. 2004. 
Regulation of the innate and adaptive immune responses by Stat-3 signaling in 
tumor cells. Nat Med 10: 48-54 

106. Kataoka T, Schroter M, Hahne M, Schneider P, Irmler M, Thome M, Froelich CJ, 
Tschopp J. 1998. FLIP prevents apoptosis induced by death receptors but not by 
perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J Immunol 
161: 3936-42 

107. Hinz S, Trauzold A, Boenicke L, Sandberg C, Beckmann S, Bayer E, Walczak H, 
Kalthoff H, Ungefroren H. 2000. Bcl-XL protects pancreatic adenocarcinoma 
cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene 19: 
5477-86 

108. Shin MS, Kim HS, Lee SH, Park WS, Kim SY, Park JY, Lee JH, Lee SK, Lee 
SN, Jung SS, Han JY, Kim H, Lee JY, Yoo NJ. 2001. Mutations of tumor 
necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and 
receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res 61: 4942-6 



	  
	  

	  

217 

109. Takahashi H, Feuerhake F, Kutok JL, Monti S, Dal Cin P, Neuberg D, Aster JC, 
Shipp MA. 2006. FAS death domain deletions and cellular FADD-like interleukin 
1beta converting enzyme inhibitory protein (long) overexpression: alternative 
mechanisms for deregulating the extrinsic apoptotic pathway in diffuse large B-
cell lymphoma subtypes. Clin Cancer Res 12: 3265-71 

110. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu 
J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L. 2002. Tumor-associated B7-
H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat 
Med 8: 793-800 

111. Tripathi P, Agrawal S. 2006. Non-classical HLA-G antigen and its role in the 
cancer progression. Cancer Invest 24: 178-86 

112. Derre L, Corvaisier M, Charreau B, Moreau A, Godefroy E, Moreau-Aubry A, 
Jotereau F, Gervois N. 2006. Expression and release of HLA-E by melanoma 
cells and melanocytes: potential impact on the response of cytotoxic effector cells. 
J Immunol 177: 3100-7 

113. Park JM, Terabe M, Sakai Y, Munasinghe J, Forni G, Morris JC, Berzofsky JA. 
2005. Early role of CD4+ Th1 cells and antibodies in HER-2 adenovirus vaccine 
protection against autochthonous mammary carcinomas. J Immunol 174: 4228-36 

114. Radoja S, Rao TD, Hillman D, Frey AB. 2000. Mice bearing late-stage tumors 
have normal functional systemic T cell responses in vitro and in vivo. J Immunol 
164: 2619-28 

115. Groh V, Wu J, Yee C, Spies T. 2002. Tumour-derived soluble MIC ligands impair 
expression of NKG2D and T-cell activation. Nature 419: 734-8 

116. Villablanca EJ, Raccosta L, Zhou D, Fontana R, Maggioni D, Negro A, Sanvito F, 
Ponzoni M, Valentinis B, Bregni M, Prinetti A, Steffensen KR, Sonnino S, 
Gustafsson JA, Doglioni C, Bordignon C, Traversari C, Russo V. 2010. Tumor-
mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 
expression on dendritic cells and dampens antitumor responses. Nat Med 16: 98-
105 

117. Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, Corzo A, 
Cho HI, Celis E, Lennox B, Knight SC, Padhya T, McCaffrey TV, McCaffrey JC, 
Antonia S, Fishman M, Ferris RL, Kagan VE, Gabrilovich DI. 2010. Lipid 
accumulation and dendritic cell dysfunction in cancer. Nat Med  

118. Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP. 1999. Antibodies to 
vascular endothelial growth factor enhance the efficacy of cancer immunotherapy 
by improving endogenous dendritic cell function. Clin Cancer Res 5: 2963-70 



	  
	  

	  

218 

119. Wrzesinski SH, Wan YY, Flavell RA. 2007. Transforming growth factor-beta and 
the immune response: implications for anticancer therapy. Clin Cancer Res 13: 
5262-70 

120. Aruga A, Aruga E, Tanigawa K, Bishop DK, Sondak VK, Chang AE. 1997. Type 
1 versus type 2 cytokine release by Vbeta T cell subpopulations determines in 
vivo antitumor reactivity: IL-10 mediates a suppressive role. J Immunol 159: 664-
73 

121. Fujii S, Shimizu K, Shimizu T, Lotze MT. 2001. Interleukin-10 promotes the 
maintenance of antitumor CD8(+) T-cell effector function in situ. Blood 98: 2143-
51 

122. Rubinstein N, Alvarez M, Zwirner NW, Toscano MA, Ilarregui JM, Bravo A, 
Mordoh J, Fainboim L, Podhajcer OL, Rabinovich GA. 2004. Targeted inhibition 
of galectin-1 gene expression in tumor cells results in heightened T cell-mediated 
rejection; A potential mechanism of tumor-immune privilege. Cancer Cell 5: 241-
51 

123. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, 
Van den Eynde BJ. 2003. Evidence for a tumoral immune resistance mechanism 
based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9: 
1269-74 

124. Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P. 2009. Inhibitors of 
indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the 
trees? Nat Rev Cancer 9: 445-52 

125. Terabe M, Berzofsky JA. 2004. Immunoregulatory T cells in tumor immunity. 
Curr Opin Immunol 16: 157-62 

126. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. 2009. Regulatory 
T cells: how do they suppress immune responses? Int Immunol 21: 1105-11 

