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Abstract— In the proxy approach to Service Oriented Comput-
ing, a service advertises a proxy, which is searched for, retrieved
and used by interested clients as a local handle to the service
process that runs on a remote host. Due to software evolution,
it becomes necessary at times to upgrade the service. Some of
these upgrades may require an upgrade of the proxy software,
in addition to the server itself. This paper addresses the issue of
upgrading both the server and its proxy in a manner transparent
to the client, and ensures only momentary interruption during
the switching process. The model we propose is designed for ad
hoc wireless networks, but can be used in other settings as well.
We also describe a Java implementation of our model.
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I. I NTRODUCTION

Service Oriented Computing (SOC) is an emerging
paradigm that seeks to promote interoperability of systems
by providing a framework for seamless software-mediated
integration of heterogenous systems. In a SOC framework,
a service represents some functionality that is advertised
by a provider. The framework comparesrequestsgenerated
by clients with service advertisements to identify suitable
matches. Most of the research to date has focused on de-
veloping SOC frameworks for wired networks such as the
world wide web, where network topology changes and dis-
connections are infrequent. However, not much attention has
been paid to developing SOC frameworks for wireless ad hoc
networks.

Our previous work focused on developing a viable and
reliable SOC framework for ad hoc wireless networks, a
special class of wireless networks where the network infras-
tructure is supported by participating hosts. Ad hoc networks
exhibit decoupled computing due to frequent disconnections
and transient interactions. Software that is designed for ad hoc
networks must meet the challenges imposed by the inherent
volatility of the network. In [1] and [2], we outlined an
architecture for SOC based on the proxy model introduced
by Jini [3] but adapted to the nuances of ad hoc networks. In
Jini, the provider augments the service advertisement with a

proxy object. Once the client requests and finds a candidate
service, the proxy object is extracted from the advertisement
by the client and used as a local handle to interact with the
service which resides on a remote host. The proxy approach
ensures that all details of communication between the client
and server hosts remain hidden from the client application.

In the basic proxy model, once the proxy is installed on the
client, it is assumed to continue to function with no changes to
its code until the end of its lifespan. However, there are certain
scenarios where the proxy software may need to be upgraded
before its lifespan terminates. For example, if the server is
upgraded to support secure communication with its proxies
by encrypting the messages, the proxy software also needs to
be upgraded to support the enhanced functionality. Performing
such upgrades introduce certain technical challenges. Exam-
ples of such challenges are ensuring that the upgrade takes
place in a manner transparent to the client while minimizing
the downtime of the proxy and ensuring that when the server
side software is upgraded, requests from proxies that have yet
to be upgraded can still be handled (since it is unreasonable
to expect that the server and all its proxies can be upgraded in
a single atomic step). Additional constraints are imposed by
the ad hoc networking environment, where hosts are generally
resource-poor, requiring that all the above functionality be
achieved in a lightweight fashion.

This paper augments the model described in [2] with a
service update mechanism that can dynamically upgrade the
server as well as its proxies on client hosts. We designed a
lightweight mechanism that upgrades proxies on the client
hosts by replacing them with newer versions. Transparency
is achieved by employing a dynamically generated facade
to temporarily hold calls from the client application while
the old version of the proxy object is swapped for the new
one. We ensure that there are no orphan calls as a result of
swapping the service software by employing a tuple space
based communication protocol which stores calls temporarily
in a federated tuple space if it is determined that the server is
off line. These calls are picked up by the new version of the
server and since we require newer versions of the server to be
backwards compatible, it can service the calls and return the



result to the client.
The rest of the paper is organized as follows: In Section

II, we examine some of the related work. In Section III,
we introduce and describe our architecture for proxy upgrade
in ad hoc networks. We provide details of a Java based
implementation of our architecture in Section IV. Design
decisions and the merits of our approach are described in
Section V. Conclusions appear in Section VI.

