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Chapter 1 

Introduction 

This thesis addresses the problem of extracting usable DNA sequence data from a 

sequencing trace that was generated from multiple DNA templates.  We encountered this 

problem in the context of using RT-PCR followed by direct sequencing to verify 

predicted gene structures (Wu, et. al, 2004).  An example of a trace, which we 

encountered, is shown in figure 1-1.   

 

Figure 1-1.  Example of a trace derived from two templates (double trace). 
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As can seen in figure 1-1 at most peak positions there are two well-defined peaks 

corresponding to two nucleotides at each position.  Since the DNA template in this 

example was derived from reverse transcribed mRNA the cause of the multiple templates 

was alternate splicing of the underlying gene.  It is not clear that there is a simple method 

for recovering the two underlying DNA template sequences by simply analyzing such a 

sequencing trace in isolation.  One might assume that the two superimposed traces could 

be differentiated by peak height but in practice the peak heights for the two traces are 

often very similar.  In many cases calling the highest peak at each position results in a 

sequence that alternates between the two template sequences.  

 

We have developed 3 methods for analyzing traces such as the one pictured in figure 1-1.  

They combine traditional basecalling and sequence alignment techniques to align the 

multiple template trace to an assembled genomic sequence.  All methods result in finding 

the sequence and genomic location of the templates that gave rise to the multiple traces.   

 

Chapter 2 provides background needed to understand the work presented in later 

chapters.  It starts with a review of the Sanger method of DNA sequencing followed by a 

review of base calling and sequence alignment algorithms and a discussion of the 

biological mechanisms that give rise to multiple traces.  Chapter 3 describes the first 

method for analyzing multiple traces, trace recalling.  Chapter 4 describes the second 

method, integrated alignment.  Chapter 5 presents a pair-HMM based solution.  In 
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chapter 6 results of experimental tests of the methods are described and analyzed.  

Chapter 7 summarizes the work completed so far on this project and flaws and 

weaknesses of our methods.  

 



  4 
 
    

  

 

 
 
 
 
 
 
  

 

Chapter 2 

Background 

This chapter provides the background knowledge necessary to understand the methods 

presented in the next three chapters.  We will first review the Sanger method of DNA 

sequencing.  The next two sections provide reviews of base calling and sequence 

alignment algorithms.  The chapter ends with a discussion of the biological mechanisms 

responsible for multiple traces and how these relate to biological applications of these 

methods. 

 

2.1 Sanger sequencing 

In 1977 two methods for sequencing DNA templates were developed, the chemical 

cleavage method (Maxim and Gilbert 1977) and the chain termination method (Sanger et 

al. 1977).  The chain termination method of Sanger has become has become the most 
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widely used especially for high throughput sequencing projects.  For this reason all data 

presented in this project was obtained by the Sanger method.  To understand how double 

traces such as the one in figure 1-1 arise it is necessary to understand how Sanger 

sequencing works.  Sanger sequencing is a modification of the natural process of DNA 

replication.   Since current methods of DNA sequencing are much different than the 

original method outlined by Sanger I will next present the original core Sanger method 

followed by improvements to the method.    

 

2.1.1 Natural DNA replication 

DNA replication begins with an enzyme called a helicase unwinding the complementary 

DNA strands of the double helix.  Next, a complex called the primosome manufactures a 

short complementary RNA primer on the exposed single stranded DNA (ssDNA) 

creating a short segment of double stranded DNA (dsDNA) which marks the 3’ end of 

the complementary DNA sequence to be generated.  The next step is referred to as 

elongation.  An enzyme called DNA polymerase attaches between the dsDNA and 

ssDNA regions and catalyzes a reaction that pulls a deoxynucleotide triphosphate (dNTP) 

complementary to the next base of the original ssDNA molecule from solution and 

attaches it to the new complementary strand.  The dNTPs are simply the nucleotides, 

which make up the DNA molecule with two extra phosphate groups attached.   Energy 

released from the cleavage of these phosphates during incorporation of the new 

nucleotides drives the elongation step.  If allowed to run to completion the elongation 
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step will proceed until the original template is exhausted or a region of dsDNA is 

encountered. 

 

2.1.2 Original Sanger method 

Each step of the original Sanger method mirrors natural DNA synthesis until the 

elongation step.  Sequencing begins with purification of the single stranded DNA 

(ssDNA) template, which contains the desired sequence.  This can be done in many ways 

including chemical or thermal denaturation of a double stranded DNA template derived 

from a plasmid containing the sequence of interest in bacterial culture or packaging of the 

DNA into viral particles which strip off the complementary strand.  The original genome 

sequenced by Sanger was that of bacteriophage φX174 that is naturally single stranded so 

this step was not necessary.  Once the ssDNA template is prepared a synthetic sequencing 

primer is allowed to anneal to the template at the 3’ end of the sequence of interest.  The 

sequencing primer is a short ssDNA molecule (~20 bases) complementary to the region 

just upstream of the region to be sequenced.  Annealing refers to the process of hydrogen 

bonds forming between the nucleotides of the primer and the complementary region of 

the template so that the primer becomes fixed to the template.   Next 4 separate 

sequencing reactions are set up, one for each nucleotide type, containing all species of 

dNTP, a smaller concentration of one species of ddNTP (dideoxynucleotide triphosphate) 

and DNA polymerase.  In all reactions one of the species of dNTP is radio labeled so that 

the results can later be imaged on a gel.  In the original publication Sanger used 32P 
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labeled dATP.  For example the A reaction is set up by adding all species of dNTP (with 

radio labeled dATP), ddATP and DNA polymerase.  The ddNTPs differ from the dNTPs 

in that their 3’ hydroxyl groups are replaced by hydrogen.  Synthesis of the 

complementary DNA strand begins as in normal DNA replication starting at the 

sequencing primer and proceeding in the 5’ to 3’ direction.  The DNA polymerase does 

not differentiate between the dNTPs and ddNTPs and whenever a ddNTP is incorporated 

into the growing complementary strand, DNA synthesis halts.  This is because the 3’ 

hydroxyl group, missing in the ddNTPs, acts as a socket onto which the next nucleotide is 

attached.  This reaction results in all complementary prefixes of the template DNA 

ending in the base of the corresponding reaction (A, C, G or T) being generated.  These 

reaction products are loaded into 4 separate lanes of a polyacrylimide gel spiked with a 

danaturating agent such as urea and separated by length.  The denaturating agent is 

necessary to separate the newly synthesized DNA prefix strands from the parent 

template.  Polyacrylimide (as opposed to agarose) is still routinely used in sequencing 

because it has sufficient resolution to separate DNA strands that differ in length by as 

little as one nucleotide.  Once the sequencing gel has been run it is a simple task for a 

human operator to read the sequence off of the gel.  An example gel from the original 

Sanger paper along with the bases called from the gel can be seen in figure 2-1. 
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Figure 2-1.  Sequencing gel from the original Sanger paper (Sanger et al. 1977). 
 

2.1.3 Improvements on original method 

Since the original Sanger chain termination method was described many improvements 

have been made resulting in today’s standard sequencing protocol.   
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Fluorescent reporters.  In the early days of sequencing the DNA fragments generated by 

the Sanger method had to be radioactively labeled to be imaged on the sequencing gel.  

While imaging by autoradiography provides very sharp gel images it carries with it the 

overhead of dealing with radiation.  More importantly it meant that 4 separate sequencing 

reactions were necessary each requiring a separate lane on the gel.  This changed with the 

introduction of fluorescently labeled reporter dyes (Prober et al. 1987).  In this 

modification to the Sanger method flourescently labeled dye molecules are attached 

either to the sequencing primer or ddNTPs that halt chain elongation.  During 

electrophoresis the gel is scanned by a laser which excites the dye causing it to re-emit 

photons on different wavelengths which are picked up by a detector.   If the dye is 

attached to the primer (primer chemistry) the sequencing run still requires 4 gel lanes but 

if the dye is attached to the ddNTPs (terminator chemistry) all 4 reactions can take place 

in 1 solution and be run on 1 gel lane.  This is because each ddNTP species is labeled 

with a dye that emits at a different wavelength.  The output of the detector is commonly 

referred to as a chromatogram.  An additional advantage of dye terminator chemistry is 

that it results in fewer compression problems caused by secondary structures forming at 

the 3’ end of the DNA sequence.  Presumably this is because the dye molecules interfere 

with the base pairing which cause compressions. 

 

Capillary sequencing.  The next major advance in sequencing technology was the 

introduction of capillary sequencing (Swerdlow 1990).  Prior to capillary sequencing the 

media of electrophoretic seperation was a slab of polyacrylamide gel.  Slab gels have 
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several drawbacks.  Pouring the gel is labor intensive.  This limited the throughput of 

sequencing machines.  They are also subject to the phenomena of “Joule heating” 

whereby at high voltages a thick slab gel is unable to dissipate the heat generated by the 

applied electric field and melts.  It is desirable to run sequencing gels at a high voltage 

because the speed at which the DNA fragments migrate through the gel is linearly related 

to the voltage applied to the gel, higher voltages translate to higher throughput.  Capillary 

sequencing reduces the problem of Joule heating by carrying out electrophoresis in 

capillary tubes with an inner diameter of about 50 µm.  Preloaded capillary tubes also 

drastically reduce the time required to prepare for electrophoretic separation and the 

amount of gel required.  They also solve the basecalling problem of lane tracking errors 

in which two gel lanes merge during basecalling resulting in a chimeric read.   

 

Automation.  One of the main sub-goals of the human genome project was to develop 

technologies for automating DNA sequencing to increase throughput to a point where 

sequencing a large genome was feasible.  To this end many of the physical tasks of 

sequencing such as setting up reactions and loading gels (or capillary tubes) are now 

performed by robots.  Gathering the chromatogram data has been automated since the 

introduction of fluorescent dyes.  Many base calling tools for extracting sequence from 

chromatograms, which will be discussed in the next chapter, have been developed as well 

as tools for storing and assembling individual reads into larger contigs. 
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2.1.4 Output of modern Sanger sequencing reaction 

Before moving on to the topic of base calling it will be helpful to actually see some 

examples of the final product of a Sanger sequencing run, chromatograms (or traces).  

Figure 2-2 shows a clean trace.  Notice that it consists of several large, well-defined 

equally spaced peaks representing flourescently labeled DNA fragments of different 

length migrating through the gel.  This is what we expect if there is one DNA template in 

the sequencing reaction.  Figure 1-1 shows a trace in which two different DNA templates 

are present in the sequencing reaction.  The peaks are still evenly spaced, however, at 

most locations there are clearly DNA fragments representing 2 different terminal bases.   

Currently a trace such as this is simply discarded. It is the goal of this thesis to extract 

useful information from such a trace.  

 

Figure 2-2. Example of a clean trace. 
 

2.2 Sequence alignment 

Alignment is used in several different ways in this work, so a review of alignment 

algorithms is appropriate.  This section will discuss both global and local alignment 
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followed by two methods to optimize time and memory usage of alignment algorithms, 

banding and linear space alignment.  Spliced alignment will be discussed since many 

alignment steps involve aligning spliced sequences to the genome.  A method for finding 

a specific class of sub-optimal alignments will be described since this is used in one of 

the methods implemented.  Finally alignment using pair-HMMs and continuous density 

pair-HMMs will be discussed. 

