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ABSTRACT OF THE DISSERTATION 

Development of Polarizable Force Field Models for Transition Metal Ions 

by 

Jin Yu Xiang 

Doctor of Philosophy in Computational and Molecular Biophysics 

Washington University in St. Louis, 2013 

Professor Garland Marshall, Chair 

 

 This dissertation focuses on the development of polarizable molecular mechanics 

(MM) force field models for the third-row transition metal (TM) ions. These TM ions 

perform important structural and chemical functions in a wide range of organic and 

biological environments because of the unique properties of the 3d orbitals. Being able 

study these systems in silico can provide a tremendous amount of information that is 

difficult to obtain through experiments. However, the standard treatment of ions in 

traditional MM models has shown to be insufficient for describing the d-shell electronic 

effects. In this work, empirical models for TM electronic effects are derived from the 

valence bond (VB) theory and the angular overlap model (AOM). The TM potential 

functions are incorporated into the AMOEBA (Atomic Multipole Optimized Energetics 

for Biomolecular Applications) MM force field. A consistent polarizable electrostatics 

model is applied between metal and ligand sites at all interaction distance, enabling the 

study of ligand association / dissociation and other dynamic events. Specifically, theories 

are presented in the context of Ni(II), Cu(II) and Zn(II) ions. Parameters are obtained by 

fitting the TM models to gas-phase ab initio computations. Finally, results from 

molecular dynamics simulations of aqueous ions and select type 1 copper proteins 



 xvi 

(plastocyanin and azurin) are analyzed. Evidence from this study suggests that explicit 

description of d-shell electronic effect can significantly improve the performance of MM 

models. This allows one to perform more reliable investigations on complex TM systems 

than can be achieved with traditional MM methods but without the computational 

expense of ab initio calculations. 
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Chapter 1. Introduction 
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 Transition metal (TM) ions are involved in a tremendously diverse range of 

important biological systems.1-7 Their functions can range from regulation of structure 

and binding, as in the zinc-finger motif in DNA recognition proteins8, to active mediation 

of chemical reactions, as in the entire family of superoxide dismutase9,10, cytochromes 

and electron transport proteins11. TM ions are also found in a number of pharmaceutical 

organometallic compounds, such as titanium, ruthenium and platinum-based antitumor 

drugs3. This incredible diversity in the applications of TM ions, both in natural biological 

systems and synthetic therapeutic vehicles, owes much to the unique properties of the 

valence d- and f-orbitals.12 It is common that the coordination structures of TM ions are 

coupled to their chemical functions.13 In the following sections, we demonstrate, via 

molecular orbital (MO) theory14, the effects of d-orbitals on the ligation of the third-row 

TM ions. These ions are the most common TM species found in biological 

environments.13 Existing quantitative computational techniques that can be used to study 

these TM systems are introduced, along with initial calculations that illustrate the various 

quantum effects. 

1.1 Molecular Orbital Theory of the Third-Row Transition Metal Ions 

 Figure 1.1 is a graphical representation of the five unperturbed d-orbitals. It is 

clear from the figure that the d-orbitals have strong directionality and complex nodal 

features, which have significant implications for their interaction with TM ligands. In 

isolated atoms, the d-orbitals have equivalent ground state energies, but this redundancy 

is removed when the d-orbitals hybridize with overlapping ligand orbitals. The results of 

such hybridization depend on both the relative energy levels and orientation of the ligand 

orbitals. 
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 Metal-ligand (M-L) interactions can be categorized into σ- (“head-on”) and π- 

(“sideway”) bonds. As a first approximation, the bonding and anti-bonding MOs of 

ligands can often be neglected since the energy differences relative to the d-orbitals are 

too large for significant hybridization to occur. For organic ligands, the non-bonding 

MOs that need to be considered when constructing the hybridized MOs are the valence s 

and p orbitals. Figure 1.2 shows schematically a few examples of how ligand MOs can 

participate in σ- and π- interactions. It is evident that the metal and ligand orbitals must 

have the correct symmetry for non-zero overlap to occur. σ-interactions are in general 

much stronger than π-interactions due to better geometric overlap between the interacting 

orbitals. Therefore, one can consider π-interactions as a perturbation to the principle 

ligand field constructed from the σ-interactions.  

1.1.1 Molecular orbitals of octahedral ML6 complexes 

 To construct the MO diagram under the effect of the principle ligand field for an 

octahedral TM complex with identical ligands, one needs to consider the shape, 

symmetry and energy ordering of the interacting orbitals. It is convenient to utilize group 

theory for this analysis. The character table of the Oh point group (Table 1.1) suggests 

that metal d-orbitals have Eg and T2g symmetries. On the other hand, 2 eg, 3 t1u and 1 a1g 

orbitals form the symmetry adapted linear combination orbitals (SALCO) of the ligands. 

The t2g metal orbitals are therefore non-bonding, since they do not have any overlap with 

SALCO of the ligands. The eg orbitals hybridizes to form two bonding and two anti-

bonding MOs. The bonding MOs are concentrated on the ligands because they are 

usually more electronegative than the metal ion. Thus, the d-block valence MOs of the 
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octahedral TM complex consists of doubly degenerate eg anti-bonding and triply 

degenerate t2g non-bonding orbitals. Figure 1.3 illustrates the splitting of MOs from the 

ground state d-orbitals. 

  An important phenomenon for Cu2+L6 complexes that is directly related to the d-

orbital splitting is the Jahn-Teller distortion.15 Since Cu2+ has a d9 electron configuration, 

three electrons have to be placed into two anti-bonding eg MOs. Distortion along the 

molecular fourfold symmetry axis removes the degeneracy of these eg MOs and thereby 

lowers the overall energy of the complex. This is commonly observed as an elongation of 

axial ligand bonding distance. 

1.1.2 Molecular orbitals of square-planar and tetrahedral ML4 complexes 

 The MO description of square-planar ML4 complex can be readily deduced from 

the MOs derived for the corresponding octahedral ML6 complex. If we take the ML6 

fourfold symmetry axis as the z-axis, removing the axial ligands has the effect of 

lowering the overlap between the metal dz2 orbital and its interacting ligand orbitals. The 

resulting MO is still weakly anti-bonding due to non-zero overlap in the xy-plane (See 

Figure 1.1). The other MOs in the d-block remain unperturbed since they have zero 

coefficients along the z-axis. Therefore, we arrive at the MO diagram shown in Figure 

1.4. Note that only two of the three non-bonding MOs are degenerate by symmetry. 

 We can follow a similar process to analyze the MOs of tetrahedral ML4, starting 

from the results obtained for the square-planar geometry. If we place two ligands along 

both of the x-axis and y-axis, we can move from square-planar to tetrahedral coordination 

by pivoting the x-oriented pair above, and the y-oriented pair below, the xy-plane. In this 
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new orientation, the z2 and xy d-orbitals are strictly non-bonding, since the ligands are 

now placed on the nodal planes of these orbitals. The yz and xz orbitals form anti-bonding 

MOs, as the ligands have moved out of their nodal planes. Finally, the MO derived from 

the x2 – y2 orbital has less anti-bonding character due to the fact that the ligand orbitals 

now overlap at an angle to the d-orbital. By consulting the character table of the Td point 

group (Table 1.2), we can conclude that yz, xz and x2 – y2 form three degenerate anti-

bonding MOs. The complete MO diagram can be found in Figure 1.5. 

 The MO description an ML4 complex with square-planar ligand arrangement is 

very different from that for tetrahedral ligation. The square-planar geometry has three 

non-bonding, one weakly anti-bonding and one highly anti-bonding MO, whereas the 

tetrahedral coordination has two non-bonding MOs and three MOs with moderate anti-

bonding energies. These differences in MO energy levels have dramatic impact on the 

geometric preferences of ML4 complexes. For the d10 Zn2+L4 complex, tetrahedral 

coordination is preferred because the highest occupied molecular orbital (HOMO) is 

lower in energy than that in a square-planar arrangement. Low-spin Ni2+L4 complex (no 

unpaired electrons) strongly favors the square-planar geometry because only two 

electrons are anti-bonding, versus four in the case of tetrahedral coordination. However, 

the energy levels of the two geometries are reversed in the case of high-spin Ni2+L4 as a 

single electron has to be placed in the high-energy b1g MO if the geometry is square-

planar. The low-spin configuration is usually preferred since there are fewer anti-bonding 

electrons. Nevertheless, the tetrahedral geometry minimizes ligand-ligand repulsions and 

the exchange energy from two unpaired electrons favors the high-spin electronic state. 

The geometric preference for the intermediate d9 Cu2+L4 complex is more nuanced. The 
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two coordination structures are very close in energy and the lowest energy arrangement 

depends on the identity of the ligands. In certain cases such as [CuCl4]2, it has been found 

that both structures can exist in equilibrium.16 It is also clear from analyzing the MO 

diagrams that the ligation geometries are coupled to the redox potentials of TM ions, 

since changing d-block MO occupancies can significantly alter the energy levels of the 

coordination structures. 

1.2 Quantum Mechanical Computational Methods 

 The qualitative analyses in the previous section have shown that the electronic 

configuration of TM complexes can have significant effect on their coordination 

geometries. A robust way to compute the energy for a TM system is by performing ab 

initio electronic structure calculations. Various relevant quantum mechanical (QM) 

computational methods are introduced in this section, largely following the notations of 

Jensen.17 

1.2.1 Hartree-Fock method 

 To perform QM calculations on a static structure, one needs to solve the time-

independent electronic Schrödinger’s equation:  

 HΨ = EΨ   (0.1) 

An important approximation enabling us to solve the Schrödinger’s equation is the Born-

Oppenheimer approximation, in which the coupling of motion between nuclei and 

electrons is neglected. However, an exact solution is not available even in the context of 

this approximation, except for simple single electron species such as H2
+. Instead, ab 
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initio numerical methods based on the variational principle are employed. Any trial wave 

function has an energy value greater than or equal to the exact solution and therefore one 

can variationaly improve the trial wave function by minimizing the energy. A Slater 

determinant (SD) is a convenient trial wave function that satisfies the antisymmetric 

property upon exchanging the coordinates of two electrons. For a general N-electron 

system, the SD takes the form: 

 

 

ΦSD =
1
N!

φ1(1) φ2 (1)  φN (1)
φ1(2) φ2 (2)  φN (2)
   

φ1(N ) φ2 (N )  φN (N )

  (0.2) 

where φ  denotes a one-electron orbital function. It can be shown that in the case of a 

single SD and non-relativistic Hamiltonian, the energy of the wave function can be 

written as: 

 E = φi hi φi
i

Nelec

∑ + 1
2

φ j Ji φ j + φ j Ki φ j( )
ij

Nelec

∑ +Vnn   (0.3) 

hi, Ji and Ki are operators that describe the one-electron motion due to the field of nuclei, 

the Coulombic repulsion between electron distributions φi
2 and φ j

2 , and the exchange 

energy that is a consequence of electrons being indistinguishable fermions respectively. 

The nuclear-nuclear repulsion Vnn  does not depend on electron distribution and is 

therefore constant. The variation of the energy can be written in the form of a Fock 

operator Fi: 
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δE = δφi Fi φi + φi Fi δφi( )

i

Nelec

∑

Fi = hi + J j −K j( )
j

Nelec

∑
  (0.4) 

The orbital functions must be varied in an orthonormal manner. Using the Lagrange 

multiplier method, we have: 

 δ L = δE − λij δφi φ j − φi δ φ j( )
ij

Nelec

∑ = 0   (0.5) 

Solving this equality gives the final Hartree-Fock (HF) equations: 

 Fiφi = λijφ j
j

Nelec

∑   (0.6) 

These equations can be further simplified by applying a unitary transformation to the 

matrix of Lagrange multipliers such that λij = 0  and  λii = i : 

  Fiφi
' = iφi

'   (0.7) 

where the φi
'   are known as canonical MOs. The HF orbital wave functions can only be 

determined when all the occupied orbitals are known. The overall procedure is therefore a 

self-consistent problem, and the solutions to the HF equations are the self-consistent field 

(SCF) orbitals. It should be noted that the use of a single SD approximation means that 

the electron correlation effect are ignored under the HF scheme. It is common to 

represent the orbitals by a set of basis functions: 

 φi = cαiχα
α

Mbasis

∑   (0.8) 
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Substituting this into Equation 1.7: 

 
 
Fi cαiχα

α

Mbasis

∑ = i cαiχα
α

Mbasis

∑   (0.9) 

Rewriting the result in matrix form, we obtain the well-known Roothaan-Hall equations 

for solving the HF equations, as implemented in many computer program packages

  FC = SC   (0.10) 

1.2.2 Electron correlation methods 

 For many polyatomic systems, ignoring electron correlation contributions can 

introduce significant error into energy calculations. The most straightforward approach to 

account for electron correlation is to simply remove the restriction to a single SD. This 

can be achieved by allowing electrons to occupy virtual orbitals and form excited SDs. 

The SDs can be singly (S), doubly (D), triply (T) etc. excited relative to the HF 

determinant. The trial wave function can then be taken as a linear expansion of ground 

and excited Slater determinants, with coefficients that allow energy to be at a minimum. 

This method based on the variational principle, is called configuration interaction (CI). A 

major drawback of this approach is that the number of excited Slater determinants grows 

factorially with the number of electron and basis functions. Therefore, full CI calculations 

are feasible only for small systems. Truncated CI, which takes into account excited SD up 

to a certain state, are usually used instead. Nevertheless, full CI is the best energetic result 

a particular basis set function can obtain in the limit of the Born-Oppenheimer 

approximation. 
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 Alternatively, one can make use of the perturbation theory to improve upon the 

HF results. A popular method is the Møller–Plesset (MP) perturbation theory, which 

takes the zeroth-order Hamiltonian as the sum over the Fock operator: 

 
 
E(MP0) = i

i

Nelec

∑   (0.11) 

where n in MPn denotes the order or the perturbation. Summing over the eigenvalues of 

the Fock operator counts the electron-electron repulsion twice. Therefore the appropriate 

first-order correction should be: 

 E(MP1) = − 1
2

φ j Ji φ j + φ j Ki φ j( )
ij

Nelec

∑   (0.12) 

Hence, 

 E(MP0)+E(MP1) = E(HF)   (0.13) 

Thus, the first correlation correction comes from the MP2 level: 

 
 
E(MP2) =

φiφ j φaφb − φiφ j φbφa( )
i + j − a − ba<b

vir

∑
i< j

occ

∑   (0.14) 

where electrons are doubly excited from occupied orbitals i and j to virtual orbitals a and 

b. This can be compared to CISD, where CI is accounted up to singly and doubly excited 

states. The main difference between CISD and MP2 is that CISD approaches the exact 

solution variationally and is therefore size intensive, i.e. the correction term is insensitive 

to the system size. MP2, on the other hand, is size extensive and the error term is 

relatively constant with respect to system size.  
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 Another perturbation method related to the MP approach is the coupled cluster 

(CC) theory. In MP, a type of excitation (single, double… etc.) is corrected to a certain 

order (2, 3… etc.). In contrast, the CC method is to include all corrections to a type of 

excitation to an infinite order. Thus CCSD is equivalent to MP∞(SD) where all 

contributions from single and double excitations are accounted for. For the purpose of 

developing molecular mechanics model for transition metal ions presented in later 

chapters, the MP2 method is used for all single-point calculations due to its excellent 

accuracies and lower computational requirements when compared to the more expensive 

CISD and CCSD methods.17 

1.2.3 Density functional theory 

 Another QM method widely used to compute the energy of a system is the density 

functional theory (DFT), which states that there is a one-to-one correspondence between 

the electron density ( ρ ) of a system and its energy. The system energy is divided into 

three parts: the kinetic energy (T), nuclear-electron attraction (Ene) and electron-electron 

(Eee) repulsion. Analogous to HF method, the electron-electron repulsion term should 

consist of a Coulombic and an exchange component, with correlation included implicitly. 

