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Class hierarchy design is central to object-oriented software development. How-

ever, it is sometimes difficult for developers to anticipate all the implications of a

design until implementation is underway. To support experimentation with different

designs, we extend prior work on live development environments to allow run-time

modification of the class hierarchy. The result is a more fluid object-oriented develop-

ment process, in which immediate feedback from the executing program can be used

to guide hierarchy design.

This thesis presents a framework and developer support for run-time modifi-

cation of class inheritance relations in JPie, a live visual programming environment

for Java. Most notably, the framework supports class reloading without modification

of the Java Virtual Machine.
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1 Introduction

JPie is a tightly integrated programming environment supporting live development

of Java applications through direct manipulation of graphical representations of pro-

gramming abstractions [8, 9, 10]. JPie permits class modifications in running ap-

plications, with changes affecting existing instances of those classes. This run-time

modification eliminates the edit-compile-test cycle.

Enabling run-time modification of class hierarchy relations is important for two

reasons. First, it rounds out the set of run-time changes allowed in JPie, which prior

to this work consisted only of fine-grain modifications of classes, such as creation,

deletion, and modification of fields, methods, and method bodies. Second, run-time

modification of the class hierarchy provides a useful tool in computer science edu-

cation. Allowing run-time modification of the hierarchy lets beginning programmers

experiment with system design changes easily, illuminating the full power of object-

oriented programming.

The majority of fine-grain run-time changes (addition, modification, and re-

moval of fields, methods, and code) are handled through a pairing of Java’s reflection

mechanism and JPie’s dynamic classes [11]. However, the prior work on dynamic

classes in JPie assumes that the parent and implemented interfaces of a dynamic class

do not change over time. This thesis removes that assumption to permit coarse-grain

changes as well: the class hierarchy can be modified while the program is running.

For interoperability with standard Java classes, JPie’s dynamic classes use

a compiled proxy class, which we call a compiled peer. If we allow ancestors or

implemented interfaces of a dynamic class to change, then a new compiled peer class

must be created and loaded. In typical Java applications, the system class loader
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built into the Java Virtual Machine (JVM) handles the loading of classes. However,

the system class loader does not provide a way to unload or reload classes, a necessary

feature to support changes to the class hierarchy. In order for JPie to allow run-time

modification of the class hierarchy, a class loader which allows the reloading of classes

is necessary.

The remainder of the thesis is organized as follows. We begin with background

on JPie, a discussion of related work, and a brief introduction to Java’s class loading

system. In Section 2 we present a dynamic class loader which provides the abstraction

of class reloading. This class loader is implemented completely in Java, and does not

require modification of the JVM. Section 3 examines how modifications to the class

hierarchy can impact a live system, and discusses how these issues are dealt with in

JPie. In Section 4, we present a Graphical User Interface (GUI) for manipulating class

hierarchy relations. We conclude, in Sections 5 and 6, with a look at applications for

the dynamic class loader outside of JPie, and a discussion of our plan for future work.

A discussion of the tests used for our implementation can be found in Appendix A.

1.1 Background on JPie

JPie is a live visual programming environment for the Java Programming Language

[8, 9, 10]. With JPie, programmers are able to modify their application while it

is running. Possible modifications include the creation of classes, and the addition,

removal, and modification of all fields, methods, and code. At any time, these classes

can be exported as Java source code or Java bytecode, and used outside of JPie.

JPie permits fine-grain modifications of classes through a visual interface which

eliminates the possibility of syntactic errors. In addition to standard Java support

for graphical user interfaces and threads, JPie provides shortcuts that streamline the

creation of views, events, and behaviors. Views provide a visual representation of

object instances, events extend views to provide basic event handling, and behaviors

provide simple threading capabilities. A more thorough examination of JPie can be

found elsewhere [8, 9, 10].

JPie supports live development through the use of dynamic classes [11]. Dy-

namic classes are interoperable with compiled classes, including run-time method

overriding and polymorphism. Dynamic classes consist of two main parts, the dy-

namic portion, which can be modified at run-time, and the compiled peer, which

enables interoperability with compiled classes. The dynamic portion of a dynamic
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class contains the user’s code (fields and methods). When a user adds, modifies, or

removes code, the dynamic portion of the dynamic class is updated.