 

2.2.1 Global alignment 

Sequence alignment refers to the identification of corresponding subsequences of two or 

more strings.  In the context of biology this usually means finding homologies between 

related protein or nucleic acid sequences.  The simplest form of sequence alignment is 

global alignment.  Global alignment algorithms assume that the two sequences under 

consideration align end to end.  This makes sense in the context of aligning proteins 

known to be homologous, which was the major application of the first global alignment 

algorithm.  Global alignment as first described (Needleman and Wunsch 1970) required 

O(M2N) time and O(MN) memory where M and N are the lengths of the sequences being 

aligned.  Subsequently it was discovered that the time complexity of the algorithm can be 

reduced to O(MN) (Gotoh 1982) and it is this solution to the problem which is commonly 

implemented and described in textbooks.  Broadly, alignment works by defining a 

function from the set of all possible alignments to the real numbers (a scoring model) and 

selecting the alignment which scores highest under the model.  For practical reasons this 
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function takes the form of defining a score for every potential atomic unit of the 

alignment (match, mismatch, gap) and defining the score of the overall alignment to be 

the sum of the scores of these base cases.  Clearly it is not practical to enumerate all 

possible alignments between two sequences and their scores, since the number of 

alignments is exponential in the sum of the lengths of the two sequences.  The 

optimization technique of dynamic programming (Bellman 1957) is employed to achieve 

the time and memory complexities described above.  Dynamic programming reduces the 

time complexity of the problem from exponential to polynomial by building up the 

optimal alignment from base cases.  The vast majority of the computations necessary in a 

naïve implementation are redundant and thus can be recorded and referred to in 

subsequent steps.  The central data structures of a dynamic programming alignment 

implementation are the score and traceback matrices denoted S and T.  If the sequences 

being aligned are A and B of lengths M and N, the indices (i,j) of these matrices run from 

0 to M and 0 to N.  Each entry of the score matrix S(i,j) contains the score of the optimal 

alignment between the prefix A[1]..A[i] and B[1]..B[j], the value contained in S[M][N] is 

the score of the optimal alignment.  The traceback matrix T is used to actually recover the 

optimal alignment by following the path through the matrix that gave rise to the optimal 

score.  The alignment algorithm begins by initializing the 0th row and column of S and T 

as in eqn 2-1. 

 

gapjjS
gapiiS
⋅=
⋅=

]][0[
]0][[

,                                                         (2-1) 
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where gap denotes the penalty for aligning a gap to a character in the other sequence.  

This agrees with the definition of the S matrix since the score of aligning the prefix of 

either sequence entirely to gaps is simply the length of the prefix so aligned times the 

penalty of a single gap.  The traceback pointers reflect that this is the alignment being 

described in the initialization.  Next the rest of the S and T matrices are filled with the 

recurrence relation in eqn 2-2. 

 

⎪
⎩

⎪
⎨

⎧

−−
−−
+−−

=
gapjiS
gapjiS

jBiAsjiS
jiS

]1][[
]][1[

])[],[(]1][1[
max]][[                                       (2-2) 

 

s(A[i], B[j]) is the match function between characters in the sequence.  In the case of 

nucleic acids this is usually a positive value if the characters are the same and negative 

otherwise.  When aligning protein sequences this can be a number derived from a scoring 

matrix such as BLOSUM (Henikoff and Henikoff 1992) or PAM (Dayhoff et. al 1978) 

which measures the similarities of amino acids or the probability of seeing two specific 

amino acids in an alignment.  The top case in the max can be understood as asserting that 

the characters A[i] and B[j] align to each other. This alignment can be either a match or a 

mismatch.  The next case asserts that A[i] aligns to a gap in B and similarly the final case 

asserts that B[j] aligns to a gap in A.  T[i][j] is filled in to indicate which choice was 

taken in the max.  Recovery of the optimal alignment involves beginning a traceback 
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starting at T[M][N], following the path that generated the optimal score and employing 

the rules described above to write out the optimal alignment.  For proof that this 

algorithm results in an optimal alignment, see (Bellman 1957; Gusfield 1997). 

 

2.2.2 Local alignment 

Local alignment (Smith and Waterman 1981) is a modification of global alignment, 

which does not require the sequences to align end to end but finds the optimal 

subsequence alignments between the two sequences.  Instead of initializing the score 

matrix as before, the 0th row and column are initialized with zeros.  A zero is also 

considered in the max of the matrix fill step.  Finally, the highest scoring cell is kept track 

of during recursion.  Traceback begins from this cell instead of T[M][N], the traceback 

terminates when a cell with score zero is encountered.  This has the effect of allowing 

free end gaps in both sequences of the alignment, examining only positive scoring 

alignments, and recovering the best subsequence alignments between A and B.  Local 

alignment makes possible alignment of a short sequence (such as a spliced mRNA) to 

genomic sequence and database searching. 

 

2.2.3 Banded alignment 

There is no specific paper describing banded dynamic programming.  It seems to be a 

technique that most people know about, but which has never been published.  It has the 
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potential to greatly reduce the amount of time and memory needed to perform a global or 

local alignment.  The basic idea is that if the problem specification restricts which paths 

through the dynamic programming table represent true alignments it is not necessary to 

examine the regions of the table that cannot generate one of the potential desired 

alignments.  For example, in the case of aligning two closely related proteins it is known 

that the correct alignment will never stray very far from the diagonal of the dynamic 

programming matrix.  As a result, to get the optimal alignment it is sufficient to compute 

just a small “band” around the diagonal.  The technique’s name derives from this 

application.  This optimization effectively reduces the time and space complexity of the 

problem from O(NM) to O(b√(N2+M2)) where b is the width of the band.  This represents 

a reduction in the asymptotic complexities from quadratic to linear in both time and 

space.  The width of the band need not be fixed; a variable width band can change from 

row to row.  Nor must the band be constrained to follow the diagonal.  An example 

implementation of such a system will be discussed in greater depth in chapter 4. 

 

 2.2.4 Linear space alignment 

If the problem is amenable, banding can reduce both the time and memory complexities 

of a dynamic programming alignment algorithm from quadratic to linear.  Another 

method for reducing the memory but not time complexity of global alignment has been 

described (Myers and Miller 1988) which places no search space constraints on the 

problem.  This method relies on the fact that filling in the dynamic programming matrix 
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can be iteratively decomposed into small sub-problems each of which can be solved 

using an amount of memory linear in one of the sequences.  A figure from the original 

Myers & Miller paper fig 2-3 illustrates this technique.   

 

Figure 2-3.  Illustration of the divide and conquer Myers-Miller algorithm (Myers and Miller 1988). 
 

First note that the optimal alignment can be found either by filling in the matrix starting 

at the top left or bottom right corner and tracing back.  Next note that whatever the 

optimal alignment turns out to be it must pass through the middle row of the matrix.  

Furthermore the column in which the optimal alignment crosses the middle row can be 

computed in linear space.  This is accomplished by computing the values in the middle 

row by working down from the top row as usual.  Next the values in the middle row are 

computed by working up from the bottom row.  This can be done in linear space since 

only scores are being computed (no traceback pointers are kept) and to fill in any cell of 

the matrix requires storing only the current and previous rows.  The corresponding values 

in the two middle rows thus computed are summed.  Each of these values represents the 

score of the optimal alignment constrained to cross the middle row at the corresponding 

column.  Thus, the middle row cell with the highest sum must lie on the optimal 
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traceback.  This creates 2 sub-problems as shown in figure 2-3, aligning the prefixes and 

suffixes of the sequences.  Two more points on the optimal alignment can be found by 

solving these sub-problems in the same manner as the first.  The whole optimal alignment 

is thus obtained by iteratively solving smaller and smaller sub-problems.  When the 

subsequences being aligned are sufficiently small normal global alignment with traceback 

can be used to solve the base cases.  While this algorithm does increase the running time 

of the alignment it can be shown that it does not increase the time complexity beyond 

quadratic.   

 

A potential problem with this technique is that it works only for global alignment.  This is 

solved, though, by noting that any local alignment can easily be converted to a global 

alignment between subsequences of the original problem in linear space.  This works by 

filling in the local alignment dynamic programming matrix as usual from top to bottom 

keeping only the scores and the coordinates of the highest scoring cell in linear space as 

described above.  Next fill in the matrix from bottom to top in a similar way, keeping the 

coordinates of the highest scoring cell.  At the end of this procedure the beginning and 

ending coordinates of the optimal local alignment are the coordinates of the optimal 

scoring cell from the forward pass and the coordinates of the optimal scoring cell from 

the backward pass respectively.  These coordinates define subsequences of the original 

sequences on which global alignment can be performed whose solution is the same as the 

solution to the local alignment problem on the original sequences.   
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2.3.5 Spliced alignment 

The main applications of the methods developed in this thesis involve aligning traces 

derived from alternately spliced mRNA to genomic sequence.  As a result, spliced 

alignment algorithms are heavily used in the algorithms developed.  Spliced alignment 

refers to standard global or local alignment with an additional type of gap used to model  

long intron gaps.   There are several spliced alignment programs available, but for this 

work EST_GENOME (Mott 1997) was used because it is a published algorithm and 

source code was available.   In addition to the affine gaps present in global or local 

alignment, which in this context represent sequencing errors or polymorphisms, there is 

an intron gap possible in the spliced sequence but not in the genomic sequence.  The 

score penalty of an intron gap differs from the usual affine gap penalty in two ways.  First 

the penalty does not depend on the length of the gap, it is constant.  Second the score of 

the gap takes into account consensus splice signals at the ends of the gap.  A gap with 

consensus splice GT/AG gets penalized less than one without this consensus sequence.  

This makes it easier to pull out the correct alignment of the spliced sequence to the 

genome while still making it possible to get an alignment without the consensus 

sequence.  Non-consensus splice sites must be possible because a small fraction of real 

splice sites do not possess the GT/AG consensus sequence. 

 

Two modifications to the standard global or local alignment recursion and two new data 

structures make spliced alignment possible.  As described in the EST_GENOME (Mott 

1997) paper the data structures are two arrays called B and C, which are essentially 
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extensions of the standard dynamic programming score and traceback matrices.  The 

indices of these arrays run the length of the spliced sequence.  The ith entry of the B 

matrix holds the score of the best alignment with an intron gap at the ith position of the 

spliced sequence.  The ith entry of the C matrix holds the position in the genomic 

sequence where this optimal intron gap begins.  These values are updated in the 

innermost loop of the dynamic programming recursion.  Once the maximum score of a 

cell is computed it is compared to B[i], if the max is greater B[i] takes on this value and 

C[i] takes the coordinate of the genomic sequence to which that this cell refers.  This 

means that if an intron gap were to be subsequently inserted into this row of the matrix 

tracing back to the cell where C[i] points would yield a higher score over than any cell 

seen so far in this row.  In the fill step an extra term is added to the max step making use 

of B and C to score potential intron gaps.  If there is a consensus splice GT/AG at 

positions C[i] and j (the beginning and end of the potential intron gap) B[i] – 

splice_penalty is considered in the max step.  If C[i] and j do not represent a consensus 

splice signal B[i] – intron_penalty is considered.  The value of intron_penalty is higher 

than that of splice_penalty.  The C[i] value answers the question which arises in the fill 

step, “if I wanted to insert an intron gap at this position (make a long range jump in the 

matrix) which cell in this row should I jump back to to get the best overall score”.   
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2.2.6 Sub-Optimal alignment  

Several methods for finding sub-optimal alignments have been described in the literature.  

