
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-78

2004-12-14

Learning Curve Management in Educational Programming Learning Curve Management in Educational Programming

Environments Environments

Benjamin H. Brinckerhof and Kenneth J. Goldman

Beginning programmers are best served by integrateddevelopment environments that adapt to

their growingsophistication as programmers. To this end, we propose fourdesign goals for

learning curve management in educationalprogramming environments. We provide

pedagogicaljustification for each goal, describe possible supporting featuresets, and discuss

the extent to which these goals have beenachieved in some current environments, particularly

JPie, ourinteractive environment for live construction of Java applications.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Brinckerhof, Benjamin H. and Goldman, Kenneth J., "Learning Curve Management in Educational
Programming Environments" Report Number: WUCSE-2004-78 (2004). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/1048

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1048?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Learning Curve Management in
Educational Programming Environments
Benjamin H. Brinckerhoff

Computer Science and Engineering
Washington University

St. Louis, MO
bhbrinckerhoff@wustl.edu

 Kenneth J. Goldman
Computer Science and Engineering

Washington University
St. Louis, MO

kjg@cse.wustl.edu

ABSTRACT
Beginning programmers are best served by integrated
development environments that adapt to their growing
sophistication as programmers. To this end, we propose four
design goals for learning curve management in educational
programming environments. We provide pedagogical
justification for each goal, describe possible supporting feature
sets, and discuss the extent to which these goals have been
achieved in some current environments, particularly JPie, our
interactive environment for live construction of Java applications.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
graphical environments, integrated environments, interactive
environments; K.3.2 [Computers and Education]: Computer and
Information Science Education – computer science education,
curriculum;

General Terms
Human Factors

Keywords
Dynamic classes, live programming.

1 INTRODUCTION
We define educational programming environments as integrated
development environments (IDEs) that serve the needs of those
who are learning how to create software. While professional
programming environments can satisfy their audience with a
relatively fixed set of features, we contend that educational
programming environments (EPEs) must adapt to the needs of
programmers who become more sophisticated over time.
Beginning programmers require features that help them learn the
programming model through the construction of simple programs,
whereas more experienced programmers require features that
assist with writing robust software. The traditional route is for
programmers to switch to a different programming environment at
various stages in their development, but this happens infrequently
due to the relatively high overhead of making that transition.

Moreover, the level of programmer sophistication changes most
rapidly at the beginning of a student’s career, when disruptions
due to a change in programming environment would do more
harm than good. Therefore, an ideal educational programming
environment provides learning curve management features to
allow the student, the instructor, or even the environment itself, to
control the way the IDE interacts with the programmer over time
as the he or she gradually becomes more sophisticated.
In this paper, we present four design goals for learning curve
management in EPEs. We discuss the importance of each goal
and suggest specific features that can be implemented to achieve
them. For illustration, we draw examples from JPie [3], DrJava
[1] and BlueJ [5].

2 DESIGN GOALS
We propose that learning curve management can be effectively
addressed in EPEs by providing dynamically changing feature
sets in the following four areas. Throughout the paper, we use
the term target language to refer to the high level programming
language that the environment is designed to support. In our
examples, Java is the target language.
Managing Errors. Beginners spend significant time finding and
fixing errors. EPEs can assist programmers by providing flexible
and configurable error management features that help prevent,
detect, and mitigate errors, as well as inform programmers about
the nature of errors. Initially, these features may constrain editing
operations to prevent beginners from committing common errors.
More advanced programmers may edit in less restrictive modes
and correct errors themselves.

Reducing Complexity. Learning a new language can be
overwhelming. Beginners must contend with complicated syntax,
strange constructs and massive standard libraries. Environments
can simplify programming by offering simple representations of
language constructs, explicitly displaying information on
language features, and only revealing essential parts of the
standard library API. When programmers are ready, environments
can make the language and libraries available in their original,
more complex form.
Streamlining Programming. Making programming easier and
more productive encourages beginners to continue learning. To
this end, EPEs can include common productivity features seen in
IDEs and allow direct interaction with objects. A more aggressive
approach to streamlining programming includes providing a
modified version of the target language (referred to as a dialect)
that contains fewer rules and adds additional constructs for
common programming tasks. The differences can be removed as
the programmer advances, so that ultimately the student can
program directly in the target language, without the “crutches.”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’05, February 23–27, 2005, St. Louis, MO, USA.
Copyright 2005 ACM X-XXXXX-XXX-X/XX/XXXX…$5.00.

