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ABSTRACT OF THE DISSERTATION
Development of Polarizable Force Field Models for Transition Metal Ions
by
Jin Yu Xiang
Doctor of Philosophy in Computational and Molecular Biophysics
Washington University in St. Louis, 2013

Professor Garland Marshall, Chair

This dissertation focuses on the development of polarizable molecular mechanics
(MM) force field models for the third-row transition metal (TM) ions. These TM ions
perform important structural and chemical functions in a wide range of organic and
biological environments because of the unique properties of the 3d orbitals. Being able
study these systems in silico can provide a tremendous amount of information that is
difficult to obtain through experiments. However, the standard treatment of ions in
traditional MM models has shown to be insufficient for describing the d-shell electronic
effects. In this work, empirical models for TM electronic effects are derived from the
valence bond (VB) theory and the angular overlap model (AOM). The TM potential
functions are incorporated into the AMOEBA (Atomic Multipole Optimized Energetics
for Biomolecular Applications) MM force field. A consistent polarizable electrostatics
model is applied between metal and ligand sites at all interaction distance, enabling the
study of ligand association / dissociation and other dynamic events. Specifically, theories
are presented in the context of Ni(Il), Cu(Il) and Zn(II) ions. Parameters are obtained by
fitting the TM models to gas-phase ab initio computations. Finally, results from

molecular dynamics simulations of aqueous ions and select type 1 copper proteins

XV



(plastocyanin and azurin) are analyzed. Evidence from this study suggests that explicit
description of d-shell electronic effect can significantly improve the performance of MM
models. This allows one to perform more reliable investigations on complex TM systems
than can be achieved with traditional MM methods but without the computational

expense of ab initio calculations.
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Chapter 1. Introduction



Transition metal (TM) ions are involved in a tremendously diverse range of
important biological systems.'” Their functions can range from regulation of structure
and binding, as in the zinc-finger motif in DNA recognition proteins®, to active mediation
of chemical reactions, as in the entire family of superoxide dismutase’'®, cytochromes
and electron transport proteins''. TM ions are also found in a number of pharmaceutical
organometallic compounds, such as titanium, ruthenium and platinum-based antitumor
drugs’. This incredible diversity in the applications of TM ions, both in natural biological
systems and synthetic therapeutic vehicles, owes much to the unique properties of the
valence d- and f-orbitals.'” It is common that the coordination structures of TM ions are
coupled to their chemical functions.'® In the following sections, we demonstrate, via
molecular orbital (MO) theory'®, the effects of d-orbitals on the ligation of the third-row
TM ions. These ions are the most common TM species found in biological
environments.” Existing quantitative computational techniques that can be used to study
these TM systems are introduced, along with initial calculations that illustrate the various

quantum effects.
1.1 Molecular Orbital Theory of the Third-Row Transition Metal Ions

Figure 1.1 is a graphical representation of the five unperturbed d-orbitals. It is
clear from the figure that the d-orbitals have strong directionality and complex nodal
features, which have significant implications for their interaction with TM ligands. In
isolated atoms, the d-orbitals have equivalent ground state energies, but this redundancy
is removed when the d-orbitals hybridize with overlapping ligand orbitals. The results of
such hybridization depend on both the relative energy levels and orientation of the ligand

orbitals.



Metal-ligand (M-L) interactions can be categorized into o- (“head-on”) and 7-
(“sideway”) bonds. As a first approximation, the bonding and anti-bonding MOs of
ligands can often be neglected since the energy differences relative to the d-orbitals are
too large for significant hybridization to occur. For organic ligands, the non-bonding
MOs that need to be considered when constructing the hybridized MOs are the valence s
and p orbitals. Figure 1.2 shows schematically a few examples of how ligand MOs can
participate in o- and 7~ interactions. It is evident that the metal and ligand orbitals must
have the correct symmetry for non-zero overlap to occur. o-interactions are in general
much stronger than 7z-interactions due to better geometric overlap between the interacting
orbitals. Therefore, one can consider z-interactions as a perturbation to the principle

ligand field constructed from the o-interactions.

1.1.1 Molecular orbitals of octahedral MLs complexes

To construct the MO diagram under the effect of the principle ligand field for an
octahedral TM complex with identical ligands, one needs to consider the shape,
symmetry and energy ordering of the interacting orbitals. It is convenient to utilize group
theory for this analysis. The character table of the Oy point group (Table 1.1) suggests
that metal d-orbitals have E, and T, symmetries. On the other hand, 2 ez, 3 #;, and 1 a;,
orbitals form the symmetry adapted linear combination orbitals (SALCO) of the ligands.
The t,, metal orbitals are therefore non-bonding, since they do not have any overlap with
SALCO of the ligands. The e, orbitals hybridizes to form two bonding and two anti-
bonding MOs. The bonding MOs are concentrated on the ligands because they are

usually more electronegative than the metal ion. Thus, the d-block valence MOs of the



octahedral TM complex consists of doubly degenerate e, anti-bonding and triply
degenerate 7, non-bonding orbitals. Figure 1.3 illustrates the splitting of MOs from the

ground state d-orbitals.

An important phenomenon for Cu®'Lg complexes that is directly related to the d-
orbital splitting is the Jahn-Teller distortion."” Since Cu®" has a d’ electron configuration,
three electrons have to be placed into two anti-bonding e, MOs. Distortion along the
molecular fourfold symmetry axis removes the degeneracy of these e, MOs and thereby
lowers the overall energy of the complex. This is commonly observed as an elongation of

axial ligand bonding distance.
1.1.2  Molecular orbitals of square-planar and tetrahedral ML, complexes

The MO description of square-planar ML4 complex can be readily deduced from
the MOs derived for the corresponding octahedral MLs complex. If we take the MLg
fourfold symmetry axis as the z-axis, removing the axial ligands has the effect of

lowering the overlap between the metal d , orbital and its interacting ligand orbitals. The

resulting MO is still weakly anti-bonding due to non-zero overlap in the xy-plane (See
Figure 1.1). The other MOs in the d-block remain unperturbed since they have zero
coefficients along the z-axis. Therefore, we arrive at the MO diagram shown in Figure

1.4. Note that only two of the three non-bonding MOs are degenerate by symmetry.

We can follow a similar process to analyze the MOs of tetrahedral MLy, starting
from the results obtained for the square-planar geometry. If we place two ligands along
both of the x-axis and y-axis, we can move from square-planar to tetrahedral coordination

by pivoting the x-oriented pair above, and the y-oriented pair below, the xy-plane. In this



new orientation, the z° and xy d-orbitals are strictly non-bonding, since the ligands are
now placed on the nodal planes of these orbitals. The yz and xz orbitals form anti-bonding
MGOs, as the ligands have moved out of their nodal planes. Finally, the MO derived from
the x” — )” orbital has less anti-bonding character due to the fact that the ligand orbitals
now overlap at an angle to the d-orbital. By consulting the character table of the T4 point
group (Table 1.2), we can conclude that yz, xz and x” — )° form three degenerate anti-

bonding MOs. The complete MO diagram can be found in Figure 1.5.