Contemporary DFT methods are based on Kohn-Sham (KS) theory, where the kinetic 

energy is split into a part that can be computed exactly and a small correction term. If a 

hypothetical system has non-interacting electrons, the exact kinetic energy functional for 

a single SD is: 

 TS = φi −
1
2
∇2 φi

i

Nelec

∑   (0.15) 
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Kinetic correlation from interacting electrons can be treated as a correction term to TS , 

which is absorbed into the exchange-correlation energy term. The KS orbitals can be 

obtained through essentially the same SCF protocol used for the HF method. The 

remaining task is to obtain functionals that approximately describe the exchange-

correlation correction. 

 Among the numerous published exchange-correlation functionals, those based on 

the generalized gradient approximation (GGA) have demonstrated the best performance 

for TM ions.18-20 These functionals depends not only on the local electron density, but 

also on its first derivative. One of the most widely used DFT methods is B3LYP, which 

utilizes the three-parameter Becke model21 that consists of the Becke 88 (B88) 

exchange22 and the Lee, Yang and Parr (LYP) correlation functional 23. B2PLYP is also a 

popular functional that has demonstrated superior performance to B3LYP for complex 

TM systems.24 It is a mixture of B88, LYP with HF exchange and second order 

perturbation correction to the KS orbitals, analogous to MP2 method. An empirical long-

range dispersion correction is often combined with B3LYP.25  

1.2.4 Computational efficiency of quantum mechanics calculations 

  Although QM calculations treat the electronic structure problem rigorously, they 

are very computationally expensive. CPU time required for most SCF-based SD methods, 

including DFT, formally scales as the fourth power of the number of basis functions. 

Electron correlation methods such as MP2 scales at least as M basis
5 . Higher-level theory 

such as CISD and CCSD has a computational cost on the order of at leastM basis
6 .17 
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Nevertheless, there are several strategies that can improve the computational efficiency of 

QM methods.  

 For methods in which the SCF procedure is the limiting step, linear-scaling 

techniques can be applied.26-28 This is usually accomplished by partitioning large 

molecular systems into spatial segments and subsequently either approximating the long-

range interactions, or using divide-and-conquer strategy to piece together the partitions. 

Another way to speed up QM calculations is by using semi-empirical methods.29,30 The 

main approximation made in semi-empirical methods is that products of basis functions 

depending on electrons located on different atoms are neglected. Furthermore, only 

valence electrons are treated explicitly and minimum basis set functions are often used. 

Empirical parameters are then introduced to compensate for these approximation based 

on fitting to experimental data. These techniques allow single-point QM calculations to 

be performed on systems as large as 10,000 atoms.31 However, ensemble sampling 

(Section 1.3) of such large systems using semi-empirical methods is still prohibitively 

expensive.  

 Alternatively, instead of describing the entire molecular system by QM, a mixed 

quantum mechanics / molecular mechanics (QM/MM) method can be used. QM/MM has 

become an especially common approach for studying metalloproteins.18 A select region 

of the system (usually around the metal binding site) is treated via an electronic structure 

method, such as DFT or semi-empirical method. The rest of the molecule is handled by 

molecular mechanics (Section 1.3). For condensed phase simulation, implicit solvent 

models are typically used. This hybrid approach dramatically reduces the overall 

computational cost and enables meaningful ensemble sampling for thousands of atom 
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count, depending on the QM model used.32,33 However, this technique is still much more 

computationally intensive than purely MM methods and the treatment of the QM-MM 

interface is known to be problematic.34 

1.2.5 Valence bond theory 

 Although the MO theory is convenient for determining the molecular wave 

functions, it is often more qualitatively intuitive to describe a molecular system in terms 

of valency and bonding using ideas from the valence bond theory.35,36 For a wave 

function Ψ , we can define a set of natural orbitals (NO)Θ  that are given by: 

 ΓΘi = piΘi   (0.16) 

where Γ  is the first order reduced density operator. The eigenvalues pi are the 

occupancies of the eigenvectors Θi . If Γ  is a one-electron operator represented as: 

 ΓA = Nelec Ψ(1,2,...Nelec )
2 dr2 dr3...drNelec∫   (0.17) 

 we obtain a set of natural atomic orbitals (NAO) for a molecular system: 

 ΓAΘi
A = pi

AΘi
A   (0.18) 

At the dissociation limit, NAOs are natural orbitals of isolated atom, but they are also 

atomic orbitals with the highest occupancy in the molecular environment. In similar 

fashion, one can variationally search for natural bond orbitals (NBO) that are 1 or 2-

center local orthonormal orbitals yielding the highest electron occupancies in Lewis-like 

bonding structures. The leading N/2 orbitals sorted by occupancy levels (for closed shell, 



 15 

N for open shell) form the Lewis-type NBOs while the remaining orbitals span the entire 

basis and describe delocalization or resonance effects.  

 NBOs are constructed from natural hybrid orbitals (NHO) h, which are in turn a 

linear combination of NAOs: 

 hA = aiΘi
A

i
∑   (0.19) 

A 1-center lone pair orbital n is simply a single NHO: 

 nA = hA   (0.20) 

A 2-center bonding NBO between atoms A and B is: 

 ΩAB = aAhA + aBhB   (0.21) 

The corresponding anti-bonding NBO is: 

 ΩAB
* = aAhA − aBhB   (0.22) 

Note that unlike anti-bonding orbitals in standard MO theory, anti-bonding NBOs 

represent unused valence shell capacity that leads to resonance stabilization. 

 For most TM complexes, it is necessary to describe the hypervalency of metal-

ligand bonding via a 3-center-4-electron hyperbond: 

 A:B-C↔ A-B:C   (0.23) 

We can represent the NBOs of A:B-C  by: 
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nA = hA

ΩCB = aBhB + aChC
ΩCB
* = aBhB − aChC

  (0.24) 

Similary for A-B:C  we have: 

 
nC = hC

ΩAB = aAhA + aBhB
ΩAB
* = aAhA − aBhB

  (0.25) 

The principle Lewis structure is therefore: 

 
ΨA:B-C = (nA )

2 (ΩBC )
2

ΨA-B:C = (nC )
2 (ΩAB)

2
  (0.26) 

The resonance stabilization of the Lewis structures is given by: 

 

 

nA →ΩBC
* :           ΔEA:B-C

(2) = −2
nA F ΩBC

*

BC* − A

nC →ΩAB
* :           ΔEA-B:C

(2) = −2
nC F ΩAB

*

AB* − C

  (0.27) 

where F is the Fock operator. This delocalization effect is the result of mixingA:B-C  and

A-B:C , each with its own appropriate resonance weight. This concept is the basis for our 

later development of the AMOEBA-VB model for TM ions, as presented in Chapter 2 

1.3 Molecular Mechanics Computational Methods 

 Biological metalloproteins are large complex systems. For example, human 

copper-zinc superoxide dismutase (SOD3) is a homotetrameric protein that containing 

222 amino acid residues with more than 5,000 heavy atoms.37 Hemoglobin has two  α and 
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two β chains each consisting of 141 and 146 residues, respectively, for a total of 574 

amino acids.38 Using QM methods to study these proteins, especially those with multiple 

metal binding sites, quickly becomes prohibitively expensive. Instead, MM is the method 

of choice for modeling these large systems.39-43 

1.3.1 Force field model 

 In MM, atoms are the smallest fundamental units of the system. Electrons are no 

longer treated as separate particles with their own degrees of freedom. Instead, empirical 

energy terms that are functions of atomic coordinates are used to account for various 

electronic effects and parameters are fitted to sets of experimental or QM calculated data. 

Furthermore, nuclear motion is described by classical Newtonian mechanics. Given a set 

of empirical functions that describe the energy (U) of the system, the force on atom i can 

be computed by: 

 Fi = −∇ri
U   (0.28) 

Hence MM models are often called force field models. The standard force field potential 

energy term can be expressed as: 

 Upot =Ubond +Uangle +U torsion +Ucross-term +Uoop +UvdW +Uelec   (0.29) 

The first five terms are valence terms that describe the bonding interactions between 

atoms, while the last two terms are non-bonded potential functions. 

 Ubond  usually takes the form of a Taylor expansion around an equilibrium bonding 

distance ( rij
0 ) between two atoms i and j: 
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 Uij
bond = k2 (rij − rij

0 )2 + k3(rij − rij
0 )3 + +k4 (rij − rij

0 )4 + ...   (0.30) 

Since the zeroth and first order expansion terms are omitted, the energy and force at the 

equilibrium distance due to bonding is zero. It is clear this formulism does not have the 

correct behavior when rij →∞ , as the energy becomes infinite instead of approaching 

zero. A Morse potential44 is an alternative function that satisfies these limiting conditions: 

 Uij
Morse = D(1− e−aMorse (rij−rij

0 )2 )− D   (0.31) 

While the Morse potential exhibits correct dissociation behavior, MM is not the preferred 

model for studying bond breaking since it lacks electronic degrees of freedom. The 

Taylor expansion bond fomulation is more commonly used because it provides sufficient 

flexibility in fitting bond vibrational frequencies.  

 Similarly, the angle bend term (Uangle ) also usually employs a Taylor expansion 

around an optimal angle (θ 0 ) formed between two bonds.  

 Uθ
angle = c2 (θ −θ 0 )2 + c3bond,θ(θ −θ 0 )3 + +c4 (θ −θ 0 )4 + ...  (0.32) 

 The torsional energy (U torsion ) is a four-body term describeing the rotational 

barrier along a bond. This is usually implemented as a Fourier series: 

 Uω
torsion = Vn 1+ cos(nω −γ )( )

n
∑   (0.33) 

n controls the periodicity of the function, which typically ranges usually from 1 to 3.  The 

phase-shiftγ is often assigned 0 for odd n and π for even n to maintain achirality of the 

term 
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 For sp2-hybridized atoms, there is significant energetic penalty associated with 

moving the center atom away from the trigonal plane. This penalty is not fully captured 

by the torsional term and requires an additional out-of-plane bending energy term Uoop : 

 
Uχ

oop = aχ 2

Ud
oop = ad 2

  (0.34) 

The out-of-plane term can be a function of either an out-of-plane bending angle (χ) or a 

distance (d) to the trigonal plane formed by the three attached atoms. 

 Cross-term energy (Ucross-term ) function describes the coupling of the bonds, angles 

and torsions. The most commonly implemented term is stretch-bend coupling, but other 

cross-terms may also be used, depending on the force field model. 

 The van de Waals (vdW) term is used to describe the non-polar interactions 

between two non-bonded atoms. This energy function has the requirement to be repulsive 

at short distance, due to the explicit overlap of electron clouds, and asymptotically 

approach zero at long-range. There is also be a negative energy region surrounding the 

ideal vdW contact distance that accounts for dispersion attractions between atoms. One of 

the oldest functions for vdW interaction is the Lennard-Jones potential45: 

 Eij
LJ = ε

rij
0

rij

⎛

⎝⎜
⎞

⎠⎟

12

−
rij
0

rij

⎛

⎝⎜
⎞

⎠⎟

6⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (0.35) 

Alternative vdW functions also in use, such as the buffered 14-746 and the Buckingham 

type potentials47. 
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 Most standard force fields implement similar functions for the energy terms 

introduced thus far. The most important differentiation among the various models is the 

approach to describing electrostatic interactions. Force fields, such as CHARMM48, 

OPLS49, AMBER50 and GROMOS51 , use point partial charges to represent the electron 

distribution. These charges are often, but not necessarily, atom-centered. Fictitious charge 

sites can also be included at bonded centers or other off-atoms sites to improve the model 

accuracy. The interaction between two point partial charges (qi and qj) is described by a 

simple Coulomb potential: 

 Eij
elec =

qiqj
εrij

  (0.36) 

A more sophisticated model to describe the electrostatic potential around a molecule is to 

include contributions from higher order electric moments, such as dipole, quadrupole etc. 

These higher order moments are usually obtained by performing multipole analysis on 

MO wave functions derived from high-level QM calculations.52 Example of force fields 

that employ a multipole electrostatic model are AMOEBA53 and SIBFA54. 

 Another crucial aspect of electrostatic interaction is polarization. In traditional 

force fields, the coupling between the local environment and the charge/multipole model 

is neglected. Multi-body electrostatic contributions are not accounted for, which can be 

significant for polar molecules.55 A simple method to include polarization is by allowing 

partial charges to adjust to changes in molecular environment based on electronegativity 

equalization.56 However, this first approximation approach is unable to capture charge 

polarization on planar molecules when the electric field is perpendicular to the molecular 

plane. Drude oscillator methods, also known as “shell models”, have also been used to 
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account for polarization effects in force fields.57 Polarization is introduced by attaching 

massless Drude particles to atoms via harmonic springs, which are allowed to move in 

response to the electric field. Alternatively, one can compute the induced dipole moment 

( µi,α
ind ) explicitly in response to external field (Ei,α ): 

 µi,α
ind =α iEi,α   (0.37) 

where α i is the atomic polarizability.58 This is the model implemented in the AMOEBA 

force field.  

1.3.2 Molecular mechanics simulation techniques 

 Experimental measurement of an observable (O) of a molecular system is a time-

average value of that property. The instantaneous value of O depends on the momenta p 

and positions r of all particles. Thus the ensemble average of O is given by: 

 O = dpdrO(p,r)ρ(p,r)∫∫   (0.38) 

where ρ  is the probability of a system with momenta p and positions r. Therefore, one 

must sample the conformational space of the molecular system with the correct 

probability distribution in order to correlate computed properties with experimental 

measurements. This is especially important for complex systems with multiple local 

minima that are close in energy. For the canonical ensemble (constant number of particle, 

volume and temperature), ρ  is given by: 
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ρ(p,r) = 1

QNVT

e
−E (p,r )

kBT

QNVT = e
−A(p,r )

kBT

  (0.39) 

where kB  is the Boltzmann constant, E is the energy of the system, QNVT is the partition 

function and A is the Helmholtz free energy. 