127. Teng MW, Swann JB, von Scheidt B, Sharkey J, Zerafa N, McLaughlin N, 
Yamaguchi T, Sakaguchi S, Darcy PK, Smyth MJ. 2010. Multiple antitumor 
mechanisms downstream of prophylactic regulatory T-cell depletion. Cancer Res 
70: 2665-74 

128. DiLillo DJ, Matsushita T, Tedder TF. 2010. B10 cells and regulatory B cells 
balance immune responses during inflammation, autoimmunity, and cancer. Ann 
N Y Acad Sci 1183: 38-57 

129. Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, Hayakawa Y, Godfrey DI, 
Ostrand-Rosenberg S, Smyth MJ, Berzofsky JA. 2005. A nonclassical non-
Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-
regulation of tumor immunosurveillance. J Exp Med 202: 1627-33 



	  
	  

	  

219 

130. Gabrilovich DI, Nagaraj S. 2009. Myeloid-derived suppressor cells as regulators 
of the immune system. Nat Rev Immunol 9: 162-74 

131. Li H, Han Y, Guo Q, Zhang M, Cao X. 2009. Cancer-expanded myeloid-derived 
suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. 
J Immunol 182: 240-9 

132. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. 2010. 
Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine 
and cysteine. Cancer Res 70: 68-77 

133. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, 
Schneck J, Gabrilovich DI. 2007. Altered recognition of antigen is a mechanism 
of CD8+ T cell tolerance in cancer. Nat Med 13: 828-35 

134. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH. 
2006. Gr-1+CD115+ immature myeloid suppressor cells mediate the development 
of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. 
Cancer Res 66: 1123-31 

135. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, 
Beschin A, De Baetselier P, Van Ginderachter JA. 2008. Identification of discrete 
tumor-induced myeloid-derived suppressor cell subpopulations with distinct T 
cell-suppressive activity. Blood 111: 4233-44 

136. Wei S, Kryczek I, Zou L, Daniel B, Cheng P, Mottram P, Curiel T, Lange A, Zou 
W. 2005. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human 
ovarian carcinoma. Cancer Res 65: 5020-6 

137. Conejo-Garcia JR, Benencia F, Courreges MC, Kang E, Mohamed-Hadley A, 
Buckanovich RJ, Holtz DO, Jenkins A, Na H, Zhang L, Wagner DS, Katsaros D, 
Caroll R, Coukos G. 2004. Tumor-infiltrating dendritic cell precursors recruited 
by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. 
Nat Med 10: 950-8 

138. Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz MA. 2010. Induction of 
lymphoidlike stroma and immune escape by tumors that express the chemokine 
CCL21. Science 328: 749-52 

139. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas 
SK, Allavena P, Mantovani A. 2008. Macrophage polarization in tumour 
progression. Semin Cancer Biol 18: 349-55 

140. Zippelius A, Batard P, Rubio-Godoy V, Bioley G, Lienard D, Lejeune F, Rimoldi 
D, Guillaume P, Meidenbauer N, Mackensen A, Rufer N, Lubenow N, Speiser D, 
Cerottini JC, Romero P, Pittet MJ. 2004. Effector function of human tumor-



	  
	  

	  

220 

specific CD8 T cells in melanoma lesions: a state of local functional tolerance. 
Cancer Res 64: 2865-73 

141. Boshoff C, Weiss R. 2002. AIDS-related malignancies. Nat Rev Cancer 2: 373-82 

142. Frisch M, Biggar RJ, Engels EA, Goedert JJ. 2001. Association of cancer with 
AIDS-related immunosuppression in adults. JAMA 285: 1736-45 

143. Chaturvedi AK, Pfeiffer RM, Chang L, Goedert JJ, Biggar RJ, Engels EA. 2007. 
Elevated risk of lung cancer among people with AIDS. AIDS 21: 207-13 

144. Kirk GD, Merlo C, P OD, Mehta SH, Galai N, Vlahov D, Samet J, Engels EA. 
2007. HIV infection is associated with an increased risk for lung cancer, 
independent of smoking. Clin Infect Dis 45: 103-10 

145. Vajdic CM, McDonald SP, McCredie MR, van Leeuwen MT, Stewart JH, Law 
M, Chapman JR, Webster AC, Kaldor JM, Grulich AE. 2006. Cancer incidence 
before and after kidney transplantation. JAMA 296: 2823-31 

146. Moloney FJ, Comber H, O'Lorcain P, O'Kelly P, Conlon PJ, Murphy GM. 2006. 
A population-based study of skin cancer incidence and prevalence in renal 
transplant recipients. Br J Dermatol 154: 498-504 

147. Penn I. 1996. Malignant melanoma in organ allograft recipients. Transplantation 
61: 274-8 

148. Rizzi R, Curci P, Delia M, Rinaldi E, Chiefa A, Specchia G, Liso V. 2009. 
Spontaneous remission of "methotrexate-associated lymphoproliferative 
disorders" after discontinuation of immunosuppressive treatment for autoimmune 
disease. Review of the literature. Med Oncol 26: 1-9 

149. Carey TE, Takahashi T, Resnick LA, Oettgen HF, Old LJ. 1976. Cell surface 
antigens of human malignant melanoma: mixed hemadsorption assays for 
humoral immunity to cultured autologous melanoma cells. Proc Natl Acad Sci U 
S A 73: 3278-82 