Transitioning Users. EPEs can help users advance by adapting to
address their needs at each stage of development, from beginner
to expert. To support the development of language skills that are
applicable outside of a specific environment, EPEs can include
features that help users transition to traditional environments,
such as professional IDEs or ordinary text editors.

3 RELATED WORK
The general goals and features of EPEs have been discussed in the
literature [4]. In this section, we examine the work that has been
done on those aspects of programming environments that pertain
to learning curve management.
Error management systems (especially “help” systems with
advanced information about errors) have been identified as a
requirement for EPEs [4]. While many environments give useful
information after an error has occurred, those that understand the
syntax of the target language can also detect and/or prevent errors
during editing [1,2,7]. The inclusion of debuggers to mitigate the
effects of errors is also important for developing programmers
[1,4,5].
Visual representation has been recognized as a powerful way to
reduce the complexity of programming [4]. For instance, BlueJ
[5] provides graphical representations of class relationships and
Alice [2] uses a visual scripting language for 3-D animation. Such
simple representations can help beginners grasp important
concepts more easily.
The benefits of flexible language subsets have also been discussed
[4]. Developing programmers may customize environments to use
different language subsets that include more or less functionality
and/or restrictions. Existing environments have also provided
features to streamline programming. DrJava [1] provides an
interpreted interactive editing mode (or interaction pane) and
BlueJ [5] allows programmer to directly manipulate objects.
This paper considers these and other programming environment
features in the broader context of learning curve management.
The next four sections of the paper discuss in turn the four design
goals stated in Section 2. We elaborate on the goals and describe
ways in which they can be realized in programming
environments. For illustration, we discuss the way these goals are
approached in JPie [3], a visual programming environment we
have developed for live construction of Java applications.
Examples are also drawn from DrJava [1] and BlueJ [5].

4 MANAGING ERRORS
4.1 Preventing Errors
For beginners, who are unfamiliar with the target language, error
prevention is preferable to error detection. Once an error is
committed, beginners understand that an error exists, but may not
know enough about the language to understand the error message
and correct the problem. Environments that prevent errors
altogether save beginners significant time and frustration while
keeping them focused and motivated. Many programmers waste
time concerned about syntax and compile-time errors instead of
thinking about overall program structure and logic. By
eliminating a common source of errors, EPEs can allow
programmers to focus on more important conceptual issues [3].
One way to prevent syntax errors is for the environment to
operate on a principle we call gestural atomicity, in which each

user gesture takes the program description from one syntactically
legal state to another, rendering “intermediate” illegal states
impossible. For example, variable declaration in JPie is
accomplished by placing a type into a scope as a single drag-and-
drop operation. Similarly, as seen in Figure 1, control constructs
are represented by graphical templates [7] that contain
placeholders in which users can insert other templates, by
selection or drag-and-drop.

Figure 1 - An example method in JPie.

By default, all programming constructs are represented
graphically, allowing JPie to constrain editing and program
construction to prevent syntactic errors and other errors such as
undeclared variables and duplicate identifiers in the same scope.
In general, each user action (drag-and-drop, keystroke, or
selection) respects gestural atomicity. However, two kinds of
syntactic errors can exist temporarily during program
construction: (1) type incompatibility can occur along the way to
forming a type safe statement or expression, and (2) empty
expressions can exist in templates prior to their being filled in.
The Alice system [2] uses gestural atomicity in the creation of
method calls, forcing programmers to fill in the required
parameters before moving on to other statements.
However, gestural atomicity is not always ideal for intermediate
or advanced programmers. As a programmer becomes more
familiar with the target language, dragging and dropping into
templates can slow down the programming process and interfere
with the programmer’s train of thought. As such, programmers
gradually come to prefer a less restrictive non-templatized editing
environment in which they can directly type code statements and
expressions, even if individual keystrokes may temporarily make
the program ambiguous or syntactically incorrect. However,
developing programmers may occasionally want to use templates,
particularly when learning new constructs. To this end, JPie
offers “mixed mode editing” that lets programmers switch back
and forth between a graphical and textual representation of
statements and expressions. Where possible, textual editing is
still constrained (to prevent errors referencing non-existent class
members, for example) yet retains the fluency of typing.