 One method to sample the conformational space is through Metropolis Monte 

Carlo (MMC) simulation. A trial conformational or configurational move is generated 

along a Markov chain and the difference in energy between the new and old structures is 

weighted by the Boltzmann factor. The trial move is only accepted if a uniform random 

number on [0,1] is lower than the Boltzmann factor. Alternatively, one can perform 

molecular dynamics (MD) calculations to simulate the time-evolution of the molecular 

system. As described previously, the forces on an atom can be readily computed from the 

negative gradient of the force field energy. Assuming these forces, and the corresponding 

accelerations, are constant for a very small time period (approximatly 1fs), a new set of 

new positions and velocities can be computed from the original conformation to produce 

an MD step. This stepping procedure is continued to produce a full MD trajectory of the 

system across time. Both MMC and MD are widely used sampling methods. The 

advantage of MD is that time-dependent properties can be easily computed from MD 

trajectories whereas there is no time relationship between two trial moves in MMC. Both 

methods automatically generate conformational probability densities in accordance to 

Equation (0.39). Hence the ensemble average is simply the arithmetic mean of observable 

the O in the generated MMC Markov chain or the MD trajectory generated. 
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1.3.3 Force field for transition metal ions 

 A number of different MM models have been reported that describe TM-ligand 

interactions with varying degree of success. The simplest approach is fitting traditional 

force field terms such as bonds, angles and torsions to known properties obtained from 

experiments or QM calculations. However, the force field parameters obtained through 

this process generally have limited transferability and different parameters may become 

necessary for the same type of ligand depending on ligation geometry. For example, the 

d9 Cu2+L6 complex often has elongated axial ligands due to the Jahn-Teller distortion. 

This phenomenon is not well described if the same bond parameters are used for all the 

ligands.43 More importantly, standard angular potentials based on a Taylor expansion of a 

reference ligand-metal-ligand (L-M-L) values or a Fourier series are inappropriate for 

describing TM complexes. ML5 complexes such as Fe(CO)5 adopts the trigonal 

bipyramidal geometry, where the angles between ligands can be 90, 120 and 180 

degrees.59 Another example is [CuCl4]2-, for which both square-planar and tetrahedral 

structures exist in equilibrium. (see Section 1.1.2) 

 A more radical solution is to construct a “reactive” model that allows atoms to 

respond chemically to their environment by dynamically assigning bond orders and 

charges based on molecular geometries.60,61 Alternatively, there are “semi-classical” 

models that employ potential functions for TM ions derived from the valence bond (VB) 

theory35,62-65 or the angular overlap model (AOM)66 to supplement traditional force field 

energy terms. Models such as VALBOND67-70 are based on a simplified version of the 

VB theory, in which TM ions are treated as hypervalent resonance centers and L-M-L 

interactions are described by geometric overlap between sdn hybridized bonding metal-
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ligand orbitals. On the other hand, models proposed by Deeth, et al.71-73, Piquemal, et al 

74, and Carlsson, et al.75-78 are developed from the AOM and the ligand field (LF) effects 

are handled through explicit diagonalization of a perturbed d-orbital matrix due to the 

presence of ligands. These methods have demonstrated satisfactory agreements with 

experiments and with ab initio calculations when used to study a range of TM systems 

with different coordination geometries and ligation states.  

 The semi-classical force fields introduced thus far have focused on modeling the 

effects of local metal-ligand binding on the geometry of TM complexes. However, 

electrostatic interactions are also a major component of TM complex energetics. In most 

TM models, the electrostatic potential is not applied between metal and its ligands, which 

makes these inappropriate for study of ligand exchanges and other dynamic events. In 

addition, TM ions behave similarly to main group cations at distances beyond direct 

ligation, and polarization becomes an important contributing factor. Most semi-classical 

models developed for TM ions use a fixed charge model for electrostatic interactions, 

which is inadequate for treating systems with highly polar sites.79 The main motivation 

for our current work is an attempt to address these shortcomings. It has been shown that 

the AMOEBA force field has excellent performance for main group mono- and di-

cations80,81 and therefore provides an appropriate basis for modeling TM di-cations. 

1.4 Preliminary Investigations 

 To demonstrate the importance of d-orbital electronic effect on the coordination 

chemistry of TM complexes, we computed the energies of square-planar and tetrahedral 

[M(NH3)4]2+ complexes at varying metal-ligand distances using MP2/6-311G(d,p) 82 QM 
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methodology. The metal species M are dications of chromium, manganese, iron, cobalt, 

nickel, copper and zinc. The metal spin states were chosen to give the lowest QM 

energies. The differences in potential energy between the two ligand geometries are 

plotted in Figure 1.6. 

 It is immediately clear that Cr2+, Ni2+ and Cu2+ adopt a square-planar geometry 

when ligated to NH3 while other third-row TM di-cations prefers the tetrahedral geometry. 

Since all these ions have formal +2 charges and have similar atomic radii,83 standard 

force field treatment of ions will not be able to correctly describe these geometric 

preferences.  Another consequence of the d-orbital splitting arises in the subtlety of spin 

states. For example, the d6 Fe2+ complex at first glance should be low-spin, in which all 

three non-bonding d-block orbitals of the square-planar geometry are doubly occupied. 

(Section 1.1.2) However, QM calculations reveal that the high-spin tetrahedral structure 

is favored, indicating that the exchange energy has compensated for the ligand field effect. 
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1.5 Figures 

 

 

 

 

 

 

 

Figure 1.1 Graphical representations of ground state d-orbitals 
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Figure 1.2 Illustration of sample σ- (left and middle) and π- (right) bonds 
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Figure 1.3 MO diagram demonstrating the d-orbital splitting for octahedral ML6 complex 
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Figure 1.4 MO diagram showing the relationship between ML4 orbitals (right) and ML6 
orbitals (left) 
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Figure 1.5 MO diagram showing the relationship between square-planar ML4 orbitals 
(left) and tetrahedral ML4 orbitals (right) 
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Figure 1.6 Energy difference between square-planar and tetrahedral tetra-aqua 
[M(NH3)4]2+ complexes computed using MP2/6-311G(d,p) at varying metal-ligand 
separations; energy calculated by subtracting the potentials of tetrahedral from that of 
square-planar structures 
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1.6 Tables 

Table 1.1 Character table for the Oh point group 

 

  

Oh E 8C3 6C2’ 6C4 3C2 i 8S6 6σd 6S4 3σh   

A1g 1 1 1 1 1 1 1 1 1 1  x2 + y2 + z2 

A2g 1 1 -1 -1 1 1 1 -1 -1 -1   

Eg 2 -1 0 0 2 2 -1 0 0 2  (z2, x2 – y2) 

T1g 3 0 -1 1 -1 3 0 -1 1 -1   

T2g 3 0 1 -1 -1 3 0 1 -1 -1  (xy, xz, yz) 

A1u 1 1 1 1 1 -1 -1 -1 -1 -1   

A2u 1 1 -1 -1 1 -1 -1 1 1 -1   

Eu 2 -1 0 0 2 -2 1 0 0 -2   

T1u 3 0 -1 1 -1 -3 0 1 -1 1 (x, y, z)  

T2u 3 0 1 -1 -1 -3 0 -1 1 1   
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Table 1.2 Character table for the Td point group 

  
Td E 8C3 3C2 6S4 6σd   

A1 1 1 1 1 1  x2 + y2 + z2 

A2 1 1 1 -1 -1   

E 2 -1 2 0 0  (2z2 – x2 – y2, x2 – y2) 

T1 3 0 -1 1 -1   

T2 3 0 -1 -1 1 (x, y, z) (xy, xz, yz) 
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Chapter 2. A Valence Bond Theory in the AMOEBA 

Polarizable Force Field 
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In this chapter, a MM model is developed for aqueous Ni2+, Cu2+ and Zn2+ ions 

based on VB theory in conjunction with the AMOEBA (Atomic Multipole Optimized 

Energetics for Biomolecular Applications) polarizable force field.58 The development of 

VALBOND by Landis, et al. suggests that VB theory may be incorporated into MM 

through relatively simple algebraic functions that are computationally efficient. In this 

initial investigation, we limit our scope to Ni2+, Cu2+ and Zn2+ in order to reduce the 

number of spin states and the complexity of model development. Unless otherwise stated, 

we constrain discussions in this chapter on Ni2+ ion to its low-spin species. Parameters 

are determined against energies calculated with QM methods for metal-water complexes 

in the gas phase and validated against experimental data for the aqueous ions. 

Additionally, previous work shows that the AMOEBA force field provides a satisfactory 

description for the aqueous Zn2+ ion.84 We have pursued further investigation to see if 

modeling the covalency explicitly between water ligands and Zn2+ can improve the 

accuracy of the existing AMOEBA model. In the following sections, we present the 

AMOEBA-VB framework for Ni2+, Cu2+ and Zn2+ ions and document the procedures for 

obtaining force field parameters. Results from energy computations for gas phase ion-

water complexes and molecular dynamics simulations for aqueous ion solutions are 

reported and compared against QM and previously published data. 

2.1 Methodology 

2.1.1 AMOEBA-VB framework 

The general interatomic AMOEBA potential energy can be expressed as: 

  (1.1) UAMOEBA =Ubond +Uangle +Ub-a +Uoop +U torsion +UvdW +Uele
perm +Uele

ind
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where the first five terms represent bond stretch, angle bend, bond-angle cross-term, out-

of-plane bend and torsion potentials used to describe local valence contributions. The last 

three terms handle nonbonded interactions, including the van de Waals (vdW), permanent 

electrostatic and induced electrostatic potentials.58,85,86 Additional potential energy terms 

for TM centers based on VB theory are added to the overall energy: 

  (1.2) 

In the context of aqueous TM ions, only the nonbonded interactions from the standard 

AMOEBA model are applied between the metal center and water molecules. 

2.1.2 Nonbonded intermolecular potentials 

 The basic AMOEBA potential terms use energy expressions from previous 

published reports.58,85,86 A buffered 14-7 potential 46 is used to model vdW interactions, 

and takes the following form: 

  (1.3) 

where , and Rij represents the separation between atoms i and j. The values 

of n, m, δ and γ are set to 14, 7, 0.07 and 0.12 respectively, while and  correspond to 

the potential energy well-depth and minimum energy distance. For heterogeneous atom 

pairs, mixing rules are applied to determine and : 

U total =UAMOEBA +UVB

 

Uij
vdW = ij

1+δ
ρij +δ

⎛

⎝⎜
⎞

⎠⎟

n−m
1+ γ
ρij
m + γ

− 2
⎛

⎝⎜
⎞

⎠⎟

ρij = Rij / R
0
ij

 
ij R0ij
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  (1.4) 

 The electrostatic potential is described as having a permanent and an induced 

component. The permanent electrostatic component is represented by atom-centered 

monopole, dipole and quadruple moments. The parameters are determined via Stone’s 

distributed multipole analysis87 followed by refinement against QM-derived electrostatic 

potential maps. Polarization is accounted for via self-consistent induced dipoles 

computed from: 

  (1.5) 

where αi is the atomic polarizability and is the total electric field generated by 

permanent multipoles and induced dipoles. A Thole damping factor is applied at short 

interaction distances, corresponding to use of a smeared charge representation that takes 

the form: 

  (1.6) 

where a is a dimensionless factor controlling the strength of damping and 

 is the effective separation between polarizable sites i and j. The Thole 

mechanism serves to avoid the well-known polarization catastrophe at small 

separations,88 and yields reasonable anisotropic molecular polarizabilities starting from 

isotropic atomic polarizability values.86 

 

Rij
0 =

(Rii
0 )3 + (Rjj

0 )3
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4iijj

(ii
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2.1.3 Water model 

The AMOEBA water model has been previously reported,85 and tested in a 

variety of different environments.89 The standard intermolecular and intramolecular 

energy terms for water are retained in the AMOEBA-VB model. The water force field 

parameters for the nonbonded and valence potentials are reported in Table 2.1 and Table 

2.2, respectively. 

2.1.4 Transition metal ion model 

 In addition to the usual AMOEBA vdW and electrostatic potentials, VB terms are 

applied between each TM ion and ligand water oxygen atom, as water molecules interact 

with TM ions predominately through lone pair p-orbital electrons on the oxygen atoms. 

As a first approximation, a TM-water complex is modeled by its principle field, with 

water interacting with TM ions through σ bonding only.14 The VB component is 

expressed as: 

  (1.7) 

where the total VB potential is the summation of individual energy contributions from the 

resonance structures corresponding to the TM complex. Wk is an empirical function that 

mimics the weighting for resonance structure k in natural resonance theory.35 

For Ni2+, Cu2+ and Zn2+ water complexes, the principle resonance structure 

corresponds to the Lewis structure, as shown in Figure 2.1a, where the TM interacts with 

water molecules via ionic interactions. The intermolecular energy of the principle 

UVB = WkUresonance,k
k

resonance

∑
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resonance structure corresponds to the regular AMOEBA non-bonded potentials. The d-

electron effect can then be explained by considering minor non-Lewis resonance species 

where 3-center-4-electron (3c4e) bonds are formed between the TM center and ligand 

atoms.35 This represents the donation of electron density from oxygen to the metal, and 

delocalized ionic-covalent bonding stabilizes the hypervalent TM center. Using this 

description, the molecular orbitals of Ni2+ and Cu2+-water complexes can be decomposed 

into the contributions from Lewis and non-Lewis resonance structures. Note that using a 

single 3c4e bond per resonance is only valid for low-spin Ni2+, which has an empty 

instead of two partially filled d-orbitals. Its 3c4e bonds have predominantly d character 

since the Ni2+ and Cu2+ 3d valence orbitals can accept electron density more readily than 

the 4s orbital. On the other hand, the 3d orbitals of Zn2+ are fully filled and the resonance 

hybrids are mainly due to overlap with the Zn2+ 4s orbital. Hence both Ni2+ and Cu2+ 

have greater resonance stabilization energy than Zn2+. The overall hypervalent resonance 

scheme for the TM ions is shown in Figure 2.1b. The angle formed by a 3c4e bond will 

be referred to henceforth as the “resonance angle”. 

