
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-72

2004-12-01

Techniques for Processing TCP/IP Flow Content in Network Techniques for Processing TCP/IP Flow Content in Network

Switches at Gigabit Line Rates Switches at Gigabit Line Rates

David Vincent Schuehler

The growth of the Internet has enabled it to become a critical component used by businesses,

governments and individuals. While most of the traffic on the Internet is legitimate, a proportion

of the traffic includes worms, computer viruses, network intrusions, computer espionage,

security breaches and illegal behavior. This rogue traffic causes computer and network outages,

reduces network throughput, and costs governments and companies billions of dollars each

year. This dissertation investigates the problems associated with TCP stream processing in

high-speed networks. It describes an architecture that simplifies the processing of TCP data

streams in these environments and presents a... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Schuehler, David Vincent, "Techniques for Processing TCP/IP Flow Content in Network Switches at
Gigabit Line Rates" Report Number: WUCSE-2004-72 (2004). All Computer Science and Engineering
Research.
https://openscholarship.wustl.edu/cse_research/1042

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1042?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1042

Techniques for Processing TCP/IP Flow Content in Network Switches at Gigabit Techniques for Processing TCP/IP Flow Content in Network Switches at Gigabit
Line Rates Line Rates

David Vincent Schuehler

Complete Abstract: Complete Abstract:

The growth of the Internet has enabled it to become a critical component used by businesses,
governments and individuals. While most of the traffic on the Internet is legitimate, a proportion of the
traffic includes worms, computer viruses, network intrusions, computer espionage, security breaches and
illegal behavior. This rogue traffic causes computer and network outages, reduces network throughput,
and costs governments and companies billions of dollars each year. This dissertation investigates the
problems associated with TCP stream processing in high-speed networks. It describes an architecture
that simplifies the processing of TCP data streams in these environments and presents a hardware circuit
capable of TCP stream processing on multi-gigabit networks for millions of simultaneous network
connections. Live Internet traffic is analyzed using this new TCP processing circuit.

https://openscholarship.wustl.edu/cse_research/1042?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1042?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2004-72

Techniques for Processing TCP/IP Flow Content in Network Switches at
Gigabit Line Rates, Doctoral Dissertation, December 2004

Authors: Schuehler, David V.

Abstract: The growth of the Internet has enabled it to become a critical component used by businesses,
governments and individuals. While most of the traffic on the Internet is legitimate, a proportion of the traffic
includes worms, computer viruses, network intrusions, computer espionage, security breaches and illegal
behavior. This rogue traffic causes computer and network outages, reduces network throughput, and costs
governments and companies billions of dollars each year.

This dissertation investigates the problems associated with TCP stream processing in high-speed networks. It
describes an architecture that simplifies the processing of TCP data streams in these environments and
presents a hardware circuit capable of TCP stream processing on multi-gigabit networks for millions of
simultaneous network connections. Live Internet traffic is analyzed using this new TCP processing circuit.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

TECHNIQUES FOR PROCESSING TCP/IP FLOW CONTENT

IN NETWORK SWITCHES AT GIGABIT LINE RATES

by

David Vincent Schuehler

Prepared under the direction of Professor John W. Lockwood

A dissertation presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Doctor of Science

December, 2004

Saint Louis, Missouri

lockwood
Washington University in St. Louis
Technical Report WUCSE-2004-72
Nov 22, 2004
http://www.arl.wustl.edu/arl/projects/fpx/reconfig.htm

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

TECHNIQUES FOR PROCESSING TCP/IP FLOW CONTENT

IN NETWORK SWITCHES AT GIGABIT LINE RATES

by David Vincent Schuehler

ADVISOR: Professor John W. Lockwood

December, 2004

Saint Louis, Missouri

The growth of the Internet has enabled it to become a critical component used by

businesses, governments and individuals. While most of the traffic on the Internet is le-

gitimate, a proportion of the traffic includes worms, computer viruses, network intrusions,

computer espionage, security breaches and illegal behavior. This rogue traffic causes com-

puter and network outages, reduces network throughput, and costs governments and com-

panies billions of dollars each year.

This dissertation investigates the problems associated with TCP stream processing

in high-speed networks. It describes an architecture that simplifies the processing of TCP

data streams in these environments and presents a hardware circuit capable of TCP stream

processing on multi-gigabit networks for millions of simultaneous network connections.

Live Internet traffic is analyzed using this new TCP processing circuit.

copyright by

David Vincent Schuehler

2004

This dissertation is dedicated to

my family,

my friends,

and the pursuit of knowledge.

Contents

List of Tables . xi

List of Figures . xii

Abbreviations . xvii

Acknowledgments . xx

Preface . xxii

1 Introduction . 1

1.1 Problem Framework . 4

1.2 Problem Statement . 5

1.3 Contributions . 7

1.4 Organization of Dissertation . 8

2 Background and Motivation . 11

2.1 Hardware Processing Technologies . 14

2.1.1 Microprocessors . 15

2.1.2 Application Specific Integrated Circuits 16

2.1.3 Field Programmable Gate Arrays 16

2.2 Challenges . 18

2.2.1 Performance . 19

2.2.2 Packet Classification . 20

2.2.3 Context Storage . 23

2.2.4 Packet Resequencing . 24

2.2.5 Overlapping Retransmissions . 26

2.2.6 Idle Flows . 26

v

2.2.7 Resource Exhaustion . 27

2.2.8 Selective Flow Monitoring . 28

2.2.9 Multi-Node Monitor Coordination 29

2.2.10 Fragmentation . 29

2.2.11 Flow Modification . 31

2.2.12 Bi-Directional Traffic Monitoring 32

3 Related Work . 34

3.1 Network Monitoring Systems . 34

3.2 Software-Based Network Monitors . 35

3.3 Hardware-Based Network Monitors . 37

3.4 Packet Classification . 38

3.5 Related Technologies . 41

3.5.1 Load Balancers . 41

3.5.2 SSL Accelerators . 43

3.5.3 Intrusion Detection Systems . 44

3.5.4 TCP Offload Engines . 46

3.6 Hardware-Accelerated Content Scanners 48

3.7 Summary . 51

4 Architecture . 52

4.1 Initial Investigations . 52

4.1.1 TCP-Splitter . 53

4.1.2 StreamCapture . 55

4.2 TCP-Processor . 57

4.3 Application Interface . 61

4.4 Extensibility . 63

4.5 Multiple FPGA Coordination . 64

5 Environment . 67

5.1 Field-programmable Port Extender . 67

5.2 Washington University Gigabit Switch . 68

5.3 NCHARGE . 69

5.4 FPX-in-a-Box . 70

5.5 Protocol Wrappers . 71

vi

6 TCP-Processor Internals . 73

6.1 Endianness . 74

6.2 Packet Parameters . 75

6.3 Flow Control . 75

6.4 External Memories . 76

6.5 Configuration Parameters . 76

6.6 TCP Processor . 78

6.7 TCP Proc . 78

6.8 TCP Input Buffer . 80

6.9 TCP Engine . 82

6.10 State Store Manager . 88

6.11 TCP Routing . 93

6.11.1 Client Interface . 95

6.12 TCP Egress . 96

6.13 TCP Stats . 100

7 StreamExtract Circuit . 104

7.1 StreamExtractModule . 105

7.2 StreamExtract . 106

7.3 LEDs . 106

7.4 Serialization/Deserialization (Endoding/Decoding) 106

7.4.1 TCPSerializeEncode . 109

7.4.2 TCPSerializeDecode . 111

7.5 Implementation . 112

8 TCP-Lite Wrappers . 114

8.1 TCPDeserialize . 114

8.2 TCPReserialize . 115

8.3 PortTracker . 115

8.3.1 PortTrackerModule . 116

8.3.2 PortTrackerApp . 117

8.3.3 ControlProcessor . 117

8.4 Scan . 119

8.4.1 ScanModule . 120

8.4.2 ScanApp . 121

8.4.3 ControlProcessor . 126

vii

8.4.4 StateStore . 129

9 Analysis . 131

9.1 Test Setup . 131

9.2 Data Collection . 132

9.3 Results . 133

9.3.1 Denial of Service Attack . 135

9.3.2 Virus Detection . 137

9.3.3 Spam . 138

9.3.4 Traffic Trends . 139

9.3.5 TCP Flow Classification . 141

9.3.6 Traffic Types . 143

10 Conclusion . 145

10.1 Contributions . 145

10.2 Value of Live Traffic Testing . 147

10.3 Utility of the TCP-Processor . 148

11 Future Work . 151

11.1 Packet Defragmentation . 151

11.2 Flow Classification and Flow Aging . 152

11.3 Packet Storage Manager . 153

11.4 10Gbps and 40Gbps Data Rates . 153

11.5 Rate Detection . 155

11.6 Traffic Sampling and Analysis . 156

11.7 Application Integration . 157

Appendix A Usage . 159

A.1 StreamExtract . 159

A.1.1 Compile . 160

A.1.2 Generating Simulation Input Files 160

A.1.3 Simulate . 161

A.1.4 Synthesize . 162

A.1.5 Place & Route . 162

A.1.6 Setup . 163

A.2 Scan & PortTracker . 163

viii

A.2.1 Compile . 164

A.2.2 Generating Simulation Input Files 164

A.2.3 Simulate . 164

A.2.4 Synthesize . 165

A.2.5 Place & Route . 165

A.2.6 Setup . 166

A.3 New Applications . 166

A.3.1 Client Interface . 167

A.4 Runtime Setup . 167

A.5 Known Problems . 173

A.5.1 Xilinx ISE 6.2i . 173

A.5.2 Synplicity 7.5 . 173

A.5.3 Outbound IPWrapper Lockup . 173

A.5.4 Inbound Wrapper Problems . 174

Appendix B Generating Simulation Input Files 175

B.1 tcpdump . 175

B.2 dmp2tbp . 176

B.3 IPTESTBENCH . 178

B.4 sramdump . 178

B.5 Cell Capture . 181

B.6 Internal Data Captures . 182

Appendix C Statistics Collection and Charting 183

C.1 StatsCollector . 184

C.2 StatApp . 186

C.3 SNMP Support . 186

C.4 MRTG Charting . 187

Appendix D Additional Traffic Charts . 189

D.1 Statistics for Aug 27, 2004 . 189

D.1.1 Flow Statistics . 189

D.1.2 Traffic Statistics . 192

D.1.3 Port Statistics . 198

D.1.4 Virus Statistics . 204

D.2 Statistics for Sep 16, 2004 . 207

ix

D.2.1 Flow Statistics . 207

D.2.2 Traffic Statistics . 210

D.2.3 Port Statistics . 216

D.2.4 Scan Statistics . 222

References . 225

Vita . 238

x

List of Tables

1.1 Optical links and associated data rates . 6

2.1 Cost of Internet Attacks . 12

2.2 Comparison of Hardware Processing Technologies 18

5.1 IP packet contents . 72

6.1 State Store Request Sequence . 85

6.2 State Store Response Sequence . 86

11.1 Performance improvements and estimated data rates 155

A.1 Active Monitoring Routing Assignments 170

A.2 Passive Monitoring Routing Assignments 171

C.1 Statistics Format . 183

xi

List of Figures

1.1 Anatomy of a Network Packet . 2

1.2 IP(v4) and TCP Headers . 2

1.3 Types of Network Monitors . 3

1.4 Heterogenous Network . 5

2.1 Gilder’s Law versus Moore’s Law . 14

2.2 Clock Cycles Available to Process 64 byte Packet 20

2.3 Clock Cycles Available to Process Packets of Various Sizes 21

2.4 Overlapping Retransmission . 26

2.5 Multi-Node Monitor . 30

2.6 Bi-directional Flow Monitoring . 33

3.1 Taxonomy of Network Monitors . 35

3.2 Web Farm with Load Balancer . 41

3.3 Delayed Binding Technique . 42

3.4 SSL Accelerator Employed at Web Server 43

4.1 TCP-Splitter Data Flow . 53

4.2 Multi-Device Programmer Using TCP-Splitter Technology 54

4.3 StreamCapture Circuit . 57

4.4 TCP-Processor Architecture . 58

4.5 TCP Processing Engine . 60

4.6 Timing Diagram showing Client Interface 63

4.7 Multi-Board Traffic Routing . 65

4.8 Circuit Configuration for Multi-Board Operation 66

5.1 Field Programmable Port Extender . 68

5.2 Washington University Gigabit Switch Loaded with Four FPX Cards 69

xii

5.3 FPX-in-a-Box System . 70

5.4 Layered Protocol Wrappers . 71

6.1 Hierarchy of TCP-Processor Components 75

6.2 TCPProcessor Layout . 79

6.3 TCPProc Layout . 80

6.4 TCPInbuf Layout . 81

6.5 SRAM data Formats . 82

6.6 TCPEngine Layout . 83

6.7 Control FIFO data format . 87

6.8 Data FIFO data format . 87

6.9 Layout of StateStoreMgr . 89

6.10 Per-Flow Record Layout . 92

6.11 Frontside RAM Interface Connections . 93

6.12 TCPRouting Component . 94

6.13 TCP Outbound Client Interface . 95

6.14 Flowstate Information . 97

6.15 TCPEgress Component . 98

6.16 TCPEgress FIFO Format . 98

6.17 TCP Inbound Client Interface . 100

6.18 Stats Packet Format . 102

7.1 StreamExtract Circuit Layout . 105

7.2 Packet Serialization and Deserialization Technique 107

7.3 Control Header Format . 108

7.4 TCPSerializeEncode Circuit Layout . 110

7.5 TCPSerializeDecode Circuit Layout . 111

7.6 StreamExtract Circuit Layout on Xilinx XCV2000E 113

8.1 PortTracker Circuit Layout . 116

8.2 PortTracker ControlProcessor Layout . 118

8.3 Scan Circuit Layout . 121

8.4 ScanApp Circuit Layout . 122

8.5 Scan ControlProcessor Layout . 126

8.6 Scan Control Packet Format . 128

8.7 Layout of StateStore . 129

xiii

9.1 Internet Traffic Monitor Configuration . 132

9.2 Statistics Collection and Presentation . 133

9.3 IP Packet Data Rate . 134

9.4 TCP SYN Flood DoS Attack . 135

9.5 TCP SYN Burst . 136

9.6 MyDoom Virus Detection . 138

9.7 Netsky Virus . 138

9.8 Occurrences of the String ”mortgage” . 139

9.9 IP and TCP Packets . 140

9.10 Zero Length TCP Packets . 141

9.11 Active Flows . 142

9.12 Flow Transitions . 142

9.13 NNTP Traffic . 144

9.14 HTTP Traffic . 144

10.1 Remote Research Access . 149

11.1 Packet Store Manager Integration . 154

A.1 Multidevice Circuit Layout . 160

A.2 StreamExtract NID Routes . 163

A.3 Scan/PortTracker NID Routes . 166

A.4 Multidevice Circuit Layout . 168

A.5 Active Monitoring Switch Configuration 169

A.6 Passive Monitoring Switch Configuration 171

A.7 Passive Monitoring FPX-in-a-Box Configuration 172

B.1 Operation of SRAMDUMP Utility . 179

B.2 SRAM data Formats . 180

B.3 CellCapture Circuit Layout . 181

C.1 StatsCollector Operational Summary . 184

C.2 Sample StatApp Chart . 187

C.3 Sample MRTG Generated Chart . 188

D.1 Active Flows . 189

D.2 New Flows . 190

D.3 Terminated Flows . 190

xiv

D.4 Reused Flows . 191

D.5 IP bit rate . 192

D.6 IP Packets . 193

D.7 Non-IP Packets . 193

D.8 Fragmented IP Packets . 194

D.9 Bad TCP Packets . 195

D.10 TCP Packets . 196

D.11 TCP Packet Flags . 197

D.12 Zero Length Packets . 197

D.13 FTP traffic . 198

D.14 HTTP traffic . 199

D.15 HTTP traffic . 199

D.16 NNTP traffic . 200

D.17 POP traffic . 200

D.18 SMTP traffic . 201

D.19 SSH traffic . 201

D.20 Telnet traffic . 202

D.21 TFTP traffic . 202

D.22 TIM traffic . 203

D.23 Lower port traffic . 203

D.24 MyDoom Virus 1 . 204

D.25 MyDoom Virus 2 . 205

D.26 MyDoom Virus 3 . 205

D.27 Spam . 206

D.28 Netsky Virus . 206

D.29 Active Flows . 207

D.30 New Flows . 208

D.31 Terminated Flows . 208

D.32 Reused Flows . 209

D.33 IP bit rate . 210

D.34 IP Packets . 211

D.35 Non-IP Packets . 211

D.36 Fragmented IP Packets . 212

D.37 Bad TCP Packets . 213

D.38 TCP Packets . 214

xv

D.39 TCP Packet Flags . 215

D.40 Zero Length Packets . 215

D.41 FTP traffic . 216

D.42 HTTP traffic . 217

D.43 HTTP traffic . 217

D.44 NNTP traffic . 218

D.45 POP traffic . 218

D.46 SMTP traffic . 219

D.47 SSH traffic . 219

D.48 Telnet traffic . 220

D.49 TFTP traffic . 220

D.50 TIM traffic . 221

D.51 Lower port traffic . 221

D.52 Scan for HTTP . 222

D.53 Scan for Washington University . 223

D.54 Scan for mortgage . 223

D.55 Scan for schuehler . 224

xvi

Abbreviations

AAL ATM Adaptation Layer

ALU Arithmetic Logic Unit

ARL Applied Research Laboratory

ARQ Automatic Repeat Request

ASIC Application Specific Integrated Circuit

ATM Asynchronous Transfer Mode

BGP Border Gateway Protocol

CAM Content Addressable Memory

CISC Complex Instruction Set Computer

CLB Configurable Logic Block

CPU Central Processing Unit

DDR Double Data Rate (Memory)

DMA Direct Memory Access

DoS Denial of Service

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

FIFO First-In First-Out queue

FIPL Fast Internet Protocol Lookup

xvii

FPGA Field Programmable Gate Array

FPX Filed-programmable Port Extender

FSM Finite State Machine

HEC Header Error Checksum

HTTP Hyper Text Transfer Protocol

IP Internet Protocol

IDS Intrusion Detection System

IPS Intrusion Prevention System

iSCSI Internet SCSI

ISP Internet Service Provider

LC Logic Cell

MAC Media Access Control

MIB Management Information Base

MTU Maximum Transmission Unit

MRTG Multi Router Traffic Grapher

NAS Network Attached Storage

NIC Network Interface Card

OC Optical Carrier

PHY Physical Layer

RAM Random Access Memory

RFC Recursive Flow Classification

RISC Reduced Instruction Set Computer

SAN Storage Area Network

xviii

SAR Segmentation and Reassembly

SCSI Small Computer Systems Interface

SDRAM Synchronous Dynamic Random Access Memory

SNMP Simple Network Management Protocol

SRAM Static Random Access Memory

SSL Secure Sockets Layer

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TOE TCP Offload Engine

UTOPIA Universal Test and Operations PHY Interface for ATM

VCI Virtual Channel Identifier

VHDL VHSIC Hardware Description Language

VHSIC Very High-Speed Integrated Circuit

VPI Virtual Path Identifier

WUGS Washington University Gigabit Switch

ZBT Zero Bus Turnaround (memory devices)

xix

Acknowledgments

First and foremost, I would like to thank my parents, Jerry and Lois Schuehler. They have
instilled in me a strong work ethic, a thirst for knowledge, and the confidence to achieve
any goal. Without their love, support, and guidance, none of my accomplishments would
have been possible.

I would like to thank my brother Chris for his friendship and companionship over
the years. He has taught me many things and provided me the opportunity to participate
in a variety of activities. We have had yearly excursions out west, rock climbing, back
packing, mountain biking, snow skiing, hiking and camping.

I would also like to thank my sister Nancy and brother-in-law Jeff for helping me
during my doctoral studies. Due to their proximity, they were called upon time and time
again to take care of my dog, Fritz, while I was working late in the lab. They also provided
me with a nephew, Nathan, who managed to brighten my days and offered a much needed
distraction from school work.

Additional thanks goes out to Bertrand Brinley who wrote theThe Mad Scientists’
Club books [15, 16]. These books captivated me as a child and introduced me to the won-
derful adventures awaiting those with an understanding of math, science and engineering.

I would also like to thank Scott Parsons, Don Bertier, Andy Cox, and Chris Gray
for writing letters of recommendation. These recommendation letters were very flattering
of my intellect and abilities, and continue to be a great source of pride for me. I do not
believe that I would have been accepted into the doctoral program at Washington University
without their compelling letters of recommendation.

Thanks also goes out to the Computer Science Department graduate committee at
Washington University in St. Louis for accepting me into the doctoral program. They
provided me with the opportunity to prove myself capable and accomplish this goal.

I would also like to thank all those at Reuters (formerly Bridge Information Systems)
who supported my efforts to pursue a doctoral degree. My supervisor Scott Parsons, senior
site officer Deborah Grossman, and coworker John Leighton deserve additional thanks for
going out of their way to make this doctoral work possible.

xx

James Hartley has been a friend and colleague since my freshman year of college
in 1983. James and I share a passion for technical topics in the computer and network-
ing fields. We spent many hours on the phone discussing various aspects of my graduate
studies. His input as an impartial and independent party has been invaluable.

A special thanks goes out to Tanya Yatzeck who tirelessly reviewed much of my
written work. In addition, Tanya nominated me for the St. Louis Business Journal 2004
Technology Award. The ensuing award and accompanying accolades would not have been
possible if Tanya hadn’t taken the initiative.

I would like to thank Jan Weller and Steve Wiese of Washington University Net-
work Technology Services for providing live Internet traffic feeds which were used in the
debugging and analysis phases of this research project. This network traffic was analyzed
using the hardware circuits described in this dissertation.

No doctoral research project occurs in a vacuum, and this research is no exception.
My interactions with the faculty, staff and students of the department of Computer Science
and Engineering and the Applied Research Laboratory were invaluable in helping me com-
plete this research work. I would especially like to thank Dr. Jon Turner, Dr. Ron Citron,
Fred Kuhns, John DeHart, Dave Taylor, James Moscola, Dave Lim, Chris Zuver, Chris
Neeley, Todd Sproull, Sarang Dharmapurikar, Mike Attig, Jeff Mitchell, and Haoyu Song.

This research work was supported in part by Global Velocity. I would like to thank
Matthew Kulig and Global Velocity for supporting my research work.

I would like to thank the members of my thesis committee: Dr. John Lockwood, Dr.
Chris Gill, Dr. Ron Loui, Dr. David Schimmel, and Dr. Ron Indeck.

I would like to give special thanks to my research advisor, Dr. John Lockwood, for
his invaluable guidance and direction during my doctoral studies. He was a sounding board
for thoughts and ideas and helped spur research in new directions.

Finally, I would like to thank my dog Fritz, who had to deal with a greatly reduced
play schedule. He also had to endure long days and nights alone while I was working on
the computer, doing research, writing papers, reading papers and doing homework.

Thank you all.

David Vincent Schuehler

Washington University in Saint Louis
December 2004

xxi

Preface

User application data moves through the Internet encapsulated in network data packets.

These packets have a well-defined format containing several layered protocol headers and

possibly trailers which encapsulate user data. The vast majority of Internet traffic uses the

Transmission Control Protocol (TCP). The TCP implementation on the sending host di-

vides user application data into smaller transmission segments and manages the delivery of

these segments to remote systems. The protocol stack on the remote system is responsible

for reassembling the segments back into the original data set, where it is presented to the

user or the application.

Extensible networking services, like those that detect and eliminate Internet worms

and computer viruses as they spread between machines, require access to this user appli-

cation data. These services need to process the various protocols in order to reassemble

application data, prior to performing any detection or removal operations. TCP processing

operations similar to those which occur in protocol stacks of end systems are necessary.

Large, high-speed routers and switches are used to route data through the interior

of the Internet because they are capable of handling traffic from millions of end systems

at multi-gigabit per second data rates. To operate within this environment, extensible net-

working services need to process millions of packets per second. Existing services which

block Internet worms and computer viruses do not have sufficient throughput to operate on

a network backbone.

This dissertation investigates the problems associated with high performance TCP

processing systems and describes an architecture that supports flow monitoring in exten-

sible networking environments at multi-gigabit per second data rates. This architecture

provides stateful flow tracking, TCP stream reassembly services, context storage, and flow

manipulation services for applications which monitor and process TCP data streams. An

FPGA-based implementation of this architecture was used to analyze live Internet traffic.

xxii

1

Chapter 1

Introduction

Studies show that over 85% of the network packets on the Internet utilize Transmission

Control Protocol (TCP) [112]. Content-aware networking services, like data security and

content scanning, need to look inside of TCP flows in order to implement higher levels of

functionality. In order to accomplish this, the TCP processing must be capable of recon-

structing data streams from individual network packets. TCP processing systems capable

of achieving this in gigabit speed networking environments do not currently exist.

New protocol processing systems are necessary to satisfy the current and future

needs of content-aware network services. These services will have a greater impact on

network traffic when located with large routers processing traffic on high-speed network

connections exceeding 2Gbps. These types of routers are also most likely to contain exten-

sible networking technology.

The concept of extensible networking implies that reconfigurable and reprogram-

mable elements exist within the network which can be altered, or extended, during the nor-

mal operation of the network. Extensible networking switches may employ application-

specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), network

processors, or general purpose microprocessors which can be programmed or configured

to operate on the network traffic which transits the switch. Extensible networking environ-

ments can enhance the end user’s experience by incorporating value-added services into

the network infrastructure. In order to be effective, services which operate in these envi-

ronments require access to the application level data which traverses the network. This

research involves the design and implementation of a TCP processing system which makes

application data available to high-speed network services. A simple, hardware-based ap-

plication interface provides the means by which data processing circuits can easily access

the payload contents of TCP flows.

2

Source
 Destination

Network Data Packets Moving Through Network

Data Payload
 IP Hdr
TCP Hdr

Layout of Single Packet

Payload
 Header

Figure 1.1: Anatomy of a Network Packet

Sequence number

Hdr length

Checksum

Options & padding (optional)

Acknowledgment number

Source port
 Destination port

Window

Urgent pointer

Flags
Reserved

Version

Identification

TTL

Source IP address

Destination IP address

Options & padding (optional)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Protocol
 Header checksum

Flags
 Fragment offset

Hdr length
 Type of service
 Total length

I
P

H

e
a
d
e
r

T

C

P

H

e
a
d
e
r

Figure 1.2: IP(v4) and TCP Headers

Data in TCP flows moves through the Internet encapsulated in network packets.

Every packet contains a header section and possibly a payload section. The header section

can be further subdivided to provide information about encapsulated protocols. Figure 1.1

shows the layout of TCP packets moving through the network. Each packet contains an

Internet Protocol (IP) header, a TCP header, and possibly a data payload section.

To exchange information over a network, a TCP connection is established between

two end systems. Information placed in the payload section of one or more packets is

delivered to the remote system. As these packets traverse the Internet, they can be dropped,

reordered, duplicated, or fragmented while they make their way to the destination host. It

is the responsibility of the TCP implementation on the end systems to provide end-to-end

reordering and retransmission services.

Figure 1.2 shows a diagram of the header fields for TCP and IP version 4. The IP

header fields include packet routing information which is used by network equipment to

deliver packets to the proper end destination. The information contained in the IP header is

similar in function to the address on traditional courier-based mail. The TCP header fields

3

Monitoring

System

Monitoring

System

Cable splitter,

Port mirror, or

Network tap

Out-of-band Monitor

In-band Monitor

Network
 Network

Network
 Network

Figure 1.3: Types of Network Monitors

provide information needed to reconstruct data streams from individual network packets. In

addition, these header fields contain data needed to perform connection setup and teardown,

packet retransmissions, and localized packet delivery information.

Network monitors can be classified as either out-of-band or in-band, as illustrated

in Figure 1.3. An out-of-band network monitor is a passive device and is typically imple-

mented with a cable splitter, a network tap, port replication or other content duplicating

technique which delivers a copy of the network traffic to the monitor. Passive monitors

have no means by which to alter network content. In contrast, an in-band network monitor

resides within the data path of the network and can alter network traffic by either inserting,

dropping, or modifying packets. As an in-band network monitor, the TCP processing sys-

tem presented in this dissertation provides a flexible platform upon which either passive or

active extensible networking services can be developed.

Processing higher level protocols, such as TCP, is a complex task. This complexity

is increased when operating on multi-gigabit links in high-speed networking environments,

potentially dealing with millions of packets per second and processing millions of active

TCP connections in the network at any one time. Data monitoring and processing appli-

cations are varied and have a broad range of resource requirements. Simple applications

like those that count data bytes or represent traffic patterns may have relatively small im-

plementations. In contrast, applications which detect and eliminate many different types

of Internet worms and viruses may utilize substantially more resources. Specialized appli-

cations which implement custom network security features may also require complex pro-

cessing operations for every packet on the network. Limitations in chip densities prevent

4

these large, complex applications from being completely implemented in a single device.

A system using multiple processing devices would support these complex applications. In

order for this type of design to work, efficient mechanisms are required for coordinating

tasks amongst the multiple devices.

This dissertation presents a hardware circuit called the TCP-Processor which is ca-

pable of reassembling TCP data flows into their respective byte streams at multi-gigabit

line rates. The reference implementation contains a large per-flow state store which sup-

ports 8 million bidirectional TCP flows. Additional logic enables the payload contents of

a TCP flow to be modified. To support complex flow processing applications, a flexible

and extensible data encoding system has been developed which enables data passing and

task coordination between multiple devices. This technology enables a new generation of

content-aware network services to operate within the core of the Internet.

1.1 Problem Framework

A large heterogenous network, such as the Internet, provides network connectivity between

a vast number of end systems and autonomous environments. Figure 1.4 shows a represen-

tative network topology. The interior of the network is made up of core routers - responsible

for routing data through the interior of the network - and gateway routers. Each gateway

router provides a single point of entry into the network for an external organization. Many

different types of organizations, including government agencies, corporations, municipal-

ities, and universities connect to the network by interfacing with a gateway router. Cell

phones and handheld computers connect to the network through cellular towers to carriers

which provide access to the Internet. In addition, Internet Service Providers (ISPs) pro-

vide communication services to individual and organizational customers, and satellite and

fiber-optic links interconnect wide-area networks.

Due to the vast number of end systems which communicate over the Internet and

the relatively small number of routers which forward traffic in the interior of the network,

communication between these routers occurs at a very high bandwidth. Currently, intercon-

nects typically operate over communication links ranging in speed from OC-3 to OC-768.

Network routers capable of communicating at 160 Gigabits/second are expected in the fu-

ture. Table 1.1 compares the various types of communication links, their corresponding

data rates, and the rate at which packets of different sizes can be transmitted over those

links.

5

Cell phone
 Cellular tower

Municipality

Hand held

computer

Satellite

uplink

Laptop

Computer

U
N
I
V
E
R
S
I
T
Y

Government Agency

Corporation

University

Computer

Computer
Computer

Internet

Service

Provider

G

C

Gateway router

Core router

G

C

C

C
 G

G

C

C

G

C

G

G

G

G

C

C

C

C

Figure 1.4: Heterogenous Network

1.2 Problem Statement

There are distinct advantages associated with consolidating common network services. In

addition to running data security, data compression, intrusion prevention, and virus elimi-

nation applications on end systems, applications can be moved into the network at gateway

routers. Running these applications in the network reduces the administrative overhead of

managing the number of installation points. Large organizations may have thousands of

end systems to manage. Instantly updating virus filters on all end systems in the face of

a new worm or virus outbreak can be a daunting task. In contrast, updating a few well-

placed network appliances positioned within the network can provide protection from the

virus outbreak in a fraction of the time required to update all end systems.

Universities and Internet Service Providers (ISPs) have networks where the network

administrators do not have access to or control of the machines connected to the network.

Student computers and client ISP systems are connected to these networks, but the network

6

Table 1.1: Optical links and associated data rates

40 byte 64 byte 500 byte 1500 byte
Link type Data rate pkts/sec pkts/sec pkts/sec pkts/sec

OC-3 155 Mbps .48 M .3 M 38 K 12 K
OC-12 622 Mbps 1.9 M 1.2 M .16 M 52 K
GigE 1.0 Gbps 3.1 M 2.0 M .25 M 83 K

OC-48 2.5 Gbps 7.8 M 4.8 M .63 M .21 M
OC-192/10 GigE 10 Gbps 31 M 20 M 2.5 M .83 M

OC-768 40 Gbps 125 M 78 M 10 M 3.3 M
OC-3072 160 Gbps 500 M 312 M 40 M 13 M

operations staff has no ability to patch or upgrade the end systems. In these types of envi-

ronments, data security, intrusion detection, and worm and virus preventions systems have

to occur within the fabric of the network. Furthermore, with the widespread acceptance

of cellular and wireless technologies, computer systems can quickly appear and disappear

from the network, only to reappear later in a different part of the network.

Data security applications which prevent the dissemination of proprietary or confi-

dential documents to outside parties are ideally suited for placement at the interface to the

external network. This type of security solution would allow confidential and proprietary

documents to be passed freely amongst computers within an organization, but prevents

their transmission to non-trusted systems outside the organization.

Most existing network monitoring systems which perform data security and intru-

sion prevention tasks are software-based. These systems have performance limitations

which prevent them from operating within high-speed networked environments. The re-

search associated with this dissertation addresses the performance limitations associated

with existing network services.

This dissertation presents an architecture for a high-speed TCP processing system

which provides access to TCP stream content at locations within the network. The archi-

tecture is capable of processing traffic at multi-gigabit per second data rates and supports

the monitoring and processing of millions of active TCP flows in the network.

7

1.3 Contributions

The main focus of this research involves the design, development, and implementation of

hardware circuits which are able to process TCP flows within the context of multi-gigabit

per second communication links. The primary contributions of this research are:

• The definition of a high-performance TCP flow processing architecture, called TCP-

Processor, capable of processing large numbers of active TCP connections traversing

multi-gigabit network links. A hardware implementation of this architecture sup-

ports the processing of 8 million simultaneous TCP connections on a network link

operating at 2.5Gbps.

• An architecture that coordinates high-performance packet processing circuits operat-

ing on separate devices by defining an inter-device transport protocol. This protocol

is extensible, which allows for future enhancements and extensions without requiring

modifications to the underlying protocol specification. The self-describing nature of

the protocol allows previous versions of the processing circuits to work with newer

extensions which do not pertain to that specific component.

• An analysis of live Internet traffic processed by hardware circuit implementations of

the TCP processing architecture. Network traffic travelling between the Washington

University campus network and the Internet was processed by the TCP flow moni-

toring circuits outlined in this dissertation. Statistics collected while processing this

traffic are analyzed and presented.

Additional contributions presented in this dissertation include the development of

two sample TCP flow monitoring applications, PortTracker and Scan, which illustrate how

to interface with the TCP-Processor to perform TCP flow processing on large numbers of

active flows at multi-gigabit data rates. Furthermore, it defines a common statistics packet

format which is used by the TCP flow processing circuits and by other researchers at the

Applied Research Laboratory. It also presents extensible data collection and charting util-

ities which have been developed to aid in the collection and presentation of the monitored

statistics. Detailed documentation on the design, layout, and operation of the various TCP

processing circuits is provided. The appendices include setup, configuration, and usage

instructions so that other investigators have the information necessary to either reproduce

or extend this research.

8

1.4 Organization of Dissertation

Chapter 1 provides introductory material and an overview of the problem domain. The

problem framework and a problem statement are discussed along with the contributions of

the dissertation and the organization of the dissertation.

Chapter 2 provides background and motivation information for the dissertation. It

discusses the currently available computing platforms along with their relative merits for

use in high-performance network data processing systems. This chapter also covers a thor-

ough review of the challenges associated with protocol processing in high-speed networks.

Chapter 3 examines related work in network monitoring and processing systems. It presents

a taxonomy of network monitors to show the problem domain of the research relating to this

dissertation. It also discusses other software-based and hardware-based network monitors,

along with their features and shortcomings. In addition, this chapter presents current re-

search in packet classification techniques and covers information on other types of network

devices. These devices include load balancers, Secure Sockets Layer (SSL) accelerators,

intrusion detection systems and TCP offload engines; all of which require protocol process-

ing operations similar to those presented in this dissertation. Finally, this chapter presents

current research involving hardware-accelerated content scanners to showcase a class of

applications which are ideal candidates for integration with the TCP-Processor.

Chapter 4 provides an overview of the TCP processing architectures developed as

part of this research. Initial investigations into high-performance TCP processing in hard-

ware circuits led to the development of the TCP-Splitter technology. The knowledge gained

through this research contributed to the development of the TCP-Processor technology.

This chapter describes both of these architectures.

Chapter 5 provides information regarding the testing environment where the TCP-

Processor was developed, refined, and analyzed. This environment includes hardware plat-

forms, circuit designs, and control software. This chapter discusses each of the components

of this environment.

Chapter 6 provides detailed descriptions of the implementation and internal oper-

ation of the TCP-Processor circuit. Implementation details of each circuit component are

discussed separately, providing insight into the operation and interaction among the various

components. This chapter also describes the lightweight client interface which provides

easy access to TCP stream content for large numbers of TCP connections in an efficient

manner.

9

Chapter 7 examines the StreamExtract circuit. This circuit forms the basis for all

multi-device TCP processing designs. This chapter includes a description of the data en-

coding and decoding techniques which allow annotated network traffic to pass easily be-

tween devices. It describes the encoded data format, highlighting the extensible and ex-

pandable features of the protocol.

Chapter 8 discusses the TCP-Lite Wrappers which provide access to TCP stream

content in multi-device TCP processing environments. These wrappers include lightweight

hardware circuits which decode and re-encode TCP stream traffic. This includes exposure

of a client interface which is identical to the interface of the TCP-Processor. In addition

to the TCP-Lite Wrappers, this chapter presents PortTracker and Scan as example circuits

which use this wrapper to perform TCP flow processing. The PortTracker circuit keeps

track of the number of packets sent to or received from various well known TCP ports. The

Scan circuit searches TCP stream content for up to four 32-byte signatures.

Chapter 9 analyzes live Internet traffic using the TCP flow processing technology

presented in this dissertation. It consists of the examination of the Internet traffic for the

Washington University campus network during a five week period.

Chapter 10 summarizes the work and contributions of this dissertation and provides

concluding remarks. It presents information regarding the lessons learned while processing

live Internet traffic along with information on some of the tools developed to aid in the

debugging process. Finally, it presents information on the utility of the TCP-Processor.

Chapter 11 describes future directions for high-performance TCP processing re-

search. This includes extensions to the TCP-Processor, increasing the current capabilities

and performance. It also covers integration with TCP flow processing applications.

Appendix A describes usage information for the various TCP processing circuits. It

provides specific information on how to build, configure and use the TCP processing cir-

cuits described in this dissertation. This information will enable other researchers to easily

reproduce and validate the results of this research and provide a starting point for perform-

ing other advanced TCP flow processing research in high-speed networking environments.

Appendix B discusses several different methods of capturing traffic and generating

simulation input files. It describes several hardware circuits and software-based tools de-

veloped as part of this research to provide the functional debugging and verification tools

required to validate the operation and performance of the TCP Processor. These include

hooks added to all of the TCP processing circuits which allow network traffic and asso-

ciated context data to be stored into external memory devices. In addition, this appendix

10

includes a description of software routines that can extract and format this data from mem-

ories so it can be used easily by the hardware circuit simulation tool, ModelSim. Finally,

this appendix describes the operation and use of these hardware and software data capturing

and formatting tools.

Appendix C describes the statistics gathering and charting routines used in conjunc-

tion with the circuits described in this dissertation. A StatsCollector application collects

statistics information generated by the various TCP processing circuits and writes the data

to daily disk files. A Simple Network Management Protocol (SNMP) sub-agent captures

this same statistics information, accumulates ongoing event counters, and republishes the

data as SNMP variables which can be accessed easily using industry standard network

management tools. A configuration file for the Multi Router Traffic Grapher (MRTG) com-

mands MRTG to generate daily, weekly, monthly and yearly charts of each of the statistics

values produced by the TCP processing circuits.

Appendix D contains additional traffic charts obtained by analyzing the Washington

University Internet traffic. The charts examine traffic collected on August 27th, 2004 and

September 16th, 2004.

11

Chapter 2

Background and Motivation

Existing network monitors are unable to both (1) operate at the high bandwidth rates and

(2) manage the millions of active flows found in today’s high-speed networks. Instead,

network monitors typically perform monitoring activities on end systems or in local area

networks where the overall bandwidth and the total number of flows to be processed is low.

In the future, many other types of network services will require access to the TCP stream

data traversing high-speed networks. Such services may include the following applications:

• Worm/virus detection and removal

• Content scanning and filtering

• Spam detection and removal

• Content-based routing

• Data security

• Data mining

• Copyright protection

• Network monitoring

The research outlined in this dissertation enables these services to operate at multi-

gigabit speeds by defining and implementing a hardware-based architecture capable of

high-performance TCP processing. The resulting architecture provides a flexible environ-

ment in which any high performance data processing application can be implemented.

A service which detects and prevents the spread of Internet worms and computer

viruses is ideally suited for this technology. Since worms and viruses spread very quickly,

prevention techniques which involve human interaction are essentially ineffective. Humans

are not capable of reacting quickly enough to stop worm and virus attacks from spreading.

12

These types of attacks require automated prevention techniques for containment and pre-

vention of widespread infections [140]. In addition, the direct costs associated with these

attacks could negatively affect the global economy. Table 2.1 provides analysis of the costs

associated with several recent attacks on the Internet.

Table 2.1: Cost of Internet Attacks [22, 86, 5, 34, 56, 33, 1, 85]

Worldwide
Economic Impact Representative

Year ($ U.S.) Attacks (cost)

2003 $236 Billion Sobig.F ($2 Billion)
Blaster ($1.3 Billion)

Slammer ($1.2 Billion)
2002 $118 Billion KLEZ ($9 Billion)

Bugbear ($950 Million)
2001 $36 Billion Nimbda ($635 Million)

Code Red ($2.62 Billion)
SirCam ($1.15 Billion)

2000 $26 Billion Love Bug ($8.75 Billion)
1999 $20 Billion Melissa ($1.10 Billion)

Explorer ($1.02 Billion)

Detection of intrusions embedded within TCP data flows requires stream reassem-

bly operations prior to scanning for virus signatures. Network-based Intrusion Detection

Systems (IDS) and Intrusion Prevention Systems (IPS) typically operate by searching net-

work traffic for digital signatures which correspond to various types of known intrusions,

including worms and viruses [67]. To detect intrusions, IDS appliances must perform Deep

Packet Inspections (DPI) which scan packet payloads and process packet headers [51].

In recent years, Internet-based worm and computer virus attacks have caused wide-

spread problems to Internet users. This is due to the fact that large numbers of homo-

geneous computers are interconnected by high-speed network links. When attacks occur,

they can rapidly reach epidemic proportions. The SoBig.F virus infected over 200 million

computers within a week and accounted for more than 70% of all email traffic on Aug 20,

2003 [76]. The Code Red virus infected 2,000 new machines every minute during its peak

[87]. The MSBlast worm infected more than 350,000 computers [75]. Internet worms and

viruses typically spread by probing random IP addresses, searching for vulnerable com-

puters. At its peak, the Slammer worm performed over 55 million scans per second [86].

13

Internet worms and computer viruses consume huge amounts of computing and networking

resources and place an enormous burden on the Internet as a whole.

Moore et al. analyzed the behavior of self-propagating worms and viruses [88].

They performed simulations using two different containment methodologies in order to

determine the relative effectiveness of each approach. The first containment methodol-

ogy performed address blacklisting (or address filtering) and the second performed content

scanning and filtering. They determined that the content scanning and traffic filtering tech-

nique is far superior at preventing the spread of malicious code than address blacklisting.

Their results also show that content filtering is much more effective at stopping the spread

of viruses when filters are distributed throughout the Internet on high-speed links between

ISPs. If placed closer to the periphery of the Internet, these filters were ineffective in stop-

ping widespread infection from worms and viruses. Their results highlight the need for

devices capable of high performance content filtering and virus containment. The authors

of [88] also lament the fact that virus prevention systems of this nature are not currently

available.

Several problems currently limit the effectiveness of monitoring end systems for

viruses. Popular operating systems, such as Windows, consist of a large volume of soft-

ware that is often in need of security updates and patches. The end user must diligently

apply updates in a timely manner since network-based attacks can be initiated within days

of a vulnerability being detected. For a large institution which may have thousands or

tens of thousands of end systems at many locations, the task is even more complex. In-

stalling patches and software updates is typically a serial operation, so the time required

to distribute new software or configuration information scales linearly with the number of

computers that need to be updated. In addition, a central authority may not have complete

access to control all of the machines operating in the network. Even if it did, a security hole

remains when, for example, a computer is powered off during an update cycle and fails to

receive the new version of the software. Universities and Internet Service Providers (ISPs)

represent two types of networks where the network administrator does not have adminis-

trative control over machines connected to the network. Further, the proliferation of laptop

computers, wireless networks and dynamic addressing allow computers to have great mo-

bility which makes network management even harder. Laptops can appear and disappear

from the network, only to reappear a short time later at different locations in the network.

