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ABSTRACT OF THE DISSERTATION 

 

Structural and Functional Study of the Diheme  

Cytochrome c Subunit of the Cytochrome bc Complex  

in Heliobacterium modesticaldum 

By 

Hai Yue 

Doctor of Philosophy in Chemistry 

Washington University in St. Louis, 2013 

Professor Robert E. Blankenship, Chair 

This dissertation is focused on the structural and functional study of the unique diheme 

cytochrome c subunit of the cytochrome bc complex in H. modesticaldum, and its application in 

determining the stoichiometry between H. modesticaldum’s cytochrome bc complex and its 

reaction center. Heliobacterium modesticaldum is a gram positive, anaerobic, anoxygenic 

photoheterotrophic bacterium. Its cytochrome bc complex (Rieske/cyt b complex) has some 

similarities to cytochrome b6f complexes from cyanobacteria and chloroplasts, and also shares 

some characteristics of typical bacterial cytochrome bc1 complexes. One of the unique features 

of the heliobacterial cytochrome bc complex is the presence of a diheme cytochrome c instead of 

the monoheme cytochrome f in the cytochrome b6f complex or the monoheme cytochrome c1 in 

the bc1 complex. To understand the structure and function of this diheme cytochrome c protein, 

we expressed the N-terminal transmembrane-helix-truncated soluble H. modesticaldum diheme 

cytochrome c in Escherichia coli. This 25 kDa recombinant protein possesses two c-type hemes, 



 xi 

confirmed by mass spectrometry and a variety of biochemical techniques. Sequence analysis of 

the H. modesticaldum diheme cytochrome c indicates that it may have originated from gene 

duplication and subsequent gene fusion, as in cytochrome c4 proteins. The recombinant protein 

exhibits a single redox midpoint potential of + 71 mV vs NHE, which indicates that the two 

hemes are in very similar protein binding environments. Further studies by hydrogen/deuterium 

exchange mass spectrometry (HDX-MS) and ion mobility mass spectrometry (IM-MS) show 

unambiguously that there is a real structural conformational difference between the oxidized and 

reduced diheme cytochrome c. A smaller or more compact reduced form might have the function 

of bringing the two hemes closer to facilitate interheme electron transfer, which also implies a 

mechanism that is possibly sensitive to the distance between hemes. To determine the 

stoichiometry of heliobacterial reaction center (RC) and cytochrome bc complex, which is a 

crucial step toward building a more accurate heliobacterial cyclic electron transfer (CET) model, 

antibodies against the diheme cytochrome c was raised and quantitative Western blotting was 

performed to probe and calculate the content of the cytochrome bc complex. The amount of RC 

was determined by measuring the absorption spectrum of the Bchl g (Bchl g’) in the cell 

methanol extract. A stoichiometry of 14 to 8 RCs per cytochrome bc complex catalytic center 

was estimated, a much larger number than previously reported, indicating a high turnover 

number of the cytochrome bc complex.  

This research was supported by grant NNX08AP62G from the Exobiology program of NASA. 
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General introduction into photosynthesis 

              Photosynthesis is a biological process whereby the sun’s energy is captured and stored 

by a series of events that convert the pure energy of light into the biochemical energy to power 

life [1, 2]. It is arguably the most important process ever to have evolved, and provides the 

foundation for essentially all life, all our food and most of our energy resources. Over the past 

billions of years of earth’s geological evolution, photosynthesis profoundly altered the face of 

our planet [3].  

              Photosynthesis uses light from the sun to drive a series of chemical reactions. Although 

the sun produces a broad spectrum of light that ranges from gamma rays to radio waves, when 

the light reaches the surface of the earth, most of the ultraviolet part is absorbed by the ozone 

molecules in the atmosphere. The entire visible range of light, from 400 nm to 700 nm, and part 

of the near infrared range, from 700 nm to 1000 nm, are crucial in powering photosynthesis in 

most of the photosynthetic organisms [4]. The light quality, referring to the spectral content or 

color of the light, can vary a lot between different environments. One classic example is in a 

forest, while the upper part of the canopy receives the full solar spectrum, the floor receives only 

the light that is not absorbed above, therefore the one enriched in green and far red region. 

Interestingly, there are many elegant mechanisms different organisms use to adapt to changes in 

light quality [1].  

              In eukaryotic photosynthetic organisms, photosynthesis is localized in chloroplasts, 

which contains all the chlorophyll molecules and carry out most important reactions and stages 

of photosynthesis [5]. It is well established that chloroplasts were derived from symbiotic 

cyanobacteria through the process known as endosymbiosis [6]. Within chlorophlasts, an 
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extensive membrane system is found, the thylakoids, where light absorption and the early or 

primary reactions that transform light energy into biochemical energy happen [7, 8, 9]. 

             In the more primitive prokaryotic photosynthetic organisms, photosynthesis takes place 

in the cytoplasmic membrane, or specialized membranes that are derived from it [10-14]. The 

carbon metabolism reactions happen in the cytoplasm, along with all the other crucial reactions 

for the cell’s metabolism.   

              Starting with photon absorption, and ending with stable carbon products being 

synthesized, photosynthesis can be divided in convenience into four distinct temporal phases: (1) 

photon absorption and energy delivery by antenna systems, (2) primary electron transfer in 

reaction centers, (3) energy stabilization by secondary processes, and (4) synthesis and export of 

stable products [1].  

              The starting point of photosynthesis is the absorption of a photon of light, creating an 

excited state that eventually leads to charge separation in the reaction center. These two 

processes are facilitated by specialized protein complexes that bind pigments, such as 

chlorophyll and carotenoids as well as other cofactors [15]. Because the absorption of light and 

the electron transfer usually occur in separate protein complexes, they can be classified as the 

antenna system and the reaction center (RC). The function of the antenna is to increase the 

amount of energy that can be absorbed [16] which could be subsequently used by the RC. The 

RC traps and converts light energy into chemical energy.  

              In most instances, light is absorbed by antenna pigments located in peripheral pigment-

binding complexes linked to the RC, or just inside the RC. The energy of the photon excites the 

pigment molecules to excited states, which can relax by different processes, including loss of 

energy as heat, emission of a fluorescent photon or promotion of chemical reactions such as 
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electron transfer. In intact photosystems, the dominant relaxation mechanism is excitation 

transfer to lower energy state pigments, eventually terminated at the primary donor of the RC 

where the energy is used for electron transfer reactions. The antenna systems don’t carry out any 

chemical reactions, only energy transfer from one molecule to another, which is a pure physical 

process depending on a weak energetic coupling of the antenna pigments. Vectorial excitation 

transfer from antenna to RC is achieved by orienting the pigments with respect to the excited 

state energy: usually pigments with the lowest energy are near to the RC [17]. 

              A variety of antennas are found in various photosynthetic organisms [18 - 24], and they 

can be broadly divided into integral membrane antenna complexes that cross the lipid bilayer, 

and peripheral membrane antenna complexes that are associated with components buried in the 

membrane. Fig. 1 shows two representative antenna protein-pigment complexes, the LH2 

complex as integral membrane antenna, and the chlorosome as a peripheral membrane antenna. 

Although in most conditions, antenna systems’ greatly increasing the amount of energy that can 

be absorbed is an advantage, in some cases, however, too much light energy input could lead to 

severe damage to the organisms. Therefore, antenna systems have extensive and multifunctional 

regulation, protection and repair mechanisms [25, 26, 27].  

              The transformation from pure energy of excited states to chemical changes in molecules 

happens in the RC complexes, which are integral membrane pigment-proteins that span the 

membrane in a vectorial fashion. All reaction centers conduct light driven electron transfer 

reactions, resulting in charge separation across the membrane [28]. Inside the RC, a specific 

pigment, known as the primary donor (P), traps the excitation passed from the antenna system. 

The energy is used to promote an electron from P to a higher energy orbital where it becomes an 

extremely strong reductant. In the ultrafast steps through a series of acceptors, an electron from 
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                                                                              (a) 

                                           

                                                                             (b) 

Fig. 1 Two representative antenna protein-pigment complexes. (a) Structure of the LH2 complex 

in Rhodopseudomonas acidophila. View perpendicular to the membrane plane, produced from 

Protein Data Bank file 1KZU. (b) Model of chlorosome from green sulfur bacteria [24].  
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the excited donor is spatially separated from P, creating a charge-separated state. At such point, 

the reaction could go to two possible directions: (1) the electron is transferred back to the donor 

and the energy of the photon is converted to heat; or (2) the oxidized and the reduced species are 

separated from each other through a series of ultrafast secondary electron reactions resulting in 

the separation of positive and negative charges. The rapidity of the secondary electron transfer 

reactions greatly decreases the chance of charge recombination and produces stable products [29]. 

The final result is that within a nanosecond, the oxidized and reduced species are separated by 

the thickness of the membrane (~30Å). After that, slower processes can take over and further 

stabilize the energy storage and convert it into more easily utilized forms. The system is so 

efficient in most cases that the quantum yield of products formed per photon absorbed is nearly 

1.0.  

              Unlike the antenna complexes, which are highly diverse and different among species, 

reaction centers in photosynthetic species are generally homologous [30-34]. The reaction center 

complexes can be classified into two broad groups based on the identity of the early electron 

acceptors, Type I with iron-sulfur (FeS) cluster centers as acceptors and Type II with pheophytin 

and quinone as acceptors. Although functionally and structurally different from each other, 

structural and genetic analyses strongly indicate that both classes of reaction centers derived 

from a common ancestor [35, 36].  

              In the oxygen evolving form of photosynthesis, found in plants, algae, and 

cyanobacteria, water-splitting reaction (2H2O è 4H+ + 4e + O2) provides electrons that are 

eventually transferred to NADP. The removal of electrons from water leads to the release of 

oxygen and reduced NADP (NADPH) is used to reduce carbon dioxide (CO2) to produce sugars. 

To accomplish this energetically uphill reaction, two types of RCs are linked in series, 
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Photosystem I and Photosystem II [37, 38].  In the anoxygenic form of photosynthesis found in 

bacteria, only one type of RC is used [39]. Purple bacteria and the chloroflexaceae contain Type 

II reaction centers, similar to Photosystem II [40, 41], and the green sulfur bacteria and 

heliobacteria contain Type I reaction center, similar to Photosystem I. The single photosystems 

found in anoxygenic photosynthetic bacteria are simpler than the more complex linked systems 

of oxygenic photosynthesis.  

Following the primary electron transfer in RCs, the electron transfer will follow two 

different pathways, cyclic photosynthetic electron transfer and noncyclic photosynthetic electron 

transfer [1]. In cyclic electron flow, electrons begin in the RC complex, passing from the primary 

electron acceptor to a secondary acceptor, then returning to the RC complex. By coupling proton 

movement across the membrane with it, cyclic electron transfer stores the photon energy in the 

result of light-driven pH difference or electrochemical gradient generation, which is used to drive 

the synthesis of ATP [42]. Purple bacteria and filamentous anoxygenic phototrophs like 

chloroflexaceae are the typical species that carry out cyclic electron transfer. In higher plants, 

cyanobacteria and algae, in which noncyclic electron transfer happens, electrons get passed 

through a series of electron carriers and eventually to a terminal acceptor, like NADP+. The 

pattern is less certain in heliobacteria, green sulfur bacteria and acidobacteria. Despite the vast 

differences between the two types of electron transfer pathways, they both couple with proton 

translocation which is the driving force for ATP synthesis. Fig. 2 shows a schematic diagram of 

the membrane architecture and electron transfer in a variety of phototrophic bacteria [43]. 

              The final phase of photosynthetic energy storage involves the production of stable high- 

energy molecules and their utilization to power a variety of cellular processes. NADPH and ATP 

are used to reduce CO2 to sugars. 
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Fig. 2 Photosynthetic machinery and electron transport of photosynthetic bacteria, including a 

description of photosynthetic complexes. Abbreviations: LH, light harvesting; MQ, menaquinone; 

PQ, plastoquinone; TCA, tricarboxylic acid; TMH, transmembrane helix(ces); UQ, ubiquinone. 

Adapted from Hohmann-Marriott and Blankenship (2011). 
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Cytochrome bc complex in microorganisms 

              The ubihydroquinone:cytochrome c oxidoreductase, also called complex III or the 

cytchrome bc1 complex, is a multi-subunit enzyme encountered in a very broad variety of 

organisms such as eukaryotes, like yeast or mammals, plants, or bacteria [44-48]. While 

mitochondria and some bacteria, e. g. purple bacteria, have related cytochrome bc1 complexes, 

plant and algeal chloroplasts and cyanobacteria contain a related yet distinct complex called the 

plastohydroquinone:plastocyanin oxidoreductase or the cytochrome b6f complex [49]. The cyt 

bc1 complex and cyt b6f complex are essential components of the energy transduction machinery 

of the vast majority of photosynthetic organisms. From an evolutionary perspective, these 

complexes have in common a pair of cytochrome b hemes and a [2Fe-2S] Rieske iron-sulfur 

cluster [50, 51, 52]. In addition to this catalytic core, most complexes possess structurally 

variable, or non-conserved secondary electron carriers, usually a c-type cytochrome or 

functionally equivalent redox carriers, while some contain an additional c-type heme bound to 

the cyt b protein [53, 54]. Fig. 3 shows the core structures of cyt b6f and cyt bc1 complex side by 

side and the cofactors they bind with. 