This project employs a method first described by Waterman and Eggert (Waterman and 

Eggert 1987).  It differs from other sub-optimal alignment finding algorithms in that it 

finds sub-optimal alignments that differ significantly from the optimal alignment instead 

of differing in only one or a few positions.  This method works by first finding the 

optimal alignment (global or local using any of the optimizations described above).  The 

cells through which the optimal alignment passes are stored, and the optimal alignment is 

re-computed.  This time cells that appeared in the optimal alignment are given a score of 

0 regardless of the score they would have received.  This results in a sub-optimal 

alignment that cannot overlap the optimal alignment. 

   

2.2.7 Pair Hidden Markov Models (HMMs) 

All of the alignment variations described above are based on the Needleman-Wunsch 

algorithm.  Pair Hidden Markov Models (Pair-HMMs) provide an alternate framework in 

which to consider the sequence alignment problem.  They are an extension of ordinary 

(typically discrete emission) Hidden Markov Models (HMMs).  A general discussion of 

HMM theory is beyond the scope of this thesis, however, a general introduction to 

HMMs can be found in (Rabiner, 1989) and an introduction as applied to biological 

problems in (Durbin et. al 1998).  A full development of HMM theory is presented in 

(Elliott et al 1995).  The pair-HMM framework extends the classical sequence alignment 
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framework in two important ways.  First, it provides a probabilistic interpretation to the 

scores (match, mismatch, gap, etc) associated with the classical algorithms.  This 

interpretation makes possible the automatic training of model parameters starting from 

unlabeled data.  Second, it provides a simple and correct means to specify alignment 

models more complex than the classical match, mismatch, and gap model.   

 

 

Figure 2-4.  Pair-HMM for global alignment (Durbin et. al 1998) 
 

The canonical Pair-HMM, which solves the global sequence alignment problem as 

described in (Durbin, et. al, 1998), is presented in figure 2-4.  This model can be thought 

of as generating all possible alignments between two sequences of arbitrary length X=(x1, 

x2, … xn) and Y=(y1, y2, … ym) and assigning each one a probability.  The three states in 

the middle of the model represent all possible atomic building blocks of a global 

alignment.  The M state represents aligned bases (either matched or mismatched), the 

state labeled X represents a base in the X sequence aligned to a gap in the Y sequence.  

The state labeled Y represents a base in the Y sequence aligned to a gap in the X 

sequence.  The states are thought of as emitting these atomic building blocks of the 
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alignment and each possible emission is associated with a probability.  In the case of 

DNA sequence, which has an alphabet of 4 letters, the M state is defined by 16 emission 

probabilities because there are 4 ways to emit a match and 12 ways to emit a mismatch.  

Similarly the X and Y states are each defined by 4 emission probabilities.   States labeled 

begin and end are non-emitting states which model the beginning and end of the 

alignment.  Directed arrows from one state to another denote transitions between the 

states.  Each transition is associated with a probability, the transition probabilities out of 

any given state must sum to 1.  The model generates an alignment in the following 

manner.  Start at the begin state and based on the transition probabilities out of begin 

move to a new state without emitting anything.  Depending on which state was chosen 

emit an aligned pair (M) or a gap (X or Y) using the new state’s emission probabilities.  

Move on to the next state based on the new state’s transition probabilities.  This process 

is repeated until the end state is encountered which terminates the alignment.   The 

probability of the alignment given the model generated in this manner is the product of 

all emission and transition probabilities encountered while traversing the graph.  Since all 

possible alignments can be generated by the graph (with associated probabilities) the 

model can be used to rank the alignments by their probabilities.  Usually we desire the 

alignment with the highest probability given the model.  This can be found efficiently 

with the pair-HMM version of the Viterbi algorithm. 

 

A pair-HMM is defined by the model toplolgy (states, emission alphabets of the states, 

and non-zero probability transitions between states) and the transition and emission 



  24 
 
    

  

 

probabilities.  The model topology defines the set of alignments, which will be 

considered.  For example if there is no transition between the begin and match states any 

alignment which begins with a match or mismatch will be implicitly assigned a 

probability of zero and excluded from consideration.  Model topology is based on prior 

assumptions of what a correct alignment should look like.  This may be different for 

different specific applications.  Once the model topology is defined it is possible to obtain 

locally optimal transition and emission probabilities if training examples (even unlabeled 

training examples) are available.  We obtain these values with the Baum-Welch EM 

estimation algorithm (Baum 1972).  The objective of the Baum-Welch algorithm is to 

adjust the transition and emission probabilities of the pair-HMM so as to maximize the 

probability of the training data given the model.  Initially random values are selected for 

the model transition and emission probabilities.  Forward and backward variables are 

computed for each pair of sequences in the training set in a manner similar to the Viterbi 

algorithm.  These variables provide a means to determine the expected number of times 

each emission and transition is used given the model and the observed sequences, the 

expectation is taken with respect to all possible alignments.  The expected counts for each 

transition and emission for each training example are pooled and used to compute a new 

set of transition and emission probabilities.  This procedure iterates until the parameters 

converge or a stopping criterion is met.  It can be shown that the Baum-Welch algorithm 

is guaranteed to converge however the maximum it finds may not be the global 

maximum.  For this reason it is desirable to either begin with parameters thought to lie 
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near the global maximum, run the algorithm several times with different starting 

parameters, or both.   

 

2.2.8 Continuous density HMMs 

 The overwhelming majority of HMMs used in computational biology are discrete 

density HMMs.  This means that the emission alphabet of the states is finite.  This makes 

sense because typically the sequences being parsed (HMMs) or aligned (pair-HMMs) are 

either DNA with an alphabet of size 4, or protein with an alphabet of size 20.  Pair-

HMMs in which the sequences being aligned have discrete alphabets are also discrete 

since the alphabet of the pair-HMM states is the cross product of the alphabets of the 

sequences plus the gap symbol.  There is a large literature (Young, et. al 1995; Wheddon 

and Linggard 1990), mostly from computational linguistics, in which continuous density 

HMMs (CD-HMMs) are developed.  In a CD-HMM the state emission symbols are 

drawn from an uncountably infinite alphabet such as the real numbers.  It is still 

necessary, however, to assign probabilities to each emission from each state.  This is 

accomplished by defining a continuous p.d.f. for each emitting model state.  These 

usually take the form of a parameterized probability distribution (typically a normal or a 

weighted sum of normals).  An approximation of the probability of an observation 

symbol from a specific state is obtained by evaluating the p.d.f of the state at the 

observation symbol.  It can be shown that Baum-Welch algorithm remains valid in CD-
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HMMs if the discrete emission probabilities are replaced with the parameters of the 

p.d.f.s at each state. 

 
It is possible to make use of continuous valued data in a discrete HMM, however, this 

causes many problems.  In such a model it is necessary to discretize the continuous data 

in order to model it with a discrete state HMM.  This leads to a loss of accuracy in the 

resulting model.  To minimize the loss of accuracy the discretization can be made very 

fine, but this increases the number of parameters needed making over-training a problem.  

These problems are elegantly solved by the CD-HMM formulation. 

 

2.3 Base calling 

Base calling refers to the process of extracting a string representing the sequence of the 

underlying DNA template from a trace.  The nature of trace data stipulates certain issues 

that every base calling algorithm must address.  These will be discussed in the first 

section.  A review of base calling algorithms will be presented in the next section.  

Finally a detailed description of the PHRED base calling algorithm will be presented as 

well as the reasons this package was chosen as the starting point of this research. 
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2.3.1 Issues in base calling 

A perfect sequencing trace would look like the trace presented in figure 2-2 across its 

entire length.  As discussed earlier good traces possess two properties.  The first is 

regular spacing.  The peaks in the trace represent collections of DNA fragments which 

each differ in length by a single nucleotide.  Since each species of nucleotide is the same 

length the distance between peaks should be the same.  The second property is that the 

peaks are large and well defined.  When sequencing a single template there is a unique 

base at each position.  This should be reflected in the trace by the presence of a large 

peak in one channel and a low background in the other three at each position.   

 

There are several reasons for deviations from the perfect trace.  These can broadly be 

broken down into gel, dye, DNA and detector effects. 

 

Gel effects.  The speed at which DNA fragments migrate through the gel is partially 

influenced the density of the gel.  The denser the gel the more time it takes a DNA 

fragment to move through it.  Ideally the sequencing gel has a perfectly uniform density 

resulting in completely predictable migration times. This is obviously not possible in 

practice.  Local variations in gel density can cause peaks to be shifted toward the front of 

the trace (faster migration) in regions of low local density and toward the back of the 

trace (slower migration) in regions of high local density.  In practical terms this means 

that it is impossible to predict the precise location of peaks de novo.  Local density 
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variations are not a major problem if the slab gel is carefully prepared.  It has become 

even less of a problem with the introduction of pre-loaded capillary gels.  A more serious 

gel problem is an air bubble in the gel especially in capillary gels.  An air bubble in a 

capillary gel tube physically separates the gel into two regions making it impossible for 

the DNA to migrate the length of the tube, ruining the sequencing run.   

 

Another slab gel related problem is lane tracking errors.  When a gel runs the DNA 

fragments should migrate parallel to the electric field applied to the gel.  If there is a 

slight skew due to improper placement of the gel into the sequencing machine the lane 

tracking algorithm may run two lanes together.  This problem has been completely solved 

by capillary gel sequencing since the “lanes” in such a system are confined to the 

capillary tubes that are rigidly fixed relative to the detector.   

 

Dye effects.  All modern sequencing uses fluorescent labels, usually attached to the chain 

terminating nucleotide.  Two properties of these dyes affect the final trace; 

electrophoretic mobility and intensity.  Dye mobility refers to the tendency of DNA 

fragments attached to different dye molecules to migrate at different rates.  If not taken 

into account mobility effects cause whole channels of the trace to be shifted relative to 

each other resulting in non-uniform spacing of peaks.  Mobility rates, however, depend 

only on the dye molecule and are easily determined experimentally.  Hence one of the 

first functions applied to the trace is “mobility correction” to correct for these predictable 

dye effects.   
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The other dye effect has to do with the relative intensities of the fluorescent signal 

emitted by the different dyes and the ability of the detector to pick up these signals. 

Certain dyes fluoresce much more brightly than the other dyes at comparable 

concentrations and the detector is more sensitive to light emitted by certain dyes.  This 

might cause a noise peak in some channel to appear more significant than the peak 

representing the correct base.  Dye intensity effects like mobility effects are constant for 

any particular dye/detector system and can be experimentally determined prior to the 

sequencing run.  Therefore another pre-processing step on the raw trace involves 

correcting for these dye intensity effects. 