This complicates the task of securing networks from attacks.

Monitoring flows in high performance networks requires new methodologies of

stream scanning. Moore’s Law predicts that the number of transistors that fit on a chip

14

0

10

20

30

40

50

60

70

0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

Time (years)

R
el

at
iv

e
B

an
d

w
id

th
/C

o
m

p
u

ti
n

g
 P

o
w

er

Gilder's Law

Moore's Law

End of

Moore's Law

Increasing

Technology

Separation

Figure 2.1: Gilder’s Law versus Moore’s Law

will double every eighteen months [89]. Since transistor count is directly related to com-

puting power, this law implies that computing power will double every eighteen months.

This exponential gain is not sufficient to keep pace with advances in communication tech-

nology. Gilder’s Law of Telecom predicts that bandwidth will grow at least three times

faster than computing power [44]. As time progresses, it is reasonable to expect that the

gap between network bandwidth and computing power will continue to widen. Moore’s

Law will cease to hold within the next 10 years due to quantum effects which occur when

transistor gate sizes approach 10 nanometers, further exacerbating this gap. The discrep-

ancy between network bandwidth and processing power can clearly be seen in Figure 2.1.

2.1 Hardware Processing Technologies

Three classes of processing technologies can be used to satisfy the computational needs of

a high performance TCP processing system. The first is a microprocessor, the second is

an Application Specific Integrated Circuit (ASIC), and the third is a Field Programmable

Gate Array (FPGA). Network processors are considered a subtype classification of micro-

processors. Although these processors have been customized for networking applications,

they have performance limitations similar to general purpose processors.

15

2.1.1 Microprocessors

The current generation of general purpose microprocessors is capable of operating at clock

frequencies of 3GHz. There is an important distinction, however, between clock frequency

and the amount of work performed per unit of time. The ratio of the number of instruc-

tions executed versus the number of clock cycles required to execute those instructions

(instructions
clock cycle

) provides an indication of the amount of work performed per unit of time. For

older Complex Instruction Set Computers (CISC), this ratio was less than one, indicating

that multiple clock cycles were required to complete the processing for a single operation.

In the 1980s, Reduced Instruction Set Computers (RISC) were developed to increase this

ratio to 1 such that an operation was completed every clock cycle. The instruction set of

a RISC machine typically contains a load and store type architecture with fewer memory

addressing modes. In general, a RISC machine requires more instructions than a CISC

machine when performing the same amount of work [28].

Pipelining a processor core is a common technique for increasing the amount of

work completed per unit of time. By breaking the execution of an instruction into multiple

stages (such as fetch, decode, execute, and store), microprocessors operate at higher clock

frequencies while still performing the same amount of work per clock cycle. Depending

on the instruction sequence, a pipelined architecture can execute one instruction per clock

cycle at a much higher clock frequency than can be achieved when there is no pipelin-

ing. There are disadvantages associated with a pipelined architecture. The efficiency of

a pipeline is not realized until the pipeline is full of instructions. Prior to this point, no

work is accomplished for several clock cycles while the pipeline is being primed. Other

inefficiencies arise from context switches [97], pipeline stalls, and mispredicted branches

[11]. These events cause caches and pipelines to be flushed, which in turn accounts for

additional clock cycles where no work is completed. In addition, the more stages there are

to a pipeline, the larger the impact of flushing and refilling the pipeline. Super-pipelined ar-

chitectures [113] further increase the number of pipeline stages by taking long or complex

operations and breaking them into several smaller steps. This supports even faster clock

frequencies over normal pipelined architectures. Breaking the previous example into the

following eight stages is an example of super-pipelining: fetch1, fetch2, fetch3, decode,

execute1, execute2, store1, and store2.

Superscalar processing technology [116] allows multiple operations to be performed

on each clock cycle which further increases the work per clock cycle. Superscalar architec-

tures have multiple execution units within the core of the microprocessor. Processors which

16

contain multiple execution units are less likely to keep all execution units busy doing useful

work, thus reducing the amount of real work performed at each clock cycle.

Regardless of the caching subsystem, the number of pipeline stages, or the number

parallel execution units, virtually every processor-based computer ever built is based upon

the design principals of the von Neumann architecture [103]. This architecture defines a

computer as containing a Central Processing Unit (CPU), a control unit, a memory unit,

and input/output units [94]. Combined, these units read and execute a stored sequence of

instructions. The Arithmetic Logic Unit (ALU) forms the core of the CPU and performs

all operations which manipulate data. Since a von Neumann architecture executes a stored

program, larger amounts of external memory are required for processor-based systems as

compared to systems based on other hardware processing technologies. Processors also

operate slower than other technologies because program instructions must be loaded from

memory prior to performing any operation. In addition to program data, input data, tem-

porary variables, intermediate data, computation results and output data are all typically

stored in the same external memory devices. This can lead to congestion while accessing

external memory devices.

2.1.2 Application Specific Integrated Circuits

Application Specific Integrated Circuits (ASICs) are devices which have been custom-

designed to perform very specific sets of operations. These devices can contain processor

cores, memories, combinatorial logic, I/O components or other specialized circuitry which

are dedicated to solving a particular problem. Because an ASIC is developed for a specific

application, it can be customized to give optimal performance. These devices offer superior

performance over other processing technologies. They have smaller die sizes, lower heat

dissipation, a smaller footprint, lower power consumption, and higher performance.

One disadvantage of ASIC devices is that a large nonrecurring engineering cost

must be amortized over the total number of devices produced. This causes these devices

to be extremely expensive during initial development phases, or when production runs are

small. If total device counts number in the hundreds of thousands or greater, ASIC devices

become the most affordable hardware processing technology.

2.1.3 Field Programmable Gate Arrays

Field Programmable Gate Array (FPGA) devices offer another hardware platform for net-

working application development. They contain a large matrix of logic blocks, memory

17

blocks and Input/Output (I/O) blocks which are interconnected via a programmable signal

routing matrix. An FPGA logic block has multi-input look-up tables which can be dynam-

ically configured to implement a variety of boolean logic operations. Each Configurable

Logic Block (CLB) in a Xilinx Virtex E series FPGA has four Logic Cells (LC) [137].

Each LC contains a 4-input look-up table, an additional carry chain logic, and a 1-bit stor-

age element. A CLB can be configured to implement any boolean logic operation with 5

inputs. FPGAs typically contain additional logic to manage and transport multiple clock

domains through the switch fabric. [139] provides an overview of FPGA technology and

implementation details.

A Hardware Description Language (HDL) such as Verilog HDL or Very Large Scale

Integrated Circuit (VLSIC) HDL (VHDL) produces either a behavioral or structural de-

scription of the intended circuit operation. This description language is compiled down

into a configuration file that configures the reprogrammable elements of the FPGA fabric

to produce the desired operational behavior. Because the FPGA fabric is reprogrammable,

design changes are easily accomplished by changing the HDL, generating a new configu-

ration file, and reprogramming the FPGA.

FPGA-based systems provide distinct advantages over processor-based and ASIC-

based systems designed to perform identical tasks. Table 2.2 shows a comparison of

the three hardware platform technologies and the advantages and disadvantages of each.

Processor-based systems are preferable when cost is the overriding concern. ASICs are

advantageous when performance is paramount. FPGA devices have the flexibility of a pro-

cessor combined with the speed of a hardware implementation, providing high performance

and fast development cycles. These devices provide an ideal environment for implementing

high-performance network processing systems like the TCP-Processor.

FPGA devices are configured to determine the operation of each CLB and how

logic, memory and I/O components are connected to each other. Once configured, the

FPGA device exhibits the specified behavior until the device is either reprogrammed or

reset. FPGAs are more configurable and less costly than ASIC-based implementations

when dealing with small quantities of devices.

When compared with microprocessors, FPGA devices maintain flexibility, but also

provide a significant increase in performance. This is due to the inherent parallelism in

the FPGA fabric which can be exploited to achieve greater amounts of work completed

per clock cycle. Additionally, FPGA devices lend themselves to pipelined logic operations

which further increase the work performed per clock cycle. FPGA-based implementations

18

Table 2.2: Comparison of Hardware Processing Technologies

Hardware
Technology Pros Cons

processor ease of development slower performance
short development cycle
low development cost

ASIC high performance high development cost
low power long development cycle
customized solution inflexible to changes

FPGA high performance not as fast or compact as ASIC
low power
customized solution
reconfigurable
short development cycle
product flxibility
low development cost

of the same algorithm, however, contain wired solutions which don’t require stored pro-

grams. In addition, processors must read operands from memory and write results back to

memory. FPGAs can be custom-coded to route the results of one operation directly to the

input of a subsequent operation.

2.2 Challenges

There are many challenges associated with monitoring TCP flows within the context of

high-speed networking environments. Packet sequences observed within the interior of the

network can be different than packets received and processed at the connection endpoints.

Along the way, packets can be fragmented, dropped, duplicated and re-ordered. In addition,

multiple routes from source to destination may exist throughout the network. Depending

on where a monitor is positioned within the network, it may only process a fraction of

the packets associated with a flow being monitored. TCP stacks manage the sequencing

and retransmission of data between network endpoints. Under some conditions, it is not

possible to track the state of end systems perfectly and reconstruct byte sequences based

on observed traffic [8]. This is due to inconsistencies in observed traffic with respect to

the data actually processed at the end system. No single monitoring node can reconstruct

19

byte sequences if data packets take routes through the network which bypass the monitor.

Even when all packets pertaining to a particular flow are routed through the monitor, there

are still state transitions at an end system that cannot be fully known based on observed

traffic. For example, suppose a monitoring application was attempting to reconstruct a

two-way conversation occurring at an end application. By monitoring both inbound and

outbound traffic for a particular flow, a close approximation of the conversation could be

reconstructed, but there would be no guarantee that sequences of inbound and outbound

data corresponded directly to the data sequences processed by the end application.

2.2.1 Performance

One of the main roadblocks for implementing a TCP flow monitor that operates on high-

speed network traffic is the volume of work to be accomplished for every packet. The

TCP-Processor’s workload is driven by header processing. Larger packets have longer

transmission times, which translates into having more processing cycles available in which

to process the packet header. For minimum length packets, the TCP processor contends

with a steady stream of back-to-back packet processing events. Figure 2.2 shows the num-

ber of clock cycles available for processing minimum length packets for various high-speed

data rates. The arrow superimposed on the graph shows the technology trend for FPGA de-

vices which corresponds to higher clock frequencies, greater numbers of reconfigurable

logic blocks, and larger quantities of I/O pins. The operations required to perform flow

classification and state management require approximately 40 clock cycles to process each

packet. This processing time is dominated by the latency associated with accessing external

memory.

Based on this performance, a single FPGA-based TCP processor operating at a clock

frequency of 200MHz is capable of handling a steady stream of minimum length packets on

an OC-48 (2.5Gbps) network. Because the system is not constrained by memory through-

put, but by memory latency, performance can be doubled by instantiating parallel TCP

processing engines. By saturating the bandwidth on the memory interface, the clock fre-

quency required to process a steady stream of minimum length packets on an OC-48 link

can be dropped to 100MHz. For 100 to 1500 byte packets, a single TCP-Processor circuit

need only operate at 80MHz.

Figure 2.3 depicts the number of clock cycles available to process packets of differ-

ent lengths at various network link speeds, given an operational clock frequency. Analysis

of backbone connections within the interior of the Internet shows that the average packet

20

0.1

1

10

100

1000

0
 100
 200
 300
 400
 500
 600
 700
 800
 900

FPGA Clock Frequency (MHz)

C
lo

ck
 C

yc
le

s
A

va
ila

b
le

 t
o

P

ro
ce

ss
.

a
64

-b
yt

e
P

ac
ke

t

OC-12

(1.2Gb/s)

OC-48

(2.5Gb/s)

OC-192

(10Gb/s)

OC-768

(40Gb/s)

Technology

Trend

Figure 2.2: Clock Cycles Available to Process 64 byte Packet

sizes are approximately 300-400 bytes [127, 40]. Assuming again that 40 clock cycles are

required to complete memory operations while processing each packet, a single TCP pro-

cessing circuit operating at 200MHz can monitor traffic on a fully loaded OC-192 network

link with average length packets. Including parallel TCP processing engines in the flow

monitoring circuit can reduce this operating clock frequency to 100MHz.

2.2.2 Packet Classification

It is often, at least in the current Internet, easier to implement flow monitors at the endpoints

of the network rather than at a monitoring node in the middle. The two main reasons for

this are (1) only a small number of active connections need to be tracked at any one time

and (2) the throughput is lower. However, neither of these assumptions hold true when the

TCP processing occurs in a high-speed network monitoring environment. At any one time,

there may be millions of active connections to monitor. Additionally, in order to process a

worst-case scenario of back-to-back 40 byte packets on an OC-48 (2.5Gbps) link, a TCP

processing circuit performs almost 8 million packet classifications per second.

A TCP connection is defined by the a 32-bit source IP address, a 32-bit destination

IP address, a 16-bit source TCP port, and a 16-bit destination TCP port. A TCP processing

system requires a 96-bit, four-tuple exact match using these fields in order to identify a TCP

21

1

10

100

1,000

10,000

100,000

64
 128
 256
 512
 1024
 2048
 4096

Packet Size (bytes)

C
lo

ck
 C

yc
le

s

OC-12

OC-48

OC-192

OC-768

Figure 2.3: Clock Cycles Available to Process Packets of Various Sizes (200MHz Opera-
tion Frequency)

connection. The 8-bit protocol field of the IP header is usually included in this matching

operation, but is not required for this circuit since this system performs classification opera-

tions only on TCP flows. In contrast, solutions to the general packet classification problem

perform lookups based on a five tuple of source IP address, destination IP address, source

port, destination port and protocol fields. Packet classification is a more difficult problem

than exact matching and a large amount of research exists on enhancing packet classifica-

tion algorithms in routers. These classifications can include a longest prefix match where

rules containing more specific match criteria are selected over more general rules. An in-

dividual packet may match several entries, but only the results of the most specific match

will be associated with the packet. In addition to longest prefix matching, packet classifi-

cation employs priority schemes in which priorities assigned to overlapping rules resolve

the lookup conflict. Additionally, header fields can be defined as ranges. This means that

many packets can match a single rule during the classification process.

There are several distinct differences between general packet classification and the

exact matching required for a TCP processing engine. First, since the matching occurs

against an active network flow, there is no precomputation phase in which lookup tables

22

can be elegantly organized to reduce memory accesses associated with lookup operations.

At startup, the exact matching effort has no information about future TCP connections

which may appear in the network. This information has to be discovered at run time and

precludes any optimizations which could be gained by precomputation.

Lookup optimization techniques such as rule expansion and table compaction [120,

31] are not applicable to the exact matching problem. These optimizations are targeted

at performing longest matching prefix lookups by reducing the number of distinct prefix

lengths that need to be searched. This is accomplished by expanding prefixes to small

powers of two.

The complexity relating to the frequency and scope of lookup table changes for

the exact matching of TCP packets for flow monitors far exceeds that of existing packet

classification engines. Routers are subjected to route table updates at frequencies which

require millisecond processing times. A single route change may result in a burst of route

updates spreading through the network. The Border Gateway Protocol (BGP) supports

the sending of multiple update messages to neighboring routers [54]. The vast majority

of these route changes are pathological or redundant in nature and involve the removal and

reinsertion of an identical route [68]. Route changes which only involve modification of the

lookup result do not affect the size or shape of the lookup table itself and greatly simplify

the update process. Conversely, an exact match lookup table for a TCP flow monitor is

subjected to a table change whenever a new connection is established, or when an existing

connection is terminated. A TCP processing circuit which processes data on a high-speed

network link has to manage millions of active flows. In addition, there may be bursts

of thousands, or tens of thousands of connections being established and torn down each

second.

Sustained levels of TCP connections being created or destroyed can exceed normal

traffic rates during Denial of Service (DoS) attacks and major events. DoS attacks occur

when the network is bombarded with high volumes of illegitimate traffic. Superbowl half-

time, natural disasters, and other global events can cause massive bursts in Internet traffic

where large numbers of users access the Internet at the same time. Existing TCP flow

classification and processing algorithms are not capable of handling the traffic loads which

occur in these circumstances.

In order to handle this problem, hashing provides an efficient mechanism for storing

N items in a table containing a total ofM entries [79]. Hash functions are typically selected

which result in an even distribution of entries across the whole table. Hashing techniques

allow items to be accessed on average inO(1) time. The drawback to hashing is that

23

performance degrades when two or more items map to the same entry, a condition known

as a hash collision. Worst-case performance for hashing algorithms result inO(M) time to

access an entry. A perfect hashing technique based on static keys [42, 23] enables lookups

to be completed with a worst-case ofO(1) memory accesses. This type of solution cannot

be utilized by the TCP-Processor because the table entries are dynamic. Dietzfelbinger

et al. describe a dynamic perfect hashing algorithm [30]. Unfortunately, this algorithm

contains unrealistic space requirements and utilizes over 35 times the memory needed to

store a set of data.

The TCP-Processor utilizes a variation of the open addressing hashing technique

[63], originated by G. M. Amdahl in the 1950s [24]. This technique uses a direct indexed

array lookup based on hash values to achieve the same worst-case ofO(1) memory accesses

for a lookup. Hash buckets contain a fixed number of identically-sized entries. Burst

memory operations which access sequential bytes of SDRAM devices are very efficient

when compared to multiple accesses of individual memory locations. For this reason, the

entire contents of the hash bucket can be accessed in a single memory operation. The exact

match operation is performed while entries are clocked in from memory devices. This

provides a single memory access flow classification solution.

2.2.3 Context Storage

A high-speed memory subsystem is required in order to maintain per-flow context infor-

mation. At minimum, a 32-bit sequence number pertaining to the current position of the

reassembly engine must be stored for each active flow. Realistically, keeping track of the

TCP processing state of the end systems requires more context information. If the TCP

flow monitoring service requires tracking data received by the end system, then it must

also store the 32-bit acknowledgment number. Flow monitoring applications will likely

require additional context information to be stored for each flow. Tracking both directions

of a TCP flow requires additional context information for managing the other half of the

connection.

Stateful inspection of network traffic was first introduced in the mid-1990s as a

mechanism for providing better firewall and intrusion prevention capabilities [51]. The

stateful inspection of TCP flows involves parsing protocol headers and tracking state tran-

sitions to ensure that the network packets are following proper TCP state transitions. For

example, a data packet associated with a particular flow should never be received without

first receiving TCP SYN packets initiating the connection. To perform stateful inspection

24

of TCP flows, the flow monitor needs to store additional context information for each flow

so that information pertaining to the current state of a flow can be saved and retrieved when

processing other packets associated with the same flow.

The need to update stored context information after processing each packet adds ad-

ditional complexity to maintaining a per-flow state store. Under these circumstances, once

packet classification has been completed, a read-modify-write memory access sequence

will be issued. A delay occurs between the read and write memory operations when pro-

cessing large packets to ensure that updates take place only after the complete packet has

been processed. Updates to the flow context information should not occur if the TCP check-

sum for the packet fails and the checksum calculation does not complete until the last byte

of data has been processed. This implies that the write cycle cannot start until after the

complete packet has been processed. When dealing with back-to-back packets, the write

operation of the previous packet can interfere with the lookup operation of the subsequent

packet, which reduces throughput of the flow monitor. Additional delays can be caused by

the memory devices themselves during memory refresh cycles and when requests are not

distributed across memory banks. Without prior knowledge of packet sequences, it is im-

possible to design an algorithm which optimally distributes memory access across SDRAM

devices.

2.2.4 Packet Resequencing

As noted earlier, TCP, a stream-oriented protocol, traverses the Internet on top of IP data-

grams. Individual packets can be dropped or reordered while moving through the network

toward their destination. The protocol stack at the end system is responsible for reassem-

bling packets into their proper order, presenting the original data stream to the client appli-

cation. Existing TCP stacks are tuned to process packets in their proper sequence and to

degrade their performance when packets are received out of order [6].

TCP stream reassembly operations can require large amounts of memory. The TCP

window size is negotiated by the endpoints at connection setup and has a maximum value

of 65,535. The window scale factor can increase the window size by a factor of214, which

means the maximum possible window size is one GByte (65535 ∗ 214 = 1 billion) [57].

Given that the maximum window size is used for both directions of a TCP connection, an

ideal TCP flow monitor which buffers packets for reassembly would require two Gigabyte

25

size buffers, one for handling traffic in each direction. A TCP flow monitor handling 1 mil-

lion bidirectional flows would require two PetaBytes (2 ∗ 1015 bytes) of memory in order

to store the state of all flows, which is not practical for implementations.

Recent analysis of backbone Internet traffic shows that only about 5% of packets

generated by TCP connections are out of sequence [58]. With approximately 95% of TCP

packets traversing the network in order, it is unlikely that worst-case patterns of retransmis-

sions will ever be encountered. The arrival of packet sequences out of sequence requires

packet buffering in order to passively track TCP stream content.

If all frames for a particular flow transit the network in order, the need for reassem-

bly buffers can be eliminated. Ordered packet processing by the monitor can be guaranteed

by actively dropping out-of-order packets. If it detects a missing packet, the TCP processor

can drop subsequent packets until the missing packet is retransmitted. This methodology

forces the TCP flow into a Go-Back-N retransmission policy where all data packets are

retransmitted, thus eliminating the need for the receiving host to buffer and reassemble

out-of-sequence packets [13].

When an end system receives an out-of-order packet, the action taken depends on

which retransmission policy has been implemented. If the receiving system uses the Go-

Back-N Automatic Repeat Request (ARQ), all out-of-order packets will be dropped and

only packets in-order will only be processed. The transmitting system then resends all

packets starting with the packet that was lost. Current implementations of the TCP stack

utilize a sliding window ARQ and accept out-of-order packets within the window size ne-

gotiated at connection startup. Out-of-sequence packets are stored until the missing packets

are received, at which time the buffered data is passed to the client application. Many oper-

ating systems, including Windows 98, FreeBSD 4.1, Linux 2.2 and Linux 2.4, still perform

Go-Back-N ARQ [49].

Different extensible networking applications impose additional constraints on the

TCP processing system. For instance, a security monitoring application may require that

every byte of every flow that transits the monitoring device be properly analyzed. If a sit-

uation arises in which packets cannot be properly monitored due to resource exhaustion,

packets should be dropped rather than passed through the device without analysis. In con-

trast, an extensible network application that monitors performance at an ISP may mandate

that network throughput not be degraded during periods of duress.

26

T

IP Header

TCP Hdr

seq:

0x00000001

h
 e

r
 t
n
 e

I
 e
n
 t

r
v
 i

u
 r
s

a
 g
v
 a

v

IP Header

TCP Hdr

seq:

0x00000016

e
a
 g

e
 a
c

d
 h
t

m
 s
p
 u

t
n
 e

w
 k
o
 r

Packet 1
 Packet 2

Figure 2.4: Overlapping Retransmission

2.2.5 Overlapping Retransmissions

During any TCP conversation, overlapping retransmissions can occur. While overlapping

data is normal behavior for TCP, it can cause problems when performing flow reconstruc-

tion if not properly handled. In the example of overlapping retransmission illustrated in

Figure 2.4, the character string”The Internet virus ravaged the campus network”traverses

the network in two separate data packets. The first packet contains the 24 byte string”The

Internet virus ravag”and the second packet contains the 24 byte string”vaged the cam-

pus network”. The three characters"vag" in the word”ravaged” are transmitted in both

the first and the second packets. In order for a TCP flow monitoring service to operate

correctly, it must be presented with an accurate reconstruction of the TCP data stream.

When the second packet from the example is received, the shaded characters should not

be processed by the monitoring application. To accomplish this task, the TCP processing

engine must keep track of what data has been passed to the monitoring application and if

overlapping retransmissions occur, needs to indicate which data in each packet should be

processed and which data should be ignored.

2.2.6 Idle Flows

TCP supports the notion of an idle flow. An idle flow is a valid TCP connection between

two end systems where the connection is idle and no packets are transmitted or received.

The TCP specification places no limits on the duration of a silent period. The idle period

27

can last minutes, hours, or even days. For network monitors, an idle flow occupies moni-

toring resources even though there is no traffic. In addition, it is impossible for the network

monitor to differentiate between a flow which is idle and a flow which has been abnormally

terminated for reasons of computers crashing, a network or power outage, or a change in

routing tables which sends packets along a different path through the network. In all of

these cases, the network monitor must apply a heuristic to manage these flows.

A TCP flow monitor can handle idle flows in several ways. One way is to main-

tain state until observance of a proper shutdown sequence. If shutdown sequences are not

processed by the TCP flow monitor, then resource reclamation will not occur which will

in turn lead to the eventual exhaustion of all the resources used to track network flows.

Another way to handle idle flows is to have the TCP flow monitor drop all packets associ-

ated with flows that cannot be monitored due to unavailable resources. This guarantees that

all data passing through the monitoring station will be monitored, but has the potential to

eventually shut down the network by not allowing any packets to pass in a situation where

all resources are consumed with improperly terminated flows. A third option would be to

implement an aging algorithm with a timer. A flow is removed from the monitor after a pre-

defined period of idle time. A network monitor which employs this method, however, can

easily be circumvented if the end user alternately sends pieces of a message and then waits

for a long idle period before transmitting another segment. A fourth method is to reclaim

resources when all available resources are utilized. The process of reclaiming resources

can induce delays during normal operation due to the extra memory operations required

to reclaim the resources. These additional memory operations induce delays in the system

and can, in turn, cause other resource utilization problems.

2.2.7 Resource Exhaustion

Stream reassembly services constitute a key component of the TCP processing engine.

Utilizing buffers to store and re-order network data packets requires a strategy to cope with

depleted buffers. A time-ordered list of packet buffers is maintained by the packet storage

manager. If all of the packet storage resources are utilized, the oldest entry in the list is

reassigned to store the new packet data.

The critical nature of resource exhaustion and its likelihood demands clarification.

Several resources associated with a high performance TCP flow monitor have the poten-

tial to be over-utilized. These include the flow classifier, the context storage subsystem,

28

the stream packet buffers used in stream reassembly, the computing resources, and other

internal buffers and FIFOs.

High throughput rates should be maintained during worst-case traffic loads. As pre-

viously noted, 100% utilization of the context storage subsystem can result from idle flows

and improperly terminated flows. Timer-based maintenance routines which periodically

sweep these tables to free up idle resources can be employed to reduce the probability that

resources will be exhausted. However, during periods of exceptionally high connection vol-

ume, context storage resources can still be oversubscribed. In addition, some maintenance

operations require exclusive access to memory resources while performing reclamation op-

erations. This can cause memory contention issues and adversely affect throughput. An

alternative approach is to maintain a linked list of least-recently-used flows. When all re-

sources are utilized, the flow at the bottom of this list is reclaimed so that the new flow can

be processed. Maintaining this link list structure adds the additional overhead of perform-

ing six memory operations for each packet processed. As shown in Figure 2.2 on page 20,

there are a limited number of clock cycles available in which to process a small packet.

The TCP-Processor handles cases of the exhaustion of flow classification resources with a

least-recently-used recovery mechanism.

Applications which process the data streams provided by a TCP processing service

require the ability to store context information for each flow. After processing the payload

section of an individual network packet, the current state of the application processing

subsystem has to be stored for later use. In addition, prior to processing data from a packet,

context information has to be retrieved and loaded into the application. This implies that

the application requires a memory read operation at the start of every packet and a memory

write operation at the end of every packet. The size of this context information is dependant

on the specific requirements of the application. In order to maintain processing throughput,

the total amount of per-flow data should be minimized. This limitation also applies to the

per-flow context information maintained by the TCP processing engine.

2.2.8 Selective Flow Monitoring

A TCP flow monitor which reconstructs byte streams for application processing should be

flexible and provide support for multiple service levels which can be assigned and altered

on a per-flow basis. Different types of services require different mechanisms to process

flows. For high volumes of traffic, flow monitoring may only be needed for a subset of the

29

total traffic. An ISP, for example, may want to offer different value-added TCP flow pro-

cessing services to different clients. To do this, a TCP flow monitor must perform different

operations for different flows. For example, connections originating from a particular sub-

net may be configured to bypass the monitoring subsystem altogether. Other flows may

be subjected to best effort monitoring while a third subset of the traffic requires complete

monitoring. In this context, complete monitoring means that packets are not allowed to

pass through the monitor without first being scanned by the monitoring service. An ad-

ditional constraint is that the monitoring requirements for a flow may change during the

lifetime of that flow.

2.2.9 Multi-Node Monitor Coordination

Gateway routers act as a single entry point for smaller isolated networks connecting into

a larger mesh network, and the TCP flow monitors discussed until now have been placed

at this point. A TCP processing engine placed at a gateway router is guaranteed to see all

packets associated with any communications between machines on either side of the router.

In contrast, core routers are usually connected in mesh-like patterns consisting of multiple

traffic paths through the core network. To illustrate this distinction, Figure 2.5 shows an

example network with both core and gateway routers. Two end systems identified asA and

B are connected to gateway routers at different locations in the network. Communication

between nodesA andB can travel over two different paths through the network as indicated

by the thick router connections.

Placed at core routers, TCP flow monitors may receive some, but not all, of the total

traffic for an individual flow. A robust TCP monitoring service must coordinate monitor-

ing across multiple core routers. Through coordination, multiple flow monitors can work

together to provide comprehensive monitoring of traffic. If packets associated with a partic-

ular flow are detected bypassing the monitoring node by another core router, they could be

rerouted to the appropriate monitoring station. A challenge to coordinating multiple flow

monitors is that excessive amounts of traffic can be generated. In addition, route changes

by network administrators, fiber cuts, and device failures lead to dynamic changes in the

normal flow of traffic.

2.2.10 Fragmentation

Packet fragmentation, the splitting of a larger packet into several smaller packets, occurs

below the TCP layer at the IP layer. Fragmented packets need to be reassembled before the

30

G

C

C
 C

G

G

C

C

C

C

G

C

A

G

B

G

C

Gateway router

Core router

1

2

Figure 2.5: Multi-Node Monitor

processing of the TCP packet can be completed. Similar to the Packet Resequencing prob-

lem (page 24), IP packet fragments can be reordered or dropped from the network, compli-

cating the task of defragmentation. The IP header in each fragment contains information

about how to reassemble the fragments into the original packet. Packet defragmentation

normally occurs prior to entering the TCP processing subsystem.

There are three possible methods of dealing with fragmented packets. The first

would be to have the IP processing subsystem perform packet defragmentation services.

Since the TCP flow monitor only receives fully formed TCP packets, no changes would be

necessary. A pool of temporary buffers would hold fragments. When all of the individ-

ual IP fragments had been received, the IP processing engine can then rebuild the original

packet and pass it along to the TCP processing layer. This method of performing packet de-

fragmentation at the IP layer is almost identical to that associated with packet resequencing

at the TCP layer.

The second method of dealing with fragmented packets would be to enhance the

TCP-Processor to deal with multiple IP fragments containing a single TCP packet. The

TCP processing engine would still require that the fragments be processed in order, but

would not require that they be reassembled. This complicates the flow classification pro-

cess because a lookup would have to be performed for each of the fragments based on the

IP source address, IP destination address, and IP identification fields. In addition, all frag-

ments would have to be held until the last fragment is received so that the TCP checksum

31

can be updated. Only then could the data contained within the fragments be passed along

to the monitoring application.

The third method would be to develop a slow path which is reserved for handling low

occurrence events. Algorithms which process network packets are frequently optimized so

that the majority of packets are processed in a highly efficient manner. The term slow

path refers to the more time consuming sequence of operations required to process low

occurrence events, such as packet fragments. This slow path would utilize a microprocessor

and/or additional logic along with SDRAM memory to perform packet defragmentation.

Once all of the fragments have been reassembled, the resultant packet would then be re-

injected into the fast path for normal processing. Since the slow path would only be utilized

for exception processing, it could have a much lower throughput capacity.

Processing efficiencies can be gained when packet storage capabilities are shared

between the packet defragmenting logic and the TCP packet resynquencing logic. The

second method for handling fragmented packets describes a scenario where packet defrag-

mentation is handled by the TCP processing module, which locates resequencing logic and

defragmentation logic in the same module. This design supports the development of a

single packet storage manager capable of storing and retrieving arbitrary network packets.

2.2.11 Flow Modification

Extensible networking services, such as those which prevent the spread of Internet-based

worms and viruses, require advanced features which support the modification of flows. In

particular, intrusion prevention services require the ability to terminate a connection, block

the movement of data associated within a particular flow for a period of time, or modify

the content of a flow in order to remove or disarm a virus. To support the blocking and

unblocking of flows, a protocol processing engine must maintain enough per-flow context

information to determine whether or not the flow should be blocked and at which point

in the data stream traffic should be blocked. To support flow termination, a TCP FIN

packet should be generated. In addition, state information indicating that the flow is in a

termination state must be stored in case the generated TCP FIN packet is dropped at some

later point in the network. In order to handle this case properly, the processing engine

should enter a state where it drops all packets associated with the flow and regenerates TCP

FIN packets until the connection is properly terminated.

Supporting the modification of flows adds additional levels of complexity to the TCP

circuit. Two classes of flow modification are considered. The first involves altering content

32

in data packets associated with a flow. In this case, since no data is inserted or deleted (i.e.,

the number of bytes traversing the network is the same), the modification can be supported

by processing traffic in a single direction. Additional per-flow state information is needed in

order to store the new data bytes along with the sequence number at which the replacement

took place. This information is vital to allow identical byte replacements to be performed

for any retransmitted packets that include altered sections of the data stream.

In order to support flow modifications where data is either added to or removed

from a TCP data stream, packets must be processed in both directions of the TCP connec-

tion. The reason for this is that acknowledgment sequence numbers contained in the return

packets must be modified to account for the data that was either inserted or removed from

the stream. The TCP flow monitor must also track acknowledgment packets and generate

TCP packets containing data which was inserted into the stream in accordance with the

TCP specification [53]. In addition, packets may need to be broken into several smaller

packets if the act of data insertion causes the packet to exceed the MTU for the flow. As

with the previous case, the per-flow context information should be expanded in order to

store the position of the flow modification, the number of bytes inserted or deleted, and a

copy of the data if an insertion has taken place. This information can be removed from the

context storage area once an acknowledgment is received for the modified portion of the

flow which indicates that the data has been received by the end system.

Another potential flow modification service alters response traffic based on content

observed in a preceding request. This feature is useful when filtering web requests. A TCP

flow monitor searches web requests for specific, predefined content. When the content

is detected, a properly formatted HTTP response is generated containing an appropriate

response. The request packet is then dropped from the network, preventing the request from

ever reaching the web server. Finally, the TCP connection is terminated to end the session.

Corporate firewalls can employ this technology to grant employees access to Internet search

engines, while limiting their searching capabilities.

2.2.12 Bi-Directional Traffic Monitoring

For certain content scanning and filtering services, monitoring outbound traffic indepen-

dently of inbound traffic is acceptable. The TCP flow monitor may need to reconstruct a

full TCP conversation for analysis which requires the processing of both directions of a

connection. Additionally, these services may want to process acknowledgment messages

in order to determine what data was actually received and processed by the end system. In

33

Cable splitter,

Port mirror, or

Network tap

Flow Monitoring

Applicaiton

TCP-Processor

Inbound

Outbound

Figure 2.6: Bi-directional Flow Monitoring

order to provide this capability, the TCP processing engine needs to process both directions

of a TCP connection utilizing a unified flow context block.

The TCP-Processor supports coordinated monitoring of bi-directional traffic by us-

ing a hashing algorithm that generates the same result for packets traversing the network

in both the forward and reverse directions. The state store manager stores inbound and

outbound context records in adjacent memory locations. The flow identifiers assigned to

the inbound and outbound packets pertaining to the same TCP connection differ only by

the low bit. This allows the monitoring application to differentiate between the inbound

and outbound traffic while performing coordinated flow monitoring. In order to monitor

traffic in this manner, data traversing the network in both directions must be passed to the

TCP-Processor. Figure 2.6 shows a passive monitoring configuration where bi-directional

traffic is monitored with the aid of a content duplicating device, such as a network switch

configured to do port mirroring.

Asymmetric routing can occur when data traverses through core routers. With asym-

metric routing, outbound traffic takes a different path through the network than inbound

traffic associated with the same connection. Hot potato routing can cause this type of be-

havior and is occasionally used by carriers wanting to limit the amount of transient traffic

they carry. In this instance, when packets are detected which neither originate nor ter-

minate within the carrier’s network, the packets are routed to a different network as soon

as possible. A TCP flow monitor capable of analyzing bi-directional traffic which has

an asymmetric data path through the network must employ additional logic to coordinate

events amongst multiple monitoring nodes in order to ensure that the conversation is prop-

erly monitored.

34

Chapter 3

Related Work

This chapter reviews high-speed protocol processing efforts which are similar or related

to this research. It provides a brief overview of network monitoring systems, along with

examples of both software-based and hardware-based network monitors and their current

limitations. It describes various packet classification techniques and discusses related tech-

nologies which perform TCP flow processing. Finally, it presents related work in hardware-

accelerated content scanners, as these applications are ideal candidates for integration with

the TCP-Processor technology.

3.1 Network Monitoring Systems

There are many different types of network monitors and protocol analyzers available today.

These network monitors have a wide range of features and capabilities. Understanding the

differences between the various monitors is challenging because terminology is often vague

or misused. IP-based networks are commonly referred to as TCP/IP networks, although

TCP and IP are two separate protocols which perform different functions in a network.

Transmission Control Protocol (TCP) [53] is a stream-oriented protocol which maintains a

virtual bit pipe between end systems. Internet Protocol (IP) [52] is an unreliable datagram

delivery service which provides packet routing between two end systems.

Figure 3.1 shows a taxonomy of network monitors. The proposed TCP monitor

performs full flow analysis as indicated by the gray oval in the figure. TCP stream re-

assembly operations are required to fully process TCP flows, in addition to IP and TCP

header processing. This operation separates TCP flow monitors like the TCP-Processor

from other types of network monitors. For example, thetcpdump [83] program performs

35

Monitoring Systems

TCP Monitors

Full Flow Analysis

IP Monitors

TCP Header Statistics

Other Protocol

Monitors

IP Header Statistics

Limited Flow

Analysis

Figure 3.1: Taxonomy of Network Monitors

packet capturing and filtering services, but does not provide a full range of TCP moni-

toring features.Tcpdump maintains a minimal amount of per-flow state information in

order to display relative sequence numbers instead of absolute sequence numbers. Stream

reassembly and stateful inspection features, however, are not included in the utility.

The TCP-Processor takes a novel approach to network packet processing by provid-

ing full TCP flow analysis operating at multi-gigabit per second data rates while managing

millions of active connections. In addition, the TCP-Processor operates as an in-band data

processing unit, which enables active processing on network flows. This separates the

TCP-Processor from other types of packet processors which do not have the performance

or capacity to perform TCP stream processing on large numbers of flows in high-speed

networking environments.

3.2 Software-Based Network Monitors

A multitude of software-based packet capturing and network monitoring applications exist

today. These monitors offer a wide range of capabilities, but because they are software-

based, most have performance limitations that prevent them from effectively monitoring

high-speed networks. In order to improve performance, many software-based monitors

only inspect packet headers, ignoring the data payload.

Packet capturing tools such astcpdump [83], Internet Protocol Scanning Engine

[46], and Ethereal [95] support the capture and storage of network packets. These types

of tools receive copies of network traffic by interfacing directly with lower layer network-

ing drivers. These applications work well for monitoring data at low bandwidth rates, but

36

because they execute in software, their capabilities are limited. Performance of these mon-

itors can be improved by limiting the number of bytes per captured packet. This tradeoff is

acceptable when examining only protocol header fields. TCP data stream analysis can be

performed as a post-processing operation if all data bytes associated with a particular flow

are captured.

HTTPDUMPis an extended version oftcpdump which supports the analysis of

web-based HyperText Transfer Protocol (HTTP) traffic [105]. The extra filtering logic

required for processing the HTTP protocol reduces this tool’s performance. Since a single

type of TCP traffic is targeted,HTTPDUMPis unable to operate as a general purpose flow

monitor.

PacketScope [2] is a network traffic monitor developed at AT&T in order to

provide for the passive monitoring of T3 (45Mbps) backbone links. This monitor utilizes

a network tap which extracts a duplicate copy of the network traffic. Traffic is then routed

to the tcpdump application. The first 128 bytes of each packet are captured and stored

to support analysis.BLT [37] leverages thePacketScope monitor to perform HTTP

monitoring. It decodes the HTTP protocol along with packet headers and generates a log

file which summarizes the activity of these flows. PacketScope does not guarantee the

processing of all packets on the network. Instead, results are obtained by processing only

the majority of HTTP packets.

The Cluster-based Online Monitoring System [80] supports higher data rate HTTP

traffic monitoring. Even though this is also a software-based network traffic monitor, it

achieves higher throughput rates by utilizing a cluster of machines to analyze the network

flows. With eight analysis engines operating, however, traffic is not consistently monitored

at a full 100Mbps line rate. Software-based flow monitors are clearly unable to monitor

large numbers of flows at multi-gigabit per second line rates.

All of these software-based network monitors have problems monitoring traffic

flowing at a 100Mbps data rate. There are several reasons for this performance limitation.

Microprocessors operate on a sequential stream of instructions. This processing model dic-

tates that only one operation can occur at a time and many instructions may be required to

perform a single operation. Processing a single packet may require executing thousands or

tens of thousands of instructions. Software-based monitors with greater complexity require

more instructions, resulting in larger code sizes. Larger code sizes increase the likelihood

that instruction caches will have to be flushed and reloaded during the processing of a

packet. Software-based network monitors also require several data copies, which degrades

the overall throughput of the network monitor. For example, data first must be copied from

37

the hardware into main processor memory. Then, an additional data copy may be made

during processing of the various protocol layers. Finally, the data must be copied from ker-

nel memory into an end user’s application data buffer. Application signalling, system calls

and interrupt processing expand the amount of processing overhead which further reduces

the throughput of the monitor.

To overcome the limitations associated with software-based packet processing sys-

tems, the TCP-Processor exploits pipelining and parallelism within a hardware-based pro-

cessing environment to achieve much higher levels of performance. Because there is no

operating system involved, the overhead associated with system calls, scheduling, and in-

terrupt processing is eliminated. Additionally, the TCP-Processor does not store network

packets in external memory prior to or during normal packet processing. This eliminates

processing delays due to memory latency, memory bandwidth, and memory management.

Furthermore, much like the assembly line approach to building automobiles, the TCP-

Processor employs pipelining to increase the throughput of the system. The various com-

ponents of the TCP-Processor can each operate on a different network packet at the same

time. The TCP-Processor also employs parallel processing techniques which allow sep-

arate logic blocks to perform processing on identical portions of a network packet at the

same time. These design choices combine to enable the TCP-Processor to process TCP

data streams at over 2.5 Gbps.

3.3 Hardware-Based Network Monitors

The performance advantages associated with a hardware-based TCP monitor close the gap

between the transmission speeds of high-speed networks and the silicon scaling predicted

by Moore’s Law (see Figure 2.1 on page 14). Neckeret al. developed a TCP-Stream Re-

assembly and State Tracking circuit that is capable of analyzing a single TCP flow while

processing data at 3.2Gbps [91]. The circuit was tested utilizing an FPGA device which

tracks the state of a TCP connection and performs limited buffer reassembly. The current

implementation of the circuit only processes a one-way traffic for a single TCP connection.

The authors outline the components which need to be replicated in order to manage mul-

tiple flows. They suggest instantiating a separate copy of theConnection-State-Machine

for each reassembled TCP stream and sharing the logic of theAck/Seq Tracking Unitby

storing connection specific data in multiplexed registers. Based on resource utilization, the

authors estimate 30 reassembly units can fit within a single Xilinx Virtex XCV812E FPGA.

There are inherent difficulties associated when moving from a single flow processor to a

38

multi-flow processor. Signal fan-out delays, context storage and retrieval delays, and lim-

ited amounts of logic, memory and interconnect resources prohibit hardware-based flow

processors to be scaled in this manner above a few hundred concurrent flows.

Li et al. outline an alternative approach to FPGA-based TCP processing [72]. Their

design provides TCP connection state processing and TCP stream reassembly functions for

both client and server-directed traffic on a single TCP connection. It maintains a 1024 byte

reassembly buffer for both client and server side traffic and drops packets lying outside of

the reassembly buffer space on receipt are dropped. Portions of the circuit design have been

implemented and process data at 3.06 Gbps. Each individual TCP connection requires a

separate instance of this circuit. A maximum of eight TCP flows could be monitored using

a Xilinx Virtex 1000E FPGA. This type of system does not scale and is insufficient for

monitoring the large number of flows found on high-speed network links.

