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Abstract

In this paper, we revisit the question of how much buffer an IP router should allocate for its
output link. For a long time, the intuitive answer of setting the buffer size to the bitrate-delay
product has been widely regarded as reasonable. Recent studies of interaction between
queueing at IP routers and TCP congestion control proposed alternative answers. First, we
expose and explain contradictions between existing guidelines for link buffer sizing. Then,
we argue that the problem of link buffer sizing needs a different formulation. In particular,
the chosen buffer size should accommodate not only common versions of TCP but also
UDP traffic. Besides, our new formulation of the problem contains an explicit constraint of
not engaging IP routers in any additional signaling. We conclude the paper by outlining a
promising direction for solving the reformulated problem.
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Abstract

In this paper, we revisit the question of how much buffer an IP router should allocate for its
output link. For a long time, the intuitive answer of setting the buffer size to the bitrate-delay
product has been widely regarded as reasonable. Recent studies of interaction between
queueing at IP routers and TCP congestion control proposed alternative answers. First, we
expose and explain contradictions between existing guidelines for link buffer sizing. Then,
we argue that the problem of link buffer sizing needs a different formulation. In particular,
the chosen buffer size should accommodate not only common versions of TCP but also
UDP traffic. Besides, our new formulation of the problem contains an explicit constraint of
not engaging IP routers in any additional signaling. We conclude the paper by outlining a
promising direction for solving the reformulated problem.

1. Introduction

Simplicity of IP (Internet Protocol) [19] is often cited as the primary reason for the tremendous
growth of the Internet. IP merely defines a format of datagrams. End systems communicate by
sending datagrams over a series of links and routers. IP expects from routers nothing but best-effort
forwarding of datagrams to appropriate output links. Apart from enabling the forwarding function,
IP networks require no signaling between routers.

Although the minimal signaling promotes quick deployment, IP networks can suffer from con-
gestion when a router has to buffer or discard datagrams destined for a busy output link. To avoid
persistent congestion, end systems are expected to reduce their communication rates upon inferring
congestion from implicit signs such as datagram loss. Many applications rely on TCP (Transmis-
sion Control Protocol) [21] for congestion control. Other applications communicate over UDP
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(User Datagram Protocol) [20] and need to control congestion on their own; the choice of UDP of-
ten stems from dissatisfaction with TCP properties such as high variability of communication rates
on short timescales or extra delay caused by retransmission-based in-order delivery.

End-to-end protocols for congestion control are based on perpetual probing for available capac-
ity. Even with a static set of end-to-end connections sharing a bottleneck link, the total communica-
tion rate of the connections does not converge to a single value but oscillates within a range [7]. If
the bottleneck link has a small buffer, the oscillations can lead to incomplete utilization of the link.
If the buffer is large, queueing at the link can create unnecessary delays; for example, loss-driven
congestion control can keep a big portion of a Droptail FIFO (First-In First-Out) buffer permanently
occupied and thereby delay all forwarded datagrams.

The question of how much buffer an IP router should allocate for its output link has been tra-
ditionally formulated as a problem of fully utilizing the link without excessive queueing when the
link becomes a bottleneck. For a long time, a widely accepted solution was to set the buffer size to
the product of the link bitrate and round-trip propagation delay of a TCP connection. The guideline
is easily derivable from a model where the TCP connection transfers a long file, is the only source
of traffic on the bottleneck link, and halves its load on the link whenever it overflows the Droptail
FIFO buffer. More elaborate recent analyses of models where multiple TCP connections share a
bottleneck link indicate that the traditional rule of thumb has to be adjusted. Since different TCP
connections may reduce their loads asynchronously, one guideline proposes decreasing the buffer
size as the number of connections increases [3]. Another guideline suggests that the optimal buffer
size grows proportionally to the number of TCP connections [17].