   

DNA effects.  Several DNA templates related effects can also cause deviations from a 

perfect trace.  The most notable of these results from hairpin secondary structures, which 

can form in the ssDNA template, called GC or CC compressions.  These structures alter 

the electrophoretic mobility of the DNA template resulting in trace peaks that appear 

much closer than expected.  This problem has been partially solved by the use of dye 

terminator chemistries.  Another common problem results from long runs of the same 

base in the template.  In the trace this can appear as one large peak making it hard to 

determine exactly how many bases are in the repetitive region.  Another problem related 

to the sequencing of very G/C rich sequences is referred to as a “stop”.  These are caused 

by very strong base pairing of the template DNA to the complementary strand or itself, 
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which make it impossible for DNA polymerase to extend past the G/C rich region.  This 

is reflected by an abrupt premature termination of the trace, a “stop”.   

 

Detector effects.  Finally the detector used to collect the fluorescence from the gel is not 

perfect.  Detection of fluorescence signals is inherently less sharp than autoradiography 

of radio labeled DNA but the advantages of fluorescence far outweigh this drawback.  It 

is worth noting that the traces commonly seen in textbooks and even with trace viewing 

software are heavily smoothed and do not represent the actual intensities recorded by the 

detector.  A graphic example of this can be seen in figure 2-5, which depicts the raw trace 

data and corresponding smoothed trace. 

 

 

Figure 2-5.  Comparison of raw and processed trace data (Haan and Godsill 2002). 
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2.3.2 PHRED 

After reviewing several base calling programs we decided that PHRED was the best base 

from which to build.  First, its source code is freely available for academic use.  It is a 

successful program as shown by the fact that most base callers published in the past 

several years use PHRED as a benchmark.  These newer algorithms usually do only 

modestly better than PHRED.  Furthermore the internal mechanics of the PHRED 

algorithm are amenable to the types of modifications we had envisioned at the start of 

this project.  Since PHRED algorithms and abstractions are at the heart of the integrated 

alignment method a short review of the relevant parts of the PHRED algorithm is 

included.   

 

PHRED takes as input a trace file in .ABI or .SCF format.  Lane tracking, smoothing and 

corrections for dye mobility effects and dye intensity/detector sensitivity effects are 

assumed have been performed on the trace.  A broad outline of the PHRED algorithm can 

be described as follows.  Locate predicted peaks, locate observed peaks, align predicted 

and observed peaks and pick up any good stray peaks left over.  These steps will be 

described in greater detail below. 

 

Find predicted peaks.  PHRED predicted peaks address the first base calling issue 

mentioned in section 2.3.1, that of regular spacing.  The method of obtaining the 

predicted peaks begins by looking at a skyline projection of a small section of the trace to 

identify the exact locations where there “should” be a peak.  First a set of “detected 
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next base in the mixed sequence.  Mixed sequences also have terrible quality values, 

since the uncalled peak from the second template is interpreted as a noise peak.   

 

 

Figure 3-1.  A double trace (top), example of original trace recalling method (middle) and trace 
recalling with ambiguity sequence (bottom). 

 

3.1.2 Alignment 

The properties of mixed sequences suggest the first step in the trace recalling method.  

Alignment of a mixed sequence to a genomic sequence containing one or both template 

sequences should yield a match between 62.5 and 100 percent identity.  The closer the 

abundances of the two templates the closer to 62.5 percent identity the match should be.  
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The expected percent identity would not drop to 50 percent since by chance sometimes 

the same base occurs at the same position in both templates.  In random sequence this 

would happen in 1 out of 4 positions. These positions align as matches with the 

remaining positions having a 50/50 chance of matching.  This means that the lower 

bound of the alignment would be expected to be 100 * (1/2 + 1/2 x 1/4) or 62.5%. Thus 

to find sequence of one template represented in the double trace the mixed sequence is 

aligned to the genomic sequence.   

 

At first BLAST was used for the alignment step.  This works if the trace is known to 

derive from unspliced sequence.  The main application of this technique though, is 

finding alternate splice forms from RT-PCR experiments which are spliced sequences.  

Thus we decided to use a spliced alignment program for this step, EST_GENOME (Mott 

1997).  If the alignment is correct, it immediately identifies the sequence of one of the 

templates. It is the genome sequence to which the mixed sequence aligned.  The best 

alignment represents either the more abundant or longer DNA template sequence so we 

refer to it as the dominant sequence.  The alignment between the mixed and genomic 

sequences is illustrated in the running example of 3-1 as the first two lines in the middle 

pane. 
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3.1.3 Dump PHRED state 

Since the PHRED source code was available we were able to modify it to dump out 

relevant portions of its internal state.  This includes the positions of all predicted peaks; 

the positions, sizes and channels of all observed peaks as well as the predicted peaks 

corresponding to all called peaks.  Recall that PHRED defines an observed peak as a 

local maxima or midpoint between maxima with some size limitations.  This means that 

sufficiently tall secondary peaks, even if they aren’t called, are tracked by PHRED.  A 

subset of these peaks represent the sequence of the secondary template. 

 

3.1.4 Recalling 

The recalling step uses the initial alignment described in 3.1.2 and PHRED’s internal 

state to identify the sequence of the non-dominant or secondary template.  First, for each 

predicted peak in the trace a list of nearby observed peaks is compiled.  Typical peak-to- 

peak separation in a good trace is 12 trace points (each trace point represents one pass of 

the laser over the gel or capillary tubes) so an observed peak is considered near a 

predicted peak if it is within 5 trace points of the predicted peak.  For example in the 

example in figure 3-1 the observed peak list at the first position is {G,C} and at the 

second position is {T, G, C}.  Next the predicted peak corresponding to each called base 

is determined from PHRED’s internal state.  Each position in the called trace/alignment is 

considered in turn to determine the secondary sequence.  The observed peak list 
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corresponding to the predicted peak of each base in the called sequence is compared to 

the genomic base to which it aligned.  In a double trace we expect exactly two observed 

peaks near each predicted peak, one matching the aligned genomic base and another from 

the secondary template sequence.  If this is the case the recalled sequence at this position 

is the observed peak not matching the genomic base.  The reasoning is that the genomic 

base explains one peak so the other peak must have come from the secondary template.  

If a peak matching the genomic base is present but there is more than one other observed 

peak near the predicted peak the largest peak (in terms of area) not matching the genomic 

base is called in the secondary template sequence.  The smaller peaks not matching the 

genomic base are most likely noise in the trace.  In case the only nearby peak is the 

observed peak matching the genomic base the same base is recalled in the secondary 

template sequence.  In this case it could be that the same base is present in both templates 

at this position.  If there is no observed peak matching the genomic base at this location 

or if a gap in the genome is aligned to a letter in the trace, an ‘N’ is called in the 

secondary template sequence.  This is done because, while there is clearly a base at this 

location, we are not sure what it should be.  The last possibility is that a gap in the trace is 

aligned to a base in the genome.  In this case nothing is called since this might mean there 

is a difference between the sequence of the template and genomic sequence such that a 

base is actually missing from the template sequence.  A flowchart of the decision process 

for recalling a single base as implemented is presented in figure 3-2.  Recalling of a short 

segment of double trace can be seen more clearly in the middle pane of figure 3-1. 
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Figure 3-2.  Flowchart describing recalling of single base 
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3.1.5 Realignment of secondary sequence 

Once the secondary sequence is recalled as described above it is aligned to the genomic 

sequence.  The success of the procedure can be evaluated at this point.  If the secondary 

trace actually represents a second DNA template the secondary sequence should align 

well somewhere else in the genome.  If the trace is simply noisy the secondary sequence 

should be essentially random sequence and not align well. 

 

3.2 Later refinements 

Since the initial implementation of trace recalling there have been two major refinements 

of the core procedure. 

 

3.2.1 PHRED –d option 

Trace recalling can be greatly simplified by using the –d option to PHRED.  With this 

option PHRED outputs the two best bases at each position.  The second best base 

represents the second best observed peak for each predicted peak.  If the trace was 

derived from exactly two templates this is ideal since probable noise peaks are 

automatically filtered out.  Knowledge of the best and second best observed peak at each 

position allows one to replace the mixed sequence with an ambiguity sequence.  That is a 
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sequence of DNA ambiguity codes which represent at each position, both bases present.  

This leads directly to the next refinement. 

 

3.2.2 Ambiguity alignment 

Once the ambiguity sequence is available the natural next step is to align this sequence 

directly to the genome instead of the mixed sequence.  The code, which determines 

matches in EST_GENOME, was modified to recognize ambiguity matches as well as  

single base matches.  Similarly BLAST matrices were created which recognize ambiguity 

matches.  This was a major improvement since often the alignment of the mixed 

sequence to the genome was incorrect near splice boundaries.  When aligning ambiguity 

sequence, however, one expects a near perfect alignment since at each position both 

template bases are represented.  Aligning ambiguity sequences to large portions of the 

genome, however, can cause problems.  Since the ambiguity sequence contains less 

information than a DNA sequence of equal length (each position has 1 bit instead of 2) 

spurious alignments are more likely.  Unlike the usual application of finding homologies 

by alignment short gaps are not to be expected when aligning ambiguity sequences 

derived from double traces back to the genome.  Gap penalties thus can be increased to 

reduce spurious alignments.  Mismatches should also be very unlikely so those penalties 

can be increased which reduces spurious alignments further.  Increasing gap and 

mismatch penalties greatly reduce spurious alignments.  An example of trace recalling 

using ambiguity sequence can be seen in the bottom pane of figure 3-1. 
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3.3 Identification of alternate splices 

As stated previously, the main application of trace recalling is to elucidate alternate splice 

forms by RT-PCR sequencing.  Once the trace recalling procedure has been applied to a 

trace it is desirable to have an automated system for determining if an alternate splice has 

been detected and if so to classify it.  Initially this was done by manually viewing the 

initial and secondary alignments of traces to the genome.  An example of such an 

alignment as viewed in ACEDB is shown in figure 3-3 (blue and red genes only).  

Automation of this task is complicated by the fact that alignments near the edges of the 

trace are unreliable.  To solve this problem a string summarizing each pair of alignments 

with one character for each position of the genomic sequence is generated.  The 

characters at each position represent the number of alignments covering that position.  

For example if both alignments contained a certain base the character in the string 

representing that base would be a 2.  If only one and not the other alignment contained 

that base a 1 would represent it.  This is shown in Figure 3-3.  Matching regular 

expressions to this string can recognize specific kinds of alternate splice forms.  For 

example an alternate exon can be represented by 2+1*0+1+0+1*2+.  This regular expression 

specifies that between two common regions in the alignment there is an exon in one 

alignment (the middle 1+) of non-zero length flanked by regions that do not align (the 

0+s) with some slop possible around the edges of the common regions (the 1*s).  Similar 
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regular expressions have been used to find mutually exclusive exons, alternate 3’ and 5’ 

splice sites and retained introns.  Results of applying trace recalling to several data sets 

will be presented in chapter 6. 

 

 

Figure 3-3.  Example alignment of original (red) and recalled (blue) sequences to genome and 
indicator string used to classify alternate splice type. 
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Chapter 4 

Integrated Alignment Method 

The trace recalling method works by the sequential application of several modified off 

the shelf applications.  This consists of an initial alignment followed by a recalling step 

and finally a second alignment to verify the recalled sequence.  It is a heuristic, which 

works very well in practice. It is nonetheless a heuristic.  Trace recalling works very well 

despite throwing away much information.  This included the size and exact location of 

observed peaks relative to predicted peaks.  It also excluded all but two potential 

observed peaks for each predicted peak.  To incorporate these additional lines of evidence 

we developed a new approach called the integrated alignment method. 