Unlike other FPGA-based TCP processors, the TCP-Processor was designed from

the ground up with the notion that it must support large numbers of simultaneous TCP con-

nections while operating at multi-gigabit data rates. The problems associated with context

storage and retrieval while operating in this environment were addressed from the start. To

accomplish this task, the internal structure of the TCP processing engine localizes packet

processing which requires persistent state information and optimizes the design so this in-

formation can be easily stored and reloaded with the processing of each network packet. A

separate state store manager component manages operations to an external memory device

which stores per-flow context information and completes the flow classification operation.

These techniques enable the TCP-Processor to process millions of simultaneous TCP con-

nections while processing data at multi-gigabit data rates.

3.4 Packet Classification

A large amount of effort has been applied to date to the problem of performing high-speed

packet classification [82, 98, 26, 119, 135, 126, 115, 100, 29]. Until the mid-1990s, most

work centered around performing a longest prefix match on a 32-bit destination IP address

field. Network equipment performing IP packet forwarding requires this type of operation.

More recent research examines the use of multiple header fields to perform packet clas-

sification. The various classification techniques can be broken into four separate groups:

CAM-based algorithms, trie-based algorithms, multidimensional or cutting algorithms and

other research which doesn’t fit into one of the other categories. The algorithms for per-

forming high-speed packet classification in each of these categories are summarized below.

39

Content Addressable Memories (CAMs) provide a fast mechanism for performing

lookups which result from parallel comparison operations [82]. These devices perform bi-

nary comparisons that require large table expansions when wildcards are included in the

search field. Because CAM devices contain more support circuitry than SRAM devices,

they are more expensive, slower, have lower densities, and require more power than com-

modity memory devices. Ternary CAMs (TCAMs) provide an extension to the basic CAM

device by storing three possible states (0, 1, X-don’t care) for each bit. This feature is

typically implemented with a comparison value and a mask value. Since two values are

stored for each entry, TCAMs have twice the memory requirements of regular binary CAM

devices. This increases the cost and power consumption for these devices. Shah and Gupta

[111] introduced two algorithms, prefix length ordering and chain ancestor ordering, to re-

duce the number of memory operations required to perform incremental updates to TCAM

devices. Panigrahy and Sharma proposed paging and partitioning techniques in order to

improve throughput and reduce power consumption in TCAM devices [98].

Trie-based packet classification algorithms are based on tree structures in which

a single node is associated with every common prefix and exact matches are stored as

leaves under that node. Trie-type retrieval algorithms originated in the late 1960s [90].

Most notably, the BSD operating system employed a trie lookup mechanism in order to

perform next hop packet routing [60]. Enhancements to the basic trie algorithm used for

IP forwarding proposed by Degermarket al. can improve the lookup performance to 1

million IP packet classifications per second [26]. In addition, thegrid-of-triesconcept by

Srinivasanet al. extends the normal binary trie to support lookups on two fields [119].

Waldvogelet al. developed a high-speed prefix matching algorithm for router for-

warding which can process 10-13 million packets per second [135]. This algorithm intro-

duces mutating binary trees with markers and pre-computation in order to bound worst-

case lookup performance to logarithmic time. While extremely efficient when performing

lookup operations, this algorithm does not easily support incremental updates. The Fast In-

ternet Protocol Lookup (FIPL) architecture [125, 126] guarantees worst-case performance

of over 9 million lookups per second. FIPL maintains lookup performance while simulta-

neously handling 1,000 route updates per second. It is implemented in FPGA logic utilizing

one external SRAM module and operates at 100MHz. For testing, 16 thousand route en-

tries, requiring only 10 bytes of storage for each entry, were loaded into the FIPL engine.

More recently, complex routing instructions require routers to perform packet classi-

fication on multiple fields. This usually involves the 5-tuple of source address, destination

40

address, source port, destination port, and protocol fields. The Recursive Flow Classifi-

cation (RFC) algorithm exploits structure and redundancy found in rule sets in order to

improve performance [47]. By mapping rule sets into a multi-dimensional space, a tech-

nique of performing parallel range matches in each dimension can improve classification

speeds to a million packet classifications per second [69]. The Aggregated Bit Vector

(ABV) scheme extends this algorithm by adding rearrangement and recursive aggregation

which compress tables and reduce the number of memory accesses required to perform

a lookup [3]. Gupta and McKeown describe a hierarchical cutting technique [48] which

utilizes rule preprocessing to build a tree whose nodes represent a subset of the rule sets.

HyperCuts extends this concept to allow simultaneous cutting in multiple dimensions and

reduces memory requirements by pulling common rules up to higher nodes within the tree

[115].

SWITCHGENis a tool which transforms packet classification rules into reconfig-

urable hardware-based circuit designs [59]. The goal of this approach is to achieve 100

million packet classifications per second, or sufficient throughput to manage traffic on an

OC-768 data link. Prakashet al. propose a packet classifier which performs lookups uti-

lizing a series of pipelined SRAMs [100]. One billion packet classification lookups per

second could be supported with this technology.

Most recently, Dharmapurikaret al. describe a Bloom filter hashing technique to

perform packet classifications [29]. A Bloom filter involves hashing an input several times

using different hashing functions. The resultant values are used as direct memory indexes

into sparsely populated hash tables. These hash table lookups can be performed in a single

clock cycle utilizing on-chip memories. If all of the values from the lookups return true,

then there is a high probability that a match has been found. The Bloom filter technique is

subject to false positive matches which require an additional comparison in order to validate

the result, but a false negative will never be returned. It is capable of performing an average

of 300 million lookups per second, with worst-case performance of 100 million lookups per

second. By comparison, TCAMs operate at 100 million lookups per second, consume 150

times more power, and cost 30 times more than the commodity SRAM devices that can be

utilized in a packet classifier based on Bloom filter technology.

The TCP-Processor currently uses a modified open addressing hash scheme for

managing per-flow context information. This modification involves limiting the length

of hash chains in order to provide deterministic behavior when performing flow classifica-

tion and retrieving per-flow context information. While excessive hash collisions can lead

41

Internet

3
C
 o
m

Firewall/

Rourter

Load

Balancer

Web Servers

Figure 3.2: Web Farm with Load Balancer

to the incomplete monitoring of a TCP flow, the occurrence of hash collisions can be re-

duced by selecting hash algorithms which evenly distribute flows throughout memory and

appropriately sizing memory for the number of expected flows. In addition, flow classi-

fication operations are localized within the TCP-Processor so that new flow classification

algorithms can be easily incorporated without requiring major changes to the system.

3.5 Related Technologies

The technology employed by load balancers, SSL accelerators, intrusion detection systems,

and TCP offload engines is different than the TCP flow processing architecture described

in this dissertation. These devices do contain components that process the TCP protocol,

and therefore have related processing requirements. This section discusses the operation of

these devices and compares their TCP processing features to this research.

3.5.1 Load Balancers

Load balancing devices distribute the request load of a common resource amongN number

of servers. They are useful in web farms where request loads exceed the capacity of a

single machine. Another advantage of load balancing devices is that they provide failover

support, masking the failure of a single backend server by routing requests that would

otherwise have failed to other functioning servers. In web farms, the load balancing device

is typically placed between a firewall router and a group of web servers. The firewall

router provides access to the Internet and the web servers provide content to the Internet

community. Figure 3.2 illustrates a typical web farm.

42

L

O

A

D

B

A

L

A

N

C

E

R

SYN

SYN ACK

ACK

Request

SYN

SYN ACK

ACK

Request

Response
Response

E

N

D

U

S

E

R

W

E

B

S

E

R

V

E

R

Figure 3.3: Delayed Binding Technique

One of the features of load balancing devices is content-based (or cookie-based)

routing. In a content-based routing scenario, the load balancer directs requests to a spe-

cific server based on information contained within the request. Since a connection has to

be established before content can be delivered, load balancing devices employ a concept

called delayed binding. It allows the load balancing device to complete the TCP connection

and receive the web request. On receipt, the request can be parsed in order to determine

which of the backend servers should receive the request. The load balancer then initiates a

TCP connection with the appropriate web server and forwards the request. When the web

server generates a response, the load balancer adjusts the TCP header fields of the response

packets and returns the response to the end users. Figure 3.3 illustrates the TCP interaction

between the end users, the load balancer and the web server. Many commercial vendors of

load balancing equipment employ delayed binding [92, 35, 18, 39, 101].

A load balancing processes TCP header fields when performing content-based rout-

ing. The main differences between load balancing devices and the research presented in

this dissertation are:

• Load balancers are in close proximity to a web server or end system.

• Load balancers partially terminate the TCP connection.

• Load balancers only scan the initial part of the TCP flow.

• Load balancers only scan traffic in one direction.

• Load balancers are limited in the number of simultaneously flows that they can mon-

itor.

• The amount of traffic that current generation load balancers can handle is limited.

43

Internet

Web Server

3
C
 o
 m

Firewall/

Rourter

SSL

Accelerator

Web Browser

Encrypted/Secure Communications

Unencrypted

Communications

Figure 3.4: SSL Accelerator Employed at Web Server

In contrast to load balancers, the TCP-Processor is designed to perform full TCP

flow analysis for millions of flows at multi-gigabit data rates. In addition, there is no

requirement that the TCP-Processor be placed next to an end system and it is also capable

of processing bi-directional traffic. Load balancers fulfill a specific need for Web Servers

and are not capable of performing the functions of the TCP-Processor.

3.5.2 SSL Accelerators

Secure Sockets Layer (SSL) is a protocol for providing an encrypted and secure data path

between two endpoints [43]. Web browsers employ this protocol to support secure com-

munication with a Web server, preventing eavesdropping, data tampering, and data forgery.

The processing overhead required to implement the SSL protocol demands SSL

acceleration. When a web server processes SSL, its encryption/decryption algorithms con-

sume much of the server’s processing power. Several network vendors offer SSL accelera-

tors as a solution to this problem [93, 36, 20, 84]. An SSL accelerator is an external device

which implements the SSL protocol, including key management, encryption, and decryp-

tion processing. An SSL accelerator frees up the web server or end processing system from

having to perform the compute-intensive operations required to provide a secure communi-

cations environment. Figure 3.4 shows the placement of an SSL accelerator in the network.

The SSL accelerator is tightly coupled with one or more web servers and provides secure

communication services for TCP connections at a single location.

An SSL acceleration device performs protocol processing on TCP connections. The

main differences between SSL acelerators and the research presented in this dissertation

are:

• SSL accelerators are in close proximity to a web server or end system.

44

• SSL accelerators terminate and re-establish TCP connections.

• SSL accelerators act as protocol translators, communicating via secure connections

on one side of the device and via normal non-secure connections on the other side.

• The number of simultaneous flows SSL accelerators can process is limited.

• The amount of traffic that current generation SSL accelerators can handle is limited.

SSL accelerators terminate and re-establish a TCP connection with a back-end Web

Sever. They are designed to be placed in very close proximity to the Web Servers to which

they connect. The TCP-Processor does not terminate and re-establish TCP connections

and has flexible placement requirements. It is designed to perform full TCP flow analysis

for millions of flows a multi-gigabit data rates. SSL accelerators are designed for encyrp-

tion/decryption services and not general TCP flow processing like the TCP-Processor.

3.5.3 Intrusion Detection Systems

Most intrusion detection systems in use today have software-based implementations. Snort

[104] and other software-based intrusion detection systems have performance limitations

which prevent them from processing large quantities of traffic at high data rates. Software-

based intrusion detection systems contain performance limitations which prevent them

from being able to fully process traffic on a heavily loaded 100Mbps network link [107].

In order to improve performance, rule sets are tailored to reduce the amount of required

text searching. In addition, instead of performing TCP processing and stream reassem-

bly operations to accurately interrogate stream payloads, Snort, for example, is typically

configured to inspect only payloads on an individual packet basis. Virus scanners such as

VirusScan[81] andAntiVirus [123] operate on end systems where they monitor data as it

passes between the application and the TCP stack.

Li et al. have implemented portions of an intrusion detection system in reconfig-

urable hardware [71]. Header processing and content matching logic utilize FPGA-based

CAM circuits to search for predefined content in network packets. The content matcher

searches for a single signature based on the result of the header processing operation. Data

is clocked into a 160 bit wide sliding window matching buffer 32 bits at a time. This sup-

ports the matching of digital signatures of up to 16((160 − 32)/8) characters in length.

Although the circuit can process data at 2.68Gbps, there is no support for managing TCP

flows.

Granidt (Gigabit Rate Network Intrusion Detection Technology) combines a hard-

ware component and a software component to create an intrusion detection system [45].

45

The hardware component utilizes multiple FPGA devices to perform header processing

and content matching using logic-based CAMs. A 32-bit PCI interface connecting the

FPGA devices to the main computer limits processing bandwidth to 696Mbps. The hard-

ware portion of the design can process data at 2Gbps. The Granidt system does not perform

TCP flow processing and only searches for content on a packet by packet basis.

Of the available commercial intrusion detection systems [55, 19, 38], none are ca-

pable of processing millions of data flows at multi-gigabit line rates. Accomplishing this

goal requires high performance TCP processing, flow classification, stream reassembly,

and content scanning techniques. Vendors apply heuristics which limit the stream reassem-

bly or content scanning operations in order to achieve higher throughput rates. Most of

these devices support lower traffic throughput rates (on the order of a few hundred Mbps)

and have limited capacity for supporting large numbers of simultaneous connections. The

target placement for these devices is typically within client networks where data rates and

the total number of connections are limited.

State-based processing languages aid in the definition and tracking of state tran-

sitions associated with network attacks [99, 64, 104]. Kruegelet al developed a stateful

intrusion detection system for use in high-speed networks which divides traffic on high-

speed links and disperses the processing load to an array of computers running software-

based analyzers [64]. This system employs an extensible state transition-based language

(STATL) and a state transition framework (STAT) which simplify the process of describing

and detecting network-based attacks [32, 134]. It also employs a static configuration for

splitting traffic amongst the monitoring systems and therefore cannot react to changes in

network traffic patterns. This can lead to overload conditions on individual flow monitors.

A single computer running STAT is capable of processing data at 200 Mbps.

WebSTAT also leverages the STAT framework to monitor HTTP requests [133].

Several web-based attacks were defined using their state transition definition language

and analyzed. Utilizing their WebSTAT state tracking software in conjunction with an

Apache web server, a stateful HTTP monitoring with a throughput of almost 100 Mbps

was achieved.

The Bro system [99] utilizes a state processing engine to scan for regular expres-

sions. This engine dynamically creates deterministic finite automata (DFA) states when-

ever a transition occurs into a state which does not already exist. Bro is able to reduce

the amount of system resources required for state processing because many states in the

DFA will never be reached. The Bro system has been extended to perform stateful process-

ing of bidirectional network flows [117]. Their tests involved the processing of disk files

46

containing captured network data and tracking the total time required to process all of the

captured packets. The modified Bro system was measured to process a 667MB file in 156

CPU seconds, which gives an effective average throughput of 34Mbps.

The effectiveness of the Snort and Bro systems during heavy traffic loads was mea-

sured by Leeet al [70]. Their experiments showed that both systems become overloaded

and fail to detect intrusions when traffic loads exceed 40 Mbps. In order to improve per-

formance, the authors outline adaptive configurations which can be tuned dynamically in

response to differing traffic patterns. This type of adaptive IDS increases the probability

that an intrusion will be detected during heavy traffic loads.

Intrusion detection systems scan network packets searching for digital signatures

corresponding to Internet worms and computer viruses. Some of the more sophisticated in-

trusion detections systems perform TCP stream reassembly in order to scan for signatures

across packet boundaries. To accomplish this task, they need to perform similar flow pro-

cessing to that of the TCP-Processor. Existing intrusion detections systems are not capable

of processing data at multi-gigabit data rates nor are they capable of processing millions of

simultaneous TCP connections.

3.5.4 TCP Offload Engines

The main purpose of a TCP Offload Engine (TOE) is to enhance system performance by

processing TCP/IP protocol layers in an external device. This allows the main processor to

concentrate on application specific processing. As network speeds increase, a dispropor-

tionately high processing load will be placed on the main CPU when processing protocols

and communicating over these network links [25]. This is attributable to the large number

of interrupts handled by the main CPU and the protocol processing overhead incurred per

transmitted data byte. When using a normal Maximum Transmission Unit (MTU) size of

1500 bytes, current computer systems which process TCP in software are unable to saturate

a Gigabit Ethernet link [96]. A TOE equipped Network Interface Card (NIC) will allow

computer systems to communicate efficiently on future high-speed networks.

Due to the negative impact of software protocol processing on high-speed networks,

there has been a recent flurry of research activity [138, 50, 102] in the area of TCP offload

engines, resulting in two main research directions: placing a computing resource on the

NIC which handles protocol processing, and reserving one CPU in a multi-CPU system

for performing protocol processing. This activity stems from the realization that TCP pro-

cessing consumes a large portion of a main processor’s resources when dealing with high

47

traffic rates. When data rates exceed 100Mbps, over half of the CPU processing time can

be utilized while processing interrupts, copying data, processing protocols, and executing

kernel routines. A TCP offload engine performs protocol processing operations, freeing up

the main processor to perform application level processing and user-assigned tasks.

Sabhikhi presents a discussion of the issues surrounding high performance TCP

implementations [106]. These issues include managing large numbers of connections, pro-

cessing data on high speed links, handling high connection rates, limiting instruction mem-

ory size, providing fast efficient access to memory, and selecting a programming model

(synchronous versus asynchronous, managing data movement, and maintaining the many

required timers). Four competing technologies are: (1) general purpose processors, (2) net-

work processors, (3) TCP processors, and (4) network storage processors. General purpose

CPUs are over burdened with processing protocols. TCP processing in software typically

requires 2GHz of processing power to manage an average mix of packets on a heavily

loaded 1Gbps link [10]. This severely reduces the number of compute cycles available for

application processing. Memory bandwidth, I/O throughput, and interrupt processing of

general purpose CPUs combine to limit overall throughput. Specialized network proces-

sors, such as those contained in the Intel IXP-1200 and the Motorola 8260 can perform

only limited protocol work. These devices are ideal for handling lower layer networking

protocols, but do not have the performance or resources to process TCP. Since these cores

execute software instructions, they require extremely high clock frequencies in order to

achieve the performance necessary to process traffic at high data rates. Network storage

processors support the termination of TCP so that storage devices can be placed anywhere

in the network while utilizing existing networking infrastructure. These processors are

targeted at providing high availability and high performance storage solutions utilizing ex-

isting protocols. The addition of TCP-based communications to network storage processors

is a new concept and commercial devices that use it are under development.

Intelligent Network Interface Cards (NICs) will support the processing of higher

level protocols in the future. The current focus of development on TOEs is on adding

TCP processing engines to NICs that operate at gigabit line speeds or higher. Many of the

NIC vendors, including Intel, NEC, Adaptec, Lucent, and others, are actively working on

this technology. These devices typically contain a microprocessor and high-speed mem-

ory in order to perform TCP state processing and stream reassembly. Data payloads can

then be Direct Memory Access (DMA) transferred into main memory for application level

processing. Very high performance embedded microprocessors are being developed specif-

ically for the task of offloading TCP processing [138, 50]. These microprocessors operate

48

at 10GHz clock frequencies in order to processes TCP connections on 10Gbps networks.

These processors contain specialized instruction sets which are optimized for the task of

performing protocol processing operations. CAMs are utilized in packet classification and

packet resequencing operations utilizing on-chip memories. Currently, the TCP offload

engine from Intel [138] is unable to process more than 8,000 active flows simultaneously.

The second approach that supports TCP termination on high speed networks is allo-

cating one CPU in a multi-CPU system solely for the task of processing network protocols.

Regnieret al. have made significant performance gains by partitioning processors in this

manner [102]. By segregating protocol processing operations and locking down tasks to

specific processors, the operating system avoids contending with issues such as resource

contention, lock management, scheduling, and the purging of instruction and data caches.

The stack, driver, and kernel accounted for over 96% of the CPU utilization on a 2 processor

SMP in a normal configuration. By reserving one processor to handle protocol processing,

this percentage was reduced to 53%.

Compared to the TCP-Processor, the main limitation of current generation TCP of-

fload engines is their inability to support large numbers of active flows simultaneously. Ad-

ditionally, these devices are concerned with terminating a TCP connection and therefore do

not provide the enhanced flow processing capabilities of the TCP-Processor. Similar to the

TCP-Processor, they perform flow classification and TCP stream reassembly operations,

and interact with data processing applications. Unlike the TCP-Processor, TCP offload en-

gines contain additional protocol processing logic required to terminate TCP connections.

The TCP flow classification and processing techniques employed by the TCP-Processor are

directly applicable to TCP offload engines.

3.6 Hardware-Accelerated Content Scanners

The TCP-Processor is designed to integrate with various types of stream processing ap-

plications. Hardware-accelerated content scanners are ideal applications for integration

because of their speed of operation and their ability to detect specific content within a TCP

flow or apply a regular expression to the TCP data stream. This section describes recent

research relating to hardware-accelerated content scanners. The following content scan-

ning architectures are organized in chronological order, with earlier work appearing first

and most recent research appearing last.

Sidhuet al. developed an FPGA circuit that detects regular expression matches to a

given input stream using Nondeterministic Finite Automata (NFAs) [114]. Their algorithm

49

minimizes time and space requirements in order to improve the efficiency of the implemen-

tation. NFAs are implemented as configured logic on an FPGA device. The performance of

their hardware-based content scanning architecture is dependant on the length of the regu-

lar expression being evaluated. Their system is faster than best case software performance

and orders of magnitude better in worst case scenarios.

Franklinet al. developed an FPGA-based regular expression compiler in Java using

JHDL [41]. They extended the work of Sidhuet al. implementing NFAs in reconfigurable

hardware and analyzed the regular expressions found in the Snort [104] rule database. For

small test cases, the performance of software implementations is similar to that of their

hardware implementation. For larger regular expressions, the hardware circuit had a 600x

performance improvement over software-based systems.

Choet al. created a rule-based system where rules are transformed into VHDL struc-

tures [17]. These VHDL structures are loaded into FPGAs and processed in parallel to

exploit the independent nature of different rules. Signature matching is accomplished via

four parallel 8-bit comparators. Their implementation is capable of processing data at over

2.88 Gbps. This system has scaling problems because rule matching is performed directly

in FPGA logic and this logic area increases at a quadratic rate compared to the number of

rules processed.

Moscolaet al. implemented a system which employs Deterministic Finite Automata

(DFA) to scan individual network packets for digital signatures. Their analysis indicates

that most regular expressions can be implemented with fewer states using DFA-based im-

plementations than with NFA-based implementations. Operating four scanners in parallel,

their circuit is capable of scanning network traffic at 1.184 Gbps. The performance of

this system degrades as the number of regular expressions increases. The reduction in

performance is caused by signal fan-out delays when routing the input stream to multiple

matching engines.

Dharmapurikaret al. introduced a hardware circuit which uses a hashing technique

to detect fixed-length strings in a data stream [29]. This technique is based on Bloom filters,

first described in 1970 [9]. The system uses on-chip static RAM to hold hash tables which

support single clock cycle memory accesses. The Bloom filter hashing technique for string

searching is subject to false-positives where a match is indicated where none exists. To

prevent false positives, additional logic is required to validate every match. The system is

capable of scanning for 10,000 strings at 2.4 Gbps.

Clark et al. developed an FPGA circuit capable of analyzing complex regular ex-

pressions against an arbitrary input data stream [21]. The design seeks to maximize pattern

50

matching capacity and system throughput by reducing the circuit area required to perform

the character matches. The system is capable of scanning for 17,000 characters in over

1,500 rules of the Snort rule database at gigabit traffic rates.

Sourdiset al. employ fine grain pipelining in FPGA devices to perform high-speed

string matching [118]. They utilize multiple comparators and parallel matching to maintain

high throughput. A packet fan-out tree is implemented, allowing every rule to receive the

incoming packet at the same time. This improves the overall throughput of their system.

By performing four comparisons on each clock cycle, each shifted by one byte, their design

can scan 32 bits per clock cycle. A maximum throughput of 11 Gbps was achieved when

scanning for 50 Snort rule on a Virtex2 1000 FPGA device.

Bakeret al. developed a linear-array string matching architecture for use in recon-

figurable hardware [4]. Their method uses a buffered, two-comparator variation of the

KMP [62] algorithm. The system is capable of processing data streams at 1.8 Gbps. Small

memory banks hold string patterns and jump tables which can be reconfigured at run-time,

without affecting the throughput of the system.

Lockwood et al. built a reprogrammable firewall using DFAs and CAMs imple-

mented in FPGA logic [77]. This system scans packet payloads using regular expressions

and processes a small number of packet headers using Ternary Content Addressable Mem-

ories (TCAM). The reprogrammable firewall, without the content scanning component,

can process data at 2 Gbps. The regular expression processing engine only operates at 296

Mbps. This performance can be increased by instantiating multiple copies of the regular

expression processing engine.

Sugawaraet al. developed a multi-stream packet scanner [122]. The algorithm is

based on the Aho-Corasick algorithm which uses a trie structure that corresponds to the

longest pattern match [61]. A small amount of context information is maintained which

pertains to the current matching state of a flow. This context information can be swapped

in and out of the scanner. An implementation of this algorithm is capable of processing

data at 14 Gpbs when scanning for 2000 characters.

While the TCP-Processor is designed to integrate easily with any type of TCP stream

processing application, hardware accelerated content scanners are ideal integration candi-

dates because of their ability to process large quantities of data at very high speeds. The

majority of these research efforts focus on context scanning algorithms which operate on

a single data flow. The work by Sugawaraet al. [122] focused on developing a content

scanner which minimizes per-flow context information. This simplifies the process of stor-

ing and retrieving scanning state so that multiple data flows can be processed by a single

51

scanning unit. A content scanner capable of quickly swapping scanning state is most likely

to realize the benefits of high-speed flow processing by integrating with the TCP-Processor.

3.7 Summary

The TCP-Processor describes a new type of multi-context TCP flow processor that is ca-

pable of operating on the high-speed network links of today and tomorrow. The TCP-

Processor architecture overcomes the limitations of software-based implementations by

using multiple levels of pipelining for packet processing operations and exploiting fine

grain parallelism. The architecture is implemented in FPGA logic and does not incur any

operating system overhead. To improve the throughput and performance of the system,

packets are not stored in external memory during normal processing.

The TCP-Processor also provides distinct advantages over other hardware-based

TCP processors. The TCP-Processor’s main distinction from other research is its ability to

handle millions of simultaneous TCP flows. This is accomplished by maintaining a small

amount of per-flow context information stored in external memory which can quickly be

swapped in and out of the TCP state processing engine. Another of the TCP-Processor’s

advantages is its extensibility. Its modular architecture can be extended or modified to

incorporate different algorithms and new features. The application interface annotates net-

work packets which provides stream processing applications with full packet headers in

addition to TCP stream data.

52

Chapter 4

Architecture

This chapter provides an overview of the TCP processing architecture. The first section re-

views the initial phases of research in order to provide a historical context for the develop-

ment of the TCP-Processor. This summary includes brief descriptions of the TCP-Splitter

circuit and early work on the TCP-Processor, which was incorporated into the StreamCap-

ture circuit. The next section provides an overview of the TCP-Processor which describes

its underlying components, their basic operation, and the data flow through the circuit.

The following section describes the application interface for the TCP-Processor, providing

definitions for each of the interface signals and an explanation of the interface waveform.

Finally, the chapter provides information on the extensibility of the architecture along with

a description of how this architecture can be employed in complex flow processing appli-

cations which require coordination among multiple FPGA devices.

4.1 Initial Investigations

This research work responds to the challenge of processing the data for large numbers of

TCP connections within the context of a high-speed network. This challenge is greatest

when dealing with the real-time packet processing constraints related to the computation

and memory operations required to analyze a single TCP packet. Existing TCP processing

systems, such as those that detect and filter Internet worms and computer viruses, have

severe performance limitations which prevent them from operating in this environment. To

be effective, data processing systems must have access to an accurate representation of the

application data transiting a network. Reconstructing byte streams from individual packets

is required when processing data contained in TCP packets.

53

Client Application

TCP-Splitter
IP packets
 IP packets

T

C

P

B

y
t

e

S

t
r

e

a
m

Figure 4.1: TCP-Splitter Data Flow

Field Programmable Gate Arrays (FPGAs) contain large numbers of reconfigurable

logic units interconnected with an underlying routing fabric. These devices support parallel

operations, pipelined operations, and provide tightly-coupled access to high-speed memo-

ries. The initial research associated with this dissertation originated with the idea of using

FPGA devices to process TCP data flows in high-speed networked environments.

4.1.1 TCP-Splitter

Initial investigations of this problem resulted in a proof of concept design called the TCP-

Splitter [110, 109]. This technology splits the network data stream into two separate copies,

forwarding one on to the next hop router or end system and another copy to the monitoring

application. Figure 4.1 shows the flow of IP packets through the TCP-Splitter circuit and

the delivery of a TCP byte stream to a client application.

A produced and tested hardware circuit based on the TCP-Splitter design supports

the processing of 256 thousand TCP flows at 3.2Gbps. The TCP-Splitter maintains 33 bits

of context information per flow. This context data includes a one bit indication of whether

or not the flow is active and a 32 bit number specifying the next expected TCP sequence

number for connection.

A multiple device programmer [108, 65] showcases the viability of the TCP-Splitter

technology. This circuit extracts device configuration and programming information from

54

PC
PC
PC
PC

Internet

PC
PC
PC
PC

Reconfigurable

Device 1

Programmer

End Point

Reconfigurable

Device 2

Reconfigurable

Device 3

TCP/IP

data flow

New York
 Chicago
 Denver
 Los Angeles
 Los Angeles

Figure 4.2: Multi-Device Programmer Using TCP-Splitter Technology

a TCP connection and uses this information to program attached devices. Since the TCP-

Splitter processes network packets, remote devices can be programmed using this tech-

nology as long as there is network connectivity between the device and the programming

station. Figure 4.2 shows an example of a programmer located in New York programming

devices in Chicago, Denver, and Los Angeles. In this example, a TCP connection is estab-

lished with a computer acting as the connection end point. The TCP packets sent from the

programming computer to the end point computer travel through the intermediate locations

containing the devices to be reprogrammed.

The TCP-Splitter design contains several limitations which are addressed by the

TCP-Processor. These limitations are listed below:

• The number of TCP flows which can be concurrently processed is limited to 256

thousand. High-speed network communication links that operate at 2.5Gbps data

rates and above can support millions of simultaneous TCP connections. In order to

operate effectively in this environment, the TCP-Splitter needs to be able to handle

a larger number of concurrent connections. Because the TCP-Splitter uses limited

capacity SRAM devices for per-flow context storage, the TCP-Splitter has a bounded

limit on the number of simultaneous connections it can process relative to maximum

size of the available SRAM memory devices.

• The TCP-Splitter technology has a small amount of memory for storing per-flow

context information. It uses a 1MByte memory module to store per-flow context

information. Each memory location is 36-bits wide and represents the context storage

associated with a single TCP flow. This amount of memory is insufficient to store

55

proper per-flow context information. Realistic storage requirements are in the tens of

bytes range.

• Hash collisions are not handled within the per-flow context storage area. The memory

device is too small to support direct addressing using a 96-bit index obtained by

concatenating the source IP address, the destination IP address, the source TCP port

and the destination TCP port. In addition, there is insufficient memory available to

store these items within each context record. Because of these memory limitations,

the TCP-Splitter cannot tell the difference between two TCP flows that hash to the

same memory location. When this situation occurs, the TCP-Splitter will continue to

process the first flow and treat packets from the second flow as either retransmitted

packets or as out-of-sequence packets.

• The TCP-Splitter only allows client applications to operate as passive monitoring

devices. This processing model is inadequate for classes of applications which need

to manipulate network traffic. Intrusion prevention systems are one such example.

Without the ability to alter, drop or generate network packets, a system of this nature

would not be able to stop the spread of malicious content.

• There is no support for the reordering of out-of-sequence packets. The TCP-Splitter

actively drops selective out-of-sequence packets from the network, counting on the

end hosts to detect and retransmit the missing data. This act of dropping out-of-

sequence network packets forces data to flow through the network in the proper se-

quence. Data is normally transmitted through the network in order. Under ideal

conditions, the packet dropping behavior of the TCP-Splitter has no effect on net-

work traffic. When route changes, network congestion, fiber cuts, router overloads

and other disruptions occur to the normal flow of network traffic, this packet drop-

ping behavior can have a severe negative impact of the performance of the network.

For this reason, the TCP processing circuit needs to support the re-ordering of out-

of-sequence packets without removing packets from the network.

4.1.2 StreamCapture

The StreamCapture circuit attempts to address the limitations of the TCP-Splitter technol-

ogy while adding enhanced processing features. This circuit is designed to be used in a

single chip implementation where the TCP processing logic and the client application re-

side on the same FPGA device. The close proximity between these circuits allows the

56

StreamCapture circuit to provide context storage services to the client application without

requiring additional memory accesses.

The StreamCapture circuit also supports blocking and unblocking TCP data streams

at a client application-specified TCP sequence number. This feature is useful to applications

which need to block the flow of data on a particular connection while authorization and val-

idation operations take place. Once access has been granted, the flow of data is re-enabled

for that connection. There is also support for the termination of an active flow. This can

be accomplished by generating the appropriate TCP reset (RST) packets and transmitting

them to both end systems.

The StreamCapture circuit maintains 64 bytes of context for each TCP flow. Context

required for TCP processing is stored in the first 32 bytes of this area and includes the IP

and TCP header information required to uniquely identify this flow. This information is

used to differentiate separate TCP connections from each other when hash collisions occur

in the state store. To ease the processing burden on client applications, the StreamCapture

circuit also maintains application-specific context information in the other 32 bytes of the

per-flow record. Using burst read operations, this extra information can be retrieved from

external memory with a minimal amount of overhead.

In practice, maintaining per-flow context information for client applications was

more of a liability than a feature due to the time delay between the storage and retrieval of

application-specific context information. Figure 4.3 shows the layout of the StreamCapture

circuit. All per-flow context information is stored in an external memory device. When

processing a packet, the TCP Processing Engine retrieves application-specific context in-

formation and passes it to the client application with the network packet. After processing

the packet, the client application passes updated context information to the Enhanced Flow

Services module, which then updates external memory. To achieve high throughput, the

StreamCapture circuit is pipelined so different modules simultaneously process different

network packets. The time delay between the retrieval of application-specific context in-

formation from external memory and the updating of this context information leads to

inconsistencies in data processing. To resolve this issue, the StreamCapture circuit can

suspend processing until the application-specific context information is updated. This re-

duces the throughput of the circuit and can lead to dropped packets when buffers overflow.

Another possible solution requires the client application to maintain a cache of recently

processed flows. Since the client application has no direct access to external memory, this

configuration can lead to cache coherency problems and processing packets with improper

context information.

57

TCP

Processing

Engine

Input

Buffer

State Store Manager

Packet

Routing

Enhanced

Flow

Services

Client Application

Off-chip Memory
Application

Specific Context

Retrieve current Application Specific Context

from Off-chip memory and pass it to Client

Application with each network packet

Update Off-

chip memory

with new

Application

Specific

Context

Normal Network

Traffic Data Flow

Per-flow context

storage & retrieval

Legend:

Figure 4.3: StreamCapture Circuit

4.2 TCP-Processor

The architecture of the TCP-Processor contains a feature set derived from the preceding

work on TCP processing circuits. The feature set includes:

• Maintenance of 64 bytes of per-flow context for each TCP connection.

• Support for the processing of millions of simultaneous TCP connections.

• Easy integration of other classification and lookup algorithms.

• Processing of network traffic at OC-48 (2.5Gbps).

• A scalable design which can grow to support higher speed networks of the future.

• Allowance for the processing of bi-directional TCP flows by associating packets in

opposite directions of the same flow with each other.

The TCP-Processor consists of seven separate components: an input buffer, a TCP

processing engine, a packet storage manager, a state store manager, a packet router, an

egress processing component and a statistics component. This is shown in Figure 4.4. The

interfaces between each of these components are designed to simplify module integration,

modification and replacement tasks. In addition, integration efforts can utilize these internal

subcomponent interfaces to extend the capabilities of the TCP-Processor.

58

TCP

Processing

Engine

Input

Buffer

State Store Manager

Packet

Routing

Egress

Processing

Flow Monitoring

Application

TCP Processing Architecture

Packet

Storage

Manager

Normal Network

Traffic Data Flow

Exception Processing

(packet storage & bypass traffic)

Per-flow context

storage & retrieval

Legend:

Stats

Figure 4.4: TCP-Processor Architecture

The input buffer processes data as it enters the TCP-Processor, providing packet

buffering services during periods of downstream delay. Memory contention, management

overhead and flow control resulting from downstream congestion can cause these process-

ing delays. In addition, the client application has the ability to induce back pressure into

the TCP-Processor by driving its own flow control signal and cause additional delays. The

input buffer component also ensures that any data loss in the circuit occurs in whole packet

increments, thus protecting the rest of the circuit from having to process incomplete packet

fragments.

Data from the input buffer flows into the TCP processing engine, which manages

protocol processing operations. This module computes TCP checksums, tracks flow pro-

cessing state, and performs computations related to the flow classification operation. In

addition, it communicates with a packet store manager for storing packets. This provides a

slow path through the circuit where packets can be stored and later reinjected for continued

processing.

The state store manager manages all of the per-flow context storage and retrieval

operations through communications with the memory controller. It exposes a simple inter-

face to the flow classifier and the egress processing components for retrieving and storing

59

context information. This modular design allows for the replacement of the memory sub-

system to support other memory devices or different lookup algorithms. The state store

manager communicates with large memories which hold the per-flow context information

for the TCP processing engine.

The packet storage manager provides packet buffering services for the TCP pro-

cessing engine. Packets received in an improper order by the TCP processing engine can

be passed off to the packet storage manager until packets containing the missing data ar-

rive. At that point, the stored packets can be re-injected into the TCP processing engine.

Consider the packet sequence 1, 2, 4, 5, 3. The packet storage manager stores packets 4

and 5 until packet 3 is received. At that time, packets 4 and 5 are re-injected into the data

path. This processing ensures that data is passed to the monitoring application in the proper

sequence.

The packet routing module determines where the current packet should be directed.

There are three possible routing choices. The normal flow of traffic is routed to the moni-

toring application component, where it is processed. Retransmitted frames and other non-

TCP-based packets can either be routed with the monitored TCP traffic to the monitoring

application or forwarded directly on to the egress processing module for transmission to

the end system or next hop router. Packets with invalid checksums are dropped from the

network. When the TCP-Processor is configured for in-order processing, packets which

reach this point whose sequence numbers are greater than what is expected by the TCP

processing engine are dropped in order to ensure that TCP flows traverse the network in

order.

The egress processing module receives packets from the monitoring application and

performs additional per-flow processing. If so directed by the monitoring application, the

egress processing module can block a selected flow by ensuring that packets which contain

data exceeding a specified blocking sequence number will be dropped from the network.

In this manner, a network flow can be temporarily blocked and re-enabled. The termination

of a selected flow can also be performed at this time by blocking the flow and generating

a TCP RST packet. TCP checksums are validated and can be corrected in situations where

the client application has modified packets or inserted new packets into the data stream.

Bypass packets received directly from the routing module are interleaved with packets re-

ceived from the monitoring application for transmission to the outbound interface. Statis-

tics packets are also interleaved into the outbound traffic.

All of the TCP-Processor’s components supply event triggers to the statistics com-

ponent. Internal counters accumulate the occurrence of these event triggers, providing a

60

TCP Processing Engine

I
n

p

u
t

S

t
a

t
e

M

a

c
h

i
n

e

Frame FIFO

O

u
t

p
u

t

S

t
a

t
e

M

a

c
h

i
n

e

TCP State

Processing

Control & State

FIFO

State Store Manager

Packet Store Manager

Checksum

Engine

Normal Network

Traffic Data Flow

Exception Processing

(packet storage)

Per-flow context

storage & retrieval

Legend:

Flow

Classifier

Figure 4.5: TCP Processing Engine

collection point for statistical information. On a periodic interval, the these counter values

are collected and inserted into a User Datagram Protocol (UDP) packet and passed to the

egress processing component. At this same time, the individual counters are reset to zero

and begin counting events in the next collection period.

The TCP processing engine consists of seven subcomponents. Figure 4.5 illustrates

a detailed view of the organization of these subcomponents. The input state machine is

the first to process data, provides the operating state, and keeps track of the current po-

sition within each packet. It also passes state information and packet data to the frame

FIFO, checksum engine, TCP state processing and flow classifier components. The frame

FIFO buffers packets while other computations are taking place. The checksum engine

computes the TCP checksum to validate the correctness of the TCP packet. The TCP state

processing module keeps track of the TCP processing state and determines whether packets

61

are in-sequence or out-of-sequence. The flow classifier communicates with the state store

manager to save and retrieve per-flow context information. Results from the TCP state pro-

cessing module, the checksum engine, and the flow classifier are written to a control FIFO.

The output state machine extracts data from the control and frame FIFOs and passes it to the

routing module. The results of the protocol processing operations are delivered to down-

stream components synchronously with the start of each packet. The internal FIFOs allow

the inbound processing modules to work on the next packet while the outbound module

processes earlier packets. The interfaces to the flow classification subsystem are designed

for speed and efficiency while still supporting interchangeable classifiers. In this manner,

future enhancements to flow classification algorithms can easily be incorporated into this

architecture by only replacing the required component. This flexibility also supports the

testing of various classification algorithms.

4.3 Application Interface

One of the key goals of the TCP-Processor architecture is to provide a simple, but complete

mechanism for accessing TCP stream content that can be used by a wide range of extensible

networking applications. A clean interface hides the intricacies of the underlying protocol

processing and reduces the complexity associated with processing the TCP data streams.

The signals listed below are used to transfer TCP stream data to the monitoring application:

DATA 32 bit vector (4 byte wide) main data bus which carries all packet data and lower

layer protocol information.

DATAEN 1 bit signal indicating whether or not there is valid data on the DATA lines.

SOF 1 bit signal indicating the start of a new frame (packet). This signal is always asserted

in unison with the first word on the DATA bus.

SOIP 1 bit signal indicating the start of the IP header within the packet.

SOP 1 bit signal indicating the start of the IP payload (ie. the first word past the end of the

IP header). This signal can be used to indicate the first word of the TCP header.

EOF 1 bit signal indicating the end of the frame (packet).

TDE 1 bit signal indicating whether or not there is TCP stream content on the DATA lines.

BYTES 4 bit vector indicating which of the four bytes on the DATA lines contain valid

TCP stream data that should be processed by the monitoring application. One bit is

used for byte of the DATA word.

62

FLOWSTATE 32 bit vector (4 byte wide) per-flow state information bus which carries

the flow identifier, next TCP sequence number, TCP data length, and a flow instance

number.

FLOWSTATEEN 1 bit signal indicating whether or not there is valid data on the FLOW-

STATE lines.

NEWFLOW 1 bit signal indicating that this packet represents the start of a new flow. This

signal is asserted for one clock cycle in unison with the SOF signal.

ENDFLOW 1 bit signal indicating that this packet represents the end of an existing flow.

This signal is asserted for one clock cycle in unison with the SOF signal.

TCA 1 bit flow control signal which the client application can use to suspend the flow

of data. It is always assumed that the TCP-Processor can finish sending the current

packet.

The client interface contains network data packets and control signals which anno-

tate the packets to the monitoring application. This simplifies the logic required to process

TCP data streams while providing the application with access to the complete network data

packet. Monitoring applications will likely require access to protocol header fields in order

to determine things like the source and destination addresses. Passing the full contents of

the packet eliminates the need for extra interface signals which provide this type of data.

Control signals assist the monitoring application in navigating to specific locations within

the packet. For instance, if the monitoring application were interested in obtaining the

source and destination TCP ports, instead of tracking the protocol headers, the SOP signal

indicates that the TCP ports are on the DATA lines.

The TCP-Processor maintains per-flow context information for the TCP flow mon-

itoring service. The FLOWSTATE bus contains this additional flow context information

which is passed to the monitoring application at the start of each packet. This predefined

sequence of data includes a unique flow identifier, the next expected TCP sequence number

following the processing of this packet, the TCP data length in bytes, and a flow instance

number which can be employed to prevent conflicts when flow identifiers are reused.