In this paper, we explore and explain contradictions between existing guidelines for link buffer
sizing. After tracing the contradictions to differences in formulations of the link buffer sizing prob-
lem, we derive a consistent guideline from a more comprehensive model that reconciles contradic-
tory assumptions made by the existing solutions. Then, we argue that even the reconciled model is
too limited in scope. In particular, it is imperative that link buffer sizing should accommodate not
only common versions of TCP but also UDP traffic. We propose a new formulation of the problem
that incorporates this requirement. The new formulation also contains an explicit constraint of not
engaging IP routers in any additional signaling. The constraint ensures that proposed solutions can
be implemented in practice without undermining the lightweight design of IP networks. The paper
also outlines a promising direction for solving the reformulated problem of link buffer sizing.

The rest of the paper is structured as follows. Section 2 reviews existing guidelines for link
buffer sizing. In Section 3, we expose, explain, and reconcile contradictions between the existing
guidelines. This section also shows that even the reconciled model is insufficient. Then, Section 4
provides a new formulation for the problem of link buffer sizing and discusses a promising avenue
for solving it. Finally, Section 5 summarizes contributions of the paper.

2. Existing Guidelines for Link Buffer Sizing

It is the most appropriate to start our analysis of guidelines for link buffer sizing at the traditional
rule of thumb that prescribes setting the buffer size to the bitrate-delay product. Although the
guideline is often attributed to a 1994 paper by Villamizar and Song [26], there exist much earlier
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references to this rule. For example, Jacobson’s 1990 description of TCP Reno clearly identifies the
bitrate-delay product as a condition for full utilization of a bottleneck link [14].

The bitrate-delay-product guideline is easily derivable from a model where the bottleneck link
has a Droptail FIFO buffer and serves only one connection. The model assumes that the connection
operates with a repetitive pattern where the sender halves its load on the network upon overflow-
ing the buffer and then increases the load additively until the next overflow occurs [7]. The as-
sumed additive-increase multiplicative-decrease (AIMD) pattern approximates well the congestion-
avoidance mode in such versions of TCP as Reno [14] and NewReno [11]. After an overflow of the
link buffer, the sender decreases its load on the network from ��� to � . If the product of the link
bitrate and round-trip propagation delay of the connection equals � , then the decrease drains the
buffer completely without underutilizing the link. Since the buffer size in this setting also equals � ,
the analysis leads to the guideline of setting the link buffer size to the bitrate-delay product.

The simple model above considers only one TCP connection. How much buffer should a bot-
tleneck link have if it serves multiple TCP connections? Recent studies of this question offer two
mutually contradictory guidelines: over-square-root and connection-proportional allocation.

Over-square-root generalizes the traditional rule of thumb by prescribing to set the link buffer
size to the bitrate-delay product divided by � � where � is the number of TCP connections [3]. The
guideline is derived from evidence that not all the connections lose datagrams during an overflow of
the buffer. Due to the consequent asynchrony of individual load reductions, the amplitude of total
load oscillations is smaller for a larger number of connections [3, 24]. Hence, the over-square-root
guideline proposes decreasing the buffer size as the number of TCP connections increases.

Connection-proportional allocation takes an opposite view and suggests that the link buffer
size should be proportional to the number of TCP connections [17]. This alternative guideline
stems from an observation that throughput of a TCP connection can suffer from a high loss rate and
frequent retransmission timeouts if the link buffer does not accommodate at least few datagrams for
each of the TCP connections.

3. Contradictions Reconciled

Although over-square-root and connection-proportional allocation agree that the traditional rule of
thumb is inadequate for situations with multiple TCP connections, the new guidelines conflict on
whether the buffer size should be decreased or increased. Furthermore, whereas over-square-root
is just a refinement of the bitrate-delay-product rule, connection-proportional allocation makes no
reference to either the link bitrate or network propagation delays. Which of the guidelines is correct?
What are the reasons for the contradictions? We answer these questions in Sections 3.1 and 3.2
respectively. After tracing the contradictions to differences in assumptions made by the guidelines,
Section 3.3 derives a consistent guideline from a more comprehensive model that reconciles the
contradictory assumptions.
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Figure 1: Traditional single-bottleneck network topology.