The primary roles of the cytochrome bc complexes are: (1) to make an electronic 

connection between the two-electron chemistry of the quinone pool and the one-electron 

chemistry of the downstream electron transfer chain; and (2) to translocate protons across the 

bioenergetic membrane, thus storing a portion of the potential energy from the two electron-two 

proton oxidation reaction in the electrochemical proton gradient, or proton motive force (pmf) 

[55, 56]. The pmf in turn drives the synthesis of ATP by the ATP synthase. A general equation 

for the overall reaction catalyzed by the cyt bc complex can be summarized as: 

                                      QH2 + 2C(oxi) + H+(n) <=> Q + 2C(red) + 2H+(p) 
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Fig. 3 Similarities and differences in the electron transfer chains and core structures of the cyt 

bc1 and cyt b6f complexes. The gross functional monomeric structures of the cyt b, cyt c and the 

iron-sulfur protein coordinating portions of the cyt bc1 (left) or cyt b6f -type (right) complexes 

are illustrated side-by-side as matching ribbon structures with the cofactors coordinated in each 

drawn as space filled spheres. The glaring differences of the presence of an extra c-type heme 

(heme ci) adjacent to the Qi (or QN) site of the cyt b6f, as well as the presence of the non-redox 

active chlorophyll molecule in the same complex are readily seen in these side-by-side 
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illustrations. However, in each case, a similar high and low potential chain of cofactors 

facilitating bifurcated electron flow following QH2 oxidation is easily envisioned. Both types of 

complex are shown with the inhibitor, stigmatellin bound at the Qo (or Qp) site as well as amino 

acids, pictured as stick models, thought to be important for Qi (or QN) site substrate binding to 

aid in visually identifying the two spatially distinct Q binding sites. The illustrations have been 

worked up from the Rba. capsulatus and Mastigocladus laminosus derived atomic coordinate 

files 1ZRT.pdb and 1VF5.pdb, respectively. The entire illustration is adapted from D. M. Kramer, 

W. Nitschke, J. W. Cooley, The Purple Phototrophic Bacteria, Advances in Photosynthesis, 

(2009).  
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Where QH2 and Q are the reduced and oxidized forms of the native quinone, e.g. ubiniquinole 

(UQH2) or menaquinol (MH2). C(oxi) and C(red) are oxidizd and reduced downstream electron 

carriers, e.g. cytochrome c2 in purple bacteria, or membrane anchored cytochrome c553 in 

heliobacteria. H+(n) and 2H+(p) are aqueous protons on the positively and negatively charged 

sides of the energy transducing membrane. 

              The path of electron transfer from quinol to the soluble or membrane anchored cyt c 

through the bc complex is called the protonmotive Q-cycle. The Q-cycle model postulates two 

separate quinone/quinol binding sites, Qo (quinol-oxidizing site) and Qi (quinone-reducing site), 

showed in Fig. 4. The Qo site is located near the positive side of the membrane (periplasmic side); 

Qi site is located near the negative side of the membrane (cytoplasmic side). The Q-cycle is 

initiated when a QH2 molecule is bound at the Qo site with the [2Fe-2S] cluster and the heme bL 

in their oxidized forms, allowing a bifurcated oxidation of QH2, with one electron going to the 

high potential chain (Rieske FeS protein and cyt c/f), and the other going to the low potential 

chain (Fig. 4). The first electron is transferred to the [2Fe-2S] cluster. At the same time the 

quinol will transiently form a semiquinone (SQ) species at the Qo site, which in turn reduces 

heme bL, a process that involves proton transfer from QH2 and SQ species to protein residues [57, 

58]. The electron on the [2Fe-2S] cluster is transferred to the secondary high potential chain 

carrier, cyt c1 in the cyt bc1 complex, or cyt f in the cyt b6f complex. This electron transfer step is 

facilitated by a large scale pivoting of the Rieske FeS protein from the ‘b’ position at cyt b 

surface to the ‘c’ position in contact with the cyt c/f subunit [59]. From cyt c/f, electrons are 

transferred to a downstream, tertiary carrier and then to a source of oxidant (e.g., the 

photosynthetic reaction center). The electron passed from SQ to heme bL is passed to heme bH, 

driven by a substantial difference of potentials between the two hemes [60]. In the case of the cyt 
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Fig. 4 The general Q-cycle framework. Shown is a cartoon depicting the common ‘wiring 

diagram’ of the bc complexes, known as the Q-cycle. Key functional components of both the cyt 

bc1 and cyt b6f complex are included. The Q-cycle mechanism is described in detail in the text. 

Adapted from D. M. Kramer, W. Nitschke, J. W. Cooley, The Purple Phototrophic Bacteria, 

Advances in Photosynthesis, (2009).  
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bc1 complex, electrons from heme bH are transferred to a quinone bound at the Qi site forming a 

stabilized SQ. The process of oxidizing the cyt b hemes is clearly different in the case of the cyt 

b6f and related complexes, e.g. heliobacterial cytochrome bc complex, and likely involves a third 

heme between heme bH and a quinone species bound at the Qi site. In either case, oxidation of a 

second QH2 molecule at the Qo site is required to introduce a second electron into the low 

potential chain [53], which, together with the first electron, reduces a quinone to a QH2 at the Qi 

site with an uptake of two protons from the n-side of the membrane. The bifurcated oxidation of 

QH2 at the Qo site results in the net release of two protons into the p-side of the membrane and 

the generation of pmf is used to generate chemical energy in the form of ATP.  

              Though intensively studied for decades, there are still many open questions about the 

structural functional relationship of the bc complex. In the cyt b6f complex’s case, the exact 

function of the Qi site and heme ci is not clear [50, 61-65]. And the role of the carotenoid and 

chlorophyll seen in the crystal structure is not known either [53, 66-70].  

 

Heliobacteria and their photosystem 

              Heliobacteria are photosynthetic bacteria that uniquely employ bacteriochlorophyll 

(Bchl) g as the major pigment and primary electron donor within their type I reaction centers 

[71-77]. This pigment is related to chlorophyll a but has an ethylidine functional group at the C-

81 position and is esterified with farnesol rather than phytol [78, 79]. An oxidized form of 

chlorophyll a, 81-hydroxy-chlorophyll a, is the primary electron acceptor from the reaction 

center special pair [80]. Unlike other anoxygenic phototrophic bacteria, e.g. purple bacteria or 

green bacteria, heliobacteria have no Bchl-containing internal membranes, such as lamellae 

(purple bacteria) and chlorosomes (green bacteria). In heliobacteria, photosynthetic pigments are 
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confined to RCs in the cytoplasmic membrane [81, 82]. Carotenoids are also unusual in 

heliobacteria in that they consist of C30 pigments rather than the C40 derivatives that are observed 

in all other phototrophs [83]. The dominant carotenoid in all species of heliobacteria is 4,4′-

diaponeurosporene [84]. Although the vast majority of phototrophic bacteria are autotrophic, 

heliobacteria are obligate heterotrophs [85, 86]. Growth occurs either photoheterotrophically on 

a limited range of organic substrates or by fermentation of pyruvate in darkness [87, 88]. 

Phylogenetically, heliobacteria are the only phototrophic organisms that group with the low GC 

Gram-positive bacteria in 16S rRNA gene sequence analyses [89]. It has been suggested that a 

strong tie may exist to cyanobacteria [90]. In addition, heliobacteria are unique among all 

phototrophic organisms in that they can undergo endosporulation [91].  

              Like all known heliobacteria, Heliobacterium modesticaldum is an active dinitrogen 

fixer [92, 93, 94]. H. modesticaldum shares the distinction with the green sulfur bacterium 

Chlorobaculum tepidum of being the only cultured anoxygenic phototrophs capable of N2-

fixation above 50 °C [93]. Nitrogen fixation in heliobacteria is regulated using a “switch off” 

mechanism, in which the presence of excess ammonia inhibits nitrogenase activity. The unique 

photosynthetic features, physiological characters and phylogenetic affiliation of heliobacteria 

make this group of organisms an obvious research subject. In 2008, the genome of H. 

modesticaldum strain Ice1 was sequenced and annotated, which is a major step in the study of 

heliobacteria [95, 96]. Based on the genome annotation, combined with the previously available 

biochemical and biophysical studies, a putative photosystem electron transfer model was 

proposed [97]. Fig. 5 shows the photosynthetic reaction chain core proteins, which have been the 

focus of many heliobacterial bioenergetic studies [85]. The absence of separate antenna systems  
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Fig. 5 Photosynthetic reaction chain core proteins in Heliobacterium modesticaldum. Reaction 

center, cytochrome bc complex and NADH:menaquinone oxidoreductase (complex I) protein 

complexes in the membrane based on genetic components present in Heliobacterium 

modesticaldum. The cytochrome bc complex is here presented as a dimmer based on its 

structural similarity to the cytochrome bc1 and b6f complex. 
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provides a certain advantage for spectroscopic investigation of the electron transfer chain, but the 

organism’s high sensitivity to oxygen complicates these studies [98]. Furthermore, there have 

been reports that the rest of the electron transfer chain except the RCs can be only studied in 

whole cells, because any cell disturbance or membrane preparation would disrupt the function 

[99].  

              The RCs are the major proteins in the cytoplasmic membrane for H. modesticaldum 

cells grown photosynthetically. Its core is composed of the 67-kDa PshA polypeptide, which is 

predicted to span the membrane 11 times, like PsaA and PsaB of photosystem I. The RC form a 

homodimer structure made of an identical pair of core proteins, as in the case of the green sulfur 

bacterial RCs [100, 101], all of which suggests that heliobacteria are one of the most primative 

photosynthetic organisms known. All known type II RCs are heterodimeric, like the ones in 

purple bacteria and chloroflexi. The structural and functional relationships in the homodimeric 

type I RCs remain poorly understood [102, 103, 104]. 

                

Heliobacterial cytochrome bc complex 

              Enzymes homologous to the cyt bc1 and b6f complexes are found in almost all major 

phyla of the tree of life, including photosynthetic organisms like heliobacteria. They function in 

diverse types of energy conserving chains, such as photosynthetic electron transport. The subunit 

composition of the enzyme family is somewhat variable with respect to the subunits analogous to 

cyt c1 or cyt f but strictly conserved regarding the functional core, which contains cyt b or 

cytb6/subunit IV, and the iron sulfur protein (Rieske protein). In H. modesticaldum, the four 

genes proposed to encode for the cyt bc complex were identified in the same operon, petC 

(Rieske iron sulfur protein), petB (cytochrome b), petD (subunit IV) and petA (diheme 
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cytochrome c) [95]. Inhibitor studies showed that heliobacterial cyt bc complex is sensitive to 

stigmatellin [105, 106], an inhibitor of Qo-site, but not to antimycin A. All of the above indicates 

that the heliobacterial bc complex resembles the b6f-type complex. Heme ci, which is attached to 

the protein by a single cysteine residue and present in the cyt b6 subunit in b6f complex, was also 

detected in heliobacterial bc complexes, using SDS-PAGE followed by heme-staining [107, 108]. 

Three enrichment protocols of the heliobacterial bc complex have been published so far [106, 

108, 109], yet none of which could yield an intact enzyme, in contrast to what has been achieved 

for the b6f complex [110]. The lack of purified intact protein and 3D structure makes the exact 

function of the complex remain unknown.  

              The gene encoding cyt c553 (petJ), which re-reduces the RC after its primary donor is 

light-oxidized [99], is located upstream of the petCBDA operon, implying that cyt c553 is 

functionally related to the cyt bc complex. Cyt c553 also has close functional links to the reaction 

center, so the bc complex should work with reaction center closely as well. So far, based on 

limited studies on the heliobacterial bc complex, the function is similar to the b6f complex in 

cyanobacteria in general. 

              Different from the case in cyt c1 or cyt f, a diheme cytochrome c plays the role of the 

terminal electron acceptor in the high-potential electron transfer chain of the bc complex in 

heliobacteria [108, 111]. This cytochrome is of the c4 type, and the sequence comparisons of the 

two monoheme domains suggest that it probably results from gene duplication and subsequent 

gene fusion [112].  Possessing such a diheme cyt c subunit differentiates the heliobacterial bc 

complex from those of all other anoxygenic phototrophs, and presents a burning yet interesting 

question: what exactly is the structural and functional role of it? In fact, diheme cytochromes, 

attached to the hydrophobic part of the bc complexes via a transmembrane helix, are widespread 
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among actinobacteria, where a fusion of two different monoheme cytochromes was put forward 

[113, 114], and ε-proteobacteria where sequence analysis indicated that they also have a c4-type 

fold [115]. Cyt c1 also seems to originate from a c4-type cytochrome by losing one heme-binding 

site, then a consequent collapse of part of the cytochrome c4 structure results in the current cyt c1 

[115]. On the other hand, the structure of cyt f is completely unrelated to c1 or c4 type (diheme 

cyt c) cytochromes [116]. All of the information above puts the diheme cyt c subunit and the 

entire heliobacterial cytochrome bc complex in a very unique evolutionary position. 