Figure 4.6 includes a timing diagram showing the transmission of a single TCP

data packet to the monitoring application. The DATA and FLOWSTATE busses contain

an indication of the data that is present at each clock cycle during normal processing. The

various components of the IP and TCP headers are shown with the control signals. In

this example, the NEWFLOW signal indicates that the data contained within this packet

represents the first few bytes of a new data stream and that the monitoring application

should initialize its processing state prior to processing this data. Additional information is

63

DATAEN

DATA

SOF

VCI

IP

Ver

IP

Ident

IP

TTL

IP

Src

IP

Dst

SOIP

SOP

EOF

TDE

BYTES

XXX

TCP

Ports

TCP

Seq

TCP

Dst

TCP

Win

TCP

Cksm
 HELL
 O
 Len

NEWFLOW

ENDFLOW

XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 1111
 1000
 XXX

FLOWSTATE

FLOWSTATEEN

XXX

Flow

Id

Len

Inst

Nxt

Seq
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX

XXX
CRC

XXX
XXX

XXX
XXX

OPT

XXX
Msk

Start of frame

Start of IP

header

Start of

TCP header

End of frame

New flow indication
 Valid TCP data bytes

Per-flow state

information

Packet data

Figure 4.6: Timing Diagram showing Client Interface

clocked through the data bus before and/or after the packet data. This allows for lower-level

protocols, such as Virtual Circuit Identifier (VCI), Ethernet Media Access Control (MAC)

addresses, other lower layer protocol information, or ancillary data (like packet routing

information) to pass through the hardware along with the packet. For example, the AAA

data value represents one word of control information prior to the the start of the IP packet.

The BBB and CCC labels represent trailer fields that follow the IP packet. The AAA, BBB,

and CCC content should be ignored by the monitoring application and passed through to

the client input interface of the TCP-Processor for use in outbound packet processing.

4.4 Extensibility

The TCP-Processor contains a modular set of components which support integration with

other technologies. This enables development of new components that simply plug into the

existing inter-component interfaces.

As chip-making technology advances, the TCP-Processor architecture can scale to

operate within devices that exploit higher gate densities and faster clock frequencies. It

was designed using a 32-bit wide main data path for network traffic which will easily port

to future generations of FPGA and ASIC devices maintaining this property. Increasing the

width of the main data path to 64 or 128 bits could double or quadruple the throughput

64

of the circuit, although it would require reworking the protocol processing subsystems,

widening of internal buffering FIFOs, and modifying interface specifications.

The state store manager supports the easy implementation of alternative flow clas-

sification algorithms. This allows a design engineer using the TCP-Processor to specify

the algorithm which most closely matches the requirements of their TCP flow monitoring

service. In addition, the state store manager can be modified to utilize different types of

memory managers and cache subsystems.

Interaction with external memory is separate from the logic of the state store man-

ager. This enables an easy migration path to future performance enhancing improvements

in technology. As the name suggests, Double Data Rate (DDR) memories support two

memory operations per clock cycle thereby doubling the rate at which data can be trans-

ferred to/from external memory devices. Increasing the data bus width when communicat-

ing to external memories will improve memory performance, but will require additional

changes to the state store manager to support the larger bus size.

4.5 Multiple FPGA Coordination

Complex monitoring applications may require multiple hardware devices to perform addi-

tional TCP flow processing functions. For example, the whole Snort [104] rule database

contains approximately 2000 rules, each with header and content match criteria. Due to

the size of this rule set, complete processing of the full rule set cannot be performed within

a single FPGA device. Fortunately, Snort rule processing can be broken down into three

distinct logical steps: (1) header processing, (2) content scanning, and (3) rule matching.

The complete process can be implemented by assigning these separate tasks to multiple

hardware devices.

Figure 4.7 illustrates two different configurations of a hardware-based Snort im-

plementation which utilize multiple hardware devices. The first demonstrates a routing

configuration where higher levels of flow processing occur above the TCP-Processor. The

monitoring application passes data back to the TCP-Processor for final processing which

forwards it on to the end station or next hop router. In this configuration, each device

provides a reverse channel so data can be passed back the the TCP-Processor. This is the

normal data path for the TCP-Processor.

The second example shows a straight-through routing configuration where the TCP

processing engine consists of two components: one for ingress processing and one for

egress processing. These two components exist on separate devices to enable data to be

65

TCP Processing Engine

Header Processing

Content Scanning

Rule Matching

TCP Ingress Processing

Header Procesing

Content Scanning

TCP Egress Processing

Rule Matching

A) Horseshoe routing
 B) Straight through routing

Figure 4.7: Multi-Board Traffic Routing

routed linearly through multiple devices. The advantage of this type of configuration is that

data is always moving in a single direction.

A set of flexible serialization and deserialization components efficiently moves data

between devices when data processing functions are partitioned across multiple devices.

All of the data presented at the TCP-Processor client interface is serialized into an encoded

data format which is transmitted to other devices. The deserialization process, in turn,

converts this encoded data back into the client interface signals of the TCP-Processor. Fig-

ure 4.8 shows a layout of the TCP-Processor circuit components which support multiple

board TCP flow monitoring. The dotted line indicates that the ingress portion of the TCP-

Processor circuit can be separated from the egress portion of the circuit; a useful feature in

straight-through processing configurations.

66

TCP

Serialize

Encode

TCP

Processing

Engine

Input

Buffer

State Store Manager

Packet

Routing

Egress

Processing

TCP Processing Architecture

Packet

Storage

Manager

Normal Network

Traffic Data Flow

Exception Processing

(packet storage)

Per-flow context

storage & retrieval

Legend:

Stats

TCP

Serialize

Decode

Figure 4.8: Circuit Configuration for Multi-Board Operation

67

Chapter 5

Environment

This dissertation presents research performed at the Applied Research Laboratory (ARL) at

Washington University in St. Louis. Development of the TCP-Processor relied on previous

research performed at this facility. The following sections briefly describe some of the

hardware, software, and circuit designs which contributed to the development of the TCP-

Processor.

The TCP-Processor was designed, implemented and tested within the context of the

Field-Programmable Port Extender (FPX). While the circuit is not limited to this specific

hardware environment, minor modifications to the TCP-Processor will most likely be re-

quired for operation on a different hardware platform. All of the research relating to this

dissertation used the FPX platform as the underlying hardware environment.

5.1 Field-programmable Port Extender

The Field-programmable Port Extender (FPX) [74, 73] is a research platform that supports

the processing of high-speed network traffic with reconfigurable devices (Figure 5.1). All

processing on the FPX is implemented in reconfigurable logic with FPGAs. One FPGA on

the system is called the Reprogrammable Application Device (RAD) and is implemented

with a Xilinx Virtex XCV2000E (earlier models of the FPX use the XCV1000E) [78].

The RAD can be dynamically reconfigured to perform user-defined functions on packets

traversing through the FPX [124]. The second FPGA device on the FPX is called the Net-

work Interface Device (NID) and is implemented with a Xilinx Virtex XCV600E FPGA.

The NID, which is statically programmed at power-up, controls data routing on the FPX

68

Oscillators

Static Ram

NID (XCV600E)

RAD

(XCV2000E)

PROM

2.4
Gbps

interface

Figure 5.1: Field Programmable Port Extender

platform and is also responsible for programming the RAD. The system contains five par-

allel banks of memory that include both Zero Bus Turnaround (ZBT) pipelined Static Ran-

dom Access Memory (SRAM) for low-latency access to off-chip memory and Synchronous

Dynamic RAM (SDRAM) to enable buffering of a gigabyte of data. Network interfaces

allow the FPX to interface at speeds of OC-48 (2.4 gigabits per second). The RAD device

can be remotely reprogrammed by sending specially configured control cells to the device.

The external interfaces of the FPX cards are positioned on the bottom left and top

right of each card. This design feature allows the devices to be stacked on top of each

other by rotating each successive device 180 degrees, which aligns the external interfaces

with each other. Complex network traffic processing applications, like those that scan and

remove Internet viruses, can be implemented by coordinating activities amongst multiple

stacked FPX devices.

5.2 Washington University Gigabit Switch

The Washington University Gigabit Switch (WUGS) [129] is an eight port ATM switch

interconnected by an underlying switching fabric. Data paths on the switch are 32 bits

wide. The backplane of the switch drives each of the eight ATM ports at a data rate of 2.4

Gbps to achieve an aggregate bandwidth of 20 Gbps.

69

Figure 5.2: Washington University Gigabit Switch Loaded with Four FPX Cards

Each of the eight ports supports several different types of adapter cards. The current

set includes a Gigabit Ethernet line card, a Gigabit ATM line card, an OC-3 ATM line

card, an OC-48 ATM line card, the Smart Port Card (SPC), the Smart Port Card II (SPC2),

and the Field-programmable Port Extender (FPX). The SPC and SPC2 contain a Pentium

processor and Pentium III processor respectively, and can execute a version of the Unix

operating system which supports software-based packet processing [27]. Figure 5.2 shows

a WUGS switch populated with four FPX cards, two OC-3 line cards, and two GLink line

cards.

5.3 NCHARGE

A suite of tools called NCHARGE (Networked Configurable Hardware Administrator for

Reconfiguration and Governing via End-systems) remotely manages control and configura-

tion of the FPX platform [128]. NCHARGE provides a standard Application Programming

Interface (API) between software and reprogrammable hardware modules. Using this API,

multiple software processes can communicate to one or more FPX cards using standard

TCP/IP sockets.

The NCHARGE tool set also includes a web interface which allows remote access

and control of FPX hardware to be accomplished using a standard web browser. The web

70

Figure 5.3: FPX-in-a-Box System

interface uses a Common Gateway Interface (CGI) script to execute small stub routines

which communicate with NCHARGE over the standard sockets interface. This allows

the commands issued via the web interface to operate in conjunction with other programs

communicating with NCHARGE.

5.4 FPX-in-a-Box

The FPX platform can be used either in conjunction with a WUGS switch or independently

as part of a standalone solution. The FPX cards have a network interface port on both the

top and bottom, enabling stacking of other FPX or line cards under and over them. The

FPX-in-a-box system (Figure 5.3) provides a simple backplane which supports two stacks

of FPX cards with a line card placed at the top of each stack. The provides a small footprint

system which is capable of performing complex network processing at OC-48 data rates

without requiring a underlying switch fabric. Systems needing complex flow processing

can be implemented by stacking multiple FPX cards and distributing circuits across the

multiple FPGA devices.

71

ATM Cell Wrapper

AAL5 Frame Wrapper

IP Wrapper

TCP-Processor

Inbound

network

traffic

Outbound

network

traffic

Figure 5.4: Layered Protocol Wrappers

5.5 Protocol Wrappers

FPX cards process Internet packets using a set of Layered Protocol Wrappers [14, 12, 13].

Each protocol wrapper performs processing on a different protocol layer for inbound and

outbound traffic. These protocol wrappers create a framework that allows upper layer pro-

tocol processing to be isolated from any underlying protocols. The protocol wrapper library

includes an ATM Cell wrapper, an AAL5 Frame wrapper, an IP protocol wrapper and a

UDP protocol wrapper. The Cell Wrapper validates the Header Error Checksum (HEC)

field in the ATM cell header and performs routing based on the cell’s Virtual Channel Iden-

tifier (VCI) and Virtual Path Identifier (VPI). The Frame Wrapper performs Segmentation

and Reassembly (SAR) operations converting cells into packets and packets back into cells.

The IP Wrapper performs processing of IP packets. The TCP-Processor circuit interfaces

with the IP, Frame and Cell Wrappers for processing network traffic. Figure 5.4 diagrams

the protocol processing hierarchy.

The IPWrapper sends and receives IP packets utilizing a 32-bit wide data bus for

carrying data and several associated control signals. These control signals include a start of

frame (SOF) signal, a start of IP header (SOIP) signal, a start of payload (SOP) signal, and

an end of frame (EOF) signal. Packets themselves can be broken down into five sections as

described in Table 5.1.

The IPWrapper is hard-coded to process only the traffic that enters on VCI 50 (0x32)

or VCI 51 (0x33). Because of this feature, all network traffic processed by the IPWrapper

must arrive on VCI 50 (0x32) or VCI 51 (0x33). This includes TCP traffic to be processed

by the TCP-Processor and control traffic used to remote command and control various

72

Table 5.1: IP packet contents

Data Control signals Comment

ATM VCI SOF first word of packet
preamble dataen zero or more words inserted

before the start of the packet
IP header dataen, SOIP, EOF IP header information
IP payload dataen, SOP, EOF IP payload information

trailer dataen contains AAL5 trailer fields

circuit designs. In order to process data on a VCI other than 50 (0x32) or 51 (0x33),

VHDL code changes will be required in the lower layered protocol wrappers.

73

Chapter 6

TCP-Processor Internals

The TCP-Processor is a subcomponent of the StreamExtract application discussed in the

next section. The TCP-Processor interfaces with the previously described layered protocol

wrappers and provides protocol processing for TCP packets. The TCP-Processor is specif-

ically concerned with reassembling application data streams from individual TCP packets

observed on the interior of the network. This section will focus on the design, layout and

operation of the TCP-Processor.

The source code for TCP-Processor is located in the directoryvhdl/wrappers

/TCPProcessor/vhdl found in thestreamextract source v2.zip distribu-

tion file. The following VHDL source modules can be found there and comprise the core

of the TCP-Processor technology:

tcpprocessor.vhd - Top level TCP-Processor circuit. The external interface includes

configuration parameters, clock and control signals, inbound and outbound 32-bit

UTOPIA interfaces which provides access to raw ATM cells, two separate SRAM

interfaces, a single SDRAM interface, and four output signals tied to LEDs. The

TCPProcessor component interfaces the lower layer protocol wrappers with the core

TCP-Processor.

tcpproc.vhd - This module encapsulates the individual components which make up the

TCP-Processor. Network traffic travels between the external interfaces and the vari-

ous subcomponents.

tcpinbuf.vhd - The TCPInbuf component provides inbound packet buffering services

for the TCP-Processor when back pressure or flow control is driven by downstream

components. This module also ensures that data loss occurs on packet boundaries.

74

tcpengine.vhd - The TCPEngine component performs TCP processing. It communi-

cates with the state store manager to retrieve and store per-flow context information.

statestoremgr.vhd - The StateStoreMgr performs context storage and retrieval ser-

vices. It exposes a simple external interface and handles all complex interactions

with SDRAM.

tcprouting.vhd - The TCPRouting module routes packets previously processed by the

TCPEngine to either the client monitoring circuit, the outbound TCPEgress module,

or to the bit bucket. Additional control signals indicate how each packet should be

routed.

tcpstats.vhd - The TCPStats component collects statistical information from other

components and maintains internal event counters. On a periodic basis, it generates

a UDP statistics packet and sends it to the configured destination address.

tcpegress.vhd - The TCPEgress module merges statistics traffic from the TCPStats

component, bypass traffic from the TCPRouting component, and return traffic from

the client monitoring application. TCP checksum values can also be regenerated

for TCP packets returning from the client monitoring application to support flow

modification.

The components of the TCP-Processor directly correspond to the various source

files. To simplify the layout of the circuit, each component is completely contained in a

single, unique source file. Figure 6.1 diagrams the components of the TCP-Processor and

their relative significance in the VHDL hierarchy.

6.1 Endianness

The TCP-Processor was developed with little endian constructs. When accessing memory,

the least significant byte is stored at the lowest address. In addition, the least significant bit

is the lowest bit of the vector (usually bit zero) in all signal vectors. This is the most intuitive

method for representing data and is used throughout the TCP-Processor and associated

circuits. The TCP-Processor works with network headers using little endian constructs,

even though network byte order is a big endian format.

75

TCPProcessor

IPWrapper

TCPProc

TCPEngine

TCPRouting

TCPStats
TCPInbuf

TCPEgress

StateStoreMgr

Figure 6.1: Hierarchy of TCP-Processor Components

6.2 Packet Parameters

The TCP-Processor supports packet lengths of 1500 bytes or less. When the circuit is

presented with packets larger than 1500 bytes, the viability of the operation of the circuit

is not guaranteed. The circuit could likely handle larger packets, but would be subject to

lockups when packet lengths exceed the buffering capacity of internal FIFOs.

The TCP-Processor does not support IP fragments. IP defragmentation is a lower

layer protocol function which should occur within the IPWrapper. The IPWrapper does not

contain any logic to reassemble IP fragments into complete packets, or even validate the IP

packet length. The behavior of the circuit is undefined when processing IP fragments.

6.3 Flow Control

Within the confines of the TCP-Processor, it is assumed that whenever the TCA signal is

driven low, the sending component can continue to send data until the end of the current

packet is reached. This behavior contrasts with how the other protocol wrapper circuits

76

manage flow control signals. The advantage of this behavior is that it simplifies the logic

associated with processing TCA signals. The disadvantage is that it requires larger buffers

and/or FIFOs in order to store the additional data after deasserting TCA. This behavior is

internal to the TCP-Processor and affects components within the TCP-Processor and any

client monitoring application which interfaces with the TCP-Processor. When interfacing

with the IP Wrapper, the TCP-Processor conforms to its flow control semantics.

6.4 External Memories

The TCP-Processor utilizes SDRAM memory module 1 to maintain per-flow context in-

formation. This task completely consumes this memory module and it should therefore

not be used for any other purpose. SDRAM memory module 2 is not used by the TCP-

Processor and is available for other features, such as IP packet defragmentation or TCP

packet reordering. The two SRAM banks capture packet data for debugging purposes. By

eliminating the debugging feature, both of these high speed memory devices could be used

for other purposes.

6.5 Configuration Parameters

The TCP-Processor uses several configuration parameters to control its operational behav-

ior. The following list describes each of those parameters in detail, along with possible

values and the effect that parameter has on the operation of the TCP-Processor circuit:

num pre hdr wrds- Passed to the IPWrapper component where it is used to determine

the start of the IP packet header. Known possible values for this parameter are 0: for

ATM environments, 2: for ATM environments with a two word LLC header, 4: for gi-

gabit Ethernet environments, and 5: for gigabit Ethernet environments with a VLAN

tag.

simulation- Indicates whether or not the TCP-Processor circuit should operate in simu-

lation mode. When set to 1, it skips memory initialization (the zeroing of external

memory). Additionally, it performs all accesses to external SDRAM at address loca-

tion zero. This parameter enables the quick simulation of network traffic because it

avoids the initialization of large external memories. This parameter should be set to

0 when building circuits to operate in hardware.

77

skip sequencegaps- When set to 1, this parameter indicates that the TCPEngine should

skip sequence gaps and track the highest sequence number associated with every

flow. If a sequence gap occurs, the TCPEngine sets the NEWFLOW flag to indicate

that data in this packet represents a new stream of bytes. The FLOW IDENTIFIER

and the FLOW INSTANCE NUMBER remain the same as the previous packet as-

sociated with the same flow. This information can be used by the monitoring ap-

plication to determine the occurrence of a sequence gap. When set to 0, the TCP-

Processor drops out-of-sequence packets until packets with the appropriate sequence

number arrive.

app bypassenabled- Utilized by the TCPRouting module which determines where to

route packets. When set to 1, retransmitted packets, non-classified TCP packets (see

next configuration parameter), and non-TCP packets are allowed to bypass the client

monitoring application and pass directly to the TCPEgress component. When set to

0, all packets are routed to the client monitoring application.

classify empty pkts- Indicates whether or not TCP packets which contain no user data

should be classified. Performance of the circuit can be improved by avoiding classi-

fication of these packets because it takes longer to classify a packet and associate

it with a flow than it takes for these small packets to be transmitted on an OC-

48 (2.5Gbps) link. When enabled, all TCP packets are classified. This parame-

ter should be enabled if the client monitoring application is tracking the connection

setup/teardown sequences or is trying to process bidirectional traffic and match ac-

knowledgment numbers with corresponding sequence numbers of traffic in the op-

posite direction.

cksum update ena- When set to 1, the TCPEgress component validates the TCP check-

sum for all TCP packets passed in by the client monitoring application. If the TCP

checksum value is determined to be incorrect, a correcting suffix is added to the end

of the packet which will replace the erroneous checksum value with the proper check-

sum value. When set to 0, no checksum processing is performed by the TCPEgress

component.

stats enabled- Indicates whether or not a statistics packet should be generated at a periodic

time interval. When set to 1, the generation of statistics packets is enabled and con-

forms to the following configuration parameters. When set to 0, statistics information

will not be kept nor transmitted.

stats id- This 8-bit wide configuration parameter can be used to differentiate statistics gen-

erated by multiple TCP-Processors. For example, a certain configuration consists of

78

three different instances of the TCP-Processor circuit. All three are sending statistics

information to the same collection facility. This configuration parameter differenti-

ates the statistics information among the three different TCP-Processor circuits.

stats cycle count- This 32-bit wide configuration parameter indicates the interval, in clock

cycles, between the sending of a UDP packet containing statistics information col-

lected during the previous collection interval. This parameter is highly dependant

on the frequency of the oscillator used to drive the RAD. During simulations, this

parameter can be set to a very small number so that statistics packets are generated

on a much more frequent basis.

stats vci- This 8-bit wide configuration parameter specifies the VCI on which the statistics

packet should be generated. By altering this value, statistics packets can be routed

differently than normal monitored traffic.

stats dest addr- This 32-bit wide configuration parameter specifies the destination IP ad-

dress for the statistics packets.

stats dest port - This 16-bit wide configuration parameter specifies the destination UDP

port number for the statistics packets.

6.6 TCP Processor

The TCPProcessor component provides the top level interface for the TCP-Processor and is

implemented in thetcpprocessor.vhd source file. The lower layered protocol wrap-

pers within this component are integrated with the various TCP processing components.

Figure 6.2 contains a layout of the TCPProcessor circuit along with groupings of the main

signal bundles and how they are connected among external interfaces and internal compo-

nents.

6.7 TCP Proc

The TCPProc component, implemented in thetcpproc.vhd source file, is an integra-

tion point for the core components of the TCP-Processor circuit. The TCP-Processor con-

sists of several manageable modules to isolate the various functionalities of the compo-

nents. It consists of the following six components: TCPInbuf, TCPEngine, StateStoreMgr,

TCPRouting, TCPEgress, and TCPStats. Well-defined interfaces allow data to transition

among these components. The interface specification will be described in later sections.

79

TCPProcessor

IPWrapper

TCPProc
Memory

Interfaces

Network

Data Path

Clock, Reset, &

Configuration

LEDs

Client

Application

Interface

Figure 6.2: TCPProcessor Layout

Figure 6.3 describes a layout of the TCPProc circuit along with some of the main intercon-

nections between components.

The external interface of the TCPProc component connects two SRAM memory

interfaces. Inside the TCPProc component, there are three possible connection points for

the two SRAM devices: two in the TCPInbuf module and one in the TCPEgress module.

To accommodate this difference, the TCPProc maintains a virtual NOMEM1 memory de-

vice. It drives selected NOMEM1 signals to give the appearance that the memory device

is always available, but writes to the device never take place and reads from the device

always result in the value of zero. By changing the connections within the TCPProc cir-

cuit, selected subcomponent interfaces can connect to external memory devices and others

can connect to the virtual device. This allows for the capture of network traffic at various

locations within the circuit which aids in debugging.

80

TCPProc

SDRAM

Memory

Network

Data Path

Clock, Reset, &

Configuration

LEDs

TCPInbuf

TCPEngine

TCPRouting
 TCPEgress

TCPStats

StateStoreMgr

Client Application Interface

SRAM

Memory

Figure 6.3: TCPProc Layout

6.8 TCP Input Buffer

TCPInbif, implemented in thetcpinbuf.vhd source file, is the first component to pro-

cess network traffic that enters the TCP-Processor. It provides packet buffering services for

the TCP-Processor when there are periods of downstream delay. Back pressure induced

by downstream components via a flow control signal tells the TCPInbuf component not

to release any more packets into the TCP-Processor Engine. In addition, the TCPInbuf

component ensures that only fully formed IP packets are passed into the downstream TCP-

Processor components. The TCPInbuf component always asserts the upstream flow control

signal, indicating that it is always ready to receive data. If its internal buffers are filled

to capacity, then TCPInbuf manages the dropping of packets from the network instead of

deasserting the TCA flow control signal. Figure 6.4 describes the layout of the TCPInbuf

component.

As network traffic enters the TCPInbuf component, it is first processed by the input

state machine. The state machine determines whether the packet should be dropped (be-

cause the Frame FIFO is full) or should be inserted into the Frame FIFO. A separate packet

length counting circuit counts the number of 32-bit words associated with the packet which

are inserted into the Frame FIFO. At the end of the packet, this length value is written to the

81

TCPInbuf

Network

Data Path

Clock, Reset, &

Configuration

Input State

Machine

SRAM

Interface

Frame

FIFO

Output

State

Machine

SRAM

Memory

Length

FIFO

Packet

Length Count

SRAM2

Interface

SRAM

Memory

Raw Cell

Input

Statistics

Figure 6.4: TCPInbuf Layout

Length FIFO. If only a portion of the packet was successfully written to the Frame FIFO

(because the FIFO filled up while inserting words), then only the length associated with the

number of words actually inserted into the Frame FIFO is passed to the Length FIFO.

The output state machine utilizes one of two different methods to retrieve data from

the FIFOs and forward it downstream: uncounted mode and counted mode. It uses the

uncounted mode when there are no packets queued in the Frame FIFO. This mode does

not induce and store and forward delay for the packet while the packet length is being

computed, which is a performance benefit. When the output state machine detects a non-

empty Frame FIFO and empty Length FIFO, it enters the uncounted processing mode.

Packet data words are clocked out of the Frame FIFO and passed to the output interface

of the TCPInbuf component. When TCPInbuf reads the final word of the packet from the

Frame FIFO, it then reads the length of the packet from the Length FIFO.

The output state machine enters the counted mode after there has been some down-

stream delay in the system and one or more packets are queued up in the Frame and Length

FIFOs. It also enters this mode when it is in the idle state and data is present in both the

Length and Frame FIFOs. It reads the packet length first from the Length FIFO. Bits 8

through 0 indicate the length in units of 32-bit words. Bit 9 is a special drop flag which

82

35
 34
 33
 32
 31
 0

32 bits of packet data
s
t
a

r
t

o
f

f
r

a
m

e

s
t
a

r
t

o
f

I
P

h

e
a

d
e

r

e
n

d

o
f

f
r

a
m

e

s
t
a

r
t

o
f

I
P

p

a
y

l
o

a
d

SRAM Frame Format

35
 34
 33
 32
 31
 0

32 bits of cell data
s
t

a
r

t

o

f

f

r
a

m

e

n
o

t

u

s
e

d

SRAM Cell Format

n
o

t

u

s
e

d

n
o

t

u

s
e

d

Figure 6.5: SRAM data Formats

indicates whether or not the packet should be dropped. This flag is set whenever an in-

complete packet is inserted into the Frame FIFO. If the drop flag is set, then the specified

number of words is read from the Frame FIFO and discarded. If the drop flag is zero,

the the specified number of words is read from the Frame FIFO and passed to the output

interface of the TCPInbuf component.

The packet storage and SRAM signals manage two separate SRAM devices used to

capture packet data for debugging purposes. After reset, both SRAM memory devices are

initialized to zero. The control circuits are configured to use locations 1 through 262,143

as a ring buffer. Packets passed to the outbound interface are written to the first SRAM

interface and inbound ATM cells from the external RAD interface are written to the second

SRAM interface. When the termination criteria has been met, the memory update logic is

put into a mode where it stores the current memory write address to location zero. In this

manner, the 262,143 32-bit packet data words can be captured prior to the detected event.

Packets (frames) and cells are stored in the standard format required by the SRAMDUMP

utility. Figure 6.5 illustrates the layout of the 36-bit SRAM memory for both of these

formats.

6.9 TCP Engine

The TCPEngine component is the workhorse component of the TCP-Processor and is im-

plemented in thetcpengine.vhd source file. It contains all of the complex protocol

processing logic. Figure 6.6 shows a breakdown of the major logic blocks and data flow

83

TCPEngine

Network

Data Path

Clock, Reset, &

Configuration

Input

State

Machine

Data

FIFO

Control

and

State

FIFOs

State Store

Manager

Statistics

Output

State

Machine

Checksum

Validation

TCP State

Processing

Flow Hash

Comutation

State Store

Request/Response/Update
 Stats

Figure 6.6: TCPEngine Layout

through the component. Network traffic travels left to right. Flow classification and interac-

tions with the state store manager are handled at the bottom of the diagram. The input state

machine and output state machine are noted by separate boxes at the left and right sides

of the figure. Additional state machines manage interactions with the state store manager.

The state store request/response/update block of logic contain these interactions.

The TCPEngine has evolved over time and contains remnants of logic for features,

such as the direction signal and multiple hash computations, which are no longer utilized.

VHDL code for these features remains for possible future implementation. Since this doc-

ument describes a version of the TCP-Processor which contains this unused logic, its pres-

ence is noted.

84

The first series of processes described in thetcpengine.vhd source file generate

event signals which are passed to the TCPStats component. These signals pulse for one

clock cycle to indicate when the associated event counter should be incremented.

The input state machine is the first component to process IP packets when they

enter the TCPEngine. It tracks the main processing state for the TCPEngine component

while processing inbound packet data. The individual states refer to the part of the packet

being processed. IP header processing states include version, identifier, protocol, source

IP, destination IP, and option fields. TCP header processing states include ports, sequence

number, acknowledgment number, data offset, checksum, and option fields. Data0 and

data1 states represent processing of TCP payload data. The circuit enters the copy state

when it encounters a non-TCP packet and copies the packet to the Frame FIFO. The length

and CRC states refer to the AAL5 trailer fields which are tacked on to the end of the

packet. The circuit enters the WFR state when it is waiting for a response from the state

store manager.

The next section of logic deals with extracting protocol-specific information from

the protocol headers. This information includes the IP header length, an indication of

whether or not the protocol is TCP, the TCP header length, the current header length, the

value of various TCP flags, the source IP address, the destination IP address, and the TCP

port numbers.

The TCPEngine next computes a hash value based on the source IP address, the

destination IP address, and the source and destination TCP ports. Many different hashing

algorithms have been used throughout the development of the TCP-Processor and source

code still exists for several of them. The current hash scheme is hash3 which combines

the results of a CRC calculation over the various input values. The hash algorithm is con-

structed so packets in the forward and reverse directions hash to the same value. This is

accomplished by XORing the source fields with the destination fields in an identical man-

ner. The resultant hash value is 23 bits wide, which corresponds to223 or 8,388,608 unique

hash values. This hash value is passed to the state store manager which performs the flow

classification operation.

The next section of logic deals with operations required to initiate a flow lookup

operation via the state store manager. A request state machine handles the required state

transitions. After initiating the request, the state machine enters a hibernate state waiting

for the end of input processing for the current packet. This ensures that multiple state store

manager lookup requests are not made for one single packet. Table 6.1 lists the sequence

85

of data words the state machine passes to the state store manager when initiating a request

for per-flow context information.

Table 6.1: State Store Request Sequence

Request data
Request word (32 bit field)

1 ”000000000” & computed hash value
2 source IP address
3 destination IP address
4 source TCP port & destination TCP port

The following section contains logic to manage the per-flow context data returning

from the state store manager. A response state machine tracks this response data. There

are three paths that that the context data can traverse through the state machine. It enters

the first when the state store manager returns a new flow context record. The second path

corresponds to a valid flow context lookup of an existing flow, and the context data enters

the third path when a per-flow context lookup is not performed, requiring a place holder.

Table 6.2 shows the state transitions along with the data returned from the state store man-

ager. Bit 31 of the first response word indicates whether or not the response corresponds to

a new flow (value 0) or an existing flow (value 1). The returned flow identifier is a 26-bit

value. The low two bits of the flow identifier (bits 1-0) are always zero. Utilizing the whole

flow identifier as a memory address for the SDRAM on the FPX platform provides access

to a separate 32-byte section of memory for each unique flow. Bit 2 of the flow identifier

is a direction bit. If unidirectional traffic alone is being monitored (i.e., traffic propagating

the network in a single direction), then the value of this bit will always be zero. This also

implies that 64 bytes of data can be stored for each unidirectional flow. If bidirectional

traffic is being monitored, then the flow identifiers of outbound and inbound traffic asso-

ciated with the same TCP connection will differ only by the value of this bit. There is no

correlation between the value of this bit and the direction of the traffic. The only conclusion

that can be drawn is that packets with flow identifiers that have the bit set are traversing the

network in the opposite direction of packets with flow identifiers that have the bit cleared.

The next section of logic contains processes which perform TCP specific proto-

col processing functions for the TCP-Processor. This includes a process which loads

state/context information into the app state FIFO. When the state machine enters the NIL

86

Table 6.2: State Store Response Sequence

New flow Existing flow
Response Response data Response data

word State (32 bit field) State (32 bit field)

1 Idle ”000000” & flow id Idle ”100000” & flow id
2 Instance x”000000” & instance Sequence current sequence num
3 Instance x”000000” & instance

states, zero values are written into this FIFO instead of valid data. This occurs when pro-

cessing non-TCP packets. The contents of this FIFO will eventually be passed to the client

monitoring application via the flowstate signal lines. Four data words are written to this

FIFO for every packet processed. The data words either contain zeros or valid context

information, depending on the type of packet being processed and the TCP-Processor con-

figuration settings. Other logic in this section of code computes a byte offset to the first byte

of new data for the flow and computation of the next sequence expected sequence number.

Logic also exists to send updated per-flow context information to the state store

manager. The updated context information includes the next expected sequence number for

the flow and an indication of whether or not the connection is being terminated. A signal

can also be passed to the state store manager indicating that an update is not being generated

and the state store manager should return to its request processing state. Additional signals

indicate whether or not this packet is associated with a new flow, keep track of the flow

identifier, and compute the length of the TCP payload. The checksum calculation logic,

next in the source file, selects the appropriate words of the IP header, TCP header, and TCP

payload to be used in the TCP checksum calculation.

The following section of logic writes control information into the control FIFO.

The control FIFO contains information relating to the validity of the TCP checksum, an

indication of whether or not this is a TCP packet, the offset to the next byte in the TCP data

stream, the number of bytes in the last data word of the packet, a new flow indication, an

indication of whether or not the sequence number is in the proper range, an indication of

whether or not the packet should just be forwarded (i.e., for retransmitted packets), and an

end-of-flow indication. Figure 6.7 provides a layout of this data.

The next process is associated with writing packet data into the data FIFO. The data

inserted into this FIFO includes 32 bits of packet data, a start of frame indication, a start of

IP header indication, an end of frame indication, a start of IP payload (start of TCP header)

87

23
 22
 21
 20
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

c
h

e
c

k
s

u
m

O

K

i
s

T
C
P

p

a
c

k
e

t

offset to next byte in TCP stream
b
y

t
e

s

i
n

l
a

s
t

w

o
r

d

n
e

w

f
l

o
w

i
n

d
i

c
a

t
i
o

n

e
n

d

o
f

f
l

o
w

i
n

d
i

c
a

t
i
o

n

s
e

q
u

e
n

c
e

n

u
m

O

K

f
o

r
w

a
r

d

f
r
a

m

e

Figure 6.7: Control FIFO data format

39
 38
 37
 36
 35
 34
 33
 32
 31
 0

32 bits of packet data
s
t
a

r
t

o
f

f
r

a
m

e

s
t
a

r
t

o
f

I
P

h

e
a

d
e

r

v
a

l
i
d

b

y
t

e
s

e
n

d

o
f

f
r

a
m

e

s
t
a

r
t

o
f

I
P

p

a
y

l
o

a
d

T
C
P

s

t
r
e

a
m

d

a
t

a

e
n

a
b

l
e

d
a

t
a

e

n
a

b
l
e

Figure 6.8: Data FIFO data format

indication, a TCP stream data enable signal, a regular data enable signal, and a valid bytes

vector indicating how many bytes contain stream data. The valid bytes vector is offset

by one, so the value ”00” indicates one valid byte, ”01” indicates two valid bytes, ”10”

indicates three valid bytes, and ”11” indicates four valid bytes.

The remainder of the TCPEngine VHDL code retrieves data out of the three FIFOs,

performs some final data modifications, and passes the information out of the TCPEngine

component and onto the TCPRouting component. This whole process is driven by the out-

put state machine which, upon detecting a non-empty control FIFO and app state FIFO,

initiates the sequence of events to read information from the FIFOs and pass it to the ex-

ternal interface. It sends control signals to the control, data, and app state FIFOs to start

extracting their contents. As data is retrieved from the data FIFO, computations are carried

out to generate the validbytes signal which indicates the number of valid TCP bytes (zero,

one, two, three, or four) contained on the packet data bus. Data read from the app state

FIFO is passed to the flowstate vector. An offset mask and a length mask are added to this

set of data which specify a mask of valid bytes for the first and last words of the stream

data that should be considered part of the TCP data stream by the client monitoring appli-

cation. The offset signals are used to determine where in the packet the client monitoring

application should start processing TCP stream data.

88

6.10 State Store Manager

The StateStoreMgr component provides simple interfaces for accessing and updating per-

flow context information stored in external SDRAM and is implemented in thestate-

storemgr.vhd source file. The StateStoreMgr provides two separate interfaces for ac-

cessing per-flow context information. The first is used by the TCPEngine, presenting a

per-flow hash value along with the source IP, destination IP, and source and destination

TCP ports. The StateStoreMgr navigates to the existing context record for that flow, or

allocates new memory to hold context information for the flow. The second interface is

unused. It was originally developed to provide the back end of the TCP-Processor access

to per-flow context information and supported flow blocking and application state storage

services. This second interface is not utilized in this version of the TCP-Processor, but

much of the logic remains in place for possible future use.

A version of the TCP-Processor which supports flow blocking and application state

storage can be found at the following URL:http://www.arl.wustl.edu/pro-

jects/fpx/fpx internal/tcp/source/streamcapture source.zip .

Please note that the StreamCapture version of the TCP-Processor is an older version of the

source.

The TCPEngine is highly extensible due to the fact that the logic which manages

the per-flow context memory is separate, allowing for the creation of different lookup,

retrieval and memory management algorithms without requiring complex changes to the

TCPEngine. The SDRAM memory controller1 utilized by the StateStoreMgr provides three

separate interfaces: a Read only interface, a Write only interface and a Read/Write inter-

face. Figure 6.9 shows the layout of the StateStoreMgr state machines and their interaction

with other components. As previously stated, the second request/update interface is un-

used. The data bus to the SDRAM controller is 64 bits wide and the data bus exposed

by the StateStoreMgr is 32 bits wide. In order to handle the transition between the two

different bus widths, a separate 8x64 dual-ported RAM block is utilized in each of the

interfaces.

The first process of thestatestoremgr.vhd source file generates pulses re-

flecting internal events which are passed to that TCPStats module. The TCPStats module

maintains statistical counters and events including the occurrence of a new connection, the

occurrence of a reused connection (i.e., an active flow context record has been reclaimed

1developed by Sarang Dharmapurikar

89

State Store Manager

SDRAM controller

SDRAM module

Read

Interface

Write

Interface

Read/Write

Interface

State Store

Retrieval/Update

Read

Engine

Write

Engine

State Store

Retrieval/Update

Read/Write

Engine

Interface 1

(to TCPEngine)

Interface 2

(unused)

Figure 6.9: Layout of StateStoreMgr

and is being used to keep state information for a different flow), the occurrence of a termi-

nated flow (i.e., an existing TCP connection has been closed and no longer requires state

storage resources).

Two major sections make up the remainder of the StateStoreManager logic. The first

section handles frontside processing associated with interface 1 and the second sections

handles backside processing associated with interface 2. Interface 1 is connected to the

TCPEngine and performs the flow classification, context storage and retrieval operations

required by the TCP-Processor. Interface 2 is not used in this instance, but contains logic for

performing flow blocking and application state storage services. Enhancements have been

made to Interface 1 which have not been incorporated into Interface 2. Before attempting to

utilize Interface 2, the inconsistencies between the two interfaces will have to be resolved.

The operations of interface 1 are driven by the request1 state machine. Upon de-

tecting a request, the state machine traverses through states to save the additional request

data. It enters a delay state waiting for a memory read operation to complete. Once data

returns from external memory, the state machine’s sequence of states return results to the

requestor. An additional state handles the processing of a context update message. Some

states contained within this state machine, which support the retrieval of client monitor-

ing application context information not supported in this version of the TCP-Processor, are

never reached.

90

The next four processes capture flags are stored in SDRAM. Two of these flags

indicate whether or not the inbound and outbound traffic is valid. The other two flags

indicate whether or not the inbound or outbound flow has been terminated. These four

flags help the StateStoreMgr to determine the operational state of the context record of a

particular TCP flow (i.e., whether or not the record is idle, active for inbound traffic, active

for outbound traffic, or whether traffic in either direction has been shut down). It should

be noted that the inbound and outbound traffic directions do not correspond to the specific

direction of the traffic, rather that inbound traffic is moving in the opposite direction of

outbound traffic. Across multiple TCP flow context records, the inbound traffic in each of

these flows may actually be moving through the network in different directions.

The subsequent two processes manage the exact flow context matches between the

context record stored in external memory and the four-tupple of source IP address, desti-

nation IP address, and source and destination TCP ports passed in by the requestor. The

match1 circuit performs the match for outbound traffic and the match2 circuit performs the

match for inbound traffic (i.e., the match2 circuit swaps the source and destination param-

eters).

The following processes store individual data items from the context record returned

from external memory. They store the current sequence numbers for both outbound and

inbound traffic along with the instance identifier for that flow. As the per-flow context data

clocks in from memory, these data values are pulled off of the SDRAM read data bus.

The instance identifers are maintained for each flow record. Every time a different TCP

connection associates with a flow record, the instance identifier of that record increments.

This behavior provides a simple mechanism for downstream stream monitoring clients to

quickly know when a flow record is reclaimed and a different TCP connection is mapped

to the same flow identifier (i.e., memory record).

The next set of processes stores data items passed in as part of the initial request or

computed along the way. The flow hash value, one of these data items, is used as the initial

index into the state store manager hash table. The direction flop determines the direction of

the flow based on which of the two flow matching processes returns a successful match. The

upd direction stores the packet direction during update processing. This allows the request

engine to start processing another lookup request. As the source IP addresses, destination

IP addresses, and the TCP port values pass in from the requestor, they are saved and used

in later comparisons by the match processes.

The response1 engine generates a response to the requesting circuit. Based on the

current processing state, results of the match operations, and the value of the valid flags.

91

The response sequence differs depending on whether or not there was a successful per-flow

record match. If an existing flow record is not found, the response1 engine returns a flow

identifier and an instance number. If an existing flow record is found, the response1 engine

also returns the current sequence number. Table 6.2 shows the returned data in both of

these scenarios.

A read state machine manages the interactions with the SDRAM controller read in-

terface. It sequences through PullWait, TakeWait and Take states as defined by the memory

controller (developed by Sarang Dharmapurikar). Prepare and Check states ensure that the

frontside and backside engines are not trying to operate on the same per-flow record at the

same time. Since the backside engine is not used in this incarnation of the TCP-Processor,

these states will never be entered. The read engine uses the aforementioned states and

drives the SDRAM controller signals to affect a read operation.

Figure 6.10 illustrates the memory layout of a bidirectional per-flow context record.

The structure contains many unused bytes which can be utilized in conjunction with future

circuit enhancements. The source IP address, the destination IP address and the source and

destination TCP ports are stored within the per-flow record so that (1) an exact match can

be performed to ensure that the per-flow record corresponds to the flow being retrieved and

(2) the direction of the traffic (either outbound or inbound) can be determined. The per-

flow record stores the current sequence number for both outbound and inbound traffic and

an 8-bit instance identifier. This instance value increments each time a new flow is stored in

a context record. Four 1-bit flags indicate whether or not outbound traffic is valid, inbound

traffic is valid, outbound traffic has ended and inbound traffic has ended.

The next couple of processes indicate whether or not the frontside engine is active

and if active, reveals the memory address of the per-flow record being accessed. When both

the frontside and backside engines are utilized, these signals ensure that both engines don’t

try to manipulate the same context record, potentially leaving the record in an inconsistent

state. In addition, three counters keep track of the take count, the app count, and the update

count. The take count refers to the data words returned from SDRAM. The app count refers

to the application-specific context information stored in the context record. The storage of

application-specific context information is not utilized in this version of the TCP-Processor.

The update count keeps track of memory update processing.

The SDRAM controller utilized by the StateStoreMgr contains a 64-bit wide data

bus. The external request/response interface uses a 32-bit wide data bus. An internal dual-

ported memory block moves data between these two busses. This memory block is called

frontsideram. Two engines control the movement of data in and out of the memory. As

92

See A below
 Unused

Source IP Address

Outbound Sequence
 Destination IP Address

Inbound Sequence
 Src TCP Port

Unused
 Unused

Unused
 Unused

Unused
 Unused

Unused
 Unused

0
31
63
 32

Dst TCP Port

See B below

Flow Identfier

Inbound flow valid

Outbound flow valid

A)

Instance

Inbound FIN received

Outbound FIN received

B)
 Unused

0
8
16
24
32

0
8
16
24
32

Figure 6.10: Per-Flow Record Layout

data is clocked in from external memory, the frontsideram A engine writes this data into

the frontsideram. This data is written 64 bits at a time which matches the width of the

memory interface. The frontsideram A engine also reads data out of the frontsideram

where it is written to the external memory device. If the application context storage feature

were enabled, then read operations utilizing the frontsideram B engine would read appli-

cation data from the frontsideram to be used in the response sequence to the TCPEngine.