4.2 Detecting Errors
Some errors that are not prevented may be detectable by the
environment. When an error is detected, the environment can

alert the programmer using colored boxes and backgrounds,
tooltip boxes, changed text font, size, or even animation.
All programmers benefit from immediate knowledge of errors,
provided that notification is unobtrusive. Experienced
programmers can note their errors and then either fix them
immediately (while their focus is still on the incorrect part of the
program) or ignore them (if the errors are expected and
temporary). Beginners can immediately examine the error, realize
their mistake, and avoid compounding their mistake.
However, beginners can also become overwhelmed by too many
error messages. Related features such as error prevention (Section

 4.1) and custom dialects (Section 6.3) can be used to
automatically correct errors (explicitly or behind the scenes) for
beginners. As the programmer develops, these features can
become more “picky” as they correct fewer errors for the
programmer. For example, JPie supports beginner programmers
by automatically casting between many common types and does
not require that all programmers catch all exceptions that could be
thrown by a method call.

4.3 Mitigating Errors
Run-time errors such as infinite loops and recursion, deadlocks,
and thrown exceptions cannot be detected by static analysis.
However, EPEs can mitigate the impact of these run-time errors
so they do not become major obstacles.
BlueJ helps users identify logic errors and infinite loops through a
user-friendly debugger that allows manual halting and variable
inspection at any point in program execution. DrJava’s debugger
allows variable inspection and interaction with running programs
while the program is suspended.
JPie provides both loop and stack bounding to prevent infinite
loops and infinite recursion. These bounds are set to default levels
for beginners, but future versions of JPie will be manually
configurable for more advanced programmers. When the bounds
are reached, a dialog box appears, allowing the user to set larger
bounds or to stop the execution. Although more advanced
programmers can configure or disable this feature, the default
bounds are welcome heuristics for beginning programmers.
Mitigating deadlocks can save significant time in debugging
programs. For example, when JPie detects a deadlock, it a
displays a resource allocation graph showing the cycle and gives
the user an opportunity to open the offending threads in the
debugger to see where they are blocked. The user may also break
the deadlock by selectively aborting threads.
Thrown exceptions can also be mitigated. When an unhandled
exception occurs (JPie does not require the programmer to catch
or throw all exceptions within a method), JPie prevents the entire
program from crashing by automatically launching an integrated
debugger to show the source of the exception. Since JPie supports
live modification, the programmer can correct the error or catch
the exception and continue execution.
Beginning programmers benefit the most from these features. In
the event of a program hang, an intermediate or advanced
programmer may be able to locate the source, while a beginner
may spend much more time finding the same error. But error
mitigation is also useful for more experienced programmers since
pinpointing the source of the error reduces their debugging time.

When available, live program modification complements error
mitigation, allowing programmers to fix errors on the fly and
resume execution.