The compiled peer is an automatically generated class that expresses the por-

tion of a dynamic class’s interface dictated by its class hierarchy relationships to

compiled classes. For example, suppose Parent is a compiled class and Child is a

dynamic class which extends Parent. Then the compiled peer of Child would con-

tain an implementation of each method inherited from Parent (and its ancestors).

These methods either pass their calls on to the dynamic portion of Child (if an over-

riding method has been defined by the user) or make the appropriate super calls.

For interoperability with compiled classes, each instance of a dynamic class presents

itself as an instance of its compiled peer. Compiled classes, then, can call methods

polymorphically on instances of the compiled peer, which dispatch dynamically over-

ridden methods by proxy into the dynamic portion of the dynamic class. Through this

mechanism, live development is accomplished without modification of the language

or the JVM.

A dynamic class’s compiled peer works well for interoperability, provided that

all changes to a dynamic class are fine-grainedadding and removing methods or fields,

and modifying code. However, if the developer changes the position of a dynamic class

in the class hierarchy, this may change its set of inherited members and therefore

require that the dynamic class’s compiled peer be regenerated and reloaded. This

thesis addresses how to reloaded classes without modifying the JVM and how to cope

with existing instances of dynamic classes whose ancestors have changed.

1.2 Related Work

A great deal of work has been done on providing mechanisms for the reloading or

replacement of code in numerous operating systems and run-time environments [1, 2,

3, 5, 7, 14, 16]. Such mechanisms are desired so that large or mission-critical systems

can be updated without downtime.

However, none of these solutions meets the unique needs of a live develop-

ment environment. The majority of systems address the reliability and robustness

requirements imposed by live, deployed systems [1, 13]. As a result, these systems

require the programmer to provide explicit instructions on how current data should

be migrated. The effort required to create migration instructions is justified only for

live modification of systems already deployed.
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Because JPie is a development environment, rather than a production run-

time environment, forcing the developer to specify the migration process for drastic

design changes would overshadow any advantages gained from live modification. (The

developer would sooner restart the application than have to carefully specify how to

upgrade old instances.) Therefore, we seek a fluid development environment that

supports maximally live type-safe class hierarchy modification to the extent that

there is no extra burden on the developer.

Other solutions to the problem of code replacement involve modifying the lan-

guage [6] or the execution environment [12, 15]. While it would be possible to create

a modified JVM or introduce modifications to the Java language, such approaches

are undesirable for JPie. Key goals in the development of JPie have been practicality

through the use of the Java language and portability through the use of the standard

JVM.

An alternate approach to class reloading without modification of the JVM

exists [17]. This approach suggests placing new versions of classes in an alternate

package to enable reloading. Not only does this introduce a host of protection issues,

it also places a burden on the file system. Additionally, this approach provides no

compatibility between old and new versions of classes. Because we are able to uti-

lize the additional level of indirection provided by dynamic classes, our approach is

simpler, more compatible, and more extensible than the package-based approach.

1.3 Java’s Class Loaders

The Java Virtual Machine (JVM) provides a system class loader. This class loader

is responsible for locating and loading classes explicitly referred to by code executing

inside the JVM, as well as those requested by the Class.forName method, which allows

a class to be loaded by providing its fully-qualified name.

The system class loader will only load a class once, and provides no mechanism

for unloading a class. In addition, the system class loader will only search for classes

inside the JVM’s classpath, and the location of a class’s bytecode cannot be explicitly

specified. Therefore, the system class loader will simply load bytecode from the first

match found.

The Java framework also provides a ClassLoader class. When instances of this

class are used for loading classes, the programmer is afforded a little more control.

Each ClassLoader instance has a parent ClassLoader (if none is specified at time of
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instantiation, the system class loader is used as the parent). An instance may load

any class, provided a class with the same fully qualified name has not been loaded

by that instance or any ancestor instance. Additionally, a ClassLoader instance may

load a class directly from a byte stream, allowing loading of specific files.

The JVM requires that all other classes referred to by a class be loaded by its

class loader or one of its class loader’s ancestors. (Because the system class loader is

an ancestor of all class loaders, it is used to load all referenced classes which are not

otherwise explicitly loaded.) Each object has a getClass method which returns a Class

instance representing the initial object’s class. Each Class object has a getClassLoader

method. Therefore, if the same class is loaded by two different class loaders, they will

be represented by unique Class instances, and will be unique types.