The MO description an ML, complex with square-planar ligand arrangement is
very different from that for tetrahedral ligation. The square-planar geometry has three
non-bonding, one weakly anti-bonding and one highly anti-bonding MO, whereas the
tetrahedral coordination has two non-bonding MOs and three MOs with moderate anti-
bonding energies. These differences in MO energy levels have dramatic impact on the
geometric preferences of MLy complexes. For the d'® Zn*'L, complex, tetrahedral
coordination is preferred because the highest occupied molecular orbital (HOMO) is
lower in energy than that in a square-planar arrangement. Low-spin Ni*'Ls complex (no
unpaired electrons) strongly favors the square-planar geometry because only two
electrons are anti-bonding, versus four in the case of tetrahedral coordination. However,
the energy levels of the two geometries are reversed in the case of high-spin Ni*'Ly as a
single electron has to be placed in the high-energy b;, MO if the geometry is square-
planar. The low-spin configuration is usually preferred since there are fewer anti-bonding
electrons. Nevertheless, the tetrahedral geometry minimizes ligand-ligand repulsions and
the exchange energy from two unpaired electrons favors the high-spin electronic state.

The geometric preference for the intermediate d° Cu®'L* complex is more nuanced. The



two coordination structures are very close in energy and the lowest energy arrangement
depends on the identity of the ligands. In certain cases such as [CuCl,]?, it has been found
that both structures can exist in equilibrium.' It is also clear from analyzing the MO
diagrams that the ligation geometries are coupled to the redox potentials of TM ions,
since changing d-block MO occupancies can significantly alter the energy levels of the

coordination structures.
1.2 Quantum Mechanical Computational Methods

The qualitative analyses in the previous section have shown that the electronic
configuration of TM complexes can have significant effect on their coordination
geometries. A robust way to compute the energy for a TM system is by performing ab
initio electronic structure calculations. Various relevant quantum mechanical (QM)
computational methods are introduced in this section, largely following the notations of

Jensen.!”
1.2.1 Hartree-Fock method

To perform QM calculations on a static structure, one needs to solve the time-

independent electronic Schrédinger’s equation:
HY = EY (0.1)

An important approximation enabling us to solve the Schrodinger’s equation is the Born-
Oppenheimer approximation, in which the coupling of motion between nuclei and
electrons is neglected. However, an exact solution is not available even in the context of

this approximation, except for simple single electron species such as H,". Instead, ab



initio numerical methods based on the variational principle are employed. Any trial wave
function has an energy value greater than or equal to the exact solution and therefore one
can variationaly improve the trial wave function by minimizing the energy. A Slater
determinant (SD) is a convenient trial wave function that satisfies the antisymmetric
property upon exchanging the coordinates of two electrons. For a general N-electron

system, the SD takes the form:

¢1 (1) ¢2(1) ¢N(1)

o, - ¢1f2) ¢2f2) ¢N.(2) 0.2)

1
JN!

where ¢ denotes a one-electron orbital function. It can be shown that in the case of a

single SD and non-relativistic Hamiltonian, the energy of the wave function can be

written as:

E=Y(p/n]o)+ “(< 1300)+(0,|K [6,))+ V., (0.3)

h;, J; and K, are operators that describe the one-electron motion due to the field of nuclei,
the Coulombic repulsion between electron distributions ¢,” and ¢j2, and the exchange
energy that is a consequence of electrons being indistinguishable fermions respectively.
The nuclear-nuclear repulsion V. does not depend on electron distribution and is

therefore constant. The variation of the energy can be written in the form of a Fock

operator F;:



SE= Y ((56,F|0,)+(0|F|56,))
i (0.4)

F :ht+1§(J1_K1)
j

The orbital functions must be varied in an orthonormal manner. Using the Lagrange

multiplier method, we have:

SL=G8E— fiﬁ(@(p,. ¢j)—<¢,.|5¢j>) =0 (0.5)

Solving this equality gives the final Hartree-Fock (HF) equations:
F¢, =249, (0.6)

These equations can be further simplified by applying a unitary transformation to the

matrix of Lagrange multipliers such that A, =0 and 4, =¢;:

F¢, =, (0.7)

where the ¢, are known as canonical MOs. The HF orbital wave functions can only be

determined when all the occupied orbitals are known. The overall procedure is therefore a
self-consistent problem, and the solutions to the HF equations are the self-consistent field
(SCF) orbitals. It should be noted that the use of a single SD approximation means that
the electron correlation effect are ignored under the HF scheme. It is common to

represent the orbitals by a set of basis functions:

0= Y cue (0.8)



Substituting this into Equation 1.7:

My Mpyis

Fi 2 Ctxi%a = 61' 2 C(xi%a (09)

Rewriting the result in matrix form, we obtain the well-known Roothaan-Hall equations

for solving the HF equations, as implemented in many computer program packages
FC =SCe (0.10)
1.2.2  Electron correlation methods

For many polyatomic systems, ignoring electron correlation contributions can
introduce significant error into energy calculations. The most straightforward approach to
account for electron correlation is to simply remove the restriction to a single SD. This
can be achieved by allowing electrons to occupy virtual orbitals and form excited SDs.
The SDs can be singly (S), doubly (D), triply (T) etc. excited relative to the HF
determinant. The trial wave function can then be taken as a linear expansion of ground
and excited Slater determinants, with coefficients that allow energy to be at a minimum.
This method based on the variational principle, is called configuration interaction (CI). A
major drawback of this approach is that the number of excited Slater determinants grows
factorially with the number of electron and basis functions. Therefore, full CI calculations
are feasible only for small systems. Truncated CI, which takes into account excited SD up
to a certain state, are usually used instead. Nevertheless, full CI is the best energetic result
a particular basis set function can obtain in the limit of the Born-Oppenheimer

approximation.



Alternatively, one can make use of the perturbation theory to improve upon the
HF results. A popular method is the Moller—Plesset (MP) perturbation theory, which

takes the zeroth-order Hamiltonian as the sum over the Fock operator:

Nejec

E(MP0)= ) ¢, (0.11)

where n in MPn denotes the order or the perturbation. Summing over the eigenvalues of
the Fock operator counts the electron-electron repulsion twice. Therefore the appropriate

first-order correction should be:

Netec

Ewrn=-33 (o3,

¢j>+<¢,-|K,~|¢.,>) (0.12)

Hence,
E(MPO)+E(MP1)= E(HF) (0.13)

Thus, the first correlation correction comes from the MP2 level:

x o ((00,]0.0,) (00, 6,0.)
E(MP2)=ZZ(< He_é _i )

i<j a<b a

(0.14)

where electrons are doubly excited from occupied orbitals i and j to virtual orbitals a and
b. This can be compared to CISD, where CI is accounted up to singly and doubly excited
states. The main difference between CISD and MP2 is that CISD approaches the exact
solution variationally and is therefore size intensive, i.e. the correction term is insensitive
to the system size. MP2, on the other hand, is size extensive and the error term is

relatively constant with respect to system size.
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Another perturbation method related to the MP approach is the coupled cluster
(CC) theory. In MP, a type of excitation (single, double... etc.) is corrected to a certain
order (2, 3... etc.). In contrast, the CC method is to include all corrections to a type of
excitation to an infinite order. Thus CCSD is equivalent to MPoo(SD) where all
contributions from single and double excitations are accounted for. For the purpose of
developing molecular mechanics model for transition metal ions presented in later
chapters, the MP2 method is used for all single-point calculations due to its excellent
accuracies and lower computational requirements when compared to the more expensive

CISD and CCSD methods."”
1.2.3  Density functional theory

Another QM method widely used to compute the energy of a system is the density
functional theory (DFT), which states that there is a one-to-one correspondence between

the electron density (p) of a system and its energy. The system energy is divided into

three parts: the kinetic energy (7), nuclear-electron attraction (£,.) and electron-electron
(Eee) repulsion. Analogous to HF method, the electron-electron repulsion term should
consist of a Coulombic and an exchange component, with correlation included implicitly.
Contemporary DFT methods are based on Kohn-Sham (KS) theory, where the kinetic
energy is split into a part that can be computed exactly and a small correction term. If a
hypothetical system has non-interacting electrons, the exact kinetic energy functional for

a single SD is:

Nejec 1 )
TS = <¢z| - EV

1

9,) (0.15)
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Kinetic correlation from interacting electrons can be treated as a correction term to 7,

which is absorbed into the exchange-correlation energy term. The KS orbitals can be
obtained through essentially the same SCF protocol used for the HF method. The
remaining task is to obtain functionals that approximately describe the exchange-

correlation correction.