The intermolecular energy between a TM ion and ligand water molecules for an 

individual resonance construct k can be expressed as: 

  (1.8) 

where  and  are the two bonding terms and one angular term used to 

describe a single 3c4e bond. Since the number of resonance structures is equal to the 

number of angles formed by the TM-water complex, the overall energy contribution from 

the VB component becomes: 

Uresonance,k =UVB-bond,k +UVB-angle,k

UVB-bond,k UVB-angle,k
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  (1.9) 

 VB angular potential is based on Pauling’s principle of angular overlap for a pair 

of spmdn hybrid orbitals.62,63,65 The overlap integral associated with the presence of two 

identical non-orthogonal spmdn bonding orbitals is: 

 
Δ =σ 2 +π 2 cosθ + δ 2

2
3cos2θ −1( )

σ 2 = 1
1+m + n

, π 2 = m
1+m + n

, δ 2 = n
1+m + n

 (1.10) 

where is the angle between the orbitals. The terms σ 2 ,π 2  and δ 2  represent the s, p and 

d contributions to the bond, respectively. Following Landis,68 we construct the angular 

potential for a 3c4e bond as: 

 
UVB-angle,k = KVB-angle,k 1− Δ(θk +π )

2( ) FVB-angle,k ,i
i

2

∏
FVB-angle,k ,i = e

−α k ,irk ,i
2

 (1.11) 

where  is a constant scaling factor for angle k. The bond order term in Landis’ 

formulation is folded into in our implementation.  We introduce an additional 

scaling factor, FVB-angle,k ,i , as a function of the metal-ligand distance rk,i in bond i, and an 

empirical parameter α k ,i . This factor is necessary to describe the overlap drop-off with 

increasing metal-ligand distance. The overall energy term has a linear geometrical 

preference that is suitable for describing 3c4e bonding involving Ni2+ and Cu2+. The 

angular potential is not applicable to Zn2+ since the interacting 4s orbital is spherically 

symmetric. Previous data has shown AMOEBA satisfactorily describes aqueous Zn2+ 

UVB = Wk (UVB-bond,k +UVB-angle,k )
k

angles

∑

θ

KVB-angle,k

KVB-angle,k
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ions without the addition of a potential term to account for d-electron effects.84 However, 

we retain the bonding component for Zn2+ to investigate its impact on the AMOEBA 

model. Note the result from overlapping hybrid orbitals is destabilizing and therefore the 

VB angular term is always positive. A Gaussian-like function is adapted for the VB 

bonding potential: 

 
UVB-bond,k = − KVB-bond,kFVB-bond,k ,i

i

2

∑
FVB-bond,k ,i = e

−βk ,irk ,i
2

 (1.12)
 

where the index i sums over the two ligands in a single 3c4e hypervalent bond.  

is the scaling parameter for bond i of resonance angle k. In contrast to the angular term, 

the VB bonding contribution is purely stabilizing. Additionally, we propose an empirical 

resonance weighting function for resonance structure k that is based on metal-ligand 

distances: 

 
Wk = Fresonance,k ,i cl + Fresonance,l , j

j

2

∏
⎛
⎝⎜

⎞
⎠⎟l

angles

∑
i

2

∏

Fresonance,k ,i = e
−γ k ,irk ,i

2

, Fresonance,l , j = e
−γ l , jrl , j

2

 (1.13) 

where cl is a parameter for resonance angle l. The index l runs through all resonance 

angles including k. The subscripts i and j denote the two metal-ligand pairs in resonance 

angles k and l, respectively. According to this formulation, the weighting for resonance 

construct k depends on the positions of all water molecules in the TM complex. Note that 

although the resonance weight function depends on the number of ligands, it is general 

for all coordination number and its value transitions smoothly between them.  

KVB-bond,k ,i
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Finally, it has been shown that Cu2+ complexes in octahedral geometries exhibit 

Jahn-Teller type distortions.15,90,91 Since the simplified AMOEBA-VB model presented 

does not compensate for this effect explicitly, we explored the effect of adding a 

harmonic first order component92 where the Jahn-Teller stabilization energy arises from 

the Qθ distortion mode. The exact formulation used is: 

  (1.14) 

where r is the metal-ligand distance, r0 is the average bonding distance of the TM 

complex, and Δ is an empirical value to scale the strength of the Jahn-Teller effect.  

and are applied to the in-plane and axial ligand molecules respectively.  

2.1.5 Parameterization and validation 

 The parameters for the AMOEBA-VB framework are based on fitting MM energy 

values to those obtained by ab initio methods for structural variants derived from 

common ligation geometries of TM complexes, including square-planar, tetrahedral and 

octahedral. These structures are generated in such way that they represent easily 

accessible states during computational simulations. All electronic structure calculations 

were performed with the Gaussian 09 package.93 QM geometry optimizations were 

carried out with B3LYP21,23 DFT calculations using the 6-311G(d,p)82 basis set. Single-

point energy were computed via MP2/aug-cc-pVTZ 94 on main group elements and 

MP2/cc-pVTZ 95 for the TM ions. An SCF convergence criterion of 10-9 a.u. was 

imposed, and a Fermi-broadening SCF method96 was used for Cu2+ complexes to 

improve convergence stability. The AMOEBA-VB potentials and Cartesian derivatives 

EJT
xy = −(r − r0 )Δ / r0

EJT
z = −2(r − r0 )Δ / r0

EJT
xy

EJT
z
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were implemented in the TINKER58 molecular modeling package used for all MM 

computations.  

The [M(H2O)4]2+ and  [M(H2O)6]2+ gas phase complexes were optimized using 

QM methods with angular constraints to yield idealized tetrahedral, square-planar and 

octahedral ligation geometries. Intramolecular optimization within water molecules was 

allowed. These structures serve as a starting point for generating further variations in 

geometry designed to assess different aspects of the MM model. Complex energies 

computed by AMOEBA were manually fit to QM data from corresponding procedures 

using a common set of parameters for a metal ion interacting with a single ligand 

molecule. The standard AMOEBA parameters were optimized, and then fixed in value, 

prior to fitting the VB terms. Results with the Jahn-Teller distortion term were also 

computed when applicable. [Ni(H2O)6]2+ is not included in this initial model development 

as it is a high-spin species that would necessitate a different resonance formulation. As a 

result, aqueous simulations for the Ni2+ ion were not performed because it has been 

suggested the Ni2+ first solvation shell consist of six water molecules.97 

 Bond stretching.  Starting from optimized structures with idealized bonding 

geometries for square-planar [Ni(H2O)4]2+ and [Cu(H2O)4]2+, tetrahedral [Zn(H2O)4]2+ 

and octahedral [M(H2O)6]2+, single point energy calculations were performed with both 

QM and MM methods and plotted as a function of varying metal-oxygen distance (see 

Figure 2.2a). Water molecules were held rigid during this procedure. The protocol was 

designed to test the accuracy of the  MM model in describing bonding potentials for ideal 

ligation geometries. 
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 Hypervalent effect.  Without accounting for the resonance effect due to the 

hypervalent center, gas phase metal-water complexes adopt geometries that minimize 

ligand-ligand repulsion.43 Hence main group tetra-aqua complexes favor a tetrahedral 

geometry over the corresponding square-planar configuration. The presence of strong 

3c4e resonance hybrids for Ni2+ and Cu2+ is predicted to stabilize the square-planar 

geometry according to VB theory. On the other hand, the lack of an angular contribution 

from 3c4e bonding for Zn2+ leads it to prefer a tetrahedral water complex. Therefore, the 

energetic difference between tetrahedral and square-planar structures provide a direct 

indication of the magnitude of the hypervalent effect. Single point energies were 

computed by QM and MM methods for [M(H2O)4]2+ in both square-planar and 

tetrahedral coordination, and at varying metal-oxygen distances. All water molecules 

were kept equidistance from the TM center for each data point (see Figure 2.2b). Energy 

differences between the two geometries, after removing the water-water interaction 

energy in the absence of a metal ion, are calculated and plotted with respect to the metal-

oxygen separation. 

 Random perturbation.  We use a series of perturbed metal-ligand structures to 

gain insight into whether the MM model can reproduce the ab initio energy surface near 

the optimized structures. Small random perturbations were introduced to optimized ideal 

geometries by changing the metal-ligand distances and rotating the ligand around the 

metal-ligand vector and two orthogonal axes (Figure 2.2c). The maximum perturbation 

from the optimized structure was 0.2Å for metal-ligand distance and 10 degrees for each 

rotation. Structures containing ligand-ligand contact distances less than 2.5Å were 

discarded, and a total of 100 random complex geometries were generated. The energy of 
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each complex was computed by QM, and compared against values obtained from MM 

models. Structures with QM energies more than 15 kcal/mol higher than that of the 

idealized geometry were discarded since these high-energy structures are not readily 

accessible during routine MD simulations.  

 Molecular dynamics.  Molecular dynamics simulations were performed for both 

aqueous Cu+2 and Zn+2 ions using the parameters derived above. A total of 8ns of 

canonical ensemble MD trajectory at 298K was collected for a single TM ion and 214 

water molecules in a 18.6216 Å cubic box. Periodic boundary conditions were applied 

and particle-mesh Ewald summation was utilized to include long-range electrostatic 

interactions.98,99 The convergence criterion for self-consistent dipole polarization was set 

to a 0.01 Debye RMS change in atomic induced dipole moments. The correlation 

function, solvation shell properties and coordination number of each TM ion was 

computed from the trajectories and compared to published data. 

2.2 Results and Discussions 

2.2.1 Energy components 

 The values for parameters obtained from the fitting procedures are shown in Table 

2.3. The TM ions are assigned only a +2 permanent charge; it does not make sense for 

TM ions to possess higher-order multipoles in the absence of an external electric field. 

The polarizability and Thole damping factor are similar to those of main group dications 

in previously published studies.54,81 The vdW radii follow the general trend across third 

row transition metals in that Zn2+ ≥ Cu2+ ≥ Ni2+.83 
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The Ni2+ and Cu2+ VB parameters are obtained with the 3c4e bond hybridization 

set to 10% s and 90% d (corresponding to σ 2= 0.1, π 2 =0 and δ 2 = 0.9 in Equation 

(1.10)). We obtained this empirical ratio by recognizing that oxygen lone-pair electrons 

predominately interact with d orbitals of the Ni2+ and Cu2+ ions, which have d8 and d9 

configuration respectively in their ground states. A small amount of s hybridization is 

modeled to take into account the effect of d-s mixing. Figure 2.3 shows the overall shape 

of the VB angular potential, which is similar to the corresponding function derived by 

Carlsson, et al.75,76 from AOM considerations. The main features of the potential function 

are the two local minima at ligand-metal-ligand angles of 180° and 90°, allowing tetra-

aqua Ni2+ and Cu2+ complexes to adopt the preferred square-planar geometry.  

The QM optimized metal-ligand distances for tetra- and hexa-aqua TM complexes 

are reported in Table 2.4. For tetra-aqua complexes, all four water molecules remain 

equidistance from the TM center, after bond relaxation under symmetry angular 

constraints. However, the axial and basal water molecules for hexa-aqua Cu2+ complexes 

adopt very different ligation distances as a result of Jahn-Teller distortion.91 The axial 

water molecules in [Cu(H2O)6]2+ are significantly elongated, and this presents a challenge 

for MM models lacking separate parameters for axial and basal water molecules as 

shown in the results below. The AMOEBA-VB energy breakdown for these optimized 

geometries is presented in Table 2.5. Note the VB bonding and angular components are 

reported in conjunction with resonance weighting as this reflects the final energy 

contributions from both 3c4e interactions and resonance as indicated in Equation (1.9). In 

terms of relative strength of the various energy components, the permanent electrostatic 
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interaction makes the largest individual contribution, followed in order by the 

polarization, vdW and VB potential energies. 

2.2.2 Bonding potential 

  Bonding potential energies computed by QM and MM methods are shown in 

Figure 2.4. A single bond potential is constructed for tetra-aqua complexes since the 

water molecules are equidistant from the metal. However, axial and basal water 

molecules for octahedral complexes are plotted separately due to their differences in 

bonding distances and energies. In the cases of [Ni(H2O)4]2+ and [Cu(H2O)4]2+, both the 

AMOEBA and the AMOEBA-VB models arrive at minimum energy distances consistent 

with QM values, but the inclusion of the VB components produces a stronger binding 

interaction that better reflects QM results. For [Cu(H2O)6]2+, both MM models produce 

the correct bonding geometry for basal water molecules, with AMOEBA-VB again 

producing a more accurate interaction energy. Neither model was able to reproduce the 

full extent of the elongation of axial ligand to metal distances, resulting in 2.07Å and 

2.09Å for AMOEBA and AMOEBA-VB respectively versus 2.33Å for QM. The 

interactions between axial water molecules and the Cu2+ ion are also too strong (-23.07 

kcal/mol for AMOEBA-VB, -24.23 kcal/mol for AMOEBA and -18.07 kcal/mol for QM), 

in general agreement with the distance discrepancies. Adding an explicit Jahn-Teller 

distortion term does not dramatically improve the ligand binding geometry (axial Cu-O 

distance at 2.12Å) but it does produce a more accurate binding energy (-17.94 kcal/mol). 

Results from the MM model with and without the VB term do not exhibit a significant 

difference for tetra- and hexa-aqua Zn2+ complexes. For Zn2+, both MM methods produce 

bonding potentials in agreement with QM calculations. 
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2.2.3 Hypervalent effect 

 The energy difference between gas phase square-planar and tetrahedral tetra-aqua 

complexes are plotted as a function of metal-ligand distance in Figure 2.5. Note that 

water-water interactions are subtracted to isolate the energetics between TM and water 

molecules. It is apparent from the figure that in the absence of a VB component, 

AMOEBA produces the wrong geometrical preference for [Ni(H2O)4]2+ and [Cu(H2O)4]2+. 

The AMOEBA-VB framework is able to capture the correct trend of the hypervalent 

effect, even though the computed energy difference is still relatively small compared to 

QM data. As our final proposed model, we have settled on a set of parameters producing 

the most balanced performance across all aspects of the parameterization. Figure 2.5 also 

suggests the VB angular potential is not required to obtain the optimal tetrahedral 

geometry for [Zn(H2O)4]2+ complex. 

2.2.4 Energy surface 

 To help assess the accuracy of the MM energy surface, we compare in Figure 2.6 

the energies computed using ab initio methods with those from MM for perturbed 

structures around idealized geometries. All energy values presented are relative to the 

energy of idealized coordination structures. Results obtained with the AMOEBA-VB 

framework show there is a dramatic 60% and 18-19% reduction in RMS deviation from 

QM values when compared with AMOEBA-only data for Ni2+ and Cu2+ complexes 

respectively. Addition of the Jahn-Teller distortion term does not materially change the 

results. On the other hand, the addition of the VB term to Zn2+ does not have a 

meaningful impact on correlation between QM and MM results. For these species, both 
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AMOEBA and AMOEBA-VB are able to generate accurate relative potential energies in 

comparison with QM data.  

2.2.5 Ions in aqueous solution 

 A series of canonical ensemble molecular dynamic simulations were performed 

for aqueous solutions containing a single Cu2+ or Zn2+ ion. Calculation for Cu2+ used the 

AMOEBA-VB model, but without application of the Jahn-Teller distortion term. 