3.1. Experimental Validation

Since practice is the best judge of theory, we evaluate validity of over-square-root and connection-
proportional allocation by conducting ns-2 [18] simulations in settings close to the assumed by
the guidelines. Figure 1 shows the traditional network topology with a single bottleneck link in
the middle. End systems ��� and ��� host respectively the sending and receiving ends of unicast
applications. The value of � varies from 1 to � ; hence, the network contains ��� end systems. All
the applications communicate data via datagrams of size 1500 bytes. The link from router �
	 to
router ��� is a bottleneck for each of the applications. The bottleneck link has a propagation delay
of 50 ms. Each of the other links has a propagation delay of 0.5 ms and a bitrate that is twice larger
than the bottleneck bitrate. Every link uses FIFO Droptail buffering.

In the first series of our experiments, each of the � applications transfers a long file over TCP
NewReno. We examine three values of the bottleneck bitrate: 100 Mbps, 10 Mbps, and 1 Mbps.

For a file transfer application, full utilization of the bottleneck link is not a goal in itself. What
is important for the application is the amount of time it takes for the network to deliver the complete
file from the sender to the receiver. Hence, the buffer size of the bottleneck link is optimal for a file
transfer if the buffer supports the largest end-to-end goodput where end-to-end goodput is defined
as the ratio of the file size to the file delivery time. In addition to end-to-end goodput, the end
systems track loss rates and round-trip times to shed more light on queueing at the bottleneck link.
We measure all the parameters over the whole experiment duration of 200 seconds.

Figure 2 presents our results. For the bottleneck bitrate of 100 Mbps, the original rule of thumb
approximates the optimal buffer size precisely. The top graph in Figure 2a offers no solid jus-
tification for making the buffer size either smaller or larger than the bitrate-delay product. For
the bottleneck bitrate of 10 Mbps, the graphs exhibit a different trend after the number of TCP
NewReno connections exceeds 50. Instead of remaining constant at the bitrate-delay product, the
optimal buffer size starts growing. The growth is approximately linear and therefore consistent
with the connection-proportional allocation guideline. The bottleneck bitrate of 1 Mbps provides
even stronger support for connection-proportional allocation. The top graph in Figure 2c shows that
the optimal buffer size is approximately proportional to the number of TCP connections over the
whole explored range from 1 to 100 connections. Note that neither of the experiments validates
the over-square-root guideline that prescribes a smaller buffer size for a larger number of long file
transfers.
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Figure 2: Experimental validation of the existing guidelines for link buffer sizing.
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3.2. Analysis of Observed Results

First of all, what is wrong with the over-square-root guideline? Why does our evaluation show
no reasons for decreasing the buffer size as the number of TCP connections grows? Appenzeller,
Keslassy, and McKeown derive the guideline for a backbone link that serves tens of thousands con-
nections. The proposers of over-square-root also indicate that the lack of reduction synchronization
appears and reveals the � � formula only when � is at least on the order of thousand connec-
tions [3]. Hence, to check the validity of the guideline for backbone links, the ranges explored in
Figure 2 should be extended to include thousands of connections. Simulating such large numbers
of long file transfers over a high-speed link was a feat that we were not able to achieve in ns-2.
Furthermore, the situation assumed by the over-square-root model is not easy to find in the modern
Internet where bottlenecks are typically not backbone links but slower access links that serve fewer
concurrent connections.

Whereas our results provide no sound basis for judging correctness of the over-square-root
guideline for a backbone bottleneck link, Figure 2 shows clearly that over-square-root fails in many
realistic scenarios. In particular, when 100 TCP connections share the 100 Mbps bottleneck link, the
optimal buffer size equals the bitrate-delay product; however, over-square-root sets the buffer size
to 10% of the bitrate-delay product and leads to underutilization of the bottleneck link and thereby
to lower goodput of the file transfers.