4.4 Explaining Errors
Whether an error is prevented, detected, or mitigated, the
environment should tell the programmer what the error means
and, ideally, how the user can correct or avoid it. To this end,
EPEs generally include an integrated help system, easily accessed
documentation and visual information.
Although the nature of the errors depends upon programmer
sophistication, explaining errors is important for virtually all
programmers. When an error is prevented, information about why
the edit is illegal will avoid user confusion. When an error is
detected, environments can provide information about how to
correct the error. All error mitigation features can be accompanied
by detailed information explaining why the run-time error
occurred and how it can be avoided. Furthermore, runtime
information facilities, such as debuggers and heap inspectors can
help programmers apply the general information to their own
specific instance of the error.
Information about errors is integrated into JPie. For instance,
when a type error occurs in JPie, the problematic expression is
highlighted and a mouseover action reveals information about the
actual and expected type. An integrated help system gives the
programmer more detailed information about the nature of errors
and easily visible status bar give the programmer immediate
feedback on errors. Integrated access to library documentation
(javadoc) for method calls helps users avoid semantic errors such
as passing the wrong parameter values.
Useful, easily accessible information allows programmers to
advance their understanding of errors and avoid committing them
in the future. While such information should be easily accessible,
it should not be forced on programmers to the point of disruption.
For instance, beginning programmers may ignore information
about automatically prevented errors (see Section 4.1) due to an
initial lack of language expertise, but a more sophisticated
programmer may want to know about the error and why the
system “fixed” things for them. Similarly, advanced
programmers may intentionally temporarily commit some types
of errors while constructing a program, and would not want to be
prevented from doing so by an intrusive error reporting system. In
any case, error explanations should ideally be tailored to the
sophistication of the programmer, using only concepts and
vocabulary familiar to the programmer.

5 REDUCING COMPLEXITY
5.1 Simple Representation
Learning to program is difficult. Programmers must
simultaneously learn a new way of approaching problems and
master a complex syntax and semantics. EPEs can make it easier
by abstracting away the overwhelming details of the target
language in order to reduce the mental overhead required by the
student.
Visual programming environments can offer graphical
representation and direct manipulation of constructs in the target
language. By default, JPie represents all programming constructs
graphically. After programmers master general programming

concepts, they can tackle the more complicated textual
representations of program constructs by switching into the
textual editing mode. Similarly, BlueJ’s visual representation of
class relationships helps simplify complex ideas like inheritance
and encapsulation.

5.2 Explicit Information
Programmers must not only remember the rules by which they
can construct programs, but also what constructs are available.
When declaring a method, programmers must remember which
modifiers are available and which are appropriate. In Java, they
could declare a method “abstract”, “final”, “static”, or
“synchronized”. Access modifiers like “public”, “private”, and
“protected” complicate matters further. Especially confusing are
implicit modifiers like the implicit “package” modifier in Java.
Programmers must also remember the types of fields and
methods. Programming languages by themselves give no clue as
to the type of a field when it is being used or a method when it is
being called. This is especially problematic in larger programs,
where declaration and use may be spatially separated.
Environments can help minimize reliance on memory. For
example, expression types in JPie are shown iconically and can be
viewed textually by a mouse-over action. Modifiers appear as a
series of checkboxes and along a slider when a field or method is
being declared (Figure 1).

5.3 API Filtering
Many programming languages offer vast libraries containing
hundreds of classes, each of which has many fields and methods.
It can be nearly impossible for a beginner to determine which
classes and methods are relevant to the problem at hand. This
overwhelming level of complexity has been identified as a serious
hindrance to effectively teaching computer science [6]. To solve
this problem, an instructor can use API filtering to temporarily
highlight useful classes in packages and hide unnecessary
methods and fields from classes.
Java offers a huge number of classes in its standard library. To
help students focus on the most relevant classes, JPie provides
editable shortcut panels that can be grouped into categories and
optionally loaded from a file created by an instructor. A new
programmer might choose to use only the provided shortcuts,
while more advanced students might explore the libraries and add
their own shortcuts. In any case, the instructor can augment the
set of shortcuts over time as students are exposed to more
packages and classes.
An API filtering feature currently under development for JPie will
allow instructors to hide irrelevant methods and fields in selected
classes. When these API filters are loaded for specific classes,
only those fields and methods deemed important will be visible to
the user. Advanced programmers will be able to disable filtering
to see all available fields and methods.

6 STREAMLINING PROGRAMMING

6.1 Facilitating Common Tasks
Many features in existing environments enable users to complete
common programming tasks more easily, including automatic
“get” and “set” method creation, a drag-and-drop GUI builder,
and event recording, all of which JPie supports. DrJava provides

syntax highlighting, automatic indentation, and bracket matching.
Such features are useful for all programmers.