Omission of the Jahn-Teller was necessary during MD because the simple first harmonic 

potential function does not provide a smooth energy transition when axial and basal 

ligands rearrange during the course of a simulation. The metal-oxygen correlation 

function and radial distribution function for water surrounding the TM ion is presented in 

Figure 2.7. The first solvation shell for both TM ions is found to contain six water 

molecules and the ligation geometries, along with data from previous studies, are 

reported in Table 2.6. Six-membered ligation states have been reported in the literature 

for Zn2+ 97,100,101 and this agrees with our observation. However, there is a lack of general 

consensus regarding the optimal ligation geometry of aqueous Cu2+, and a variety of first 

solvation shell occupancies have been reported.102,103 A solvation number of 5-6 has been 

suggested for Cu2+ from numerous experimental and computational studies. 97,104-106 The 

5-coordinate structure is generally attributed to a distortion from octahedral geometry due 

to the Jahn-Teller effect. We did not observe the “dual-peak” 6-coordinate Cu-O radial 

distribution obtained from simulation with the ReaxFF model.61 

2.3 Conclusions 
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The AMOEBA-VB framework presents a foundation upon which a generalized 

transition metal force field can be built. The appeal of a MM model based on VB is that it 

is physically intuitive and avoids differential treatment of ligands of the same type based 

solely on coordination geometry. The results presented show addition of VB components 

to AMOEBA improves energetic accuracy when compared to QM data, while producing 

reasonable simulation results in aqueous solution. It is also clear that AMOEBA can 

satisfactorily describe the characteristics for aqueous Zn2+ without explicit modeling of 

the interaction between oxygen lone-pair electrons and TM orbitals. 
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2.4 Figures 

 

Figure 2.1 Resonance scheme for [M(H2O)4]2+ complex where M = Cu or Zn. a) Principle 
resonance that corresponds to the Lewis structure of the complex. b) Non-Lewis minor 
hypervalent resonance structures with a single 3c4e bond per resonance; the number of 
such resonance structures is equal toC2

n where n is the number of ligands. 
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Figure 2.2 Methods for generating TM complex structural variations from idealized 
geometries used in AMOEBA-VB and QM gas phase calculations. a) a single TM-ligand 
distance is varied while other ligands are fixed at their QM-optimized coordinates. b) all 
TM-ligand distances are changed simultaneously from the optimized geometry and each 
ligand remains equidistance to the metal center during the process. c) perturbations are 
introduced to TM-water complexes by randomly changing the metal-ligand distances and 
rotating around the local metal-ligand vector and two axes orthogonal to the vector. 
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Figure 2.3 Schematic plot of VB angular potential for each 3c4e bond based on 10% s 
and 90% d hybridization. 
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Figure 2.4 Comparison of bond potentials between QM and MM methods; the zero 
potential is set as the energy of a complex at 5Å metal-oxygen separation in order to 
approximate dissociation; see supporting information Table 1 and 2 for numerical values. 
Abbreviations: sq = square-planar, te = tetrahedral, oct = octahedral, ax = axial, bas = 
basal, JT = Jahn-Teller distortion term.  
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Figure 2.5 Energy difference between square-planar and tetrahedral tetra-aqua TM 
complexes; energy calculated by: Usq −Usq/empty( )− U te −U te/empty( ) ; data points from 
AMOEBA and AMOEBA-VB methods for [Zn(H2O)4]2+ overlap each other since the 
differences in results are very small. 
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Figure 2.6a Comparisons of QM and MM energies for perturbed aqua Ni2+ and Cu2+ 
structures; for [M(H2O)4]2+, results without VB components are on the left and that with 
VB terms are on the right; for [Cu(H2O)6]2+, results without VB term, with VB term, with 
VB and Jahn-Teller distortion terms are plotted in the left, middle and right panel 
respectively. 
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Figure 2.6b Comparisons of QM and MM energies for perturbed aqua Zn2+ structures; 
results without VB components are on the left and those with VB terms are on the right. 
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Figure 2.7 Metal-oxygen correlation function and radial distribution of water molecules 
surrounding a TM center (insert). The dashed line corresponds to a first solvation shell 
with six water molecules. 
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2.5 Tables 

Table 2.1 Intermolecular (vdW and electrostatic) potential parameters for AMOEBA 

water; *M=[q,µ1,µ2,µ3,Q11,Q12,...,Q33]T. 

 

 

 

 

 

 

 

 

 

  
(kcal/mol) 

R0 
(Å) 

M*  
(a.u.) 

 
(Å3) 

a 

O 0.1100 3.405  0.837 0.39 

H 0.0135 2.655  0.496 0.39 

  α

 

−0.51966 
0.00000 0.00000 −0.14279 
0.37928 0.00000 0.00000 
0.00000 −0.41809 0.00000 
0.00000 0.00000 0.03881

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

0.25983 
−0.03859 0.00000 −0.05818 
−0.03673 0.00000 −0.00203 
0.00000 −0.10739 0.00000 

−0.00203 0.00000 0.14412

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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Table 2.2 Intramolecular potential parameters for AMOEBA water. 

  

Potential Force Constant Ideal Length/Angle 

Bond Stretching Kb = 529.6 kcal/mol/Å2 b0 = 0.9572 Å 

Angle Bending Kθ = 34.05 kcal/mol/radian2 θ0 = 108.5˚ 

Urey-Bradley Kl  = 38.25 kcal/mol/Å2 l0 = 1.5537 Å (H...H) 
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Table 2.3 Force field parameters for TM ions; the second row for each TM ion represents 

values fitted without VB component; *TM ions are assigned only permanent monopole 

equal to their formal charge; #only applied to octahedral complexes. 

 vdW Electrostatics VB-bond VB-angle Resonance Jahn-Teller 

    R0  M* a α  KVB-bond  aVB-bond  KVB-angle  aVB-angle  ares  bres  Δ# 

Ni2+ 
0.34 2.88 2 0.16 0.05 1.820 0.27 1.625 0.24 0.39 140.0 -- 

0.15 2.80 2 0.18 0.19 -- -- -- -- -- -- -- 

Cu2+ 
0.24 2.88 2 0.16 0.12 5.49 0.20 9.01 0.22 0.22 2.00 0.40 

0.24 2.88 2 0.16 0.12 -- -- -- -- -- -- -- 

Zn2+ 
0.34 2.90 2 0.16 0.12 0.20 0.30 -- -- 0.30 10.00 -- 

0.34 2.90 2 0.16 0.12 -- -- -- -- -- -- -- 
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Table 2.4 Metal-ligand distances in B3LYP/6-311G(1d,1p) optimized geometries for 

tetra- and hexa-aqua Ni2+, Cu2+ and Zn2+ gas phase complexes. 

 

  

[Ni(H2O)4]2+ (sq) 4 × 1.91Å 

[Cu(H2O)4]2+ (sq) 4 × 1.93Å 

[Zn(H2O)4]2+ (te) 4 × 1.98Å 

[Cu(H2O)6]2+ (oct) 4 × 2.03Å + 2 × 2.33Å 

[Zn(H2O)6]2+ (oct) 4 × 2.10Å + 2 × 2.16Å 
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Table 2.5 AMOEBA-VB energy breakdown for QM optimized complex geometries; 

Energy values are in kcal/mol; Abbreviations: sq = square planar, te = tetrahedral, oct  = 

octahedral. 

 

 

 

 

 

 

 

 [Ni(H2O)4]2+ 

(sq) 

 [Cu(H2O)4]2+ 

(sq) 

[Zn(H2O)4]2+ 

(te) 

[Cu(H2O)6]2+ 

(oct) 

 [Zn(H2O)6]2+ 

(oct) 

 0.6254 1.5069 0.5574 0.5539 0.5469 

 0.1112 2.3861 0.1349 0.4740 0.4196 

 0.0023 0.2910 0.0002 0.1013 0.0363 

 108.1895 79.5473 79.3527 60.5484 56.7608 

 -228.4007 -226.2327 -218.6961 -271.6602 -266.6295 

 -120.6357 -107.7846 -111.7536 -97.6227 -91.7410 

 -66.1641 -17.5323 -0.3736 -36.7016 -0.5242 

 38.5616 14.9848 -- 36.8102 -- 

Ubond

Uangle

Ub-a

UvdW

U perm
ele

U ind
ele

WUVB-bond

WUVB-angle
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Table 2.6 Metal-oxygen coordination for the first solvation shell of aqueous TM ions; 

MD results for present work are taken from the first peak of M-O correlation function. 

 

  

 Method 1st solvation shell M-O 

coordination number 

 and geometry 

Reference 

Cu2+ MD (AMOEBA-VB) 6 × 2.005 Present work 

 MD (REAX-FF) 4 × 1.94 + 2 × 2.27 61 

 Neutron diffraction 6 × 1.97 107 

 Neutron diffraction 5 × 1.96 105 

 EXAFS 4 × 1.96 + 2 × 2.60 108 

 EXAFS 4 × 2.04 + 2 × 2.29 109 

 Car-Parrinello MD 5 × 1.96 105 

 Car-Parrinello MD 4 × 2.00 + 1 × 2.45 110 

Zn2+ MD 6 × 2.055 Present work 

 X-Ray diffraction 6 × 2.04 100  

 B3LYP/MD 6 × 2.05 101 
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Chapter 3. An Angular Overlap Model in the AMOEBA 

Polarizable Force Field 
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 In this chapter, we present an AOM for Cu2+ ion in the AMOEBA polarizable 

force field. In order to demonstrate the extensibility of the AOM approach, we study the 

accuracy of AMOEBA-AOM for both aqueous Cu2+ ion and type 1 blue copper (T1Cu) 

proteins. Blue copper proteins, or cupredoxins, are electron transport proteins that shuttle 

electrons from donors to acceptors in bacteria and plants. This process takes advantage of 

the redox potential of Cu2+ and Cu+ ions. Specifically in this study, plastocyanin (PDB: 

1AG6)111 and azurin (PDB: 1DYZ)112 T1Cu proteins are chosen as validation targets 

because they are well-studied systems113-116 with binding sites that involve most of the 

common ligands for Cu2+ ion found in biomolecules. In addition, high-resolution X-ray 

crystal structures are available for both of these proteins. It has been suggested that the 

electrostatic interactions are responsible for long-range molecular recognition of T1Cu 

proteins and the hydrophobic pocket near the copper binding site contributes to the 

precise docking of binding partners.113 Therefore it is of interesting to apply a force field 

model describing both the local coordination geometry and electrostatic properties of the 

copper binding sites when studying these proteins. 

 AMOEBA-AOM force field parameters are determined against a range of gas 

phase QM calculations on metal complexes and validated against experimental data. In 

developing parameters for T1Cu proteins, small model fragments representing for protein 

sidechains and backbones are used in the QM-based parameterization process. Energy 

evaluations on gas phase metal complexes, as well as results from MD simulations of 

aqueous Cu2+ ion and T1Cu proteins are reported. 

3.1 Methodology 
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3.1.1 AMOEBA-AOM framework 

 For a TM system, the total potential for the AMOEBA-AOM can be expressed as 

a sum of the general AMOEBA potential and the AOM energy terms specific for TM 

ions: 

   (2.1) 

where 

   (2.2) 

The first five terms of Equation (2.2) are valence contributions representing bond stretch, 

angle bend, bond-angle cross-term, out-of-plane bond and torsional rotation respectively. 

The last three terms are nonbonded intermolecular energy terms, including the van de 

Waals (vdW), permanent electrostatic and induced electrostatic potentials.58,85,86 

3.1.2 AMOEBA potentials 

 The details of the AMOEBA model have been previously reported. 58,85,86 For TM 

complexes, only the nonbonded energy terms are applied between the metal and its 

ligands. This is similar to the treatment of other main group cations with the exception 

that AOM bonding terms are used between metal ions and the atoms that are directly 

ligated in place of the normal vdW terms. The vdW interactions takes the form of a 

buffered 14-7 potential as described by Halgren46: 

   (2.3) 

UTOTAL =UAMOEBA +UAOM

UAMOEBA =Ubond +Uangle +Ub-a +Uoop +U torsion +UvdW +Uele
perm +Uele

ind

 

Uij
vdW = ij

1+δ
ρij +δ

⎛

⎝⎜
⎞

⎠⎟

n−m
1+ γ
ρij
m + γ

− 2
⎛

⎝⎜
⎞

⎠⎟
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where , n = 14, m = 7, δ  = 0.07 and γ  = 0.12. ,  and  represent the 

potential energy well-depth, minimum energy distance and the separation between atoms 

i and j respectively. Mixing rules are applied to and for heterogeneous atom pairs: 

   (2.4) 

   (2.5) 

As described below, for some ligand atom types,  is dynamically reduced via a cubic 

spline that is a function of ligand atom distances to the metal ion ( ):  

   (2.6) 

is the value for minimum energy distance at metal-ligand separation beyond , 

while denotes the value at short range (< ). This adjustment is needed to account 

for the reduction in atom size due to the polarization of ligand atoms towards the TM ion. 

The cubic spline ensures a smooth transition of  between and . The 

coefficients for the function are determined by imposing boundary conditions such that 

the dimensionless scaling factor a is 0 at  and 1 at , while the first and second 

derivatives are 0 at and : 

ρij = Rij / Rij
0
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0 Rij
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   (2.7) 

 The electrostatic potential consists of a permanent and an induced component. 

The permanent contribution is described by atom-centered monopole, dipole and 

quadrupole moments whose values are determined via Stone’s distributed multipole 

analysis87 followed by refinement against QM-derived electrostatic potentials. 

