
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-75

2004-12-01

Supporting Live Development of SOAP and CORBA Servers Supporting Live Development of SOAP and CORBA Servers

Sajeeva Pallemulle, Kenneth J. Goldman, and Brandon E. Morgan

We present middleware for a Server Development Environment that facilitates live development

of SOAP and CORBA servers. As the underlying implementation platform, we use JPie, a tightly

integrated programming environment for live software construction of Java applications. JPie

provides dynamic classes whose signature and implementation can be modified at run time,

with changes taking effect immediately upon existing instances of the class. We extend this

model by automating the server deployment process, allowing developers to devote their full

attention to the implementation of server logic. Moreover, the live development model enables

the construction of server applications while they are... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Pallemulle, Sajeeva; Goldman, Kenneth J.; and Morgan, Brandon E., "Supporting Live Development of
SOAP and CORBA Servers" Report Number: WUCSE-2004-75 (2004). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/1045

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1045?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1045

Supporting Live Development of SOAP and CORBA Servers Supporting Live Development of SOAP and CORBA Servers

Sajeeva Pallemulle, Kenneth J. Goldman, and Brandon E. Morgan

Complete Abstract: Complete Abstract:

We present middleware for a Server Development Environment that facilitates live development of SOAP
and CORBA servers. As the underlying implementation platform, we use JPie, a tightly integrated
programming environment for live software construction of Java applications. JPie provides dynamic
classes whose signature and implementation can be modified at run time, with changes taking effect
immediately upon existing instances of the class. We extend this model by automating the server
deployment process, allowing developers to devote their full attention to the implementation of server
logic. Moreover, the live development model enables the construction of server applications while they
are running, connected, and communicating with clients. Combined with our Client Development
Environment [1], these features facilitate the live, simultaneous construction of both the client and server
applications.

https://openscholarship.wustl.edu/cse_research/1045?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1045?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2004-75

Supporting Live Development of SOAP and CORBA Servers

Authors: Pallemulle, Sajeeva L.; Goldman, Kenneth J.; Morgan, Brandon E.

Abstract: We present middleware for a Server Development Environment that facilitates live development of
SOAP and CORBA servers. As the underlying implementation platform, we use JPie, a tightly integrated
programming environment for live software construction of Java applications. JPie provides dynamic classes
whose signature and implementation can be modified at run time, with changes taking effect immediately upon
existing instances of the class. We extend this model by automating the server deployment process, allowing
developers to devote their full attention to the implementation of server logic. Moreover, the live development
model enables the construction of server applications while they are running, connected, and communicating
with clients. Combined with our Client Development Environment, these features facilitate the live, simultaneous
construction of both the client and server applications.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

1

Supporting Live Development of SOAP and CORBA Servers

Sajeeva L. Pallemulle
sajeeva@cse.wustl.edu

Kenneth J. Goldman
kjg@cse.wustl.edu

Brandon E. Morgan
bem2@cec.wustl.edu

Department of Computer Science and Engineering

Washington University in St. Louis

Abstract
We present middleware for a Server Development
Environment that facilitates live development of SOAP and
CORBA servers. As the underlying implementation
platform, we use JPie, a tightly integrated programming
environment for live software construction of Java
applications. JPie provides dynamic classes whose
signature and implementation can be modified at run time,
with changes taking effect immediately upon existing
instances of the class. We extend this model by automating
the server deployment process, allowing developers to
devote their full attention to the implementation of server
logic. Moreover, the live development model enables the
construction of server applications while they are running,
connected, and communicating with clients. Combined
with our Client Development Environment [1], these
features facilitate the live, simultaneous construction of
both the client and server applications.

1. Introduction

Remote method invocation (RMI) using the client
server paradigm has become a prominent model for
developing distributed applications. The Simple Object
Access Protocol (SOAP) [2] and the Common Object
Request Broker Architecture (CORBA) [3] are two leading
technologies that support this model. Although SOAP and
CORBA differ significantly in design and usage, the
implementation of RMI applications using these
technologies follows a similar pattern.

The development of client-server applications using
the RMI model requires the creation of separate client and
server applications. Therefore, simultaneous development
depends upon both endpoints having a consistent view of
the common interface. The traditional approach to this
problem has been to interleave the editing and testing
phases through the deployment of the two applications at
various stages of development. However, an approach that
combines client and server development into one unified
activity is particularly attractive in order to streamline

application development and ensure interface consistency
between the client and server.
 We present a Server Development Environment (SDE)
as an extension of JPie, a tightly integrated development
environment supporting live construction of Java
applications. JPie embodies the notion of a dynamic class
whose signature and implementation can be modified at
run time, with changes taking effect immediately upon
existing instances of the class [4]. We build upon JPie to
support live server development. Namely, we
automatically detect additions, deletions and mutations in
the set of server operations to update the server interface
description as needed. Further, we completely abstract
away the low level deployment details by automating the
publication of the server interface description and the
creation of server backend components, so developers can
concentrate on the server logic. In conjunction with our
Client Development Environment (CDE), this results in a
live integrated development process in which the client and
server applications can be developed simultaneously. To
preserve consistency, live changes in the server’s interface
are reflected in the running client program.