 



  55 
 
    

  

 

4.1 Theory 

The integrated alignment method relies on the fact that the core of every step in the trace 

recalling method uses a Smith-Waterman type dynamic programming alignment.  Clearly 

this is true of the initial and secondary alignments.  Recall from section 2.3.3 also that the 

base calling step of PHRED is actually a dynamic programming alignment between the 

predicted and observed peaks.  As a result base calling and both alignment steps can be 

combined into one algorithm.  The pairwise alignments between the predicted and 

observed peaks, the ambiguity sequence and genome, and the recalled sequence and 

genome are replaced with one multiple alignment between the predicted peaks, the 

observed peaks and the genome.  Thus the alignment steps are integrated into the base 

caller.   

 

Initialization of the alignment matrix is handled like the initialization of a Smith-

Waterman pairwise alignment matrix.  The boundary values (planes in this case) are set 

to zero.   A local alignment model is desirable because knowledge of the location of the 

template DNA sequence in the genomic sequence is not assumed.  Thus free end gaps are 

required.  Equation 4-1 shows the dynamic programming recurrence used to fill in the 

multiple alignment matrix.  The i indices refer to predicted peaks, j indices refer to 

observed peaks and k indices refers to genomic sequence.  ( )jiScorePhred ,  refers to the 

score returned by the PHRED scoring function for aligning predicted peak i to observed 

peak j.   The gap penalties and match bonus are arbitrary constants. 
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The cases which align a predicted and observed peak (and thus call a base) use a score 

similar to the PHRED score for aligning predicted and observed peaks plus an extra 

constant factor.  This term reflects whether or not the channel of the observed peak 

matches the type of genomic base to which it is aligned.  If they match a bonus is added, 

otherwise a penalty is subtracted.  In the cases where a predicted and an observed peak 

are not aligned the score from the originating cell is simply propagated less an arbitrary 

but constant penalty.  This scoring scheme is meant to pull out an alignment that calls 

bases that match the genome while localizing sections of the trace to specific genomic 

regions.  An example of the type of alignment obtained from aligning a double trace to 
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the genome with this method is displayed in figure 4-1.  In this figure oi stand for 

observed peaks, pj stand for predicted peaks and gk stand for genomic bases. 

 

Figure 4-1.  A hypothetical multiple alignment as described in text.  
   

 

The dynamic programming alignment is applied to the trace and genomic sequence twice.  

First, as described above, yielding the stronger of the two templates.  On the second 

application a sub-optimal alignment is found by the Waterman-Eggert method as 

described in section 2.2.6.  This gives an alignment between the genome and the portion 

of the secondary template sequence, which is represented by double trace in the trace.  

Single trace regions of the trace are not found again by this method since all cells 

corresponding to single trace segments of the dynamic programming matrix on the 

optimal path have been zeroed out.  To identify this common region the traceback step is 

modified in the sub-optimal alignment.  Traceback proceeds until a zero score is found.  

If this is due to contact with the previous optimal path, the traceback jumps to the old 

optimal traceback and proceeds.  Continuing the traceback from this intersection with the 

optimal path at the predicted peak immediately preceding the last predicted peak on the 

sub-optimal path recovers the single trace segment. 
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4.2 Complexity/Optimization Issues 

A simple calculation shows that filling in the full dynamic programming matrix as 

described in section 4.1 is not practical.  Assume a normal trace contains about 1000 

predicted peaks.  If this is a double trace it could easily contain 2000 observed peaks not 

counting noise peaks.  This means that one plane through the full matrix requires 2 

million cells.  If we assume a tight implementation in which each score is represented by 

a float (4 bytes) and each traceback pointer is represented by a char (1 byte), each such 

plane takes 10 megabytes of memory.  There is one plane for each base in the genomic 

sequence.  Assume we have access to a machine with 4 gigabytes of memory, the length 

of the genomic sequence that we can align such a trace to is only 400 base pairs, less than 

the length of the trace!  As described so far the problem is O(lpredlobslgenome) in both time 

and memory where the these lengths represent the number of predicted peaks, observed 

peaks and genomic bases.  Clearly, major optimizations are needed. 

 

4.2.1 Banding 

The first optimization is a banding scheme.  As described above every predicted peak is 

compared to every observed peak, which is not necessary.  A correct alignment should 

not align a predicted and observed peak more than a few trace points away from each 

other.  Recall that the typical separation between peaks is about 12 trace points.   A 

processing step is used which identifies observed peaks within a fixed window of each 
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predicted peak.  This defines a variable width band through the dynamic programming 

matrix that is not necessarily constrained by the diagonal.  The only matrix cells filled in 

correspond to potential alignments between predicted and observed peaks within this 

band and therefore close enough that they could reasonably align.  Consider again the 

hypothetical trace presented earlier with 1000 predicted and 2000 observed peaks.  Say 

the trace is well behaved and a band width of 40 trace points is used.  Now only about 7 

observed peaks are considered for each predicted peak.  The number of cells required to 

align each genomic base drops from 2 million to 7000.  On the same 4 gigabyte machine 

the trace can now be aligned to over 114 kilobases of genomic sequence with a 

corresponding drop in runtime.  Nothing is sacrificed from this optimization since the 

cells not examined could not represent real base calls.  Figure 4-2 graphically illustrates 

the memory and time savings of the banding scheme.  In practice the number of observed 

peaks within a fixed with band is bounded.  Thus, banding effectively reduces the time 

and memory complexity of the problem to O(lpredlgenome). 

   



  60 
 
    

  

 

 

Figure 4-2.  Illustration of memory savings from banding. 
 

 

4.2.2 Linear space alignment 

Another optimization is possible to make the algorithm run in linear memory.  The Myers 

and Miller linear space pairwise alignment algorithm was discussed in section 2.2.4.  The 

basis of the algorithm is that the optimal pairwise alignment traceback must pass through 

the middle row of the dynamic programming matrix.  Thus the middle row can be 

computed two ways, from the top of the matrix down and from the bottom of the matrix 

up.  Corresponding cells are summed and the cell with the largest sum indicates where 
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the optimal traceback path crosses the middle row.  Since only scores are computed and 

the score in each cell is based on only the scores of cells in the current and previous rows 

only 2 rows are required to be in memory at any time.  Analogously in the multiple 

alignment case, the optimal alignment must pass through the middle plane of the dynamic 

programming matrix.  Thus one can compute the middle plane in both directions and sum 

the corresponding cell scores to determine where the optimal alignment crosses that 

plane.  This breaks the problem into two sub-problems that can be solved in the same 

way.  The score of each cell depends only on scores of cells in the current and previous 

plane so only 2 planes are required to be in memory at any time.  Returning to our 

hypothetical trace the amount of memory required is 2*7*5*lgenome where lgenome is the 

length of the genomic sequence.  This means on a 4 gigabyte machine the trace can be 

aligned to 57 megabases.  Linear space alignment was not implemented in the final 

algorithm due to other limitations of the integrated alignment approach. 

 

4.3 Implementation Details 

During the course of implementation and testing of the integrated alignment method 

several departures from the theory described above were necessary.   
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4.3.1 Scoring alignments between predicted and observed peaks 

The original idea for scoring alignments between predicted and observed peaks was 

simply to use the scoring function that PHRED uses (eqn 2-3) and modulate the score 

depending on whether or not the observed peak matches the genomic base (see eqn 4-1).  

This was not possible since the PHRED alignment score depends directly on the absolute 

area of the observed peak, making it unbounded.  This is a problem because it is 

necessary to balance the scores obtained from aligning the predicted and observed peaks 

in the base calling part of the algorithm against mismatch and gap penalties in the 

sequence alignment part.  Having unbounded scores in the alignment between predicted 

and observed peaks is analogous to using a BLAST matrix in which match scores are 

unbounded.  In this situation it is impossible to come up with reasonable mismatch and 

gap penalties that can pull out the desired alignments. 

 

The solution to this problem was to design a simple, bounded scoring system for aligning 

predicted and observed peaks.  The basic criteria for the scoring system was that it should 

give high scores to large observed peaks near predicted peaks and lower scores as the 

observed peak got smaller and farther away from the predicted peak.  In accord with this 

criterion a two part score, separately considering shift and area, was used.  The shift part 

considered the distance between the predicted and observed peak in a similar way to the 

PHRED score.  If the predicted and observed peak coincided exactly the shift score got a 

fixed maximum value (20 was used in the final implementation).  The shift score 
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decreased linearly with the distance between the predicted and observed peak until it 

reached zero at a distance of 6 trace points.  Six trace points was used since on average 

peaks in real traces are 12 trace points apart. When the shift exceeds 6 trace points the 

observed peak starts getting closer to another predicted peak.  The area part considers the 

relative areas of observed peaks in the vicinity of the predicted peak.  This works by 

computing a scaled area for each observed peak in a 6 trace point window around the 

predicted peak.   The scaled area is simply the area of the observed peak divided by the 

area of the largest observed peak in the window.  The area part of the score is obtained by 

multiplying the scaled area by a fixed constant (again 20 was used as this constant in the 

final implementation).  The alignment score for the predicted and observed peak is 

simply the sum of the shift and area scores.  Changing the constants used in computing 

the alignment score can control the relative weights of position vs. area, however, equal 

weighting seems to work well in practice.  This solves the bounded score problem since 

the highest alignment score possible for any predicted/observed peak pair is the sum of 

the constants (40 in the final implementation). 

 

4.3.2 Using only the top 3 scoring observed peaks 

Originally all observed peaks within the 6 trace point window around each predicted peak 

were considered.  In well-behaved regions of a double trace this works well since only 2 

or 3 observed peaks could get significant scores for any given predicted peak.  However, 

in very noisy regions of the trace or in traces that are all noise often there are regions of 
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the trace in which every predicted peak is within 6 trace points of observed peaks in each 

channel.  To compound the problem in these noise regions the observed peaks often have 

similar areas resulting in scores that seem significant.  This is a problem since proper 

functioning of the integrated alignment method relies on the sequence represented in the 

trace to match some subsequence of the genomic sequence.  When viewed from a 

sequence alignment perspective the situation in noisy traces is similar to aligning a 

sequence of Ns to a genomic sequence using a matrix that gives positive scores to 

alignment between N and any base.  The noise region can align anywhere in the genomic 

sequence with a score high enough to swamp out any real signal present.   

 

 

This problem was solved by a pre-processing step in which alignment scores for all 

predicted/observed peak pairs are computed.   Only the 3 highest scoring observed peaks 

for each predicted peak are retained and used in subsequent steps.  It is still likely that the 

2 desired observed peaks per predicted peak are retained.  In noisy regions of the trace, 

however, nuisance alignments to noisy regions are broken up since several mismatches 

and gaps in such alignments become necessary.  This usually ensures that they score 

poorly enough to not show up at all.  Empirically this had the effect of all but eliminating 

alignments to noisy traces while not impacting performance on real double traces.  

 



  65 
 
    

  

 

4.3.3  Choice of mismatch and gap penalties 

The mismatch and gap penalties in eqn 4-1 were chosen based on the composition of 

alignments desired.    As can be seen in eqn 4-1, alignments are determined by 10 

parameters in addition to the alignment score between the predicted and observed peaks.  