With the � � refinement out of our way, let us now consider the contradiction between the
bitrate-delay product and connection-proportional allocation. Figure 2 indicates that validity of
these guidelines depends on the ratio of the bitrate-delay product to the number of TCP NewReno
connections. If the ratio is high, the bitrate-delay product is a precise approximation for the optimal
buffer size. If the ratio is low, the optimal buffer size is consistent with the connection-proportional
allocation guideline. What is the reason for such dichotomy? What makes the ratio an important
parameter? Our analysis confirms correctness of the logical derivations that led to the discoveries of
both guidelines. The contradictory conclusions are due to differences in the assumptions made by
the guidelines. The original rule of thumb assumes that a TCP connection operates uninterruptedly
in the congestion-avoidance mode. This assumption can be wrong if the bottleneck link buffer
does not accommodate at least few datagrams for each TCP connection. Instead, the connections
experience high loss rates that lead to frequent retransmission timeouts and large reductions in
communication rates. On the other hand, the guideline of connection-proportional allocation strives
to keep each TCP connection in the congestion-avoidance mode but does not concern itself with
utilizing the bottleneck link completely. Hence, if the ratio of the bitrate-delay product to the number
of file transfers is high, connection-proportional allocation yields underutilization of the link and
thereby suboptimal goodput of the file transfers.

3.3. Reconciling Guideline

Section 3.2 traced the contradictions between the existing guidelines for link buffer sizing to as-
sumptions made by the guidelines. Now, we construct a consistent guideline from a more compre-
hensive model that reconciles the contradictory assumptions. The model combines the requirement
of keeping each TCP connection in the congestion-avoidance mode with the goal of utilizing the bot-
tleneck link completely. Then, a simple derivation leads us to the following reconciling guideline:
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set the link buffer size to the maximum of the bitrate-delay product and connection-proportional
buffer size.

Is the constructed guideline the final word in link buffer sizing? Did the previous paragraph just
solve the link buffer sizing problem for good? Even our own answer to the above questions is not
affirmative. First, the new guideline does not reflect the asynchrony of individual load reductions
in scenarios where the number of TCP connections is at least on the order of thousands. This
particular complication is not significant in our opinion. One can amend the reconciling guideline
by suggesting that in situations with so many TCP connections, the link buffer size should be set to
the maximum of the values prescribed by over-square-root and connection-proportional allocation.
However, there exist more important reasons to doubt the overall approach behind the new guideline
as well as the guidelines it reconciles.

Figure 2 reports the optimal buffer size not only for NewReno but also for Vegas version of
TCP [6]. With TCP Vegas, the optimal buffer size does not depend on the bitrate-delay product at
all and always remains approximately proportional to the number of connections. Vegas is different
from Reno and NewReno in two respects. First, Vegas uses delay variations as an implicit sign of
congestion and can curb transmission without overflowing the bottleneck link buffer. Second, Ve-
gas uses an additive-increase additive-decrease algorithm in the congestion-avoidance mode. The
second difference implies that the amplitude of the total load oscillations under TCP Vegas is pro-
portional to the number of connections. Consequently, the optimal buffer size is also proportional
to the number of TCP Vegas connections. This conclusion is interesting because it shows that the
reconciling guideline fails to offer a tight upper bound on the buffer requirements of TCP Vegas.
More importantly, the conclusion highlights the limited scope of our problem formulation: Find the
size of the Droptail FIFO buffer that optimizes performance for a specific application of long file
transfer over a common version of TCP. We believe that the problem of link buffer sizing should be
reformulated in a more general context; in particular, the assumed model should account for needs
of different applications.