150. Ueda R, Shiku H, Pfreundschuh M, Takahashi T, Li LT, Whitmore WF, Oettgen 
HF, Old LJ. 1979. Cell surface antigens of human renal cancer defined by 
autologous typing. J Exp Med 150: 564-79 

151. Reuschenbach M, von Knebel Doeberitz M, Wentzensen N. 2009. A systematic 
review of humoral immune responses against tumor antigens. Cancer Immunol 
Immunother 58: 1535-44 

152. Jager E, Stockert E, Zidianakis Z, Chen YT, Karbach J, Jager D, Arand M, Ritter 
G, Old LJ, Knuth A. 1999. Humoral immune responses of cancer patients against 
"Cancer-Testis" antigen NY-ESO-1: correlation with clinical events. Int J Cancer 
84: 506-10 



	  
	  

	  

221 

153. Soussi T. 2000. p53 Antibodies in the sera of patients with various types of 
cancer: a review. Cancer Res 60: 1777-88 

154. Ferradini L, Mackensen A, Genevee C, Bosq J, Duvillard P, Avril MF, Hercend 
T. 1993. Analysis of T cell receptor variability in tumor-infiltrating lymphocytes 
from a human regressive melanoma. Evidence for in situ T cell clonal expansion. 
J Clin Invest 91: 1183-90 

155. Zorn E, Hercend T. 1999. A natural cytotoxic T cell response in a spontaneously 
regressing human melanoma targets a neoantigen resulting from a somatic point 
mutation. Eur J Immunol 29: 592-601 

156. Knuth A, Danowski B, Oettgen HF, Old LJ. 1984. T-cell-mediated cytotoxicity 
against autologous malignant melanoma: analysis with interleukin 2-dependent T-
cell cultures. Proc Natl Acad Sci U S A 81: 3511-5 

157. Gnjatic S, Atanackovic D, Jager E, Matsuo M, Selvakumar A, Altorki NK, Maki 
RG, Dupont B, Ritter G, Chen YT, Knuth A, Old LJ. 2003. Survey of naturally 
occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: 
correlation with antibody responses. Proc Natl Acad Sci U S A 100: 8862-7 

158. Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar PR, Lee 
SY, Jungbluth A, Jager D, Arand M, Ritter G, Cerundolo V, Dupont B, Chen YT, 
Old LJ, Knuth A. 2000. Monitoring CD8 T cell responses to NY-ESO-1: 
correlation of humoral and cellular immune responses. Proc Natl Acad Sci U S A 
97: 4760-5 

159. Griffioen M, Borghi M, Schrier PI, Osanto S. 2001. Detection and quantification 
of CD8(+) T cells specific for HLA-A*0201-binding melanoma and viral peptides 
by the IFN-gamma-ELISPOT assay. Int J Cancer 93: 549-55 

160. Pittet MJ, Valmori D, Dunbar PR, Speiser DE, Lienard D, Lejeune F, 
Fleischhauer K, Cerundolo V, Cerottini JC, Romero P. 1999. High frequencies of 
naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human 
histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med 190: 705-
15 

161. Albert ML, Darnell RB. 2004. Paraneoplastic neurological degenerations: keys to 
tumour immunity. Nat Rev Cancer 4: 36-44 

162. Albert ML, Darnell JC, Bender A, Francisco LM, Bhardwaj N, Darnell RB. 1998. 
Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med 4: 
1321-4 

163. Mathew RM, Cohen AB, Galetta SL, Alavi A, Dalmau J. 2006. Paraneoplastic 
cerebellar degeneration: Yo-expressing tumor revealed after a 5-year follow-up 
with FDG-PET. J Neurol Sci 250: 153-5 



	  
	  

	  

222 

164. Darnell RB, DeAngelis LM. 1993. Regression of small-cell lung carcinoma in 
patients with paraneoplastic neuronal antibodies. Lancet 341: 21-2 

165. Horino T, Takao T, Yamamoto M, Geshi T, Hashimoto K. 2006. Spontaneous 
remission of small cell lung cancer: a case report and review in the literature. 
Lung Cancer 53: 249-52 

166. Clark WH, Jr., Elder DE, Guerry Dt, Braitman LE, Trock BJ, Schultz D, 
Synnestvedt M, Halpern AC. 1989. Model predicting survival in stage I 
melanoma based on tumor progression. J Natl Cancer Inst 81: 1893-904 

167. Clemente CG, Mihm MC, Jr., Bufalino R, Zurrida S, Collini P, Cascinelli N. 
1996. Prognostic value of tumor infiltrating lymphocytes in the vertical growth 
phase of primary cutaneous melanoma. Cancer 77: 1303-10 

168. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, 
Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G. 
2003. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N 
Engl J Med 348: 203-13 

169. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina 
D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, 
Ohtani H, Old LJ, Odunsi K. 2005. Intraepithelial CD8+ tumor-infiltrating 
lymphocytes and a high CD8+/regulatory T cell ratio are associated with 
favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102: 18538-43 

170. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H. 1998. 
CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human 
colorectal cancer. Cancer Res 58: 3491-4 

171. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, 
Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, 
Trajanoski Z, Fridman WH, Galon J. 2005. Effector memory T cells, early 
metastasis, and survival in colorectal cancer. N Engl J Med 353: 2654-66 

172. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, 
Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc 
PH, Trajanoski Z, Fridman WH, Pages F. 2006. Type, density, and location of 
immune cells within human colorectal tumors predict clinical outcome. Science 
313: 1960-4 

173. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, Delaney A, Jones SJ, Iqbal 
J, Weisenburger DD, Bast MA, Rosenwald A, Muller-Hermelink HK, Rimsza 
LM, Campo E, Delabie J, Braziel RM, Cook JR, Tubbs RR, Jaffe ES, Lenz G, 
Connors JM, Staudt LM, Chan WC, Gascoyne RD. 2010. Tumor-associated 
macrophages and survival in classic Hodgkin's lymphoma. N Engl J Med 362: 
875-85 



	  
	  

	  

223 

174. Scanlan MJ, Simpson AJ, Old LJ. 2004. The cancer/testis genes: review, 
standardization, and commentary. Cancer Immun 4: 1 

175. van Houdt IS, Sluijter BJ, Moesbergen LM, Vos WM, de Gruijl TD, Molenkamp 
BG, van den Eertwegh AJ, Hooijberg E, van Leeuwen PA, Meijer CJ, Oudejans 
JJ. 2008. Favorable outcome in clinically stage II melanoma patients is associated 
with the presence of activated tumor infiltrating T-lymphocytes and preserved 
MHC class I antigen expression. Int J Cancer 123: 609-15 

176. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan 
M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, 
Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W. 2004. 
Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune 
privilege and predicts reduced survival. Nat Med 10: 942-9 

177. Hiraoka N, Onozato K, Kosuge T, Hirohashi S. 2006. Prevalence of FOXP3+ 
regulatory T cells increases during the progression of pancreatic ductal 
adenocarcinoma and its premalignant lesions. Clin Cancer Res 12: 5423-34 

178. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta 
B. 2009. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic 
significance in colorectal cancer. J Clin Oncol 27: 186-92 

179. Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay Nel H, Mosseri 
V, Laccourreye O, Bruneval P, Fridman WH, Brasnu DF, Tartour E. 2006. 
Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and 
neck cancers. Clin Cancer Res 12: 465-72 

180. Buckowitz A, Knaebel HP, Benner A, Blaker H, Gebert J, Kienle P, von Knebel 
Doeberitz M, Kloor M. 2005. Microsatellite instability in colorectal cancer is 
associated with local lymphocyte infiltration and low frequency of distant 
metastases. Br J Cancer 92: 1746-53 

181. Dolcetti R, Viel A, Doglioni C, Russo A, Guidoboni M, Capozzi E, Vecchiato N, 
Macri E, Fornasarig M, Boiocchi M. 1999. High prevalence of activated 
intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in 
colorectal carcinomas with microsatellite instability. Am J Pathol 154: 1805-13 

182. Nakata B, Wang YQ, Yashiro M, Nishioka N, Tanaka H, Ohira M, Ishikawa T, 
Nishino H, Hirakawa K. 2002. Prognostic value of microsatellite instability in 
resectable pancreatic cancer. Clin Cancer Res 8: 2536-40 

183. Callaway MP, Briggs JC. 1989. The incidence of late recurrence (greater than 10 
years); an analysis of 536 consecutive cases of cutaneous melanoma. Br J Plast 
Surg 42: 46-9 



	  
	  

	  

224 

184. Weckermann D, Muller P, Wawroschek F, Harzmann R, Riethmuller G, 
Schlimok G. 2001. Disseminated cytokeratin positive tumor cells in the bone 
marrow of patients with prostate cancer: detection and prognostic value. J Urol 
166: 699-703 

185. Karrison TG, Ferguson DJ, Meier P. 1999. Dormancy of mammary carcinoma 
after mastectomy. J Natl Cancer Inst 91: 80-5 

186. Sagalowsky AI, Molberg K. 1999. Solitary metastasis of renal cell carcinoma to 
the contralateral adrenal gland 22 years after nephrectomy. Urology 54: 162 

187. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, 
Leitch M, Hoover S, Euhus D, Haley B, Morrison L, Fleming TP, Herlyn D, 
Terstappen LW, Fehm T, Tucker TF, Lane N, Wang J, Uhr JW. 2004. Circulating 
tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10: 8152-62 

188. Myron Kauffman H, McBride MA, Cherikh WS, Spain PC, Marks WH, Roza 
AM. 2002. Transplant tumor registry: donor related malignancies. 
Transplantation 74: 358-62 

189. MacKie RM, Reid R, Junor B. 2003. Fatal melanoma transferred in a donated 
kidney 16 years after melanoma surgery. N Engl J Med 348: 567-8 

190. Dhodapkar MV. 2005. Immune response to premalignancy: insights from patients 
with monoclonal gammopathy. Ann N Y Acad Sci 1062: 22-8 

191. Dhodapkar MV, Krasovsky J, Osman K, Geller MD. 2003. Vigorous 
premalignancy-specific effector T cell response in the bone marrow of patients 
with monoclonal gammopathy. J Exp Med 198: 1753-7 

192. Davis TA, Maloney DG, Czerwinski DK, Liles TM, Levy R. 1998. Anti-idiotype 
antibodies can induce long-term complete remissions in non-Hodgkin's 
lymphoma without eradicating the malignant clone. Blood 92: 1184-90 

193. Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature 454: 
428-35 

194. Balkwill F, Mantovani A. 2001. Inflammation and cancer: back to Virchow? 
Lancet 357: 539-45 

195. Bui JD, Schreiber RD. 2007. Cancer immunosurveillance, immunoediting and 
inflammation: independent or interdependent processes? Curr Opin Immunol 19: 
203-8 

196. Krelin Y, Voronov E, Dotan S, Elkabets M, Reich E, Fogel M, Huszar M, 
Iwakura Y, Segal S, Dinarello CA, Apte RN. 2007. Interleukin-1beta-driven 
inflammation promotes the development and invasiveness of chemical 
carcinogen-induced tumors. Cancer Res 67: 1062-71 



	  
	  

	  

225 

197. Betts G, Twohig J, Van den Broek M, Sierro S, Godkin A, Gallimore A. 2007. 
The impact of regulatory T cells on carcinogen-induced sarcogenesis. Br J Cancer 
96: 1849-54 

198. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M. 
2007. Gender disparity in liver cancer due to sex differences in MyD88-dependent 
IL-6 production. Science 317: 121-4 

199. Rakoff-Nahoum S, Medzhitov R. 2007. Regulation of spontaneous intestinal 
tumorigenesis through the adaptor protein MyD88. Science 317: 124-7 

200. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, 
Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, 
Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-
Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L. 
2007. Toll-like receptor 4-dependent contribution of the immune system to 
anticancer chemotherapy and radiotherapy. Nat Med 13: 1050-9 

201. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo 
M, Mignot G, Panaretakis T, Casares N, Metivier D, Larochette N, van Endert P, 
Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G. 2007. Calreticulin exposure 
dictates the immunogenicity of cancer cell death. Nat Med 13: 54-61 

202. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, 
Panaretakis T, Mignot G, Ullrich E, Perfettini JL, Schlemmer F, Tasdemir E, Uhl 
M, Genin P, Civas A, Ryffel B, Kanellopoulos J, Tschopp J, Andre F, Lidereau R, 
McLaughlin NM, Haynes NM, Smyth MJ, Kroemer G, Zitvogel L. 2009. 
Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-
dependent adaptive immunity against tumors. Nat Med 15: 1170-8 

203. Calzascia T, Pellegrini M, Hall H, Sabbagh L, Ono N, Elford AR, Mak TW, 
Ohashi PS. 2007. TNF-alpha is critical for antitumor but not antiviral T cell 
immunity in mice. J Clin Invest 117: 3833-45 

204. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, 
Robinson SC, Balkwill FR. 2008. "Re-educating" tumor-associated macrophages 
by targeting NF-kappaB. J Exp Med 205: 1261-8 

205. Hedvat M, Huszar D, Herrmann A, Gozgit JM, Schroeder A, Sheehy A, Buettner 
R, Proia D, Kowolik CM, Xin H, Armstrong B, Bebernitz G, Weng S, Wang L, 
Ye M, McEachern K, Chen H, Morosini D, Bell K, Alimzhanov M, Ioannidis S, 
McCoon P, Cao ZA, Yu H, Jove R, Zinda M. 2009. The JAK2 inhibitor 
AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. 
Cancer Cell 16: 487-97 

206. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, 
Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh 



	  
	  

	  

226 

AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, 
Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, 
Nichol GM, Hoos A, Urba WJ. 2010. Improved Survival with Ipilimumab in 
Patients with Metastatic Melanoma. N Engl J Med  

207. Coughlin CM, Salhany KE, Gee MS, LaTemple DC, Kotenko S, Ma X, Gri G, 
Wysocka M, Kim JE, Liu L, Liao F, Farber JM, Pestka S, Trinchieri G, Lee WM. 
1998. Tumor cell responses to IFNgamma affect tumorigenicity and response to 
IL-12 therapy and antiangiogenesis. Immunity 9: 25-34 

208. Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, 
Zinkernagel RM, Aguet M. 1993. Immune response in mice that lack the 
interferon-gamma receptor. Science 259: 1742-5 

209. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den 
Eynde B, Knuth A, Boon T. 1991. A gene encoding an antigen recognized by 
cytolytic T lymphocytes on a human melanoma. Science 254: 1643-7 

210. Lurquin C, Van Pel A, Mariame B, De Plaen E, Szikora JP, Janssens C, 
Reddehase MJ, Lejeune J, Boon T. 1989. Structure of the gene of tum- 
transplantation antigen P91A: the mutated exon encodes a peptide recognized 
with Ld by cytolytic T cells. Cell 58: 293-303 

211. Van den Eynde B, Lethe B, Van Pel A, De Plaen E, Boon T. 1991. The gene 
coding for a major tumor rejection antigen of tumor P815 is identical to the 
normal gene of syngeneic DBA/2 mice. J Exp Med 173: 1373-84 

212. Urban JL, Holland JM, Kripke ML, Schreiber H. 1982. Immunoselection of tumor 
cell variants by mice suppressed with ultraviolet radiation. J Exp Med 156: 1025-
41 

213. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, 
Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, 
Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, 
Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, 
Kinzler KW, Velculescu VE. 2006. The consensus coding sequences of human 
breast and colorectal cancers. Science 314: 268-74 