Our architecture supports technologies that use an
interface definition language (IDL) to communicate the
server interface to the clients. SOAP and CORBA are
widely used technologies that satisfy this criteria and the
initial implementation of SDE supports both. For SOAP
support, we build on the Apache Axis [5] implementation
of SOAP. Similarly, we use the OpenORB [6]
implementation of CORBA as the basis of our CORBA
support. Our design can also be extended to integrate other
technologies that use interface definition languages and the
remote method invocation model.

This paper makes several key contributions. We
introduce novel techniques for automated server
deployment, automated publication of the server interface,
and the detection of stable changes in the server
implementation. In addition, we present the design and
implementation of a distributed algorithm, implemented
jointly by SDE and CDE, which facilitates live,
simultaneous client-server development.

2

Client Machine

Server Machine

The remainder of the paper is organized as follows.
Section 2 provides background on distributed application
development in SOAP and CORBA and presents brief
overviews of JPie and CDE. Section 3 provides an
overview of related work. Section 4 focuses on the SDE
user interaction mechanism for creating server
applications. In Section 5, we present the SDE architecture
and discuss the mechanisms used to create backend
components and automate the publication of the server
interface. Section 6 focuses on live, simultaneous client
server development and the interaction between SDE and
CDE. In Section 7 we discuss the performance and
overhead of using SDE. We conclude, in Section 8, with a
summary and directions for future work.

2. Background

For our initial implementation of SDE, we decided to
concentrate on SOAP and CORBA. We chose two
technologies rather than one to help ensure that the design
was sufficiently extensible to support other technologies in
the future. Both SOAP and CORBA make use of interface
definition mechanisms yet have different overall
frameworks. This section presents background on SOAP
and CORBA, as well as on JPie and CDE.

2.1. SOAP

Servers that use SOAP are popularly known as Web
Services. Web Services use the Extensible Markup
Language, (XML) [7] to present the server interface to the
clients as well as to communicate with those clients.

Figure 1: The client-server interaction using SOAP proceeds in
three steps. First, the server interface definition is obtained by
the client. Then the client parses this definition and uses the
resulting method stubs to make remote method requests using
SOAP.

As shown in Figure 1, when a Web Service is
established, it uses the Web Services Definition Language
(WSDL) [8] standard to publish a WSDL document that
potential client applications can use to gather information
they require to invoke methods on the Web Service.

WSDL is an XML-based schema that contains
information such as the Web Service location, the methods
available for remote invocation on that Web Service, and
how to invoke those methods. The WSDL standard
supports direct encoding of a small subset of Java object
types and permits the encoding of complex data structures
using XML. These complex types enable Web Services to
exchange user defined object or data structures with clients
as parameters and or return values.

The client applications use the information published
in the WSDL document to form an XML document known
as a SOAP Request that encapsulates the remote method
call in a standard textual format. The SOAP Request is
then sent to the Web Service.

The Web Service uses the method and parameter
information encoded in the SOAP Request to invoke the
method call with the appropriate parameters. It then
constructs an XML document called the SOAP Response
that encapsulates the data returned from the method call in
a standard XML format. The SOAP Response is then sent
back to the client. The client receives the SOAP Response,
decodes it, and returns the data to the calling program.

The underlying transport medium that supports this
publish-request-response mechanism is provided by the
Hyper Text Transport Protocol (HTTP) [9].

2.2. CORBA-RMI

The Common Object Request Broker Architecture
(CORBA) defines a high-level communication model for
distributed computing. In this paper, we consider only the
RMI aspect of CORBA. The most important notion in the
CORBA-RMI specification is an Object Request Broker
(ORB) [3]. In a client-server system that uses CORBA-
RMI, the Client ORB and the Server ORB form the
communication endpoints. They direct invocations and
results between remote objects located on client and server
sides. ORBs use IIOP (Internet Inter-Orb Protocol) [3] to
communicate over a network. Unlike HTTP, which only
allows text to be transported over it, IIOP supports a wide
range of primitives, data structures, and object references.

Unlike SOAP, CORBA decouples the interface
definition from the location information. CORBA-RMI
servers use CORBA Interface Definition Language
(CORBA-IDL) [10, 11] to describe object interfaces and
an Interoperable Object Reference [3] (IOR) declaration to
encode and provide the server URL and port data to the
clients. A CORBA-RMI client must attain both a CORBA-
IDL document as well as an IOR in order to establish a
communication link with a server.

WSDL
Compiler

SOAP Client

Server Method
Stubs

Server Method
Implementation

WSDL Document

(2)
SOAP

Request
Message

(3)
SOAP
Reply

Message

 HTTP

(1)
WSDL

Document

SOAP End Point

3

Server Machine

Client Machine

Figure 2: Initially the CORBA-IDL and IOR definitions are
retrieved from the server. Using the IOR the client ORB is
initialized. Remote methods defined in the CORBA-IDL are
invoked on the client ORB, which contacts the CORBA Servant
though the server ORB to obtain the return object.

 The CORBA-IDL document consists of a standard set
of elements. The module element is the root element of any
CORBA-IDL document. CORBA developers using Java as
the host language will notice that each interface element,
similar to a Java class, encapsulates instance variable
declarations and method declarations. The module may
contain uniquely identified interfaces.