2 Dynamic Class Loader

We present a dynamic class loader which is at the heart of our framework allowing

modification of the class hierarchy. This class loader allows reloading of compiled

classes into the JVM through a tree-based technique.

In this section, we first consider the design of the dynamic class loader. Then,

we discuss how it is used through an example. Finally, we explain how class versioning

automates class reloading in our system.

2.1 Design

The dynamic class loader consists of two classes, DynamicLoader and PeerLoader.

The DynamicLoader class presents a static interface for loading and reloading classes.

The classes are actually loaded by instances of the PeerLoader class.

The PeerLoader class is a relatively straightforward extension of Java’s built-in

ClassLoader class. In this design, each PeerLoader instance loads only one class (or,

more specifically, one version of one class). Instances of this class are responsible for

retrieving bytecode data from a specified file, and loading that bytecode as a specified

class name. Additionally, PeerLoader instances keep track of version information, as

discussed in Section 2.3.

The DynamicLoader class manages all of the PeerLoader instances and the

classes they load. PeerLoader instances are constructed in a hierarchy tree mirroring

the current class hierarchy. At the top of the PeerLoader tree is the system class
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loader. All regular Java classes are loaded by this class loader. (Because these classes

cannot be modified, they will not need to be reloaded within JPie.) Directly below the

system class loader is a special root PeerLoader. This PeerLoader is not responsible

for loading any classes. Instead, it serves as a parent loader for all PeerLoaders which

load peer classes with non-dynamic parents. Additionally, the root PeerLoader is

responsible for creating all packages.

Let C be a class, and let parent(C) and loader(C) represent C’s parent class,

and C’s loader, respectively. In order to load C, parent(C) is first determined. (This

may be accomplished without first loading C by consulting the dynamic class object

for C.) Then, C is loaded using a new PeerLoader instance whose parent loader

is loader(parent(C)). Finally, the newly loaded class C is then mapped to its fully-

qualified name and cached in the DynamicLoader. When additional requests for this

class are made to the DynamicLoader, the cached class is returned.

Reloading a class C is exactly the same as loading the class initially. First, a

new PeerLoader instance is created whose parent loader is loader(parent(C)). This

new loader is then used to load the new version of C. Additionally, the cache in the

DynamicLoader is updated, so the new version will be returned with each additional

request.

An example of the loading and reloading process is given below. We defer

discussion of how JPie initiates the reloading of a class to Section 2.3.

2.2 An Example

Suppose the user is designing a process control system which consists of sensors,

actuators and control units. Figure 1 presents two possible class hierarchy design

choices. Further suppose that the user initially chooses Configuration 1, and begins

implementation. Part way through implementation, however, the user decides that

Configuration 2 will provide substantial benefits.

We begin by considering how the classes of Configuration 1 are initially loaded.

In JPie, only peer classes of dynamic classes will potentially be reloaded. So, all

regular compiled classes (here, Object and Thread, shown in gray) are loaded by the

system class loader.

As discussed above, all compiled peers of dynamic classes are loaded by a

PeerLoader instance, and each PeerLoader instance loads only one class (or more

specifically, only one version of one class). Each time a load occurs, a new PeerLoader
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Configuration 1

Object

Thread ControlUnit

SensorActuator

Object

Thread Sensor

ControlUnit Actuator

Configuration 2

Figure 1: Two possible configurations of a class hierarchy. Compiled classes are shown
in gray, dynamic classes are shown in white.

System Class Loader
Object, Thread

PeerLoaderroot

Creates Packages

PeerLoader1

ControlUnit

PeerLoader2

Sensor

PeerLoader3

Actuator

Figure 2: The PeerLoader tree configuration after loading Configuration 1.

instance is created. Note that parent(loader(C)) = loader(parent(C)) for all dynamic

classes C where parent(C) is a dynamic class. If parent(C) is not a dynamic class (and

thus not loaded by a PeerLoader), a special root PeerLoader is used as the parent.

Figure 2 shows the PeerLoader tree configuration after loading Configuration 1.