 

Statement of thesis 

              This dissertation is focused on the structural and functional study of the unique diheme 

cytochrome c subunit, and its further application in the understanding of the relationship between 

H. modesticaldum’s cytochrome bc complex and its reaction center. To achieve these goals, 

multi-disciplinary approaches were employed, including biochemical, biophysical, spectroscopic 

and molecular biological techniques. In Chapter 2, the diheme cytochrome c subunit was 

expressed in E. coli and characterized with multiple techniques. The potentiometric titration 

showed a single redox midpoint potential, which leads to the proposal of an inter- and intra- 

electron transfer mechanism. Chapter 3 further elaborated diheme cytochrome c’s redox state 

related structural changes by studying the protein with ion mobility mass spectrometry and 

hydrogen-deuterium exchange mass spectrometry under chemically controlled reduced and 

oxidized states, which provided more structural details to support the hypothesis proposed in 

Chapter 2. In Chapter 3, using the antibodies raised against diheme cytochrome c, we utilized 

immunoblotting to quantify the cyt bc complex. By comparing it to the reaction center measured 

by absorption spectroscopy, we provide the first biochemical/biophysical in vitro quantification 
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of the stoichiometry of the heliobacterial bc complex and reaction center. Chapter 5 gives a short 

conclusion and prospectus.  
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Abstract 

              Heliobacterium modesticaldum is a gram positive, anaerobic, anoxygenic 

photoheterotrophic bacterium. Its cytochrome bc complex (Rieske/cyt b complex) has some 

similarities to cytochrome b6f complexes from cyanobacteria and chloroplasts, and also shares 

some characteristics of typical bacterial cytochrome bc1 complexes. One of the unique features 

of the heliobacterial cytochrome bc complex is the presence of a diheme cytochrome c instead of 

the monoheme cytochrome f in the cytochrome b6f complex or the monoheme cytochrome c1 in 

the bc1 complex. To understand the structure and function of this diheme cytochrome c protein, 

we expressed the N-terminal transmembrane-helix-truncated soluble H. modesticaldum diheme 

cytochrome c in Escherichia coli. This 25 kDa recombinant protein possesses two c-type hemes, 

confirmed by mass spectrometry and a variety of biochemical techniques. Sequence analysis of 

the H. modesticaldum diheme cytochrome c indicates that it may have originated from gene 

duplication and subsequent gene fusion, as in cytochrome c4 proteins. The recombinant protein 

exhibits a single redox midpoint potential of + 71 mV vs NHE, which indicates that the two 

hemes are in very similar protein binding environments. 
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Introduction 

              Cytochrome bc complex (Rieske/cytochrome b complex) in Heliobacteria is a crucial 

component completing cyclic electron transfer and generating proton gradient. The genes 

proposed to code for H. modesticaldum cytochrome bc complex encode four protein subunits: 

Rieske iron sulfur protein (petC), cytochrome b (petB), subunit IV (petD) and diheme 

cytochrome c (petA, NC 010337, NCBI Genome database). Moreover, it has been shown that 

heliobacterial cytochrome b is a cytochrome b6-like protein [1]. This suggests that H. 

modesticaldum cytochrome bc complex is structurally organized similarly to the cytochrome b6f 

complex in cyanobacteria and chloroplasts with cytochrome b6 and subunit IV [2]. However, 

instead of the cytochrome f found in the b6f complex, heliobacterial bc complexes appear to use 

the diheme cytochrome c as a replacement, which is a unique feature also differentiating them 

from bacterial cytochrome bc1 complexes possessing cytochrome c1 [3]. Sequence alignment and 

structure modeling analysis [4] of the diheme cytochrome c show two important characters: (a) It 

is predicted to be an α-helix rich globular protein with an N terminal transmembrane helix, 

which is similar to cytochrome c1 rather than to the β-sheet rich cytochrome f; (b) The N- and C- 

terminal heme-binding domains share high sequence similarity, which makes it a cytochrome c4-

type protein. Cytochromes c4 are diheme proteins believed to have originated from a gene 

duplication event, giving rise to two heme-binding domains with each domain resembling a 

typical type I monoheme cytochrome. Interestingly, cytochrome c1 of proteobacteria and 

mitochondria also has been suggested to evolve from cytochrome c4 by the loss of one heme-

binding domain followed by a collapse of part of the cytochrome c4 structure [5]. This in turn 

suggests that the cytochrome bc complex of heliobacteria is potentially an evolutionary prototype 

for other similar complexes. 
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              The possible shared origin of heliobacterial bc complex’s diheme cytochrome c subunit 

and cytochrome c1, and the general similarity of the rest of its subunits with those of the b6f 

complex place it at a very interesting evolutionary position and make the structure, function and 

bioenergetics of diheme cytochrome c an important topic to explore. In this study, we report the 

successful expression of recombinant heliobacterial diheme cytochrome c in E. coli. Its size and 

binding with c-type hemes were confirmed by gel electrophoresis, including SDS-PAGE, 

western blot analysis and heme staining. Mass spectrometry and pyridine hemochrome analysis 

were used to investigate the details of the heme binding and extinction coefficient. The redox 

potential of the recombinant diheme cytochrome was determined by potentiometric titration. 

 

Materials and methods 

Growth of H. modesticaldum and cell lysis 

              H. modesticaldum was grown in PYE medium, which is composed of (per liter) 

K2HPO4 (1.0 g), MgSO4•7H2O (0.2 g), CaCl2•2H2O (20 mg), Na2S2O3•5H2O (0.2 g), sodium 

pyruvate (2.2g), yeast extract (4.0 g), (NH4)2SO4 (1.0 g), chelated iron solution [6] (2 mL), D-

biotin (15 µg), vitamin B12 (20 µg) and trace element solution (1 mL) with the final pH adjusted 

to pH 6.9–7.0. The composition of the trace element solution was reported previously [6]. All 

cultures were grown anaerobically in a Coy anaerobic chamber at temperatures ranging from 46–

50 °C in the light (10 ± 1 W/m2). 500 µL of overnight (18 hours) culture was harvested by 

centrifugation at 13,000 rpm and re-suspended in 50 µL 20 mM Tris buffer (pH 8.0). The cell 

suspension was heated to 98 °C for 5 min and quickly chilled on ice to disrupt the cells. Another 

5 min 13,000 rpm centrifugation was performed to remove unbroken cell debris. The cell lysate 
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was frozen at – 20 °C for further use. 

 

E. coli cell strains and plasmids  

              Escherichia coli stain DH5α from Invitrogen (Carlsbad, California) was used for DNA 

ligation and sequencing steps. E. coli strain BL21 (DE3) Δccm (cytochrome c maturation genes 

knock-out), courtesy of Prof. Robert Kranz from Washington University in St. Louis, was used 

for the expression of the recombinant diheme cytochrome c. The plasmid pTEV [7], which bears 

T7 promoter, gentamicin resistance gene, and the replication origin ColE1, was used to construct 

the expression vector. H. modesticaldum petA coding sequence was PCR amplified using 

TaKaRa Ex Taq (Takara Bio company) DNA polymerase. Genomic DNA in H. modesticaldum 

cell lysate acquired by the heat-shock method was used as PCR template. The recombinant 

diheme cytochrome c gene was constructed by replacing its original N-terminal transmembrane 

helix with the signal sequence of Thiobacillus versutus cytochrome c550 [8]. It was then digested 

and cloned into similarly digested pTEV to obtain the expression vector pTEV-petA, which has a 

sequence fused with the insertion allowing a C-terminal poly-histidine (His6) tag to be co-

expressed to facilitate purification. A plasmid containing ccmABCDEFGH (pSysI) genes was co-

transformed with the expression vector to the host cells [8]. Routine techniques were performed 

to handle DNA. The final sequence was confirmed by determining the nucleotide sequences of 

both strands. 

 

E. coli cell growth and harvest 



 

33 

              E. coli cell strain BL21 (DE3) Δccm, carrying both pTEV-petA and pSysI plasmids, was 

grown aerobically in 1 liter LB medium [9]. The culture was vigorously agitated at 16 °C until 

the optical density at 600 nm (OD600) reached 0.7. The protein expression was induced by 

adding IPTG (isopropyl-β-D-thiogalactopyranoside) to a final concentration of 300 µM. The 

cultivation was then continued for another 6 hrs. With this culture, cells were pelleted by 

centrifugation at 7,100 × g for 20 min at 16 °C. The pellet was stored in −80 °C if not used 

immediately. Ampicillin, gentamicin, and kanamycin were used to final concentrations of 100, 

20, and 25 µg/mL, respectively, wherever was needed. 

 

Purification of recombinant diheme cytochrome c 

              E. coli cells were re-suspended in buffer A (50 mM sodium phosphate, 500 mM NaCl, 5 

mM imidazole, 1 mM phenylmethylsulfonyl fluoride, pH 7.2) at 4 °C and disrupted by 

sonication. The cell extract was centrifuged at 7,100 × g for 20 min to pellet the unbroken cell 

debris. The supernatant was ultracentrifuged for 2 hrs at 150,000 × g to pellet the membrane 

fraction from the supernatant of the previous step. The supernatant of the ultracentrifugation, 

containing the recombinant diheme cytochrome c and other E. coli soluble proteins, was filtered 

through a 0.45 µm filter and directly loaded onto a HisTrap HP (GE Healthcare) Co2+ chelated 

column. The column was washed with 10-column volumes of 20 mM imidazole in buffer A. The 

protein was then eluted with 50 mM imidazole in buffer A. The eluted protein was exchanged 

into buffer B (20 mM Tris-HCl, 800 mM ammonium sulfate, pH 8.0) and loaded onto a HiTrap 

phenyl HP column (GE Healthcare). A linear ammonium sulfate concentration gradient from 800 

mM to 0 mM was performed and the pure recombinant diheme cytochrome c protein was 
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obtained in the 450 mM to 350 mM ammonium sulfate fractions.  

 

SDS-PAGE, Western blot and Heme stain 

              SDS-PAGE analysis was performed to determine the purity of the samples, following 

the protocol described by Marshak et al. [10]. Samples dissolved in SDS–PAGE coomassie 

brilliant blue dye containing buffer were boiled for 5 minutes and used for heme stains and 

western blots. Anti-His antibody was diluted 5000 times (Sigma Aldrich, USA). 

Chemiluminescence was used for both heme stain and anti-His western blot using the 

SuperSignal Femto kit (Pierce) and detected in an LAS-1000plus detection system (Fujifilm).  

 

Protein concentration assay and heme analysis 

          The concentration of recombinant protein was determined by the bicinchoninic acid 

protein assay (BCA assay kit, Pierce). The pyridine hemochrome analysis, as previously reported 

by Berry et al. [11] was used in this study. 

In-gel protein digestion 

              After SDS-PAGE and gel staining, the bands were carefully excised and cut into small 

pieces with a diameter roughly 1 mm. The samples were then washed with 50 % acetonitrile 

(ACN) in 50 mM ammonium bicarbonate (NH4HCO3) aqueous solution. Proteins were reduced 

with 10 mM dithiothreitol (DTT) in 100 mM NH4HCO3 for 30 min and then the cysteines in the 

proteins were alkylated by 55 mM iodoacetamide in 100 mM NH4HCO3 for another 30 min. 
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Trypsin (20µg/mL, Sigma Aldrich) in 9 % ACN 40 mM NH4HCO3 aqueous solution was added 

to the excised gel mixture and the digestion reaction was conducted at 37 °C for 12 hrs. The 

peptides were then extracted by 0.5 % trifluoroacetic acid (TFA) 60 % ACN buffer at 37 °C for 1 

hr. The solution containing the extracted peptides was dried in a bench-top speed-vacuum and 

stored at -20 °C for further analysis. 

 

Mass Spectrometry 

              In-gel digested protein samples were used for MALDI-TOF mass spectroscopic analysis. 

The protocol was reported previously and followed in this work [12]. For ESI mass spectrometry, 

the protein sample was desalted by a home-packed C18 tip. The eluate with 75% acetonitrile 

25% water 0.1% formic acid was collected. The protein solution was delivered by syringe pump 

at a flow rate of 400 nL/min. Mass spectra were acquired with a Waters SYNAPT G2 Q-TOF 

(Waters Corporation, Milford, MA) mass spectrometer equipped with a nanoESI source. The 

protein spectrum was acquired at sensitive mode (“V” mode) with the capillary voltage 1.8 kV, 

cone voltage 30 V and source temperature 100 °C.  

Room temperature and low temperature UV-Vis spectroscopy 

              The UV-Vis spectra of oxidized and reduced forms of recombinant diheme cytochrome 

c at room temperature and 78 K (liquid nitrogen cooling) were taken with a Perkin Elmer 

Lambda 950 UV-Vis spectrophotometer and analyzed by Perkin Lambda UV WinLab Explorer 

software.  
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Potentiometric Titration 

              Potentiometric titrations were performed to determine the midpoint potential (Em) of 

the recombinant diheme cytochrome c. The general protocol was described previously [13] and 

was followed in this study with some modifications. The redox potential of the sample was 

controlled by a CH 620C potentiostat (CH instruments), and the spectral changes of diheme 

cytochrome c upon oxidation and reduction were monitored at 550 nm in a Perkin Elmer 

Lambda 950 UV-Vis spectrophotometer. The electrodes used for this analysis were platinum 

gauze working electrode, Ag/AgCl reference electrode, and a platinum wire auxiliary electrode. 

The titration was performed at room temperature with the following redox mediators: 

anthraquinone-2-sulfonic acid (Em = -255 mV), anthraquinone-2, 6-disulfonic acid disodium salt 

(Em = -184 mV), 2-hydroxy-1,4-naphthoquinone (Em = -145 mV), 2, 5-dihydroxy-p-

benzoquinone (Em = -60 mV), phenazine methosulfate (Em = 8 mV), phenazine ethosulfate (Em 

= 60 mV), Fe (III) EDTA (Em = 117 mV), 1, 2-naphthoquinone-4-sulfonic acid (Em = 215 mV), 

2, 3, 5, 6-tetramethyl-p-phenylenediamine (Em = 260 mV), and N, N-dimethyl-1, 4-

phenylenediamine dihydrochloride (Em = 371 mV). Recombinant diheme cytochrome c was 

dissolved in 50 mM sodium phosphate pH 7.2 buffer at a final concentration of 2 mg/mL. Then a 

final concentration of 150 mM NaCl and 40 µM each of the mediators were added to the working 

solution. The calculation and equations used for fitting the data were described in Bell et al. [13]. 