214. Segal NH, Parsons DW, Peggs KS, Velculescu V, Kinzler KW, Vogelstein B, 
Allison JP. 2008. Epitope landscape in breast and colorectal cancer. Cancer Res 
68: 889-92 

215. Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M. 
1994. Functional role of type I and type II interferons in antiviral defense. Science 
264: 1918-21 



	  
	  

	  

227 

216. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25: 1754-60 

217. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, 
Weinstock GM, Wilson RK, Ding L. 2009. VarScan: variant detection in 
massively parallel sequencing of individual and pooled samples. Bioinformatics 
25: 2283-5 

218. Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, 
Brunak S, Lund O. 2003. Reliable prediction of T-cell epitopes using neural 
networks with novel sequence representations. Protein Sci 12: 1007-17 

219. Ranganath S, Ouyang W, Bhattarcharya D, Sha WC, Grupe A, Peltz G, Murphy 
KM. 1998. GATA-3-dependent enhancer activity in IL-4 gene regulation. J 
Immunol 161: 3822-6 

220. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, 
Stratton MR. 2004. A census of human cancer genes. Nat Rev Cancer 4: 177-83 

221. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, 
Teague J, Futreal PA, Stratton MR, Wooster R. 2004. The COSMIC (Catalogue 
of Somatic Mutations in Cancer) database and website. Br J Cancer 91: 355-8 

222. Chen AC, Herschman HR. 1989. Tumorigenic methylcholanthrene transformants 
of C3H/10T1/2 cells have a common nucleotide alteration in the c-Ki-ras gene. 
Proc Natl Acad Sci U S A 86: 1608-11 

223. Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S, Mercer KL, 
Grochow R, Hock H, Crowley D, Hingorani SR, Zaks T, King C, Jacobetz MA, 
Wang L, Bronson RT, Orkin SH, DePinho RA, Jacks T. 2004. Endogenous 
oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and 
developmental defects. Cancer Cell 5: 375-87 

224. Kirsch DG, Dinulescu DM, Miller JB, Grimm J, Santiago PM, Young NP, 
Nielsen GP, Quade BJ, Chaber CJ, Schultz CP, Takeuchi O, Bronson RT, 
Crowley D, Korsmeyer SJ, Yoon SS, Hornicek FJ, Weissleder R, Jacks T. 2007. 
A spatially and temporally restricted mouse model of soft tissue sarcoma. Nat 
Med 13: 992-7 

225. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, 
Dunford-Shore BH, McGrath S, Hickenbotham M, Cook L, Abbott R, Larson DE, 
Koboldt DC, Pohl C, Smith S, Hawkins A, Abbott S, Locke D, Hillier LW, Miner 
T, Fulton L, Magrini V, Wylie T, Glasscock J, Conyers J, Sander N, Shi X, 
Osborne JR, Minx P, Gordon D, Chinwalla A, Zhao Y, Ries RE, Payton JE, 
Westervelt P, Tomasson MH, Watson M, Baty J, Ivanovich J, Heath S, Shannon 
WD, Nagarajan R, Walter MJ, Link DC, Graubert TA, DiPersio JF, Wilson RK. 



	  
	  

	  

228 

2008. DNA sequencing of a cytogenetically normal acute myeloid leukaemia 
genome. Nature 456: 66-72 

226. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt 
DC, Fulton RS, Delehaunty KD, McGrath SD, Fulton LA, Locke DP, Magrini VJ, 
Abbott RM, Vickery TL, Reed JS, Robinson JS, Wylie T, Smith SM, Carmichael 
L, Eldred JM, Harris CC, Walker J, Peck JB, Du F, Dukes AF, Sanderson GE, 
Brummett AM, Clark E, McMichael JF, Meyer RJ, Schindler JK, Pohl CS, Wallis 
JW, Shi X, Lin L, Schmidt H, Tang Y, Haipek C, Wiechert ME, Ivy JV, Kalicki J, 
Elliott G, Ries RE, Payton JE, Westervelt P, Tomasson MH, Watson MA, Baty J, 
Heath S, Shannon WD, Nagarajan R, Link DC, Walter MJ, Graubert TA, 
DiPersio JF, Wilson RK, Ley TJ. 2009. Recurring mutations found by sequencing 
an acute myeloid leukemia genome. N Engl J Med 361: 1058-66 

227. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan 
MD, Fulton RS, Fulton LL, Abbott RM, Hoog J, Dooling DJ, Koboldt DC, 
Schmidt H, Kalicki J, Zhang Q, Chen L, Lin L, Wendl MC, McMichael JF, 
Magrini VJ, Cook L, McGrath SD, Vickery TL, Appelbaum E, Deschryver K, 
Davies S, Guintoli T, Crowder R, Tao Y, Snider JE, Smith SM, Dukes AF, 
Sanderson GE, Pohl CS, Delehaunty KD, Fronick CC, Pape KA, Reed JS, 
Robinson JS, Hodges JS, Schierding W, Dees ND, Shen D, Locke DP, Wiechert 
ME, Eldred JM, Peck JB, Oberkfell BJ, Lolofie JT, Du F, Hawkins AE, 
O'Laughlin MD, Bernard KE, Cunningham M, Elliott G, Mason MD, Thompson 
DM, Jr., Ivanovich JL, Goodfellow PJ, Perou CM, Weinstock GM, Aft R, Watson 
M, Ley TJ, Wilson RK, Mardis ER. 2010. Genome remodelling in a basal-like 
breast cancer metastasis and xenograft. Nature 464: 999-1005 

228. Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, 
Gelmon K, Guliany R, Senz J, Steidl C, Holt RA, Jones S, Sun M, Leung G, 
Moore R, Severson T, Taylor GA, Teschendorff AE, Tse K, Turashvili G, Varhol 
R, Warren RL, Watson P, Zhao Y, Caldas C, Huntsman D, Hirst M, Marra MA, 
Aparicio S. 2009. Mutational evolution in a lobular breast tumour profiled at 
single nucleotide resolution. Nature 461: 809-13 

229. Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, Yue P, Zhang Y, Pant KP, 
Bhatt D, Ha C, Johnson S, Kennemer MI, Mohan S, Nazarenko I, Watanabe C, 
Sparks AB, Shames DS, Gentleman R, de Sauvage FJ, Stern H, Pandita A, 
Ballinger DG, Drmanac R, Modrusan Z, Seshagiri S, Zhang Z. 2010. The 
mutation spectrum revealed by paired genome sequences from a lung cancer 
patient. Nature 465: 473-7 

230. Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A, Jones D, Lin 
ML, Beare D, Lau KW, Greenman C, Varela I, Nik-Zainal S, Davies HR, 
Ordonez GR, Mudie LJ, Latimer C, Edkins S, Stebbings L, Chen L, Jia M, Leroy 
C, Marshall J, Menzies A, Butler A, Teague JW, Mangion J, Sun YA, 
McLaughlin SF, Peckham HE, Tsung EF, Costa GL, Lee CC, Minna JD, Gazdar 
A, Birney E, Rhodes MD, McKernan KJ, Stratton MR, Futreal PA, Campbell PJ. 



	  
	  

	  

229 

2010. A small-cell lung cancer genome with complex signatures of tobacco 
exposure. Nature 463: 184-90 

231. Totoki Y, Tatsuno K, Yamamoto S, Arai Y, Hosoda F, Ishikawa S, Tsutsumi S, 
Sonoda K, Totsuka H, Shirakihara T, Sakamoto H, Wang L, Ojima H, Shimada 
K, Kosuge T, Okusaka T, Kato K, Kusuda J, Yoshida T, Aburatani H, Shibata T. 
2011. High-resolution characterization of a hepatocellular carcinoma genome. Nat 
Genet 43: 464-9 

232. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, Escaramis 
G, Jares P, Bea S, Gonzalez-Diaz M, Bassaganyas L, Baumann T, Juan M, Lopez-
Guerra M, Colomer D, Tubio JM, Lopez C, Navarro A, Tornador C, Aymerich M, 
Rozman M, Hernandez JM, Puente DA, Freije JM, Velasco G, Gutierrez-
Fernandez A, Costa D, Carrio A, Guijarro S, Enjuanes A, Hernandez L, Yague J, 
Nicolas P, Romeo-Casabona CM, Himmelbauer H, Castillo E, Dohm JC, de 
Sanjose S, Piris MA, de Alava E, San Miguel J, Royo R, Gelpi JL, Torrents D, 
Orozco M, Pisano DG, Valencia A, Guigo R, Bayes M, Heath S, Gut M, Klatt P, 
Marshall J, Raine K, Stebbings LA, Futreal PA, Stratton MR, Campbell PJ, Gut I, 
Lopez-Guillermo A, Estivill X, Montserrat E, Lopez-Otin C, Campo E. 2011. 
Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic 
leukaemia. Nature 475: 101-5 

233. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, 
Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR, Ye K, Alipaz J, 
Bauer MJ, Beare D, Butler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko-
Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, 
Jia M, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning Z, Royce 
T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, 
Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton 
MR. 2010. A comprehensive catalogue of somatic mutations from a human 
cancer genome. Nature 463: 191-6 

234. Yewdell JW. 2006. Confronting complexity: real-world immunodominance in 
antiviral CD8+ T cell responses. Immunity 25: 533-43 

235. Foley EJ. 1953. Antigenic properties of methylcholanthrene-induced tumors in 
mice of the strain of origin. Cancer Res 13: 835-7 

236. Prehn RT, Main JM. 1957. Immunity to methylcholanthrene-induced sarcomas. J 
Natl Cancer Inst 18: 769-78 

237. Old LJ, Boyse EA. 1964. Immunology of Experimental Tumors. Annu Rev Med 
15: 167-86 

238. Ikeda H, Ohta N, Furukawa K, Miyazaki H, Wang L, Kuribayashi K, Old LJ, 
Shiku H. 1997. Mutated mitogen-activated protein kinase: a tumor rejection 
antigen of mouse sarcoma. Proc Natl Acad Sci U S A 94: 6375-9 



	  
	  

	  

230 

239. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. 1991. 
CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174: 
561-9 

240. Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, 
Golstein P. 1987. A new member of the immunoglobulin superfamily--CTLA-4. 
Nature 328: 267-70 

241. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, 
Thompson CB, Griesser H, Mak TW. 1995. Lymphoproliferative disorders with 
early lethality in mice deficient in Ctla-4. Science 270: 985-8 