II. RELATED WORK

The proxy object that is installed on and used by the
client application as a handle to the service is analogous
to a stand-alone component that fits modularly into a larger
application. Hence, the technical problems associated with
upgrading a proxy are similar to those encountered with
upgrading components within an application. In [4], Hicks,
Moore, and Nettles posit that it is a challenge to achieve
a balance between flexibility, correctness, ease of use, and
low overhead. Hence, it is necessary to place emphasis on
those properties that are crucial in the context that an update
framework is intended to function. For example, in large scale
enterprise systems, where there are reliable, high bandwidth
connections and large-scale servers, low overhead becomes
less of a concern. Thus, approaches for component upgrading
in wired networks have a distinctive heavyweight flavor.

The approach described in [5] proposes an upgrade server
that holds all upgrades. When an upgrade is added to the
upgrade server, it notifies an upgrade layer which in turn
notifies an upgrade manager which downloads the upgrade
and installs them as necessary. This approach works in wired
networks where a centralized upgrade server can be easily
accessed but falls apart in the ad hoc setting where no
such centralized entity exists. In [6], Cook and Dage suggest
maintaining both the old and new versions of the component
concurrently and sending a call to the version that it applies
to. The older version is destroyed only when it is verified
that the new version correctly replaces the old version for all
required functionality. This approach is not very scalable since
multiple versions can run at the same time in an unbounded
manner. In ad hoc networks where devices are resource poor,
there is limited scope to run multiple instances of a service
for extended periods of time. Flexible software connectors,
as proposed in [7] do not use multiple servers. Instead, the
connectors (called multi-versioning connectors) themselves
determine correct points during execution when components
may be swapped and subsequently swap them with newer
versions.

There also exists a fair amount of infrastructure supporting
component upgrading. Brada [8] suggests a mechanism for
consistency checks to ensure that the new component works
with all the other old components. Mencl, Petrova, and Plasil
[9] propose an upgrade definition language to identify and
keep track of updates. All such mechanisms, while useful can
significantly detract from the ability to provide a lightweight
framework, which is essential if to working on resource poor
devices in ad hoc networks. Hence, it is our aim to develop

a model that provides as many of the features outlined above
as possible, while still maintaining a small footprint. In some
areas, we eliminated the need for some features by making
a specific set of design decisions. Our model is described in
detail in the next section.

III. A RCHITECTURE FORSERVICE UPGRADE

In this section, we describe our model for upgrading ser-
vices in ad hoc networks. We begin with an overview of the
basic SOC model as proposed in [2]. We follow this overview
with a discussion of the issues that arise when upgrading a
service and the description of our service upgrade mechanism
in two parts: the mechanism for upgrading the proxy, which
represents the service locally to the client and the mechanism
for upgrading the server, which delivers the functionality of
the service.

A. Architecture Overview

In our framework, we conceptualize a service as an ap-
plication that runs on a server host and a proxy object that
the server advertises for clients. Interested clients retrieve the
proxies and install them as local handles to the service, which
resides on a remote host. In some cases however, the entire
advertised functionality of the service can be delivered by the
proxy itself, without the need to connect to the server that
advertised it. However, all services need to advertise some
incarnation of a proxy in order to be used by clients.

Traditionally, SOC frameworks have employed a centralized
architecture with service directories running on dedicated
hosts, whose sole purpose is to manage the directory. While the
centralized approach is appropriate for wired networks where
the risk of network failure is low, the dynamic environment and
opportunistic interactions inherent in ad hoc wireless networks
require alternate strategies. As an example, we highlight two
scenarios in which a centralized directory architecture fails in
wireless settings. In the first scenario, a client may not be
able to use a service offered on a nearby host because the
client could not access the directory thus informing him of a
candidate service’s presence within his communication range.
In the second scenario, a client could potentially discover the
advertisement of a service which is no longer available because
the host it is running on has moved away, leaving behind
orphan advertisements.

We address the issues introduced by the dynamic nature of
the environment by employing a distributed architecture for the
service directory. Each host maintains its own local service
directory. Services advertise their availability by registering
themselves with their local service directory. The registration
process consists of an entry in a service directory, which
contains the proxy and a description of its performance param-
eters. Hosts within communication range share their service
directories to form a logically federated service directory.
The content of the federated service directory is updated
atomically with the arrival or departure of any host that has
a local directory with service advertisements. The structure
and content of the federated directory thus reflects any change



in connectivity and real service availability (i.e., there are no
orphan advertisements, each proxy in the service directory
having a corresponding server to connect to).