The CORBA-IDL to Java mapping permits the type of
the instance variables, method parameters, and return
values to be the Java Strings and primitive types int,
double, float, char, and boolean, or any Java type that is
declared by an interface element within the module
element of a CORBA-IDL document.

As shown in Figure 2, to establish a communication
link to the server, a client uses an IOR to initialize the
client ORB. The client ORB then establishes a
communication link with the server ORB described by the
IOR. After initialization, the client application invokes the
methods defined in the CORBA-IDL document. When
such an invocation is made, the call is intercepted by the
client ORB and sent to the server ORB over an IIOP
connection. The server ORB intercepts the call, finds the
object that can handle the request, invokes the
corresponding method with the parameters passed in, and
returns the results to the client ORB. The client ORB then
passes the return object back to the calling program.

2.3. JPie

JPie is a tightly integrated programming environment
for live construction of Java applications [12]. JPie treats

programming as an application in its own right, providing
a visual representation of class definitions and supporting
direct manipulation of graphical representations of
programming abstractions and constructs. Exploiting
Java's reflection mechanism, JPie supports the notion of a
dynamic class that can be modified while the program is
running. Dynamic classes are built from components such
as dynamic methods and dynamic fields, which directly
correspond to the respective classes in the Java’s reflection
mechanism. However, the dynamic versions can be
instantiated and mutated. This functionality can be used to,
among other things, change method signatures within live
object instances. Dynamic classes fully interoperate with
compiled classes, including polymorphism, and methods
may be overridden on the fly.

Of particular interest is the fact that JPie maintains
consistency of declaration and use. For example, if the
name or parameter list of a method is changed, JPie
automatically updates all calls to that method accordingly.
This is different from typical textual programming
environments, in which the programmer must update every
call whenever a method name is changed or a formal
parameter list is reordered. One of the important goals of
the present work is to offer this level of consistency among
the client and server applications through a live,
simultaneous client-server development methodology.

2.3. Client Development Environment (CDE)

CDE [1] supports the live construction of SOAP and
CORBA clients. In CDE, we extend the live development
model introduced by JPie to automate addition, mutation,
and deletion of dynamic server methods within dynamic
clients. CDE simplifies distributed application
development by masking technical differences between
local and remote method invocations. Moreover, the live
development model allows server-side changes, such as
those accomplished through either traditional deployment
or the live server development mechanisms discussed in
this paper, to be dynamically integrated into a running
client. The current CDE implementation uses Apache Axis
for SOAP support and the Dynamic Invocation Interface
(DII) [3] implementation of OpenORB [6] as the basis for
its CORBA support. In Section 6, we discuss a protocol
jointly implemented by both CDE and SDE to support live,
simultaneous client-sever development.

3. Related Work

In spite of the fact that RMI is a natural extension of
standard method call semantics, setting up the
development tools for technologies such as SOAP and
CORBA can be a daunting task. Therefore, client
development environments that encapsulate the low-level
details of the technology and the execution environment

IDL Compiler

CORBA-RMI
Client

Server Method
Stubs

Server Method
Implementation

CORBA-RMI Servant

(2)
Send

Parameters

(3)
Return
Value

 IIOP

(1)
CORBA

IDL
Client ORB

 HTTP
(1) IOR

Server ORB

4

have proven popular among developers. In this section, we
discuss several systems and technologies that attempt to
streamline distributed application development using RMI.
 Visual Studio.Net [13] builds upon the Microsoft
.NET framework [14] to provide a number of mechanisms
that reduce the Web Services development time. Visual
Studio.Net provides automatic generation of a rudimentary
Active Server Pages (ASP) [15] web client, at each
deployment step of the Web Service. Through this
rudimentary web client, developers can test the server
manually prior to creating a client program. Since there is
no actual client program at that point, dynamic server
interface updates are not needed. However, once an actual
client program is under development, the automatic ASP is
no longer useful. Instead, whenever the server interface
changes, the developer must obtain the new interface,
manually change the client code to reflect the new
interface, and then recompile and restart the client to
continue testing.
 Apache Axis can be combined with the Apache
Tomcat Servlet Engine [16] to achieve a fast, automated
deployment process for Web Services. The Axis
implementation provides the Java2WSDL and
WSDL2Java tools that can be used to generate the WSDL
document, deployment descriptors used by Tomcat, and
the server-side stub classes. Then the server stub classes
can be modified to include the server method definitions.
As a final step, the source file can be included in the
appropriate path within the Servlet engine to take
advantage of the auto deployment mechanism built into the
combination of Axis and Tomcat to deploy the Web
Service without worrying about low-level connection
oriented details. Although the Axis implementation does
not directly address the issue of dynamic changes, its
design is flexible enough to incorporate this feature and
both CDE and SDE employ Axis tools to varying degrees.

WebObjects [17] is another platform that facilitates
simplified development of Web Services. The Direct to
Web Service [18] component of WebObjects incorporates
a Web Services Assistant that is based on the Apache Axis
implementation of SOAP. This tool allows developers to
easily define methods using a standard GUI. Direct to Web
Service is particularly suited for building a Web Services
front end to a database, as the Web Services Assistant
provides GUI based tools that allow developers to map
database calls into Web Service operations. Hence,
WebObjects is designed for development of Web Services
against a fixed interface and does not attempt to address
the issue of dynamic server interface changes.