When the user switches to Configuration 2, only classes with modified ances-

tors must be reloaded according to the process described above. In this example,

this includes all dynamic classes shown. The reloading must occur down the hier-

archy tree. For example, the compiled peer of the Sensor class must be reloaded

before the compiled peer of the Actuator class. This is necessary to ensure that

loader(parent(C)) = parent(loader(C)) for all dynamic classes C. If a class were

reloaded before its parent, the JVM would observe that the new parent was not yet

loaded, and would load the new parent into the system class loader. As a result, the

parent could not be reloaded again.
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System Class Loader
Object, Thread

PeerLoaderroot

Creates Packages

PeerLoader1

ControlUnit

PeerLoader4

ControlUnit

PeerLoader5

Sensor

PeerLoader2

Sensor

PeerLoader3

Actuator

PeerLoader6

Actuator

Figure 3: Changes to the PeerLoader tree configuration after switching to Configu-
ration 2.

Our loader tree, with one class loader per class, ensures that each time a class

C is reloaded we can place its loader at the appropriate place in the tree so that it sees

the most recent versions of all the other classes in C’s ancestry. Upon transitioning to

Configuration 2, new PeerLoaders are instantiated to load the compiled peers of the

Sensor, Actuator, and ControlUnit classes. Figure 3 shows the new configuration

of the PeerLoader tree. After each class is loaded, the new compiled peer classes are

placed in the DynamicLoader’s cache. This completes the reloading process, and all

new instances will conform to the user’s design change. Note that the PeerLoaders

which loaded the initial versions of these compiled peers still exist after the classes

are reloaded. Thus, old instances can still access the bytecode from the old versions.

Section 3 discusses the issues which arise when multiple versions of a class coexist in

the system.

2.3 Versioning and Automatic Reloading

Within JPie, each dynamic class has a version. Whenever a course-grain change

occurs, such as class hierarchy modification, the version numbers of affected dynamic

classes are incremented.

When a dynamic class’s compiled peer is loaded by a PeerLoader, the current

version of the dynamic class is recorded by the PeerLoader. When JPie requests a

peer class from the DynamicLoader, the version of the compiled peer most recently

loaded is compared with the current version of the associated dynamic class. If the
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version numbers match, the DynamicLoader simply returns the cached compiled peer

class.

However, modifications to the class hierarchy necessitate the reloading of af-

fected classes’ compiled peers. To initiate lazy reloading, the hierarchy modification

process will increment the version numbers of affected classes. The next time JPie

asks the dynamic class loader for a modified class’s compiled peer class, the version

discrepancy will be observed. The DynamicLoader will then trace the version dis-

crepancies up the class hierarchy until the root PeerLoader is reached. The compiled

peer with a version discrepancy that is highest in the tree is reloaded first, and then

all compiled peers below it are reloaded sequentially by a breadth-first traversal of

the tree. This both automates the reloading process and guarantees that all classes

are loaded in the appropriate order.

3 Effects of Class Hierarchy Modification in a Live

System

Modification to the class hierarchy in a live system has the potential to cause a wide

variety of problems, from missing methods to the unexpected execution of old code.

These problems may arise in any class which has its ancestry modified. In this section,

we first classify the problems which can arise from hierarchy modification. We then

discuss how these problems are handled in JPie.

3.1 A Classification of Potential Problems

There are three main effects of hierarchy modification that can lead to problems:

the removal of inherited members (fields and methods) from a class, the addition

of inherited members to a class, and the difference in types between old and new

instances of the class. Recall that each dynamic class has a compiled peer, and that

each instance of a dynamic class has two parts: the dynamic instance (which holds

the values of the dynamically declared fields) and the compiled peer instance (which

holds the values of the fields inherited from compiled ancestors and on which inherited

compiled methods are executed). Also recall that the compiled peer’s type represents

the position of the dynamic class in the class hierarchy. When compiled code holds

a reference to an instance of a dynamic class, it does so by holding a reference the

compiled peer instance. However, when the position of a dynamic class in the class
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hierarchy changes, the compiled peer of that class must change accordingly. When

this happens, we say that the previously existing instances are abandoned. In other

words, the type of the compiled peer instance is no longer the compiled peer class of

its corresponding dynamic class.

Suppose that an ancestor of a dynamic class C changes from A to A′. (That

is, either C’s parent changes from A to A′, or C has some ancestor D whose parent

changes from A to A′.) We have three cases: A′ is a descendent of A, A′ is an ancestor

of A, or A′ is unrelated to A.

When A′ is a descendent of A, inherited members will only be added to C.