When a client searches for a service, the query spans the
entire federated service directory, which is the conglomeration
of local service directories on participating hosts. Querying
is done by providing an interface that the service proxy
is expected to implement, and other additional performance
parameters which may help choose from among multiple
possible results.

Access to services that are registered with this federated
service directory is based on a matching mechanism applied
between the service advertisements and client template spec-
ification. The advertisement entry in the service directory is
encapsulated in a tuple. Clients provide a description of the
tuple they need. A matching mechanism is applied between
the template and every advertisement in the federated service
directory. A single advertisement is chosen non determin-
istically from all advertisements which match the provided
template and returned to the client. The client obtains the
proxy object by extracting it from the advertisement tuple.
Tuples can also be used to support communication between
the proxy and its parent service. They can deliver proxies
or encapsulate and transport any other type of information,
e.g., method call parameters, results, etc. The advantage of
using such a communication protocol is its location-agnostic
characteristic. The tuple is not sent out to a specific host
address, but rather put out for the target party to retrieve
using a description of its content. Using transiently shared
directories to implement communication protocols we achieve
a high degree of decoupling between the two end nodes of
the communication channel, which helps us manage mobility
issues in ad hoc networking environments.

This paper presents an extension to the framework described
above in the form of our solution to the problem of dynami-
cally updating a service while it is being used by clients. Our
approach can be divided into two distinctive parts: updating the
proxy used by a client and updating the server that the proxy
interacts with. When updating the proxy object, problems arise
due to the fact that the client is actively using it when the
server decides the proxy needs to be upgraded. We aim to
swap the proxies in a manner transparent to the client. On the
server side, the upgrade may also trigger the upgrade of the
proxies or may not affect the proxies currently in use. In the
second case, the infrastructure aims to replace the server with
its newer version transparently even to its own proxies.

B. Updating the Proxy Object

While some server upgrades (e.g., minor changes in the
server code) do not affect the proxies, others may entail
changes to both the server and its proxies. An example of
such a situation is an upgrade of the quality of service offered
by a provider, entailing securing the communication protocol
between the server and its proxies. Since the initial protocol
did not encrypt the communication, the proxies currently in
use lack this capability. Implementing such a change is not

as trivial as a feature that can be simply turned on by some
configuration message from the server since the feature is
absent on the client side. This additional feature can only be
made available by replacing the old proxy with a new version.

For this version of our architecture, we impose the con-
straint that the external API advertised by the proxy cannot
change from one version to the next. The reason for this is
transparency. Recall that the interface was specified by the
client during the lookup process and since we upgrade the
proxy without notifying the client, the new proxy is required
to provide the same interface to ensure that the client remains
oblivious to the change. The changes can affect only the
service (i.e., server plus proxy) and should not visible to the
client.

It is important to note that if the client is using the proxy we
intend to substitute directly, we couldn’t replace it in a manner
that is transparent to the client. We solved the problem by
adding a layer of indirection between the client and the proxy.
Using a combination of the facade and interceptor [10] [11]
design patterns, we developed an intermediary wrapper layer
that isolates the client from the proxy and handles the proxy
upgrade in a manner that is transparent to the client. This
layer is generated automatically when the service publishes its
proxy object. When the client searches for the proxy object,
it receives and installs both the proxy as well as the wrapper.

The functionality this wrapper provides is essentially to
decouple the client from the proxy, to forward the client’s calls
to the proxy, to monitor the server’s decision to upgrade the
proxy, and to manage the proxy upgrade process. An overview
of the architecture is shown in Figure 1.

Server

Proxy

Client

Synchronization Logic

Proxy Update
Mechanism

Call Forwarding
Mechanism

Service
Directory Client Call

Proxy
Update
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Proxy
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new proxy

Return
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Fig. 1. Architecture supporting run-time service upgrades

During the normal mode of operation, the wrapper simply
relays the client’s calls to the proxy. The wrapper’s facade is
generated automatically, using reflection; it simply mirrors the
client’s calls from the client-wrapper interface to the wrapper-
proxy interface. The results that are returned from the proxy
are forwarded to the client via the same mirroring technique.