Among the numerous published exchange-correlation functionals, those based on
the generalized gradient approximation (GGA) have demonstrated the best performance
for TM ions."*?° These functionals depends not only on the local electron density, but
also on its first derivative. One of the most widely used DFT methods is B3LYP, which
utilizes the three-parameter Becke model®' that consists of the Becke 88 (B88)
exchange® and the Lee, Yang and Parr (LYP) correlation functional *. B2PLYP is also a
popular functional that has demonstrated superior performance to B3LYP for complex
TM systems.” It is a mixture of B88, LYP with HF exchange and second order
perturbation correction to the KS orbitals, analogous to MP2 method. An empirical long-

range dispersion correction is often combined with B3LYP.?
1.2.4 Computational efficiency of quantum mechanics calculations

Although QM calculations treat the electronic structure problem rigorously, they
are very computationally expensive. CPU time required for most SCF-based SD methods,

including DFT, formally scales as the fourth power of the number of basis functions.

Electron correlation methods such as MP2 scales at least as M,__.°. Higher-level theory

basis

6 17

basis *

such as CISD and CCSD has a computational cost on the order of at least M

12



Nevertheless, there are several strategies that can improve the computational efficiency of

QM methods.

For methods in which the SCF procedure is the limiting step, linear-scaling
techniques can be applied.***® This is usually accomplished by partitioning large
molecular systems into spatial segments and subsequently either approximating the long-
range interactions, or using divide-and-conquer strategy to piece together the partitions.
Another way to speed up QM calculations is by using semi-empirical methods.”*~° The
main approximation made in semi-empirical methods is that products of basis functions
depending on electrons located on different atoms are neglected. Furthermore, only
valence electrons are treated explicitly and minimum basis set functions are often used.
Empirical parameters are then introduced to compensate for these approximation based
on fitting to experimental data. These techniques allow single-point QM calculations to
be performed on systems as large as 10,000 atoms.”' However, ensemble sampling
(Section 1.3) of such large systems using semi-empirical methods is still prohibitively

expensive.

Alternatively, instead of describing the entire molecular system by QM, a mixed
quantum mechanics / molecular mechanics (QM/MM) method can be used. QM/MM has
become an especially common approach for studying metalloproteins.'® A select region
of the system (usually around the metal binding site) is treated via an electronic structure
method, such as DFT or semi-empirical method. The rest of the molecule is handled by
molecular mechanics (Section 1.3). For condensed phase simulation, implicit solvent
models are typically used. This hybrid approach dramatically reduces the overall

computational cost and enables meaningful ensemble sampling for thousands of atom

13



count, depending on the QM model used.’*** However, this technique is still much more
computationally intensive than purely MM methods and the treatment of the QM-MM

interface is known to be problematic.’*
1.2.5 Valence bond theory

Although the MO theory is convenient for determining the molecular wave
functions, it is often more qualitatively intuitive to describe a molecular system in terms
of valency and bonding using ideas from the valence bond theory.”>”° For a wave

function ¥, we can define a set of natural orbitals (NO) © that are given by:
Ie, =p0, (0.16)

where T" is the first order reduced density operator. The eigenvalues p; are the

occupancies of the eigenvectors ©,. If T is a one-electron operator represented as:

=N, Cdr,dr,..dr, (0.17)

Y(1,2,..N,..)

we obtain a set of natural atomic orbitals (NAO) for a molecular system:

e’ =ple* (0.18)

1

At the dissociation limit, NAOs are natural orbitals of isolated atom, but they are also
atomic orbitals with the highest occupancy in the molecular environment. In similar
fashion, one can variationally search for natural bond orbitals (NBO) that are 1 or 2-
center local orthonormal orbitals yielding the highest electron occupancies in Lewis-like

bonding structures. The leading N/2 orbitals sorted by occupancy levels (for closed shell,

14



N for open shell) form the Lewis-type NBOs while the remaining orbitals span the entire

basis and describe delocalization or resonance effects.

NBOs are constructed from natural hybrid orbitals (NHO) /4, which are in turn a

linear combination of NAOs:
hy=Y a0} (0.19)

A 1-center lone pair orbital z is simply a single NHO:
n,=h, (0.20)
A 2-center bonding NBO between atoms A and B is:
Q. =ah, +agh, (0.21)
The corresponding anti-bonding NBO is:
Q. =a,h, —agh, (0.22)

Note that unlike anti-bonding orbitals in standard MO theory, anti-bonding NBOs

represent unused valence shell capacity that leads to resonance stabilization.

For most TM complexes, it is necessary to describe the hypervalency of metal-

ligand bonding via a 3-center-4-electron hyperbond:
A:B-C < A-B:C (0.23)

We can represent the NBOs of A:B-C by:

15



n,=h,
Qe = aghy +ach
QZB = aghy —ache
Similary for A-B:C we have:
ne = he
Q.5 =ayh, +aghy
QZB =ayh, —aghy

The principle Lewis structure is therefore:

Voape =, )2 (Qgc )2
Vg =(nc )2 (€245 )2

The resonance stabilization of the Lewis structures is given by:

n,|F|Q. >
L 2) _ <A‘ ‘ BC
n, — Q. AE, o =—"2——7—+
gc+ ~ €A
n.|F|Q’
o, 2) _ <C| ‘ AB>
Ne = Q5 AE o =—2——"F
€+ ~ €

(0.24)

(0.25)

(0.26)

(0.27)

where F is the Fock operator. This delocalization effect is the result of mixing A:B-C and

A-B:C, each with its own appropriate resonance weight. This concept is the basis for our

later development of the AMOEBA-VB model for TM ions, as presented in Chapter 2

1.3 Molecular Mechanics Computational Methods

Biological metalloproteins are large complex systems. For example, human

copper-zinc superoxide dismutase (SOD3) is a homotetrameric protein that containing

222 amino acid residues with more than 5,000 heavy atoms.>” Hemoglobin has two o and
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two B chains each consisting of 141 and 146 residues, respectively, for a total of 574
amino acids.”® Using QM methods to study these proteins, especially those with multiple
metal binding sites, quickly becomes prohibitively expensive. Instead, MM is the method

of choice for modeling these large systems.****

1.3.1 Force field model

In MM, atoms are the smallest fundamental units of the system. Electrons are no
longer treated as separate particles with their own degrees of freedom. Instead, empirical
energy terms that are functions of atomic coordinates are used to account for various
electronic effects and parameters are fitted to sets of experimental or QM calculated data.
Furthermore, nuclear motion is described by classical Newtonian mechanics. Given a set
of empirical functions that describe the energy (U) of the system, the force on atom i can

be computed by:

F,=-V,U (0.28)

l

Hence MM models are often called force field models. The standard force field potential

energy term can be expressed as:

+U +U

cross-term

U ot = Ubond + U

> +U,, TUw +U

elec

(0.29)

angle torsion

The first five terms are valence terms that describe the bonding interactions between

atoms, while the last two terms are non-bonded potential functions.