These include the match bonus (type1 match), mismatch penalty (type1 mismatch), 6 

types of single base gaps (type2, type3, type4, type5, type6 & type7) and 2 intron 

penalties, one for canonical GT/AG introns (type8 splice) and one for non-canonical 

introns (type8 intron).  To understand the rationale behind these alignment parameters it 

is first necessary to understand what each alignment type means in the context of a full 

alignment.  The type1 and type8 alignments are relatively straightforward.  Type1 refers 

to the case where a predicted peak, observed peak and genomic base are all aligned.  The 

match or mismatch depends on whether or not the observed peak channel matches or 

mismatches the genomic base.  The type8 alignment refers to the case of a long range 

jump in the traceback when an intron is encountered in the genomic sequence.  The 

penalty for such a jump is smaller when the canonical GT/AG splice signal is present at 

the ends of the intron (type8 splice) and larger otherwise (type8 intron).  The other 

alignment types refer to the rest of the possible alignments.  For example a type2 

alignment means that a predicted and observed peak are aligned to each other but to a gap 

in the genomic sequence.  This can be represented graphically as –po.  The graphical 

representations of the other alignment types are type3 (g-p), type4 (--p), type5 (go-), 

type6 (-o-) and type7 (g--).   Three of these gap types (type3, type4 & type5) are 
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nonsensical and so are given scores of negative infinity.  Consider, for example, the type3 

alignment.  It makes no sense to align a genomic base and predicted peak to a gap in the 

observed peak sequence so it is excluded.  Similar arguments can be made for type4 & 

type5 alignments.  The remaining alignments, however, do have reasonable 

interpretations.  A type2 alignment corresponds to an insertion in the sequenced template 

or a deletion in the genomic sequence.  Similarly a type7 alignment corresponds to a 

deletion in the sequenced template or insertion in the genomic sequence.  The type6 

alignment at first appears to be another nonsensical case but it turns out to be important.  

Type6 alignments are used to “skip over” observed peaks which could be either noise 

peaks or peaks corresponding to the other sequenced template.  To understand this, 

consider a perfect double trace in which for each predicted peak there are exactly 2 

observed peaks corresponding to different subsequences of the genomic sequence.  Both 

the optimal and sub-optimal alignments will be composed of alternating type1 match and 

type6 alignments.  This is because for each type1 match alignment the observed peak 

corresponding to the other trace at that predicted peak location must be “skipped over” 

with a type6 alignment. 

 

Based on the considerations above, penalties for the different types of mismatches and 

gaps can be set based on the kinds of alignments expected.  The basic score unit is the 

average score of a properly aligned predicted and observed peak.  As implemented, this 

turns out to be about 35 for the optimal and 25 for the sub-optimal alignment.  This 
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difference in average scores makes sense because the optimal alignment, by design, pulls 

out the stronger of the two signals present in the trace.  The match bonus is set to zero.  

Once this is done the mismatch and other gap scores can be set based on the desired 

composition of the alignments.  The nominal parameter set used in the experiments is 

given in table 4-1.   

 

Table 4-1.  Parameters used for integrated alignment. 
Penalty type  Value
Type1 match 0
Type1 mismatch 6    *  average peak alignment score
Type2 6    *  average peak alignment score
Type3 Infinity
Type4 Infinity
Type5 Infinity
Type6 0.3 * average peak alignment score
Type7 6    * average peak alignment score
Type8 splice 8    * average peak alignment score
Type8 intron 24  * average peak alignment score
 

These scores can be understood as “in a good alignment how many type X alignments 

will be tolerated per properly aligned type1 match before the alignment is terminated or 

excluded”.  For example the type2 penalty says that for each insertion in the trace or 

deletion in the genomic sequence there must be at least 6 type1 match alignments, 

otherwise the score for the segment becomes negative and the alignment is excluded.  

This is similar to the way in which match and mismatch scores are chosen in a BLAST 

matrix to pull out alignments with specific desired percent identities.  These parameters 

work well for many but not all traces which will be discussed later in the results. 



  68 
 
    

  

 

 



  69 
 
    

  

 

 
 

Chapter 5 

Pair-HMM Method 

An alignment algorithm based on pair-HMMs was developed to address some of the 

shortcomings of the integrated alignment approach. 

 

5.1 Alignment Sequences 

As in the integrated alignment approach we wish to align the sequencing trace to an 

assembled genomic sequence.  Instead of a three-way alignment of predicted peaks, 

observed peaks and genomic sequence the pair-HMM developed here aligns the observed 

peaks directly to the genomic sequence.  We still wish to include information concerning 

the regularity of spacing of the observed peaks and their size in the scoring function.  

This is accomplished by appending two values to each observed peak in addition to its 

channel.  The first value is the distance from the observed peak to the nearest predicted 

peak in units of trace points.  This value can be positive or negative depending on the 

relative order of the predicted and observed peak.  The second value is a relative area of 

the observed peak obtained by dividing it’s area by the average area of the ten 

neighboring observed peaks.  Thus the sequence aligned to the genomic sequence by the 
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pair-HMM is actually a sequence of vectors in which each observed peak is defined by a 

channel (A, C, G, or T) a distance, and a relative area.  The last two attributes of the 

observed peak sequence are real valued.   

5.2 Model Topology 

Several model topologies were used, the largest of which is depicted in figure 5-1.   
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Figure 5-1.  Pair-HMM model topology for aligning a trace to genomic sequence. 



  72 
 
    

  

 

 
This model allows a spliced trace to align locally to a genomic sequence while enforcing 

consensus GT/AG splice signals in the genomic sequence.  Models with subsets of these 

states were tested which exclude the states used to model introns as well as the state 

which allows a gap in the observed peak sequence.  The states are interpreted as follows.  

Emission from the match state signifies that an observed peak aligns to a genomic base.  

The channel of the observed peak must match the type of the genomic base.  The 

secondary and noise states represent observed peaks aligned to gaps in the genomic 

sequence.  They differ in that secondary peaks are assumed to align elsewhere in the 

genome while noise peaks are not assumed to align anywhere.  Secondary and match 

states emit observed peaks from the same probability function (tied parameters) while 

noise peaks emit from a different distribution.  This will be described in more detail in 

5.3.  The obs_gap state models a genomic base aligning to a gap in the observed peak 

sequence.  This should be a rare occurrence since it requires the assembled genomic 

sequence to be different from the sequence of the molecule which gave rise to the trace.  

The donor, acceptor, and intron states are used to model alignments between a spliced 

trace and genome sequence.  They all emit genome bases aligned to gaps in the observed 

peak sequence.  The donor and acceptor states emit bases necessary to form a consensus 

GT/AG splice signal with probability 1 and the intron state emits A, C, G or T with equal 

probability.  The genome_begin_gap and genome_end_gap states allow the trace to align 

anywhere within the genome sequence (semi-local alignment) by aligning long stretches 

of the genomic sequence before and after the alignment to gaps in the observed peak 
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sequence.  Finally the silent begin and end states formalize the beginning and end of the 

alignment.  The states in figure 5-1 are color coded to indicate the types of alignments 

emitted.  Red means non-emitting, blue an observed peak against a gap in the genome, 

green a genomic base against a gap in the observed peak sequence and black an observed 

peak aligned to a genomic base. 

 

5.3 State Emission Probabilities 

The probability distribution of states which emit an observed peak (match, secondary and 

noise) are defined by a bivariate normal distribution.  One dimension of the distribution 

models the relative distance between the observed peak and its nearest predicted peak.  

The mean of this distribution is fixed at zero and the standard deviation is estimated in 

the training step.  The second dimension of the bivariate normal models the area of the 

peak relative to other nearby peaks.  Both the mean and standard deviation of this 

distribution are estimated in the training step.  For simplicity it assumed that the normals 

are uncorrelated (ρ = 0) however we would like to explore whether or not this assumption 

is true.   

 

5.4 Implementation and Training 

Pair-HMM versions of the standard HMM algorithms were implemented for the 

continuous density pair-HMM described above.  These include the Viterbi algorithm, 
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forward and backward algorithms, and Baum-Welch parameter estimation.  Parameters 

were trained for a sub-model of the one shown in figure 5-1 which excluded the states 

necessary to model introns.  Training data was derived from a set of 96 double primed 

sequencing runs in which forward and reverse primers were used to sequence a pGEM 

plasimd vector lacking an insert.  This results in a double trace in which a section from 

each strand of the plasmid is superimposed.  Clean segments from 69 of the traces were 

identified by visual inspection.   There are a total of 16,830 observed peaks in the training 

set.  Of these 6500 peaks are expected to align to each strand of the pGEM plasmid 

sequence.  This means 3830 noise peaks are present in the training set.  These segments 

and the pGEM plasmid sequence were used to train the model parameters.  Initial model 

parameters were selected which were thought to be close to the correct values.  Self-

transition probabilities for the genome_begin_gap and genome_end_gap were picked 

which were thought to approximately model the location of the trace within the plasmid 

sequence.  Transition probabilities between the match, secondary, noise, and obs_gap 

states were set to be approximately equal with the exception that the transitions to the 

obs_gap state were set to be very small since it is assumed that this state is only rarely 

entered.  Parameters to the bivariate normal distributions used to emit observed peaks 

were set based on informal observation of double trace data and expectation of their 

relationships (noise peaks spread over a larger distance than match or secondary peaks, 

noise peaks have smaller average area than match or secondary peaks, etc…).  Baum-

Welch parameter estimation was performed for 15 rounds from these initial values.  On 
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each iteration, expected counts were derived from each observed sequence and one strand 

of the pGEM sequence using Baum-Welch.  After 15 rounds the model parameters had 

converged. 



  76 
 
    

  

 

 
 

 

Chapter 6 

Results 

The only double traces initially available for testing were a few which were accidentally 

generated in the course of testing Twinscan predicted genes in rat.  These resulted from 

alternately spliced transcripts and suggested that this system could be used to detect 

alternate splices.  The first set of traces generated for testing were synthetic traces.  

Another set of experiments was performed to test the ability of the system to deconvolve 

traces that result from sequencing off of both ends of a template simultaneously.  Next, a 

set of real traces was generated from alternately spliced transcripts to recreate the types of 

traces seen in rat but this time under controlled conditions. 