242. Ise W, Kohyama M, Nutsch KM, Lee HM, Suri A, Unanue ER, Murphy TL, 
Murphy KM. 2010. CTLA-4 suppresses the pathogenicity of self antigen-specific 
T cells by cell-intrinsic and cell-extrinsic mechanisms. Nat Immunol 11: 129-35 

243. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, 
Nomura T, Sakaguchi S. 2008. CTLA-4 control over Foxp3+ regulatory T cell 
function. Science 322: 271-5 

244. Egen JG, Kuhns MS, Allison JP. 2002. CTLA-4: new insights into its biological 
function and use in tumor immunotherapy. Nat Immunol 3: 611-8 

245. Peggs KS, Quezada SA, Allison JP. 2008. Cell intrinsic mechanisms of T-cell 
inhibition and application to cancer therapy. Immunol Rev 224: 141-65 

246. Sotomayor EM, Borrello I, Tubb E, Allison JP, Levitsky HI. 1999. In vivo 
blockade of CTLA-4 enhances the priming of responsive T cells but fails to 
prevent the induction of tumor antigen-specific tolerance. Proc Natl Acad Sci U S 
A 96: 11476-81 

247. Shrikant P, Khoruts A, Mescher MF. 1999. CTLA-4 blockade reverses CD8+ T 
cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. 
Immunity 11: 483-93 

248. Kwon ED, Hurwitz AA, Foster BA, Madias C, Feldhaus AL, Greenberg NM, 
Burg MB, Allison JP. 1997. Manipulation of T cell costimulatory and inhibitory 
signals for immunotherapy of prostate cancer. Proc Natl Acad Sci U S A 94: 
8099-103 

249. Leach DR, Krummel MF, Allison JP. 1996. Enhancement of antitumor immunity 
by CTLA-4 blockade. Science 271: 1734-6 

250. van Elsas A, Hurwitz AA, Allison JP. 1999. Combination immunotherapy of B16 
melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and 
granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines 



	  
	  

	  

231 

induces rejection of subcutaneous and metastatic tumors accompanied by 
autoimmune depigmentation. J Exp Med 190: 355-66 

251. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, 
Ahmed R. 2006. Restoring function in exhausted CD8 T cells during chronic viral 
infection. Nature 439: 682-7 

252. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. 2002. Involvement 
of PD-L1 on tumor cells in the escape from host immune system and tumor 
immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 99: 12293-7 

253. Strome SE, Dong H, Tamura H, Voss SG, Flies DB, Tamada K, Salomao D, 
Cheville J, Hirano F, Lin W, Kasperbauer JL, Ballman KV, Chen L. 2003. B7-H1 
blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. 
Cancer Res 63: 6501-5 

254. Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies 
DB, Lau JS, Zhu G, Tamada K, Chen L. 2005. Blockade of B7-H1 and PD-1 by 
monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65: 
1089-96 

255. Curran MA, Montalvo W, Yagita H, Allison JP. 2010. PD-1 and CTLA-4 
combination blockade expands infiltrating T cells and reduces regulatory T and 
myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A 107: 4275-
80 

256. Zang X, Allison JP. 2007. The B7 family and cancer therapy: costimulation and 
coinhibition. Clin Cancer Res 13: 5271-9 

257. Edelson BT, Kc W, Juang R, Kohyama M, Benoit LA, Klekotka PA, Moon C, 
Albring JC, Ise W, Michael DG, Bhattacharya D, Stappenbeck TS, Holtzman MJ, 
Sung SS, Murphy TL, Hildner K, Murphy KM. 2010. Peripheral CD103+ 
dendritic cells form a unified subset developmentally related to CD8alpha+ 
conventional dendritic cells. J Exp Med 207: 823-36 

258. Chambers CA, Kuhns MS, Egen JG, Allison JP. 2001. CTLA-4-mediated 
inhibition in regulation of T cell responses: mechanisms and manipulation in 
tumor immunotherapy. Annu Rev Immunol 19: 565-94 

259. Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E, Ku GY, Jungbluth AA, 
Segal NH, Rasalan TS, Manukian G, Xu Y, Roman RA, Terzulli SL, Heywood 
M, Pogoriler E, Ritter G, Old LJ, Allison JP, Wolchok JD. 2008. CTLA-4 
blockade enhances polyfunctional NY-ESO-1 specific T cell responses in 
metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci U S A 105: 
20410-5 



	  
	  

	  

232 

260. Callahan MK, Wolchok JD, Allison JP. 2010. Anti-CTLA-4 antibody therapy: 
immune monitoring during clinical development of a novel immunotherapy. 
Semin Oncol 37: 473-84 

261. Stratton MR. 2011. Exploring the genomes of cancer cells: progress and promise. 
Science 331: 1553-8 

262. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, 
Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, 
Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, 
Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, 
Pethiyagoda CL, Pant PV, Ballinger DG, Sparks AB, Hartigan J, Smith DR, Suh 
E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, 
Velculescu VE, Vogelstein B. 2007. The genomic landscapes of human breast and 
colorectal cancers. Science 318: 1108-13 

263. Stratton MR, Campbell PJ, Futreal PA. 2009. The cancer genome. Nature 458: 
719-24 

 
 


	Tumor Antigens Revealed by Exome Seqeuncing Drive Editing of Tumor Immunogenicity
	Recommended Citation

	Microsoft Word - MDV Thesis Final.doc