U, usually takes the form of a Taylor expansion around an equilibrium bonding

bon

distance (r;) between two atoms 7 and ;:
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U™ =ky(r; =1V + k(= 1) Y ++k,(r, = 1) + .. (0.30)

ij =

Since the zeroth and first order expansion terms are omitted, the energy and force at the
equilibrium distance due to bonding is zero. It is clear this formulism does not have the

correct behavior when r;, — oo, as the energy becomes infinite instead of approaching

zero. A Morse potential** is an alternative function that satisfies these limiting conditions:
p g
. —an (rerOY?
U,-?““”zD(l—e e 73 ) )—D (0.31)

While the Morse potential exhibits correct dissociation behavior, MM is not the preferred
model for studying bond breaking since it lacks electronic degrees of freedom. The
Taylor expansion bond fomulation is more commonly used because it provides sufficient

flexibility in fitting bond vibrational frequencies.

Similarly, the angle bend term (U, . ) also usually employs a Taylor expansion

angle

around an optimal angle (8°) formed between two bonds.
Ui =c,(0-6")" +c;bond,0(0—6°) ++c,(0-6") +... (0.32)

The torsional energy (U,..,) 1s a four-body term describeing the rotational

torsion

barrier along a bond. This is usually implemented as a Fourier series:

U =3V, (1+cos(nw —y)) (0.33)

n

n controls the periodicity of the function, which typically ranges usually from 1 to 3. The

phase-shifty is often assigned O for odd » and 7 for even n to maintain achirality of the

term
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For sp>-hybridized atoms, there is significant energetic penalty associated with
moving the center atom away from the trigonal plane. This penalty is not fully captured

by the torsional term and requires an additional out-of-plane bending energy term U, :

oop __ 2
U,"=ayx

(0.34)
U = ad’

The out-of-plane term can be a function of either an out-of-plane bending angle (y) or a

distance (d) to the trigonal plane formed by the three attached atoms.

Cross-term energy (U, ) function describes the coupling of the bonds, angles

Cross-term
and torsions. The most commonly implemented term is stretch-bend coupling, but other

cross-terms may also be used, depending on the force field model.

The van de Waals (vdW) term is used to describe the non-polar interactions
between two non-bonded atoms. This energy function has the requirement to be repulsive
at short distance, due to the explicit overlap of electron clouds, and asymptotically
approach zero at long-range. There is also be a negative energy region surrounding the
ideal vdW contact distance that accounts for dispersion attractions between atoms. One of

the oldest functions for vdW interaction is the Lennard-Jones potential®:

rq 12 rQ 6
EV=¢l| L] -| L (0.35)
' T T

Alternative vdW functions also in use, such as the buffered 14-7*° and the Buckingham

type potentials®’.

19



Most standard force fields implement similar functions for the energy terms
introduced thus far. The most important differentiation among the various models is the
approach to describing electrostatic interactions. Force fields, such as CHARMM®,
OPLS*, AMBER and GROMOS"' , use point partial charges to represent the electron
distribution. These charges are often, but not necessarily, atom-centered. Fictitious charge
sites can also be included at bonded centers or other off-atoms sites to improve the model
accuracy. The interaction between two point partial charges (g; and g;) is described by a
simple Coulomb potential:

4.4,

£ F;

elec __
E* = (0.36)

A more sophisticated model to describe the electrostatic potential around a molecule is to
include contributions from higher order electric moments, such as dipole, quadrupole etc.
These higher order moments are usually obtained by performing multipole analysis on
MO wave functions derived from high-level QM calculations.’> Example of force fields

that employ a multipole electrostatic model are AMOEBA®® and SIBFA™.

Another crucial aspect of electrostatic interaction is polarization. In traditional
force fields, the coupling between the local environment and the charge/multipole model
is neglected. Multi-body electrostatic contributions are not accounted for, which can be
significant for polar molecules.”” A simple method to include polarization is by allowing
partial charges to adjust to changes in molecular environment based on electronegativity
equalization.”® However, this first approximation approach is unable to capture charge
polarization on planar molecules when the electric field is perpendicular to the molecular

plane. Drude oscillator methods, also known as “shell models”, have also been used to
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account for polarization effects in force fields.”” Polarization is introduced by attaching
massless Drude particles to atoms via harmonic springs, which are allowed to move in
response to the electric field. Alternatively, one can compute the induced dipole moment

ind

(u;, ) explicitly in response to external field (E, , ):

W = oLE, (0.37)

i~io

where ¢, is the atomic polarizability.”® This is the model implemented in the AMOEBA

force field.
1.3.2  Molecular mechanics simulation techniques

Experimental measurement of an observable (O) of a molecular system is a time-
average value of that property. The instantaneous value of O depends on the momenta p

and positions r of all particles. Thus the ensemble average of O is given by:
(0)= [[dpdro.r)p(p.r) (0.38)

where p is the probability of a system with momenta p and positions r. Therefore, one

must sample the conformational space of the molecular system with the correct
probability distribution in order to correlate computed properties with experimental
measurements. This is especially important for complex systems with multiple local
minima that are close in energy. For the canonical ensemble (constant number of particle,

volume and temperature), p is given by:
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_E(r)
kT

1
p(p.r)=——e
NVT (0.39)

_A(par)

Oxyr =€ i

where k; is the Boltzmann constant, E is the energy of the system, Oyt is the partition

function and 4 is the Helmholtz free energy.

One method to sample the conformational space is through Metropolis Monte
Carlo (MMC) simulation. A trial conformational or configurational move is generated
along a Markov chain and the difference in energy between the new and old structures is
weighted by the Boltzmann factor. The trial move is only accepted if a uniform random
number on [0,1] is lower than the Boltzmann factor. Alternatively, one can perform
molecular dynamics (MD) calculations to simulate the time-evolution of the molecular
system. As described previously, the forces on an atom can be readily computed from the
negative gradient of the force field energy. Assuming these forces, and the corresponding
accelerations, are constant for a very small time period (approximatly 1fs), a new set of
new positions and velocities can be computed from the original conformation to produce
an MD step. This stepping procedure is continued to produce a full MD trajectory of the
system across time. Both MMC and MD are widely used sampling methods. The
advantage of MD is that time-dependent properties can be easily computed from MD
trajectories whereas there is no time relationship between two trial moves in MMC. Both
methods automatically generate conformational probability densities in accordance to
Equation (0.39). Hence the ensemble average is simply the arithmetic mean of observable

the O in the generated MMC Markov chain or the MD trajectory generated.
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1.3.3  Force field for transition metal ions