The logic still exists for this task to support possible future enhancements which would

require additional context storage. Currently, the state which drives this operation is never

entered. Updates to the per-flow context record are written to the frontsideram utilizing the

frontsideram B engine. Figure 6.11 shows the various interactions with the frontsideram.

93

Frontside Ram

Port A
 PORT B

See A below
 Unused

Source IP Address

Outbound Sequence
 Destination IP Address

Inbound Sequence
 Src TCP Port

Unused
 Unused

Unused
 Unused

Unused
 Unused

Unused
 Unused

0
31
63
 32

Dst TCP Port

See B below

64 x 8 memory

To

SDRAM

controller

To

request/

response

interface

Figure 6.11: Frontside RAM Interface Connections

The write state machine manages interactions with the write interface of the memory

controller. This state machine also initializes memory after reset. The write state machine

enters a series of states which request the memory bus and write zeros to all memory

locations of the external memory module. This initializes memory to a known state prior

to any per-flow context record storage or retrieval operations. The write engine ensures the

correct interaction with the write interface of the memory controller.

The next group of processes increments a memory address utilized during memory

initialization and a flag to indicate that initialization has completed. Additionally, there are

signals to hold the update information passed in via the external interface. This information

includes the new sequence number and a finish signal which indicates that the TCP con-

nection is being terminated. The final process of the frontside section maintains a counter

utilized when writing data to external memory.

The remainder of the source file consists of a list of processes associated with the

backside request/response interface. The actions these processes take closely mirror the

actions taken by the frontside interface. Because of this similarity, and the fact that the

backside interface is not used in this implementation of the TCP-Processor, the details of

the operation of these processes and signals will not be presented.

6.11 TCP Routing

The TCPRouting component routes the packets and associated information that arrive from

the TCPEngine component and are implemented in thetcprouting.vhd source file.

These packets can be routed to either the client monitoring interface (the normal traffic

94

TCPRouting

component

Client

Interface

Drop

Packet

Bypass

Path

Figure 6.12: TCPRouting Component

flow), the TCPEgress component (the bypass path), or the bit bucket (i.e., dropped from

the network). Figure 6.12 shows the layout of the TCPRouting component.

The first process in thetcprouting.vhd source file generates the statistics event

signals passed to the TCPStats component. These signals keep track of the number of

packets passed to each of the output interfaces. Additionally, a two-bit vector keeps an

accurate count of the TCP stream bytes passed to the application interface. This count does

not include retransmitted data. The next group of processes contains flops which copy all

inbound data to internal signals. These internal signals are used when passing data to the

output interfaces. One state machine in this component tracks the start and the end of a

packet. The processing states include idle, data, length, and crc states. The final two states

indicate the end of an IP packet. Since the TCPEngine contains a store and forward cycle,

packets are always received by the TCPRouting component as a continuous stream of data.

The next two processes determine whether or not the TCPRouting component en-

ables the client application interface, the bypass interface, or neither interface (i.e., drop

packet). Information passed in from the TCPEngine and the current configuration setting

are used to make this decision. The TCPRouting component generates two enable signals

used by subsequent processes which actually drive the output signals.

95

DATAEN

DATA

SOF

VCI

IP

Ver

IP

Ident

IP

TTL

IP

Src

IP

Dst

SOIP

SOP

EOF

TDE

BYTES

XXX

TCP

Ports

TCP

Seq

TCP

Dst

TCP

Win

TCP

Cksm
 HELL
 O
 Len

NEWFLOW

ENDFLOW

XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 1111
 1000
 XXX

FLOWSTATE

FLOWSTATEEN

XXX

Flow

Id

Len

Inst

Nxt

Seq
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX
 XXX

XXX
CRC

XXX
XXX

XXX
XXX

OPT

XXX
Msk

Figure 6.13: TCP Outbound Client Interface

The remainder of the TCPRouting processes drive output signals to either the client

application interface or the bypass interface. These processes look at the current processing

state and the value of the aforementioned enable signals to determine whether or not to

connect the internal data signals to the output interfaces.

6.11.1 Client Interface

Figure 6.13 illustrates a waveform showing the interface signals from the TCP-Processor

to the client TCP flow monitoring application. The interface consists of 12 output signals

(data, dataen, sof, soip, sop, eof, tde, bytes, newflow, endflow, flowstate, and flowstaten)

and one input signal (tca) used for flow control purposes. A high sof signal initiates packet

data processing. In conjunction with this signal, the newflow and/or endflow signals in-

dicate whether this packet is the start of a new flow or the end of an existing flow. It is

possible for both the newflow and endflow signals to be high for the same packet. This

can occur if the first packet processed for a particular flow has the RST or FIN flags set.

The flowstate and flowstaten signals are also driven in conjunction with the sof signal. The

data bus contains the 32-bit ATM header (minus the HEC) associated with the packet. The

dataen signal is low for the first word of the packet, but is driven high for all successive

data words.

Following the initial clock cycle of the packet, zero or more lower layer protocol

header words inserted prior to the start of the IP header may exist. In this example, there

is one such header word labelled OPT. The soip signal indicates the start of the IP header.

96

Only IPv4 packets are supported, which means there will be at least 20 bytes of IP header

data. If IP header options are present, they occur prior to the sop signal. The sop signal

indicates the start of the IP payload. In this example, the sop signal corresponds to the

start of the TCP header. The TCP header is 20 bytes or larger, depending on the number of

included TCP options.

The packet in Figure 6.13 contains the five character text stringHELLO in the TCP

payload section of the packet. The client application processing the TCP stream content

utilizes the tde and bytes signals to determine which data bytes to process as stream content.

The tde (TCP data enable) signal indicates that the information on the data bus is TCP

stream data. The four-bit-wide bytes vector indicates which of the four data bytes are

considered part of the TCP data stream for that flow. When retransmissions occur, it is

possible that the bytes vector will indicate that none of the data bytes pertain to TCP stream

data.

The eof signal indicates the end of the packet. Upon detection of a high eof signal,

two subsequent trailer words containing AAL5 length and CRC information associated

with the current packet need to be processed.

Every TCP packet provides four words of flowstate data. Figure 6.14 illustrates the

exact format of these data bytes. The flow identifier is always the first word of flowstate

information. Bit 31 indicates that the flow identifier is valid. The next data word contains

the TCP data length in bytes, the TCP header length in words, and a flow instance number

that can be used to help differentiate multiple flows which map to the same flow identifier.

The next word contains the next expected TCP sequence number for this flow. This value

can be useful when performing flow blocking operations. The final word contains a word

offset to the continuation of TCP stream data with respect to this flow along with byte

masks for the first and last words of the flow.

6.12 TCP Egress

The TCPEgress component, implemented in thetcpegress.vhd source file, merges

traffic from different sources into one unified packet stream. This packet stream is passed to

the outbound IP wrappers for lower layer protocol processing. Three separate FIFOs buffer

traffic from the different sources during the merge operation. The TCPEgress component

performs additional processing on the inbound traffic from the TCP flow monitoring client

to validate and possibly update TCP checksum values. By recomputing the TCP check-

sum, the TCP-Processor supports client TCP processing circuits which modify TCP stream

97

31
 0

flow identifier
v
a

l
i
d

f
l

o
w

i
d

f
l

a
g

31
 0

TCP data length

7
8

Instance

16
 15

TCP hdr len

31
 0

next sequence number

31
 0

offset to stream data

7
8

start

mask

16
 15

unused

end

mask

3
4

Flow ID

Len Inst

Nxt Seq

Msk

Figure 6.14: Flowstate Information

content. This can be accomplished by either inserting new packets (possibly a packet to

terminate the TCP flow), or by modifying an existing packet. The IPWrapper supports

special trailer words which indicate modifications that need to be made to the packet. The

TCPEgress component does not take these changes into consideration when performing its

checksum calculation. If the client uses this mechanism to modify the packet (either header

or body), the calculated checksum value will be incorrect and the packet will eventually be

dropped. To operate properly, the TCPEgress component must receive properly formatted

TCP/IP packets (excluding the checksum values).

Like the previous components, thetcpegress.vhd source file begins with a

process that generates statistics events passed to the TCPStats component. Statistics are

kept on the number of packets processed from the client interface, the number of packets

processed from the bypass interface, and the number of TCP checksum update operations

performed.

The next set of processes in the source file copies input signals from the statistics

and bypass interfaces and flops them into a set of internal signals. These internal signals

are then used to write the packet contents to the stats and bypass FIFOs. The stats, app

and bypass FIFOs all contain packet data in the same format. Figure 6.16 illustrates this

format. A set of processes which clocks inbound packets from the client interface through

five separate signals creates a five cycle delay which is utilized later to make checksum

results available before the end of the packet is reached. The logic is straightforward and

involves no additional processing on the packets.

98

TCPEgress

Client

Application

Traffic

Clock, Reset, &

Configuration

Checksum

Update

SRAM

Interface

Application

FIFO

Output

State

Machine

SRAM

Memory

Bypass

FIFO

Statistics

Stats

FIFO

Bypass

Traffic

Statistics

Traffic

Figure 6.15: TCPEgress Component

36
 35
 34
 33
 32
 31
 0

32 bits of packet data
s
t
a

r
t

o
f

f
r

a
m

e

s
t
a

r
t

o
f

I
P

h

e
a

d
e

r

e
n

d

o
f

f
r

a
m

e

s
t
a

r
t

o
f

I
P

p

a
y

l
o

a
d

d
a

t
a

e

n
a

b
l

e

Figure 6.16: TCPEgress FIFO Format

The next section of logic performs the TCP checksum validation operation. An

input state machine tracks progress through the various parts of the IP packet. This state

machine has similar states and state transitions to the input state machine contained within

the TCPEngine component (which also performs a TCP checksum validation operation).

Signals compute the length of the IP header and the data length of the TCP packet. This

information is used to properly navigate the packet and compute the checksum value.

The set of processes which actually performs the checksum calculation acts sep-

arately on the upper and lower 16 bits of the packet since data is clocked 32 bits at a

99

time. The results of these separate checksum calculations are combined to produce the fi-

nal checksum result. Following the checksum calculations, a series of processes holds the

new checksum value, a determination as to whether the packet checksum is valid, the offset

to the checksum value, and the checksum value contained in the packet.

The next group of processes clocks packets from the client application interface

into the application FIFO. A simple state machine controls the sequence of events and

determines whether the recomputed checksum value should be added to the end of the

packet as an update command to the IPWrapper. If a checksum update is required, the state

machine enters the Cksum and Delay states which supports inserting the update command

into the packet trailer.

The next section of code contains the output state machine which pulls data out of

the three internal FIFOs and passes packets to the outbound IPWrapper interface. The state

machine prioritizes the traffic in the three FIFOs so packets are always retrieved from the

stats FIFO first, the bypass FIFO second, and the app FIFO third. The lastread signal en-

sures that the output state machine reads a complete packet from the various FIFOs. Timing

issues can arise when the state machine attempts to read the last word of a packet from a

FIFO and the FIFO is empty because of the delay between when the read command is is-

sued and when the data is returned from the FIFO. The lastread signal helps the processes

to prevent deadlocks.

The final set of TCPEgress processes controls interactions with the SRAM memory

module. It writes outbound packets to the SRAM device until it fills up with 256k words

or packet data. The SRAMDUMP utility retrieves this packet data from memory. Packets

are stored in the standard frame format as shown in Figure 6.5 on page 82. All of SRAM

is initialized to zero after receiving a reset command. The TCPEgress component will not

start processing packets until the memory initialization is complete. Utilizing thesimu-

lation configuration parameter allows simulations to run quickly by skipping the memory

initialization operation.

Packets passed from the client monitoring application to the TCP-Processor must

be formatted in the same manner as packets passed to the client monitoring application.

The major difference between the format of packets passed to the client and the format of

packets passed back from the client is that not all of the control signals are required for

packets returned from the client. As seen in Figure 6.17, only the data, dataen, sof, soip,

sop and eof signals are necessary. Other than dropping the remaining signals, the interface

specification is identical to that of packets delivered through the outbound client interface

of the TCP-Processor.

100

DATAEN

DATA

SOF

VCI

IP

Ver

IP

Ident

IP

TTL

IP

Src

IP

Dst

SOIP

SOP

EOF

XXX

TCP

Ports

TCP

Seq

TCP

Dst

TCP

Win

TCP

Cksm
 HELL
 O
 Len
 XXX
CRC
OPT

Figure 6.17: TCP Inbound Client Interface

6.13 TCP Stats

The TCPStats component collects statistical information from other components, maintains

internal event counters, and generates UDP-based packets on a periodic basis containing

a summary of the event counts during the previous collection period. This logic is imple-

mented in thetcpstats.vhd source file.

The first two processes in thetcpstats.vhd source file maintain a collection in-

terval triggers and a cycle counter. The counter is a free running clock which resets when-

ever the the interval period (defined by configuration parameter) is reached. Composed

of four separate 8-bit counters, the counter eliminates the need for a single 32-bit-wide

carry chain. The trigger fires when these four counter values match the statecycle counter

configuration parameter.

The next group of TCPStats processes contains 16, 24 and 32-bit event counters. It

maintains a separate counter for each statistics variable maintained by the TCPStats com-

ponent. When the trigger fires, these counters are reset, indicating the end of the collection

period.

The packet state machine cycles through the processing states required to generate a

UDP packet containing a summary of the statistics information gathered over the previous

collection period. The trigger signal initiates the generation of the statistics packet. Once

started, the process cannot be stopped and the state machine traverses through all of the

states required to send the packet.

The next process stores the value of each statistic counter in a temporary holding

location while the statistics packet is being generated. When the trigger fires, signalling the

end of the collection period, all of the current counter values are saved before being reset

to zero. This provides a consistent snapshot of all the counters in a single clock cycle.

The next process generates the outbound UDP-based statistics packets. Informa-

tion on the packet formats and data collection tools can be found at the following URL:

101

http://www.arl.wustl.edu/projects/fpx/fpx internal/tcp

/statscollector.html

Figure 6.18 shows the processing states and the associated packet information re-

lating to the statistics packet. To add additional statistics to this packet, the developer will

has to modify the UDP packet length (the high 16 bits of the Cksum word), the stats count

(the low 8 bits of the Hdr word), and insert the new statistics parameters at the end of the

current parameters.

The exact sequence of statistics values is listed below:

•cfg1: simulation

•cfg2: application bypass enabled

•cgf3: classify empty packets

•cfg4: checksum updated enabled

•cfg5: skip sequence gaps

•ssm1: new connections

•ssm2: end (terminated) connections

•ssm3: reused connections

•ssm4: active connections

•inb1: inbound words

•inb2: inbound packets

•inb3: outbound packets

•inb4: dropped packets

•eng1: inbound packets

•eng2: TCP packets

•eng3: TCP SYN packets

•eng4: TCP FIN packets

•eng5: TCP RST packets

•eng6: zero length TCP packets

•eng7: retransmitted TCP packets

•eng8: out-of-sequence TCP packets

•eng9: bad TCP checksum packets

•eng10: outbound packets

•rtr1: inbound packets

•rtr2: client outbound packets

•rtr3: bypass outbound packets

•rtr4: dropped packets

102

00000 & VCI & 0

45000000

12340000

c0a83202

dest_addr

1234 & dest_prt

00940000

0f110000

VCI

Ver

ID

Proto

SrcIP

DstIP

Ports

Cksum

01 & ID & cnt & 21

cycle_count

Config stats

Config stats

Statestore stats

Hdr

Cycle

cfg1

cfg5

ssm1

Statestore stats

Inbuf stats

Inbuf stats

Engine stats

Engine stats

ssm4

inb1

inb4

eng1

eng10

Router stats

Router stats

Egress stats

00000000

00000000

Egress stats

rtr1

rtr5

egr1

egr5

Length

CRC

State
 Output data

IP

Hdr

UDP

Hdr

Stats

Figure 6.18: Stats Packet Format

•rtr5: TCP data bytes

•egr1: inbound client packets

•egr2: outbound client packets

•egr3: inbound bypass packets

103

•egr4: outbound bypass packets

•egr5: TCP checksum updates

104

Chapter 7

StreamExtract Circuit

The StreamExtract circuit provides primary processing of network packets in multi-board

TCP flow monitoring solutions. As the name implies, itextractsTCP byte streams from

the network traffic and passes to a separate device for additional processing. Network

traffic enters the circuit through the RAD Switch interface and is processed by the Con-

trol Cell Processor (CCP) and the TCP-Processor. The StreamExtract circuit connects to

the TCP processor as the client TCP flow monitoring application. This component en-

codes/serializes the data provided through the client interface and passes it out through the

RAD Line Card interface. This traffic can then be routed to other hardware devices which

perform TCP stream processing. Data returns via the RAD Line Card interface in this

same format to the StreamExtract circuit where it is decoded/deserialized and returned to

the TCP-Processor. After egress processing by the TCP-Processor, network traffic passes

to the RAD Switch interface. Additional information regarding the StreamExtract circuit

can be found at the following web site:http://www.arl.wustl.edu/projects

/fpx/fpx internal/tcp/stream extract.html

Figure 7.1 shows the layout of the StreamExtract circuit. The top level radstream-

extract entity interfaces directly with the I/O pins on the FPX platform, the VHDL code

for which is located in therad streamextract.vhd source file. All external signals

are brought through this interface. A one-clock-cycle buffer delay is added to all of the

UTOPIA I/O signals which carry network traffic. The sramreq fixup process ensures that

the CCP module has priority access to the dual ported SRAM memory interface. This

means that external access will be available to memory, even when another component

locks up while controlling the memory device.

105

rad_streamextract

SRAM1

RAD SW

Interface

Clock, Reset, &

Configuration

LEDs

SRAM

Interface

CCP

SRAM2

SRAM

Interface

SDRAM

Sequencer

RAD LC

Interface

SDRAM

StreamExtract_module

TCPProcessor

Stream

Extract

Deserialize
 Serialize

RAD SW

Interface

RAD LC

Interface

Client Application Interface

Figure 7.1: StreamExtract Circuit Layout

The remainder of the source glues the various components together. The SDRAM

sequencer and SRAM interface memory controllers provide multiple interfaces and sim-

plify access to the external memory devices. All of the I/O signals are then passed into the

StreamExtractmodule.

7.1 StreamExtract Module

The StreamExtractmodule component encapsulates the interaction between the TCPPro-

cessor and the StreamExtract components. Both the TCPProcessor and the StreamExtract

components contain two SRAM interfaces which can be used to capture network traffic for

debugging purposes. Since there are only two SRAM devices on the chip, the StreamEx-

tract module contains two NOMEM dummy memory interfaces which connect to two of

the four memory interfaces. These NOMEM interfaces act like memory devices which are

always available, but the data is never written anywhere and read operations always return

the value zero.

Thestreamextract module.vhd source file also contains all of the configu-

ration information for the circuit. After modifying the configuration signal values in this

106

file, the circuit must be rebuilt in order for the changes to be incorporated. The specific

function of each configuration parameter and possible values are described in theConfig-

uration Parameterssection on page 76.

7.2 StreamExtract

The StreamExtract component connects the TCPSerializeEncode and TCPSerializeDecode

components to the external StreamExtract interfaces. These components encode the client

interface of the TCP-Processor and enable transport to other devices.

7.3 LEDs

The four RAD-controlled LEDs on the FPX platform provide a limited amount of infor-

mation about the operation of the StreamExtract circuit. LED1 connects to a timer which

causes the LED to blink continuously once the circuit is loaded. The rest of the LEDs in-

dicate the current status of various flow control signals. LED2 illuminates when the flow

control signal from the TCPEngine to the TCPInbuf component is low. LED3 is illumi-

nated when the flow control signal from the TCPRouting to the TCPEngine component is

low. LED4 illuminates when the flow control signal from the outbound IPWrapper to the

TCPEgress module is low. During normal operation, these three LEDs are off, or at most

flash only for a very brief time period. A continuously lit LED indicates that a portion of

the circuit is locked-up and is not passing data.

7.4 Serialization/Deserialization (Endoding/Decoding)

The TCPSerializeEncode component processes data from the outbound client interface of

the TCP-Processor. It encodes the information in a self-describing and extensible manner

which supports transmitting it to other devices. Likewise, the TCPSerializeDecode compo-

nent receives the encoded information and regenerates the signals required by the inbound

client interface of the TCP-Processor. Figure 7.2 shows the mechanics of the encoding

and decoding operations. The encoding operation compresses the packet data and extra

information from the client interface signals from the TCP-Processor and groups it into

several control headers which are prepended to the network packet. This information is

then divided into ATM cells and transmitted through a 32-bit UTOPIA interface to other

107

Network

Data

Packet

IP

CTL

TCP

CTL

Other

CTL

Packet

CTL

Intermediate

Data Format

Control

Information

+ Packet

Network

Data

Packet

IP

CTL

TCP

CTL

Other

CTL

Packet

CTL

Control

Information

+ Packet

Interface

Signals

Interface

Signals

DATA

DATAEN

SOF

SOIP

SOP

EOF

TDE

BYTES

FLOWSTATE

FLOWSTATEEN

NEWFLOW

ENDFLOW

Serialize/Encode
 Deserialize/Decode

DATA

DATAEN

SOF

SOIP

SOP

EOF

TDE

BYTES

FLOWSTATE

FLOWSTATEEN

NEWFLOW

ENDFLOW

Cookie
Cookie

Figure 7.2: Packet Serialization and Deserialization Technique

devices. The decoding operation reverses this process, taking a sequence of ATM cells and

reproducing an interface waveform identical to the one generated by the TCP-Processor.

The control header formats are described in detail utilizing standard C header file

constructs. Every control header starts with an 8-bitCTL HEADERwhich includes the type

and the length of the control header, the layout of which is shown in Figure 7.3. The self-

describing format of the control header makes it possible for additional control headers to

be defined and added in the future without requiring a rewrite of existing circuits. This

common header format allows current circuits to easily bypass control headers they don’t

understand. The following code sample illustrates a C style coding of the currently defined

header types.

/* Control Header Type Definitions */

#define CTL_TYPE_UNUSED 0 #define CTL_TYPE_IP_HEADER 1

#define CTL_TYPE_TCP_HEADER 2 #define CTL_TYPE_PAYLOAD 3

108

31
 0

24 bits of header specific information

28
27
 24

type
 length

23

CTL_HDR

Figure 7.3: Control Header Format

#define CTL_TYPE_COOKIE 4 /* other headers types */

#define CTL_TYPE_RESERVED 15

struct {

unsigned char Type :4; /* Type code */

unsigned char Length :4; /* Header length */

/* (number of words to follow) */

} CTL_HEADER;

Every packet encoded by these routines is an IP packet, since the TCP-Processor

receives only IP packets. All encoded packets have the same sequence of control headers

after the encoding process including: a cookie control header (which acts as a record mark),

an IP control header, possibly a TCP control header (depending on whether or not this is a

TCP packet), and finally a packet control header. The following code sample illustrates the

layout of each of these headers:

/* cookie control header */ #define CTL_COOKIE 0x40ABACAB

/* IP control header */ struct { /* 1st clock */

unsigned int HdrType : 4; /* standard header (Hdr.Length = 0) */

unsigned int HdrLength : 4; /* SOF is always high for the first word */

/* of the payload */

/* DataEn is always high for the 2nd through */

/* the nth word of the payload */

unsigned int SOIPOffset : 6; /* # of words past SOF to assert SOIP signal */

/* SOIP is high for one clock cycle */

unsigned int SOPOffset : 4; /* # of words past SOIP to assert SOP signal */

/* SOP remains high until the EOF signal */

unsigned int EOFOffset : 14; /* # of words past SOP to assert EOF */

} CTL_IP_HDR;

/* TCP control header */ struct { /* 1st clock */

109

CTL_HEADER Hdr; /* standard header (Hdr.Length = 3 or 0 */

/* depending on value of ValidFlow) */

unsigned char spare1 : 3; /* spare */

unsigned char ValidFlow : 1; /* Indicates whether or not the flow ID */

/* has been computed for this packet */

/* if this value is zero, then the */

/* Hdr.Length field is set to 0 and no TCP */

/* control information follows this header */

unsigned char TDEOffset : 4; /* # of words past SOP to assert TDE signal */

/* TDE remains high until the EOF signal */

unsigned char StartBytes : 4; /* Valid bytes at start */

unsigned char EndBytes : 4; /* Valid bytes at end */

unsigned char Instance; /* Flow instance */

/* 2nd clock */

unsigned short StartOffset; /* Offset from TDE to where to start */

/* supplying ValidBytes data */

unsigned short TCPDataLength; /* Number of TCP data bytes contained */

/* within packet */

/* 3rd clock */

unsigned int NewFlow : 1; /* Indicates that this is the start of a */

/* new flow */

unsigned int EndFlow : 1; /* Indicates that this is the end of an */

/* existing flow */

unsigned int FlowID :30; /* Flow Identifier */

/* 4th clock */

unsigned int NextSequence; /* Next sequence identifier */

} CTL_TCP_HDR;

/* packet control header */ struct { /* 1st clock */

CTL_HEADER Hdr; /* standard header (Hdr.Length = 0) */

unsigned char spare; /* spare */

unsigned short DataLength; /* Number of data words to follow */

/* 2nd -> nth clock */ /* payload data words */

} CTL_PAYLOAD;

7.4.1 TCPSerializeEncode

The tcpserializeencode.vhd source file contains all of the circuit logic required

to encode signals from the TCP-Processor client interface into a protocol which transports

easily to other devices. Figure 7.4 shows the three separate state machines that drive the

110

TCPSerializeEncode

Client

Application

Traffic
 Input

State

Machine

Data

FIFO

Output

State

Machine

Header

FIFO

Header

State

Machine

& Header

Processing

Encoded

Traffic

Figure 7.4: TCPSerializeEncode Circuit Layout

operation of this circuit: an input state machine, a header state machine, and an output state

machine.

The first several processes in the source file consist of inactive counters. These

counters were utilized during debugging and are not required for correct operation of the

circuit. The first active process in the source file copies the signals from the TCP-Processor

client interface to internal signals. The input state machine tracks the beginning and the

end of every packet. The next process utilizes this state information to insert packet data

into the data FIFO. Because the TCP-Processor contains a store and forward cycle, there

are no gaps in the in the data. More specifically, all words of a packet arrive on consecutive

clock cycles. For this reason, the input data processing does not need to watch the data

enable signal for detecting valid data.

The next series of processes extract or compute information necessary to produce

the control headers of the encoded data format. This information includes offsets from the

start of the packet to the IP header, the IP payload, the end of packet, and the TCP payload

data. In addition, the data delivered via the flowstate bus is stored. The header state machine

drives the generation of the flowstate headers from the information collected and computed

by the previous processes. The control logic which inserts the control headers into the

header FIFO follows the state machine.

The output state machine generates the outbound ATM cells of the encoded format.

Processing begins when the output state machine detects a non-empty header FIFO. The

process generates ATM adaptation layer zero (AAL0) cells since the encoding format as-

sumes that no cells will be lost during transmission between multiple devices. These ATM

111

TCPSerializeDecode

Application

Traffic

Cell State

Machine

&

Cell

Processing

Encoded

Traffic

Input State

Machine

&

Packet

Processing

Figure 7.5: TCPSerializeDecode Circuit Layout

cells contain header information read out of the header FIFO and then packet data read out

of the data FIFO.

The final set of processes contains logic for saving the encoded packet data con-

tained in ATM cells to external SRAM. This feature aids in debugging encoding, decoding

or data processing problems. All of SRAM initializes to zero prior to packet processing.

The information stored in SRAM is identical to the encoded data transmitted out the RAD

Line Card interface by the StreamExtract circuit.

7.4.2 TCPSerializeDecode

Thetcpserializedecode.vhd source file contains the logic for the TCPSerializeDe-

code circuit. This circuit takes packets which have been encoded into ATM cells and

reproduces the waveform required by the TCPEgress component of the TCP-Processor.

Figure 7.5 illustrates the basic layout of this circuit.

The first process in this source file copies the inbound interface signals into internal

signals used for the rest of the data processing. The cell state machine processes every

ATM cell, differentiating between the cell header and the cell payload. It passes the cell

payload downstream for additional processing.

The input state machine tracks the progress through the encoded control headers and

the packet payload. It must detect the cookie control header as the first word of an ATM

packet to initiate processing. If the cookie is detected, the state machine enters the header

processing state. It transitions into the payload state when it detects the payload control

header.

The next group of processes extract information out of the control headers and gen-

erate the associated packet control signals: such as the start of IP header, the start of IP

112

payload, the start of frame, the end of frame, and the data enable signal. They produce

these output signals by counting down a packet offset count until the appropriate signal is

generated.

As with the TCPSerializeEncode circuit, the TCPSerializeDecode circuit contains

logic to write inbound ATM cells to SRAM memory. All of SRAM initializes to zero prior

to packet processing. The information stored in SRAM is identical to the encoded data

received by the StreamExtract circuit via the RAD Line Card interface.

7.5 Implementation

The StreamExtract has been implemented in FPGA logic and is currently operational.

This circuit includes the TCP-Processor logic along with the previously mentioned encode

and decode logic which supports data movement between multiple FPGA devices. The

StreamExtract circuit has a post place and route frequency of 85.565 MHz when targeting

the Xilinx Virtex XCV2000E-8 FPGA. The circuit utilizes 41% (7986/19200) of the slices

and 70% (112/160) of the block RAMs. The device is capable of processing 2.9 million

64-byte packets per second and has a maximum data throughput of 2.7Gbps.

Figure 7.6 shows a highly constrained circuit layout of the StreamExtract circuit on

a Xilinx Virtex 2000E FPGA. The layout consists of regions roughly corresponding to the

various components of the circuit. The control processor contains logic for processing ATM

control cells which facilitate the reading and writing of external memory devices connect to

the FPGA. This component is used for debugging purposes only and is not a required part

of the StreamExtract circuit. Presenting the physical circuit layout in this manner provides

a good comparison of the amount of FPGA resources each component requires.

113

Control

Processor

Encode

Egress

Memory

Controllers

Decode

Routing

Statistics

I
n

p

u
t

B

u
f

f
e

r

T

C

P

P

r
o

c
e

s
s

i
n

g

E

n

g
i

n

e

State

Store

Lower

Layer

Protocol

Processing

Figure 7.6: StreamExtract Circuit Layout on Xilinx XCV2000E

114

Chapter 8

TCP-Lite Wrappers

TCPLiteWrappers1, composed of the TCPDeserialize and TCPReserialize circuits, provide

an environment in which TCP flow processing applications can operate. The TCPDeserial-

ize circuit converts the encoded data stream generated by the TCPSerializeEncode circuit

into the original client interface waveform produced by the TCP-Processor. The TCPRe-

serialize circuit re-encodes the output of the client TCP processing circuit for transmission

to other devices. The output format of the TCPDeserialize circuit is identical to the input

format of the TCPReserialize circuit. Likewise, the input format of the TCPDeserialize

circuit is identical to the output format of the TCPReserialize circuit. Given the common-

ality of these interfaces, the pair of the TCPDeserialize and TCPReserialize circuits have a

net zero effect on data that they process and could be inserted multiple times into a given

application.

The source for the TCPDeserialize and TCPReserialize circuits can be found in

both the distributions forPortTracker and Scan. The source files are identical in both

distributions.

8.1 TCPDeserialize

The TCPDeserialize circuit is different from the TCPSerializeDecode circuit because the

TCPSerializeDecode circuit only needs to reproduce a subset of the client interface signals

as required by the inbound TCPEgress component. The TCPDeserialize component needs

to faithfully reproduce all of the original TCP-Processor client interface signals. For this

reason, the TCPDeserialize circuit contains additional logic functions when compared to

1The TCPLiteWrappers moniker was created by James Moscola. Previously, TCPLiteWrappers were
unnamed.

115

the TCPSerializeDecode circuit. Aside from the few extra signals and the processses that

drive them, these two circuit components are identical. Thetcpdeserialize.vhd

source file contains the source code for the TCPDeserialize circuit.

8.2 TCPReserialize

Although similar, the TCPReserialize circuit is different from the TCPSerializeEncode cir-

cuit because the TCPSerializeEncode circuit assumes that all packet data will be received in

consecutive clock cycles. This condition does not hold true for the TCPReserialize circuit

which contains extra logic to deal with gaps in packet transmission.

Thetcpreserialize.vhd source file contains the source code for the TCPRe-

serialize circuit. As stated previously, the layout, behavior, processes and signals for this

circuit are almost identical to those of the TCPSerializeEncode circuit. Please refer to the

documentation on the TCPSerializeEncode circuit in order to understand the operation of

the TCPReserialize circuit.

8.3 PortTracker

The PortTracker application processes TCP packets and maintains counts of the number

of packets sent to or received from selected TCP ports. This circuit clarifies the dis-

tribution of packets among the various TCP ports. This circuit also provides an excel-

lent example of how to utilize the TCPLiteWrappers when the client TCP stream pro-

cessing application is not concerned about maintaining state information on a per-flow

basis. The source for the PortTracker application can be found at the following URL:

http://www.arl.wustl.edu/projects/fpx/fpx internal/tcp

/source/porttracker source.zip . The directory structure layout, circuit layout,

and build procedures for this application are similar to that of the StreamExtract circuit.

Figure 8.1 shows a layout of the PortTracker application components, including the

main data flow and the interactions with SRAM devices that capture traffic to aid in the de-

bugging process. Therad porttrackercomponent is the top level design file and interfaces

directly to the I/O pins of the RAD. The VHDL code for this component can be found in

the rad porttracker.vhd source file. The component passes control cells and nor-

mal network packets into the circuit via the RAD Switch interface. This network traffic

routes first to the Control Cell Processor (CCP) which allows remote access to the SRAM

116

rad_porttracker

SRAM1

RAD SW

Interface

Clock, Reset, &

Configuration

SRAM

Interface

CCP

SRAM2

SRAM

Interface

RAD LC

Interface

PortTracker_Module

TCP

Reserialize

RAD SW

Interface

RAD LC

Interface

PortTrackerApp

TCP

Deserialize

ControlProcessor

IPWrapper

Figure 8.1: PortTracker Circuit Layout

devices. Encoded TCP stream data enters the circuit via the RAD Line Card interface.

Network data from both of the external interfaces is passed into the PortTrackerModule

for processing. The SRAM Interface components expose multiple memory access ports,

allowing for request multiplexing. This makes it possible for multiple components to share

the same memory device.

8.3.1 PortTracker Module

The VHDL code for the PortTrackerModule can be found in the source file,port-

tracker module.vhd . This component acts as the glue which holds all the subcompo-

nents of the PortTracker circuit together and provides data routing and signal connections

between the subcomponents and the external interface. The RAD Switch interface passes

data to the IPWrapper which converts the inbound cells into IP packets which are then

passed to the ControlProcessor. The ControlProcessor passes outbound traffic back to the

IPWrapper which converts packets back into ATM cells for transmission out of the RAD

Switch interface. Encapsulated TCP stream data enters through the RAD Line Card inter-

face and goes to the TCPDeserialize circuit. The TCPDeserialize circuit passes annotated

117

TCP packets to the PortTrackerApp circuit which scans network traffic for packets sent to

or received from various TCP ports. Network traffic is then routed to the TCPReserialize

circuit which re-encodes the network packets for transmission out of the RAD Line Card

interface.

The PortTrackerModule contains the same configuration parameters that define the

operation of the PortTracker application. These configuration parameters are identical to

those described in the StreamExtract circuit. Refer to the previousConfiguration Param-

eterssection on page 76 for details on each of the configuration parameters.

8.3.2 PortTrackerApp

The implementation for the PortTrackerApp can be found in theporttracker.vhd

source file. The PortTracker application is a very simple circuit and a good example of

how to implement a basic TCP packet processing application. The first process copies the

inbound data into internal signals used in subsequent processes. Theistcpsignal indicates

whether or not the current packet is a TCP packet. Thehdr countsignal is a remnant from

previous logic and is not used in the application. Theport flop process performs all of the

work for the PortTracker application. TheSOPand istcpsignals indicate the presence of

the TCP port number on the data bus. When this situation occurs, the source and destination

TCP ports run through a series ofif statements which determine the type of packet being

processed. The result of the port comparisons, drives a port type signal. Packets are always

associated with the lowest port match (either source or destination) and are only counted

once. The PortTrackerApp passes the various port type signals to the ControlProcessor for

collection and generation of statistics packets.

The last group of processes in the PortTrackerApp copies the internal packet data

signals to the external interface. Additionally, a running counter and a process uses this

counter to flash the RAD LEDs. These LEDs indicate that the circuit has been loaded into

the FPGA on the FPX platform.

8.3.3 ControlProcessor

The ControlProcessor component is described in thecontrol proc.vhd source file.

Figure 8.2 shows the flow of data through the circuit. The first several processes copy

inbound network data into internal signals and load the packets into the Frame FIFO. Once

a complete packet has been written to the Frame FIFO, one bit is written to the control

FIFO to indicate that a complete packet is ready for outbound transmission.

118

ControlProcessor

Network

Traffic
 Data

FIFO

Packet

State

Machine

Control

FIFO

Outbound

Traffic

Statistics

Events
 Statistics

Packet

Generation

Statistics

Collection

Figure 8.2: PortTracker ControlProcessor Layout

The next couple of processes maintain the interval timer which drives the generation

of the trigger event. This operation is very similar to that of the TCPStats module of

the TCP-Processor. The trigger event initiates the saving of all statistics counters and the

transmission of a statistics packet.

The next group of processes maintain statistics counters for each of the port ranges

tracked by this circuit. These counters are saved and reset when they receive the trigger

event.

The packet state machine manages the transmission of outbound traffic. Upon de-

tection of the trigger event, the state machine traverses a sequence of states that generate

the statistics packet and send it out via the outbound interface. When it detects a non-

empty condition for the control FIFO, it reads a network packet from the frame FIFO and

transmits it out of the output interface.

The next process takes a snapshot of all the statistic counters and saves the current

values when the trigger event fires. This allows the counters to reset and continue counting

the generation of the statistics packet.

The format of the statistics packet follows the same general format as mentioned in

Appendix C on Page 183. The PortTracker application generates a statistics packet with a

stats identifier of five (5). The exact sequence of statistics values transmitted in the statistics

packets is:

119

•cfg1: simulation

•numFTP: number of FTP packets

•numSSH: number of SSH packets

•numTelnet: number of telnet packets

•numSMTP: number of SMTP packets

•numTIM: number of TIM packets

•numNameserv: number of Nameserv packets

•numWhois: number of Whois packets

•numLogin: number of Login packets

•numDNS: number of DNS packets

•numTFTP: number of TFTP packets

•numGopher: number of Gopher packets

•numFinger: number of Finger packets

•numHTTP: number of HTTP packets

•numPOP: number of POP packets

•numSFTP: number of SFTP packets

•numSQL: number of SQL packets

•numNNTP: number of NNTP packets

•numNetBIOS: number of NetBIOS packets

•numSNMP: number of SNMP packets

•numBGP: number of BGP packets

•numGACP: number of GACP packets

•numIRC: number of IRC packets

•numDLS: number of DLS packets

•numLDAP: number of LDAP packets

•numHTTPS: number of HTTPS packets

•numDHCP: number of DHCP packets

•numLower: number of packets to/from TCP ports≥ 1024

•numUpper: number of packets to/from TCP ports> 1024

8.4 Scan

The Scan application processes TCP data streams and searches for four separate digital sig-

natures of up to 32 bytes in length. This circuit provides TCP stream content scanning fea-

tures which support detection of signatures that cross packet boundaries. This circuit also

120

provides an excellent example/model/starting point of how to utilize the TCPLiteWrappers

when the client TCP stream processing application needs to maintain context information

for each flow in the network. The source for the Scan application can be found at the fol-

lowing URL: http://www.arl.wustl.edu/projects/fpx/fpx internal

/tcp/source/scan source.zip . The directory structure layout, circuit layout, and

build procedures for this application are similar to that of the StreamExtract and Port-

Tracker circuits. Additional information regarding the Scan circuit can be found at the

following web site:http://www.arl.wustl.edu/projects/fpx

/fpx internal/tcp/scan.html

Figure 8.3 shows a layout of the components which make up the Scan application.

It illustrates the main data flow along with interactions it has with memory devices which

capture traffic to aid in the debugging process and store per-flow context information. The

rad scancomponent is the top level design file which interfaces directly to the I/O pins

of the RAD. The VHDL code for this component can be found in therad scan.vhd

source file. The RAD Switch interface passes control cells and control packets into the

circuit. This data goes first to the Control Cell Processor (CCP) which allows remote

access to the SRAM devices. Encoded TCP stream data enters the circuit via the RAD

Line Card interface. Network data from both of the external interfaces is passed into the

ScanModule for processing. The SRAM Interface component exposes multiple memory

access ports to provide request multiplexing so that multiple components can share the

same memory device.

8.4.1 ScanModule

The VHDL code for the ScanModule is in thescan module.vhd source file. This com-

ponent acts as the glue which holds all the subcomponents of the Scan circuit together and

provides data routing and signal connections between the subcomponents and the exter-

nal interface. The RAD Switch interface passes data to the IPWrapper which converts the

inbound cells into IP packets which are then passed to the ControlProcessor. The Control-

Processor passes outbound traffic back to the IPWrapper which converts packets back into

ATM cells for transmission out of the RAD Switch interface. Encapsulated TCP stream

data enters through the RAD Line Card interface which passes it to the TCPDeserialize

circuit. It passes annotated TCP packets to the ScanApp circuit which scans network traffic

for four separate digital signatures. Network traffic is then routed to the TCPReserialize

121

Rad_scan

SRAM1

RAD SW

Interface

Clock, Reset, &

Configuration

SRAM

Interface

CCP

SRAM2

SRAM

Interface

RAD LC

Interface

Scan_Module

TCP

Reserialize

RAD SW

Interface

RAD LC

Interface

TCP

Deserialize

ControlProcessor

IPWrapper

SDRAM

Sequencer

SDRAM

State

Store
 ScanApp

Figure 8.3: Scan Circuit Layout

circuit which re-encodes the network packets for transmission out of the RAD Line Card

interface.

The ScanModule also contains the configuration parameters which define the op-

eration of the Scan application. These configuration parameters have identical names and

functions to those described in the StreamExtract and PortTracker circuits. Please refer to

the previous Configuration Parameters section on page 76 for details on each of the config-

uration parameters.

8.4.2 ScanApp

The implementation for the ScanApp can be found in thescan.vhd source file. Figure 8.4

shows the internal logic layout of the ScanApp. The main flow of network traffic goes left

to right. The output state machine controls the operation of the stream comparison logic.

The StateStore component stores the most recent 32 bytes of stream data for each flow in

external memory. It loads this per-flow context information into the string comparison logic

122

ScanApp

Network

Traffic
Input

State

Machine

Request

State

Machine

State Store

Stream

Comparison

Logic

Update

State

Machine

Output

State

Machine

Network

Traffic

External SDRAM

Match

Signals

& LEDs

Set Scan

Strings

Query

Scan

Strings

Figure 8.4: ScanApp Circuit Layout

prior to processing a packet. After packet processing, it saves this context information to

memory. It also possesses logic to control the replacement of search strings.

The first couple of processes of the ScanApp perform component maintenance tasks.

These tasks include controlling the TCA flow control signal for inbound data. The TCA

signal de-assertes whenever the data FIFO becomes 3/4 full or the control or header FIFOs

become 1/2 full. They also copy inbound data into internal signals used later in the circuit.

The input state machine manages the processing of inbound packets into the Scan

circuit. Based on the input processing state, it writes packet data into the data FIFO and

flowstate information and control signals into the header FIFO. When it detects the end of

a packet, it writes a single bit to the control FIFO which indicates that a complete packet is

available for downstream processing.

The next group of processes handles the processing of header information, issuing

requests to the StateStore to retrieve per-flow context information, and processing the re-

turned context information. The request state machine drives the sequence of operations

required to interact with the StateStore. Upon detecting a non-empty header FIFO, the state

123

machine progresses through states which retrieve flowstate information from the header

FIFO. Depending on information it retrieves from the header FIFO and the packet’s rela-

tion to the previous packet (is this packet part of the same flow or not), the state machine

will enter the WFR (wait for response) state, waiting for completion of the per-flow context

retrieval from the StateStore. It enters the WFO (wait for outbound processing) state last,

which ensures that data is held in internal buffers until outbound processing is initiated.

The hfifo control process controls the reading of information out of the header FIFO. The

req signals process stores up to four words of flowstate information read from the header

FIFO. The statestorerequest process drives the StateStore request signals which initiate

the reading of per-flow context information. The retrievalactive flop indicates whether or

not a retrieval operation of per-flow context information is active for this packet. Context

information returned from the StateStore is saved in a set of signal vectors, prior to being

loaded into the comparator.