  

6.1.1 Description of synthetic traces 

The synthetic traces represent the ideal input to the algorithms developed here.  They 

were mainly used to test the code during debugging.  A genomic sequence and double 

trace pair are generated which simulate an alternate splicing event.  Double traces were 
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created by first generating a random “genomic” DNA sequence, a string whose characters 

are randomly drawn from the set {A,C,G,T} with uniform probability.  Short portions of 

the “genomic” sequence are designated as exons.  The sequence before the first and after 

the last exon is designated intergenic sequence and the rest is designated as intronic 

sequence.  Bases at exon/intron boundaries are removed and replaced with consensus the 

GT/AG splice signal. This defines one gene isoform.  An alternate form is defined by 

altering the initial gene, for example by removing an exon or altering the position of an 

individual splice site.  The sequences corresponding to the spliced products of the two 

isoforms is extracted and used to build a synthetic double trace.  This is done by walking 

through each sequence, starting at the first index, generating a guassian corresponding to 

the base in each sequence, and shifting to the right by 12 trace points.  Spacing between 

peaks and parameters of the guassian which model the peaks were chosen to approximate 

peaks seen in known double trace examples.  A program was written to feed the resulting 

trace values into PHRED, which packages them in .scf format.  This synthetic trace .scf 

file can subsequently be treated as a normal trace file.  Thus a variety of clean double 

traces for which the “correct” answer is known were generated.  The “genes” modeled in 

the synthetic traces consisted of 5 exons each containing between 50 and 75 bases.  The 

exons are separated by introns between 100 and 200 bases long.  The “genes” are flanked 

by between 400 and 500 bases of intergenic sequence.   
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6.1.2 Results of trace recalling on synthetic traces 

A test set of synthetic traces was generated as described above.  The set consist of 40 

randomly generated genomic sequences and double traces.  Ten alternate splices of each 

alternate splice class; skipped exon, mutually exclusive exons, alternate 3 prime splice 

site and 5 prime splice site were created (see figure 2-7).   Trace Recalling was applied to 

the synthetic double trace and genomic sequence with EST_GENOME alignment 

parameters, match = 1, mismatch = -1, gap = -3.  In 39 of the 40 test cases the two forms 

of the gene were called exactly right.  The case that didn’t work was a mutually exclusive 

exon and it worked if the gap penalty in the first alignment was changed from –3 to –4.  

This seems to be the result of an odd self-similarity in the randomly generated genomic 

sequence.  The mean and median percent identities of the first stage alignments (aligning 

ambiguity sequence to the genome) were 99.9% and 100%, respectively.  For the second 

stage alignment (alignment of recalled sequence to the genome) the mean and median 

were 99.7 and 100%. 

  

6.2 Dual Sequencing Primer Experiments 

6.2.1 Description of dual primer set 

As noted in 2.4.4 another way to generate double traces is mispriming.  This section 

describes a controlled mispriming experiment in which traces were generated by 
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sequencing off both primers flanking the insertion site of the pGEM vector in a single 

reaction.  No insert was present so the traces generated represent the plasmid sequence.  

Four different reactions were used to generate the traces representing different ratios of 

the forward primer concentration to reverse primer concentration, 1:1, 2:1, 3:1 and 4:1.  

Each ratio was tested with 24 individual double-ended sequencing reactions.   

 

6.2.2 Results of trace recalling on dual primer set 

Trace recalling was applied to each of the double traces and the sequence of the pGEM 

plasmid.  The expected outcome of this experiment is a perfect ungapped alignment in 

the first alignment stage across the whole trace followed by a perfect alignment of the 

recalled sequence also across the entire length of the trace on the reverse strand.  

Statistics about the first and second stage alignments are presented in table 5-1, broken 

out by both for the entire set of 96 experiments and each set of 24 experiments with 

different ratio of primer concentrations.  Notice that in general the second stage 

alignments are slightly shorter than the first stage alignments and have a lower percent 

identity.  Note also that while the length of the alignment appears not to be correlated to 

the ratio of concentrations of the sequencing primers the percent identity seems to 

increase for both alignment stages as the ratio of primers approaches 1:1.   
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Table 6-1.  Results of dual primer experiment. 
Set  Length % Identity 

 Mean Median Std dev Mean Median Std dev
Stage 1 all 736 785 179 95 96 4
Stage 2 all 686 725 125 70 71 4

   
Stage 1 4:1 684 792 231 93 94 5
Stage 1 3:1 753 827 203 94 94 4
Stage 1 2:1 802 812 50 96 96 3
Stage 1 1:1 704 740 142 96 98 4

   
Stage 2 4:1 644 673 140 68 70 4
Stage 2 3:1 762 784 70 71 72 4
Stage 2 2:1 656 718 158 71 72 3
Stage 2 1:1 677 716 65 72 72 3

 

 
We had hoped to see similar percent identities the first and second stage alignments.  As 

seen in table 6-1 the percent identities in the second stage alignments were lower than in 

the first stage.  A major reason for this is illustrated in figure 6-1.  The figure shows a 

section of double trace.  The colors in the trace are:  green for A, blue for C, black for G 

and red for T.  At the bottom of the figure are the first and second stage alignments (using 

ambiguity sequence in the first stage) for the displayed trace section.  Below the trace in 

capitol letters are the peaks aligned in the first stage.  Below these in lower case letters 

are the peaks aligned in the second stage.  Letters in red correspond to mismatched bases 
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in the second stage alignment.  The first, third and fourth mismatches appear to be the 

result of noise peaks masquerading as peaks from the secondary template.  For example 

look at the first mismatch (red t).  The correct call at that location was an A and there is a 

large A peak present, however, the small T peak was called in the recalling step.  Similar 

arguments hold for the third and fourth mismatches.  The second mismatch appears to be 

due to bad spacing.  In this case (first red c) the correct call would have been an A.  There 

is clearly an A peak nearby but the C was called because it was much nearer the predicted 

peak though it was also much smaller. 



  82 
 
    

  

 

 
Figure 6-1.  A section of double trace with first and second stage base calls and alignments (details in 

text). 
 

6.2.3 Results of pair-HMM method on dual primer set 

The pair-HMM method was tested on a subset of the dual primer set.  The training set 

described in section 5.4 was used.  Each of the 69 clean segments of observed peaks were 

aligned to both strands of the pGEM sequence this resulted in 138 alignments.  When 
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each of the clean segments was extracted the number of bases present in the segment was 

recorded.  This number was compared to the number of bases predicted by the pair-HMM 

method.  All pair-HMM derived sequences were within 5 bases of the expected length 

with only one exception, which was 15 bases shorter.  BLASTing each one against the 

pGEM vector sequence tested the quality of the pair-HMM derived sequence.   In all 

cases this resulted in a 100% match.  From this I conclude that the pair-HMM described 

in chapter 5 can be used to align an experimentally derived double trace with minimal 

noise to the genome.  More work is required to determine how the pair-HMM alignment 

method behaves in nosier regions of the trace.  

 

 While it is possible that this test could result in an over-training problem, I do not believe 

this is the case.  First, The training set consisted of 16, 830 observed peaks.  This should 

be more than enough data to train the small model used.  Second, while training only 

used one strand of the pGEM vector sequence testing was performed on both strands.  If 

over-training were taking place the results on the strand for training would appear to be 

much better than those on the strand not used in training.  This was not observed. 
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6.3 Alternate Splice Experiments 

6.3.1 Description of alternate splice test set 

A set of 96 targets in the human genome was selected to test the methods developed in 

this thesis.  I refer to targets instead of genes because some genes that containing multiple 

alternate splices are represented more than once in the test set, once for each alternately 

spliced target.   The goal was to differentiate between targets with and without alternate 

isoforms and to determine the two different isoforms that existed when present.  This set 

also provided quality examples of double traces that were used to develop the algorithms.  

The set consisted of 49 targets thought to be alternately spliced and 46 thought not to be 

alternately spliced that served as negative controls.  One target was thrown out of the 

analysis due to improper primer placement.  Each target was classified as alternately 

spliced or not by viewing alignments of RefSeq genes and ESTs to the human genome on 

the UCSC genome browser.  If two RefSeq or EST isoforms were present the target was 

categorized as alternately spliced.  If only one form was present supported by two or 

more ESTs the site was marked as not alternately spliced.  The composition of the 

alternately spliced set was 34 skipped exon, 8 alternate splice site, 5 retained intron and 2 

mutually exclusive exon targets. 

 

Once the test set was finalized PCR primers were designed flanking the alternately 

spliced targets.  For the non-alternately spliced targets primers were designed to amplify 
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regions of similar length to the alternately splice targets.  The selected regions were 

amplified and sequenced three times.  Most traces from the first round of sequencing 

were not usable so that set of traces was not discarded.  The other two sequencing rounds 

produced better traces and were used in subsequent analysis.  Thus there are 4 repetitions 

of each experiment.  Forward and backward reads from two different sequencing runs.  

Since it was known which genes were being tested, the genomic sequence of these genes 

was extracted and used in the alignment steps instead of aligning to the whole genome.   

 

A follow up cloning experiment was performed.  The rationale of this experiment was to 

determine exactly which isoforms were present in the PCR mixture that was used to 

generate the double traces.   The PCR products were randomly inserted into plasmid 

vectors.  The plasmids were introduced to a bacterial culture.  The bacteria were plated 

and allowed to form colonies, each of which should have possessed an insert containing 

plasmid with a single isoform present in the mixture of PCR products.  Twelve colonies 

were selected for each of the 96 experiments and the plasmid inserts were sequenced.    

 

6.3.2 Results of trace recalling on alternate splice test set 

Results are based on visual inspection of first and second stage alignments to genomic 

sequence.  These alignments are compared to alignments of all refseq genes, ESTs and 

clone sequences to the same genomic sequence.  Examples of such alignments for one 

example are presented in figure 5-1.  Red and green genes represent the first and second 
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stage alignments to genomic sequence for 2 of the 4 repetitions of the experiment that 

worked.  The leftmost red gene represents the first stage alignment and the rightmost red 

gene represents the second stage alignment, similarly for the green genes.  Blue genes 

represent alignments of sequence derived from cloning experiments and brown genes 

represent pooled refseq and EST alignments from the UCSC genome browser.  Green 

boxes represent the positions of the original PCR primers used to select the region to 

amplify.  The black bar on the right hand side of the figure gives the coordinates of the 

genomic sequence to which all alignments are made.     An experiment is considered a 

success if in at least one of the repetitions the first and second stage alignments correctly 

identify each of the two forms of the gene thought to be present based on refseq and EST 

evidence.  By this criterion 23 of the 48 genes thought a priori to be alternately spliced 

were successes.  In this example (figure 6-2) there is clear evidence for the skipping of 

the exon near coordinate 70,000 from the refseqs and ESTs.  Evidence also exists from 

the cloning experiments that the transcript is alternately spliced in our mRNA pool.  The 

two experiments shown exactly highlight the skipped exon. 
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Figure 6-2.  Example of a successful experiment. 
 