The BEA Tuxedo [19] development environment
simplifies CORBA server development by providing a
number of tools that automatically generate backend
components as well as method stubs that can be mutated to
implement server logic. It provides a number of additional
tools such as a naming service and secure communication

mechanisms. However, the deployment process is much
more involved and requires a thorough understanding of
low level details. Therefore, Tuxedo can be considered as a
tool geared toward experienced programmers for
developing robust CORBA applications. The design of
Tuxedo does not allow for dynamic server interface
upgrades due to the lack of automation in the deployment
process and the presence of static server classes

 The technologies that we have discussed hide
low-level details of the RMI model, by using an Integrated
Development Environment (IDE) and or a well-defined
API to abstract away deployment details. Our SDE furthers
this goal by completely relieving the programmer of the
need to deploy the application. In addition, SDE employs a
publication strategy (See Section 5.6) to automate the
publication of the server interface as needed. Moreover,
the combination of SDE and CDE provides the additional
functionally of live, simultaneous development.

4. Developing Servers with SDE

Before discussing the middleware implementation
details, we describe the interaction between JPie users and
SDE in developing server applications.

To create a server application that uses SOAP, the
JPie-SDE user extends a provided class, called
SOAPServer that acts as a gateway to the SDE system.
When the new subclass of SOAPServer is being loaded
into JPie, the SDE subsystem detects this and creates the
required backend components for deployment and
immediately publishes a basic WSDL definition that is
useful in live, simultaneous client-server development (See
Section 6).

Figure 3: Live class modifications in JPie are by direct
manipulation of graphical representation of programming
constructs. To include a method in the server interface the
user selects the ‘distributed’ modifier.

5

Client Machine

Server Method
Stubs

Server Machine

 JPie

To create a CORBA-RMI server, the JPie-SDE user
must extend a different provided SDE gateway class called
CORBAServer. As soon as the class is created, a basic
CORBA-IDL document is published to enable live,
simultaneous client-server development. The rest of the
user interaction parallels the SOAP client development
scenario.
 To add a method declared in the dynamic class to the
server interface, the user selects the ‘distributed’ modifier
from the modifier list as shown in Figure 3. SDE is able to
detect distributed methods by inspecting the ‘distributed’
modifier and new server interface descriptions are
published as changes are made to the method signatures of
these distributed methods. To remove a method from the
server interface, the user can either delete the method or
deselect the ‘distributed’ modifier.
 Once SDE starts monitoring a subclass of
SOAPServer or CORBAServer, the user can control the
automated server interface publication using the SDE
Manager Interface. The user can control the publication
frequency by specifying a timeout value (see Section 5.6).
In addition, the SDE Manager Interface allows users to
control the integrated HTTP server used to publish server
interfaces. The users may also view the WSDL/CORBA-
IDL that corresponds to each server under development in
JPie.

5. SDE Architecture
 SDE has three main responsibilities. It must detect the
presence of server classes within JPie, construct and
deploy the RMI call handlers for each of those classes, and
automate the publication of the server interface in an
intelligent manner. In conjunction with CDE, SDE must
also provide concurrency control between the RMI call
path and the server interface update mechanism.

In this section, we first introduce the high-level
components of SDE by focusing on initialization and
information flow in method invocations. We present the
SOAP and CORBA-RMI subsystems separately and
compare them with the generic architecture models
discussed in Section 2. We proceed with a description of
the implementation details in the context of SDE’s class
hierarchy, which accommodates the two subsystems into a
single framework. We then discuss the concurrency
control mechanisms that we employ to handle interleaving
of server method updates and server method calls. Finally,
we present the strategy for detecting server interface
changes and determining the frequency of publication.

5.1. SOAP Subsystem Overview

 As seen in Figure 4, the SOAP subsystem consists of
five high-level client components. The SDE Manager
oversees the subsystem initialization and acts as the central
point of communication between the other components.

Figure 4: There are three main information paths in the SOAP
Subsystem. The dashed lines represent the path used in
publishing the server interface. The solid lines represent the
path used in servicing remote method calls. The dotted lines
represent the flow of control information within the subsystem.

The SOAP Server acts as the base class for dynamic
classes that interact with the SOAP subsystem. The WSDL
Generator is in charge of detecting the addition, deletion,
and mutation of server methods within the SOAP Server
instance and creating new WSDL documents as required.
The Interface Server acts as a simple HTTP server that
publishes the WSDL documents to the public domain.
Finally, the SOAP Call Handler acts as the communication
end point that performs the SOAP to Java and Java to
SOAP translation for remote method invocations.

5.1.1. Initialization. When a user extends the SOAP
Server to create a dynamic class within JPie, an event is
generated to signal the SDE Manager to include the new
dynamic class in its list of managed classes. Then the SDE
Manager creates both a WSDL Generator and a SOAP Call
Handler, passing a reference to the SOAP Server to each
component. The WSDL Generator registers itself as a
listener to changes in the method signatures within the
SOAP Server and creates a minimal WSDL document1 by

1 The minimal WSDL document contains the SOAP Endpoint

address but does not contain any server operation definitions.