 

Results 

Recombinant diheme cytochrome c expression, purification and identification 

The coding sequence of the diheme cytochrome c of H. modesticaldum’s cytochrome bc 
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complex was directly obtained from the NCBI genome database (NC 010337). Based on 

secondary structure prediction (SOSUI engine ver. 1.11, Nagoya University), starting from the 

N-terminus, the first 22 amino acids form a single transmembrane helix, and the rest of the 

protein is hydrophilic (Fig. 1a), which is consistent with the fact that this cytochrome c is part of 

the cytochrome bc complex and does not function independently as some other soluble diheme 

cytochrome c proteins do, which therefore do not require such a structural feature [14, 15, 16]. 

This N-terminal transmembrane helix probably functions as an anchor to bind the diheme 

cytochrome c with the cytochrome bc complex, but its presence will likely complicate both 

protein expression and purification. We therefore replaced the codons for the first 22 amino acids 

with the ones that will be translated as the signal peptide from Thiobacillus versutus cytochrome 

c552 (Fig. 1b). Two previous reported successful cases regarding the expression of c-type 

cytochrome proteins in E. coli using the T. versutus signal peptide made it a favored choice [8, 

17]. To facilitate detection and purification of the recombinant protein, a poly-histidine tag (His6) 

was added to the C-terminus of the protein linked with a TEV-protease cutting site (Fig. 2). 

              A Co2+ chelated affinity column was used in the first purification step. Compared to 

Ni2+ columns, Co2+ columns showed better resolution and less protein impurities in our studies 

(data not shown). We also compared the affinity column purification result at 4 °C with ones at 

room temperature (25 °C) and found no difference, which is an indication of the stability of the 

recombinant diheme cytochrome c protein. After affinity chromatography, anti-His western blot 

and heme staining were used to confirm the expression of a c-type heme-binding protein with 

poly-histidine tag (Fig. 3a, 3b). The samples for both tests were under denatured conditions. 

Therefore, the existence of c-type hemes in His-tagged proteins was detected. The molecular 

mass of the protein showed on both anti-His western blot and heme staining gels are 25 kDa  
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Fig. 1 Amino acid sequence from N- to C- terminus of (a) original H. modesticaldum diheme 

cytochrome c (two heme binding motifs were highlighted by red characters) of the cytochrome 

bc complex and (b) recombinant diheme cytochrome c. The amino acids forming the 

transmembrane helix (panel a in bold characters) are replaced by T. thermophilus cytochrome 

c552 signal peptide (panel b in bold characters). The TEV cutting site and the poly histidine tag 

(His6) are shown in bold italic and italic forms respectively. 
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Fig. 2 Expression vector (left) and insertion (right) constructs. 
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(under gel electrophoresis resolution), which is consistent with the protein peptide mass without 

the exogenous T. versutus signal peptide plus two heme molecules [7, 16, 17]. After the Co2+ 

affinity chromatography, phenyl sepharose (hydrophobic) column was used to further purify the 

cytochrome c enriched samples and pure recombinant protein was obtained. The coomassie blue 

stained SDS-PAGE gel is shown in Figure 3c. In the gel, a single 25 kDa band confirmed the 

high purity of the final product. 

 

UV-Vis spectral analysis 

UV-Vis absorption spectra of both reduced and oxidized recombinant diheme 

cytochrome c at room temperature are shown in Figure 4. Upon reduction by adding dithionite to 

0.5 mM, the reduced protein exhibits a characteristic c type cytochrome γ (Soret) band at 418 nm, 

β band at 521 nm and α band at 550 nm. In the oxidized protein spectra, the Soret band becomes 

broader and is blue shifted to 411 nm, and the structured α and β bands are lost. To minimize the 

influence of the protein backbone vibration on the heme molecules and further investigate the 

diheme binding pockets, 78 K spectra were also recorded, shown in Figure 4. Compared to its 

room temperature counterpart, the spectrum of reduced cytochrome c at 78 K has an overall blue 

shift.  Although it exhibits more detailed β and α band fine structures, no obvious splitting was 

observed, which suggests that the two heme binding pockets are very similar.  

Determination of c-type heme stoichiometry by pyridine hemochrome analysis 

              To determine weather the recombinant cytochrome c has two covalently bound hemes, 

pyridine hemochrome analysis (Fig. 5) was performed as described in Materials and Methods. 

The concentration of hemes was quantified by using an extinction coefficient of 23.97 mM-1 cm-1 
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Fig. 3 Affinity column enriched recombinant diheme cytochrome c sample was subjected to 

SDS-PAGE, and then (a) anti-His western blot and (b) Heme staining were performed. The 

strongest bands on the gels correspond to the recombinant proteins. (c) Coomassie blue stained 

SDS-PAGE gel of the purified protein. 
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for c-type heme [11]. The protein concentration was determined by BCA assay. By comparing 

the concentration of hemes and protein, 2 hemes (rounded from 2.1 ± 0.1) are present in each 

protein molecule. Moreover, by comparing the reduced minus oxidized absorption spectrum of 

the diheme cytochrome c with that of the pyridine hemochrome, we determined that the reduced 

minus oxidized extinction coefficient is 37.4 mM-1 cm-1 for the wavelength pairs 551-536 nm. 

The extinction coefficient for the reduced form of diheme cytochrome c is 46.9 mM-1 cm-1 for 

the wavelength pairs 551-580 nm. This value reflects both heme groups. 

 

Mass spectrometry 

An ESI mass spectrum of the recombinant diheme cytochrome c is shown in Figure 6. 

The mass of the protein is 24,981 Da. The calculated mass of the apoprotein (without signal 

peptide and hemes) is 23,751 Da. The mass difference is 1,230 Da, equals two heme groups (615 

Da per heme). To further investigate whether the hemes are correctly linked to the protein 

backbone, trypsin digested protein was subjected to MALDI-TOF mass spectroscopic analysis 

(Fig. 7). In the resulting spectrum, only the two peptides, each bearing a c-type heme-binding 

motif and actually linked with heme, were detected (summarized in the table in Fig. 7). The mass 

of just the two peptides without hemes, on the other hand, did not appear in the spectrum. Taken 

together, this evidence is a strong indication of the presence of correctly expressed and 

assembled diheme cytochrome c. 

 

Redox potentiometry 
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Fig. 4 UV-Vis absorption spectra of both reduced and oxidized recombinant diheme cytochrome 

c at room temperature (RT, upper panel) and 78K (lower panel). 
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Fig. 5 Spectra of pyridine hemi-chromes c (red) and pyridine hemo-chrome c (black) at room 

temperature. 
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The midpoint redox potential of recombinant diheme cytochrome c was determined by 

using an optically transparent thin film electrode with a potentiostat as described in the Materials 

and Methods. The data were analyzed by the method reported by Bell et al. [13]. With this 

method, c-type hemes were assayed spectrally as a function of the potential. The titration plot 

(Fig. 8) shows a single Em for cytochrome c, which is +71 mV versus NHE. The standard error in 

the midpoint potential is ± 2 mV obtained from the ORIGIN fitting analysis. However, the 

overall error including systematic errors for all sources is estimated to be ±10 mV. The plot 

shows a reversible Nernstian behavior corresponding to a one-electron reduction/oxidation 

reaction (Fig. 9). 

 

Discussion 

              Similar to that found in the cytochrome c1 in the cytochrome bc1 complex and 

cytochrome f in the cytochrome b6f complex, the N-terminal helix of the heliobacterial diheme 

cytochrome c functions as an anchor to fix the protein in the membrane and binds it with the 

other parts of the complex [19, 20, 21, 22]. Moreover, this helix is probably spatially removed 

from the protein core and so probably does not have a significant effect on the optical and redox 

properties of the hemes. Therefore, during the construction of the expression vector, we replaced 

it with the signal peptide from Thiobacillus versutus cytochrome c552, which can be removed by 

leader peptidase in vivo in E. coli [17, 18]. One interesting feature is that a small amount of 

diheme cytochrome c was found in the membrane, indicating that the signal peptides of some 

proteins were not cut off and therefore the protein stayed with the membrane. One explanation is 

that during the over-expression, the leader peptidases were overwhelmed by the amount of  
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Fig. 6 ESI mass spectrum of diheme cytochrome c. The spectrum range is from 650 to 1125 m/z 

and multiple charged protein peaks were observed and labeled in this spectrum. The molecular 

mass of the protein is 24,981 Da.   
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Fig. 7 MALDI-TOF mass spectrum of the trypsin-digested protein. Two heme-binding peptide 

mass peaks are circled. The table summarizes the calculated and observed results. 
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Fig. 8 Potentiometric titration of recombinant diheme cytochrome c purified from E. coli with 

squares representing the reductive titration, circles representing oxidative titration, and the solid 

line representing the Nernst fitting. Standard error for Em is 1.93 mv, adjusted R^2 value is 0.99 

and the reduced chi-squared number is 0.0012. 
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Fig. 9 Nernst curve fitting based on the equation of E = Em - (0.059/n)log([red]/[ox]), in which 

[red]/[ox] represents the reduced and oxidized cytochrome c concentration ratio, n represents the 

number of moles of electrons transferred in the reaction. The data were fitted with Origin 8.0 

(Origin Lab). The fitted Em is 72.3 ± 1.8 mv, n is 1.19 ± 0.04, and the adjusted R^2 value is 0.98. 
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precursor diheme cytochrome c. Based on the same logic, the co-transformation of pSysI 

(ccmABCDEFGH) and subsequent ccm machinery over-expression are necessary to make the 

productivity level of the recombinant proteins suitable for biochemical and biophysical studies 

and lower their misfolding rate [8]. Because of the recombinant cytochrome c’s location in the 

periplasm and electron transfer function, its toxicity (final OD600 1.1-1.2) to host cells is 

significant during the over-expression. To counteract this negative effect, a low induction 

temperature, 16 °C, and low IPTG concentration, 300 µM were used. The purified protein yield 

was 0.2 mg per gram of E. coli cell.  

              In Heliobacteria, menaquinones and membrane-attached cytochrome c553 are the 

electron transfer partners of the cytochrome bc comlex. The redox potential of menaquinone is -

60 mV [14] and cytochrome c553 is +180 mV in Heliobacerium mobilis [24]. H. modesticaldum 

diheme cytochrome c, as the final step of the inner electron transfer chain of the bc complex, 

passes electrons from the Rieske protein to cytochrome c553. Therefore, a reasonable speculation 

is that the redox potentials of these three partners would form a gradient from a high value 

(cytochrome c553) to a low value (Rieske protein) to allow efficient electron transfer. Based on 

our optical redox titration result, a single Em of +71 mV was detected for the diheme cytochrome 

c, which implies that the Rieske protein in H. modesticaldum cytochrome bc complex should 

have a lower midpoint potential, assuming that the recombinant cytochrome c has the same or 

similar potential as its native form. A previous whole cell redox titration study of flash-induced 

heme c oxidation in H. mobilis revealed that three c-type hemes with midpoint potentials of +190, 

+170, and +90 mV became oxidized by the flash-oxidized primary donor [25]. According to our 

result, the +90 mV value is probably the one midpoint potential reflecting oxidation of the 

diheme cytochrome c of the H. mobilis cytochrome bc complex. The +190 and +170 mV hemes 
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might both be due to cytochrome c553, possibly in slightly different environments. 

Heliobacterial diheme cytochrome c is a cytochrome c4 type protein, which is found in many 

different species [17]. It is believed that cytochromes c4 originated from gene duplication of a 

monoheme type I cytochrome c followed by fusion of the two genes [4]. The same feature can be 

seen from the sequence similarity of the N- and C- terminal domains of the heliobacterial diheme 

cytochrome c (Fig. 10). Therefore, the structure of its globular heme-binding domains has been 

modeled based on the crystal structure of cytochrome c4 from Pseudomonas stutzerii (Fig. 11). 