4. New Problem Formulation for Link Buffer Sizing

At first glance, the task of constructing a general but solvable formulation for the link buffer sizing
problem seems daunting. In the most general case, the correct answer depends on too many factors
such as policies used for link scheduling [8, 13] and datagram discard [12, 15, 25]. We do not
attempt to tackle the most general case; we still consider only Droptail FIFO buffers, which are
the most typical in the modern Internet. Instead, we focus our attention on diversity of Internet
applications in Section 4.1. Then, Section 4.2 enhances the new formulation of the link buffer
sizing problem with an explicit constraint of not engaging IP routers in any additional signaling.

4.1. Accounting for Diverse Needs of Internet Applications

Transferring a long file over TCP is a common application in the Internet. It is perhaps also the
application where TCP congestion control is the most relevant for the problem of link buffer sizing.
Since queueing delay at the bottleneck link is substantially smaller than time to deliver a long file,
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utilization of the bottleneck link becomes the primary factor affecting the end-to-end goodput of
long file transfers. This is the reason why the link buffer sizing problem is traditionally formulated
as a problem of fully utilizing the bottleneck link without unnecessary queueing.

Figure 2c clearly demonstrates that setting the buffer size to the value optimal for long file
transfers can result in long queueing delay on the order of seconds. However, extensive queueing
can have a devastating effect on short file transfers over TCP and interactive streaming over UDP.
Hence, it is imperative that the reformulated problem of link buffer sizing addresses needs of these
other important types of Internet applications.

The optimal trade-off between the bottleneck link utilization and queueing delay is different
for short file transfers over TCP. It has been shown that a small constant buffer size is sufficient
to optimize performance of the short transfers regardless of their number [2, 3, 4]. Interactive
streaming puts even more emphasis on small delays. In particular, delivering datagrams within
round-trip time of few hundred milliseconds becomes essential because larger delays make the
interaction uncomfortable for human perception.

To assess whether and how a single buffer size can reconcile the divergent optimization objec-
tives characteristic for different types of Internet applications, we conduct ns-2 experiments in the
multiple-bottleneck topology depicted in Figure 3. The topology corresponds to a common Inter-
net scenario where backbone links are utilized lightly, and access links constitute bottlenecks. The
network contains four routers � 	 , � � , ��� , and ��� and carries balanced bidirectional traffic on each
link. There are three groups of traffic: between end systems � � and ��� , between end systems

� �
and � � , and between end systems � � and � � . The value of � varies from 1 to 25. The follow-
ing applications generate traffic in each group: an interactive video application transmitting one
constant-bit-rate 2 Mbps stream over UDP in each direction; eight long file transfers over TCP, four
in each direction; short web downloads, twenty sources in each direction. For the web downloads,
every source periodically generates a 36-KB data burst, transmits it over TCP, and then goes idle
for a time interval that has a duration distributed exponentially with the mean of 1 second. All the
applications use datagrams of size 1500 bytes. The applications that rely on TCP employ either
NewReno or Vegas versions of it. Each of the links uses FIFO Droptail buffering. Note that all the
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applications have the same round-trip propagation delay. Hence, the bitrate-delay product for a link
is the same for every application using this link. Our evaluation focuses on the applications transmit-
ting data from end systems � � . Links � 	 - ��� , � � - � � , � � - � � , and ��� - � 	 are the four bottlenecks
for these applications. Once again, we measure link loss rates, queueing delays, and utilizations
over the whole experiment duration of 200 seconds.

Figure 4 reports the results measured for links � 	 - ��� and � � - � � when the buffer size for link
� 	 - � � varies but the buffer sizes for all the other links are set to their bitrate-delay products. Fig-
ure 5 plots end-to-end performance metrics meaningful for each type of the examined applications:
round-trip time for the interactive video, goodput for the long file transfers, and delivery time for
the short web downloads. For TCP NewReno, the traditional guideline of setting the buffer size for
link � 	 - ��� to its bitrate-delay product results in low link loss rates and high link utilizations for
both links � 	 - � � and � � - ��� , large end-to-end goodputs for the file transfers, and small delivery
times for the web downloads. However, the recommended setting inflates the round-trip time for
the interactive video above 600 ms, a value that is already unacceptably large for the application.