A number of different MM models have been reported that describe TM-ligand
interactions with varying degree of success. The simplest approach is fitting traditional
force field terms such as bonds, angles and torsions to known properties obtained from
experiments or QM calculations. However, the force field parameters obtained through
this process generally have limited transferability and different parameters may become
necessary for the same type of ligand depending on ligation geometry. For example, the
d’ Cu*'Lg complex often has elongated axial ligands due to the Jahn-Teller distortion.
This phenomenon is not well described if the same bond parameters are used for all the
ligands.** More importantly, standard angular potentials based on a Taylor expansion of a
reference ligand-metal-ligand (L-M-L) values or a Fourier series are inappropriate for
describing TM complexes. MLs complexes such as Fe(CO)s adopts the trigonal
bipyramidal geometry, where the angles between ligands can be 90, 120 and 180
degrees.”® Another example is [CuCly]*, for which both square-planar and tetrahedral

structures exist in equilibrium. (see Section 1.1.2)

A more radical solution is to construct a “reactive” model that allows atoms to
respond chemically to their environment by dynamically assigning bond orders and

60,61

charges based on molecular geometries. Alternatively, there are ‘“semi-classical”

models that employ potential functions for TM ions derived from the valence bond (VB)

356263 or the angular overlap model (AOM)® to supplement traditional force field

theory
energy terms. Models such as VALBOND®""° are based on a simplified version of the

VB theory, in which TM ions are treated as hypervalent resonance centers and L-M-L

interactions are described by geometric overlap between sd" hybridized bonding metal-
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ligand orbitals. On the other hand, models proposed by Deeth, et al.”'", Piquemal, et al
™ and Carlsson, et al.””"™® are developed from the AOM and the ligand field (LF) effects
are handled through explicit diagonalization of a perturbed d-orbital matrix due to the
presence of ligands. These methods have demonstrated satisfactory agreements with
experiments and with ab initio calculations when used to study a range of TM systems

with different coordination geometries and ligation states.

The semi-classical force fields introduced thus far have focused on modeling the
effects of local metal-ligand binding on the geometry of TM complexes. However,
electrostatic interactions are also a major component of TM complex energetics. In most
TM models, the electrostatic potential is not applied between metal and its ligands, which
makes these inappropriate for study of ligand exchanges and other dynamic events. In
addition, TM 1ons behave similarly to main group cations at distances beyond direct
ligation, and polarization becomes an important contributing factor. Most semi-classical
models developed for TM ions use a fixed charge model for electrostatic interactions,
which is inadequate for treating systems with highly polar sites.”” The main motivation
for our current work is an attempt to address these shortcomings. It has been shown that
the AMOEBA force field has excellent performance for main group mono- and di-

. 1
CEl'[lOIngo’8

and therefore provides an appropriate basis for modeling TM di-cations.

1.4 Preliminary Investigations

To demonstrate the importance of d-orbital electronic effect on the coordination
chemistry of TM complexes, we computed the energies of square-planar and tetrahedral

[M(NH3)4]*" complexes at varying metal-ligand distances using MP2/6-311G(d,p) ** QM

24



methodology. The metal species M are dications of chromium, manganese, iron, cobalt,
nickel, copper and zinc. The metal spin states were chosen to give the lowest QM
energies. The differences in potential energy between the two ligand geometries are

plotted in Figure 1.6.

It is immediately clear that Cr*", Ni*" and Cu®*" adopt a square-planar geometry
when ligated to NH3 while other third-row TM di-cations prefers the tetrahedral geometry.
Since all these ions have formal +2 charges and have similar atomic radii,” standard
force field treatment of ions will not be able to correctly describe these geometric
preferences. Another consequence of the d-orbital splitting arises in the subtlety of spin
states. For example, the d° Fe*" complex at first glance should be low-spin, in which all
three non-bonding d-block orbitals of the square-planar geometry are doubly occupied.
(Section 1.1.2) However, QM calculations reveal that the high-spin tetrahedral structure

is favored, indicating that the exchange energy has compensated for the ligand field effect.
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1.5 Figures
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Figure 1.1 Graphical representations of ground state d-orbitals
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Figure 1.2 Illustration of sample o- (left and middle) and 7- (right) bonds
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Figure 1.3 MO diagram demonstrating the d-orbital splitting for octahedral ML complex
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Figure 1.4 MO diagram showing the relationship between ML, orbitals (right) and MLg
orbitals (left)
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Figure 1.5 MO diagram showing the relationship between square-planar ML, orbitals
(left) and tetrahedral ML, orbitals (right)
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Potential difference between square-planar and tetrahedral [M(NH 3)4]2’
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Figure 1.6 Energy difference between square-planar and tetrahedral tetra-aqua
[M(NH;)]*" complexes computed using MP2/6-311G(d,p) at varying metal-ligand
separations; energy calculated by subtracting the potentials of tetrahedral from that of
square-planar structures
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1.6 Tables

Table 1.1 Character table for the Oy, point group

O, E 8C; 6Cy 6Cy 3Cy i 88 60; 6Ss 30

INF 1 1 1 1 1 1 1 1 1 P+
Ay 1 1 -1 -l 1 1 1 S . |

E, 2 -1 0 0 2 2 -1 0 0 2 (%, x> =)
Ty 3 0 -1 1 103 0 -1 1 -1

Ty 3 0 1 S 0 1 -1 -l (xy, Xz, yz)
A, 1 1 1 1 1 o s ) |

An 1 1 -1 -l 1 -1 -1 1 1 -1

E, 2 10 0 2 2 1 0 0 -2

T 3 0 -1 1 -1 300 1 -1 1 (x, v, 2)

Tow 3 0 1 o e e -1 1 1
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Table 1.2 Character table for the T4 point group

T« E 8C; 3C, 6Ss 60y

A1 1 1 1 1 R

A 1 1 1 -1 -1

E 2 -1 2 0 0 22 —x* =%, X =)
T, 3 0 -1 1 -1

T, 3 0 -1 -1 1 x,yv,2)  (xy,xz,y2)
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Chapter 2. A Valence Bond Theory in the AMOEBA

Polarizable Force Field
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In this chapter, a MM model is developed for aqueous Ni*", Cu*" and Zn”" ions
based on VB theory in conjunction with the AMOEBA (Atomic Multipole Optimized
Energetics for Biomolecular Applications) polarizable force field.” The development of
VALBOND by Landis, et al. suggests that VB theory may be incorporated into MM
through relatively simple algebraic functions that are computationally efficient. In this
initial investigation, we limit our scope to Ni*", Cu®" and Zn>" in order to reduce the
number of spin states and the complexity of model development. Unless otherwise stated,
we constrain discussions in this chapter on Ni*" ion to its low-spin species. Parameters
are determined against energies calculated with QM methods for metal-water complexes
in the gas phase and validated against experimental data for the aqueous ions.
Additionally, previous work shows that the AMOEBA force field provides a satisfactory
description for the aqueous Zn”" ion.** We have pursued further investigation to see if
modeling the covalency explicitly between water ligands and Zn®" can improve the
accuracy of the existing AMOEBA model. In the following sections, we present the
AMOEBA-VB framework for Ni*", Cu®" and Zn*" ions and document the procedures for
obtaining force field parameters. Results from energy computations for gas phase ion-
water complexes and molecular dynamics simulations for aqueous ion solutions are

reported and compared against QM and previously published data.
2.1 Methodology
2.1.1 AMOEBA-VB framework
The general interatomic AMOEBA potential energy can be expressed as:

U amoeea = Upona + Uangle +U,, + Uoop +U +U o+ UL + Ug (1.1)

torsion ele ele
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where the first five terms represent bond stretch, angle bend, bond-angle cross-term, out-
of-plane bend and torsion potentials used to describe local valence contributions. The last
three terms handle nonbonded interactions, including the van de Waals (vdW), permanent
electrostatic and induced electrostatic potentials.”®**® Additional potential energy terms

for TM centers based on VB theory are added to the overall energy:
Uior = U smorsa T Uvys (1.2)

In the context of aqueous TM ions, only the nonbonded interactions from the standard

AMOEBA model are applied between the metal center and water molecules.
2.1.2 Nonbonded intermolecular potentials

The basic AMOEBA potential terms use energy expressions from previous
published reports.”***¢ A buffered 14-7 potential *° is used to model vdW interactions,

and takes the following form:

U = [ 10 Iy, (1.3)
"\ p;+6 p;+Y

and R;; represents the separation between atoms 7 and j. The values

where p, =R,/ R},
of n, m, 6 and yare set to 14, 7, 0.07 and 0.12 respectively, while ¢, and Rg. correspond to

the potential energy well-depth and minimum energy distance. For heterogeneous atom

pairs, mixing rules are applied to determine ¢; and R?j :
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The electrostatic potential is described as having a permanent and an induced
component. The permanent electrostatic component is represented by atom-centered
monopole, dipole and quadruple moments. The parameters are determined via Stone’s
distributed multipole analysis®’ followed by refinement against QM-derived electrostatic
potential maps. Polarization is accounted for via self-consistent induced dipoles

computed from:
.uiif:;j =k, (1.5)

where ¢; is the atomic polarizability and E; ,is the total electric field generated by

permanent multipoles and induced dipoles. A Thole damping factor is applied at short
interaction distances, corresponding to use of a smeared charge representation that takes

the form:

3a

= 1.6
p=re (1.6

where a 1s a dimensionless factor controlling the strength of damping and

1/6

u=R;/(o,a;)” is the effective separation between polarizable sites i and j. The Thole

mechanism serves to avoid the well-known polarization -catastrophe at small
separations,™ and yields reasonable anisotropic molecular polarizabilities starting from

isotropic atomic polarizability values.*
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2.1.3  Water model

The AMOEBA water model has been previously reported,®” and tested in a
variety of different environments.* The standard intermolecular and intramolecular
energy terms for water are retained in the AMOEBA-VB model. The water force field
parameters for the nonbonded and valence potentials are reported in Table 2.1 and Table

2.2, respectively.
2.1.4 Transition metal ion model

In addition to the usual AMOEBA vdW and electrostatic potentials, VB terms are
applied between each TM ion and ligand water oxygen atom, as water molecules interact
with TM ions predominately through lone pair p-orbital electrons on the oxygen atoms.
As a first approximation, a TM-water complex is modeled by its principle field, with
water interacting with TM ions through ¢ bonding only."* The VB component is

expressed as:

resonance

UVB = 2 WkUresunance,k (1 7)

where the total VB potential is the summation of individual energy contributions from the

resonance structures corresponding to the TM complex. W, is an empirical function that

mimics the weighting for resonance structure k in natural resonance theory.*

For Ni*, Cu®" and Zn®" water complexes, the principle resonance structure
corresponds to the Lewis structure, as shown in Figure 2.1a, where the TM interacts with

water molecules via ionic interactions. The intermolecular energy of the principle
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resonance structure corresponds to the regular AMOEBA non-bonded potentials. The d-
electron effect can then be explained by considering minor non-Lewis resonance species
where 3-center-4-electron (3c4e) bonds are formed between the TM center and ligand
atoms.” This represents the donation of electron density from oxygen to the metal, and
delocalized ionic-covalent bonding stabilizes the hypervalent TM center. Using this
description, the molecular orbitals of Ni*" and Cu*"-water complexes can be decomposed
into the contributions from Lewis and non-Lewis resonance structures. Note that using a
single 3c4e bond per resonance is only valid for low-spin Ni*", which has an empty
instead of two partially filled d-orbitals. Its 3c4e bonds have predominantly d character
since the Ni*" and Cu®" 3d valence orbitals can accept electron density more readily than
the 4s orbital. On the other hand, the 3d orbitals of Zn”*" are fully filled and the resonance
hybrids are mainly due to overlap with the Zn>" 4s orbital. Hence both Ni*" and Cu®*
have greater resonance stabilization energy than Zn>". The overall hypervalent resonance
scheme for the TM ions is shown in Figure 2.1b. The angle formed by a 3c4e bond will

be referred to henceforth as the “resonance angle”.

The intermolecular energy between a TM ion and ligand water molecules for an

individual resonance construct k can be expressed as:
Uresonance k = UVB—bond,k + UVB—angle,k (1 8)

where Uygponax and U, are the two bonding terms and one angular term used to

B-angle k
describe a single 3c4e bond. Since the number of resonance structures is equal to the
number of angles formed by the TM-water complex, the overall energy contribution from

the VB component becomes:
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angles

UVB = 2 Wk (UVB—bond,k + UVB-angle,k) (1 9)
k

VB angular potential is based on Pauling’s principle of angular overlap for a pair
of sp™d" hybrid orbitals.”****° The overlap integral associated with the presence of two

identical non-orthogonal sp™d" bonding orbitals is:

2
A=c’+nr’ cos@+5—(3cos20—1)
2 (1.10)

2 1 2 m 2 n
=, T =——- , =
1+m+n 1+m+n I1+m+n
where 6 is the angle between the orbitals. The terms o>, 7> and §° represent the s, p and
d contributions to the bond, respectively. Following Landis,”® we construct the angular

potential for a 3c4e bond as:

2

Uvb.angie & = Kvp angle s (1 —A@, + 7’ )H Fepnstes (1.11)

F — e_ak jrkz.[

VB-angle k i

where Ky ..., 18 @ constant scaling factor for angle k. The bond order term in Landis’
formulation is folded into Kyg,,,., in our implementation. We introduce an additional
scaling factor, Fp ,,..,;> @ @ function of the metal-ligand distance r; in bond i, and an

empirical parameter ¢, ;. This factor is necessary to describe the overlap drop-off with

increasing metal-ligand distance. The overall energy term has a linear geometrical
preference that is suitable for describing 3c4e bonding involving Ni*" and Cu®". The
angular potential is not applicable to Zn>" since the interacting 4s orbital is spherically

symmetric. Previous data has shown AMOEBA satisfactorily describes aqueous Zn>"
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jons without the addition of a potential term to account for d-electron effects.** However,
we retain the bonding component for Zn*" to investigate its impact on the AMOEBA
model. Note the result from overlapping hybrid orbitals is destabilizing and therefore the
VB angular term is always positive. A Gaussian-like function is adapted for the VB

bonding potential:

2
UVB-bond,k = _2 K VB-bond,kF VB-bond ki
; (1.12)

2
F — e—ﬂk ki
VB-bond ki —

where the index i sums over the two ligands in a single 3c4e hypervalent bond. Kyg a4

is the scaling parameter for bond i of resonance angle . In contrast to the angular term,
the VB bonding contribution is purely stabilizing. Additionally, we propose an empirical
resonance weighting function for resonance structure k that is based on metal-ligand

distances:

2 angles 2
Wk = I I Eesonmce,k,i Z Cl + I I F;esonance,l JJ
i J

[

(1.13)

2 2
— o Vel e RUN]

resonance k,i e > % resonance,l,j ~ €

where ¢; is a parameter for resonance angle /. The index / runs through all resonance
angles including k. The subscripts i and j denote the two metal-ligand pairs in resonance
angles £ and /, respectively. According to this formulation, the weighting for resonance
construct k£ depends on the positions of all water molecules in the TM complex. Note that
although the resonance weight function depends on the number of ligands, it is general

for all coordination number and its value transitions smoothly between them.
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Finally, it has been shown that Cu®" complexes in octahedral geometries exhibit
Jahn-Teller type distortions.">**®' Since the simplified AMOEBA-VB model presented
does not compensate for this effect explicitly, we explored the effect of adding a
harmonic first order component’ where the Jahn-Teller stabilization energy arises from

the Q, distortion mode. The exact formulation used is:

Ef=—(r—r)A/lr

(1.14)
E=-2(r—r)Alr,

where r is the metal-ligand distance, ¢ is the average bonding distance of the TM

complex, and A is an empirical value to scale the strength of the Jahn-Teller effect. E;

and Ej are applied to the in-plane and axial ligand molecules respectively.

2.1.5 Parameterization and validation

The parameters for the AMOEBA-VB framework are based on fitting MM energy
values to those obtained by ab initio methods for structural variants derived from
common ligation geometries of TM complexes, including square-planar, tetrahedral and
octahedral. These structures are generated in such way that they represent easily
accessible states during computational simulations. All electronic structure calculations
were performed with the Gaussian 09 package.”> QM geometry optimizations were
carried out with B3LYP*'* DFT calculations using the 6-311G(d,p)** basis set. Single-
point energy were computed via MP2/aug-cc-pVTZ ** on main group elements and
MP2/cc-pVTZ *° for the TM ions. An SCF convergence criterion of 107 a.u. was
imposed, and a Fermi-broadening SCF method”® was used for Cu?” complexes to

improve convergence stability. The AMOEBA-VB potentials and Cartesian derivatives
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were implemented in the TINKER® molecular modeling package used for all MM

computations.

The [M(H,0)4]*" and [M(H,0)s]*" gas phase complexes were optimized using
QM methods with angular constraints to yield idealized tetrahedral, square-planar and
octahedral ligation geometries. Intramolecular optimization within water molecules was
allowed. These structures serve as a starting point for generating further variations in
geometry designed to assess different aspects of the MM model. Complex energies
computed by AMOEBA were manually fit to QM data from corresponding procedures
using a common set of parameters for a metal ion interacting with a single ligand
molecule. The standard AMOEBA parameters were optimized, and then fixed in value,
prior to fitting the VB terms. Results with the Jahn-Teller distortion term were also
computed when applicable. [Ni(H,0)s]*" is not included in this initial model development
as it is a high-spin species that would necessitate a different resonance formulation. As a
result, aqueous simulations for the Ni*" ion were not performed because it has been

suggested the Ni*" first solvation shell consist of six water molecules.”’

Bond stretching. Starting from optimized structures with idealized bonding
geometries for square-planar [Ni(H,0)4]*" and [Cu(H,0)4]*", tetrahedral [Zn(H,0)s]*"
and octahedral [M(H,0)s]*", single point energy calculations were performed with both
QM and MM methods and plotted as a function of varying metal-oxygen distance (see
Figure 2.2a). Water molecules were held rigid during this procedure. The protocol was
designed to test the accuracy of the MM model in describing bonding potentials for ideal

ligation geometries.
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Hypervalent effect. Without accounting for the resonance effect due to the
hypervalent center, gas phase metal-water complexes adopt geometries that minimize
ligand-ligand repulsion.”® Hence main group tetra-aqua complexes favor a tetrahedral
geometry over the corresponding square-planar configuration. The presence of strong
3c4e resonance hybrids for Ni*™ and Cu’" is predicted to stabilize the square-planar
geometry according to VB theory. On the other hand, the lack of an angular contribution
from 3c4e bonding for Zn®" leads it to prefer a tetrahedral water complex. Therefore, the
energetic difference between tetrahedral and square-planar structures provide a direct
indication of the magnitude of the hypervalent effect. Single point energies were
computed by QM and MM methods for [M(H,0)s]*" in both square-planar and
tetrahedral coordination, and at varying metal-oxygen distances. All water molecules
were kept equidistance from the TM center for each data point (see Figure 2.2b). Energy
differences between the two geometries, after removing the water-water interaction
energy in the absence of a metal ion, are calculated and plotted with respect to the metal-

oxygen separation.

Random perturbation. We use a series of perturbed metal-ligand structures to
gain insight into whether the MM model can reproduce the ab initio energy surface near
the optimized structures. Small random perturbations were introduced to optimized ideal
geometries by changing the metal-ligand distances and rotating the ligand around the
metal-ligand vector and two orthogonal axes (Figure 2.2c). The maximum perturbation
from the optimized structure was 0.2A for metal-ligand distance and 10 degrees for each
rotation. Structures containing ligand-ligand contact distances less than 2.5A were

discarded, and a total of 100 random complex geometries were generated. The energy of
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each complex was computed by QM, and compared against values obtained from MM
models. Structures with QM energies more than 15 kcal/mol higher than that of the
idealized geometry were discarded since these high-energy structures are not readily

accessible during routine MD simulations.

Molecular dynamics. Molecular dynamics simulations were performed for both
aqueous Cu™ and Zn' ions using the parameters derived above. A total of 8ns of
canonical ensemble MD trajectory at 298K was collected for a single TM ion and 214
water molecules in a 18.6216 A cubic box. Periodic boundary conditions were applied
and particle-mesh Ewald summation was utilized to include long-range electrostatic
interactions.”* The convergence criterion for self-consistent dipole polarization was set
to a 0.01 Debye RMS change in atomic induced dipole moments. The correlation
function, solvation shell properties and coordination number of each TM ion was

computed from the trajectories and compared to published data.
2.2 Results and Discussions
2.2.1 FEnergy components

The values for parameters obtained from the fitting procedures are shown in Table
2.3. The TM ions are assigned only a +2 permanent charge; it does not make sense for
TM 1ions to possess higher-order multipoles in the absence of an external electric field.
The polarizability and Thole damping factor are similar to those of main group dications

54,81

in previously published studies. The vdW radii follow the general trend across third

.. . 2 .
row transition metals in that Zn>" > Cu*" > Ni" *
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The Ni*" and Cu®" VB parameters are obtained with the 3c4e bond hybridization

set to 10% s and 90% d (corresponding to 6°= 0.1, £°=0 and §°= 0.9 in Equation
(1.10)). We obtained this empirical ratio by recognizing that oxygen lone-pair electrons
predominately interact with d orbitals of the Ni*" and Cu®" ions, which have d* and d’
configuration respectively in their ground states. A small amount of s hybridization is
modeled to take into account the effect of d-s mixing. Figure 2.3 shows the overall shape
of the VB angular potential, which is similar to the corresponding function derived by
Carlsson, et al.”>’® from AOM considerations. The main features of the potential function
are the two local minima at ligand-metal-ligand angles of 180° and 90°, allowing tetra-

aqua Ni*" and Cu®" complexes to adopt the preferred square-planar geometry.