Unlike cytochrome f and cytochrome c1, whose hemes have distinctive double edges allowing 

them to accept electrons from one side and pass them to the partners on the other side, 

heliobacterial diheme cytochrome c, as in cytochrome c4 in general, are predicted to have only 

one edge of each heme that is accessible toward different sides of the protein respectively. This 

implies that there must be an intramolecular inter-heme electron transfer in the diheme 

cytochrome c. Some kinetic studies showed that this inter-heme electron transfer is a much faster 

process compared to the ms time range for the electron transfer between diheme cytochrome c 

protein and its partners [14, 27]. In P. stutzerii cytochrome c4, this fast inter-heme electron 

transfer was attributed to the strong heme-heme hydrogen bond via their propionates, and the 

same reason was also believed to be responsible for the two different redox midpoint potentials 

of the two hemes [27]. Whereas, in our study, the heliobacterial diheme cytochrome c has only a 

single observable midpoint potential, indicating two identical or at least spectrally and 

thermodynamically very similar heme binding pockets. This interesting difference may originate 

from their different relative geometry and thus different interactions between the two hemes 

among a variety of diheme cytochromes c. The structure of the heliobacterial diheme cytochrome 

c will be an important piece of information to resolve this question. 
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Fig. 10 The alignment of the N- and C- terminal domains of the heliobacterial diheme 

cytochrome c. The two heme-binding motifs are highlighted in bold characters. 
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Fig. 11 The diheme cytochrome c without its transmembrane helix as modeled on cytochrome c4 

from Pseudomonas stutzerii (pdb: 1ETP) (homology model generated by Modeller 9.11).  
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              In conclusion, as part of the effort to understand the properties of the heliobacterial 

cytochrome bc complex, its unique subunit, the diheme cytochrome c, was expressed in E. coli 

and purified. Western blot, heme staining and mass spectrometry results confirmed that two 

heme-binding motifs covalently linked two c-type hemes. The single redox midpoint potential of 

the recombinant diheme cytochrome c strongly suggests that the two hemes are in extremely 

similar binding environments. This result is quite different from the two distinct midpoint 

potentials of many cytochromes c4, which may share the same origin with heliobacterial diheme 

cytochrome c. This is a hint that in heliobacterial diheme cytochrome c, the two hemes interact 

with each other in a different way compared to some other cytochromes c4. To answer this 

question and a more intriguing one: what is the relationship between the diheme cytochrome c 

and the rest of the whole cytochrome bc complex, crystallographic analysis and more effort 

trying to purify the intact complex in its native form from Heliobacteria are underway. 
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Abstract 

              Heliobacterial diheme cytochrome c subunit of the cytochrome bc complex is an unique 

and important part of the complex structurally and functionally. As an electron carrier and the 

last stop of the cytochrome bc complex’s high potential intramolecular electron transfer chain, 

information about its structure and redox function is crucial toward the understanding of the 

function of the entire complex and its role in the heliobacterial cyclic electron transfer. Therefore, 

in this study, we utilized two mass spectroscopic techniques, hydrogen/deuterium exchange mass 

spectrometry (HDX-MS) and ion mobility mass spectrometry (IM-MS) to study the diheme 

cytochrome c’s conformations under reduced and oxidized conditions. In HDX kinetics studies, 

in almost all regions from most of the peptides, the oxidized form shows larger deuterium uptake 

compared to the reduced form, which indicates that the oxidized form of the diheme cyt c has a 

more open structure or at least higher dynamics. Meanwhile, the oxidized diheme cyt c showed 

longer drift time compared to its reduced form in the IM chamber, indicating a conformation 

with larger dynamic diameter, which is consistent with the conclusion drawn from HDX-MS 

experiments. Our experiments show unambiguously that there is a real structural conformational 

difference between the two different redox states. A smaller or more compact reduced form 

might have the function of bringing the two hemes closer to facilitate interheme electron transfer, 

which also implies a mechanism that is possibly sensitive to the distance between hemes. 

 

 

 

 

 



 

59 

Introduction 

              Different from cytochrome c1 in the cytochrome bc1 complex, or cytochrome f in the 

cytochrome b6f compelx, a diheme cytochrome c plays the role of the terminal electron acceptor 

in the high potential electron transfer chain of the bc complex in heliobacteria [1, 2]. Therefore, 

studying the structure and function, particularly the redox properties of this unique subunit is 

crucial to the understanding of the function of the entire heliobacterial cyt bc complex.  

              In general, cytochrome c is a class of electron transport hemoproteins that covalently 

bind with heme group(s) through two thioether bonds between the vinyl groups of heme ring and 

cysteine sulfhydryls of the CXXCH heme-binding motifs [3]. Its main function is mediating 

single-electron transfer reactions between protein electron donors and acceptors [4, 5], during 

which time its heme iron(s) is reversibly oxidized and reduced between the Fe2+ and Fe3+ 

oxidation states. The axial coordination of heme iron plays key roles in determining redox, 

electron transfer, and other properties of cyt c [6, 7, 8]. Redox-dependent conformations of cyt c 

have been subjected to extensive study for decades using various biochemical and biophysical 

techniques [9-16]. Although some comparative X-ray crystallographic studies of cyts c have 

shown little or no difference between the backbone structures of the two redox states [17, 18], 

almost all solution based studies showed a clear conformational change between the two redox 

states [19, 20, 21]. Specifically in the case of horse heart cyt c, the radius dimension of the 

oxidized form is significantly larger than that of the reduced form [20].  

              Studying details of the redox-dependent conformational change is crucial to the 

elucidation of the mechanisms of biological electron transfer in metalloproteins, including 

cytochromes. For proteins with multiple metal centers, mutual orientation and distance between 

the centers ensures facile intramolecular electron transfer either directly or after conformational 
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triggering. The electron transfer step involving a given center induces electrostatic or 

conformational changes in other centers, either enhancing or lowering the rate constants of the 

subsequent electron transfer steps [22]. Prokaryotic diheme cyts c, as the representatives of the 

electron transfer proteins with two iron centers, have been studied with various spectroscopic 

methods [23, 24, 25]. For example, cyt c4 from Pseudomonas stutzeri, which also shares the 

same origin and amino acid sequence similarities with heliobacteria diheme cyt c of the bc 

complex [26], the strong hydrogen bond via propionate groups between the two heme groups is 

the key for inter-heme (intramolecular) electron transfer [27]. 

              Although numerous spectroscopic techniques have been powerful tools to study redox 

state related conformational changes of cyts c in the past, there are limitations. For instance, the 

biophysical techniques usually require large amount of sample, which is not always available, 

and the resolution is relatively low [28].  Modern mass spectrometry (MS), on the other hand, is 

well known for its exquisite sensitivity in probing the details of protein dynamics. In terms of 

studying protein conformations, hydrogen/deuterium exchange (HDX) or ion mobility (IM) 

coupled with MS are particularly effective [29, 30]. HDX refers to the exchange between the 

amide hydrogen in the protein backbone and the deuterium in D2O in the solution. This is a kind 

of chemical labeling that can offer a topographical mapping of the protein surface, and the 

physical conditions of the proteins being probed. The mass shift, which works as a reporter, can 

be read by mass spectrometer, which eventually provides valuable information about protein 

dynamics [31-34]. IM is a technique that separates ions, e.g. ionized proteins, based on their 

mobility, or the ability to move through a certain medium. This is highly dependent on the 

charge and shape of an ion [35, 36]. Coupled with MS, which gives information on the mass to 

charge ratio (m/z), IM-MS can identify the mass of the ions, and their overall structure, e.g. 



 

61 

conformation and size, can also be determined simultaneously.  

Previously, HDX coupled with infrared spectroscopy has been used to study the 

conformations of reduced and oxidized horse heart cyt c [37]. Viala and co-workers [38] 

reported the only HDX-MS study of the same system. There has been no HDX-MS or IM-MS 

study of the diheme cyt c system. We have proposed a working mechanism of the diheme cyt c 

subunit of the heliobacterial cyt bc complex, which involves a more closed conformation upon 

reduction, and more opened structure in the oxidized state [39]. Therefore, in this chapter, we 

report a MS based conformation study of the reduced and oxidized forms of the heliobacterial 

diheme cyt c for the first time, and offer amino acid resolution of the structural change details, 

which sheds light on the structure function relationship of this protein.  

 

Materials and methods 

Reduced and oxidized diheme cytochrome c sample preparation for ion mobility mass 

spectrometry. 

              The diheme cytochrome c was expressed and purified as described in chapter two [39]. 

50 µL of approximately 5 µM diheme cyt c in 20 mM Tris-HCl, pH 7.5 solution was used for 

reduced and oxidized sample preparation respectively. By adding sodium dithionite (reductant) 

or potassium ferricyanide (oxidant) to the samples, they are either reduced or oxidized instantly. 

A Zeba spin desalting column (Thermo Scientific, IL, USA) was used to remove the extra 

sodium dithionite or potassium ferricyanide and the samples were exchanged into 200 mM 

ammonium acetate pH 6.8 buffer using a Vivaspin 500 ultrafiltration device (Vivaproducts, 
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Littleton, MA). 

 

Ion mobility (IM) mass spectrometry experiment and data processing. 

              Samples were delivered by offline emitter (PicoTip, New Objective, Wohurn, MA) at 

the flow rate of ~10 nL/min. The sample solution was injected to a hybrid ion-mobility 

quadrupole time-of-flight mass spectrometer (Q-IM-TOF, Synapt G2 HDMS, Waters Inc., 

Milford, MA). All samples were acquired under the same, gentle instrument conditions (capillary 

voltage 1.5-2.1 kV, sampling cone 50 V, extraction cone 2 V, source temperature 30 °C, trap 

collision energy 40 V and transfer collision energy 5 V). The pressure of the backing region was 

5 mbar. For the IM, the helium cell and the IMS gas flows were 120 mL/min and 50 mL/min, 

respectively, the IMS wave velocity was 450 m/s, and the IMS wave height was 20 V. Nitrogen 

was the carrier gas. An IM spectrum was acquired every 1 s, after external calibration to 8000 

m/z with NaI solution. Peak picking and data processing were by Masslynx (v 4.1) and 

DriftScope software (Waters Inc., Milford, MA). The ion-mobility signal was averaged for 10-15 

min. 

 

Hydrogen/Deuterium exchange (HDX) experiment of reduced and oxidized diheme 

cytochrome c samples. 

              Differential, solution Hydrogen/Deuterium (HDX) experiments were performed in the 

cold room at 4 °C. Approximately 25 µM of diheme cyt c in 20 mM Tris-HCl, pH 7.5 solution 

was incubated with either sodium dithionite, or potassium ferricyanide (oxidant) to a final 
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concentration of 25 mM also at 4 °C, prior to HDX experiments. Continuous labeling was 

initiated by incubating 2 µL of the 25 µM protein, together with the reductant or oxidant, with 18 

µL of D2O; the incubation lasted for a predetermined time (0.17, 0.5, 1, 2, 15, 60, 240 min). The 

exchange reaction was quenched by mixing the solution with 30 µL of 3 M urea, 1% 

trifluoroacetic acid (TFA) at 0 °C. If not being used immediately, the mixture was frozen in 

liquid nitrogen right after the quenching and stored at -80 °C for less than 48 hours before use.  

              The mixture was then digested by passing through a custom-packed pepsin column (2 

mm x 2 cm) at 200 µL/min, and captured by a C8 trap column (2 mm x 1 cm, Agilent Inc., Santa 

Clara, CA, USA) and desalted with a 3-min flow. Peptides were then separated by using a C18 

column (2.1 mm x 5 cm, 1.9 mm Hypersil Gold, Thermo Fisher Scientific, Waltham, MA, USA) 

with a 5 min linear gradient of 4% - 40% CH3CN in 0.1% formic acid. Protein digestion and 

peptide separation were carried out in an ice-water bath to minimize back exchange. Mass 

spectrometric analyses were with a hybrid LTQ Orbitrap (Thermo Fisher Scientific, CA, USA) 

with capillary temperature at 225 °C, and data were acquired with a mass resolving power of 

100,000 for ions of m/z 400. Each experiment was performed in duplicate. 

 

Peptide identification and HDX data processing 

MS/MS experiments were performed with the LTQ Orbitrap mass spectrometer. 

Product-ion spectra were acquired in a data-dependent mode, and the six most abundant ions 

were selected for product-ion analysis. The MS/MS *.raw data files were converted to *.mgf 

files (MassMatrix Mass Spectrometric Data File Conversion Tools, Version 3.9) and then 

submitted to MassMatrix (Version 2.4.2) for peptide identification [40, 41]. Peptides included in 
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the set used for HDX had a MassMatrix score of 10 or greater, using peptide and MS/MS 

tolerance as 10 ppm and 0.8 Da, respectively. The MS/MS MassMatrix search was also 

performed against a decoy (reverse) sequence, and ambiguous identifications were ruled out. The 

product-ion (MS/MS) spectra of all peptide ions from the MassMatrix search were manually 

inspected, and only those verifiable were used in the following steps. The centroid masses of 

isotopic envelopes were calculated with HDX WorkBench [42]: deuterium level (%) = {[m(P) – 

m(N)]/[m(F) – m(N)]} x 100%, where m(P), m(N), and m(F) are centroid values of partially 

deuterated peptide, nondeuterated peptide, and fully deuterated peptide, respectively. To 

accommodate situation where a fully deuterated control is not available, m(F) was determined 

with m(F) = m(N) + (n-p-2)/z, where n is the number of amino acids in the peptide, p is the 

number of prolines, and z represents charge. Prolines, with no amide hydrogen, were not 

considered. The value “2” is subtracted within the equation because the first two amino acids do 

not retain deuterium. No correction was made for back exchange because all values are relative 

and susceptible to the same back exchange. 

 

Results 

HDX kinetic curves of all digested peptides 

              After pepsin treatment, diheme cytochrome c protein was digested into hundreds of 

peptides, in which around fifty with high signal/noise ratio were picked for the subsequent 

peptide mapping. The coverage rate is 100% (Fig. 1). Fig. 2 shows the kinetic curves of all the 

peptides used for HDX mapping of both reduced (solid line) and oxidized (dash line) states of 

the diheme cyt c. We submitted both reduced and oxidized protein to HDX under identical 
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conditions, so changes in HDX rates would reliably reflect any oxidation-induced changes. In 

most of the peptides, the oxidized form shows larger deuterium uptake compared to the reduced 

form, which indicates that the oxidized form of the diheme cyt c is more accessible to deuterium, 

thus more dynamic and opened. The most dramatic changes happened to the heme binding 

peptides (shown in Fig. 2, peptides 1-29, 1-32, 98-109, 109-127, 109-129, 110-127), indicating a 

significant conformational change of the heme binding pockets between the two redox states. 