The above experiments demonstrated that choosing a large Droptail FIFO buffer to accommo-
date long file transfers over TCP can dramatically hurt interactive streaming over UDP. Is it possible
to reconcile the needs of both application types by selecting a smaller buffer? Previous studies pro-
vide evidence supporting the affirmative answer to this question; in particular, it has been shown
that selecting a buffer size that is suboptimal for file transfers does not cause a substantial degrada-
tion in the average goodput, even though the individual goodputs of the file transfers can become
more variable [4, 22]. To examine the sensitivity of end-to-end goodput to suboptimal buffer sizes,
we repeat the Section 3.1 experiments in settings where the buffer size for the 10 Mbps bottleneck
link is set to different fractions of the bitrate-delay product � . As expected, Figure 6 shows that
end-to-end goodput decreases when the fraction reduces from 1 to 0.5 and further to 0.25. However,
the extent of the decrease is not substantial and does not grow together with the number of long file
transfers. Therefore, setting the buffer size for the bottleneck link significantly below the optimal
value can provide long file transfers with end-to-end performance that is reasonably good.

A simple analysis for the worst-case scenario with a single connection confirms this conclusion
for such common TCP versions as Reno and NewReno. Even with a minimal buffer, the load of the
single TCP connection in the congestion-avoidance mode oscillates between 50% and 100% of the
full link utilization. Hence, the congestion avoidance still delivers the long file at a rate that is at least
75% of the bottleneck link bitrate. The 25% decrease in end-to-end goodput of long file transfers
seems to be a reasonable price for making viable those UDP applications that cannot tolerate long
queueing at the bottleneck buffer configured according to the existing guidelines. However, if the
25% penalty deems unacceptable for long file transfers, the penalty can be substantially reduced
without increasing the size of the bottleneck link buffer. Instead, long file transfers can reduce the
penalty by adopting smoother congestion control protocols such as TCP Vegas or application-level
protocols for smooth data delivery over UDP [5, 10, 16]. For example, in spite of the minimal
buffer, a simple change of the AIMD decrease factor from 0.5 to 0.875 [9, 23] raises the bottleneck
link utilization from 75% to 94%.

In this section, we presented compelling arguments that the problem of link buffer sizing should
account for needs of diverse Internet applications. The arguments lead us to the following new
formulation of the problem:
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(a) Performance of link R1-R2 (b) Performance of link R3-R4

Figure 4: Performance of individual links in the multiple-bottleneck topology.
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(a) Round-trip time for interactive video
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(b) End-to-end goodput for long file transfers
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Figure 5: End-to-end performance for different types of Internet applications.
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Figure 6: Impact of suboptimal buffer sizes on end-to-end goodput of file transfers over TCP
NewReno.

Find the link buffer size that accommodates both TCP and UDP traffic.

Our discussion also indicated that the reformulated problem has solutions that can satisfy all major
types of Internet applications. The next section enhances the problem formulation with a constraint
on acceptable solutions.

4.2. Explicit Constraint of No Additional Signaling

In our opinion, it is imperative that a proposed rule for link buffer sizing can be implemented in
practice without undermining the lightweight design of IP networks. To reflect this requirement,
we enhance the problem formulation with an explicit constraint of not engaging IP routers in any
additional signaling. Hence, our final formulation for the problem of link buffer sizing becomes as
follows:

Find the link buffer size that accommodates both TCP and UDP traffic.
An acceptable solution cannot engage IP routers in any additional signaling.