The results of the cloning experiment on the targets in the alternate splice set thought to 

be alternately spliced are presented in tables 6-2 and 6-3.  Table 6-2 shows data for the 

successful cases and table 6-3 shows data for the cases that did not work.  The first 

column of these tables gives the ID number of the experiment.  The second column gives 
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a conclusion as to whether or not the cloning experiment supports the fact that the 

sequence is actually alternately spliced, a minus sign indicates that it is not, a plus sign 

indicates that it is and a question mark indicates that there were no alignments to the 

region between the PCR primers.  The third column gives the evidence for the conclusion 

in the previous column, if there is a minus in the second column the third column gives 

the number of times the same form was observed.  If there is a plus in the second column 

the third column gives the number of times each alternate form was observed.  Otherwise 

the third column is blank since nothing was observed.  The third column can be used to 

gauge the reliability of the conclusion in the second column.  For example since a single 

form was seen 7 times as in the case of experiment 88 one can be fairly confident that 

there is no alternate splicing at the abundance level our system is designed to detect.  On 

the other hand since only 1 alignment is seen as in experiment 96 we cannot conclude 

that there is no alternate splicing.  Finally, the fourth column indicates in how many of 

the repetitions of the experiment there was a first stage alignment that matched one of the 

refseqs or ESTs.  There are 16 targets for which the cloning experiments indicated 

alternate splicing in our test sample.  Of these 12 were identified as alternately spliced by 

trace recalling, 4 were not. 
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Table 6-2.  Successful experiments 
Experiment ID Conclusion Evidence Alignment 

04 + 9/2 2 
12 ? 4 
23 + 3/1 4 
24 ? 4 
26 + 6/1 3 
27 ? 4 
30 + 1/1 4 
31 + 2/1 4 
33 - 1 1 
37 + 6/2 4 
40 - 3 1 
58 ? 3 
59 ? 4 
61 + 2/1/1 4 
65 + 7/3 4 
69 ? 4 
73 + 3/2 4 
74 - 4 4 
76 + 3/1 2 
79 + 7/3 4 
87 ? 4 
92 - 4 4 
94 + 3/1 4 
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Table 6-3.  Unsuccessful experiments 
Experiment ID Conclusion Evidence Alignment 

01 ? 2 
06 - 2 4 
07 ? 4 
09 ? 0 
10 + 7/1 1 
12 ? 4 
16 + 8/2 4 
20 - 1 0 
22 - 4 4 
25 ? 0 
28 ? 3 
43 + 7/1 4 
48 + 1/1 2 
51 ? 0 
52 - 7 3 
55 ? 0 
56 - 1 0 
60 ? 1 
62 - 1 2 
67 - 1 3 
68 ? 0 
80 ? 1 
82 - 2 4 
88 - 7 2 
91 ? 2 
96 - 1 2 

 

 

As outlined in 3.3 a system was developed for automatically identifying and classifying 

alternate splices based on the first and second stage alignments.  This system was applied 

to the alternate splicing set.  The output of this procedure can be evaluated both on the 

locus and individual trace levels.  On the locus level all 23 alternate splices found by 

visual inspection were identified.  In addition to these it flagged 5 other experiments 
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identified visually as alternately spliced.  Four of these were incorrectly called alternate 

splices in targets thought to be alternately spliced and one was a predicted alternate splice 

in a target thought not to be alternately spliced.  We consider these false positives.  On 

the individual trace level 62 traces were flagged as alternately spliced, only 6 of these 

were false positives.   

 

6.3.2 Results of integrated alignment on alternate splice set 

The integrated alignment method was applied to the alternate splicing set.  The output of 

the integrated alignment procedure is the same as the output of the trace recalling 

procedure (two alignments to the genomic sequence) so the results could be analyzed in 

the same way.  Essentially the same set of alternately spliced targets was found by 

integrated alignment as was found by trace recalling.  Three targets (12, 40 & 59) that 

were correctly identified as alternately spliced by trace recalling were missed by 

integrated alignment.  However two (20 & 96) that were missed by trace recalling were 

correctly identified by integrated alignment.  In another case (16) an alternate splice form 

not corresponding to refseq or EST evidence was identified in two experiments, 

suggesting that it may be a novel alternate splice form.  At the individual trace level, 67 

traces were flagged as containing alternate splices and it appears that 5 of these are false 

positives.  However 16 of the 62 true positive examples required different alignment 

parameters than those described in section 4.3.3 whereas all experiments with the 
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integrated alignment method used the same model parameters.  This represents a major 

drawback to the integrated alignment method.   
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Chapter 7 

Conclusions 

7.1 Discussion of experimental results 

7.1.1 Discussion of synthetic trace experiment 

As mentioned previously the synthetic traces are mainly a debugging tool.  Applying any 

of the methods developed to these test cases should result in alignments that exactly 

match the specified isoforms with 100 percent identity.  This is the case when trace 

recalling is applied to the set of 40 synthetic traces.  From this two conclusions can be 

drawn.  First the theoretical basis of trace recalling is sound.  Second as implemented the 

original trace recalling code and modifications to existing code (EST_GENOME) are 

working as expected.   
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7.1.2 Discussion of dual primer experiment 

This experiment tests the ability of the methods developed to handle the simple task of 

deconvolving a long, ungaped double trace with a short genomic segment.  It is more 

difficult than the synthetic trace experiment in that the traces were actually generated in 

the lab and therefore were subject to the various kinds of noise described in section 2.3.1.  

In addition it represents the first attempt to quantify the effect of altering sequencing 

reaction chemistry to optimize double trace analysis.   

 

It is encouraging that the percent identity of the first stage alignment was generally so 

high, 94.6% average when all 96 experiments were pooled.  It is also encouraging that the 

first stage alignments are so long, with a mean of 736 bp and median of 785 bp.  The high 

standard deviation in the alignment lengths of 179 bp is suspicious but can be partially 

explained by the large difference between the mean and median.  Upon closer inspection 

it was noted that this high standard deviation is the result of a handful of outliers with 

very short lengths.  These most likely represent failed sequencing runs.  The first stage 

alignment is especially important because if high percent identity alignments are not 

obtained at the start the rest of the procedure cannot function properly.  

 

The second stage alignments had a mean and median length of 686 and 725 bp and a 

mean percent identity of about 70%.  That the lengths of the alignments of the recalled 

sequence are similar to the lengths of the original alignments is promising.  While the 
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percent identify is quite high it is somewhat disturbing since we expected that in this 

problem the recalled sequence would be of very high quality.   This result can partially be 

explained by the observation at the end of section 6.2.2.  Sometimes when the same base 

is present in both templates at the same position, a noise peak is mistaken for a peak 

originating in the other template.  This can be corrected by examining the ratio of the 

areas between the two peaks.  If the smaller peak is much smaller than the larger peak it 

can be ignored.  This may cause problems, however, in double traces where the 

secondary template trace is much weaker than the primary template trace. 

 

There is no apparent relationship between relative concentration of primers and length of 

either first or second stage alignments.  On the other hand, there does appear to be a trend 

relating relative concentration of primers to percent identity of the alignments.  As the 

ratio of the concentrations between the primers approaches 1:1 the percent identity of 

both stages increases.  This makes sense because the ratio of dye labeled DNA fragments 

used in the sequencing reaction is related to the relative concentration of the primers.  In 

turn this affects the relative heights of the peaks in the double trace.  If the peaks are 

nearly the same height there is less chance of confusing a smaller, but real, peak for a 

noise peak.  The resulting trace also “looks” more like the ideal synthetic double traces if 

the peaks are nearly the same height.  The increase, thought is slight, and due to the high 

standard deviation in percent identity all measurements are within each other’s 95% 

confidence intervals.  Thus, no statistically significant conclusions can be drawn.  
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Another similar study with more repetitions of each concentration is needed to validate 

this finding.   

 

The test of the pair-HMM using the dual primer test set should be considered a very 

preliminary result.  It demonstrates the validity of using the pair-HMM and the 

correctness of the implementation.  This method is still under development.  At present it 

cannot distinguish between two isoforms on the same strand.  We plan to implement 

Waterman-Eggert sub-optimal alignment to do this.    

 

7.1.3 Discussion of alternate splicing experiment 

When viewing the alignments resulting form trace recalling on the alternate splicing 

experiments such as the one in figure 5-1 the most striking observation is the binary 

nature of the outcomes.  One would expect there to be a few experiments in which the 

two refseq/EST isoforms were detected exactly, several for which the general isoforms 

could be discerned but the exact boundaries were incorrect, and others which totally 

failed.  This, however, was not the case.  In almost all experiments either the two correct 

isoforms were produced or the experiment totally failed.  Most likely this is due to the 

fact that a spliced alignment program was used to align the sequences rather than an 

alignment program such as BLAST.  In some cases the alignments, especially the 

secondary alignments, have a low percent identity.  Despite this, the lower splice penalty 
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for a consensus GT/AG intron as compared to a non-consensus splice signal seems to 

often “lock in” the correct alignment.  

 

Almost half (47%) of the targets thought to be alternately spliced were identified.  There 

are 5 cases (09, 25, 51, 55, 68) in table 5-2 for which there appears to have been no 

transcript present at all. In these experiments no usable first stage alignments were 

recovered and there was no cloning evidence for a transcript.  In 2 cases there is 

convincing evidence that there was a transcript present but it had only a single isoform 

(22, 88).  In these cases 4 or more cloning sequences were recovered but all were of the 

same isoform.  In only 4 experiments (10, 16, 43, 48) did cloning provide convincing 

evidence for the presence of an alternately spliced transcript.  Not much can be said about 

the remaining 15 experiments since they had little cloning evidence but also had at least 1 

convincing first stage alignment suggesting that at least one transcript isoform was 

present. 

 

The automated detection procedure outlined in 3.3 performed very well.  It identified all 

23 of the alternate splices deduced from visual inspection.  In addition to this it predicted 

only 5 false positives, 2 of which might be real altsplices for which there is simply no 

refseq or EST evidence yet.  The other 3 false positives appear to be alignment artifacts.  

An example of such an artifact is presented in figure 7-1.  This problem arises when there 

is a sequence similarity between an exon and the intron region upstream of the next exon.  
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As in this example, the first exon can be shifted and attached to the next exon creating the 

appearance of a skipped exon followed by an alternate splice site.  Further refinement of 

the algorithm may solve this problem.  Automated detection is important if this system is 

to be used in a high-throughput manner since visual inspection of the alignments is at 

present the most time consuming part of the procedure.   

 

Figure 7-1.  An alignment artifact. 
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Generally the trace recalling and integrated alignment procedures have similar 

accuracies.  The trace recalling results presented were obtained with a single set of 

alignment parameters.  On the other hand 15 of the 62 true positives found by integrated 

required manual tuning of the parameters.  This represents a major drawback to the 

integrated alignment approach. 

 

7.2 Applications and future work 

The methods described in this work have been shown to be effective at deconvolving 

double traces by aligning them to assembled genomic sequence.  At present trace 

recalling appears to be the most robust technique.  Integrated alignment seemed the 

natural next step but met with limited success.  We believe there were two main reasons 

for this outcome.  One is lack of expressiveness inherent in the alignment model and 

inability to automatically determine optimal parameters.  We believe the pair-HMM 

model of alignment addresses these problems and have promising preliminary evidence 

that this is so.  The focus of future work on this project will be to refine the pair-HMM 

model.  This will include testing it on nosier traces, adding in the splicing states, and 

implementing the Waterman-Eggert algorithm to find sub-optimal alignments on the 

same strand.   
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There are many exciting applications of this technique.  Since we require the existence of 

assembled reference sequence they all involve resequencing.  Section 2.4 outlines 

numerous circumstances in which double traces are generated and an assembled genomic 

sequence is available.  The main application so far has been the elucidation of alternate 

splice forms following RT-PCR and direct sequencing.  It has also been demonstrated 

that this technique can be used to deconvolve double traces generated by intentionally 

sequencing a template with two different sequencing primers which anneal to different 

strands.  So far this is simply the sequence of a plasmid with no insert but we have data 

from a similar experiment with an insert containing plasmid.  Another interesting 

application is the T-DNA mediated knockout libraries.  In this application we would like 

to use short double trace tags to determine the integration sites of both T-DNA segments 

in the cases where there are exactly two.  This poses a new set of problems since the 

genomic sequence in this application is the whole A. thaliana genome, not just a short 

segment.  Further down the road we are considering a system that aligns double traces 

directly to each other rather than to a genomic sequence.  In principle this could be used 

to assemble double traces much the same way sequences derived from single traces are 

assembled at present.  If it works, this could significantly reduce sequencing costs.  
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