Some regions of the protein, on the other hand, showed little difference between the oxidized and 

reduced forms, including peptides 45-49, 78-91, 130-138, 143-149, 169-172, 209-218. Except 

for peptides 78-91 and 209-218, which showed no difference in the level of deuterium uptake for 

both redox states, the other, however, showed hardly any deuterium uptake at all, indicating a 

near-protein-core location. Peptide 209-218 covers the His-tag, and the fact that there is no 

change of it shows that the His-tag influences little to the protein structure and dynamics. 

 

HDX analysis of diheme cyt c on its homology model   

              A homology model of the diheme cyt c (His- tag not included) was generated with the 

software Modeller 9.10 using the cyt c4 from Pseudomonas stutzerii as the template, and the 

percentage of deuterium levels for all peptides was mapped with color for each exchange point in 

Fig. 3. Since the oxidized and reduced forms of the template protein share exactly the same 

structure (pdb code 1M6Z and 1M70), and homology modeling alone cannot predict the different 

conformations of diheme cyt c at different redox states, a single predicted structure was 

calculated and used for HDX kinetics mapping, which can still provide valuable information 

about the secondary structure features and the protein environment of the hemes. Although the 
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Fig. 1 HDX peptide coverage map for diheme cyt c. All amino acids from N to C terminus are 

covered. The same peptides with different charge states are also shown here. 
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(Fig.2 continues to the next page)                                                                                
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(Fig.2 continues to the next page) 
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(Fig.2 continues to the next page) 
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Fig. 2 Kinetic curves of all the peptides used for HDX mapping for reduced (solid line) and 

oxidized (dash line) states of the diheme cyt c. The peptides involved in heme c binding pockets 

are highlighted in red frames. The number range is the amino acid sequence (start from 1 at N-

terminus and 218 at C-terminus). The numbers in parenthesis with “+” sign in front are the 

charge states of the peptides.  
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two heme binding domains share high sequence similarity and so do their secondary structures, 

in terms of deuterium exchange levels between reduced and oxidized states, there are some 

differences.  Interestingly, compared to all other alpha helices around the hemes, one alpha helix 

in the N-terminal heme binding domain shows very low HDX level regardless of the redox state, 

implying a certain resistance to deuterium exchange. From the kinetic curves in Fig. 2, we 

observe that the oxidized form has a higher overall deuterium uptake. The kinetic information of 

both reduced and oxidized forms was mapped onto the homology structure (Fig. 3a and 3b, 

respectively). Warmer color means higher deuterium uptake. The loop regions have generally 

higher uptake even at shorter HDX time due to their intrinsic flexibility; but they are not the ones 

with the highest level, indicating a certain structural restriction. The differences between the 

oxidized and reduced form of diheme cyt c in terms of their uptake level (i.e., average of 

differences at every time point) are mapped in Fig. 4 onto the homology model. Most alpha-

helical and loop regions around the hemes show higher exchange level for the oxidized form, 

suggesting a more opened structure and higher dynamics. The most significant difference 

happens to the loop and one short alpha helix close to the C-terminal heme (colored in deep blue 

in Fig. 4). The biggest structural changes based on the homology modeling, though not as 

significant as the ones close to the C-terminal heme, happen to the two alpha helices close to the 

N-terminal heme. These loop or alpha helical structures are all on the same sides of axial 

direction of the hemes’ porphyrin plane, suggesting the possibility of allosteric interaction. 

 

Diheme cyt c native mass spectroscopy. 

To study the native conformation of the diheme cyt c protein with IM-mass spectrometry, 
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its native mass spectrum was first collected. The protein sample in 200 mM ammonium acetate 

was injected into the mass spectrometer and the spectrum is shown in Fig. 5. The protein was in 

nearly the native state, which is in a folded conformation with relatively few positive side chains 

on the surface compared to the denatured unfolded form. The major peak was observed at m/z = 

2502.4 for 10+ charge state. The charge state distribution of diheme cyt c protein confirmed the 

near native folded state of the protein. There was some denatured unfolded protein signal 

observed in the low m/z region. We focused on the near native state of protein for the further 

investigation, which was reflected in the 10+ and 9+ charge states. 

 

Diheme cyt c redox conformation study by IM-mass spectrometry. 

              IM gives a global view of conformational differences of proteins [43]. The electrical 

mobility of a protein ion, measured and represented by its drift time pass through a chamber 

filled with electrical field and inert gas, depends mainly on its charge state and collision cross 

section area. The larger the ion’s collision cross section area is, the slower it will move in the 

chamber, thus giving a longer drift time. Yet in reality, when dealing with protein ions, it is 

usually more complicated. Fig. 6 shows the two-dimenstional IM-mass spectrum of diheme cyt c. 

The ions with the charge states 10+ and 9+ share almost the same drift time, although there is a 

one positive charge difference and ideally the one with higher charge should move faster in the 

electrical field. An explanation for this phenomenon is that the 10+ state protein ion has one 

more positively charged side chain on its surface compared to the 9+ one, which will lead to a 

more opened conformation relative to the lower charge state ion. This effect may counteract the 

more charges the ion bears in Fig. 6 and the same drift time is the result. Therefore, for redox 
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                                                                              (b) 

Fig. 3 The percentage of deuterium levels for all peptides was mapped with color for each 

exchange point onto the homology model of diheme cyt c; the color code is explained on the 

right of the figure. (a) Reduced form HDX kinetics. (b) Oxidized form HDX kinetics. 
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Fig. 4 The differences between the oxidized and reduced form of diheme cyt c in terms of their 

deuterium uptake are mapped onto the homology model. Color code shows the differences 

(reduced form subtracted by the oxidized form). 
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state related conformational change IM study, we picked up one single charge state ion as the 

target for analysis, which in this case the 9+ state due to its higher signal/noise ratio (data not 

shown here).   

We then treated the samples with different sodium dithionite concentrations, 0, 250 µM, 

500 µM, and injected them into the IM-mass spectrometer.  For each sample, we could clearly 

detect two different forms of ions, with two different drift times, from the same charge state, 9+. 

Fig. 7 shows the drift time profiles of samples with different amount of the reductant. With the 

increase of dithionite concentration, the ion species with a shorter drift time increased as well, 

which indicates that this is the reduced form of the diheme cyt c. The other species had a 

decreased population at the same time, which means that it must be the oxidized form. Because 

the reduced form has a shorter drift time compared to the oxidized form, so the reduced protein 

has a more compact conformation, and the oxidized one has a more opened structure. 

 

Discussion 

              Although numerous solution-based spectroscopic and computational studies showed that 

there is a conformational change between the reduced and oxidized forms of cyt c, these results 

were in apparent conflict with high-resolution crystallographic data on cyt c that shows the 

crystal structures of the two forms being very similar [44]. It is highly possible that the X-ray 

structures are both reduced forms. There can be radiation-induced reduction of oxidized metal 

proteins in an X-ray beam, and this clearly happens to the oxygen-evolving complex (OEC) in 

Photosystem II.  Another proposed mechanism is that while the time-averaged structures of 

oxidized and reduced cyt c are the same, their dynamics are different, in that the oxidized form  
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Fig. 5 Native mass spectrum of diheme cyt c in 200 mM ammonium acetate. Red numbers with 

“+” signs represent charge states of the ion species. 
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Fig. 6 Two-dimensional IM-mass spectrum of diheme cyt c. The protein was introduced into gas-

phase (filled with N2) by native ESI. The near native folded state of protein was observed. The 

ion mobility separation was plotted on the x-axis (drift time in ms) and the mass spectrum on the 

y-axis (m/z).  
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Fig. 7 Ion mobility measurement of diheme cyt c (9+ species) with different concentrations of 

reducing agent. The native IM mass spectra were acquired for samples with different sodium 

dithionite concentrations. The drift time profile for each experiment was extracted and plotted. 

The same instrument parameters were applied to all samples. Two species were observed in 

single charge state (9+). One is more open in the conformation, the other is more closed, labeled 

in different color. 
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undergoes more low-frequency, large-amplitude motions than the reduced form [45]. However, 

this cannot explain the overall yet unevenly distributed higher HDX for all peptides of the 

oxidized-form of diheme cyt c in our study. Besides, the IM-MS results clearly showed a more 

open structure or larger diameter of the oxidized form. Therefore, our study suggests that there 

are real structural differences between the two different redox forms. The most dramatic changes 

between the two redox states happen to the peptides directly linked to the hemes c, indicating 

that the main driving force of protein conformational change is the redox state change of the 

heme groups. Since the recombinant diheme cyt c we used in this study does not have the N-

terminal transmembrane helix in its native form in vivo [39], so it is difficult to assess its 

influence toward the conformations at different redox states. It is possible, due to its closeness to 

the N-terminal heme binding motif, that it will impose some structural rigidity to the N-terminal 

heme binding domain and make this heme c a possible electron transfer partner with the Rieske 

iron-sulfur protein subunit of the bc complex. 

              For monoheme cytochromes, the electron transfer is a two-step process. First the 

electron donor binds with and reduces the cytochrome, then the cytochrome binds with the 

electron acceptor and passes the electron to it. For diheme cytochromes, on the other hand, one 

more step, the intramolecular interheme electron transfer, is added. In most diheme cyts c, the 

two hemes usually possess two distinct macroscopic redox potentials, e.g. 240 mV and 330 mV 

for the cyt c4 from P. stutzeri, which follows expectations from the negative and positive 

electrostatic charges of the two domains [22]. And the electron will flow along with the direction 

of the electrostatic field inside the protein. The diheme cyt c from the heliobacterial cyt bc 

complex, however, only has one redox midpoint-potential [39], indicating two very similar heme 

binding pockets and similar protein charge distributions between the two domains, thus a 
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possible different intramolecular electron transfer mechanism. The observed significant protein 

conformational changes in both HDX- and IM-mass spectrometry studies may not only be 

triggered by the internal conformational change and charge distribution of the hemes upon 

reduction [4], but also work to facilitate the intramolecular interheme electron transfer, indicating 

a mechanism sensitive to distance between the hemes. The existence of an intramolecular 

“electrical wire” allows for an electron transfer function analogous to that of cytochrome f or 

cytochrome c1. Our results points toward a more closed-up structure upon reduction of the 

protein, implying that closer distance between the two hemes can facilitate interheme electron 

transfer, either through the hydrogen bond between propionate groups, or bonds comprising the 

chain structures of the protein.  

              A conclusion is thus that there is a real difference between the structure of the reduced 

and oxidized form of diheme cyt c, and the oxidized conformation is more dynamic and opened 

comparing to the reduced form. The redox state driven conformational change is probably crucial 

to the intramolecular interheme electron transfer. To further understand the structure and 

function of the diheme cyt c, we crystallized the protein and the crystal diffracts at 2.0 Å. After 

the structure is solved, combined with our HDX- and IM-mass spectroscopic studies, there will 

be a clearer picture of the redox state triggered conformational change. The study of how this 

conformational change relates to the binding of electron donor (Rieske protein in the cyt bc 

complex) and electron accepter (cyt c553), and its influence to the binding affinity will provide 

more information about the function of the diheme cyt c subunit and the bc complex in H. 

modesticaldum  photosynthetic electron transfer chain. 
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Abstract 

               Photosynthetic light reactions establish cyclic electron transfer (CET) in the 

cytoplasmic membrane in Heliobacterium modesticaldum, leading to the production of ATP and 

NADH, which participate in carbon assimilation and nitrogen fixation. Therefore, it is important 

to understand its mechanism, especially the dynamic interaction between two key components of 

the CET chain, the reaction center (RC) and the cytochrome bc complex. Determining their 

stoichiometry is a crucial step toward building a more accurate heliobacterial CET model. We 

determined the amount of RC in H. modesticaldum whole cells by measuring the absorption 

spectrum of the cell methanol extract. The cytochrome bc complex content was calculated based 

on quantitative Western blot, using an antibody raised against recombinant diheme cytochrome c 

subunit of the complex. A stoichiometry of 14 to 8 RCs per cytochrome bc complex catalytic 

center was estimated, a much larger number than previously reported, indicating a higher 

turnover number of the bc complex.  
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Introduction 

              Light-induced cyclic electron transfer (CET) in Heliobacteria involves two integral 

membrane protein complexes, the reaction center (RC) and the cytochrome bc 

(Rieske/cytochrome b) complex, each encompassing several redox centers and embedded in the 

cytoplasmic membrane, plus the membrane attached cytochrome c553 that shuttles electrons 

between them [1, 2, 3]. The direct outcome of this light-induced CET is the translocation of 

protons from the cytoplasm to the periplasm and the formation of a trans-membrane potential, 

which ultimately drives the ATP synthesis via the ATP synthase. Part of the energy is used to 

produce reducing power, e.g. the producing of NADH, which is the driving force for linear 

electron pathway and carbon/nitrogen fixation [4]. Therefore, CET is crucial for a proper balance 

of ATP and NADH in Heliobacteria [5].  

              The main steps of the light-induced CET in Heliobacteria can be outlined as follows. 