6.2 Direct Interaction
In object-oriented target languages, direct, fine-grain interaction
with objects helps students understand the computational model
and encourages them to experiment by quickly testing parts of
their programs. For example, DrJava’s interactions pane lets
programmers evaluate Java expressions on the fly. Programmers
can quickly experiment with code while avoiding the
write/compile/run loop. BlueJ and JPie let programmers inspect
the state of objects in the heap and call methods directly on those
objects without running the entire application.

6.3 Custom Dialect
In most programming environments, programmers write directly
in the target language. However, EPEs can help beginners learn
by allowing them to construct programs in a dialect, or
specialized version of the target language that makes
programming faster and easier.
Dialects streamline programming by ignoring some of the rules of
the target language so that programmers can quickly build
programs without needing to anticipate every possible problem.
Errors are then handled at run-time if and when they occur. A
dialect can also offer programmers additional constructs that let
them express common but complicated ideas simply and easily.

6.3.1 Fewer Rules
One limitation of programming languages, from an educational
perspective, is that their rules are static and inflexible. A new
programmer faces an imposing task: they must create working
programs that strictly adhere to every single rule of the language,
many of which he or she does not yet understand.
This “all or nothing” problem can manifest itself in several ways.
Users may limit themselves to very simple applications, since
these are the only ones that can be implemented without knowing
more advanced features of the language. Ironically, interesting
and useful applications are exactly those that motivate new
programmers and help them appreciate they power of computing.
An even more troubling problem occurs when students who are
attempting to master a subset of the language encounter program
errors that relate to aspects of the language they have not yet
learned. For instance, users may want to pass a variable of type
double to a method that expects a parameter of type int. If the user
has not yet learned about casting, he is effectively barred from
using that method. Users may become frustrated and stop trying
to use new approaches to solve problems.
By using an educational environment with a custom dialect,
programmers can ignore some rules of the target language in
order to make programming easier. By ignoring some of these
rules, programmers can create more interesting programs earlier
on, and can be more confident with experimenting in programs,
since they will always be using a familiar subset of the language.
As the student advances, the dialect may be changed to force
them to adhere to more and more rules. This promotes a natural
learning process in which a small piece of the solution space is
first understood and then slowly expanded.
The JPie Java dialect is more flexible than Java regarding types.
JPie automatically coerces types as much as possible for the user,

including automatic narrowing conversions and conversions to
and from booleans and Strings. The JPie dialect also does not
require programmers to catch or throw any exceptions. If an
exception is thrown during execution, an integrated debugger is
launched and asks the user to correct the problem at that point. In
the future, more advanced programmers will be able to configure
the environment to strictly enforce type and exception rules,
effectively bringing the dialect closer to the target language.

6.3.2 Support for the Common Case
Using a custom dialect can provide useful programming
abstractions and constructs for the beginning programmer. This
expands the programmer’s capabilities without introducing as
many advanced programming concepts. For instance, a JPie
behavior describes a periodic action to be carried out in a separate
thread. The behavior in Figure 2 periodically calls methods to
move a ball and check boundary conditions until the game is over.
The template provides for specification of the rate, which in this
example depends upon the current score. Additional constructs in
JPie’s dialect include a “for each” loop (similar to the one now
available in Java 1.5) and a “match” statement (a generalized
“switch” statement in which cases need not be constants).

Figure 2 - A behavior in JPie.

7 TRANSITIONING USERS
7.1 Less-Restrictive Textual Editing
Since we hope that students will eventually need to program in an
unrestricted textual programming environment (e.g. a professional
IDE or text editor), we want EPEs to support this transition by
including less-restrictive textual editing modes.
The more restrictive default editing mode (within JPie, this mode
is also graphical) and the less restrictive textual editing mode can
be used simultaneously, with some statements edited in the
restrictive mode while others are edited in the unrestrictive mode.
As a result, programmers don’t need to master unrestrictive
textual programming in one large step: rather, they may learn to
textually edit the most familiar constructs first, and gradually add
the rest, eventually moving to a completely unrestricted editor
with the freedom to commit errors.