The output state machine drives the processing of the stream comparison engine and

the delivery of network traffic out of the component. When it detects a non-empty condi-

tion for the control FIFO and the request state machine is in the WFO state (indicating that

StateStore request processing has completed for the next packet), the output state machine

initiates outbound packet processing. It enters a delay state in order to wait for data to be

clocked out of the data FIFO. The first four words of a packet have special states (First,

Second, Third and Fourth). This supports the special processing required to combine the

flowstate information with the network packet. The Payload state manages the processing

of the remainder of the packet. The Last1 and Last2 states handle processing of the AAL5

trailer which occurs at the end of the network packet. A couple of additional processes con-

trol the reading of data from the data and control FIFOs. The next process drives internal

signals with packet data, flowstate data, and associated control signals.

The next three processes store information required by the StateStore update logic

after completion of packet processing. They use separate signals to store this information

so that the front end processing (input and request state machines) can initiate processing

of the next packet. These signals store the flow identifier associated with this packet, a

determination of whether or not an update is required, and an indication of whether or not

this is a new flow. If either the update required or the new flow signals are set, the update

state machine will store the current flow context to memory via the StateStore component.

The next group of processes maintains the check string which contains the most

recent 36 bytes of the TCP data stream for this flow. The validbyte count signal keeps

track of how many new bytes of data (0, 1, 2, 3, or 4) are added to the check string.

124

The buildcheckstring process maintains an accurate representation of the most recent

36 bytes of the TCP data stream. While processing the first word of the packet, the

build checkstring process loads the check string with data either retrieved from the State-

Store or initialized to zero. Subsequently, whenever there is valid TCP stream data on the

data bus, the check string is updated accordingly. Since data is clocked in four bytes at a

time, the process maintains a 36-byte check buffer so that it can perform the four 32-byte

comparisons on each clock cycle, shifting each comparison by one byte.

The next section of logic performs update operations to the StateStore. The update

state machine controls this action. The update sequence starts when the update state ma-

chine reaches the end of a packet and either the updrequired signal or the updnewflow

signal indicate that context information should be saved. Once begun, the sequence contin-

ues to cycle to a new state on each clock cycle until it is complete. This sequence involves

sending the flow identifier, followed by four 64-bit words of per-flow context information.

The ssout signals temporarily store the last 32 bytes of the check string. This allows the

check string to be loaded with the context information of the next packet without having

to wait for the context update operation to complete. The statestoreupdate process drives

the StateStore signals utilized to save the new per-flow context information.

The next section of logic contains the stream comparison logic. A TCAM approach

performs the actual comparisons where each comparator contains a value and a mask. It

performs the match, checking to see if the following equation is true:

((check string XOR value) NAND mask) == (all ones)

The first process controls all of the matching operations by indicating whether a match

should be performed on this clock cycle. The next process maintains the match1value

and match1mask values. These values update when the setstate and setid signals are

set. The 256-bit string 1 match operation is divided into eight segments in order to reduce

the fan-in for the matchfound signal. Each of these eight processes match a separate 32

bits of the match1 string and produce a separate matchfound1 signal. The match process

performs four separate matches, each offset by one byte in order to achieve full coverage

for the matching operation. An identical set of processes manages the matching operations

for strings 2, 3, and 4.

The next processes drive the outbound signals by copying the internal packet signals.

This induces an extra clock cycle delay in the data, but helps to improve the maximum

125

operating frequency by providing an extra clock cycle for these signals to traverse the

FPGA.

The next group of processes illuminates the LEDs whenever one of the match strings

is detected in a TCP data stream. The first process maintains a free-running counter which

is used by the subsequent processes to define the duration that a LED should be lit on

the occurrence of a string match. This is required for the LED to be visible (illuminating

the LED for 1 clock cycle has no visible effect). The led1count and the led1ena signals

manage the illumination of LED 1. When all of the match1found signals are set, the

led1 count signal stores the current counter value and illuminates the LED by setting the

led1 ena signal. The LED remains illuminated until the counter wraps and returns to the

value saved in the led1count signal. LEDs 2, 3, and 4 operate the same way.

The next series of processes manage the modification of the search strings. The set

state machine controls the sequence of events which waits for the SETENA signal to be

asserted. The first word of SETDATA contains the number of the string to be modified.

The next eight clock cycles contain the string value and the final eight clock cycles contain

the string mask. The setcount signal counts through the eight clock cycles associated with

the string value and mask. The setvalue signal holds the new match value and the setmask

holds the new match mask. If it receives an incomplete set sequence, the set state machine

returns to the idle state and ignores the command.

The query state machine manages the querying of the current match string val-

ues and masks. The ControlProcessor component driving the QUERYENA signal and

providing the identifier of the string to query on the QUERYDATA signals initiates the

query request. On receiving the QUERYENA signal, the ControlProcessor saves the cur-

rent match string value and mask values into the qryvalue and qrymask signals. During

the next eight clock cycles, The ControlProcessor clocks the match value over the RE-

SPONSEDATA signals. It then clocks the match mask over the same response signal lines

during the subsequent eight clock cycles. The ControlProcessor uses the RESPONSEENA

and RESPONSELAST signals as extra control information to frame the query response.

The final process of the source file manages miscellaneous output signals. These

include the output LEDs and a set of match signals which are used by the ControlProcessor

to collect string match statistics.

126

ControlProcessor

Network

Traffic
 Data

FIFO

Packet

State

Machine

Control

FIFO

Outbound

Traffic

String

Match

Events
 Statistics

Packet

Generation

Statistics

Collection

Set

Operation

Query

Operation

Figure 8.5: Scan ControlProcessor Layout

8.4.3 ControlProcessor

Thecontrol proc.vhd source file describes the ControlProcessor component and the

overall flow of data through the circuit. The first several processes copy inbound network

data into internal signals and load the packets into the frame FIFO. Once a complete packet

has been written to the frame FIFO, one bit is written to the control FIFO to indicate that a

complete packet is ready for outbound transmission.

The next couple of processes maintain the interval timer which drives the generation

of the trigger event. This operation is identical to that of the ControlProcessor module of

the PortTracker application. The trigger event initiates the saving of all statistics counters

and the transmission of a statistics packet. The next group of processes maintain statistics

counters for each of the four string matches which are tracked by this circuit. On reception

of the trigger event, the ControlProcessor saves and resets these counters.

The packet state machine processes match string set commands, match string query

requests, and manages the transmission of all outbound traffic (including the forwarding

of inbound traffic, responses to commands and queries, and generated statistics packets).

Upon detection of the trigger event, the state machine traverses through a sequence of states

which generate the statistics packet and send it out via the outbound interface. When the

state machine detects a non-empty condition for the control FIFO, it reads and processes a

127

network packet from the frame FIFO. If the packet is determined to contain a command or

query for the Scan application, then the state machine traverses a sequence of states which

either process the match string set command or the match string query command. The state

machine makes this determination by looking at the source and destination ports of the

incoming packet. If both of these port numbers are equal to0x1969 , then the packet state

machine will enter the command/query processing states. The state machine also looks at

the first word of the UDP payload to see if it contains themagicvalue of0x23a8d01e . If

thismagicvalue is detected, then the next word is assumed to be the command word which

determines whether this command is a set or a query. Results of the set or query operation

generate an outbound packet. The state machine transmits all other traffic out of the output

interface. An additional couple of processes control the reading of packets from the frame

and control FIFOs. The lastread signal marks the end of a packet and is used by the frame

FIFO output control process along with the ffifoack signal to ensure that all packet data is

read from the frame FIFO.

The next process takes a snapshot of all the statistic counters and saves the current

values when the trigger event fires. This allows the counters to reset and continue counting

while the statistics packet is being generated and transmitted.

The format of the statistics packet follows the same general format as mentioned

in Appendix C on Page 183. The Scan application generates statistics packet with a stats

identifier of two (2). The exact sequence of statistics values transmitted in the statistics

packets is listed below:

•cfg1: simulation

•scn1: number of occurrences of match string 1

•scn2: number of occurrences of match string 2

•scn3: number of occurrences of match string 3

•scn4: number of occurrences of match string 4

The output process drives the outbound signals with network packets. There are

four basic packet types. The first is statistics packets, the second is a response to the set

command, the third is a response to the query command, and the fourth is passthrough

traffic. The ControlProcessor statistic packet generation logic is identical to the statistic

packet generation logic contained in the PortTracker and TCP-Processor circuits, except

for the individual statistics values. In order to simplify some of the command processing

logic, all inbound packets to the ControlProcessor are assumed to be control packets. For

all of these packets, the output process replaces the source IP address with the destination

128

version

identifier

src_addr

dest_addr

0x1969

length

protocol

magic 0x23a8d01e

control word

string number

value (1)

value (8)

mask (1)

mask (8)

Control Packet Format

IP

Hdr

UDP

Hdr

UDP

Payload

0x1969

cksum

stats id
type = 0x02

request (0) / response (1)

0
8
16
24
32

cmd code
spare

control word

Figure 8.6: Scan Control Packet Format

IP address and inserts the specified stats source IP address into the source IP address field

of the packet. Additionally, the packet length of the UDP header is changed to 0x54 to

correspond to the length of a response/confirmation packet. During the command state, the

request/response bit is set in the control word. The result of the query operation is output

during the WFR and the Response states. The layout of the Scan control packet format can

be seen in Figure 8.6. All other inbound packet data is forwarded to the output interface in

a normal fashion.

Following the output process, there are a couple of processes which aid in the pro-

cessing of control packets. These processes count the number of IP header words, store the

destination IP address so that it can be used to replace the source IP address, and generate

statistics packets. The final two processes drive the SET and QUERY interface signals to

the ScanApp component. These signals actually control the set and query operations.

129

State Store

SDRAM controller

SDRAM module

Read

Interface

Write

Interface

Read/Write

Interface

Read

Engine

Write

Engine

Unused

interface

Request

Interface

Update

Engine

Update

Interface

Figure 8.7: Layout of StateStore

8.4.4 StateStore

The StateStore component provides per-flow context storage services for the Scan appli-

cation. It exposes simple request, response and update interfaces to the application. In

addition, this component handles all interactions with the SDRAM controller to store and

retrieve data. The StateStore is modelled after the StateStoreMgr of the TCP-Processor, but

is greatly simplified because it does not perform any of the flow classification operations.

It only provides data storage and retrieval services for the Scan application. In order to

simplify the operation of the StateStore component, 64-bit wide interfaces are utilized for

both the response and update data.

Figure 8.7 shows the layout of the StateStore component. Its three state machines

drive all of the operations of the StateStore. The source VHDL code for the StateStore

component is instatestore.vhd .

The first process in the source file drives the response interface signals. It copies

data returned from SDRAM to the response interface signals and passes it to the ScanApp

component. The next couple of processes implement the read state machine. Upon receiv-

ing a request from the ScanApp, the state machine sequences through the states necessary

to perform the memory read operation and receive the response. The read engine drives

the read control signals of the SDRAM controller. The SSREQ DATA signal contains the

flow identifier of the context to retrieve. This flow identifier is used as a direct address into

memory and the read engine initiates the 32-byte read operation starting at this address.

130

This flow identifier (memory address) is stored in the readaddr signal for the duration of

the read operation. Once the presence of the read response has been signaled by the mem-

ory controller, the takecount signal counts the data words returned from memory. As this

data is being returned from memory, it is copied to the response signals and passed to the

ScanApp component.

The update state machine processes data associated with an update request. This

component requires a separate state machine and buffer because write data cannot be writ-

ten directly to the SDRAM controller without first setting up the write operation. Upon de-

tection of an update command, the new context information is written to the writebackram

for buffering while the write operation is being initiated. The updatecount signal tracks

the number of received words from the ScanApp and is also used as the address of where

to write the data in the writebackram block.

The write state machine manages write operations to the SDRAM controller. The

initial sequence of states out of reset perform memory initialization tasks by writing zeros

to all memory locations. After memory initialization is completed, the write state machine

enters the Idle state, waiting for update requests. On receipt of the SSUPD VALID signal,

the state machine enters the Req state to initiate the write request to SDRAM. Based on

responses from the SDRAM controller, the write state machine traverses through the re-

maining states of the write operation. The next process controls the reading of the updated

per-flow context information from the writebackram. It uses a separate interface so that

writes to the writebackram can occur at the same time as read operations. The writeengine

drives the SDRAM controller interface signals. Operations include the initialization (ze-

roing) of all memory locations and the writing of context information to external memory.

The writeaddr signal holds the address of the appropriate context information storage loca-

tion in memory for the duration of the write operation. Following the writeaddr signal, the

processes that control the memory initialization operation provide an incrementing mem-

ory address and a completion flag. The next process counts the number of words read from

the writebackram and written to external SDRAM. This count value is used as the read

address for the writebackram. The final process in the source file drives the ready signal.

It indicates when the memory initialization operation completes.

131

Chapter 9

Analysis

The TCP processing circuits analyzed live Internet traffic for this phase of the research.

Network Technology Services, which manages the campus network at Washington Univer-

sity, provided a live copy of all campus Internet traffic to the Applied Research Laboratory

for this analysis. The Washington University network has approximately 19,000 active

IP addresses and uses two separate Internet connections which provide 300Mb/s of total

bandwidth. In addition, the University maintains an 84Mb/s connection to Internet2, a

high-speed network interconnecting 206 universities throughout the United States. Traffic

flowing over these three Internet connections was aggregated and passed to the FPGA-

based TCP flow processing circuits via a Gigabit Ethernet link.

9.1 Test Setup

The test environment used for Internet traffic processing and data collection includes a

WUGS-20 switch and a Linux PC. The WUGS-20 switch is populated with four FPX

cards which perform data processing, two Gigabit Ethernet cards (one for injecting Inter-

net traffic and the other for exporting statistics), and a G-Link card which is used for switch

configuration operations. Figure 9.1 is a diagram of the test setup. Figure 9.1A is a photo-

graph of the hardware used to process Internet traffic and Figure 9.1B illustrates the flow

of data through the hardware.

Live Internet traffic enters the WUGS-20 switch via a Gigabit Ethernet connection.

Both inbound and outbound traffic arrive on a single network feed. The Gigabit Ether-

net network card passes data packets StreamExtract circuit for processing by the TCP-

Processor. The StreamExtract circuit passes annotated TCP packets to the PortTracker

132

Empty

Spare FPX

PortTracker

Circuit

GigE

Line Card

Port 0
Port 1

Port 2

Port 3

Port 7

Port 5
Port 4

WUGS-20

Internet

Traffic

Port 5

Scan

Circuit

Stream

Extract

GigE

Line Card

Data Collection

and Charting

G-Link

Switch Ctrl

A) Physical System

WUGS-20

B) Data Flow

Network Traffic

Encoded Traffic

Statistics Traffic

Legend

Figure 9.1: Internet Traffic Monitor Configuration

circuit which collects statistics on the amount of TCP traffic used by various well-known

TCP ports. The PortTracker circuit then passes the encoded data is then passed to the Scan

circuit which scans TCP data streams for selected digital signatures. Each circuit transmits

statistics information to an external computer which performs data collection and charting.

9.2 Data Collection

A Linux PC connected to the WUGS-20 switch gathers statistics packets generated by

the StreamExtract, PortTracker and Scan circuits. Software applications running on this

PC collect, store, process, and chart the information contained in the statistics packets.

The StatsCollector (Appendix C, Page 184) application receives these packets first. The

purpose of the StatsCollector is to accurately time stamp each packet and store the entire

contents of the packet to a disk file. The StatsCollector maintains a separate disk file for

the statistics generated by each circuit. In addition, it creates a new statistics data file each

day to facilitate the maintenance and processing of the raw data. The data contained in

these daily files can easily be plotted using the gnuplot graphing utility. The StatsCollector

133

StatsCollector
 SNMP

Agent

Multi-Router

Traffic Grapher

Statistics are sent

to StatsCollector

application from

hardware circuits

StatsCollector

spools raw data

to disk files and

retransmits stats

P

k

t
s

Time

A SNMP agent

publishes the

statistics in a

standard format

MRTG queries

the SNMP agent

and generates

traffic charts

Figure 9.2: Statistics Collection and Presentation

circuit also retransmits the original packet so that other statistics processing applications

can operate on data in real-time.

A Simple Network Management Protocol (SNMP) agent (Appendix C, Page 186)

specifically designed for this project runs on the data collection PC. This agent receives the

retransmitted statistics packets and maintains individual counters for each item in the pack-

ets. These counters are made available as Management Information Base (MIB) variables

via standard SNMP queries. The Multi-Router Traffic Grapher (MRTG) is a utility which

produces real-time updating charts by reading SNMP MIB variables on a periodic basis.

A configuration file defines the operation of the MRTG application, specifying which MIB

variables to plot and the format, legends and titles of each chart (Appendix C, Page 187).

Figure 9.2 shows a diagram of the statistics data collection and processing.

9.3 Results

The testing analyzed Internet traffic for a five week period from August 20th, 2004 and to

September 25th, 2004. Figure 9.3 shows IP traffic transiting the Internet drains during a

24 hour period. This daily traffic pattern is representative of the observed traffic during the

entire collection period. A cyclical traffic pattern exists with peak traffic rates occurring

between 12:00 noon and 5:00 pm and a trough occurring between 3:00 am and 8:00 am.

The testing detected peak traffic rates of 300Mbps. While this traffic load does not tax the

throughput capabilities of the circuit, it does demonstrate data processing on live Internet

traffic at rates above what software-based TCP data stream analyzers can presently handle.

134

50

100

150

200

250

300

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

M
bi

ts
/s

ec
 (

30
 s

ec
 a

ve
ra

ge
)

Time of day

Washington University Internet Traffic Statistics for 09/01/2004

IP Bit Rate

Figure 9.3: IP Packet Data Rate

The remainder of this section takes a closer look at some of the more interesting

traffic patterns detected with the TCP processing hardware circuits. The TCP-Processor

detected several denial of service attacks and other unexpected traffic patterns during live

Internet traffic processing. Additionally, the flow scanning circuits detected the presence

of worms, viruses and spam throughout the collection period. The TCP processing circuits

detected denial of service attacks and virus signatures in network traffic at data rates above

what existing software-based TCP flow processors can operate. These circuits also ana-

lyzed various TCP packet types in order to provide a better understanding of Internet traffic

patterns. This knowledge will aid in the design of more efficient data processing systems in

the future. Finally, the tests produced HTTP (port 80) and NNTP (port 119) traffic profiles

which illustrate how some traffic closely follows general network usage patterns and the

other traffic is time invariant.

The TCP processing circuits make no distinction is made between inbound and out-

bound. It is therefore impossible to differentiate between attacks originating within the

Washington University network and attacks directed at the campus network. This type of

information could be gathered by either monitoring inbound and outbound traffic sepa-

rately, or by making modifications to the processing circuits.

135

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 08/24/2004

SYN Packets
FIN Packets
RST Packets

Figure 9.4: TCP SYN Flood DoS Attack

9.3.1 Denial of Service Attack

On August 28th, the TCP-Processor detected a TCP SYN denial of service attack on the

Washington University network and continued to process traffic normally throughout the

attack, as illustrated by the graph in Figure 9.4. The normal traffic pattern for this network

averages from 1,500 to 2,000 TCP SYN packets every second. This attack had a peak traffic

rate of 45,000 TCP SYN packets per second for a 30 second interval. The capture interval

of the collection is 30 seconds, which implies that the duration of the burst was likely less

than 30 seconds because there was no spill over of the burst into the next collection interval.

If all the packets associated with this attack occurred within a one second burst, then the

peak data rate would be 1.3 million packets per second.

The test uncovered several unusual characteristics of this attack. First of all, there

was a noticeable hourly stepwise increase in TCP SYN activity starting several hours prior

to the main attack. These increases in traffic suggest that this was a coordinated attack

triggered by time, with machines in different time zones initiating the attack at one hour

intervals. This stepwise increase in traffic resulted in sustained TCP SYN traffic of 8,000

136

0

1000

2000

3000

4000

5000

6000

7000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 09/10/2004

SYN Packets
FIN Packets
RST Packets

Figure 9.5: TCP SYN Burst

TCP SYN packets per second. Another interesting characteristic is the short duration of

the attack. In addition to the hourly ramp-up in TCP SYN packets, there was a single burst

of packets which lasted less than 30 seconds.

Another noteworthy result of the analysis was the detection of a daily burst of TCP

SYN packets which occurred every evening at 11:15pm. The burst was short lived and the

peak SYN rate was approximately 5000 packets per second for the 30 second collection

interval. In addition to the burst of TCP SYN packets, a burst of TCP RST packets is

present at the same time. Figure 9.5 shows a daily chart with a noticeable spike of TCP

SYN traffic at the end of the day. This daily attack behavior can result from computers

infected with viruses which perform a periodic, time-based attack. It is also possibly an

artifact of some kind of programmed maintenance, such as backups or updates to virus

filter definitions. The TCP-Processor provides a platform for performing anomaly detection

within multi-gigabit networks.

137

9.3.2 Virus Detection

When used in conjunction with a content scanning hardware circuit, the TCP-Processor

enables the detection of Internet worms and viruses on high-speed network links. To

demonstrate this capability, the content scanning circuit was configured to search for two

frequently occurring viruses, Mydoom and Netsky.

The Mydoom virus, or W32/Mydoom.b@MM virus relies on email attachments

and peer-to-peer networks to spread from machine to machine. The virus infects Microsoft

Windows-based machines, overwriting the host file, opening up a back door, attempting a

denial of service attack, and further propagating itself. The denial of service against either

www.microsoft.com or www.sco.com fails to start most of the time due to a bug in the virus

itself.

The virus spreads primarily via email attachment and contains a Simple Mail Trans-

fer Protocol (SMTP) engine which randomly selects from a list of subjects and bodies in

order to trick the recipient into executing the attachment. One of the possible bodies con-

tains the text ”The message contains Unicode characters and has been sent as a binary

attachment.” The Scan circuit was configured to scan for this text. Figure 9.6 shows the

occurrence of this signature over a 24 hour period. The Scan circuit detected the virus

propagating at a rate of approximately five times every 10 minutes, with a peak of 15 de-

tections per 10 minutes. Figure 9.6 shows a time invariant distribution of detections for the

Mydoom virus.

The Netsky virus, or W32.Netsky.P@mm virus, is a mass mailing worm which

infects Microsoft Windows-based systems. The virus is a memory resident program which

exploits a well known vulnerability in Microsoft Internet Explorer. It propagates via email

using the Simple Mail Transfer Protocol (SMTP) and using Kazaa network shares. The

Scan circuit detected the virus by searching TCP data streams for the string ”No Virus

found” which occurs in the body of the email used to spread the virus. While it is likely

that the majority of the detections were due to the Netsky virus, false positives are possible

considering the relatively short ASCII text string used as the digital signature.

Figure 9.7 shows a graph of the rate at which the Netsky virus was detected. The

circuit averaged approximately 12 detections per 10 minute window with peaks of 22 occur-

rences per 10 minute window. The virus transmissions were spread randomly throughout

the 24 hour period of the chart. The time invariant distribution of detections is common for

self-propagating viruses. This chart represents of the Netsky virus traffic observed over the

entire five week collection period.

138

0

2

4

6

8

10

12

14

16

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

de
te

ct
io

ns
/1

0
m

in
ut

es

Time of day

Washington University Internet Traffic Statistics for 08/28/2004

string: The message contains Unicode cha

Figure 9.6: MyDoom Virus Detection

0

5

10

15

20

25

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

de
te

ct
io

ns
/1

0
m

in
ut

es

Time of day

Washington University Internet Traffic Statistics for 08/28/2004

string: No Virus found

Figure 9.7: Netsky Virus

9.3.3 Spam

The TCP-Processor and associated content scanning circuits were also configured to search

for spam. To demonstration this capability, they scanned all TCP data streams for the word

139

0

500

1000

1500

2000

2500

3000

3500

4000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

de
te

ct
io

ns
/1

0
m

in
ut

es

Time of day

Washington University Internet Traffic Statistics for 09/09/2004

string: mortgage

Figure 9.8: Occurrences of the String ”mortgage”

mortgage. Figure 9.8 displays a number of string detections that occurred in a 24 hour

period.

The Scan circuit detected the string approximately 2,000 times per 10 minute win-

dow during the middle of the day with a peak detection rate of over 3,500 occurrences per

10 minute window. The rate at which the string was detected roughly corresponds to the

overall traffic bandwidth throughout the day. The chart shows that the detection rate has the

same pattern as the traffic rate shown in Figure 9.3. The spam detection results are likely

skewed due to the occurrence of the stringmortgageappearing in advertisements on web

pages. Based on the data collected (see Appendix D), Web traffic constitutes 50 times more

packets than email traffic and therefore will have a larger contribution to the chart.

9.3.4 Traffic Trends

Traffic patterns revealed as part of this research provide important insights into the nature

of Internet traffic. These insights can now be used to improve the operation and perfor-

mance of network switches, routers, and the TCP-Processor. The results have also been

compared with Internet traffic analysis performed by other researchers in order to validate

the operation of the TCP-Processor.

The data collected for this research confirms the findings of [112] which state that

over 85% of all IP packets on the Internet are TCP packets. Figure 9.9 shows a graph

140

15000

20000

25000

30000

35000

40000

45000

50000

55000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 09/01/2004

IP Packets
TCP Packets

Figure 9.9: IP and TCP Packets

of both IP and TCP packets transmitted between Washington University campus network

and the Internet for a 24 hour period. Throughout the day there was a consistent number

of non-TCP packets while TCP traffic was subject to traffic fluctuations induced by usage

behavior.

The traffic analysis also shows that 20% to 50% of all TCP packets are zero length

acknowledgment packets, which supports similar findings in [112]. This statistic adds cred-

ibility to the TCP-Processor configuration option which skips TCP flow classification and

per-flow context retrieval operations when processing zero-length TCP acknowledgment

packets. Zero length packets are short packets (typically 40 bytes) which cause process-

ing delays for the TCP-Processor because the amount of time required to retrieve per-flow

context information is longer than the transmission time of the packet. Processing through-

put of the TCP-Processor is improved when the classification of these packets is disabled.

Since there is no data contained within these packets, TCP stream processing is not af-

fected when this optimization is enabled. Figure 9.10 shows a chart comparing the number

of zero-length packets to all TCP packets in a 24 hour period.

141

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 09/01/2004

TCP Packets
Zero Length TCP Packets

Figure 9.10: Zero Length TCP Packets

9.3.5 TCP Flow Classification

One of the challenges associated with high-performance TCP flow processing systems is

accurately classifying TCP packets. The TCP-Processor circuit which processed the Wash-

ington University Internet traffic used a modified open-addressing hash table implementa-

tion to maintain per-flow context records. The experiment used a 64MB memory module

capable of storing 1 million 64 byte context records.

Figure 9.11 represents the total number of active flows processed by the TCP-

Processor. When it receives any TCP packet, the TCP-Processor creates a new context

record in the state store if a record does not already exist for that TCP connection. A TCP

FIN or TCP RST packet causes a context record to be placed in a disabled/unused state.

TCP connections which are not properly terminated remain as active records in the state

store. The TCP-Processor does not age out unused flow records in the current implemen-

tation. Instead, when hash collisions occur, the previous context record is replaced by a

context record for the flow associated with the current packet. This behavior leads to the

growth of the hash table over time caused by unterminated TCP connections which become

stale context records in the state store. Figure 9.11 shows that throughout the day, between

500,000 and 700,000 flow context records are active in the system. Because stale records

have the tendency to be forced out of the state store by new connections, the total number

of active flows in the system decreases during the most active part of the day.

142

450000

500000

550000

600000

650000

700000

750000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

T
C

P
Fl

ow
s

Time of day

Washington University Internet Traffic Statistics for 09/13/2004

Active Flows

Figure 9.11: Active Flows

0
200
400
600
800

1000
1200
1400
1600
1800
2000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

T
C

P
Fl

ow
s/

se
c

(3
0

se
c

av
g)

Time of day

Washington University Internet Traffic Statistics for 09/19/2004

New TCP Flows
Terminated Flows

Reused Flow Table Entries

Figure 9.12: Flow Transitions

Figure 9.12 shows the number of new flow context records, terminated flow context

records, and reused flow context records. The number of new TCP flows closely corre-

sponds to the number of terminated flows. This behavior implies that the majority of the

143

TCP connections on the Internet are short-lived. The spikes in new flows which occur oc-

casionally throughout the day cannot be paired with corresponding spikes in terminated

flows. These spikes are likely attributable to rogue traffic such as probes to random IP

addresses within the Washington University address space. If the target IP address of the

probe refers to an unutilized or unreachable address in the campus network, then a TCP

RST or TCP FIN packet will never be generated and the TCP-Processor will not remove

the state store context for that flow.

The number of reused flow table entries is attributable to a small number of flows

which continually collide with each other, causing a ping-pong effect where the presence

of a packet from one flow forces the replacement of the flow context record for the other

flow. The spikes in reused flow table entries are attributable to the same rogue traffic which

causes bursts in the creation of new flow context records. The same traffic which causes

spikes in the creation of new flows also causes spikes in reused flow entries.

9.3.6 Traffic Types

The PortTracker circuit (described on page 115) keeps track of the number of packets tran-

siting the network which either originate from or are sent to various well known TCP ports.

Two charts obtained from this data collection are presented here.

Figure 9.13 shows traffic patterns for Net News Transfer Protocol (NNTP). The

NNTP packets observed on the network are invariant with respect to time. In contrast to

the NNTP traffic, HyperText Transfer Protocol (HTTP) packet rates vary widely throughout

the day. This variability is due to the interactive nature of HTTP Web traffic. Figure 9.14

represents HTTP traffic in a 24 hour period. This traffic pattern closely corresponds to the

daily traffic pattern as shown in Figure 9.3 and Figure 9.9.

144

0

20000

40000

60000

80000

100000

120000

140000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 09/02/2004

NNTP (port 119)

Figure 9.13: NNTP Traffic

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1e+06

1.1e+06

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 09/02/2004

HTTP (port 80)

Figure 9.14: HTTP Traffic

145

Chapter 10

Conclusion

The TCP-Processor provides a pipelined TCP processing circuit which enables extensible

networking services to process TCP flows at multi-gigabit per second data rates. It also pro-

vides stateful flow tracking, context storage, TCP stream reassembly services, and supports

TCP flow manipulation for applications which operate on TCP data streams. In addition,

it is capable of processing millions of active TCP connections by storing per-flow context

information in an external memory module its modular design simplifies the modification

and integration of components. The TCP-Processor also scales to support higher band-

width networks by increasing parallelism, improving memory bandwidth utilization and

using new generations of hardware devices which support higher clock frequencies, greater

circuit densities, and increased I/O bandwidth. A serialization/deserialization module aids

in the development of complex TCP flow monitoring services by providing a simple and

efficient mechanism for passing annotated network packets and flow context information

between multiple devices.

The completeness of the implementation is constantly at odds with the real-time

processing requirements which dictate the rate at which data must be processed. The chal-

lenge is to develop a system which is stable and efficient, yet still maintains a robust feature

set. The TCP-Processor succeeds in providing a real-time TCP flow processor capable of

operating on high-speed network traffic.

10.1 Contributions

The TCP-Processor architecture describes a new methodology for processing TCP flows

within the context of high-speed networks. By utilizing a hardware-based approach, the

146

architecture exploits pipelining and parallelism in order to provide an order of magnitude

increase in processing performance over existing software-based TCP flow processors. Un-

like other hardware-based TCP flow processors, the TCP-Processor was designed to sup-

port millions of simultaneous TCP flow contexts while processing data at multi-gigabit

line rates. To accomplish this, it defines a minimal amount of per-flow context information

which can be quickly swapped during the processing of packets from different flows. The

per-flow context storage and retrieval operations occur in parallel with packet processing

operations in order to maintain throughput at multi-gigabit per second traffic rates..

This research has resulted in the development of an architectural interface which

provides a modular interface for extensible networking services. The resulting hardware

interface simplifies the TCP state processing logic of the flow monitoring service. Instead

of generating a separate interface specifically for handling stream content, the interface

annotates fully formed network packets. It provides full access to protocol header fields to

flow monitoring applications without the need for additional interface signals. In addition,

since the network packets are passed through the circuit, no work is required to regenerate

network packets.

A modular framework supports the integration of various plug-in modules. These

modules support complex extensible networking services by providing a standard interface

framework for communication between modules. Complex TCP flow monitoring services

can now be developed by combining library modules with custom logic.

The TCP-Processor’s flow classification and context storage subsystem provide fast

access to per-flow state information required to process large numbers of flows in a single

circuit design. These components perform a 96-bit exact match classification for each

flow while simultaneously supporting a high rate of insertion and deletion events. This is

accomplished utilizing a modified open-addressing hash scheme in which hash buckets are

limited to a small fixed number of entries.

A reference implementation of the TCP-Processor protocol processing architecture

uses the Very High-Speed Integrated Circuit (VHSIC) Hardware Description Language

(VHDL). The circuit has a post place and route frequency of 85.565 MHz when targeting

the Xilinx Virtex XCV2000E-8 FPGA, utilizing 41% (7986/19200) of the slices and 70%

(112/160) of the block RAMs. The device can process 2.9 million 64-byte packets per

second and has a maximum throughput of 2.7Gbps.

147

Extensible serialization and deserialization modules support the movement of data

from one device to another. These modules simplify the task of developing large and com-

plex systems by providing a standard way to transport results between devices. The seri-

alized data structures are self-describing and extensible so that new sections can be added

and backward compatibility can be maintained. Utilizing these modules, multiple devices

can be chained together to address complex network data processing requirements.

10.2 Value of Live Traffic Testing

Live traffic testing helped uncovered subtle, but critical design flaws. During the course of

this research project, malformed packets were encountered which caused state transition

sequences that were not originally accounted for during the design phase. In addition,

other logic and processing errors in the implementation came to light during this phase of

the project.

Live traffic testing also provided valuable insight into the types of anomalies one is

faced with when performing protocol processing operations, especially within the area of

high-speed networks. Some of the failure scenarios that were encountered involved packets

with invalid header fields, runt (or short) packets, and traffic patterns which resulted in

buffer overflows. One such problem involved an IP packet that had an incorrect header

length field. The header length field indicated that the IP header contained 14 words (56

bytes). The length of the entire IP packet was less than 56 bytes, which caused an invalid

state transition within the IP wrapper. This packet was passed into the TCP-Processor

with control signals which didn’t follow the interface design specification. This eventually

caused the TCP-Processor to suspend processing indefinitely due to a missed control signal.

Live traffic testing also helped uncover a race condition in the TCP engine which only

occurred after a certain packet sequence.

Hardware circuit testing can be performed using a verification testbench or Auto-

mated Test Equipment (ATE). These systems require a set of test vectors which are applied

to the inputs of the hardware circuit. The operation and output of the device under test

is then compared with the expected behavior in order to determine the correctness of the

circuit. The TCP-Processor performs protocol processing on network packets. The mas-

sive number of test vectors required to test all possible permutations of packet type, packet

size, packet content, and packet timing make it infeasible to use a verification testbench

to test more than a small number of scenarios. Live traffic testing provides at-speed pro-

cessing of massive volumes of data. In addition, a ring buffer can be used to store recently

148

processed network packets. If a packet sequence causes problems within the circuit, the

packets which triggered the processing problems can be extracted from the ring buffer and

used in off-line simulations to track down and correct the problem and later be replayed

through the running hardware containing recent fixes.

One of the issues associated with debugging problems in real-time systems like

the TCP-Processor is the lack of visibility into the circuit when problems occur. Several

techniques were used to debug the TCP-Processor while processing live Internet traffic.

First, the flow control signals of the various components were tied to LEDs which would

illuminate whenever the flow control signal was asserted. This provided a simple visual in-

dication of which component stopped processing data when processing problems occurred.

Debugging efforts could then be focused on a particular subcomponent as opposed to vali-

dating the operation of the whole circuit. Secondly, the circuit was instrumented with data

taps at several locations throughout the circuit. This allowed network traffic to be captured

and saved to external memory at various places throughout the circuit. This data could then

be extracted and analyzed at a later time. By comparing data streams entering and leaving

an individual circuit component, a determination could be made regarding the correctness

of that component with regard to packet processing. Additionally, this captured data could

be converted into simulation input files which provided the ability to trace individual logic

transitions of a particular component in simulation using data sets which were causing

problems in hardware.

To aid in the debugging process, a set of tools was developed which supports net-

work traffic capture and the conversion of captured traffic patterns into simulation input

files (see Appendix B on page 175). These utilities work with both standard packet cap-

turing tools (tcpdump) and with custom network traffic capturing circuits. They provide

a variety of data conversion and display options which simplify data analysis. Simulation

input files can also be generated and used by the testbench to perform circuit simulations

using ModelSim.

10.3 Utility of the TCP-Processor

The novel idea for the TCP-Processor resulted from a desire to produce a high-performance

TCP processing engine which provides direct access to TCP stream content within high-

speed networking environments for large numbers of flows. The TCP-Processor success-

fully accomplishes this goal and provides a testbed for high-performance data processing

research. By allowing easy access to TCP stream content, the TCP-Processor enables other

149

Computer

Internet
 TCP-Processor

Custom Logic 1

Custom Logic 2

FPGA Circuit

Development

(remote location)

Remotely Accessible

FPGA Hardware

(St. Louis, MO USA)

D

e
v
i
c
e

1

D

e
v
i
c
e

2

D

e
v
i
c
e

3

Figure 10.1: Remote Research Access

researchers to direct their attention toward developing data processing applications without

being distracted by the intricacies of protocol processing.

The TCP-Processor circuit design can itself be connected to the Internet and used

remotely. A remote development team can design and build a hardware circuit to perform

custom data processing. That circuit design can be loaded into FPGAs at a remote location

by connecting to a management station. A standard Sockets program can be written to send

data to the custom processing circuits. The TCP-Processor ensures that data sent over a

socket connection is delivered to the custom processing circuits. This configuration enables

FPGA development for organizations which may not normally have access to these types

of resources. Other networking research teams have already used this pattern of remote

access for testing, specifically Emulab [136] and Open Network Lab [130, 66]. Figure 10.1

shows how a development center can be connected to the Internet at a remote location.

This remote testing environment promotes resource sharing among remote develop-

ment groups. Researchers at different geographical locations can utilize the same hardware

infrastructure for testing. By interleaving access to the remote hardware, the testing needs

of large numbers of users can be supported by a small number of Internet connected de-

vices. FPGA development resources can be provided to anyone that has connectivity to the

Internet.

As was shown with the Grid [7], a remote testing environment provides an inex-

pensive mechanism for researchers to investigate FPGA-based data processing circuits for

150

almost any type of data set. A standard Sockets program could be developed to send data

sets through a network to the remote FPGA devices. There, the TCP-Processor would ex-

tract the data set from the TCP connection and pass it to the data processing circuit. In this

manner, data processing algorithms can be developed, tested, analyzed and refined without

requiring the initial startup costs associated with FPGA development. If the new algorithm

provides a significant improvement over existing applications, then new systems can be

developed which contains custom hardware and the new processing algorithms. Possible

research areas include genome sequencing, image analysis, and voice and video processing

via FPGA-based digital signal processors.

In his popular 1990s book,Cuckoo’s Egg: Tracking a Spy Through the Maze of

Computer Espionage[121], Clifford Stoll painstakingly tracks the activities of a network

intruder by monitoring characters flowing through a dial-up connection into a computer

system he was managing. With the dramatic increase in programmed attacks from worms

and viruses this method of detecting and tracking intrusions is extremely difficult. With the

proliferation of the Internet and exponential increase in communications speeds over the

past 20 years, the problem of preventing network intrusions along with limiting the spread

of worms and viruses has become more difficult. In order to protect critical infrastruc-

ture sectors, such as banking and finance, insurance, chemical, oil and gas, electric, law

enforcement, higher education, transportation, telecommunications, and water, the United

States government put forth a National Strategy to Secure Cyberspace [132]. This docu-

ment states the following:

”organizations that rely on networked computers systems must take proactive

steps to identify and remedy their vulnerabilities”

The TCP-Processor technology combined with intrusion detection circuits and appropri-

ate response mechanisms can provide an excellent tool to help mitigate network attacks

from cyberspace. While one technology cannot purport to solve all of the intrusion and

virus problems of the Internet, steps can be taken to limit the adverse affect that this rogue

network traffic has on users of the Internet. The combination of the TCP-Processor tech-

nology with header processing, content scanning, and rule matching circuits can provide

an effective intrusion detection and prevention system for use in high-speed networking

environments.

151

Chapter 11

Future Work

There are several additional research projects which can be borne out of this research.

These work items include improvements to the TCP-Processor itself and also the develop-

ment and enhancement of integration components and applications. This chapter describes

each of these work items in more detail.

11.1 Packet Defragmentation

The Internet Protocol (IP) supports the fragmenting of packets when a single packet is

larger than the Maximum Transmission Unit (MTU) size of a network segment. Efforts are

made at connection setup time to avoid fragmented packets by negotiating a MTU size for

the connection. While this negotiation process works well most of the time, situations do

arise where a packets get fragmented within the network. The Internet traffic captured in

conjunction with this research shows that roughly .3% of the IP packets were fragments.

While this is a small fraction of the overall traffic, these packets cannot be ignored by a

TCP flow processor. Since packet fragmentation occurs at the IP layer, defragmentation of

these packets must occur prior to TCP processing.

The IP Wrapper circuit incorporated into the TCP-Processor currently does not re-

assemble fragmented IP packets. Enhancements are required to this circuit in order to

reassemble packet fragments into the original fully formed packet. A circuit capable of

defragmenting packets contains the following components:

• Logic to maintain a lookaside list of current packet fragments which are in the pro-

cess of being reassembled.

• Memory to store packet fragments and retrieve them as necessary.

152

• Memory management logic which is capable of aging out older packet fragments or

reclaiming memory from packet fragments which were never fully reassembled.

• Logic to reassemble packets after the receipt of all fragment segments and inject the

newly reassembled packet into the data path.

Packet defragmentation must occur prior to the processing of the TCP protocol,

which occurs in the TCP Processing Engine module (ref. Figure 4.4). The defragment

component can either be added to the IPWrapper or to the Input Buffer component of the

TCP-Processor. If implemented in the Input Buffer, common packet storage logic could be

shared with a Packet Reordering component.

11.2 Flow Classification and Flow Aging

An extension to the TCP-Processor technology involves integrating more sophisticated

packet classification algorithms. The existing flow classification algorithm uses a modi-

fied open addressing hashing technique with support for limited sized hash buckets. The

TCP-Processor technology can also be used with more refined algorithms for hashing the

4-tuple of source IP address, destination IP address, source TCP port and destination TCP

port. The flexibility of the TCP-Processor design simplifies the task of integrating alterna-

tive flow classification algorithms, such as trie-based, TCAM-based, or multidimensional

cutting algorithms.

The open addressing hashing technique using small fixed sized hash buckets is very

efficient with respect to processing time, but hash collisions during flow classification and

context retrieval lead to the incomplete monitoring of flows. As shown in the Results

Section on Page 141, without flow aging, the context storage area fills up over time which

leads to a situation where the state store operates with most of the context area occupied.

This in turn increases the probability of a hash collisions. The implementation of an age-

out algorithm can improve this behavior. A flow aging feature would mark records with

the time of the last activity on a particular flow. If a hash collision occurred with record

which had not experienced any activity for a predefined duration, then the old record would

be aged out and the new record could use vacated storage. This leads to more accurate

statistics involving the number of stale records left in the state store and the true number of

hash collisions among active flows.

153

11.3 Packet Storage Manager

The TCP-Processor currently supports two modes of packet processing. The first tracks

TCP packets associated with the highest sequence number. If packets arrive out of se-

quence, then the stream monitoring application experiences a break in stream continuity.

The second mode actively drops out-of-sequence packets in order to ensure that all packets

are processed in sequence. To provide robust flow processing, a third mode of operation

needs to be supported which incorporates a packet storage manager into the TCP-Processor.

This packet storage manager would store out-of-sequence packets and re-injecting them

into the TCP flow processing circuit in the proper sequence.

The operation of the packet store manager needs to be tightly integrated into the

operation of the TCP processing engine. Information regarding where an individual packet

fits within the TCP data stream is determined by the TCP processing engine. Additionally,

context information relating to the current TCP stream sequence number is maintained by

the TCP processing engine and stored by the state store manager. A packet store manager

must communicate with these components in order to properly resequence packets.

Figure 11.1 shows the data flow between a Packet Store Manager and the TCP Pro-

cessing Engine. Upon detection of an out-of-sequence packet, the TCP State Processing

Logic flags the packet and stores the starting sequence number of the packet with the per-

flow context. The Output State Machine routes the packet to the Packet Store Manager

where it is saved in off-chip memory. When the packet arrives which advances the current

sequence number to that of the stored out-of-sequence packet, the TCP State Processing

Engine sends a signal to the Packet Store manager indicating that the previously stored

packet should be re-injected into the data path. The Packet Store Manager retrieves the

packet from off-chip memory and passes it to the TCP Engine for processing by Input

State Machine and the rest of the components.