After the absorption of a photon by the Bchl g pigments, the excitation induces a charge 

separation in the RC complex [6, 7, 8]. Electrons within the RC core polypeptide homodimer 

PshA are eventually shuttled to a [4Fe-4S] cluster, and subsequently donated to the terminal Fe/S 

dicluster FA/FB within PshB, a [4Fe-4S] ferredoxin that associates with PshA on the cytoplasmic 

side of the membrane [9, 10, 11]. Then PshB may pass the electrons to a second ferredoxin, 

which supplies reducing equivalents for cytoplasmic reactions primarily focused on carbon 

assimilation and nitrogen fixation, or may dissociate and fulfill this function. Meanwhile, the 

menaquinols in the membrane pool are oxidized via turnover of the cytochrome bc complex 

through the Q-cycle mechanism. The electrons will then be passed to the cytochrome c553 and 

eventually the RC core complex [2]. Protons will be translocated from cytoplasm to periplasm at 

the same time via Q cycle in the cytochrome bc complex [12]. NADH:menaquinone 



 

89 

oxidoreductase (complex I) will re-reduce the menaquinone pool together with cytochrome bc 

complex to complete the cycle.  

Many attempts over the past three decades dedicated to the understanding of 

heliobacterial CET, investigations are complicated by the extreme oxygen sensitivity of the 

organism due to a high proportion of the unsaturated lipids [13] and the presence of Bchl g [14], 

which is transformed to farnesol-Chl a upon contact with oxygen [15]. Furthermore, it seems that 

electron transfer reactions beyond the RC itself can only be studied in intact, living cells since 

membrane preparation disrupts the electron transfer chain [16]. Nitschke and coworkers [17], 

using absorption difference spectra recorded on whole cells poised to different redox conditions 

by addition of chemicals (ferrocyanide, ascorbate, phenazine methosulfate) and flash-induced 

absorption difference spectra, determined a stoichiometry of 5-6 hemes c and 1-3 hemes b per 

RC in H. mobilus. Kramer and coworkers [18] estimated a stoichiometry of 0.6-0.75 cytochrome 

bc complexes per RC based on light-induced redox changes in whole cells under anaerobic and 

aerobic conditions also for H. mobilus. Though variable depending on species and growth 

conditions, the stoichiometric ratios between the components of the photosynthetic chain are 

generally in the order: quinones > RC > mobile cytochrome > cytochrome bc complex [19]. 

Moreover, the complexity of whole cell systems and a serious of assumptions made for these 

calculations reported in the earlier reports imposes challenges to the model building for the 

heliobacterial CET, and no similar study has been done in H. modesticaldum cells. Therefore, in 

this study, we determined H. modesticaldum RC quantity based on the absorption spectra of Bchl 

g (Bchl g’) directly extracted from whole cells. The cytochrome bc complex quantity in the same 

amount of cells was determined by quantitative Western blot, using the antibody raised against 

its diheme cytochrome c subunit as the probe and recombinant diheme cytochrome c as internal 
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standard. These data were used to estimate the stoichiometry of the RC and cytochrome bc 

complex, and the implications of ratio for the current heliobacterial CET model are discussed.  

 

Materials and methods 

Growth of H. modesticaldum and cell lysis sample preparation 

H. modesticaldum was grown in PYE medium inside the Coy anaerobic chamber at 

temperatures ranging from 40–45 °C in the light (10 ± 1 W/m2). To prepare the sample for 

cytochrome bc complex quantification, 250 µL of overnight (20 hours) culture was harvested by 

centrifugation at 13,000 rpm and re-suspended into the SDS denaturing buffer, which is 

composed of 150 mM Tris-HCl, 4% SDS, 5% 2-mercaptoethanol, 0.05% coomassie blue G250, 

30% glycerol, pH=7.0. The final volume is 100 µL. Sonication is needed for cell lysis. The 

mixture is incubated at room temperature for 1 hour, then centrifuged at 13,000 rpm for 3 min to 

precipitate the insoluble material, and ready for SDS PAGE. To prepare the sample for reaction 

center quantification [20], 250 µL of cell culture, taken from the same one used for cytochrome 

bc complex quantification, was harvested by centrifugation. The liquid was removed thoroughly, 

1 mL of methanol, degassed and kept in the anaerobic chamber, was added. Then the mixture 

was subjected to vigorous shake for 1 min and centrifuged at 13, 000 rpm for 3 min to remove 

the cell debris. The yellow-greenish supernatant contained all the extracted pigments from the 

cells, which is used for UV-Vis spectroscopy measurement. The entire operation was conducted 

inside a Coy anaerobic chamber to avoid oxygen. 
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HPLC purification of Bchl g and Bchl g’ and their extinction coefficient determination with 

UV-Vis spectroscopy 

              H. modesticaldum cells from 1 mL of overnight culture was disrupted with degased 

100% methanol and the pigments in the cells were extracted. Then the Bchl g (Bchl g’) was 

purified using an Agilent 1100 HPLC system equipped with a Zorbax Eclipse XDB-C18 reverse 

phase column (250 mm × 4.6 mm) with the flow rate of 1 ml/min and two mobile phase 

gradients: methanol from 100% to 98% and THF from 0 to 2% from 0 to 5 min, then methanol 

from 98% to 90% and THF from 2% to 10% from 5 to 10 min. The fraction of the peak from 6.5 

to 7.0 min was pure Bchl g (Bchl g’) and collected. Then the collected solution was quickly dried 

by N2 gas flow and dissolved with degased acetone. Then, to 1 mL of degased methanol and 

diethyl ether solvent in two separate UV cuvettes, 20 µL of the Bchl g (Bchl g’) acetone solution 

were added to each one respectively. The absorbance profiles were measured with a Shimadzu 

UV-1800 UV-Vis spectrophotometer. 

  

Room temperature UV-Vis spectroscopy for Bchl g (Bchl g’) and RC quantification 

              The UV-Vis spectra of the pigments methanol extract was taken with a Shimadzu UV-

1800 UV-Vis spectrophotometer inside the anaerobic chamber. A 0.5 cm pathlength cuvette was 

used for the measurements. The spectrum was analyzed by Shimadzu software pack and Origin 

7.5 (OriginLab).  

 

Protein concentration assay, SDS-PAGE and Western blot 
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              The concentration of recombinant diheme cytochrome c was determined by pyridine 

hemochrome method described in chapter two. The standard samples with known concentrations 

were mixed with SDS denaturing buffer, which was used for cell lysate denaturing, and 

incubated for 1 hour at room temperature before being loaded onto a SDS gel for electrophoresis. 

The SDS-PAGE procedure is addressed in Chapter two. After SDS-PAGE, the gel was taken out, 

and the proteins were blotted onto a nitrocellulose membrane using a Pierce Fast Semi-Dry 

Blotter in the transfer buffer (25 mM Tris, 192 mM glycine, 10% methanol) at 4 °C for 50 min 

with a constant voltage of 15 V. Then the membrane was treated with 3% H2O2 for 10 min, and 

rinsed with water three times, each for 3 min. After thoroughly rinsed, the membrane was put 

into 10% (w/v) non-fat milk TBS buffer (10 mM Tris-HCl, pH 7.4, 0.9% (w/v) NaCl) overnight 

at 4 °C for blocking. The anti diheme cytochrome c polyclonal antibody, raised in rabbit and 

purified by protein A and G, was diluted 10,000 times into TBS buffer with 5% non-fat milk. 

The membrane was then incubated for 2 hours at room temperature with mild shaking. After 

primary antibody incubation, the membrane was washed with TBS buffer for 4 times on a shaker, 

8 min each. The secondary antibody, anti-rabbit IgG-peroxidase produced in goat, was diluted 

10,000 times in TBS buffer with 5% milk. The membrane was then incubated with secondary 

antibody for 1 hour, also at room temperature on a shaker. Then pour out the buffer and wash the 

membrane with TBS buffer for 4 times, 10 min each, and followed by water 3 times, 1 min each. 

The membrane was carefully dried briefly with Kimwipe without disturbing the surface attached 

with proteins. Then the SupperSignal West Femto Maximum Sensitivity Substrate kit (Thermo 

Scientific) was used to develop the membrane. The chemiluminescence signals were detected 

and analyzed by a LAS-4000 detection system and ImageQuant TL software pack (GE). 
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Results 

Bchl g and Bchl g’ extinction coefficient in methanol determination 

              Based on Beer’s law, A=εcl (ε extinction coefficient, c concentration of the compound 

in solution, l pathlength of the sample), calculating the concentration of Bchl g (Bchl g’) thus RC 

in solution requires known extinction coefficient. Methanol is the most commonly used organic 

solvent to extract pigments from whole cells, but the ε of Bchl g (Bchl g’) in 100% methanol has 

yet been reported. Since we use methanol to determine the RC concentration, the first step is to 

measure the ε of Bchl g (Bchl g’) in methanol. Moreover, ε of Bchl g (Bchl g’) in diethyl ether 

was well known [21], therefore, we chose it as the reference. The UV-Vis absorption spectra of 

HPLC purified Bchl g (Bchl g’) in diethyl ether and methanol are shown in Fig. 1. The 

maximum Q band absorption of Bchl g (Bchl g’) in diethyl ether is 0.359 at 767 nm, and 0.21 at 

750 nm in methanol. The ε of the Q band in diethyl ether is 100 mM-1cm-1, so the ε of the Q band 

in methanol is calculated to be 58.5 mM-1cm-1.  

 

H. modesticaldum reaction center quantification 

              In H. modesticaldum membrane, under photosynthetic growth conditions, reaction 

center is the dominant component [22]. The major pigments it contains, Bchl g and Bchl g’, have 

unique and characteristic absorbance at higher wavelengths above 730nm in organic solvents. 

Therefore, in terms of reaction center quantification, comparing to direct protein peptide 

measurement, which requires complete and accurate, usually difficult separation of the RC from 

the membrane, extracting and measuring Bchl g (and Bchl g’) pigments with organic solvent  
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Fig. 1 UV-Vis absorption spectra of HPLC purified Bchl g (Bchl g’) in diethyl ether (black) and 

methanol (red).  
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offers two main advantages: (1) Less technical challenges. Though being the main component in 

the membrane (mass wise), purifying RC is still labor intensive and could take days to weeks. 

Small-scale purification with HPLC system is faster, but very high purity is difficult to achieve. 

(2) Higher result accuracy. Bchl g’s UV-Vis absorption Q band is at 788nm when bound with 

protein, within the range from 740nm to 790nm in organic solvent, which has no interference 

from any other pigment in H. modesticaldum. Besides, pigments extraction can be done by using 

whole cells, which avoids the inevitable loss during any purification process. However, caution 

must be used since Bchl g is extremely sensitive to oxygen. Therefore, we conducted every step 

of the procedure inside an anaerobic chamber with O2 level of < 1 ppm. The spectrum of cell 

pigment extracts from 250 µL was shown in Fig. 2. We chose the absorbance at 850 nm as the 

baseline, thus the absorbance at 750 nm is 0.05. Based on the extinction coefficient we calculated, 

58.5 mM-1cm-1, we can further calculate the concentration of both pigments from 250 µL cell 

culture is 1.7 µM.  

Much work has been done on figuring out the number of Bchl g and Bchl g’ bound in H. 

modesticaldum RC complex; a broad range of numbers were reported, from 22 to 40 [9, 23-25]. 

Due to this unsettled issue, we decided to use 22 and 40 to calculate the number of RCs and 

generate a range instead of a single number. Therefore, the RCs in the cells from 250 µL cell 

culture is from 42.7 to 77.7 pmol.  

 

H. modesticaldum cytochrome bc complex quantification 

Quantitative Western blotting was used to determine the amount of cytochrome bc 

complex in the cell lysate from 250 µL cell culture. Meanwhile, RC’s quantities in the same 
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Fig. 2 UV-Vis absorption spectra of cell pigment extracts from 250 µL cell culture. 

 

 

 

 

               

 



 

97 

volume/mass of lysate from 250 µL cell culture. Meanwhile, RC’s quantities in the same 

volume/mass of cells was already measured by UV-Vis spectroscopy and calculated. Since 

diheme cytochrome c is one of the four subunits of the H. modesticaldum cytochrome bc 

complex, using antibodies raised against diheme cytochrome c to probe that subunit can also 

provide quantitative information about the complex. A stock solution of expressed diheme 

cytochrome c with unknown concentration (measured by pyridine hemochrome method 

described in chapter two) was diluted into five separate samples with different factors and their 

western blot chemiluminescence signals were used to generate calibration curve. To minimize 

experimental error and increase consistency, cell lysate sample from 250 µL cell cultures, after 

denaturation, was loaded onto the same SDS gel with the standard diheme cytochrome c samples. 

The developed western blot membrane of serial dilutions of recombinant diheme cytochrome c 

and cell lysates is shown in Fig. 3(a); the calculated loading moles and chemiluminescence 

signal readings of the samples are summarized in Fig. 3(b). Band intensities on the blot (shown 

in Fig. 3) were analyzed by spot densitometry and then plotted against recombinant diheme 

cytochrome c amount to generate a standard curve within the linear range of recombinant diheme 

cytochrome c (Fig. 4). Based on the fitting function, the pixel reading of the cell lysate sample 

from the cells in 250 µL culture, we can calculate that there is 5.39 pmol diheme cytochrome c 

subuni. Although H. modesticaldum cytochrome bc complex has a similar general organization 

to that of the cytochrome b6f complex thus it most likely is also a heterodimer complex, 

functionally, the two monomers work somewhat independently as two catalytic centers. 