In conjunction with its role of forwarding calls between
the client and the proxy, the wrapper monitors the server’s
advertisement in the directory service. If an upgrade is initiated
on the server side (as described in section III-C), the old
advertisement is removed and replaced with one containing the
new version of the proxy (if applicable). The wrapper reacts
to the replacement of the advertisements and retrieves the new



proxy. Note that the retrieval of the proxy by the wrapper does
not affect its normal function of forwarding calls.

Once the wrapper has retrieved the new proxy, it requests
the synchronization logic module (which ensures consistency
during the updating process) for a lock on the proxy. The
synchronization logic ensures that the proxies are swapped
when there is no activity from the client and no remote
execution of some method in progress. A method call acquires
a lock which guards the exclusive access to the proxy and
will not release it until the result is returned from the proxy.
During this time, even if the proxy has already been retrieved
and is available on the client host, the swap cannot proceed.
Symmetrically, if a proxy upgrade is in progress, a method
call cannot complete and will be blocked by the same lock
before it reaches the proxy. Once the swapping is finished,
the lock is released and the method call is forwarded to the
newly installed proxy.

Observe that there can be at most one call on hold. This
is because there is only one client trying to access any given
instance of the proxy. A client cannot initiate a second call be-
fore the previous one returns. We ensure that the wrapper does
not return the flow of control back to the client, and keeps the
client blocked until the call returns by forcing a synchronous
behavior on the client side, even though the wrapper forwards
the client’s call to the proxy. This synchronization mechanism
also ensures that it is not possible for a client to send out a
call using the old proxy and receive the answer from the new
proxy.

We reiterate that the new proxy implements the same
interface as the old proxy and, therefore is compatible with
the facade the wrapper uses to separate the client from the
proxy (eliminating the need for the replacement of the facade).
Once the wrapper is deployed, this facade is immutable and
the entire process is transparent to the client, which continues
to use the interface it used for the initial discovery of the
service. The synchronization described in the previous para-
graph ensures that the swapping will happen safely (e.g., no
loose calls left unanswered) and transparently for the client
(the client is unaware that its call was placed on hold while
the wrapper swaps the two proxies).

C. Updating the Server

Upgrades on the server side can be divided into two distinct
categories: those that require a parallel upgrade of the proxies
and those that do not. Both types of upgrades assume that
the server needs to temporarily go off line and be restarted.
The possibility to update the server dynamically (i.e., without
shutting the server down) constitutes a particular case, with
challenges specific to each server’s architecture and to each
type of upgrade. The discussion of such scenarios is not within
the scope of this paper.

Before the server goes off line, it goes through a series of
steps to prepare for its downtime. First, the server removes the
service advertisement it registered from the service directory.
Clients interested in the functionality offered will not be able
to discover the service during this stage, even though the

server may be running. At this stage of the process, the
server ignores all incoming calls from clients. At the same
time, it continues to process the callsin progress, which were
generated by the older version of the proxy. Not performing
this step can indefinitely delay the completion of the in-
progress calls (as the set of in-progress calls can evolve over
time - e.g., new calls come in from clients before the server
finishes the calls it is currently working on) and thus defer the
upgrade indefinitely. Meanwhile, other clients would also wait
indefinitely to discover the service (unless some other provider
offers a similar service), since the advertisement has already
been removed. Once the response to the last in progress call
from the old version of the proxy is serviced, the server can
go off line.

When the new server starts up, it advertises itself in the
service directory and it makes itself available to clients.
The advertisement publishes a proxy (the same as the one
published by the previous version of the service if no proxy
upgrade was required or a new one if so needed). The
proxy wrappers on clients which have the old version of the
proxy react to the new advertisement available in the service
repository. If the proxy has changed, the wrappers controlling
the proxies’ activities on client machines trigger the proxy
update procedure. Otherwise, they continue forwarding calls
from the client to the proxy which now directs the calls to the
new server.