Polarization is handled through self-consistent induced dipole moments, with a Thole 

damping factor applied at short interaction distances. This mechanism has a charge 

smearing effect that avoids the well-known polarization catastrophe at close interatomic 

separations.88 

3.1.3 AOM potentials 

  The complete derivations of the AOM potentials for d-row TM ion have been 

published elsewhere.71,117 Here we reproduce the basic theory and its outcomes, along 

with modifications in the context of AMOEBA. Consider a perturbing potential  due 

to the presence of ligands. Its effect on the d-orbital energies of the TM ion can be 

computed by first-order perturbation theory: 

   (2.8) 

c5 = −6 /τ
c4 = 15(rML

max + rML
min ) /τ

c3 = −10(rML
max2 + 4rML

maxrML
min + rML

min2 ) /τ
c2 = 30(rML

max2rML
min + rML

maxrML
min2 ) /τ

c1 = −30(rML
max2rML

min2 ) /τ
c0 = rML

max3(rML
max2 − 5rML

maxrML
min +10rML

min2 ) /τ

τ = rML
max − rML

min( )5

vLF

Vab
LF = da v

LF db
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The AOM makes the approximation that the ligands contribute linearly to , and that 

is diagonal in the local frame of a ligand where the z-axis points away from the 

metal center towards the ligand atom: 

   (2.9) 

For systems involving σ,  and  bondings, e4 and e5 can be set to zero. The orbital 

 (a = 1,2,3,4 and 5) can be expressed as a radial function multiplied by real, l = 2 

spherical harmonics . In order to develop the angular potential for the ligands, we 

represent the angular components of as: 

  (2.10) 

The local LF matrix must then be rotated into the global molecular frame. The spherical 

harmonics under a rotation R can be written as: 

   (2.11) 
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where α, β and γ are Euler angles as defined in Rose118. For σ bonding, we can 

conveniently define local x-axis pointing away from the global z-axis, yielding 

   (2.12) 

for a ligand with polar coordinates r, θ and φ. In the case of non-zero  and  

bondings, the xz-plane should be coincide with the planar ligand group. This necessitates 

an extra rotation through ψ, which is the angle between the new local x-axis and the one 

defined for σ bonding.117 Hence: 

   (2.13) 

Rewriting Equation (2.11) in matrix form Dλ, the local yλ can be related to the global y 

by: 

   (2.14) 

Likewise, 

   (2.15) 

taking advantage the fact that C is unitary. From there we arrive at the expression: 

   (2.16) 

α = 0,β = −θ ,γ = −φ

π x π y

α = −ψ ,β = −θ ,γ = −φ

yT = yλ
TDλ

dλ
T = dTFλ

Fλ = C
*Dλ

†CT

VLF = FλEλFλ
†

λ
∑

Eλ ,ab = eaδ ab
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If there is significant d-s hybridization, one must consider a 6 × 6 LF matrix involving 

perturbation by the (n+1)s orbital. However, Deeth et al.71 has shown that this additional 

contribution can be simplified as 

   (2.17) 

when taking into account the fact that only can have significant overlap with 

.We can then construct the overall formulation as: 

   (2.18) 

Diagonalizing the symmetric results in energy eigenvalues wa. Finally, combining 

with the occupancy of the levels (na), we arrive at the angular potential: 

   (2.19) 

In this initial iteration, a simple exponential function is used in AMOEBA-AOM for eσ, 

eπx, eπy and eds: 

   (2.20) 

Letting m, l, l1 and l2 denote the metal, ligand atom, subsidiary atom 1 and 2 (if they 

exist) bonded to ligand atom respectively, we define: 

 

 

r = rl −
rm

r1 =
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rl
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rl2 −
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  (2.21) 
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For clarity, (x,y,z) represent the components of  
r  . Then, 
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In the case of no subsidiary atom bonded to ligand atom l, 
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  (2.24) 

In the case of a single subsidiary atom bonded to l, 
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Finally, in the case of two subsidiary atoms bonded to l, 
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  (2.26) 

Expressions for Ga
σ , Ga

π x , Ga
π y ,  
ga
π x  and  

ga
π y  are reproduced in Table 3.1. 

Our AMOEBA-AOM differs from other implementations of similar models in 

MM force fields73 in that the classical electrostatic model is applied consistently to both 

the TM and its ligands. This setup allows the study of ligand exchanges since the AOM 

energy terms drops off rapidly with increasing metal-ligand separation but electrostatic 

contributions remains significant at distances beyond ligation shell. It should be noted 

that retaining the electrostatic model affects the parameterization of aAOM and therefore 

our parameters are not directly comparable with previously reported values. 

The metal-ligand bonding interaction is described by a Morse potential: 

 UAOM
bond = D(1− e−aMorse (rML−rML,0 )

2

)− D   (2.27) 

where D, aMorse and rML,0 controls the bond strength, width of the potential well and the 

minimum energy distance respectively. 

3.2 Parameterization and Validation 

 The AMOEBA-AOM parameters were determined via methods similar to 

previously published parameterization routines for the AMOEBA-VB model.119 The 



 75 

general strategy was to fit the MM results of energy evaluations and geometry 

optimizations to those obtained via QM calculations on gas phase TM-complexes under a 

variety of different conditions. The AOM parameters were determined after the 

AMOEBA parameters had been finalized following the usual protocol.86 The goal of the 

parameterization process is to obtain a single set of AOM parameters that best reproduces 

the QM results for all test routines. Finally, analyses based on MD simulation results 

were validated against available experimental and computational data.  

All ab initio calculations were carried out with the Gaussian 0993 software. 

Geometry optimization of aqua Cu2+ complexes were performed at the B3LYP/6-

311G(d,p) 21,23,82 level of theory. Single-point energies were evaluated using the MP2 

electron correlation method120, with the aug-cc-pVTZ94 basis set for main group atoms 

and cc-pVTZ95 on Cu2+ ion. A Fermi-broadening SCF technique96 was used to improve 

convergence stability, and a relatively stringent SCF convergence criterion of 10-9 a.u. 

was imposed. In the case of model complexes for the Cu2+ binding sites in T1Cu proteins, 

B2PLYP-D/cc-pVDZ24,25 and MP2/cc-pVDZ were utilized for geometry optimizations 

and for single-point energy calculations respectively. Ligand internal coordinates were 

frozen during optimization calculations to increase computational efficiency. The 

AMOEBA-AOM energy terms and their corresponding analytical derivatives were 

implemented in the TINKER58 MM package. 

3.2.1 Gas phase calculations on aqua Cu2+ complexes 

 The AMOEBA water parameters have been reported previously85 and were 

unmodified for use with AMOEBA-AOM. QM geometry optimizations were performed 
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on gas phase tetra-aqua and hexa-aqua Cu2+ complexes under angular constraints to yield 

idealized square-planar, tetrahedral and octahedral structures. The following procedures 

were used to compare MM and QM calculations performed on geometric variants 

generated from these optimized complexes: 

1 Copper-water bonding potential curves were produced for square-planar [Cu(H2O)4]2+ 

and octahedral [Cu(H2O)6]2+ by performing single-point energy evaluations at 

varying copper-oxygen distances for a single water molecule. Axial and in-plane 

water molecules in [Cu(H2O)6]2+ are monitored separately to illustrate the effect of 

the Jahn-Teller distortion. Zero energy is taken to be the potential of complex with 

copper-oxygen distance at 5Å. 

2 The potential energy difference between square-planar and tetrahedral [Cu(H2O)4]2+ 

are plotted as a function of copper-oxygen separations, with water-water interactions 

removed. This gives a direct measurement to the LF effect since it is known that 4-

coordinated Cu2+ complexes do not adopt the tetrahedral geometry for small ligands 

which minimizes water-water repulsion.14,43,77  

3 One hundred complex structures were generated by introducing small geometric 

perturbations to the optimized square-planar [Cu(H2O)4]2+ and octahedral 

[Cu(H2O)6]2+. This process involves randomly perturbing the copper-oxygen distance 

by a maximum of ± 0.2Å deviation from optimal value, as well as rotating each of the 

water molecules around the copper-oxygen vector and two orthogonal axes between 0 

and 10 degrees. Structures containing a water-water separation less than 2.5Å were 

discarded. MM computed energies for these complexes were compared to the results 
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obtained from QM to investigate whether MM models can reproduce the QM energy 

surface near the optimum geometry. Structures with QM energies more than 15 

kcal/mol higher than that of the idealized geometry were discarded since these high-

energy structures are not readily accessible during routine MD simulations. 

Procedural diagrams for routines described above are available in Figure 3.1.  

3.2.2 Gas phase calculations on model complexes for Cu2+binding sites in T1Cu 

proteins  

 The Cu2+ binding site of 1AG6 plastocyanin consists of two histidine, one 

cysteine and one methionine residue.111 In addition to these ligands, the copper ion is 

coordinated by an extra backbone carbonyl oxygen in the structure of 1DYZ azurin.112 

The structures of the Cu2+ binding sites are visualized in Figure 3.2. For gas phase 

calculations performed during the AOM parameterization process, complete amino acid 

residues were substituted by small model compounds, which were chosen to maintain 

similar ligand properties. The identities of the corresponding model fragments can be 

found in Table 3.2. For the sake of brevity, the model complexes for the 1AG6 and 

1DYZ Cu2+ binding sites will be denoted by T1Cu1 and T1Cu2 respectively in the 

following discussions. The AMOEBA parameters for the ligands were obtained via the 

published protocol and their values can be found in the Appendix B. Similar to the 

procedure used for water molecules, the AOM parameters were obtained by fitting results 

from a series of MM computations to those obtained from QM: 

1 Geometry optimizations were carried out for T1Cu1 and T1Cu2 using both QM and 

MM. The ligation geometries of the optimized structures were compared. 
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2 QM binding energies are computed by performing counterpoise-corrected MP2 

calculations on B2PLYP-D optimized structures with the ligand and the rest of the 

complex in two different fragments. The data is then compared to MM interaction 

energies that are calculated by subtracting the potential energies of the individual 

ligand and the remaining molecules from the overall complex energy. 

3 Random complex structures were generated for T1Cu1 and T1Cu2 following a 

similar protocol to that applied to aqua Cu2+ complexes. The ligand molecules are 

rotated from the QM optimized geometry by a maximum of 15 degrees with respect 

to metal-ligand vector, defined by the Cu2+ ion and atom directly ligated to the metal, 

and two orthogonal axes. A minimum ligand-ligand contact distance of 2.5Å is 

maintained. Sets of one hundred structures were generated for each ligand and only a 

single ligand is perturbed within each set. Geometries with ab initio energy higher 

than 5kcal/mol from those of the QM optimized complexes were discarded when 

comparing QM and MM potentials. 

3.2.3 Aqueous Cu2+ simulations 

 Canonical ensemble MD simulations were performed on a single Cu2+ ion 

solvated in a 18.6215Å cubic water box. Period boundary condition was enforced and 

particle-mesh Ewald summation was applied to long-range electrostatic interactions.98,99 

Self-consistent dipole polarization was converged to 0.01 Debye root-mean-squared 

(RMS) change in atomic induced dipole moments. Multiple 10ns trajectories generated 

with 1fs time-step were collected at temperatures of 298K, 320K, 350K and 380K. The 

correlation function, solvation shell properties, coordination numbers and water residence 
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times were calculated from each of the trajectories and compared against previous 

published data. The first 100ps of the trajectories were discarded to allow as system 

equilibration. 

3.2.4 T1Cu protein simulations 

  MD simulations were carried out at 298K in the canonical ensemble for 1AG6 

and 1DYZ proteins. The available AMOEBA protein parameters (parameter file: 

amoebabio09.prm) were used53 while the AMOEBA-AOM parameters derived from 

T1Cu1 and T1Cu2 were applied to the appropriate residues. Water molecules external to 

the proteins were first removed from the X-ray structures. Hydrogen atoms were then 

added, with positions determined from heavy-atom bonding geometries. The protonation 

state of histidine residues were assigned by analyzing the local hydrogen-bonding 

network.121 Additionally, unresolved atoms were filled in manually to construct a full 

side chain for GLU19 of 1DYZ. The protein structures were solvated in water inside a 

98.6726Å truncated octahedron. Before simulations were conducted, the water molecules 

coordinates were minimized to 3 kcal/mol RMS change in potential energy gradient, 

followed by minimization on the entire system to 2 kcal/mol. Settings for dipole 

polarization and long-range electrostatics were identical to those used in the simulations 

for aqueous Cu2+ and periodic boundary conditions were applied. A total of 500ps of MD 

trajectory was collected for each protein. The geometries of the Cu2+ binding sites were 

compared against previously published experimental and computational studies. 

3.3 Results and Discussions 

3.3.1 AMOEBA-AOM parameters 
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 The AMOEBA parameters for Cu2+ ion are identical to those used in our previous 

AMOEBA-VB study.119 The AOM parameters for water, T1Cu1 and T1Cu2 ligands are 

presented in Table 3.3.  A number of constraints on the values of the AOM parameters 

are applied during the parameterization process. First, eσ should be the largest 

contribution to the AOM matrix, since it represents the principle LF. Secondly, the eπx 

term is zero for ligand atoms with two bonded subsidiary atoms as the local y-axis is 

taken to be perpendicular to the ligand plane. Finally, eπx and eπy have equal values in 

case of ligand atoms with a single bonded subsidiary atom because the contributions from 

ligand orbitals should be cylindrical. A common set of AOM parameters were used in all 

the calculations presented here. 

3.3.2 Gas phase calculations on aqua Cu2+ complexes 

 The bonding potentials of water molecules for square-planar [Cu(H2O)4]2+ and 

octahedral [Cu(H2O)6]2+ are plotted in Figure 3.3. Both AMOEBA and AMOEBA-AOM 

can reproduce the QM minimum energy distance for [Cu(H2O)4]2+ but AMOEBA 

underestimates the strength of interaction by 4.5 kcal/mol whereas AMOEBA-AOM (-

39.8 kcal/mol) is in better agreement with QM results (-40.3 kcal/mol). For [Cu(H2O)6]2+, 

data from AMOEBA and AMOEBA-AOM are comparable for in-plane water molecules. 

However, AMOEBA is not able to capture the distortion of axial water molecules while 

AMOEBA-AOM can reasonably describe the structural extent of the Jahn-Teller 

distortion. The QM-derived bonding distance for an axial water is 2.3Å, compared to 

2.1Å and 2.2Å for AMOEBA and AMOEBA-AOM respectively. In addition, AMOEBA-

AOM (-20.5 kcal/mol) generates a binding energy closer to that of QM (-18.0 kcal/mol) 

than AMOEBA (-24.2 kcal/mol).  
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 Figure 3.4 shows the potential energy differences between square-planar and 

tetrahedral [Cu(H2O)4]2+ complexes at varying copper-oxygen distances. It is evident that 

without the AOM terms, AMOEBA produces the wrong geometric preference for 

[Cu(H2O)4]2+. The AMOEBA-AOM model correctly prefers the square-planar geometry 

and the computed energy difference is in good agreement with the QM results. 

 Figure 3.5 compares the QM and MM computed energy surfaces near the 

optimized square-planar [Cu(H2O)4]2+ and octahedral [Cu(H2O)6]2+. All the values 

presented are relative to the potential of the idealized structures. The addition of the 

AOM term significantly reduces the RMS deviation from ab initio results for 

[Cu(H2O)4]2+ (0.72 to 0.38 kcal/mol). Interestingly, the performance of AMOEBA and 

AMOEBA-AOM are comparable for [Cu(H2O)6]2+. We attribute this to the fact that the 

ligands are in close contact in a 6-coordinated complex and therefore ligand-ligand 

interaction plays a predominant role in determining the energy surface. The small 

perturbations introduced to metal-ligand distances were not significant enough to 

demonstrate the effect of the Jahn-Teller distortion.  

3.3.3 Aqueous Cu2+ ion simulations 

 The copper-oxygen pairwise correlation function and radial distribution are 

computed from MD simulations performed at 298K, 320K, 350K and 380K (Figure 3.6). 