Therefore, in cells from 250 µL culture, there is 5.39 pmol cytochrome bc complex catalytic 

centers. 
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Fig. 3 Quantification of diheme cytochrome c subunit of cytochrome bc complex in different cell 

lysate samples. (a) Chemiluminescence signals from the western blot of standard samples (serial 

dilutions of recombinant diheme cytochrome c, lane 1-5) and cell lysate (lane 6) with exposure 

time of 5 seconds. (b) Gel loading amount (pmol) and signal strength (pixels, background 

subtracted) of all samples. 
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Fig. 4 Calibration curve of serial dilutions of recombinant diheme cytochrome c with known 

quantity. The data were fitted with Origin 7.5 (OriginLab) and the fitting parameters were shown 

in the chart. 
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H. modesticaldum RC/cytochrome bc complex catalytic center ratio 

              To make the results comparable, we took the same amount of cells from the same 

overnight culture (250 µL), to measure the moles of RC and cytochrome bc complex. The 

calculation shows that there are 42.7 to 77.7 pmol of RCs and 5.39 pmol cytochrome bc complex 

catalytic centers in the cell membrane. The ratio is 14 to 8 RCs per cytochrome bc complex 

catalytic center. 

 

Discussion 

              Although classical Western blotting is typically used for qualitative purposes, it also can 

be used for quantitative analysis of proteins [26, 27, 28], provided that specific controls are 

included. To generate linear calibration curve, a variety of recombinant diheme cytochrome c 

solution concentrations were tested. We found that the loading amount from 1 pmol to 30 pmol, 

under our current experimental and material conditions, can give an acceptable linear calibration 

curve. More than 30 pmol of sample loading will saturate the densitometrical signals and cause 

artifact and nonlinear calibration curves. At the same time, the cell lysate sample must contain 

sufficient cytochrome bc complexes (diheme cytochrome c subunit proteins), so that its amount 

will be within the standard curve range. After exploring with the amount of cells taken from 

overnight cell cultures, we settled with the cells from 250 µL culture mixture.  

              As shown in the results, the ratio is determined as 14 to 8 RCs per cytochrome bc 

complex catalytic center in H. modesticaldum, whereas a number around 1 – 2 RC per 

cytochrome bc complexes in H. mobilis was reported in earlier literatures [17, 18].  This 
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significantly lower number we determined is in line with our observations during the cytochrome 

bc complex purification attempts that comparing to RC, which shows in the native and denatured 

gels as the most abundant component in membrane, the cytochrome bc complex, mainly its 

diheme cytochrome c subunit, can only be detected with very sensitive staining techniques, e.g. 

silver staining or Western blot. As reviewed in the introduction section, the RC : cytochrome bc 

complex stoichiometry was calculated from light-induced redox changes in whole cells from H. 

mobilis recorded under anaerobic and aerobic conditions. The authors had to make several 

assumptions, e. g. all photooxidizable cytochrome c appears in the light-dark difference spectrum 

in the anaerobic conditions, all oxidizable cytochrome b appears in the anaerobic-aerobic dark 

difference spectrum, and cytochrome b and c have equal extinction coefficients at their 

respective α-bands, ignoring the complexity of the heliobaterial whole cell system. Indeed, 

although H. mobilis and H. modesticaldum share very high similarity in general, it does not mean 

that they should have exactly the same photosystem and RC to cytochrome bc complex ratio, 

therefore the previous results might be still correct in H. mobilis. However, in terms of 

methodology, we believe the most accurate way to determine this number is through direct 

detection of the proteins or pigments contained inside the complexes, as shown in this chapter. 

The 14 to 8 RCs per cytochrome bc complex catalytic center ratio, which is much higher 

than the roughly 1 : 1 in the previous literatures, indicates that the cytochrome bc complex in H. 

modesticaldum may have a high catalytic turnover number. In the heliobacterial cyclic electron 

transfer system [29], the proposed electron transport cycle starts with charge separation in the 

RC, resulting in oxidation of menaquinol in the membrane via turnover of the cytochrome bc 

complex; and electrons from the RC (reducing side) complete the cycle by re-reducing the 

menaquinone via NADH:menaquinone oxidoreductase (complex I). To explain the low 



 

102 

percentage of the cytochrome b being oxidized while cytochrome c being reduced despite the 

almost stoichiometric relationship between RC and the bc complex reported in the previous 

papers [17, 18], in their model, the authors proposed a mechanism in which a significant fraction 

of the menaquinone produced at the Qo site of the cytochrome bc complex must be re-reduced by 

the NADH:menaquinone oxidoreductase, whereas, in chloroplasts of plants or algae, most of the 

quinones produced at the Qo site are re-reduced at the Qi site. Based on our study, the presence of 

fewer cytochrome bc complexes per RC indicates a much faster turnover of the bc complex, thus 

the significance of the involvement of complex I protein in terms of re-reducing menaquinone is 

decreased. Therefore, functionally, the cytochrome bc complex in H. modesticaldum might share 

more similarity to the ones in chlorophlasts in plants or algae than previously thought.  

In conclusion, as part of the effort to understand the function of the H. modesticaldum 

cytochrome bc complex, its relationship to RC, and the role of the dynamics of these two key 

components of the entire photosystem, we determined that there are 8 to 14 RCs per cytochrome 

bc complex catalytic center with quantitative Western blot and absorption spectroscopy. This 

much larger number than previously reported result suggests that the cytochrome bc complex has 

a high turnover number, thus higher efficiency in terms of menaquinone re-reducing. More 

functional studies of the whole cells could reveal more detail of the cyclic electron transport 

mechanism. Transcriptomic (qPCR) studies are underway to further illustrate the expression of 

different components of the photosystem on the mRNA level. 
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Conclusions and future directions 
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              This dissertation has focused on the structural and functional study of the unique diheme 

cytochrome c subunit of the cytochrome bc complex in the photosynthetic bacterium 

Heliobacterium modesticalum, and its further application regarding the relationship between H. 

modesticaldum’s cytochrome bc complex and reaction center. By doing so, we hope to shed 

some light on the ultimate goal, a deeper understanding the structure and function of the 

heliobacterial cyt bc complex, which is unique among all other photosynthetic organisms [1, 2].  

              Heliobacteria provide some very exciting opportunities for the study of photosynthesis: 

the simplest known antenna/reaction center system [3], a structurally unique cyt bc complex, an 

interesting carbon fixation system [4], etc. The cyt bc complex plays a central role in 

heliobacterial photosynthesis, transferring electrons between electron carriers reduced and 

oxidized by the photochemical reaction centers, oxidizing menaquinol and reducing cyt c553 

while translocating protons via some variation of the Q-cycle mechanism. Structurally, while 

preserving the mechanistic core consisting of the cyt b and Rieske iron-sulfur proteins, it has a 

very different “third” redox subunit, the diheme cyt c compared to the cyt c1 in the cyt bc1 and 

cyt f in the cyt b6f complex. In general, this particular subunit in all bc complexes bear 

phylogenetic markers for the species in which the proteins reside [5].   

              The use of diheme cyt c in the bc complex separates heliobacteria from all other 

photosynthetic organisms, and groups it with Gram positive actinobacteria and Gram negative ε-

proteobacteria. This cytochrome is of the c4 type, and the sequence comparisons of the two 

monoheme domains suggest that it probably results from gene duplication and subsequent gene 

fusion. Most cyt c4 proteins are soluble electron carriers that might interact with membrane 

proteins as electron transfer partners. However, in heliobacteria, there is no soluble cytochrome; 

the diheme cyt c has a N-terminal transmembrane helix, which helps to anchor the protein in the 
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membrane and thus be a subunit of the bc complex.  

              The first part of the thesis (Chapter 2) described the construct of a heliobacterial diheme 

cyt c expression system in E. coli and the protein purification and characterization. Because the 

diheme cyt c is a subunit of the bc complex, direct purification of the whole complex and 

subsequent fractionation is probably not the best strategy to acquire it. To sustain the following 

biochemical and biophysical, especially crystallographic studies, a large amount of protein is 

needed. Therefore, establishing an expression system is a key step. Herein, in this part of our 

work, the diheme cyt c was expressed in E. coli and purified. Western blot, heme staining and 

mass spectrometry results confirmed that two heme-binding motifs of the protein are covalently 

linked with two c-type hemes. The single redox midpoint potential of the recombinant diheme 

cyt c strongly suggests that the two hemes are in extremely similar protein binding environments. 

This result is quite different from the two distinct midpoint potentials of many cyts c4, which 

share the same origin with heliobacterial diheme cyt c. This is a hint that in the heliobacterial 

diheme cyt c, the two hemes interact with each in a different way compared to some other cyts c4. 

The structural model of the protein shows that for each heme group, only one edge is exposed 

toward the different sides of the protein respectively. Some structural arrangement of the protein 

must allow intramolecular interheme electron transfer to happen so that this subunit can behave 

similarly to cyt c1 or cyt f as a functional analog. In other words, some kind of structural 

rearrangement or conformational change may happen upon reduction or oxidation to facilitate 

the intramolecular electron transfer between the two hemes.  

              To further elucidate the relationship between diheme cyt c’s different redox states and 

its conformations, in Chapter 3 of this dissertation, we utilized two mass spectroscopic 

techniques, hydrogen/deuterium exchange mass spectrometry and ion mobility mass 
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spectrometry. HDX-MS can theoretically offer single amino-acid resolution about protein chain 

dynamics; and IM-MS, especially coupled with native protein MS, will provide information 

about the proteins’ global conformation under different physical conditions. In HDX kinetics 

studies, in almost all regions from most of the peptides, the oxidized form shows larger 

deuterium uptake compared to the reduced form, which indicates that the oxidized form of the 

diheme cyt c has a more open structure or at least higher dynamics. Meanwhile, the oxidized 

diheme cyt c showed a longer drift time comparing to its reduced form in the IM chamber, 

indicating a conformation with larger dynamic diameter, which is consistent with the conclusion 

drawn from HDX-MS experiments. Our experiments showed unambiguously that there is a real 

structural conformational difference between the two different redox states. A smaller or more 

compact reduced form might have the function of bringing the two hemes closer to facilitate 

interheme electron transfer. Therefore, in terms of the intramolecular electron transfer 

mechanism, no matter specifically what this mechanism is, it may be sensitive to the distance 

between hemes.  

              One key question that remains to be answered is the working mechanism of 

heliobacterial cyclic electron transfer. To take on this challenge, determining the stoichiometry 

of its key components, e.g. reaction center, cyt bc complex, is crucial information. Yet this 

seemingly simple study has yet been able to present any conclusive answer due to many 

challenges, e.g. heliobacteria’s extreme sensitivity to oxygen, the electron transfer chain’s 

vulnerability to any cell disruption and membrane preparation [5], etc. The complexity of whole 

cell studies makes some results non-conclusive. Therefore, in Chapter 4, we determined the ratio 

between H. modesticaldum RC and bc complex using direct protein quantification methods. We 

measured RC quantity based on the absorption spectra of Bchl g (Bchl g’) directly extracted 
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from whole cells. The cytochrome bc complex quantity in the same amount of cells was 

determined by quantitative Western blot, using the antibody raised against its diheme cyt c 

subunit as the probe and recombinant diheme cyt c as internal standards. Therefore, 14 to 8 RCs 

per cytochrome bc complex catalytic center was determined. Compared to the previously 

reported 1 - 2 RC per cytochrome bc complexe, this much larger number suggests that the cyt bc 

complex has a high turnover number, thus higher efficiency in terms of menaquinone re-

reduction.  

              Despite the significant progress we made on this system, there are many intriguing 

questions that remain to be answered in order to obtain a complete picture of the structure and 

function of heliobacterial diheme cyt c, the cyt bc complex, and their exact role in the cyclic 

electron transfer chain. One study that is underway is to acquire the X-ray crystal structure of the 

recombinant diheme cyt c protein, in collaboration with Prof. Noam Adir from the Technion 

University, Israel. To this end, we already crystallized the protein and the crystal diffracted at 2.0 

Å, shown in Fig. 1. Right now, we are working on solving the structure. With the crystal 

structure, we will be able to know the exact geometry of the hemes relative to the protein 

backbone, the heme binding pockets’ structure and their physical and chemical environment, the 

surface charge distribution across the two heme binding domains, and we will be able to map the 

HDX kinetics more accurately with respect to the protein structure. Another research also 

underway is the transcriptomic (qPCR) study for the comparison of the mRNA levels of some 

key heliobacterial photosynthetic proteins and protein complexes, e.g. RC, cyt bc complex, 

NADH:menaquinone oxidoreductase (complex I), etc. As addressed in Chapter 4, the 

stoichiometry between key photosynthetic proteins is crucial to the understanding of the cyclic 

electron transfer mechanism in heliobacteria. Yet due to a shortage of the availability of the 
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                                                                              (a) 

                                      

                                                                             (b) 

Fig. 1 Diheme cyt c crystals (a) and its diffraction pattern (b).  
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antibodies raised against those proteins or protocols to purify intact proteins, quantitative western 

blot is not feasible in every case. Since the bacterial genetic system is relatively simple, mRNA 

level can be used to represent the protein expression level in vivo with relatively high certainty. 

In our studies, almost all other proteins’ genes behave normally in the qPCR experiments except 

the pshA gene, which encodes the RC core protein PshA: there was almost no detectable cDNA 

level from pshA transcripted mRNA. We are now doing trouble-shooting to exclude any 

experimental errors and optimizing protocols. 

              Ultimately, we would like to purify the intact cyt bc complex and crystallize it. Much 

effort has been committed to its purification yet no protocols that will generate intact enzymes 

have been successfully developed so far. Nevertheless, we have made important progress in 

terms of understanding its crucial subunit, the diheme cyt c, which provided valuable 

information about not only the subunit, but also the entire complex and its relationship with the 

rest of the heliobacterial photosystem. However, much remains to be explored. All in all, we are 

still left with more questions than answers. 
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