It is important to note that the server is required to preserve
backward compatibility with previous versions of proxies. The
reason for this is twofold. In the first case, the old server
may have ignored some calls from clients during its shutdown
process. The new server, when it comes up, finds these calls
waiting to be addressed. Until these calls are addressed, the
wrapper on the client side keeps the client application blocked,
waiting for the method to return. While the wrapper may react
to the presence of a new proxy in the new server’s ad in the
service directory, the most the wrapper can do is fetch the
new proxy on the client host and then block again, waiting
for the above mentioned call to return. The server therefore
has to be able to execute this call which necessitates that the
server be able to read and understand the request, even if it
was formulated by an older version of the proxy.

Figure 2 shows the sequence of interactions between differ-
ent parts of the system. In the initial state, the client already
has already discovered the service and installed its proxy. The
first round trip of calls shows a complete path of interactions
starting with the client issuing a call, intercepted by the
wrapper which obtains the lock from the synchronization logic
and then forwards the call to the proxy which sends it to its
server. The return follows the way back and releases the lock
as it goes through the wrapper to the client.

The second call (shown in the diagram below the dashed
line) occurs at the same time that the server is upgraded. In
the scenario depicted, the proxy update request arrives at the
wrapper after the method call from the client already went
through, towards the server. The wrapper can therefore only
discover the new proxy, fetch it locally but has to wait for
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the method to return before it can proceed with the proxy
replacement process. Once the result of the call is returned and
the lock is released, the wrapper obtains the lock and swaps in
the new proxy. Once the new proxy is in place, the wrapper
releases the lock which guarded the proxy replacement and
once again returns to the default operating mode of simply
forwarding client calls and results.

IV. I MPLEMENTATION

We implemented the service upgrade architecture for ad hoc
networks in Java, using LIME [12] a middleware for physical
and logical mobility to handle the implications of ad hoc
wireless networks, i.e., the dynamism of the network due to the
physical mobility of hosts. In this section we present a brief
overview of LIME, followed by details of the implementation.

A. L IME Overview

L IME is a Java implementation of the Linda [13] coordi-
nation model which is designed for ad hoc networks. LIME

masks details associated with coordination and communication
from the application programmer. A host offering LIME runs
a LimeServer which supports one or more LIME agents,
analogous to application modules.

Coordination in LIME occurs via transiently shared tuple
spaces. Every tuple space in LIME is identified by a name.
Tuple spaces having the same name can be merged to form
a federated tuple space when their hosts are within commu-
nication range. Tuple spaces are containers for tuples. Tuples
are ordered sequences of Java objects which have a type and
a value. An agent places a tuple in the tuple space, making
it available to all other agents that are sharing the same tuple
space. To read a tuple from the tuple space, an agent needs to
provide a template, which is a pattern describing the tuple that
the agent is interested in. A template is a sequence of fields,
each of which can contain a formal (wildcard) representing the
required type for that field or an actual value that identifies the

type and value of the corresponding field. A template is said
to match a tuple if all the corresponding fields match pairwise.

An agent can access the tuple space via standard Linda
operations (rd (read a tuple),in (remove a tuple),out (write
a tuple)). Thein and rd operations take a template as a
parameter and return a tuple as the result or block until a
match is found (the operations are synchronous). To provide
asynchronous interactions, LIME offers a reaction mechanism.
An agent can declare interest in a tuple by registering a
reaction on a tuple space using an appropriate template and
by providing a callback function to be called when a matching
tuple becomes available. If multiple candidate tuples exist for
a given reaction template, one is chosen non-deterministically
from the set.

B. Service Upgrade Extension

We implemented both the client and server as LIME agents
which use tuple spaces for coordination and communica-
tion. Each agent creates local tuple spaces, which it shares
with all other agents within communication range. We use
a tuple space named‘‘AdvertisementTupleSpace’’
as a standard tuple space that is used as an advertise-
ment space for available services. All agents wishing to
avail themselves of services are required to create this tu-
ple space locally and share it with nearby agents. Ser-
vice advertisement tuples are placed in this tuple space
by servers using theout operation. These advertise-
ment tuples are of the form<ServiceDescription:
desc, ServiceProxy:proxy >. Clients find services
that they are interested in by registering reactions on this
tuple space using a template built from the interface they
expect, for example<ServiceDescription.class,
PrinterInterface.class >. If the proxy in the ad-
vertisement obeys thePrinterInterface , a match is
returned. In order to keep the client lightweight, the proxies
are expected to provide their own GUI (if required) as well as
code supporting interactions with their servers.