An occupancy of 5-6 in the first solvation shell has been previously purposed for aqueous 

Cu2+ in the literature.97,102-106 It has also been suggested that performing simulation at 

elevated temperature can result in a transition of the coordination number from 5 to 6.105 

In this study, we are unable to find evidence for 5-coordinate solvation. The radial 
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distribution plot suggests a 6-coordinate first solvation shell at all simulation 

temperatures. This result echoes the observations we made in our previous study on 

aqueous Cu2+ ion using the AMOEBA-VB model.119 The lower peak value of the 

correlation function at the higher temperatures indicates a less structured solvation shell. 

In addition, we are again unable to observe the “dual-peak” character previously obtained 

from simulation carried out with ReaxFF model.61 Comparisons of the coordination 

geometries taken from present and prior reports can be found in Table 3.4.  

 The residence times of water molecules in in the first solvation shell are computed 

(Table 3.5) by counting the number of continuous frames a particular water oxygen atom 

spends within 3Å to the Cu2+ ion. This cutoff distance is determined by inspecting the 

mid-point separation of first and second solvation shell as indicated in the pairwise 

correlation function (Figure 3.6). Transient water molecules with less than a 1ps presence 

and significantly elongated average Cu-O distances (> 2.8Å) are excluded to avoid 

skewing the statistics. Using the AMOEBA-AOM, we obtained an average residence 

time of 4ns at room temperature, which agrees with the most recent NMR-based 

experimental value of 5ns. Older values ranging from 20ns to 0.4µs have been reported 

but are subject to considerable uncertainty.97,122,123 The residence time is much shorter 

than previously reported room-temperature experimental values for other third row TM 

ions such as Ni2+ (37µs) and Fe2+ (0.3µs) but longer than Zn2+ (0.1-5ns). 97,124 As 

expected, we observed a shortening of residence time with increasing simulation 

temperature. 

3.3.4 Gas phase calculations on T1Cu1 and T1Cu2  
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 Table 3.6 summarizes the geometries of optimized T1Cu1 and T1Cu2 structures 

using QM and MM. A visual overlap of optimization results from QM and AMOEBA-

AOM is presented in Figure 3.7. In general, the results computed with the AMOEBA-

AOM agree reasonably well with QM structures. The AMOEBA-AOM yields 

significantly better angular geometry than AMOEBA, which is expected since standard 

AMOEBA lacks any explicit description of electronic LF effects. It is of interest to point 

out some discrepancies between the AMOEBA-AOM and QM structures. The geometry 

obtained from B2LYP-D optimization shows significant elongation in copper-dimethyl 

sulfide distance in T1Cu2 compared to T1Cu1. This property is not well described by the 

AMOEBA-AOM in its current version. A possible explanation is that some of the AOM 

parameters may be better described by a different function of the metal-ligand distance. 

The parameters reported were fitted to produce a binding distance of approximately 2.8Å, 

which is a commonly observed value for copper-methionine ligation in T1Cu proteins.125 

Furthermore, there is significant deviation from the QM value of the dimethyl sulfide – 

metal – imidazole 2 angle in T1Cu1. This discrepancy may be coupled to the difference 

in binding distances for the dimethyl sulfide ligand. 

 The binding energies for T1Cu1 and T1Cu2 ligands computed by QM and MM 

can be found in Table 3.7. In this context, the AMOEBA-AOM is an improvement over 

AMOEBA for both the imidazole and acetamide ligands. AMOEBA performs 

remarkably well for ethyl thiolate, considering the close proximity between two highly 

charged atoms. However, the AMOEBA-AOM has difficulty in treating some sulfur 

ligands, especially the dimethyl sulfide ligand in T1Cu2. Nevertheless, the overall energy 

values are reasonable for this initial implementation of the AMOEBA-AOM. Further 
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refinement of parameters against a larger set of training complexes should improve the 

results.  

 Comparisons of QM and MM potentials of random T1Cu1 and T1Cu2 structures 

are shown in Figure 3.8. The addition of the AOM energy term dramatically improves the 

overall correlation between QM and MM computed potentials. There is a 73% and 64% 

reduction in RMS error for T1Cu1 and T1Cu2 complexes respectively. It can be observed 

that sets of structures with perturbations to sulfur-type ligands result in the largest 

deviations of the AMOEBA-AOM energies from ab initio potentials. 

3.3.5 T1Cu proteins simulations 

 The RMS distances from the initial PDB experimental coordinates for backbone 

alpha-carbon atoms, as well as copper-binding side chain and carbonyl atoms, are plotted 

in Figure 3.9 and 3.10 respectively. The RMS superposition for the backbone suggests 

that the protein maintains the same general fold as the X-ray structure throughout the 

course of the simulation. The ensemble average geometries of Cu2+ binding sites (Table 

3.8) are computed based on atomic coordinates, excluding the first 50ps of each 

trajectory. In general, the ligation geometry of Cu2+ binding sites obtained from MD 

simulation agrees reasonably well with the X-ray crystal structures. The main difference 

between simulated and experimental structure is again the methionine binding distance in 

1DYZ azurin. The computed average Cu2+-MET121 distance is about 0.4Å too short, 

similar to the observations we made for T1Cu2 model complex. This discrepancy has 

also been found in other computational studies on azurin.114,125Overall, the performance 
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of the AMOEBA-AOM on plastocyanin and azurin is comparable to previously purposed 

MM models.114,115,125 

3.4 Conclusions 

 The AMOEBA-AOM is an extensible polarizable force field for TM ions that is 

suitable for studying a variety of TM systems. Its principle advantages over most other 

AOM-based MM models for TM ion is in the consistent treatment of electrostatics at all 

distances and explicit description of polarization, which in turn enables the study of 

ligand association/dissociation and other dynamic events. We have demonstrated that the 

AMOEBA-AOM provides excellent agreement with QM for a wide range of calculations 

on aqua Cu2+ complexes. It also automatically handles the Jahn-Teller distortion for 

hexa-aqua Cu2+ complexes. The computed aqueous Cu2+ ligation geometry and water 

residence time in the first solvation shell are in line with published experimental results. 

In addition, we have provided evidence for parameter transferability in the context of the 

T1Cu proteins, yielding reasonable results when compared to gas-phase QM calculations 

on model complexes and X-ray crystallographic ligation data for complete proteins. 

Finally, the AMOEBA-AOM is much more efficient than semi-empirical or hybrid QM 

methods, allowing us to perform MD simulations on T1Cu systems investigated in this 

report that consisting upward of 48,000 atoms. 
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3.5 Figures 

 

 

Figure 3.1 Routines for generating structural variants from QM-optimized aqua Cu2+ 
complexes for use in the AMOEBA-AOM parameterization process. (a) A single copper-
water distance is varied while other ligands retain their optimized coordinates. (b) All 
copper-water distances are changed simultaneously with each ligand equidistant from the 
copper ion. (c) Random perturbations are introduced by varying copper-water distances 
as well as by rotating the ligands with respect to the copper-oxygen vector and two axes 
orthogonal to the vector. 
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1AG6 1DYZ 

  

Figure 3.2 Visual representations of Cu2+ binding sites in X-ray structures of 1AG6 and 
1DYZ. Colors: Cu2+ = lime green, oxygen = red, nitrogen = blue, sulfur = yellow, carbon 
= white. 
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Figure 3.3 Bonding potential curve of water molecule generated using QM and MM 
methods. Zero bonding potential energy is taken as the potential of the complex with a 
water molecule at 5Å. 
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Figure 3.4 Potential energy difference between square-planar and tetrahedral tetra-aqua 
Cu2+ complexes with the water-water interaction removed. Negative values indicate that 
the square-planar structure is lower in potential energy than the tetrahedral geometry. 
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Figure 3.5 Comparisons between QM and MM potentials of random aqua Cu2+ 
complexes generated by perturbing the QM-optimized structure. 

  



 91 

 

Figure 3.6 Copper-oxygen radial pair-wise correlation (above) and distribution function 
(below) computed for MD trajectories at various simulation temperatures. 
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T1Cu1 T1Cu2 

 
 

Figure 3.7 Structures of T1Cu1 and T1Cu2 optimized using B2PLYP-D/cc-pVDZ and 
AMOEBA-AOM. Colors: QM = red, AMOEBA-AOM = green. 
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Figure 3.8 Comparison of QM and MM potentials of random T1Cu1 and T1Cu2 
complexes. Results obtained from AMOEBA are plotted on the left column and those 
computed with the AOM energy terms are on the right. Data point colors represent 
different sets of structures generated by perturbing a particular type of ligand. Plots of 
individual ligands can be found in the Appendix C. 
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Figure 3.9 Time evolution of the RMS distance to the initial protein alpha carbon atoms. 
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Figure 3.10 Time evolution of the RMS distance to the initial protein structure after 
superposition of copper-binding side chain and backbone carbonyl atoms.  
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3.6 Tables 

Table 3.1 Expressions for AOM terms Ga
σ , Ga

π x , Ga
π y ,  
ga
π x  and  

ga
π y . (x, y, z) are 

components of the metal-ligand vector. 

  

a Ga
σ   Ga

π x   Ga
π y  

1 
1
2
2z2 − x2 − y2( )   − 3 x2 + y2( )z   0 

2 3xz   x z2 − x2 − y2( )   −yz   

3 3yz   y z2 − x2 − y2( )   xz   

4 
1
2
3 x2 − y2( )   z x2 − y2( )   −2xy   

5 3xy   2xyz   x2 − y2   
 
a 

 
ga,x
π x    

ga,y
π x   

ga,z
π x  

1 − 3xz2   − 3yz2  − 3 x2 + y2( )z  

2 z z2 − x2 + y2( )  −2xy  x x2 + y2 − z2( )  

3 −2xyz  z x2 − y2 + z2( )  y x2 + y2 − z2( )  

4 x 2y2 + z2( )  −y 2x2 + z2( )  −z x2 − y2( )  

5 y z2 − x2 + y2( )  x x2 − y2 + z2( )  −2xyz  

 
a 

 
ga,x
π y   

ga,y
π y   

ga,z
π y  

1 − 3yz   3xz   0 
2 −xy   x2 − z2   yz   

3 z2 − y2   xy   −xz   
4 −yz   −xz   2xy   
5 xz   −yz   y2 − x2   
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Table 3.2 Corresponding model fragments used in QM gas phase calculations to model 

copper binding sites of T1Cu proteins. 

Binding site ligands Model compound 

Backbone carbonyl  

(acetamide) 

Histidine side chain 
 

(imidazole) 

Methionine side chain  

(dimethyl sulfide) 

Cysteine side chain 

(deprotonated) 
 

(ethyl thiolate) 
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Table 3.3 The AOM parameters for water, T1Cu1 and T1Cu2 ligands defined by the 

bolded atoms. See Equation (2.6), (2.20) and (2.27) for variable definitions. Ligands with 

the same value of Rii
0 '  and Rii

0 ''  indicates that vdW scaling is not applied. rML
min  and rML

max

are set at 4.5Å and 6Å respectively for all ligands. 

Ligand 
 

  
  

aσ 110 13811 494 6269 5360 

ads 90 2170 4 793 1664 

aπx 0 1200 0 0 265 

aπy 5 1200 106 132 265 

D 1.160 130.0 10.00 18.00 1.00 

aMorse 1.810 3.950 1.750 2.900 1.000 

rML,0 2.835 2.200 2.500 2.800 4.000 

 1.703 1.650 1.855 2.000 2.175 

 1.703 1.650 1.705 1.950 2.000 

 

  

Rii
0 '

Rii
0 ''
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Table 3.4 The 1st solvation shell coordination geometry of aqueous Cu2+ ion. Value for 

the present work is taken from the first peak of the copper-oxygen pairwise correlation 

function generated at 298K. 

  

Method 1st solvation shell M-O 

coordination number and 

geometry 

Reference 

MD (AMOEBA-AOM) 6 × 2.005 Present work 

MD (AMOEBA-VB) 6 × 2.005 119 

MD (REAX-FF) 4 × 1.94 + 2 × 2.27 61 

Neutron diffraction 6 × 1.97 107 

Neutron diffraction 5 × 1.96 105 

EXAFS 4 × 1.96 + 2 × 2.60 108 

EXAFS 4 × 2.04 + 2 × 2.29 109 

Car-Parrinello MD 5 × 1.96 105 

Car-Parrinello MD 4 × 2.00 + 1 × 2.45 110 
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Table 3.5 The residence times of water molecules in the first solvation shell computed by 

counting the number of frames a water oxygen atom is spent within 3Å to the Cu2+ ion. 

Temperature Residence Time (ns) 

298K 4.0 

320K 2.6 

350K 1.4 

380K 1.2 
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Table 3.6 Geometries of optimized T1Cu1 and T1Cu2 complexes using DFT, AMOEBA 

and AMOEBA-AOM methods. 

 T1Cu1 T1Cu2 
 B2LYP-D AMOEBA-

AOM 
AMOEBA B2PLYP-D AMOEBA-

AOM 
AMOEBA 

Metal-ligand bond length (Å) 
Ethyl thiolate 2.20 2.08 2.33 2.12 2.24 2.35 
Dimethyl sulfide 2.41 2.84 2.41 3.50 2.78 4.13 
Imidazole 1 2.07 2.32 1.98 2.00 2.36 2.00 
Imidazole 2 2.20 2.36 1.99 2.02 2.33 2.00 
Acetamide - - - 2.38 2.49 1.92 

Ligand-metal-ligand angle (º) 
Ethyl thiolate – 
Dimethyl sulfide 

94.38 105.75 107.99 79.02 90.77 69.42 

Ethyl thiolate – 
Imidazole 1 

148.41 147.40 112.46 123.78 123.38 113.68 

Ethyl thiolate – 
Imidazole 2 

99.54 118.94 115.84 132.95 145.13 113.37 

Dimethyl sulfide – 
Imidazole 1 

90.11 87.37 103.26 91.48 92.34 80.78 

Dimethyl sulfide – 
Imidazole 2 

140.89 93.21 103.84 83.55 88.29 71.48 

Imidazole 1 – 
Imidazole 2 

96.44 89.16 112.17 99.86 91.48 110.48 

Acetamide – 
Ethyl thiolate 

- - - 107.30 94.63 115.39 

Acetamide – 
Dimethyl sulfide 

- - - 172.36 174.55 174.34 

Acetamide – 
Imidazole 1 

- - - 88.46 85.30 99.33 

Acetamide – 
Imidazole 2 

- - - 88.94 86.86 103.33 
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Table 3.7 Binding energies (kcal/mol) of T1Cu1 and T1Cu2 ligands computed by MP2, 

AMOEBA and AMOEBA-AOM.  

 T1Cu1 T1Cu2 
 MP2 AMOEBA-

AOM 
AMOEBA MP2 AMOEBA-

AOM 
AMOEBA 

Ethyl thiolate -230.0 -265.0 -231.1 -230.8 -219.9 -222.9 
Dimethyl sulfide -23.8 -22.0 -31.5 -8.5 -36.0 -14.7 
Imidazole 1 -43.7 -54.8 -56.9 -43.0 -53.2 -56.9 
Imidazole 2 -40.5 -48.9 -54.6 -43.0 -47.7 -31.4 
Acetamide - - - -20.3 -45.3 -62.1 
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Table 3.8 Geometries of Cu2+ binding sites of 1AG6 and 1DYZ proteins obtained from 

X-ray crystal structures and AMOEBA-AOM MD simulations. 