SOAP
Request

HTTP SOAP
Response

WSDL
Compiler

Client
Application

WSDL
Generator

WSDL
Document

SOAP
Call Handler

Method
Call

SOAP Server

SDE
Manager

Interface
Server

Server
Methods

Return
Object

WSDL
Document

Control
logic

Control
logic

Control
logic

6

Client Machine

Server Method
Stubs

Server Machine

 JPie

obtaining the endpoint address from the SOAP Call
Handler through the SDE Manager.

5.1.2. Server Interface publication. To determine
whether to update the WSDL definition, we employ a
notification mechanism where the WSDL Publisher listens
for changes being made on the SOAP Server instance. This
mechanism is discussed in detail in Section 5.6. As
discussed in Section 5.7, outdated RMI calls may also
trigger updates to the WSDL document. Once the new
WSDL Document is produced it is simply forwarded to the
Interface Server for publication.

5.1.3. Request/Response Handling. The RMI call path
within both SOAP and CORBA subsystems was designed
to maximize the separation of concerns as described in
Section 5.3. In the SOAP subsystem, the SOAP Call
Handler remains inactive until an instance of the SOAP
Server class has been created. For all incoming calls
during this inactive period, the SOAP Call Handler
immediately sends a reply containing a SOAP Fault with a
‘Server not initialized’ message. After activation, the
SOAP Call Handler receives incoming SOAP Requests
and parses them to create a method call that can be
invoked on the SOAP Server instance. If the parsing
reveals a malformed SOAP Request, a SOAP Fault with a
‘Malformed SOAP Request’ message is sent to the client.
If a method call is successfully created, the SOAP Call
Handler searches for a matching method in the current
server interface. If a match in found, then that method is
invoked on the SOAP Server instance, and if an exception
is not thrown, the result is encoded in a SOAP Response
and sent to the client. If an exception is thrown during the
execution of the server method, then a SOAP Response
containing a SOAP Fault that encapsulates the exception is
sent to the client. If the method call does not match any
method in the current server interface, the SOAP Call
Handler forces a server interface update if necessary (See
Section 5.7) and then sends a “Non existent Method”
message to the client.

5.2. CORBA-RMI Subsystem Overview

The CORBA subsystem is structurally similar to the
SOAP subsystem. However, there are differences in the
interaction among components. In the CORBA subsystem,
the CORBA Call Handler is a simple wrapper around the
Server ORB, and the low level communication details are
handled by making OpenORB API calls. The same
Interface Server is used by both subsystems for simplicity.
Figure 5 shows the structure and information flow in the
CORBA subsystem.

5.2.1. Initialization. Initialization of the SDE manager is
performed under the same circumstances described in

Section 5.1.1. When a user extends the CORBA Server to
create a dynamic class within JPie, an event is generated to
signal the SDE Manager to include the new dynamic class
in its list of managed classes. The SDE Manager creates
both an IDL Generator and a CORBA Endpoint, passing a
reference to the CORBA Server to each component. The
IDL Generator registers itself as a listener to changes in
the method signatures within the CORBA Server and
creates a minimal CORBA-IDL document. The Server
ORB is initialized by the CORBA End Point and finally,
the IOR is published via the Interface Server.

5.2.2. Server Interface Updates. We chose our update
model to mirror the model used in the SOAP subsystem
since the concerns discussed in Section 5.1.2 are still valid
for the CORBA subsystem. The IDL Publisher listens for
changes being made on the CORBA Server instance to
determine whether to update the CORBAI-DL definition
(See Section 5.6.) As discussed in Section 5.7 outdated
RMI calls may also trigger updates to the CORBA-IDL
document. Once the new CORBA-IDL Document is
produced it is simply forwarded to the Interface Server for
publication.

Figure 5: There are three main information paths in the
CORBA Subsystem. The dashed lines represent the path used
in publishing the server interface. The solid lines represent the
path used in servicing remote method calls. The dotted lines
represent the flow of control information within the subsystem.

CORBA
Remote call

HTTP CORBA
Response

IDL
Compiler

Client
Application

IDL
Generator

WSDL
Document

CORBA
Call Handler

Method
Call

CORBA Server

SDE
Manager

Interface
Server

Server
Methods

Return
Object

IDL
Document

Control
logic

Control
logic

Control
logic

Client ORB
IOR

 IIOP

7

 The Dynamic Skeleton Interface (DSI) [3] technology
allows applications to provide implementations of the
operations on CORBA objects without static knowledge of
the object’s interface. We use DSI to avoid reinitializing
the Server ORB when the server methods or types change.

5.2.3. Request/Response Handling. Once again, the
components that take part in making RMI calls mirror the
components used in the SOAP subsystem. In this case, the
incoming calls are received by the Server ORB. Unlike in
the SOAP subsystem, the Server ORB implementation
handles all malformed requests. The wrapper logic in the
CORBA Call Handler component is used to determine the
validity of the call. If it is a valid call, a method call is
made on the CORBA Server, and the return value is sent to
the client through the Server ORB. If a call is not valid
then a server interface update is triggered, if necessary
(See Section 5.7), before a ‘Non Existent Method’
exception is sent back to the client. As in the SOAP
subsystem, any exceptions thrown during the invocation of
the method call is wrapped in a generic exception type and
sent back to the client.