11.4 10Gbps and 40Gbps Data Rates

The TCP-Processor was designed to scale and process traffic on higher speed networks.

Work is underway at the Applied Research Laboratory to develop the next generation net-

work switch research platform [131]. This new switch will process data at 10Gbps and

support advanced data processing features using the latest in FPGA technology. TCP-

Processor technology is designed to scale with advances in chip technology. Utilizing

current generation FPGA and memory devices, the TCP-Processor can process data at over

154

TCPEngine

Network

Data Path
 Input

State

Machine

Data

FIFO

Control

and

State

FIFOs

Checksum

Validation

TCP State

Processing

Packet Store Manager

Output

State

Machine

SDRAM for

Storing Packets

SRAM for

Memory Management

Flow Hash

Comutation

Retrieval Request

Packet

Storage

Packet

Retrieval

Figure 11.1: Packet Store Manager Integration

10Gbps on this platform. Additional hardware resources allow for larger and more com-

plex flow processing applications to be supported when compared with the current FPX

platform.

Further performance improvements can be obtained by migrating to the latest FPGA

and memory devices. The Xilinx Virtex-4 FX140 FPGA has three times the number of

logic cells as the Xilinx XCV2000E FPGA used on the FPX platform. Larger quantities

of logic cells enables the TCP-Processor to employ wider bus widths and exploit higher

degrees of parallelism. In addition, the latest FPGA devices can operate at 400MHz clock

frequencies. Double data rate (DDR) SDRAM and quad data rate (QDR) SRAM memory

devices are currently available which support data transfers on both edges of the clock, thus

155

doubling the available memory bandwidth. The performance of the TCP-Processor is cur-

rently limited by memory latency when processing packets less than 100 bytes in length.

The increased memory bandwidth of DDR memories will likely decrease the latency as-

sociated with retrieving per-flow context data. More significant performance gains can

be achieved by interleaving memory requests to improve memory bandwidth utilization.

When all of these performance enhancements are combined (see Table 11.1), a version of

the TCP-Processor can be constructed which is capable of processing data at OC-768 data

rates.

Table 11.1: Performance improvements and estimated data rates

Throughput
Improvement for 64byte packets

Virtex 2000E 1.5 Gbps 2.9 Mpps
(85MHz)

Virtex2 8000 2.9 Gbps 5.7 Mpps
(167MHz)

Virtex4 FX140 5.3 Gbps 10.3 Mpps
(300MHz)

Parallel TCP processing engines10.7 Gbps 20.9 Mpps
(interleaved memory requests)

Two DDR memory devices 21.2 Gbps 41.8 Mpps
(quad data paths)

Two FPGA devices 42.8 Gbps 83.5 Mpps

11.5 Rate Detection

Analysis of the live Internet traffic has prompted the inclusion of additional work items.

The TCP-Processor currently processes TCP packets and collects statistics which are pe-

riodically broadcast to an external collection machine. Analysis of the collected statistical

data occurs at a later time, sometimes days after the data was collected. In order to improve

reaction times, a series of circuits needs to be developed which is capable of reacting in

real-time to changes in network traffic.

The first of these items involves the generation of a rate detection circuit. This

circuit would monitor the statistical event counters and test event rates against a threshold.

The rate detection circuit should be flexible enough to allow for runtime modification of

156

the events which are monitored and of the event rate threshold values. For example, in a

TCP SYN denial of service attack, the rate detection circuit would detect the burst of TCP

SYN packets on the network when the TCP SYN count exceeded a predefined threshold

set by a network administrator. The output of the rate detection circuit would be a signal to

the appropriate response logic or the generation of an alarm.

An advanced rate detection circuit could implement more complex threshold logic

which would maintain a moving average of the current traffic pattern and trigger when

the current event rate exceeded the moving average by some percentage. Other complex

rate detection logic could remember periodic traffic patterns, like that shown in Figure 9.3,

where more traffic is expected during the middle of the day and less traffic is expected

between 3:00am and 9:00am. Thresholds could then be adjusted every hour corresponding

to the expected traffic pattern for that time period . This would provide more realistic event

detection as opposed to setting a maximum threshold value or high water mark.

11.6 Traffic Sampling and Analysis

The ability to save network packets during periods of abnormal network behavior has sig-

nificant benefit. Many network events are short-lived and by the time a network administra-

tor notices that something is amiss, the event has passed and traffic patterns have returned

to normal. Without the presence of an automated traffic capturing device, it is difficult to

reconstruct the events which transpired to cause a network outage. It is not feasible to con-

tinuously capture network traffic 100% of the time. In order to gain a better understanding

of a particular network attack, the capturing of network traffic must occur during the attack.

The previously mentioned rate detection circuit is ideally suited to signal a data

capture circuit to collect the next million bytes of network traffic and store them in memory,

typically a high-speed SRAM device. An alternative sampling methodology would be to

perform a random or periodic sampling of network traffic. This type of capture would

provide a broader selection of network packets over a larger time interval. Captured data

could then be moved to a long term storage device or be sent to a network administrator for

analysis. By analyzing exact packet sequences and timing data, information relating to the

source and cause of a malicious attack can be gathered. This information may be useful in

preventing future attacks.

A real-time data analysis circuit is the next logical companion to the packet capture

circuit. After packets are collected in response to an exceeded threshold, an analysis circuit

could then perform complex processing and interrogate the packet sequences to try and

157

detect patterns. For instance, sequential probing of network addresses by an attacker could

be discerned from the sampled network traffic. A denial of service attack against a single IP

address could also be detected by a traffic analysis circuit. Sophisticated analysis circuits

could coordinate information collected at multiple locations in the network in order to

produce a broader pictured of the attack profile. Analysis results could also be reported to

a central monitoring station.

The final component of the real-time analysis circuit would be a feedback mecha-

nism which could alter the behavior of networking equipment based on the results of the

analysis. The TCP-Processor could be enhanced with circuitry capable of rate limiting TCP

SYN packets or drop packets based on some criteria. During a denial of service attack, the

rate detection circuit would detect an increase in traffic and signal the sampling circuit to

capture network packets. After storing a subset of the network traffic, the analysis engine

would begin scanning the saved packets looking for patterns. In this particular example, a

TCP SYN attack is detected which originates from a single source IP address. The anal-

ysis circuit would then inform the TCP-Processing logic to rate limit TCP SYN packets

from the offending host. In addition, the analysis circuit would send an alert message to a

network administrator summarizing the current attack and the response action taken. This

sequence of events describes and automated response system capable of limiting the im-

pact of a network attack on an organization or network segment. The collection of these

enhancements would allow for in-depth analysis of network events and support real-time

responses to rogue network traffic.

11.7 Application Integration

The final work item that stems from this research is the development and integration of

other flow processing applications. These applications would connect to the TCP-Processor

to received TCP stream content and perform custom processing on the data. Due to the in-

band processing design of the TCP-Processor, these applications can also generate TCP

packets and alter TCP stream content.

A class of TCP processing applications which perform intrusion detection and pre-

vention functions are ideally suited for use with the TCP-Processor. These applications per-

form rules-based content scanning and protocol header filtering in order to classify packets

as rogue traffic. Upon detection of a computer virus, an intrusion detection system would

note the presence of the virus and let it pass through the network. An intrusion prevention

system would attempt to halt the spread of the virus. This can be accomplished by dropping

158

the packet from the network and then terminating the TCP connection by generating TCP

RST or TCP FIN packets. A more sophisticated approach would be to disarm the virus by

altering or removing the virus from the the TCP data stream.

With the adoption of Internet SCSI (iSCSI) and the advent of network attached

storage (NAS) devices where data is accessed by communicating with NAS using the SCSI

protocol encapsulated in a TCP connection. The wide acceptance of this type of storage

mechanism implies that more and more data will be accessed through a network using

the TCP protocol. Applications based on the TCP-Processor technology will be able to

process the abundance of data stored on these devices at performance levels unattainable

using microprocessor based systems.

The amount of traffic on the Internet and the number of systems connected to the

Internet continues to grow at a rapid pace. The use of TCP Offload Engines (TOEs) will

only increase the amount of traffic on networks and speed at which data is pushed through

a network. In the future, applications based on the TCP-Processor or similar technology

will be required to effectively monitor and process TCP data within a network.

159

Appendix A

Usage

This section describes in detail how to use the TCP-Processor circuit. It provides infor-

mation on how to compile, simulate, synthesize, place & route, and run the various TCP-

Processing circuits. This documentation assumes that the user is familiar with ModelSim,

Synplicity, Xilinx tools, cygwin, gcc, and a text editor for modifying files. These circuits

were developed utilizing ModelSim 5.8SE, Synplicity 7.2Pro, and Xilinx ISE 6.1i.

Figure A.1A shows a logical diagram of the encoding and decoding operations as

traffic is passed among the StreamExtract, the PortTracker, and the Scan circuits. Fig-

ure A.1B shows a physical layout of how the FPX devices can be stacked in order to match

the logical layout.

The circuits easily achieve a post place & route clock frequency of 55 MHz targeting

a Xilinx Virtex XCV2000E-6. A maximum clock frequency of 87 MHz has been achieved

for the StreamExtract circuit when targeting the -8 speed grade part.

A.1 StreamExtract

The distribution for the StreamExtract circuit can be found at the URL:

http://www.arl.wustl.edu/projects/fpx/fpx internal/tcp

/source/streamextract source v2.zip . To install, unzip the distribution into

an appropriately named directory. Edit the filevhdl/streamextract module.vhd

and modify the configuration parameters as required by the target environment. See the

Configuration Parameters section on Page 76 for a full discussion on the various configu-

ration options and the effect that they have on the operation of the circuit.

160

PortTracker

StreamExtract

Scan

Encode

Decode

Transport

D

e

v
i

c
e

1

D

e
v

i
c

e

2

D

e

v
i

c
e

3

PortTracker FPGA
 SRAM

SDRAM

StreamExtract FPGA
SRAM

SDRAM

SRAM

SDRAM

Line Card

Switch Backplane

A) Logical Layout
 B) Physical Layout

Scan FPGA

FPGA

Device

Figure A.1: Multidevice Circuit Layout

A.1.1 Compile

The compilation of the VHDL source is a very straightforward process. A Makefile com-

piles the code, assuming the machine has been properly setup with the aforementioned

tools, environment variables, licenses, and search paths. The command is:

$ make compile

This operation should complete successfully. If errors occur, they can be resolved using the

information provided in the error message.

A.1.2 Generating Simulation Input Files

Prior to simulation, generate a simulation input file. The easiest method is to use the

tcpdump [83] command to capture network traffic, such as HTTP web requests. This

can be accomplished with a laptop computer connected to a Linux machine which acts as a

gateway to the Internet. Atcpdump command like the one below will capture the network

traffic to a file.

$ tcpdump -i eth1 -X -s 1514 host 192.168.200.66 > tmp.dmp

161

Change thetcpdump parameters in order to obtain the proper network capture. Specify

the-X flag to indicate a hexadecimal output format and the-s 1514 parameter to capture

the complete contents of each packet.

Next, convert thetcpdump output format into a ModelSim input file. This task

can be accomplished using thedmp2tbp application. Information on the dmp2tbp utility

along with links to the executable and source can be found at:

http://www.arl.wustl.edu/projects/fpx/fpx internal/tcp

/dmp2tbp.html .

The output of thedmp2tbp program is a file called INPUTCELLS.TBP. This file

is used as an input to the IPTESTBENCH [14] program. Copy the INPUTCELLS.TBP

file to thesim directory and run the command:

$ cd sim

$ make input cell

This generates a ModelSim input file called INPUTCELLS.DAT. With this file, simula-

tions can be performed. Note that thedmp2tbp application inserts two header words

before the start of IP header so theNUM PRE HDR WRDS configuration parameter will

need to be set to a value of 2.

A.1.3 Simulate

Once the VHDL source code is compiled, and a simulation input file is generated, it is

possible to perform functional simulations. This is accomplished by entering the following

command:

$ make sim

This brings up ModelSim, a Signals window, a Waveform window, and runs the circuit

for 65 microseconds. If problems occur, check for errors on the command line and in the

ModelSim output window. Resolve any problems and rerun the simulation. At this point,

use the normal ModelSim functions to interrogate the operation of the circuit. Use the

ModelSimrun command to simulate larger input files.

The StreamExtract testbench generates a file called LCCELLSOUT.DAT which

contains encoded TCP stream data. This file can be used as the simulation input for circuits

like the PortTracker and Scan application which use the TCPLiteWrappers.

162

A.1.4 Synthesize

Prior to synthesizing the circuit design, edit thevhdl/streamextract module.vhd

source file and change the configuration parameters to reflect the target environment. Most

notably, change theSimulationparameter to zero which indicates that all of memory should

be initialized and utilized during the operation of the circuit. At this point, either run Syn-

plicity in batch mode or interactive mode. For batch mode operation, enter the following

command:

$ make syn

For interactive mode, initiate execution of the Synplify Pro program, load the project file

sim/StreamExtract.prj , and clickrun. Regardless of the mode of operation, check

thesyn/streamextract/streamextract.srr log file and look for warnings, er-

rors, and the final operation frequency. Edit the implementation options to target the correct

speed grade and clock frequency for the target device.

A.1.5 Place & Route

The place & route operations are executed in batch mode and are initiated by the following

make file:

$ make build

To change the target FPGA device, edit the filesyn/rad-xcve2000-64MB/build

and changepart variable to equal the appropriate device. To change the target clock fre-

quency, edit the filesyn/rad-xcve2000-64MB/fpx.ucf , go to the bottom of the

document and modify thetimespecandoffsetvariables to correspond to the desired clock

frequency.

The final step in the build process is the generation of the bit file. Prior to using

the bit file, verify that the operational clock frequency of the newly created circuit meets

or exceeds the design constraints. The timing report for the circuit can be found in the

file syn/rad-xcve2000-64MB/streamextract.twr . If the circuit achieves the

desired performance levels, load the circuit into an FPGA and start processing traffic. The

bit file can be found atsyn/rad-xcve2000-64MB/streamextract.bit .

163

NID
 RAD

RAD_SW

RAD_LC

LC

SW

StreamExtract

Control Cells (VCI 0x23)

Network Traffic (VCI 0x32)

Stats Traffic (VCI 0x37)

Encoded Traffic (VCI 0x34)

FPX

Figure A.2: StreamExtract NID Routes

A.1.6 Setup

Now that the circuit has been built, it is ready to be loaded into an FPX device. To accom-

plish this task, use the NCHARGE application to perform remote configuration, setup and

programming of the FPX device.

Prior to sending traffic through the device, set up the NID routes as shown below.

Figure A.2 shows the virtual circuit routes between the NID and the RAD for the StreamEx-

tract circuit. Raw network traffic should be routed through the RADSW interface over

VPI 0x0 VCI 0x32. In addition, control cell traffic (VPI 0x0 VCI 0x23) and statistic traf-

fic generated by the StreamExtract circuit (VPI 0x0 VCI 0x37) should be routed over the

RAD SW interface. The virtual circuit used by the statistics module can be changed via the

previously discussed StreamExtract configuration parameters. Encoded TCP stream data is

passed through the RADLC interface using VPI 0x0 VCI 0x34.

A.2 Scan & PortTracker

Due to their similarity, the discussions on the Scan and PortTracker applications have been

grouped together. The distribution for the Scan circuit can be found at the URL:

http://www.arl.wustl.edu/projects/fpx/fpx internal/tcp

164

/source/scan source.zip

The distribution for the PortTracker circuit can be found at the URL:

http://www.arl.wustl.edu/projects/fpx/fpx internal/tcp

/source/porttracker source.zip

Unzip the distributions into appropriately named directories. Edit thevhdl/scan

module.vhd and vhdl/porttracker module.vhd source files and modify the

configuration parameters as required by the target environment. See the previous section

on configuration parameters for a full discussion on the various parameters and the effect

that they have on the operation of the circuits.

A.2.1 Compile

The compilation of the VHDL source is a very straightforward process. A Makefile com-

piles the code. The command is shown below:

$ make compile

If errors occur, resolve the errors utilizing information provided in the error message.

A.2.2 Generating Simulation Input Files

Prior to simulation, generate a simulation input file which contains encoded TCP stream

data. The simulation of the StreamExtract circuit generates the appropriately formatted

simulation input file. Copy thesim/LC CELLSOUT.DATfile from the StreamExtract

project to thesim/INPUT CELLS LC.DAT file in the current project. A special input

file can be created to test the control and stats features by utilizing the same methods as

outlined in the StreamExtract project for creating an INPUTCELLS.DAT file.

A.2.3 Simulate

After compiling the VHDL source code and generating a simulation input file, functional

simulations can be performed. To accomplish this, enter the following command:

$ make sim

This brings up ModelSim, a Signals window, a Waveform window, and runs the circuit for

a short period of time. Longer simulation runs can be produced by using the ModelSim

run command to simulate more clock cycles.

165

A.2.4 Synthesize

Prior to synthesis, edit thevhdl/scan module.vhd andvhdl/porttracker

module.vhd source files and change the configuration parameters to reflect the target

environment. Most notably, change theSimulationparameter to zero which indicates that

all of memory should be initialized and utilized during the operation of the circuit. At this

point, either run Synplicity in batch mode or interactive mode. For batch mode operation,

enter the following command:

$ make syn

For interactive mode, start up the Synplify Pro program, load thesim/Scan.prj or

sim/PortTracker.prj project file, and clickrun. Regardless of the mode of opera-

tion, check thesyn/scan/scan.srr or syn/porttracker/porttracker.srr

log files and look for warnings, errors, and the final operation frequency. Edit the im-

plementation options to target the correct speed grade and clock frequency for the target

device.

A.2.5 Place & Route

The place & route operations are executed in batch mode and are initiated by the following

command:

$ make build

To change the target FPGA device, edit the filesyn/rad-xcve2000-64MB/build

and changepart variable to equal the appropriate device. To change the target clock fre-

quency, edit the filesyn/rad-xcve2000-64MB/fpx.ucf , go to the bottom of the

document and modify thetimespecandoffsetvariables to correspond to the desired clock

frequency.

The final set in the build process is the generation of the bit file. Prior to using the

bit file, verify that the operational clock frequency of the newly created circuit meets or

exceeds the design constraints. The timing report for the circuit can be found in the file

syn/rad-xcve2000-64MB/scan.twr or syn/rad-xcve2000-64MB/port-

tracker.twr . If the circuit achieved the desired performance levels, load the circuit into

an FPGA and start processing traffic. The bit file can be found atsyn/rad-xcve2000-

64MB/scan.bit or syn/rad-xcve2000-64MB/porttracker.bit , depending

on which application is being built.

166

NID
 RAD

RAD_SW

RAD_LC

LC

SW

Scan

or

PortTracker

Control Cells (VCI 0x23)

Control & Stats (VCI 0x32)

Encoded Traffic (VCI 0x34)

FPX

Figure A.3: Scan/PortTracker NID Routes

A.2.6 Setup

Now that the circuit has been built, it is ready to be loaded into an FPX device. The steps

required to perform this task are identical to those of the StreamExtract circuit. Next, set

up the NID routes. The NID routes for both the Scan and the PortTracker are the same.

Figure A.3 shows the virtual circuit routes between the NID and the RAD for the Scan and

PortTracker circuits. Network traffic carrying control and statistics information should be

routed through the RADSW interface over VPI 0x0 VCI 0x32. Control cell traffic should

be routed to the RADSW interface over VPI 0x0 VCI 0x23. Encoded TCP stream data is

passed through the RADLC interface using VPI 0x0 VCI 0x34.

A.3 New Applications

Prior to starting development of a new TCP stream data processing application, it is im-

portant to analyze the environment, resources, and size of the target application. The

StreamExtract circuit, the PortTracker circuit, and the Scan circuit are three recommended

starting points for new application development. All of these projects are structured in a

similar manner so that the transitions from one environment to another are easily achieved

without requiring mastery of different interfaces, file structures, or build processes.

167

The StreamExtract circuit should be utilized if a small footprint solution is desired.

This allows the TCP stream processing application to coexist in the same circuit as the

TCP-Processor, thus utilizing only one device. The PortTracker circuit is a good example

of a multi-device solution where the TCP-Processor operates on one device and the TCP

stream processing application operates on one or more other devices. Since a separate

device is utilized for the stream processing application, more FPGA resources are available

to perform processing. The Scan circuit is similar to the PortTracker circuit, except it

also contains additional logic to store and retrieve per-flow context information in off-chip

SDRAM devices. The Scan circuit also contains logic for processing external commands

formatted as UDP data packets.

Once the appropriate starting point for the intended TCP stream processing appli-

cation has been determined, the selected example circuit can be downloaded and extracted

in order to begin the desired modifications. If using the StreamExtract circuit as the start-

ing point, edit the filestreamextract.vhd . Remove theTCPSerializeEncodeand

TCPSerializeDecodecomponents and replace them with components specific to the new

application. If the Scan or PortTracker circuits are selected as the starting point, edit the

module.vhd source file and replace either the ScanApp or PortTrackerApp circuits with

logic for the new application. Changes will also be required to thecontrolproc.vhd

source file to support different control and statistics features.

A.3.1 Client Interface

The client interface is identical for a TCP stream processing application based on either

the StreamExtract, PortTracker, or Scan circuits. Detailed information on this interface

was previously described on Page 95 in the section covering the TCPRouting component

of the TCP-Processor. This information covers the interface signals, a sample wave form,

and details on the data passed through the interface. Another excellent approach to gaining

familiarity with the client interface of the TCP-Processor (and TCPLiteWrappers) is to run

simulations with various data sets and inspect the various signal transitions.

A.4 Runtime Setup

The FPX cards on which the TCP processing circuits operate can either be inserted into

the WUGS-20 switch environment or the FPX-in-a-Box environment. Runtime setup and

configuration information is presented for both of these environments. While the circuits

168

PC100

SDRAM

ZBT

SRAM

addr

D[64]

addr

D[36]

Xilinx XCV2000E FPGA

TCP

Decode

TCP

Encode

Ctl Cell

Processor

Cell Wrapper

Frame Wrapper

IPWrapper

CTL

Proc

Scan Circuit

State

Store

q
u

e

r
y

s
t

a

t
e

u
p

d

a

t
e

s
t

a

t
e

PC100

SDRAM

ZBT

SRAM

addr

D[64]

addr

D[36]

Xilinx XCV2000E FPGA

Cell Wrapper

Frame Wrapper

IPWrapper

TCP-Processor

TCP

Encode

TCP

Decode

TCP circuit
 Scan circuit

Network Traffic

Control Interface

Figure A.4: Multidevice Circuit Layout

and the FPX cards are identical for both of these environments, there are configuration

differences due to the WUGS-20 backplane’s ability to route traffic from any port to any

other port. The FPX-in-a-Box solution, conversely, relies on the NID to perform all traffic

routing functions. The interaction between two FPX devices working together to provide a

TCP stream monitoring service is shown in Figure A.4. Network traffic processed by the

TCP-Processor is encoded and passed to a separate device for additional processing. This

second device processes the encoded TCP stream data and searches for digital signatures.

The encoded data is passed back to the TCP-Processor for egress processing and to forward

data on to the end system or next hop router. This final step is not required when performing

passive monitoring because the network packets do not need to be delivered to the end

system via this network path.

Figure A.5 shows a WUGS-20 switch configured to perform active monitoring of

inbound Internet traffic. A laptop computer initiates communications with hosts on the

Internet. These communications can include remote logins, file transfers and web surfing.

Traffic initiated on the laptop is passed through a network hub and routed to an OC-3 line

card installed at Port 1 of the switch. This traffic is passed directly to the OC-3 line card at

Port 0, transferred to a different network hub and routed to the Internet. Return traffic from

the Internet is passed to the line card at Port 0. This network traffic is routed to an FPX

card at Port 7 which is running the StreamExtract circuit. Encapsulated TCP stream data is

169

Laptop

Network Hub

OC-3

Line Card

OC-3

Line Card

Empty

Stream

Extract

Port

Tracker

Port 0
Port 1

Port 2

Port 3

Port 7

Port 5
Port 4

WUGS-20 Switch

Network Hub

Port 6

Scan

Internet

OC-3

Line Card

Switch Controller

&

Statistics Collector

50

50

52

52

52

50

50

50

Empty

Figure A.5: Active Monitoring Switch Configuration

passed to the PortTracker circuit at Port 6 and then to the Scan circuit at Port 5. After the

Scan circuit, this encoded network traffic is passed back to the StreamExtract circuit at port

7 which reproduces the original network data packets and passes them to the line card at

Port 1 for delivery to the laptop. Statistics information generated by the StreamExtract, the

PortTracker and the Scan circuits is passed to the OC-3 Line card at Port 3 which forwards

the statistics to a host machine which collects them. The statistics traffic is shown as a

dashed line in the figure.

The VCI routes which need to be configured on the WUGS-20 switch are shown in

Table A.1. The table is broken into four sections showing routes used for network traffic,

encoded network traffic, statistics traffic, and control traffic. The Scan circuit supports re-

mote management features and therefore requires control traffic. NID routing information

can be found in the previous sections dealing with each of the specific circuits.

Figure A.6 shows a WUGS-20 switch configured to perform passive monitoring

of network traffic. Mirroring, replication or optical splitting techniques can be used to

acquire copies of network traffic for passive monitoring. In this configuration, the traffic

to be monitored is passed into the GigE line card at Port 1. Traffic is then passed to the

StreamExtract circuit at Port 2 where TCP processing is performed. Encoded network

traffic is passed via VCI 52 to the PortTracker circuit at Port 4 and the Scan circuit at Port

6. Since this is a passive monitoring configuration, there is no need to route encoded traffic

170

Table A.1: Routing Assignments for Active Monitoring Switch Configuration

Network Traffic
Port: 1 VCI: 50 => Port: 0 VCI: 50
Port: 0 VCI: 50 => Port: 7 VCI: 50
Port: 7 VCI: 50 => Port: 1 VCI: 50

Encoded Network Traffic
Port: 7 VCI: 52 => Port: 6 VCI: 52
Port: 6 VCI: 52 => Port: 5 VCI: 52
Port: 5 VCI: 52 => Port: 7 VCI: 52

Statistics Traffic
Port: 7 VCI: 55 => Port: 3 VCI: 50
Port: 6 VCI: 50 => Port: 3 VCI: 50
Port: 5 VCI: 50 => Port: 3 VCI: 50

Control Traffic
Port: 3 VCI: 50 => Port: 5 VCI: 50

back to the StreamExtract circuit for egress processing. Statistics information generated by

the StreamExtract, the PortTracker and the Scan circuits is passed to the GigE Line card at

Port 0 which forwards the statistics to the stats collection machine.

The VCI routes which need to be programmed into the WUGS-20 switch for the

passive monitoring configuration are shown in Table A.2. The table is broken into four

sections showing routes used for network traffic, encoded network traffic, statistics traffic,

and control traffic. The Scan circuit supports remote management features and therefore

requires control traffic. NID routing information can be found in the previous sections

dealing with the each of the specific circuits.

The runtime setup for TCP stream processing circuits operating within a FPX-in-

a-Box environment is different from that of a WUGS-20 switch environment. The main

reason for this is that the backplane for the FPX-in-a-Box solution only provides an elec-

trical signal interconnect between the two stacks of FPX devices and no routing services.

This means that all routing functions must be performed by the NID circuit on each of the

FPX devices.

Figure A.7 shows a configuration for performing passive monitoring utilizing a

FPX-in-a-Box environment. Similar to passive monitoring configurations in a WUGS-

20 switch environment, an external device is required to provide duplicated or mirrored

network traffic to the input line card (located at the top of the stack on the left). Network

traffic to be monitored is passed to the StreamExtract circuit for TCP processing. Encoded

171

GigE

Line Card

GigE

Line Card

Empty

Scan

Port 0
Port 1

Port 2

Port 3

Port 7

Port 5
Port 4

WUGS-20 Switch

Port 6

Stream

Extract

OC-3

Line Card

Switch Controller

50

50

52

Port

Tracker

50

Statistics

Collector

Network

Traffic

to be

Monitored

52

Empty

Figure A.6: Passive Monitoring Switch Configuration

Table A.2: Routing Assignments for Passive Monitoring Switch Configuration

Network Traffic
Port: 1 VCI: 51 => Port: 2 VCI: 50

Encoded Network Traffic
Port: 2 VCI: 52 => Port: 4 VCI: 52
Port: 4 VCI: 52 => Port: 6 VCI: 52

Statistics Traffic
Port: 2 VCI: 55 => Port: 0 VCI: 50
Port: 4 VCI: 50 => Port: 0 VCI: 50
Port: 6 VCI: 50 => Port: 0 VCI: 50

Control Traffic
Port: 0 VCI: 50 => Port: 6 VCI: 50

network packets are passed down to the PortTracker circuit and finally down to the Scan

circuit. The NID cannot currently be configured to act as a data sink for network traffic.

For this reason, a stream processing circuit (such as the Scan circuit) will have to be mod-

ified to not pass encoded network traffic out through the RADLC interface. Without this

172

NID

RAD

TCP Stream

Extract

L

C

5

1

S

W

5

0

,

5

2

51

50

RAD_LC

52

RAD_SW

Passthrough

Circuit

Backplane

GigE Line Card

(Input)
D

a

t
a

5

1

Stats

50

Stats

50

S

t
a

t
s

5

0

NID

RAD

PortTracker

L

C

5

0

,

5

2

S

W

5

0

,

5

2

RAD_SW

50

RAD_LC

52

NID

RAD

Scan

L
C

5
0

 ,

5

2

S

W

5

0

RAD_SW

50

RAD_LC

52

GigE Line Card

(Output)
 S

t
a

t
s

5
0

FPX 0

FPX 1

FPX 2
 FPX

Figure A.7: Passive Monitoring FPX-in-a-Box Configuration

modification, monitored network traffic can be reflected between FPX cards, potentially

causing operational problems by consuming available bandwidth.

The NID routing information for this configuration is also shown in Figure A.7. For

each of the FPX cards, the NID can route data from each of the SW, LC, RADSW, and

RAD LC input interfaces to any of the same output ports. On FPX 0, the NID should be

configured to route VCI 51 (0x33) traffic from the LC interface to the RADSW interface.

Additionally, VCI 50 (0x32) from the RADSW interface and VCI 52 (0x34) from the

RAD LC interface should both be routed to the SW interface. Routes should be setup for

the FPX 1 and FPX 2 devices as indicated in the diagram.

173

A.5 Known Problems

Below is a list of known problems with the current distribution. Most of these problems do

not reflect errors in the design or the code, but are due to changes in the tools provided by

Xilinx and Synplicity which are incompatible with previous versions of these same tools.

A.5.1 Xilinx ISE 6.2i

Xilinx changed the dual-port RAM block produced by CoreGen. The previous dual-port

block RAM memory device contained a version 1 implementation. The current dual-port

RAM memory device uses version 5 constructs. Thevhdl/wrappers/IPProcessor

/vhdl/outbound.vhd source file directly references the version 1 component which

is no longer supported by newer versions of the tools. To circumvent this problem, build an

identically-sized version 5 component and add the vhd and edn files to the project. Xilinx

also changed the signal names with the new component. This can be resolved by editing

theoutbound.vhd file and fix up the ram512x16 component and its implementations to

correspond to the version 5 CoreGen component.

A.5.2 Synplicity 7.5

Synplicity v7.5 is not compatible with thealias construct used in thevhdl/wrappers

/FrameProcessor/vhdl/aal5dataen.vhd source file because previous versions

of Synplicity had no problem with this VHDL construct. One workaround is to switch to an

older or newer version of Synplicity (version 7.3 or 7.6 for example). Another workaround

is to modify the source file to remove the alias construct and directly address the proper

signal names.

A.5.3 Outbound IPWrapper Lockup

There have been several occurrences of a situation where the outbound lower layered pro-

tocol wrappers stop processing traffic and de-assert the TCA flow control signal to the

TCP-Processor circuit. This problem has been observed when monitoring live network

traffic with a configuration similar to that shown in Figure A.6 where encoded traffic exit-

ing the Scan circuit is routed back to the StreamExtract circuit for egress processing. After

several days of processing traffic, the outbound IP Wrapper will de-assert the flow control

signal and lock up the whole circuit. It is not clear whether or not this lockup is due to

174

invalid data being sent from the TCP-Processor egress component to the IP Wrapper or a

bug in the outbound lower layered protocol wrapper code. The exact sequence of events

which causes this problem has not been determined. One plausible explanation for this

problem is the presence of an IP packet fragment.

A.5.4 Inbound Wrapper Problems

During campus network traffic testing, it was discovered that AAL5 CRC errors are not

dealt with in the inbound AAL5 frame wrapper, nor in the inbound IP wrapper. The AAL5

frame wrapper performs the CRC calculation, and updates the CRC word which occurs

after the end of the network packet. A valid CRC computation results in this CRC value

being replaced with the value of zero. An invalid CRC computation results in a non-zero

value. The AAL5 frame wrapper passes this invalid CRC indication at the tail end of the

packet.

The IP wrapper does not look at the CRC calculation and assumes that all data it

receives from the AAL5 frame wrapper contain valid packets. The processing of an invalid

packet can confuse the state machine in the IP wrapper and cause severe problems for

downstream client processing logic.

175

Appendix B

Generating Simulation Input Files

The ability to quickly and easily generate simulation input files is paramount to any de-

bugging effort. This section focuses on capturing network traffic and converting it into a

simulation input file used by ModelSim and the testbench logic. Simulation input files can

be generated by hand, but this is tedious work. The following subsections contain usage

information for thetcpdump , dmp2tbp , IPTESTBENCH, andsramdump applications

as well as the CellCapture circuit for generating simulation input files.

B.1 tcpdump

The tcpdump [83] utility captures and displays the contents of network packets arriving

on a network interface on a host machine. Atcpdump command like the one below will

capture the network traffic to a file.

$ tcpdump -i eth1 -X -s 1514 host 192.168.20.10 > tmp.dmp

Change thetcpdump parameters as needed to specify the proper host. Specify the-X

flag to indicate a hexadecimal output format and the-s 1514 parameter to capture the

complete contents of each packet. Below is sample of network traffic captured with the

aforementioned command:

16:04:34.151188 192.168.204.100.3474 >

hacienda.pacific.net.au.http: S 1180902188:1180902188(0) win 16384

<mss 1460,nop, nop,sackOK> (DF)

0x0000 4500 0030 e0a1 4000 7d06 52c9 c0a8 cc64 E..0..@.}.R....d

0x0010 3d08 0048 0d92 0050 4663 232c 0000 0000 =..H...PFc#,....

176

0x0020 7002 4000 0151 0000 0204 05b4 0101 0402 p.@..Q..........

16:04:34.362576 hacienda.pacific.net.au.http >

192.168.204.100.3474: S 545139513:545139513(0) ack 1180902189 win

5840 <mss 1460,nop,nop,sackOK> (DF)

0x0000 4500 0030 0000 4000 2b06 856b 3d08 0048 E..0..@.+..k=..H

0x0010 c0a8 cc64 0050 0d92 207e 2b39 4663 232d ...d.P...˜+9Fc#-

0x0020 7012 16d0 deb8 0000 0204 05b4 0101 0402 p...............

16:04:34.364557 192.168.204.100.3474 >

hacienda.pacific.net.au.http: . ack 1 win 17520 (DF)

0x0000 4500 0028 e0a3 4000 7e06 51cf c0a8 cc64 E..(..@.˜.Q....d

0x0010 3d08 0048 0d92 0050 4663 232d 207e 2b3a =..H...PFc#-.˜+:

0x0020 5010 4470 dddc 0000 2020 2020 2020 P.Dp..........

B.2 dmp2tbp

Thedmp2tbp application has been developed to convert thetcpdump output format into

a simulation input file for use by ModelSim. Admp2tbp command takes two parameters,

an input file which was generated by atcpdump command and a target output file to

contain the IPTESTBENCH input data. The syntax of the application is shown below:

Usage: dmp2tbp <input dmp file> <output tbp file>

Links to the executable and source for thedmp2tbp application can be found at:

http://www.arl.wustl.edu/projects/fpx/fpx internal/tcp

/dmp2tbp.html .

The converted output of the previoustcpdump sample trace is shown below. For

each IP packet, a two-word LLC header was prepended to the packet to match the packet

format of the switch environment. In order to account for these two header words prior

the start of IP header, theNUM PRE HDR WRDS configuration parameter will need to

be set to a value of 2. The LLC header information can easily be removed by editing the

dmp2tbp source file.

!FRAME 50

AAAA0300

177

00000800

45000030

e0a14000

7d0652c9

c0a8cc64

3d080048

0d920050

4663232c

00000000

70024000

01510000

020405b4

01010402

!FRAME 50

AAAA0300

00000800

45000030

00004000

2b06856b

3d080048

c0a8cc64

00500d92

207e2b39

4663232d

701216d0

deb80000

020405b4

01010402

!FRAME 50

AAAA0300

00000800

45000028

e0a34000

7e0651cf

c0a8cc64

3d080048

0d920050

4663232d

207e2b3a

50104470

dddc0000

20202020

178

20200000

B.3 IPTESTBENCH

The ip2fake executable of the IPTESTBENCH [14] utility converts the output of the

dmp2tbp application into the simulation input file used by ModelSim. Rename the file

generated by thedmp2tbp program to INPUTCELLS.TBP and copy the file to thesim

directory. Run the following commands to convert the .TBP file to the ModelSim .DAT

input file:

$ cd sim

$ make input cell

A file called INPUTCELLS.DAT is generated which contains properly formatted packets

that can be used to perform simulations. The source code and make files for IPTEST-

BENCH are included with each circuit design in theiptestbench subdirectory.

B.4 sramdump

The sramdump utility reads data out of SRAM and writes the results to a disk file. To

accomplish this task, thesramdump application communicates with NCHARGE over a

TCP socket connection. NCHARGE in turn communicates with the Control Cell Processor

(CCP) circuit programmed into a FPX card. This communication utilizes ATM control

cells to read the SRAM memory of the FPX card. Results are passed to NCHARGE and

then thesramdump application via the return path. Figure B.1 shows a diagram of this

communication path. Thesramdump utility requires that the CCP circuit be built into the

RAD application and that the CCP control cells (typically VCI 0x23) be correctly routed

through the switch, the NID and the RAD. Links to the executable and source for the

sramdump application can be found at:http://www.arl.wustl.edu/projects

/fpx/fpx internal/tcp/sramdump.html .

The sramdump program automatically detects the endianess of the host machine

and formats output so that the resulting dump file is consistent, regardless which machine

on which the utility was run . There are various dumping options, a binary dump [useful

as input to other analysis programs], an ASCII dump [good for text data], a dump format

179

Line Card
 Line Card

Empty
 Empty

Line Card

FPX
 FPX

Port 0
Port 1

Port 2

Port 3

Port 7

Port 5
Port 4

WUGS-20

Port 5

Computer

(1) User runs

SRAMDUMP

program

(2) Program

establishes TCP

connection to

appropriate

NCARGE process

on switch controller

and issues dump

command

N

I

D

RAD APP

W/CCP

(3) NCHARGE sends a series of

control cells to read the requested

SRAM data out of a particular FPX

(5) Control cells with

SRAM data are returned

to NCHARGE

(4) The CCP module

processes the control

cells, reads SRAM and

returns data in other

control cells

(6) SRAM data is

passed back to the

SRAMDUM

program where it is

formatted and

written to a disk file

VCI

0x23

Switch

Controller

Figure B.1: Operation of SRAMDUMP Utility

[shows both hexidecimal and ASCII representations of data], and an option to generate

IPTESTBENCH input files.

SRAM memory on the FPX platform is 36 bits wide. Depending on the appli-

caitons’s use of this memory, data can either be read out in 32-bit segments (ignoring the

upper 4 bits) or in 36-bit segments. When reading 36-bit data, the high nibble is normally

stored as a byte-sized value. The-e option will expand the output and represent this as a

4-byte quantity such that the low bit of each byte will represent the value of one of four

high bits. This formatting option makes it easier to interpret a series of 36-bit data values.

In order to generate data formatted as AAL5 frames for input into IPTESTBENCH,

data must be written in a special SRAM frame format. Likewise, in order to generate data

formatted as ATM cells for input into ModelSim, data must be written in a special SRAM

cell format. Figure B.2 shows the specific SRAM frame and cell formats. Output files

180

35
 34
 33
 32
 31
 0

32 bits of packet data
s
t
a

r
t

o
f

f
r

a
m

e

s
t
a

r
t

o
f

I
P

h

e
a

d
e

r

e
n

d

o
f

f
r

a
m

e

s
t
a

r
t

o
f

I
P

p

a
y

l
o

a
d

SRAM Frame Format

35
 34
 33
 32
 31
 0

32 bits of cell data
s
t

a
r

t

o

f

f

r
a

m

e

n
o

t

u

s
e

d

SRAM Cell Format

n
o

t

u

s
e

d

n
o

t

u

s
e

d

Figure B.2: SRAM data Formats

generated using the-t F or -t C options can be used as the input file to IPTESTBENCH for

creating simulation input files for ModelSim.

Usage information for thesramdump application is shown below:

Usage: sramdump [OPTIONS]

-h <string> hostname of switch controller:

[illiac.arl.wustl.edu]

-c <num> card number (0 - 7): [0]

-b <num> memory bank (0 - 1): [0]

-a <num> address to start reading (in hex): [0]

-n <num> number of words to read: [1]

-o <string> output file: [sram.dat]

-t <char> output type (B-binary, A-ascii, D-dump,

F-frames, C-cells): [B]

-f <char> dump format (B-big endian, L-little endian): [B]

-w <num> dump column width: 4

-s <num> dump separations (spaces every n bytes): [4]

-l <num> length of word (32, 36): [32]

-e expanded 36 bit format

(high 4 bits expanded to low bit of 4 byte field)

-? this screen

181

NID

Program

PROM

RAD

Program

SRAM

PC100

SDRAM

ZBT

SRAM

PC100

SDRAM

ZBT

SRAM

Switch

Fabric

External

2.4 Gbps

Interface

Network

Interface

Device

(NID)

2.4 Gbps Interfaces

Off-chip

Memories

Off-chip

Memories

addr

addr

D[64]

D[64]

addr

D[36]

addr

D[36]

Reconfigurable

Application

Device (RAD)

SelectMap

Reconfiguration

Interface

Xilinx XCV600E FPGA

Xilinx XCV2000E FPGA

External

2.4 Gbps

Interface

Field-programmable Port Extender (FPX)

Control

Cell

Processor

(CCP)

Cell

Capture

Figure B.3: CellCapture Circuit Layout

B.5 Cell Capture

The CellCapture circuit provides an easy mechanism for capturing traffic with an FPX

card. The circuit writes captured ATM cells to the SRAM0 memory device and then to the

SRAM1 memory device. Each SRAM unit contains 256 thousand 36-bit memory locations

which can store 18,724.5 cells. The CellCapture circuit will store the first 37,449 cells

that are passed into the RADLC interface. Because the SRAM devices support memory

operations on every clock cycle, the circuit is capable of capturing traffic at full line rates

(writing data to memory on every clock cycle). The circuit synthesizes at 100MHz which

supports the fastest traffic rates possible on the FPX platform. Figure B.3 shows a layout

of the CellCapture circuit.

182

The CellCapture circuit is structured in a similar manner to all other circuits de-

scribed in this document. Links to the project source for the CellCapture circuit can be

found at:http://www.arl.wustl.edu/projects/fpx/fpx internal

/tcp/cell capture.html . The steps required to build an executablebit file from the

source are listed below:

$ make compile

$ make syn

$ make build

To utilize this circuit, route control cell traffic (VCI 0x23) into the RADSW port

and route traffic to be captured (the VCI(s) of interest) into the RADLC port. The RAD-

controlled LEDs 1 and 2 blink continuously to indicate that the circuit is operating. The

RAD-controlled LEDs 3 and 4 illuminate when SRAM bank 0 and 1 respectively, are full

of data. LED 3 will always illuminate before LED 4 because the circuit fills up SRAM

bank 0 before writing to SRAM bank 1.

After capturing network traffic, thesramdump utility can be used to retrieve the

captured data. The resulting data file can be converted into a ModelSim input file utiliz-

ing IPTESTBENCH. Attempts to read data from a SRAM before it is full of data will

cause the CCP read operations to SRAM take priority over the CellCapture writes. This

implies that inconsistent network captures may be produced if a SRAM read operation oc-

curs at the same time as a SRAM write operation. This circuit is designed to work with the

sramdump utility. Use the-l 36 -t C -eoptions with thesramdump command to generate

ModelSim input files.