When A′ is an ancestor of A, inherited members will only be removed from C. When

A′ is unrelated to A, inherited members will be both added to and removed from C.

In all three cases, the old and new types of C will differ. So, in all three cases, the

existing instances of C will become abandoned.

The distance from C to the closest common ancestor of A and A′ gives an

indication of the amount of change C undergoes in a hierarchy modification. In the

first two cases, this will be the distance to A and A′ respectively. However, in the

third case (A and A′ unrelated) the closest common ancestor will be further away

than both A and A′. Loosely speaking, the number of potential problems increases

as the distance to the closest common ancestor becomes greater, since the number of

classes from which members are inherited and disinherited increases.

3.2 Handling Abandoned Instances in JPie

The JPie philosophy is to aggressively support run-time program modification, even

when such changes affect existing instances. In keeping with this philosophy, our goal

is to allow abandoned instances to continue to participate in the execution, provided

that the fact that they are abandoned cannot be observed. Recall that within JPie,

dynamic classes may extend either dynamic or compiled classes, but compiled classes

cannot extend dynamic classes. As a result, class hierarchies have a distinct boundary

between compiled classes and dynamic classes. This boundary affords us a significant

advantage when handling hierarchy modification problems.

We break up the possible hierarchy modifications into two categories: dynamic

ancestor changes, and compiled ancestor changes. In the example given in Figure 1,

the Sensor and Actuator classes undergo only dynamic ancestor changes (the only

compiled ancestor of these classes, Object, remains the same in both configurations).
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In contrast, the ControlUnit undergoes only a compiled ancestor change, adding

Thread (a compiled class) to its ancestry.

While we keep these changes isolated in our example for expository purposes,

a dynamic class may undergo both types of changes in a single hierarchy modifica-

tion. However, any hierarchy modification consisting of both dynamic and compiled

ancestor changes can be decomposed into a series of hierarchy modifications, each

containing only one type of ancestor change.

The next two sections discuss how the problems presented in Section 3.1 are

handled for each type of ancestor change.

3.3 Dynamic Ancestor Changes

Dynamic ancestor changes occur when a dynamic class loses and/or gains new dy-

namic ancestors. In practice, most design changes occur in user-defined classes, rather

than in the library classes that support them. As a result, the majority of ancestor

changes are of this type. Due to the level of indirection created by the dynamic class

system, problems arising from dynamic ancestor changes are easier to handle than

those arising from compiled ancestor changes.

All inherited members that are added or removed from a dynamic class as a

result of a dynamic ancestor change will be dynamic members. That is, all modified

members will be declared within some dynamic class. These modifications, then, are

exactly the same fine-grained modifications already supported by dynamic classes

[11] in JPie, and will be reflected in both abandoned and new instances. (In JPie,

members are used by a reference to the declaration object, not by name matching,

so the overriding of methods is not based on the lexical signature of the methods,

and fields are not masked by name. Therefore, there is no risk that a newly acquired

dynamic member will accidentally override or mask a member declared by a compiled

ancestor.)

The compiled peer types of new and abandoned instances will differ as a result

of dynamic ancestor changes. However, no problems arise because of this. Because

only the dynamic ancestors of new and abandoned compiled peer instances differ, all

compiled peer instances will have identical compiled ancestors. References in complied

classes can only have compiled types. As a result, compiled classes will not have direct

access to the dynamic members which were added or removed. All members directly

accessible by compiled class instances will be expressed through both the new and
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abandoned compiled peer instances. Furthermore, code contained in compiled classes

can only perform type casts to other compiled types. Due to their identical compiled

ancestries, both new and abandoned compiled peer instances may be cast identically.

Unlike the type of the compiled peer instances, which are determined and fixed

upon creation, the dynamic class system allows the dynamic instance’s type to change.

Therefore, abandoned instances of a modified dynamic class will automatically express

the new type to all instances of dynamic classes.

While dynamic ancestor changes may introduce problems, these problems are

dealt with elegantly by the system. As a result, both abandoned and new instances

behave identically, and are indistinguishable to the user.

3.4 Compiled Ancestor Changes

Compiled ancestor changes occur when a dynamic class loses and/or gains new com-

piled ancestors. These changes lead to the addition and removal of inherited compiled

members (members declared in compiled classes). In addition, abandoned compiled

peer instances will express the wrong type to other compiled instances, a problem

that cannot be solved by the ability to modify the type of the dynamic instance.