Whereas the extra property may seem not only reasonable but also obvious for a good solution,
satisfying this requirement is problematic even for the existing guidelines. For example, some of
the guidelines require the router to know the number of long file transfers but IP does not provide
the router with reliable means to acquire this knowledge. There exist well-studied techniques for
grouping received datagrams into flows according to IP addresses, port numbers, and other datagram
header fields. However, using the flow statistics to estimate accurately the number of long file
transfers over a specific version of TCP appears to be difficult [17].

The guidelines that involve the bitrate-delay product are even more difficult to implement be-
cause the IP router has no knowledge of round-trip propagation delays for passing traffic. It seems
infeasible to detect the round-trip propagation delays by simply monitoring the headers of received
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datagrams. Replacing the round-trip propagation delay in a rule for link buffer sizing with round-
trip time (RTT which includes propagation and queueing) is an adjustment that can facilitate imple-
menting the rule without any additional signaling. However, the following simple analysis shows
the danger of the adjusted rule. Consider a scenario where a bottleneck link has a Droptail FIFO
buffer and bitrate � . The link serves a single connection that adheres to a common TCP version
such as NewReno or Reno. The round-trip propagation delay for the connection equals � . The con-
nection delivers a long file and stabilizes in the congestion-avoidance mode. The router manages to
infer the average RTT of the connection precisely and sets the link buffer size to the product of �
and the inferred RTT. Initially, the router sets the buffer size to the optimal value of ��� . The load
of the sender on the network oscillates between ��� and ����� , and the queueing delay oscillates
between

�
and � . Since the average RTT is ������� at this point, the router sets the buffer size to

��������� . The load of the sender on the network oscillates now between ��� ����� � and ��������� , and
the queueing delay oscillates between

� � ����� and ������� . Since the average RTT is �����
	���� at this
point, the router sets the buffer size to �����
	������ , and the vicious circle of the harmful unnecessary
increases in the link buffer size and queueing delay continues.

The illustrated danger of replacing the round-trip propagation delay in a guideline for link buffer
sizing with RTT is not limited to settings where routers update link buffer sizes automatically.
Similar scenarios can occur – albeit on much longer timescales – if human operators follow the
approximated guideline to increase the link buffer sizes manually.

Since exact and safe implementation of the existing guidelines appears to be difficult, it is rea-
sonable to inquire about current practices for configuring link buffers. According to anecdotal evi-
dence, it is common for router operators to allocate all the buffering memory provided by the router
manufacturer or set the buffer size to a bitrate-”delay” product where “delay” is an arbitrarily-chosen
large constant, e.g., 500 ms or a transoceanic propagation time. Unfortunately, choosing such large
buffers can lead to excessive queueing. End-to-end Internet measurements provide indirect confir-
mation of the aforesaid practices and their consequences: it has been shown that RTT within the
same TCP connection can vary by several seconds [1].

Given the discussed difficulties with implementing the existing guidelines, is it possible at all
to find an acceptable solution for the reformulated problem of link buffer sizing? In Section 4.1,
we concluded that small link buffers can accommodate well both TCP and UDP traffic. We also
believe that a small link buffer represents a solution implementable without engaging the IP router
in any additional signaling. The small buffer size can be chosen based on the link bitrate and other
information that is readily available locally.

5. Conclusion

This paper revisited the old question of how much buffer an IP router should allocate for its output
link. For a long time, the intuitive answer of setting the buffer size to the bitrate-delay product
has been widely regarded as reasonable. Recent studies of interaction between queueing at IP
routers and TCP congestion control proposed alternative rules. In this paper, we exposed, explained,
and reconciled contradictions between the existing guidelines for link buffer sizing. We argued
that the problem of link buffer sizing needs to be redefined in a more general context. Then, we
proposed such a new problem formulation: Find the link buffer size that accommodates both TCP
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and UDP traffic; an acceptable solution cannot engage IP routers in any additional signaling.
Our experimental studies and theoretical analyses revealed a promising direction for solving the
reformulated problem: set the link buffer size to a small value based only on local information, e.g.,
the link bitrate.
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