B.6 Internal Data Captures

The internal data captures supported by many of the TCP-Processor circuits provide an

excellent method for gaining insight into the internal operation of the circuits. These data

captures can be extracted from the FPX devices utilizing thesramdump routine and con-

verted into simulation input files utilizing IPTESTBENCH. The TCPInbuf, TCPEgress,

TCPSerializeEncode, TCPSerializeDecode, TCPDeserialize, and TCPReserialize compo-

nents all support the storing of network traffic to SRAM memory devices. The TCPInbuf

and the TCPEgress components utilize the SRAM frame format for storing network traf-

fic. The TCPSerializeEncode, TCPSerializeDecode, TCPDeserialize, and TCPReserialize

components utilize the SRAM cell format for storing network traffic.

183

Appendix C

Statistics Collection and Charting

This appendix contains information on software applications which collect, chart, and re-

distribute statistics information generated by the various circuits mentioned in this docu-

ment. These applications directly process the statistics packets generated by the hardware

circuits. The statistics packets are transmitted as UDP datagrams, with the packet payload

format shown in Table C.1.

Table C.1: Statistics Format

31 24 23 16 15 8 7 0

Statistics
Type

Statistics
Identifier

Packet
Number

Number of
Entries

32-bit statistics value 1
32-bit statistics value 2
32-bit statistics value 3

. . .

184

StatsCollector

Retransmit

statistics to a

maximum of 5

separate clients

Spool

statistics to

daily files

Statistics

generated by

hardware circuits

Figure C.1: StatsCollector Operational Summary

C.1 StatsCollector

The StatsCollector is a C program which gathers statistics information and spools the data

to disk files. A new disk file is created every night so that the data sets can be easily man-

aged. The StatsCollector can also be configured to rebroadcast statistics packets to a maxi-

mum of five separate destinations. This aids in the dissemination of statistical information

to a wide audience. Figure C.1 shows an operational summary of the StatsCollector.

The source for the StatsCollector application can be found at the following web site:

http://www.arl.wustl.edu/projects/fpx/fpx internal/tcp

/statscollector.html . Usage information for the StatsCollector application is

shown below:

Usage: statscollector [OPTION]

-p <num> UDP port on which to listen for

statistics information

-r <string>:<num> remote IP host & UDP port on which

to re-transmit stats (up to 5 remote

hosts can be specified)

-s silent - do not capture statistics to

disk file

-? this screen

The statistics files generated by the StatsCollector application have a specific file-

name format shown below:

stats%%&& YYYYMMDD

%%represents a one-byte (two-hex-digit)

number indicating the statistics type

185

&& represents a one-byte (two-hex-digit)

number indicating the statistics identifier

YYYYis a 4-digit year

MMis a 2-digit month

DDis a 2-digit day

These files contain ASCII columns of numbers where each column represents a separate

statistics value and each row corresponds to a statistics update packet. This format can

be directly imported by programs such as Microsoft Excel and can be graphed utilizing

gnuplot. A sample perl script is shown below which generates a separate graph of active

flows for each daily data file in the current directory:

#!/usr/bin/perl

list of stats files

my @file_list = <stats01*>;

for each file in the directory

foreach $file (@file_list) {

extract info from filename

my $type = substr($file, 5, 2);

my $id = substr($file, 7, 2);

my $year = substr($file, 10, 4);

my $mon = substr($file, 14, 2);

my $day = substr($file, 16, 2);

generate gnuplot control file to create chart

open handle, "> tmp";

select handle;

print "set title \"Traffic Stats for $mon/$day/$year\"\n";

print "set output \"total_flows_$year$mon$day.eps\"\n";

print "set data style lines\n";

print "set terminal postscript eps\n";

print "set xlabel \"Time of day\"\n";

print "set ylabel \"Total Active Flows\"\n";

print "set key left\n";

print "set xdata time\n";

print "set timefmt \"%H:%M:%S\"\n";

print "set xrange [\"00:00:00\":\"23:59:59\"]\n";

print "set format x \"%H:%M\"\n";

186

print "\n";

print "plot \"$file\" using 1:13 title "Active Flows\n";

close handle;

execute gnuplot command to generate chart

system "gnuplot tmp";

end loop

}

C.2 StatApp

The StatApp is a Java application created by Mike Attig (mea1@arl.wustl.edu) to perform

real-time graphing. The original StatApp program was modified to accept data generated

in the standard statistics format and chart the data in real-time. The following commands

can be used to compile and run the StatApp charting application. The port number should

be set to the UDP port number of the statistics packets, currently 6501.

$ javac *.java

$ java StatApp <port#>

Figure C.2 displays the output of the StatApp charting various statistics counters

from the TCP-Processor. A maximum of 10 data items can be charted in parallel. The

various signals are annotated in this diagram for easier reading. The source for the StatApp

application can be found at the following web site:http://www.arl.wustl.edu

/projects/fpx/fpx internal/tcp/statapp.html .

C.3 SNMP Support

A Simple Network Management Protocol (SNMP) agent aids in the dissemination of the

statistical information gathered in the various hardware circuits. This agent listens for

the statistics packets generated by the various hardware circuits, maintains internal coun-

ters for these statistics, and re-exposes this data as SNMP Management Information Base

(MIB) variables. This agent was designed to interface with net-snmp v5.1.1 (found at

http://net-snmp.sourceforge.net/).

The distribution for the SNMP agent along with the MIB declaration can be found

at the following URL:http://www.arl.wustl.edu/projects/fpx

/fpx internal/tcp/source/gv snmp agent v2.zip .

187

IP

Pkts

TCP

Pkts

Zero

Length

Pkts

Retrans

Pkts

RST

Pkts

Out
-
of
-
Seq

Pkts

Figure C.2: Sample StatApp Chart

C.4 MRTG Charting

The Multi Router Traffic Grapher (MRTG) tool monitors traffic loads on network links.

MRTG generates Hyper Text Markup Language (HTML) web pages on a periodic basis

by polling pre-configured SNMP MIB variables. The Portable Network Graphics (PNG)

images are generated provide a visual representation of the traffic loads. This tool has

been used to generate graphs of the statistical information maintained by the previously

mentioned SNMP agent. A sample chart is shown in Figure C.3.

The MRTG charting of statistical information generated by the various hardware cir-

cuits was accomplished utilizing the following versions of MRTG and dependent libraries:

MRTG v2.10.13, libpng v1.2.5, gd v1.0.22, and zlib v1.1.4. Additional information re-

garding MRTG can be found at the following web site:http://www.mrtg.org/ . The

MRTG configuration file utilized to chart the statistics information is located at the follow-

ing URL: http://www.arl.wustl.edu/projects/fpx/fpx internal

/tcp/source/mrtg v2.zip .

188

Figure C.3: Sample MRTG Generated Chart

189

Appendix D

Additional Traffic Charts

D.1 Statistics for Aug 27, 2004

D.1.1 Flow Statistics

450000

500000

550000

600000

650000

700000

750000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

T
C

P
Fl

ow
s

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

Active Flows

Figure D.1: Active Flows

190

0

200

400

600

800

1000

1200

1400

1600

1800

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

T
C

P
Fl

ow
s/

se
c

(3
0

se
c

av
g)

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

New TCP Flows

Figure D.2: New Flows

0

50

100

150

200

250

300

350

400

450

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

T
C

P
Fl

ow
s/

se
c

(3
0

se
c

av
g)

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

Terminated Flows

Figure D.3: Terminated Flows

191

0

500

1000

1500

2000

2500

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

T
C

P
Fl

ow
s/

se
c

(3
0

se
c

av
g)

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

Reused Flow Table Entries

Figure D.4: Reused Flows

192

D.1.2 Traffic Statistics

0
20
40
60
80

100
120
140
160
180
200

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

M
bi

ts
/s

ec
 (

30
 s

ec
 a

ve
ra

ge
)

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

iP Bit Rate

Figure D.5: IP bit rate

193

0

5000

10000

15000

20000

25000

30000

35000

40000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

IP Packets
TCP Packets

Figure D.6: IP Packets

4.6
4.8

5
5.2
5.4
5.6
5.8

6
6.2
6.4
6.6
6.8

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

Non-IP Packets

Figure D.7: Non-IP Packets

194

0

50

100

150

200

250

300

350

400

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

Fragmented Packets

Figure D.8: Fragmented IP Packets

195

0

500

1000

1500

2000

2500

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

Retransmitted Packets
Out-of-Sequence Packets

Bad TCP Checksum Packets

Figure D.9: Bad TCP Packets

196

0

5000

10000

15000

20000

25000

30000

35000

40000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

TCP Packets
SYN Packets
FIN Packets
RST Packets

Figure D.10: TCP Packets

197

0

1000

2000

3000

4000

5000

6000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

SYN Packets
FIN Packets
RST Packets

Figure D.11: TCP Packet Flags

0

5000

10000

15000

20000

25000

30000

35000

40000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

TCP Packets
Zero Length TCP Packets

Figure D.12: Zero Length Packets

198

D.1.3 Port Statistics

0

20000

40000

60000

80000

100000

120000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

FTP (port 20,21)

Figure D.13: FTP traffic

199

0

200000

400000

600000

800000

1e+06

1.2e+06

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

HTTP (port 80)

Figure D.14: HTTP traffic

0

10000

20000

30000

40000

50000

60000

70000

80000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

HTTPS (port 443)

Figure D.15: HTTP traffic

200

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

NNTP (port 119)

Figure D.16: NNTP traffic

0

5000

10000

15000

20000

25000

30000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

POP (port 109,110)

Figure D.17: POP traffic

201

0

20000

40000

60000

80000

100000

120000

140000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

SMTP (port 25)

Figure D.18: SMTP traffic

0

10000

20000

30000

40000

50000

60000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

SSH (port 22)

Figure D.19: SSH traffic

202

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

Telnet (port 23)

Figure D.20: Telnet traffic

0

20000

40000

60000

80000

100000

120000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

TFTP (port 69)

Figure D.21: TFTP traffic

203

0

50

100

150

200

250

300

350

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

TIM (port 37)

Figure D.22: TIM traffic

0

50000

100000

150000

200000

250000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

Other lower ports (<= 1024)

Figure D.23: Lower port traffic

204

D.1.4 Virus Statistics

0

2

4

6

8

10

12

14

16

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

de
te

ct
io

ns
/1

0
m

in
ut

es

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

string: The message contains Unicode cha

Figure D.24: MyDoom Virus 1

205

0

0.2

0.4

0.6

0.8

1

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

de
te

ct
io

ns
/1

0
m

in
ut

es

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

string: We are sorry your UTF-8 encoding

Figure D.25: MyDoom Virus 2

0

0.5

1

1.5

2

2.5

3

3.5

4

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

de
te

ct
io

ns
/1

0
m

in
ut

es

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

string: represented in 7-bit ASCII

Figure D.26: MyDoom Virus 3

206

0

2

4

6

8

10

12

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

de
te

ct
io

ns
/1

0
m

in
ut

es

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

string: Your Requested Info

Figure D.27: Spam

0

10

20

30

40

50

60

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

de
te

ct
io

ns
/1

0
m

in
ut

es

Time of day

Washington University Internet Traffic Statistics for 08/27/2004

string: No Virus found

Figure D.28: Netsky Virus

207

D.2 Statistics for Sep 16, 2004

D.2.1 Flow Statistics

520000

540000

560000

580000

600000

620000

640000

660000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

T
C

P
Fl

ow
s

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

Active Flows

Figure D.29: Active Flows

208

100
200
300
400
500
600
700
800
900

1000
1100

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

T
C

P
Fl

ow
s/

se
c

(3
0

se
c

av
g)

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

New TCP Flows

Figure D.30: New Flows

100

150

200

250

300

350

400

450

500

550

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

T
C

P
Fl

ow
s/

se
c

(3
0

se
c

av
g)

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

Terminated Flows

Figure D.31: Terminated Flows

209

0

200

400

600

800

1000

1200

1400

1600

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

T
C

P
Fl

ow
s/

se
c

(3
0

se
c

av
g)

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

Reused Flow Table Entries

Figure D.32: Reused Flows

210

D.2.2 Traffic Statistics

0

50

100

150

200

250

300

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

M
bi

ts
/s

ec
 (

30
 s

ec
 a

ve
ra

ge
)

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

iP Bit Rate

Figure D.33: IP bit rate

211

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

IP Packets
TCP Packets

Figure D.34: IP Packets

4.5

5

5.5

6

6.5

7

7.5

8

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

Non-IP Packets

Figure D.35: Non-IP Packets

212

0

20

40

60

80

100

120

140

160

180

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

Fragmented Packets

Figure D.36: Fragmented IP Packets

213

0

500

1000

1500

2000

2500

3000

3500

4000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

Retransmitted Packets
Out-of-Sequence Packets

Bad TCP Checksum Packets

Figure D.37: Bad TCP Packets

214

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

TCP Packets
SYN Packets
FIN Packets
RST Packets

Figure D.38: TCP Packets

215

0

500

1000

1500

2000

2500

3000

3500

4000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

SYN Packets
FIN Packets
RST Packets

Figure D.39: TCP Packet Flags

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

se
c

(3
0

se
c

av
er

ag
e)

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

TCP Packets
Zero Length TCP Packets

Figure D.40: Zero Length Packets

216

D.2.3 Port Statistics

0

20000

40000

60000

80000

100000

120000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

FTP (port 20,21)

Figure D.41: FTP traffic

217

0

200000

400000

600000

800000

1e+06

1.2e+06

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

HTTP (port 80)

Figure D.42: HTTP traffic

0

20000

40000

60000

80000

100000

120000

140000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

HTTPS (port 443)

Figure D.43: HTTP traffic

218

0

20000

40000

60000

80000

100000

120000

140000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

NNTP (port 119)

Figure D.44: NNTP traffic

0

5000

10000

15000

20000

25000

30000

35000

40000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

POP (port 109,110)

Figure D.45: POP traffic

219

0

20000

40000

60000

80000

100000

120000

140000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

SMTP (port 25)

Figure D.46: SMTP traffic

0

5000

10000

15000

20000

25000

30000

35000

40000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

SSH (port 22)

Figure D.47: SSH traffic

220

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

Telnet (port 23)

Figure D.48: Telnet traffic

0

20000

40000

60000

80000

100000

120000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

TFTP (port 69)

Figure D.49: TFTP traffic

221

0

100

200

300

400

500

600

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

TIM (port 37)

Figure D.50: TIM traffic

0

50000

100000

150000

200000

250000

300000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

pa
ck

et
s/

m
in

ut
e

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

Other lower ports (<= 1024)

Figure D.51: Lower port traffic

222

D.2.4 Scan Statistics

0

2

4

6

8

10

12

14

16

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

de
te

ct
io

ns
/1

0
m

in
ut

es

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

string: schuehler

Figure D.52: Scan for HTTP

223

4000

6000

8000

10000

12000

14000

16000

18000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

de
te

ct
io

ns
/1

0
m

in
ut

es

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

string: Washington University

Figure D.53: Scan for Washington University

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

de
te

ct
io

ns
/1

0
m

in
ut

es

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

string: mortgage

Figure D.54: Scan for mortgage

224

0

2

4

6

8

10

12

14

16

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

de
te

ct
io

ns
/1

0
m

in
ut

es

Time of day

Washington University Internet Traffic Statistics for 09/16/2004

string: schuehler

Figure D.55: Scan for schuehler

225

References

[1] Adam Piore. Hacking for Dollars. http://www.msnbc.msn.com/id/3706599, 2003.

[2] Nikos Anerousis, Ramon Caceres, Nick Duffield, Anja Feldmann, Albert Greenberg,

Chuck Kalmanek, Partho Mishra, K.K. Ramakrishnan, and Jennifer Rexford. Using

the AT&T Labs PacketScope for Internet Measurement, Design, and Performance

Analysis. http://citeseer.nj.nec.com/477885.html, 1997.

[3] Florin Baboescu and George Varghese. Scalable packet classification. InACM SIG-

COMM, August 2001.

[4] Zachary K. Baker and Viktor K. Prasanna. Time and area efficient pattern matching

on fpgas. InProceeding of the 2004 ACM/SIGDA 12th international symposium on

Field programmable gate arrays, pages 223–232. ACM Press, 2004.

[5] BBC News. Modest cost of Sobig virus.

http://news.bbc.co.uk/1/hi/business/3173243.stm, August 2003.

[6] Jon C. R. Bennett, Craig Partridge, and Nicholas Shectman. Packet reordering is

not pathological network behavior.IEEE/ACM Transactions on Networking (TON),

7(6):789–798, 1999.

[7] F. Berman, G. Fox, and A. J. G. Hey.Grid Computing - Making the Global Infras-

tructure a Reality. John Wiley and Sons Ltd., 2003.

[8] Karthikeyan Bhargavan, Satish Chandra, Peter J. McCann, and Carl A. Gunter.

What packets may come: automata for network monitoring. InProceedings of the

28th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 206–219. ACM Press, 2001.

[9] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.Commu-

nications of the ACM, 13(7):422–426, July 1970.

226

[10] Jag Bolaria.A Guide to Storage and TCP Processors. The Linley Group, October

2002.

[11] James O. Bondi, Ashwini K. Nanda, and Simonjit Dutta. Integrating a misprediction

recovery cache (mrc) into a superscalar pipeline. InProceedings of the 29th an-

nual ACM/IEEE international symposium on Microarchitecture, pages 14–23. IEEE

Computer Society, 1996.

[12] Florian Braun, John Lockwood, and Marcel Waldvogel. Reconfigurable router mod-

ules using network protocol wrappers. InProceedings of Field-Programmable Logic

and Applications, pages 254–263, Belfast, Northern Ireland, August 2001.

[13] Florian Braun, John W. Lockwood, and Marcel Waldvogel. Layered protocol wrap-

pers for Internet packet processing in reconfigurable hardware. InProceedings of

Symposium on High Performance Interconnects (HotI’01), pages 93–98, Stanford,

CA, USA, August 2001.

[14] Florian Braun, John W. Lockwood, and Marcel Waldvogel. Layered protocol wrap-

pers for Internet packet processing in reconfigurable hardware. Technical Report

WU-CS-01-10, Washington University in Saint Louis, Department of Computer Sci-

ence, June 2001.

[15] Bertrand R. Brinley.Mad Scientists’ Club. Scholastic Book Services (republished

by Purple House Press in 2004), 1965.

[16] Bertrand R. Brinley.The New Adventures of the Mad Scientists’ Club. Scholastic

Book Services (republished by Purple House Press in 2004), 1968.

[17] Young H. Cho, Shiva Navab, and William H. Mangione-Smith. Specialized hard-

ware for deep network packet filtering. InProceedings of the 12th International Con-

ference on Field-Programmable Logic and Applications, pages 452–461. Springer-

Verlag, 2002.

[18] Cisco. CSS 11500 Series Content Services Switch.

http://cisco.com/en/US/products/hw/contnetw/ps792/, 2004.

[19] Cisco. Intrusion Protection Data Sheet. http://www.cisco.com/warp/public/cc/pd

/sqsw/sqidsz/prodlit/netrads.pdf, 2004.

227

[20] Cisco. SCA 11000 Series Secure Content Accelerators.

http://www.cisco.com/en/US/products/hw/contnetw/ps2083/, 2004.

[21] Christopher R. Clark and David E. Schimmel. Efficient reconfigurable logic cir-

cuits for matching complex network intrusion detection patterns. InProceedings of

the 13th International Conference on Field-Programmable Logic and Applications,

pages 956–959. Springer-Verlag, 2003.

[22] ComputerEconomics. Malicious Code Attacks Had $13.2 Billion Economic Impact

in 2001. http://www.computereconomics.com/article.cfm?id=133, January 2002.

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, pages 245–249. New Jersey: Prentice-Hall, 2001.

[24] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, page 252. New Jersey: Prentice-Hall, 2001.

[25] Andy Currid. Tcp offload to the rescue.Queue, 2(3):58–65, 2004.

[26] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink. Small

forwarding tables for fast routing lookups. InSIGCOMM, pages 3–14, 1997.

[27] John D. DeHart, William D. Richard, Edward W. Spitznagel, and David E. Tay-

lor. The smart port card: An embedded Unix processor architecture for network

management and active networking. Technical Report WUCS-01-18, Applied Re-

search Laboratory, Department of Computer Science, Washington University in

Saint Louis, August 2001.

[28] Robert Dewar and Matthew Smosna.Microprocessors: A Programmer’s View. New

York: McGraw-Hill, 1990.

[29] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd Sproull, and John W. Lock-

wood. Deep packet inspection using parallel bloom filters. InHot Interconnects,

pages 44–51, Stanford, CA, August 2003.

[30] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der

Heide, Hans Rohnert, and Robert Endre Tarjan. Dynamic perfect hashing: Upper

and lower bounds. InSIAM Journal of Computing 23, pages 738–761, 1994.

[31] William N. Eatherton. Hardware-based Internet protocol prefix lookups. Master’s

thesis, Washington University in Saint Louis, May 1999.

228

[32] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: An Attack Language for

State-based Intrusion Detection.Journal of Computer Security, 10(1/2):71–104,

2002.

[33] Edward Hurley. Admins doubt arrests deter future worm writers.

http://www.searchsecurity.techtarget.com/originalContent/

0,289142,sid14gci922447,00.html, 2003.

[34] ExcelMicro. Email Virus Protection. http://www.excelmicro.com, 2004.

[35] F5. BIG-IP. http://f5.com/f5products/bigip/, 2004.

[36] F5. BIG-IP SSL Acceleration. http://www.f5.com/solutions/tech/security/

ssl45.html, 2004.

[37] Anja Feldmann. BLT: Bi-Layer Tracing of HTTP and TCP/IP.WWW9 / Computer

Networks, 33(1-6):321–335, 2000.

[38] Fortinet. FortiGate. http://fortinet.com/doc/FortinetBroch.pdf, 2004.

[39] Foundry. ServerIron. http://foundrynet.com/products/webswitches/serveriron/,

2004.

[40] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski, D. Papagiannaki, and F. To-

bagi. Design and deployment of a passive monitoring infrastructure.Lecture Notes

in Computer Science, 2170:556+, 2001.

[41] R. Franklin, D. Carver, and B. L. Hutchings. Assisting network intrusion detection

with reconfigurable hardware. InIEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), Napa, CA, April 2002.

[42] Michael L. Fredman, Jnos Komls, and Endre Szemerdi. Storing a sparse table with

0(1) worst case access time.Journal of the ACM (JACM), 31(3):538–544, 1984.

[43] Alan Freier, Philip Karlton, and Paul Kocher. The SSL protocol, version 3.

http://wp.netscape.com/eng/ssl3/draft302.txt, Nov 1996.

[44] George Gilder.Telecosm. Free Press, September 2000.

[45] Maya Gokhale, Dave Dubois, Andy Dubois, Mike Boorman, Steve Poole, and Vic

Hogsett. Granidt: Towards gigabit rate network intrusion detection technology. In

229

Field Programmable Logic and Applications (FPL), pages 404–413, Montpellier,

France, September 2002. Springer-Verlag.

[46] Ian Goldberg. Internet Protocol Scanning Engine.

http://www.cs.berkeley.edu/ iang/isaac/ipse.html, 1996.

[47] Pankaj Gupta and Nick McKeown. Packet Classification on Multiple Fields. InACM

SIGCOMM, 1999.

[48] Pankaj Gupta and Nick McKeown. Packet classification using hierarchical intelli-

gent cuttings. InHot Interconnects VII, August 1999.

[49] Andrei Gurtov. Effect of delays on TCP performance. InProceedings of IFIP Per-

sonal Wireless Communications ’2001, Aug 2001.

[50] Y. Hoskote, V. Erraguntla, D. Finan, J. Howard, D. Vangal, V. Veeramachaneni,

H. Wilson, J. Xu, and N. Borkar. A 10GHz TCP offload accelerator for 10Gbps

Etherent in 90nm dual-VT CMOS. InISSCC, February 2003.

[51] Ido Dubrawsky. Firewall Evolution - Deep Packet Inspection.

www.securityfocus.com/printable/infocus/1716, 2003.

[52] IETF. RFC791: Internet Protocol. http://www.faqs.org/rfcs/rfc791.html, Sep 1981.

[53] IETF. RFC793: Transmission Control Protocol.

http://www.faqs.org/rfcs/rfc793.html, Sep 1981.

[54] IETF. RFC7771: A border gateway protocol 4 (BGP-4).

http://www.faqs.org/rfcs/rfc1771.html, Mar 1995.

[55] Intrusion. SecureNet Sensors. http://intrusion.com/products/snsensors.asp, 2004.

[56] J. Ward. Threats and Vulnerabilities.JANET-CERT Security Conference, 2002.

[57] V Jacobson and R Braden. RFC1072: TCP Extensions for Long-Delay Paths.

http://www.faqs.org/rfcs/rfc1072.html, Oct 1988.

[58] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Measurement and

classification of out-of-sequence packets in a tier-1 IP backbone. Technical Report

CS Dept. Tech. Report 02-17, UMass, May 2002.

230

[59] Adam Johnson and Kenneth Mackenzie. Pattern Matching in Reconfigurable Logic

for Packet Classification. InACM CASES, 2001.

[60] Kieth Sklower. A Tree-Based Packet Routing Table for Berkely Unix. Technical

report, University of California, Berkeley, 1993.

[61] D. E. Knuth, J. H. Morris, and V. B. Patt. Efficient string matching: An aid to

bibliographic search. InCommunications of the ACM, volume 18, pages 333–340,

1975.

[62] D. E. Knuth, J. H. Morris, and V. B. Patt. Fast pattern matching in strings. InSIAM

Journal of Computing, volume 6, pages 323–350, 1977.

[63] Donald E. Knuth.The Art of Computer Programming, Volume 3, Sorting and Search-

ing, pages 518–526. New York: Addison-Wesley Publishing Company, 1973.

[64] C. Kruegel, F. Valeur, G. Vigna, and R.A. Kemmerer. Stateful Intrusion Detection

for High-Speed Networks. InProceedings of the IEEE Symposium on Security and

Privacy, pages 285–293, Oakland, CA, May 2002. IEEE Press.

[65] Harvey Ku, John W. Lockwood, and David V. Schuehler. TCP programmer for

FPXs. Technical Report WUCS-2002-29, Washington University in Saint Louis,

August 2002.

[66] Fred Kuhns, John DeHart, Ralph Keller, John Lockwood, Prashanth Pappu, Jyoti

Parwatikar, Ed Spitznagel, William Richard, David Taylor, Jonathan Turner, and Ken

Wong. Implementation of an open multi-service router. Technical Report WUCS-

01-20, Applied Research Laboratory, Department of Computer Science, Washington

University in Saint Louis, August 2001.

[67] Sandeep Kumar.Classification and Detection of Computer Intrusions. PhD thesis,

Purdue University, Purdue, IN, 1995.

[68] Craig Labovitz, G. Robert Malan, and Farnam Jahanian. Internet routing instability.

IEEE/ACM Transactions on Networking, 6(5):515–528, 1998.

[69] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding using

efficient multi-dimensional range matching. InACM SIGCOMM, September 1998.

231

[70] Wenke Lee, Joao Cabrera, Ashley Thomas, Niranjan Balwalli, Sunmeet Saluja, and

Yi Zhang. Performance adaptation in real-time intrusion detection systems. InPro-

ceedings of the Fifth International Symposium on Recent Advances in Intrusion De-

tection (RAID 2002), Lecture Notes in Computer Science, Berlin–Heidelberg–New

York, October 2002. Springer-Verlag.

[71] Shaomeng Li, Jim Toressen, and Oddvar Soraasen. Exploiting reconfigurable hard-

ware for network security. InIEEE Symposium on Field-Programmable Custom

Computing Machines, (FCCM), Napa, CA, April 2003.

[72] Shaomeng Li, Jim Toressen, and Oddvar Soraasen. Exploiting stateful inspection

of network security in reconfigurable hardware. InField Programmable Logic and

Applications (FPL), Lisbon, Portugal, September 2003.

[73] John W Lockwood. Evolvable Internet hardware platforms. InThe Third NASA/DoD

Workshop on Evolvable Hardware (EH’2001), pages 271–279, July 2001.

[74] John W Lockwood. An open platform for development of network processing mod-

ules in reprogrammable hardware. InIEC DesignCon’01, pages WB–19, Santa

Clara, CA, January 2001.

[75] John W. Lockwood, James Moscola, Matthew Kulig, David Reddick, and Tim

Brooks. Internet worm and virus protection in dynamically reconfigurable hard-

ware. InMilitary and Aerospace Programmable Logic Device (MAPLD), page E10,

Washington DC, September 2003.

[76] John W. Lockwood, James Moscola, David Reddick, Matthew Kulig, and Tim

Brooks. Application of hardware accelerated extensible network nodes for Internet

worm and virus protection. InInternational Working Conference on Active Networks

(IWAN), Kyoto, Japan, December 2003.

[77] John W. Lockwood, Christopher Neely, Christopher Zuver, James Moscola, Sarang

Dharmapurikar, and David Lim. An extensible, system-on-programmable-chip,

content-aware Internet firewall. InField Programmable Logic and Applications

(FPL), page 14B, Lisbon, Portugal, September 2003.

232

[78] John W. Lockwood, Jon S. Turner, and David E. Taylor. Field programmable port

extender (FPX) for distributed routing and queuing. InACM International Sympo-

sium on Field Programmable Gate Arrays (FPGA’2000), pages 137–144, Monterey,

CA, USA, February 2000.

[79] Udi Manber. Introduction to Algorithms, A Creative Approach, pages 78–80. New

York: Addison-Wesley Publishing Company, 1989.

[80] Yun Mao, Kang Chen, Dongsheng Wang, and Weimin Zheng. Cluster-based online

monitoring system of web traffic. InProceeding of the Third International Workshop

on Web Information and Data Management, pages 47–53. ACM Press, 2001.

[81] McAfee. McAfee VirusScan. http://us.mcafee.com/root/package.asp?pkgid=100,

2004.

[82] Anthony J. McAuley and Paul Francis. Fast routing table lookup using CAMs. In

INFOCOM (3), pages 1382–1391, 1993.

[83] Steve McCanne, Craig Leres, and Van Jacobson. tcpdump. ftp://ftp.ee.lbl.gov, 1998.

[84] Jennifer Mears. Radware powers up SSL accelerator.NetworkWorldFusion, 2002.

[85] mi2g. Digital Attacks Report - SIPS Monthly Intelligence Description, Eco-

nomic Damage - All Attacks - Yearly. http://www.mi2g.net/cgi/mi2g/sipsgraph.php,

September 2004.

[86] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, and

Nicholas Weaver. Inside the slammer worm.IEEE Security and Privacy, 1(04):33–

39, 2003.

[87] David Moore and Colleen Shannon. Code-Red: a case study on the spread and

victims of an Internet worm. InProceedings of ACM SIGCOMM ’02, pages 273–

284, November 2002.

[88] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stephan Savage. Internet

quarantine: Requirements for containing self-propagating code. InIEEE Infocom

2003, San Francisco, CA, March 2003.

[89] Gordon Moore. Cramming more components onto integrated circuits.Electronics,

38(8), 1965.

233

[90] Donald R. Morrison. Patriciapractical algorithm to retrieve information coded in

alphanumeric.Journal of the ACM (JACM), 15(4):514–534, 1968.

[91] Marc Necker, Didier Contis, and David Schimmel. TCP-Stream Reassembly and

State Tracking in Hardware. FCCM 2002 Poster, Apr 2002.

[92] Nortel. Alteon Content Director. http://www.nortelnetworks.com/products/01/pcd/,

2004.

[93] Nortel. Alteon SSL Accelerator. http://www.nortelnetworks.com/products/01/

alteon/isdssl/index.html, 2004.

[94] Gary J. Nutt. Centralized and Distributed Operating Systems, pages 13–15. New

Jersey: Prentice-Hall, 1992.

[95] Angela Orebaugh, Greg Morris, Ed Warnicke, and Gilbert Ramirez.Ethereal Packet

Sniffing. Syngress Publishing, 2004.

[96] Arne Oslebo. TCP Revisited. InNORDUnet 2002, April 2002.

[97] John K. Ousterhout. Why aren’t operating systems getting faster as fast as hardware?

In USENIX Summer, pages 247–256, 1990.

[98] Rina Panigrahy and Samar Sharma. Reducing TCAM Power Consumption and In-

creasing Throughput. InProceedings of Symposium on High Performance Intercon-

nects (HotI’02), pages 107–111, Stanford, CA, USA, August 2002.

[99] Vern Paxson. Bro: A system for detecting network intruders in real-time.Computer

Networks, 31(23-24):2435–2463, 1999.

[100] Amit Prakash and Adnan Aziz. OC-3072 Packet Classification Using BDDs and

Pipelined SRAMs. InProceedings of Symposium on High Performance Intercon-

nects (HotI’01), pages 15–20, Stanford, CA, USA, August 2001.

[101] Radware. Web Server Director. http://www.radware.com/content/products/wsd/,

2004.

[102] Greg Regnier, Dave Minturn, Gary McAlpine, Vikram Saletore, and Annie Foong.

ETA: Experience with and Intel Xeon Processor as a Packet Processing Engine. In

Hot Interconnects 11, August 2003.

234

[103] H. Norton Riley. The von Neumann architecture of computer systems.

http://www.csupomona.edu/ hnriley/www/VonN.html, 1987.

[104] Martin Roesch. SNORT - Lightweight Intrusion Detection for Networks. InLISA

’99: USENIX 13th Systems Administration Conference, November 1999.

[105] Patrick Brooks Roland Wooster, Stephen Williams. HTTPDUMP Network HTTP

Packet Snooper. http://citeseer.nj.nec.com/332269.html, Apr 1996.

[106] Ravi Sabhikhi. Network processor requirements for processing higher layer proto-

cols such as TCP/IP. http://www.cs.washington.edu/NP2/ravi.s.invited.talk.pdf, Feb

2003.

[107] Lambert Schaelicke, Thomas Slabach, Branden Moore, and Curt Freeland. Char-

acterizing the performance of network intrusion detection sensors. InProceedings

of the Sixth International Symposium on Recent Advances in Intrusion Detection

(RAID 2003), Lecture Notes in Computer Science, Berlin–Heidelberg–New York,

September 2003. Springer-Verlag.

[108] David V. Schuehler, Harvey Ku, and John Lockwood. A TCP/IP based multi-device

programming circuit. InField Programmable Logic and Applications (FPL), page

P2.B, Lisbon, Portugal, September 2003.

[109] David V. Schuehler and John Lockwood. TCP-Splitter: Design, implementation,

and operation. Technical Report WUCSE-2003-14, Washington University in Saint

Louis, March 2003.

[110] David V. Schuehler and John W. Lockwood. Tcp-splitter: A TCP/IP flow monitor

in reconfigurable hardware. InProceedings of Symposium on High Performance

Interconnects (HotI’02), pages 127–131, Stanford, CA, USA, August 2002.

[111] Devavrat Shah and Pankaj Gupta. Fast incremental updates on Ternary-CAMs for

routing lookups and packet classification. InProceedings of Symposium on High

Performance Interconnects (HotI’00), Stanford, CA, USA, August 2000.

[112] Stanislav Shalunov and Benjamin Teitelbaum. Bulk TCP use and performance on

Internet2. InProceedings of ACM SIGCOMM Measurement Workshop, Aug 2001.

[113] Sajjan G Shiva.Pipelined and Parallel Computer Architectures, pages 44–45. New

York: Harper Collins, 1996.

235

[114] R. Sidhu and V. Prasanna. Fast regular expression matching using FPGAs. InIEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM), April

2001.

[115] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet classifi-

cation using multidimensional cutting. InACM SIGCOMM, pages 213–224, Aug

2003.

[116] J. E. Smith and G. S. Sohi. The microarchitecture of superscaler processors. In

Proceedings of the IEEE, December 1995.

[117] Robin Sommer and Vern Paxson. Enhancing byte-level network intrusion detection

signatures with context. InProceedings of the 10th ACM conference on Computer

and communication security, pages 262–271. ACM Press, 2003.

[118] Ioannis Sourdis and Dionisios Pnevmatikatos. Fast, large-scale string match for a

10gbps fpga-based network intrusion detection system. InProceedings of the 13th

International Conference on Field-Programmable Logic and Applications, pages

880–889. Springer-Verlag, 2003.

[119] V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel. Fast and scalable layer four

switching. InACM SIGCOMM, June 1998.

[120] V. Srinivasan and G. Varghese. Fast address lookups using controlled prefix expan-

sion. ACM Trans. Comput. Syst., 17(1):1–40, 1999.

[121] Clifford Stoll. Cuckoo’s Egg: Tracking a Spy Through the Maze of Computer Espi-

onage. Pocket (republished in 2000), 1990.

[122] Yutaka Sugawara, Mary Inaba, and Kei Hiraki. Over 10gbps string matching mech-

anism for multi-stream packet scanning systems. InField Programmable Logic and

Applications (FPL), pages 484–493, Antwerp, Belbium, September 2004.

[123] Symantec. Norton AntiVirus. http://www.symantec.com/nav/nav9xnt/, 2004.

[124] David E. Taylor, John W. Lockwood, and Sarang Dharmapurikar. Generalized RAD

module interface specification of the field-programmable port extender (fpx). Tech-

nical Report WUCS-TM-01-15, Applied Research Laboratory, Department of Com-

puter Science, Washington University in Saint Louis, July 2001. Available on-line

ashttp://www.arl.wustl.edu/arl/projects/fpx/wugs.ps .

236

[125] David E. Taylor, John W. Lockwood, Todd S. Sproull, Jonathan S. Turner, and

David B. Parlour. Scalable IP lookup for programmable routers. InIEEE Infocom

2002, New York NY, June 2002.

[126] David E. Taylor, John W. Lockwood, Todd S. Sproull, Jonathan S. Turner, and

David B. Parlour. Scalable IP lookup for Internet routers.IEEE Journal on Selected

Areas in Communications, 21(4), May 2003.

[127] K. Thompson, G. J. Miller, and R. Wilder. Wide-area Internet traffic patterns and

characteristics.IEEE Network, 11(6):10–23, (Nov/Dec 1997).

[128] David E. Taylor Todd Sproull, John W. Lockwood. Control and Configuration Soft-

ware for a reconfigurable Networking Hardware Platform. InIEEE Symposium

on Field-Programmable Custom Computing Machines, (FCCM), Napa, CA, April

2002.

[129] J. Turner, T. Chaney, A. Fingerhut, and M. Flucke. Design of a Gigabit ATM Switch.

In In Proceedings of Infocom 97, March 1997.

[130] Jon Turner. Open network laboratory: A resource for networking researchers.

http://www.arl.wustl.edu/arl/projects/onl/, 2004.

[131] Jon Turner. Technologies for dynamically extensible networks.

http://arl.wustl.edu/projects/techX/, Jun 2004.

[132] United States. The national strategy to secure cyberspace.

http://www.whitehouse.gov/pcipb/cyberspacestrategy.pdf, Feb 2003.

[133] G. Vigna, W. Robertson, V. Kher, and R.A. Kemmerer. A Stateful Intrusion Detec-

tion System for World-Wide Web Servers. InProceedings of the Annual Computer

Security Applications Conference (ACSAC 2003), pages 34–43, Las Vegas, NV, De-

cember 2003.

[134] Giovanni Vigna, Fredrik Valeur, and Richard A. Kemmerer. Designing and imple-

menting a family of intrusion detection systems. InProceedings of the 9th European

software engineering conference held jointly with 10th ACM SIGSOFT international

symposium on Foundations of software engineering, pages 88–97. ACM Press, 2003.

237

[135] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner. Scal-

able high-speed prefix matching.ACM Transactions on Computer Systems, 19(4),

November 2001.

[136] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac

Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experi-

mental environment for distributed systems and networks. InProc. of the Fifth Sym-

posium on Operating Systems Design and Implementation, pages 255–270, Boston,

MA, December 2002. USENIX Association.

[137] Xilinx. Virtex-E 1.8V FPGA Data Sheet.

http://www.xilinx.com/bvdocs/publications/ds022-2.pdf, June 2004.

[138] Jianping Xu, Nitin Borkar, Vasantha Erraguntla, Yain Hoskote, Tanay Karnik, Sri-

ram Vangal, and Justin Rattner. A 10Gbps Etherenet TCP/IP Processor. InHot Chips

15, August 2003.

[139] Sudhakar Yalamanchili.Introductory VHDL From simulation to syntehsis, pages

36–43. New Jersey: Prentice-Hall, 2001.

[140] Cliff Changchun Zou, Lixin Gao, Weibo Gong, and Don Towsley. Monitoring and

early warning for Internet worms. InProceedings of the 10th ACM conference on

Computer and communication security, pages 190–199. ACM Press, 2003.

238

Vita
David Vincent Schuehler

Date of Birth August 10, 1965

Place of Birth Cincinnati, Ohio

Degrees D.Sc. Computer Engineering, December 2004
M.S. Computer Science, May 1993
B.S. Aeronautical and Astronautical Engineering, May 1988

Professional
Societies

Association for Computing Machines
Institute of Electrical and Electronics Engineers

Publications David Schuehler, Benjamin Brodie, Roger Chamberlain, Ron
Cytron, Scott Friedman, Jason Fritts, Phillip Jones, Praveen
Krishnamurthy, John Lockwood, Shobana Padmanabhan,
Huakai Zhang. Microarchitecture Optimization for Embedded
Systems,High Performance Embedded Computing 8(Septem-
ber 2004).

David V. Schuehler and John Lockwood. A Modular System for
FPGA-based TCP Flow Processing in High-Speed Networks,
Field Programmable Logic and Applications 14(August 2004).

Phillip Jones, Shobana Padmanabhan, Daniel Rymarz, John
Maschmeyer, David V. Schuehler, John Lockwood, and Ron
Cytron. Liquid Architecture,International Parallel and Dis-
tributed Processing Symposium(April 2004).

David V. Schuehler, Harvey Ku, and John Lockwood. A TCP/IP
Based Multi-Device Programming Circuit,Field Programm-
able Logic and Applications 13(August 2003).

David V. Schuehler, James Moscola, and John Lockwood. Archi-
tecture for a Hardware Based, TCP/IP Content Scanning Sys-
tem,Hot Interconnects 11(August 2003) pgs: 98–94.

239

David V. Schuehler and John Lockwood. TCP-Splitter: A TCP/IP
Flow Monitor in Reconfigurable Hardware,Hot Interconnects
10 (August 2002) pgs: 127–131.

Journals David V. Schuehler, James Moscola, and John Lockwood. Archi-
tecture for a Hardware Based, TCP/IP Content Scanning Sys-
tem,IEEE Micro (January/February 2004)24(1): 62–69.

David V. Schuehler and John Lockwood. TCP-Splitter: A TCP/IP
Flow Monitor in Reconfigurable Hardware,IEEE Micro (Jan-
uary/February 2003)23(1): 54–59.

Awards St. Louis Business Journal 2004 Technology Award,St. Louis
Business Journal(April 2004).

3rd Place Award,Washington University Graduate Student Re-
search Symposium(April 2004).

Technical
Reports

David V. Schuehler TCP-Processor: Design, Implementation, Op-
eration and Usage,WUCSE-2004-53
(September 2004).

David V. Schuehler and John Lockwood. TCP-Splitter: Design,
Implementation, and Operation,WUCSE-2003-14
(March 2003).

Harvey Ku, David V. Schuehler, and John Lockwood. TCP Pro-
grammer for FPXs,WUCS-2002-29(August 2002).

Patents David V. Schuehler and John W. Lockwood. Reliable packet mon-
itoring methods and apparatus for high speed networks (Filed:
August 2003).

David V. Schuehler and John W. Lockwood. TCP-Splitter: Reli-
able packet monitoring methods and apparatus for high-speed
networks, (Filed: August 2002).

240

Industry
Experience

Financial Industry
Technical Vice President - Research & Development
June 1991 to present
Perform various activities associated with delivering real-time
financial data to the global community over a worldwide IP
based network. Develop embedded software, device drivers,
communications software, and application software in Assem-
bly, Pascal, C, C++, Java and various scripting languages to
process and deliver financial data worldwide. Design, archi-
tect, implement, support, and manage major components of the
data delivery system.

Defense Industry
Senior Software Engineer
June 1989 to June 1991
Develop real-time software in FORTRAN, C and Assembly to
perform hardware-in-the-loop missile simulations. The tasks
ranged from developing software to generate, control and ma-
nipulate NTSC video that interfaced with flight hardware, firm-
ware for interface electronics which sit between flight hardware
and main simulation computers, telemetry processing software,
and 3-D flight visualization software.

Healthcare Industry
System Programmer
October 1988 to June 1989
Maintain, support and manage computer equipment for 1,000
bed hospital. Develop client-server based applications, com-
munications software, and various utilities for medical records
and operations departments. Make recommendations for equip-
ment purchases, perform software installations and upgrades,
train users and troubleshoot problems.

December 2004

	Techniques for Processing TCP/IP Flow Content in Network Switches at Gigabit Line Rates
	Recommended Citation
	Techniques for Processing TCP/IP Flow Content in Network Switches at Gigabit Line Rates

	tmp.1470340445.pdf.d3vhr