It is important to note that, while a client may have the
bytecode for an interface that it wishes to match in the
‘‘AdvertisementTupleSpace’’ tuple space, it is not
expected to have the bytecode of specific implementors of
this interface, especially since different services may offer
different implementations of the same interface. Hence, the
server and the client share an additional tuple space named
‘‘BytecodeRepository’’ that is separate from the one
containing the advertised proxies. This tuple space is used as
a bytecode repository for any proxies that servers advertise.
When a proxy is advertised, the server uses theout oper-
ation to place tuples of the form<String:className,
ByteCode:bytecode > into this shared tuple space. On the
client side, a custom classloader is used during the deserial-
ization process that transparently fetches the needed bytecode
from this tuple space and installs it in memory. This is done by
performing ard operation on the tuple space using a template
containing the requested class’s name and a wildcard for the
bytecode field. The in-memory installation of bytecode allows



for lightweight clients that do not require persistent storage
to contain bytecode for proxies they may need at runtime.
Bytecode is automatically fetched when it is needed and freed
by the garbage collector when it is no longer required. Further
details of regarding the dynamic fetching of the bytecode may
be found in [14].

We now describe the wrapper that shields the client from
being aware of proxy updates generated by the server using
standard Java reflection libraries. The server constructs the
wrapper object by combining several pieces of code into
a Java String object. This String contains the Java source
code for the proxy upgrade mechanism and for the syn-
chronization mechanism, which is common to all services,
as well as call-forwarding code custom-generated for each
individual proxy using reflection. Once the generic reaction
code and the call-forwarding code have been combined into
a single Java String, a compiler extracted from the Eclipse
JDT Core project [15] is used to convert this String into Java
bytecode on-the-fly. The server then converts this bytecode
into a Java class and instantiates it, giving the original proxy
object to its constructor. The server places the wrapper in the
‘‘AdvertisementTupleSpace’’ tuple space. Clients
can then use these wrapper proxies as ordinary proxies,
unaware of the fact that the actual underlying implementation
of the proxy can be swapped out on demand.

This wrapping procedure necessarily adds some overhead
to the proxy, both in terms of bytecode size and execution
time. However, this overhead is negligible. As a test, our
server wrapped a 14-kilobyte proxy object, which produced
a 4-kilobyte wrapper. Though this wrapper is relatively large
compared to the original proxy in percentage terms, such a
ratio is not representative of the average case scenario. The
reason is that all wrappers contain the code for synchronization
and swapping. This code takes up a certain amount of space
that remains constant regardless of the size of the original
proxy. Hence, the larger the proxy, the better the ratio between
itself and its wrapper since the cost of mirroring a method
is negligible. It is also important to note that the wrapper
need only be transferred to the client once during the client’s
interaction with a service, though it may in reality wrap more
than one underlying proxy during this lifetime. Hence, even
with a relatively poor ratio between the proxy and wrapper
size, the toal overhead becomes negligible over an extended
usage scenario. The code contained within the wrapper is
compact: apart from about 50 fixed lines of code dedicated to
constructing the wrapper, registering the reaction, and handling
proxy updates, the wrapper class contains two lines of code in
each wrapped method to lock the wrapped proxy and pass
along the method call. These two operations are relatively
lightweight and may be considered negligible compared to the
time any non-trivial underlying proxy spends servicing these
method calls.

The implementation presented offers two advantages over
other approaches such as mandating that clients or proxies
contain code to support swapping. First, it saves considerable
effort on the proxy developers’ part, since they need not

specifically design the proxy with swapping in mind. Second,
the class wrapping procedures offer a generic framework for
adding functionality to objects at runtime; by augmenting or
replacing the code used by these procedures, the server could
add almost any functionality to proxies at runtime (as long
as they do not change proxy’s interface), not just restricted to
swapping proxies.