7.2 Source Code Generation
Automatically generated source code can help intermediate
programmers learn the target language. Programmers can

compare the generated code to the graphical representation (or
dialect code) they have created to see their own ideas expressed
directly in the target language Furthermore, they can experiment
with editing generated code in order to gain hands-on experience
with the target language.
Generated code should meet two criteria: it must be correct and it
must be understandable. Clearly, the generated target language
code must behave identically to the dialect program in the
environment. To be educationally useful, the generated code must
also be similar to the dialect code, demonstrate good
programming style, and be simple enough that intermediate
students can understand it.

8 CONCLUSION
We have advocated learning curve management as a means to
address the changing needs of developing programmers. Instead
of offering beginning programmers tools with static feature sets
designed for experts, learning curve management can provide the
basis for adaptive tools that provide appropriate levels of support
for programmers as they develop from beginner to expert.

ACKNOWLEDGMENTS
We thank all the members of the JPie development team. This
research was supported in part by the National Science
Foundation under CISE Educational Innovation grant 0305954.

REFERENCES
[1] Allen, E., Cartwright, R., and Stoler, B. DrJava: A

lightweight pedagogic environment for Java. ACM SIGCSE
Bulletin., 34, 1 (Mar. 1993), 137-141.

[2] Cooper, C., Dann, W., and Pausch, P. Teaching objects-first
in introductory computer science. ACM SIGCSE Bulletin.,
35, 1 (Jan. 2003), 191-195.

[3] Goldman, K. An interactive environment for beginning Java
programmers. Science of Computer Programming, Special
Issue on Practice and Experience with Java in Education,
Elsevier, to appear. Available at
http://jpie.cse.wustl.edu/sub_sections/publications/scp.htm

[4] Jimenez-Peris, R., Pareja, C., Patino-Martinez, M., &
Velazques, J. Towards truly Educational Programming
Environments. Chapter from Computer Science Education in
the 21st Century. Springer, 2000. 81-112.

[5] Kölling, M. & Rosenberg, J., Guidelines for teaching object
orientation with Java. In Proceedings of the 6th annual
conference on Innovation and Technology in Computer
Science Education (Canterbury, England, June, 2001), 33-36.

[6] Roberts, E. The dream of a common language: the search for
simplicity and stability in computer science education. In
Proceedings of the 35th SIGCSE technical symposium on
Computer science education (SCE ’04) (Norfolk, Virginia,
USA, March 3-7, 2004). ACM Press, New York, NY, 2004.
115-119.

[7] Tim Teitelbaum , Thomas Reps, The Cornell Program
Synthesizer: a syntax-directed programming environment.
Communications of the ACM, 24, 9 (Sep. 1981), 563-573.

	Learning Curve Management in Educational Programming Environments
	Recommended Citation

	INTRODUCTION
	DESIGN GOALS
	RELATED WORK
	MANAGING ERRORS
	Preventing Errors
	Detecting Errors
	Mitigating Errors
	Explaining Errors

	REDUCING COMPLEXITY
	Simple Representation
	Explicit Information
	API Filtering

	STREAMLINING PROGRAMMING
	Facilitating Common Tasks
	Direct Interaction
	Custom Dialect
	Fewer Rules
	Support for the Common Case

	TRANSITIONING USERS
	Less-Restrictive Textual Editing
	Source Code Generation

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	Abstract: Abstract: Beginning programmers are best served by integrated development environments that adapt to their growing sophistication as programmers. To this end, we propose four design goals for learning curve management in educational programming environments. We provide pedagogical justification for each goal, describe possible supporting feature sets, and discuss the extent to which these goals have been achieved in some current environments, particularly JPie, our interactive environment for live construction of Java applications.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: December 14, 2004
	Author: Authors: Brinckerhoff, Benjamin H.; Goldman, Kenneth J.
	Title: Learning Curve Management in Educational Programming Environments
	ReportNumber: 2004-78
	DepartmentName: Department of Computer Science & Engineering