Suppose class C undergoes a compiled ancestor change, and the user’s system

contains both abandoned and new instances of C. Code that interacts with these

instances may not function properlytype casting may fail, and members may be un-

available. These failures will lead to run-time exceptions, which will be caught by the

JPie debugger. However, depending on whether the instance is new or abandoned,

these exceptions will mean very different things. We consider each of these cases in

turn.

A failure occurring in a new instance is caused by old code that attempts to

access a member of C which has been removed (or that attempts to perform a cast to

the abandoned C type). This code is incorrect (out-of-date), and must be modified.

The error message JPie provides for the offending code will convey the appropriate

message to the user, and any attempt to execute the code will pause the execution

at that point in the debugger so that the user can correct it.

A failure occurring in an abandoned instance is caused by code that attempts

to access a new member of C (or that attempts to cast the abandoned instance to

the new type). If we simply allow execution to proceed, the exception thrown in this

case could be misleading. The code may in fact be correct, and fail only because it
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was executed using an abandoned instance. Our goal is to allow the use of abandoned

instances as long as possible, but to prevent execution within an abandoned instance

that would expose its type incompatibility. To this end, when a class undergoes a

compiled ancestor change, its existing instances are marked as stale. Code is allowed

to interact with this class exactly as before. However, any exceptions which occur

as a result of stale instances are caught before reaching the debugger, and rethrown

as an AbandonedInstanceExcepetion. This exception reveals the true cause of the

error to the programmer, and allows the programmer to abort offending threads and

resume testing and development with the remaining instances.

Returning to the example shown in Figure 1, we see that new and old in-

stances of Sensor and Actuator will function identically, because these classes have

only undergone dynamic ancestor changes. However, ControlUnit has undergone a

compiled ancestor change. Any existing ControlUnit instances may lead to aban-

doned instance failures.

In practice, we expect that most hierarchy modifications in a live development

environment will occur within the dynamic portion of the hierarchy, and therefore

will not result in abandoned instance failures. Furthermore, we expect that program-

mers would naturally restart the execution after drastic hierarchy changes that could

result in such failures. In cases where the programmer does not anticipate abandoned

instance failures, the run-time system will call attention to such failures through the

exception mechanism, and provide the opportunity to continue executing with the

remaining instances.

One might contemplate entirely eliminating abandoned instance failures by

adding support for object migration. However, besides placing an unnecessary burden

on the developer, comprehensive migration support would require modification of the

JVM so that references could be replaced globally [15]. Execution within the standard

JVM has been a key goal in the development process of JPie as a whole, and is a

constraint in the design of many systems. As a result, the work presented above

represents the limit of abandoned instance interoperability that can be achieved under

this constraint.

4 Graphical Manipulation of the Hierarchy

JPie provides direct manipulation of graphical representations of programming ob-

jects. In order to extend this paradigm, a graphical user interface (GUI) for hierarchy
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modification was developed. We briefly present the GUI design and then discuss how

the GUI interacts with our class reloading framework to ensure that reloading occurs

correctly and efficiently.

4.1 Design of the Class Hierarchy Editor

Within JPie, a programmer’s modifications to the system are typically reflected imme-

diately. However, an atomic hierarchy modification often consists of several discrete

class ancestry changes. For instance, in the example above, each dynamic class under-

goes a parent change. However, the programmer intends the group of modifications

to represent one atomic change to the system.

To meet this need, modifications to the class hierarchy must first be specified

within the editor, and then committed to the system. The programmer may specify

any number of class ancestry changes without affecting the system. Once specification

is complete, the programmer commits the changes. The system then determines the

most efficient order to update and reload affected classes.

Besides meeting atomicity requirements, the specification and committal pro-

cess provides several benefits. Foremost, it allows the programmer to experiment with

the design without introducing new abandoned instances at the specification of each

change. If the programmer chooses not to use all or part of a hierarchy modification

before committal, existing instances of the involved classes are not abandoned. Ad-

ditionally, the committal process allows the system to determine the most efficient

way to modify the system so that the user’s hierarchy modifications are reflected. A

user’s thought process may not follow the top-down modification necessary to update

the system efficiently. Updating the system after each modification made by the user

could result in the wasted creation of many intermediate classes. (This efficiency

concern is discussed further in Section 4.3.)