The QM optimized metal-ligand distances for tetra- and hexa-aqua TM complexes
are reported in Table 2.4. For tetra-aqua complexes, all four water molecules remain
equidistance from the TM center, after bond relaxation under symmetry angular
constraints. However, the axial and basal water molecules for hexa-aqua Cu>” complexes
adopt very different ligation distances as a result of Jahn-Teller distortion.”’ The axial
water molecules in [Cu(H,0)s]*" are significantly elongated, and this presents a challenge
for MM models lacking separate parameters for axial and basal water molecules as
shown in the results below. The AMOEBA-VB energy breakdown for these optimized
geometries is presented in Table 2.5. Note the VB bonding and angular components are
reported in conjunction with resonance weighting as this reflects the final energy
contributions from both 3c4e interactions and resonance as indicated in Equation (1.9). In

terms of relative strength of the various energy components, the permanent electrostatic
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interaction makes the largest individual contribution, followed in order by the

polarization, vdW and VB potential energies.
2.2.2 Bonding potential

Bonding potential energies computed by QM and MM methods are shown in
Figure 2.4. A single bond potential is constructed for tetra-aqua complexes since the
water molecules are equidistant from the metal. However, axial and basal water
molecules for octahedral complexes are plotted separately due to their differences in
bonding distances and energies. In the cases of [Ni(H,0)4]*" and [Cu(H,0)4]*", both the
AMOEBA and the AMOEBA-VB models arrive at minimum energy distances consistent
with QM values, but the inclusion of the VB components produces a stronger binding
interaction that better reflects QM results. For [Cu(H,0)s]*", both MM models produce
the correct bonding geometry for basal water molecules, with AMOEBA-VB again
producing a more accurate interaction energy. Neither model was able to reproduce the
full extent of the elongation of axial ligand to metal distances, resulting in 2.07A and
2.09A for AMOEBA and AMOEBA-VB respectively versus 2.33A for QM. The
interactions between axial water molecules and the Cu”" ion are also too strong (-23.07
kcal/mol for AMOEBA-VB, -24.23 kcal/mol for AMOEBA and -18.07 kcal/mol for QM),
in general agreement with the distance discrepancies. Adding an explicit Jahn-Teller
distortion term does not dramatically improve the ligand binding geometry (axial Cu-O
distance at 2.12A) but it does produce a more accurate binding energy (-17.94 kcal/mol).
Results from the MM model with and without the VB term do not exhibit a significant
difference for tetra- and hexa-aqua Zn”>" complexes. For Zn*", both MM methods produce

bonding potentials in agreement with QM calculations.
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2.2.3 Hypervalent effect

The energy difference between gas phase square-planar and tetrahedral tetra-aqua
complexes are plotted as a function of metal-ligand distance in Figure 2.5. Note that
water-water interactions are subtracted to isolate the energetics between TM and water
molecules. It is apparent from the figure that in the absence of a VB component,
AMOEBA produces the wrong geometrical preference for [Ni(H>0)4]*" and [Cu(H20)4]*".
The AMOEBA-VB framework is able to capture the correct trend of the hypervalent
effect, even though the computed energy difference is still relatively small compared to
QM data. As our final proposed model, we have settled on a set of parameters producing
the most balanced performance across all aspects of the parameterization. Figure 2.5 also
suggests the VB angular potential is not required to obtain the optimal tetrahedral

geometry for [Zn(H,0)4]*" complex.
2.2.4 Energy surface

To help assess the accuracy of the MM energy surface, we compare in Figure 2.6
the energies computed using ab initio methods with those from MM for perturbed
structures around idealized geometries. All energy values presented are relative to the
energy of idealized coordination structures. Results obtained with the AMOEBA-VB
framework show there is a dramatic 60% and 18-19% reduction in RMS deviation from
QM values when compared with AMOEBA-only data for Ni*" and Cu®" complexes
respectively. Addition of the Jahn-Teller distortion term does not materially change the
results. On the other hand, the addition of the VB term to Zn®" does not have a

meaningful impact on correlation between QM and MM results. For these species, both
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AMOEBA and AMOEBA-VB are able to generate accurate relative potential energies in

comparison with QM data.
2.2.5 lons in aqueous solution

A series of canonical ensemble molecular dynamic simulations were performed
for aqueous solutions containing a single Cu®" or Zn*" ion. Calculation for Cu*" used the
AMOEBA-VB model, but without application of the Jahn-Teller distortion term.
Omission of the Jahn-Teller was necessary during MD because the simple first harmonic
potential function does not provide a smooth energy transition when axial and basal
ligands rearrange during the course of a simulation. The metal-oxygen correlation
function and radial distribution function for water surrounding the TM ion is presented in
Figure 2.7. The first solvation shell for both TM ions is found to contain six water
molecules and the ligation geometries, along with data from previous studies, are
reported in Table 2.6. Six-membered ligation states have been reported in the literature
for Zn>" 771919 and this agrees with our observation. However, there is a lack of general
consensus regarding the optimal ligation geometry of aqueous Cu”", and a variety of first
solvation shell occupancies have been reported.'”*'® A solvation number of 5-6 has been
suggested for Cu>" from numerous experimental and computational studies. *"'**'% The
5-coordinate structure is generally attributed to a distortion from octahedral geometry due
to the Jahn-Teller effect. We did not observe the “dual-peak™ 6-coordinate Cu-O radial

distribution obtained from simulation with the ReaxFF model.®!

2.3 Conclusions
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The AMOEBA-VB framework presents a foundation upon which a generalized
transition metal force field can be built. The appeal of a MM model based on VB is that it
is physically intuitive and avoids differential treatment of ligands of the same type based
solely on coordination geometry. The results presented show addition of VB components
to AMOEBA improves energetic accuracy when compared to QM data, while producing
reasonable simulation results in aqueous solution. It is also clear that AMOEBA can
satisfactorily describe the characteristics for aqueous Zn>" without explicit modeling of

the interaction between oxygen lone-pair electrons and TM orbitals.
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2.4 Figures
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Figure 2.1 Resonance scheme for [M(H,0)4]*" complex where M = Cu or Zn. a) Principle
resonance that corresponds to the Lewis structure of the complex. b) Non-Lewis minor
hypervalent resonance structures with a single 3c4e bond per resonance; the number of

such resonance structures is equal to C, where # is the number of ligands.
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a. bond stretch b. ligand field stretch c. random perturbation
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Figure 2.2 Methods for generating TM complex structural variations from idealized
geometries used in AMOEBA-VB and QM gas phase calculations. a) a single TM-ligand
distance is varied while other ligands are fixed at their QM-optimized coordinates. b) all
TM-ligand distances are changed simultaneously from the optimized geometry and each
ligand remains equidistance to the metal center during the process. c¢) perturbations are
introduced to TM-water complexes by randomly changing the metal-ligand distances and
rotating around the local metal-ligand vector and two axes orthogonal to the vector.

52



1-A(6+7)

L 1 1 1 L 1 | |
20 40 60 80 100 120 140 160 180
L-+d-Langle (6)

Figure 2.3 Schematic plot of VB angular potential for each 3c4e bond based on 10% s
and 90% d hybridization.
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