5.3 Class Hierarchy

To implement the components described in section 5.1
and 5.2, we designed a class hierarchy that allows SOAP,
CORBA, and other technologies to be easily integrated
into the system. This allows key components such as the
SDE Manager to be technology independent. Figure 6
shows the three interfaces that each technology must
implement. Each interface provides the blueprint to a
component that performs a critical role within the SDE
architecture.

 Implements
 Has–many

Figure 6: Each technology incorporated into SDE must
implement a generator to publish the server interface, a
communication backend that handles incoming requests and
sends reply messages, and an extensible class that will serve
as the base type for dynamic classes using that technology.

5.4. Concurrency in Server Applications

In SDE, only a single instance of each dynamic class
that extends SOAPServer or CORBAServer can be in
existence at any given time. Also, our Call Handlers are
designed to be completely multithreaded. This allows the
server to handle incoming calls efficiently and eases the
performance bottleneck created by the mechanism
described in Section 5.7 that attempts to maintain the
consistency of the published server interface and the actual
implementation in the server class.

5.5. Representing Server Methods in JPie

As discussed in Section 4, when a user extends a class
of type SDEServer, the list of possible modifies for all
methods defined in that class is augmented with the option
of a ‘distributed’ modifier. Users add or remove methods
from the published interface by selecting or deselecting
this modifier within JPie. By using this model, we were
able to develop SDE as an optional plug-in to JPie, with
only a minimal change to JPie being required to
accommodate the new functionality.

5.6. Detection of Server Interface Changes

When a change is made to the server logic within the

server dynamic class, those changes take immediate effect
globally within JPie. When method signatures in the server
application change, SDE needs to make the corresponding
changes in the published server interface description to
maintain consistency of the server interface on both the
client and the server. On the other hand, since the
generation and publication of the server interface
description is a relatively expensive operation, eliminating
unnecessary operations within the DL Publisher is
important to overall system performance. One possible
approach is change-driven: publish a new server interface
description with each change. However, this approach
would often lead to publishing transient server interface
descriptions (those that occur while the developer is in the
middle of editing the class), which is not only expensive at
the server, but also may lead to unnecessary changes at the
client. Another approach is to poll: check the interface at
regular intervals, publishing if necessary. However, the
periodic approach could still publish a transient interface.
Moreover, that transient interface could persist at the client
side until the next polling interval. Therefore, we have
developed a mechanism that is change driven, but waits for
a stable interval to avoid overly aggressive publishing. In
addition, we incorporate a reactive mechanism that forces
publication of the current interface whenever a client
attempts to make a call on a stale method.

Our mechanism uses a timeout, which can be changed
by the user through the SDE Manager Interface. Each DL

SOAPCallHandler CORBACallHandler

CallHandler

DLPublisher

SDEServer

IDLPublisher WSDLPublisher

SOAPServer CORBAServer

SDEManager

8

Publisher listens to changes in the corresponding dynamic
class by monitoring the JPie undo/redo stack. When a
change to the relevant server class is detected, the DL
Publisher sets a timer to the timeout value and starts a
countdown. When the timer expires, the DL Publisher
generates the new server interface. If changes to the
distributed method interface of the dynamic class are made
before the timer expires, then the timer is reset to the
timeout value, and the countdown restarts. The user may
decide to manually trigger the publication of the server
interface description at any time by forcing timer
expiration through the SDE Manager Interface. The
control of the timer and the actual IDL generation
operation is independent of each other, and there may be a
running timer while an IDL generation is in progress. In
that case, if the timer expires before the completion of the
IDL generation operation, then another IDL generation
operation will take place as soon as the current operation
finishes. Client calls for stale method signatures may also
trigger updates as described in Section 5.7.

This approach has proven effective in publishing the
server interface as frequently as needed while reducing the
cost of publishing transient interfaces. The user can control
the publication frequency by tuning the interval of stability
that triggers updates.

5.7. Client Requests for Non-existent Methods

When a Call Handler receives a client request for a stale
method (one that no longer exists on the corresponding
dynamic server class), we must guarantee that the
published server interface description is current before
replying to the client with an exception. This is because if
the client inspects the server interface description upon
receiving the exception, the change in the method
signature must be apparent. This mechanism enhances the
server interface publication frequency by taking the
frequency of client calls into consideration.
 When a Call Handler receives a call to a non-existent
method, it notifies the SDE Manager and stalls the
processing of incoming messages. The SDE Manager then
prompts the corresponding DL Publisher to publish a new
server interface description as needed. If the timer is not
running and if there is no ongoing IDL generation, then we
are guaranteed that the published server interface
description is already current. If the timer is not running
and there is an IDL generation in progress. then we are
guaranteed that at the end of that publication operation, we
will have the most current server interface description. In
this case, we simply wait until the end of the operation
before the SDE Manager is notified. If there is an ongoing
IDL generation and if the timer is running, then we must
wait until the current IDL generation and the next IDL
generation operations are completed to guarantee that the
most current server interface description is published. The

DL Publisher then notifies the SDE Manager of the
completion of the operation. The SDE Manager passes the
notification back to the Call Handler. The Call Handler
then sends an exception with the ‘Non existent Method’
message to the client and resumes the processing of the
incoming messages. In CDE, this message is handled as
described in Section 6.
 Since publication is triggered only when the published
interface is out of date, this algorithm prevents a rouge
client from overwhelming the server by sending multiple
calls to non-existent methods that trigger IDL generation
needlessly.