The implementation is showcased in a demo of our
lightweight client, shown in the top half of Figure 3. It
currently contains only one interface which describes a basic
roadside service. Servers can pick from any one of a number
of predefined roadside services, such as a toll service, parking
meter, etc. When a client comes in communication range,
it automatically discovers the advertised services, downloads
their associated proxies’ bytecode, and displays the proxy’s
GUI. Since these proxies are wrapped before they are placed
in the shared tuple space, the servers can upgrade their offered
services at any time, such as encrypting the communication
between the proxy and the server. The wrapped proxies
running on the client will automatically discover the change
and replace their underlying proxies at the nearest opportunity,
as shown in the bottom half of Figure 3.

Fig. 3. Screenshots of the application before and after the proxy upgrade.

V. D ISCUSSION

The design of our architecture for service upgrading was
shaped by our desire to keep the architecture lightweight,
so that it could be used in ad hoc settings, where client
applications generally run on resource poor devices. In the
first part of this section, we explain how using a set of
existing artifacts simplified our development process. In the
second part, we discuss general issues related to upgrading
services and how our architecture might handle them. Finally,
we discuss plans for future work.

In designing our model, we chose a tuple space-based
communication model for several reasons. Firstly, the tuple
space based model allows the decoupling of two interacting
entities (in our case the server and the proxy). Hence, the
server and the proxy can each be individually updated without



affecting the other one. For example, if a server is shut down,
remaining entities in the network can still put tuples in their
local tuple space, which can be picked up by the server when it
is restarted. The second reason for choosing tuple space-based
communication is that the federated tuple space is a transiently
shared global directory which contains only tuples from hosts
which are reachable (See explanation in Section IV). This
eliminates the need for having garbage cleaning mechanisms,
which supports the lightweight nature of our architecture.
Finally, tuple space-based communication has been shown to
be suitable to ad hoc networks in LIME [12], which we use
as a base for the implementation of our model. Our model
also implicitly provides support for the client application to
run multiple proxies from the same service. The model just
treats each instance of the proxy as coming from a different
service (though this is not really the case). Hence, the client
application can have multiple access to the service (which may
be needed for multithreaded programs etc.).

We now turn our attention to some general issues associated
with service upgrading and how we chose to handle them
in our architecture. Recall that in Section III, we made
the assumption that the server is backwards compatible. At
the model level, this assumption is unnecessary, since some
mechanism could be designed to service all the old calls and
queue the new calls until the server is upgraded. However,
at the implementation level, the challenge is greater. This
is in part due to the fact that the proxy needs to simulate
synchronous and atomic calls between itself and the server
using LIME, which uses asynchronous communication. Hence,
the code for simulating the required behavior becomes very
extensive. The problem can be solved by imposing certain
design constraints on the server. However, that falls outside
the scope of this paper.

Another pertinent issue is that of ownership of the service
and the right to upgrade a service. In our opinion, any upgrades
for a service should come from its original owner. Even if the
service is replicated on multiple hosts of an ad hoc network,
the upgrades for the service should come from a single host.
The reason for this is consistency. By having the upgrades
come from a single source, it can be ensured that there are no
conflicts due to different hosts issuing simultaneous upgrades
that may cause version conflicts (akin to those seen when using
CVS to merge different versions of the same file.)

For future work, we aim to develop an architecture that
decomposes the proxy such that a proxy is no longer a
monolithic piece of code, but is modular so that only parts
of it need to be swapped rather than the entire object. Another
feature that we wish to support is a versioning system that is
responsible for managing the different versions of a service
and ensuring compatibility. Finally, we wish to provide a
matching mechanism that supports searching at finer gran-
ularity (e.g., at the method level rather than the interface
level). The results of this work will help provide even lighter
wrappers and also provide support for service composition.

VI. CONCLUSIONS

In this paper, we presented a lightweight mechanism to
upgrade services without completely shutting them down.
We began with an overview of a SOC framework that we
developed for ad hoc networks. We followed this with de-
scriptions of a model for upgrading the server and the proxy.
For swapping the proxy, we proposed the use of a wrapper-
interceptor that temporarily holds calls while the proxy and/or
the server are swapped. We showed how the tuple space
based communication protocol can allow for a server to shut
down and restart without any perceived interruption in service.
We described the implementation of our architecture built on
top of the LIME coordination model, we justified our design
decisions, and we presented future work plans.
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