 1AG6 1DYZ 
 Experimental AMOEBA-AOM  Experimental AMOEBA-AOM 
  Metal-ligand bond length (Å) 
CYS84 2.15 2.15 ± 0.04 CYS112 2.14 2.47 ± 0.09 
MET92 2.88 2.85 ± 0.05 MET121 3.26 2.83 ± 0.05 
HIS37 1.96 2.17 ± 0.05 HIS46 2.04 2.13 ± 0.05 
HIS87 2.01 2.15 ± 0.05 HIS117 1.99 2.15± 0.05 
   GLY45 2.72 2.50 ± 0.02 
  Ligand-metal-ligand angle (º) 
CYS84 – MET92 105.93 95.36 ± 4.30 CYS112 – MET121 105.27 103.42 ± 5.51 
CYS84 – HIS37 129.91 122.98 ± 5.66 CYS112 – HIS46 132.56 136.32 ± 5.72 
CYS84 – HIS87 120.07 133.83 ± 5.82 CYS112 – HIS117 121.05 115.66 ± 5.56 
MET92 – HIS37 87.10 93.47 ± 5.20 MET121 – HIS46 73.89 79.92 ± 3.82 
MET92 – HIS87 102.15 106.11 ± 6.00 MET121 – HIS117 88.34 92.61 ± 5.06 
HIS37 – HIS87 103.04 95.81 ± 4.59 HIS46 – HIS117 106.39 107.10 ± 5.69 
   GLY45 – CYS112 104.10 90.17 ± 5.21 
   GLY45 – MET121 148.38 164.68 ± 4.15 
   GLY45 – HIS46 77.77 86.38 ± 4.34 
   GLY45 – HIS117 86.43 85.18 ± 4.62 

  



 104 

 

 

 

 

 

Chapter 4. Summary 
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 In the previous chapters, we have explained the importance of d-orbital electronic 

effects in describing the coordination chemistry of TM complexes. Two novel polarizable 

MM models derived from valence bond (VB) theory and the angular overlap model 

(AOM) were integrated into the AMOEBA force field, while maintaining a consistent 

treatment of classical electrostatic interactions. It is evident that both approaches can 

significantly improve the accuracy of AMOEBA for TM systems by explicitly 

accounting for the hypervalency and LF contributions. In this concluding section, we 

compare the AMOEBA-VB and AMOEBA-AOM models and discuss the future 

directions for improving their performances. 

4.1 Comparison of the AMOEBA-VB and AMOEBA-AOM force fields 

 Although, VB theory and the AOM are based on different QM frameworks, they 

are ultimately complementary models seeking to describe the same QM phenomena. The 

key ideas of the VB theory are resonance and the donor-acceptor hybridization. 

Meanwhile, the AOM is derived from LF principle and is therefore closely related to 

traditional MO theory. The AMOEBA-VB model is chemically intuitive, and elements 

comprising its potential terms are straightforward. However, in its current iteration, 

AMOEBA-VB is not able to sufficiently handle the Jahn-Teller distortion without an 

explicit correction term. This should not be considered an inherent deficiency of the VB 

theory, but is most likely due to the incomplete nature of the resonance weighting 

function. On the other hand, although the implementation of the AMOEBA-AOM model 

is more elaborate, it can automatically handle the Jahn-Teller distortion and has 

demonstrated good accuracy and transferability for more complex TM systems. 
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Nevertheless, we feel both approaches are suitable basis for a general TM force field and 

can serve as starting points for further development.   

4.2 Future Directions for AMOEBA-VB 

As mentioned previously, an evident area of improvement for AMOEBA-VB is 

its treatment of Jahn-Teller distortion. The elongation of axial water molecules in 

octahedral Cu2+ complexes is not fully reproduced by the present AMOEBA-VB model. 

An explicit description based on a harmonic first order approximation improves the 

results. However, this necessarily requires the energy function to be applied selectively 

based on geometry and ligand type. As a result, this solution cannot provide a smooth 

transition for dynamic Jahn-Teller effect and exchange between hexa and penta-aqua 

coordination. A possible remedy is to explore alternative forms of the resonance 

weighting function to better describe the effects of Jahn-Teller distortion. This approach 

conforms to the tenets of VB theory and does not limit the generality of the model. 

Another aspect that can be explored is inclusion of explicit coupling between the 

molecular geometry and hybridization. 

 In addition to further optimization of the AMOEBA-VB aqueous TM model, 

future work should extend to more complex systems, especially cases with more than one 

type of ligand, as well as ligands with a significant  contribution. The VB model can be 

generalized for such systems through development of hybridization-mixing rules. 

Modifications to the resonance weighting function may also be necessary for these more 

complex situations. It is perhaps possible to adapt the π interaction terms from 

VALBOND70 for the AMOEBA-VB model. 

π



 107 

4.3 Future Directions for AMOEBA-AOM 

 There are two main areas of improvements that can be made to the AMOEBA-

AOM formulation. First is a better method of handling the elongation of the dimethyl 

sulfide / methionine ligand as described earlier. A possible solution is by applying 

functional forms for eAOM different from this initial iteration. Alternatively, a coupling of 

metal-ligand bonding to the L-M-L angle similar to the strategy of AMOEBA-VB119 can 

be explored. A second aspect of the AMOEBA-AOM that can be improved is its 

accuracy in describing sulfur ligand binding energies. The Morse bonding term can be 

replaced with a different, more flexible, functional form. An interesting candidate is to 

reintroduce the buffered 14-7 vdW potential used by sthe standard AMOEBA force field 

for sulfur ligands since it shows remarkable agreement with QM energies. It should be 

noted that previous efforts to model the LF effects have been largely focused on 

geometries. We believe that the accurate description of ligand binding energies is also an 

important aspect of any MM model, especially if one wants to study ligand exchanges, 

vibrational frequencies and other dynamic events.  

 In addition to making improvements to the AMOEBA-AOM as outlined above 

and continuing refinement of the AMOEBA-AOM parameters, it would be interesting to 

apply the AMOEBA-AOM to other copper centers and produce a complete set of 

parameters for all amino acid ligands. One intriguing area for study is to investigateion of 

conformational changes in T1Cu proteins between their oxidized and reduced forms, 

Indeed, the two forms have different binding partners at the metal center. Since Cu+ has a 

d10 configuration, it can be treated in similar fashion to Zn2+ as we have demonstrated119, 

albeit with a different formal charge assignment. This work is planned for the near future. 
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Appendix A Derivatives of the AMOEBA-VB Potentials 

The derivations are only presented with respect to X-coordinates since the forms for Y 

and Z-coordinates are very similar. 

 

Pictorial representation of a single VB term 

VB derivatives 

 

VB bond derivatives for a single VB angle 

Chain rule for distance r 
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Derviatives for bond term 

 

VB angle derivatives for a single VB angle 

Chain rules for θ	
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Derivatives for angular term 
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VB derivatives for resonance weighting function W 
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Appendix B AMOEBA Parameters for TM Ligands 

Parameters are reported in standard TINKER key file format. 

################## 

# Ethyl thiolate # 

################## 

 

atom          411  411    C   "Thiolate CH3  "         6    12.011    4 

atom          412  412    H   "Thiolate H3C  "         1     1.008    1 

atom          413  413    C   "Thiolate CH2S-"         6    12.011    4 

atom          414  414    H   "Thiolate H2CS-"         1     1.008    1 

atom          415  415    S   "Thiolate S-   "        16    32.066    1 

 

polarize      411          1.3340     0.3900      412    413 

polarize      412          0.4960     0.3900      411 

polarize      413          1.3340     0.3900      411    414    415 

polarize      414          0.4960     0.3900      413 

polarize      415          4.0000     0.3900      413 

 

multipole   411  413  412              -0.20281 

                                       -0.00301    0.00000    0.21905 

                                       -0.12856 

                                        0.00000   -0.17155 

                                       -0.18498    0.00000    0.30011 

multipole   412  411  413               0.02125 

                                        0.03105    0.00000   -0.07061 

                                        0.08689 
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                                        0.00000    0.06296 

                                        0.04663    0.00000   -0.14985 

multipole   413  415  411               0.25613 

                                        0.27834    0.00000    0.39573 

                                        0.14308 

                                        0.00000   -0.26550 

                                       -0.01686    0.00000    0.12242 

multipole   414  413  415              -0.03752 

                                        0.07455    0.00000   -0.05598 

                                        0.04192 

                                        0.00000    0.00212 

                                        0.05471    0.00000   -0.04404 

multipole   415  413  411              -1.04203 

                                        0.02076    0.00000    0.33904 

                                       -1.57307 

                                        0.00000   -1.72462 

                                        0.01309    0.00000    3.29769 

 

vdw         411                         3.8200     0.1040 

vdw         412                         2.9800     0.0240     0.920 

vdw         413                         3.7800     0.1060 

vdw         414                         2.8700     0.0330     0.900 

vdw         415                         4.3500     0.3850 

 

bond        411  412                    341.00     1.1120 

bond        411  413                    323.00     1.5247 

bond        413  414                    395.50     1.0850 

bond        413  415                    216.00     1.8225 
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angle       411  413  415        53.20     112.73 

angle       414  413  415        35.00     109.98 

angle       412  411  412        39.57     107.60     107.80     109.47 

angle       412  411  413        42.44     109.80     109.31     110.70 

angle       414  413  411        42.44     109.80     109.31     110.70 

angle       414  413  414        39.57     107.60     107.80     109.47 

 

strbnd      411  413  415               18.70      18.70 

strbnd      414  413  415               11.50      11.50 

strbnd      414  413  411               11.50      11.50 

strbnd      413  415  413              -5.75      -5.75 

strbnd      413  415  415              -5.75      -5.75 

strbnd      413  411  412               11.50      11.50 

 

torsion     415  413  411  412      0.000 0.0 1   0.000 180.0 2   0.475 
0.0 3 

torsion     414  413  411  412      0.000 0.0 1   0.000 180.0 2   0.238 
0.0 3 

############# 

# Phenoxide # 

############# 

 

atom        421  421    C     "Phenoxide C-ortho"      6    12.011    3 

atom        422  421    C     "Phenoxide C-meta"       6    12.011    3 

atom        423  421    C     "Phenoxide C-para"       6    12.011    3 

atom        424  421    C     "Phenoxide C-O-"         6    12.011    3 

atom        425  422    H     "Phenoxide H-ortho"      1     1.008    1 

atom        426  422    H     "Phenoxide H-meta"       1     1.008    1 
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atom        427  422    H     "Phenoxide H-para"      1     1.008    1 

atom        428  423    O     "Phenoxide O-"          8    15.999    1 

 

vdw         421               3.8000     0.0910 

vdw         422               2.9800     0.0260      0.920 

vdw         423               3.3200     0.1120 

 

bond        421  421          210.90     1.3650 

bond        421  422          409.50     1.0800 

bond        421  423          680.00     1.2747 

 

angle       421  421  421      64.67     121.70 

angle       421  421  422      35.25     120.00     120.50       0.00 

angle       421  421  423      60.00     123.57 

 

strbnd      421  421  421      18.70      18.70 

strbnd      421  421  422      38.00      11.60 

strbnd      421  421  423      18.70      18.70 

 

opbend      421  421    0    0            14.40 

opbend      422  421    0    0            15.10 

opbend      423  421    0    0            14.40 

 

torsion     421  421  421  421     -0.670 0.0 1   4.004 180.0 2   0.000 
0.0 3 

torsion     421  421  421  422      0.550 0.0 1   4.534 180.0 2  -0.550 
0.0 3 

torsion     422  421  421  422      0.000 0.0 1   4.072 180.0 2   0.000 
0.0 3 
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torsion     421  421  421  423      0.000 0.0 1   4.470 180.0 2   0.000 
0.0 3 

torsion     422  421  421  423      0.000 0.0 1   4.470 180.0 2   0.000 
0.0 3 

 

polarize    421          1.7500     0.3900      422    424    425 

polarize    422          1.7500     0.3900      421    423    426 

polarize    423          1.7500     0.3900      422    427 

polarize    424          1.7500     0.3900      421    428 

polarize    425          0.6960     0.3900      421 

polarize    426          0.6960     0.3900      422 

polarize    427          0.6960     0.3900      423 

polarize    428          0.8370     0.3900      424 

 

multipole   421 -424 -422              -0.23130 

                                        0.41299    0.00000   -0.00719 

                                       -0.84532 

                                        0.00000   -0.28695 

                                       -0.22512    0.00000    1.13227 

multipole   422 -421 -423               0.09326 

                                        0.10628    0.00000    0.23688 

                                       -0.36832 

                                        0.00000   -0.69071 

                                        0.27592    0.00000    1.05903 

multipole   423 -422 -422              -0.15839 

                                        0.00000    0.00000   -0.16859 

                                        0.58328 

                                        0.00000   -0.64580 

                                        0.00000    0.00000    0.06252 
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multipole   424  428  421               0.63120 

                                        0.00000    0.00000    0.27846 

                                        0.62275 

                                        0.00000   -0.12881 

                                        0.00000    0.00000   -0.49394 

multipole   425  421  422              -0.04632 

                                        0.26641    0.00000   -0.11778 

                                       -0.37553 

                                        0.00000    0.16803 

                                        0.37648    0.00000    0.20750 

multipole   426  422  423              -0.05729 

                                        0.10056    0.00000   -0.29672 

                                        0.36124 

                                        0.00000   -0.01213 

                                        0.22601    0.00000   -0.34911 

multipole   427  423  422              -0.05751 

                                        0.00000    0.00000   -0.25877 

                                        0.24169 

                                        0.00000   -0.04974 

                                        0.00000    0.00000   -0.19195 

multipole   428  424  421              -0.93199 

                                        0.00000    0.00000    0.04254 

                                        0.22122 

                                        0.00000   -0.08151 

                                        0.00000    0.00000   -0.13971 
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Appendix C Additional Data for T1Cu1 and T1Cu2 

Comparisons of QM, AMOEBA and AMOEBA-AOM potentials for randomly perturbed 

T1Cu1 structures; results obtained by AMOEBA are on the left and those by AMOEBA-

AOM are on the right; only a single ligand is perturbed from the QM optimized geometry 

in each plot. 
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Comparisons of QM, AMOEBA and AMOEBA-AOM potentials for randomly perturbed 

T1Cu2 structures; results obtained by AMOEBA are on the left and those by AMOEBA-

AOM are on the right; only a single ligand is perturbed from the QM optimized geometry 

in each plot. 
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