6. Live Client-Server Development

 In the live, simultaneous client-server development
model, both the RMI call path and the server interface
update path may be active concurrently. Therefore, when
the server interface changes, a race condition may arise
between the two paths leading to inconsistent behavior in
the CDE (e.g. The server reports that a method is stale, but
the client does not yet have the updated interface.) The
gray bars in Figure 7 illustrate the possible points at which
the server interface is published (1, 2 or 3) and the client
stub is updated (i, ii, iii). Only combinations (1, i), (1, ii),
and (2, ii) ensure that the client developer is clearly able to
see changes in the server interface when they are prompted
by a server exception. In all other cases, the lack of a
visible error in the client code will make resolution
impossible until the client performs an update. Such
inconsistent behavior in the development environment
would be detrimental to efficient development.
 To overcome this inconsistency, we developed a
distributed algorithm that is implemented jointly by CDE
and SDE. Figure 8 shows the possible scenarios in the
execution of this algorithm.

Client Server

Figure 7: Active publishing - The server interface update path
and the RMI call path are completely independent of each
other. Only cases (1, i), (1, ii), (2, ii) produce the desired
behavior of making the error obvious when the exception is
reported back to the client developer.

Publish Server Interface (1)

 (2)

 (3)

Server Interface changes

Processes method call

Send exception

Send method call

Receive exception

Display error

Update client stub (i)

(ii)

(iii)

9

Client Server

Figure 8: Reactive publishing - The server interface update
path and the RMI call path have points of synchronization at
both the client and server sides. In this case, for any
combinations of (1-4, i-iv) the recency guarantees will be met.

 By employing our algorithm, we can guarantee that
the method signature observable at the client upon return
from an RMI call is always consistent with a published
server interface that is at least as recent as the interface
used by the server to process the call. This guarantee
ensures consistent behavior in CDE in all possible
combinations of events shown in Figure 8.
 The server side implementation of this algorithm has
already been discussed in Section 5.7.

Figure 9: When the “Non-existent Method” exception is
received by the client dynamic class, the JPie debugger
detects the exception and prompts the user. The goal of SDE
and CDE is to make the error apparent to the client
programmer.

 In CDE, when a “Non existent Method” exception is
received by the client backend, the client view of the
server interface is updated to the currently published one.
Then, the exception is sent to the dynamic class that made
the original RMI call. The JPie Debugger [12] detects the
exception and displays it to the user as shown in Figure 9.
When the user inspects the error, the server interface the
change is clearly visible.
 If the server developer changes the method signature
to match the original method during the forced publication,
the server interface description available when the client
updates may not indicate a change in the method signature,
and the user may not see any signature inconsistency
within the debugger. In this situation, the user can use
JPie’s ‘try again’ feature in the debugger to re-execute and
therefore resend the call and normal execution would
resume at this point.

7. Performance

 SDE adds some overhead to the RMI call structure, so
an increase in the round trip time (RTT) of a RMI call is
inevitable. Experimentation has shown that this overhead
is within 25% in comparison to static RMI servers, which
is reasonable for development work.
 To determine the performance of SDE, we measured
the average round trip time (RTT) of SOAP calls between
a SDE SOAP server running within JPie and a simple
static Axis client. We compared these figures with the
RTT between the same Axis client and a static Axis server
running within Apache Tomcat. We repeated the
experiment using a SDE CORBA server, a static
OpenORB server and a static OpenORB client. We used
Java’s getTimeInMillis system call, and the average time
was calculated over one hundred calls. We used an Apple
Powerbook running OS 10.3 with a 1 GHz PowerPC
processor and 512 MB of RAM as the client and a Dell
Optiplex running Windows XP Professional with a 3.2
GHz Intel Pentium 4 processor with 1 GB of RAM as the
server. The two machines were connected to the same T1
Local Area Network. The results are shown in Table 1.

Table 1: RTT times for client-server communication

Server/Client RTT (seconds)
SDE SOAP/Axis 0.58
Axis-Tomcat/Axis 0.53
SDE CORBA/OpenORB 0.51
OpenORB/OpenORB 0.42

 Note that the performance overhead introduced by
SDE is only present during the development phase. At the
end of the development phase, the dynamic SDE server
can be converted into a static SOAP or CORBA server
through JPie’s built-in application export mechanism [20].

Regular publication (1)

(2)

(3)

Server Interface changes

Processes method call

Send exception

Send method call

Receive exception

Display error

Regular update (i)

(ii)

(iv)

Publish if needed

Update if needed

(4)

(iii)

10

8. Conclusion

 This paper introduced live server development using
the RMI model as well as live, simultaneous client-server
development. We also presented mechanisms that
completely abstract away server deployment details,
allowing SOAP and CORBA-RMI server development to
become a natural extension of mainstream Java application
development.
 One of our goals for SDE was to reduce the learning
curve involved in developing distributed application using
the RMI model. By eliminating the setup and deployment
steps, we provided an environment where developers can
devote their complete attention to the creation of server
logic. SDE extends JPie to provide an appealing interactive
environment in which novice RMI application developers
can create and modify clients and servers.
 Our second goal of supporting live client-server
development has also been successfully implemented with
the combination of CDE and SDE. Our experience
indicates a significant reduction in development time from
the traditional modes of distributed application
development. We plan to use CDE-SDE as the basis for a
client-server project in Washington University CSE 123, a
course that uses JPie to provide a hands-on introduction to
computer science for non-majors without programming
background [21].
 An additional feature that is being investigated is the
ability to interchange the technology being used to
communicate between the client and the server while live
development and information exchange is taking place.
Although some SOAP to CORBA bridging technologies
[22, 23] offer static bridging capabilities, we feel that live
modification will result in a more fluid development
experience. We are currently implementing a medium-
sized mail service application in JPie using CDE and SDE.
Our experience with that application will help motivate
future work on CDE, SDE, and JPie in general.

Acknowledgements

We thank Chris Gill and Michael Plezbert for their
support during our background study. We also thank
Vanessa Clark for her contribution in the design and
implementation of CDE. This work was supported in part
by the National Science Foundation under CISE
Educational Innovation grant 0305954.

References

[1] S. L. Pallemulle, V. H. Clark, and K. J. Goldman,
 “Supporting live development of soap and corba clients,”
 Department of Computer Science and Engineering,
 Washington University in St. Louis, Tech. Rep. TR-2004-
 56, September 2004.

[2] Simple Object Access Protocol (SOAP) 1.1, World Wide
 Web Consortium, June 2003. http://www.w3c.org/TR/SOAP
[3] Common Object Request Broker Architecture (CORBA):
 Core Specification 3.0.3, Object Management Group,
 March 2004. http://www.omg.org/docs/formal/04-03-01.pdf
[4] K. J. Goldman, “Live software development with
 dynamic classes,” September 2004, submitted for
 publication
[5] Apache Axis Users Guide, Apache Software Foundation,
 2004. http://ws.apache.org/axis/java/user-guide.html
[6] C. Wood, J. Daniel, and M. Rumpf, The Community
 OpenORB Manual, The Community OpenORB
 Project, 2004. http://openorb.sourceforge.net/docs/1.4.0/Ope
 nORB/doc/orb.html
[7] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler,
 Extensible Markup Language (XML), 1st ed., World Wide
 Web Consortium, October 2000. http://www.w3c.org/TR/
 RECxml
[8] E. Christensen, F. Curbera, G. Meredith, and S.
 Weerawarana, Web Services Description Language
 (WSDL), 1st ed., World Wide Web Consortium, March
 2001. http://www.w3c.org/TR/wsdl
[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
 Leach, and T. Berners-Lee, “Hypertext transfer protocol
 (HTTP)/1.1,” June 1999.
[10] IDL to Java Language Mapping Specification, 1st ed.,
 Object Management Group, August 2002.
 http://www.omg.org/docs/formal/02-08-05.pdf
[11] Java to IDL Language Mapping Specification, 1st ed.,
 Object Management Group, September 2003.
 http://www.omg.org/docs/formal/03-09-04.pdf
[12] K. J. Goldman, “An interactive environment for beginning
 java programmers,” Science of Computer Programming,
 vol. 53, no. 1, pp. 3–24, October 2004.
[13] Using Visual Studio .NET, Microsoft Corporation, 2004.
 http://msdn.microsoft.com/vstudio
[14] Microsoft .NET Framework, Microsoft Corporation, 2004.
 http://msdn.microsoft.com/netframework/technologyinfo/
[15] Microsoft ASP.NET Overview, Microsoft Corporation,
 2004. http://msdn.microsoft.com/asp.net/technologyinfo/
[16] The Apache Jakarta Tomcat 5.5 Servlet/JSP Container,
 Apache Software Foundation, 2004. http://jakarta.apache.or
 g/tomcat/tomcat-5.5-doc/index.html
[17] WebObjects Overview, Apple Computer Inc., 2004.
 http://developer.apple.com/documentation/WebObjects/
[18] Developing Direct to Web Services Applications,
 Apple Computer Inc., November 2002.
[19] BEA Tuxedo Product Overview, BEA Systems Inc., 2001.
 http://edocs.bea.com/tuxedo/tux80/overview/index.htm
[20] B. H. Brinckerhoff, K. J. Goldman, “Learning Curve
 Management in Educational Programming Environments,”
 September 2004, submitted for publication
[21] K. J. Goldman, “Washington University CS123:
 Introduction to Software Concepts,” December 2003.
 http://www.cse.wustl.edu/~kjg/cs123
[22] Orbix 6.1 Technical Overview, IONA Technologies,
 December 2003, http://www.iona.com/whitepapers/Orbix6.1
 TechOverview.pdf
[23] Atrix Technical Brief, IONA Technologies, April 2004,
 http://www.iona.com/whitepapers/0404ArtixTechBrief.pdf

	Supporting Live Development of SOAP and CORBA Servers
	Recommended Citation
	Supporting Live Development of SOAP and CORBA Servers

	tmp.1470340445.pdf.jz4fJ