The committal process opens the door for one potential problem, however. Due

to Java language constraints, some modifications to the hierarchy are not allowed. For

example, final classes cannot be extended. Additionally, the interfaces and ancestors

of a class must not have methods with conflicting signatures. (Conflicting signatures

arise when two or more methods have identical names and parameter types but differ-

ent return types, or when the exceptions thrown by a method are incompatible with

those thrown by the method it will potentially override.) Without some analysis of a

programmer’s modifications during the specification process, he or she could proceed
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down a design path which is not allowed. Presenting the user with the problems

during committal would both confuse the user and go against the grain of immediate

feedback central to a live development system.

In our system, this problem is solved through the use of a signature builder.

When the user attempts to specify a modification to the hierarchy, the signature

builder constructs signatures of each affected class to determine if the modification

would violate any language constraints. If such a violation would occur, the signature

builder throws an exception which details the type of violation. The GUI does not

allow specification of the modification, and provides immediate feedback as to the

reason.

4.2 Use of the Class Hierarchy Editor

The class hierarchy editor initially displays no classes. The programmer drags the

classes he or she wishes to work with from a class listing into the class hierarchy editor.

The representation of classes is shown in Figure 4. Both compiled and dynamic classes

may be placed in the hierarchy editor, but modifications may only be made to dynamic

classes. Classes which are not involved in a modification may also be removed from

view at any time.

In the class hierarchy editor, modifications are made through a set of drag-and-

drop actions, called gestures. While a complete discussion of the supported gestures

is beyond the scope of this thesis, an example is shown in Figure 4. There, the line

connecting a child to its parent class is being dragged to a new parent, specifying an

inheritance change. Additional gestures exist for class creation, class extension, and

interface implementation.

When a modification would violate Java language semantics (as discussed in

Section 4.1), gestures for this modification are disallowed. When the user attempts a

disallowed gesture, a visual cue (unique to the gesture) and a message in the editor’s

status bar explain the reason the gesture is not allowed.

When the new design is complete, the programmer selects an option to initiate

the commit process. Alternatively, the user may chose to save the current configura-

tion for later work, or discard the changes entirely.
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Figure 4: A view of the class hierarchy editor. Here the parent of the Sensor class is
being modified.

4.3 The Commit Process

The committal process is intended to be an atomic change to the system. However,

each affected dynamic class must be modified and its compiled peer reloaded sequen-

tially. To guarantee atomicity, then, execution of dynamic code (and thus, creation

of dynamic instances) must be halted during the entire committal process.

The signature builder guarantees that the user’s modifications represent a valid

Java hierarchy at any point in the editing process. Therefore, the committal process

must only be concerned with how to perform the modifications.

A Java class file contains information not only about the class itself, but also

about the class’s parent. Information about a class’s additional ancestors is deter-

mined when the class is loaded. Therefore, dynamic classes that undergo any type of

ancestor change must be have their compiled peers reloaded after a hierarchy mod-

ification, but only dynamic classes that undergo a parent change must have their

compiled peers recreated and recompiled.

As discussed in Section 2, the order in which classes are reloaded is important

for correctness. The design of the dynamic class loader enforces this order. While

the order in which new peer classes are created and compiled is not important for

correctness, it is important for efficiency. Suppose dynamic classes A and B have

both undergone parent changes, and thus their peer classes must be recreated and

recompiled. Further suppose that B is now the child of A. If B’s compiled peer is

recreated and recompiled before A’s compiled peer, the resulting class file will contain

information regarding the old version of A. Once A’s new compiled peer is created

and compiled, B’s compiled peer will have to be created and compiled again. This
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problem is solved by recreating and recompiling from the root of the new hierarchy

downward.

The versioning system implemented in the dynamic class loader (Section 2.3)

guarantees that classes will be reloaded when necessary. As a result, the commit-

tal process does not need to explicitly force the reloading of affected classes. The

committal process, then, consists of three steps:

1. Determine an efficient committal order.

2. Recreate and recompile peer classes which have undergone parent changes in

the determined order.

3. Update version numbers of dynamic classes which have undergone ancestry

changes, and mark existing instances of those classes as stale.

As stated above, the efficient committal order is determined by a breadth-first

traversal of the new hierarchy tree. New peer classes are created and compiled through

the same mechanism used to create the initial peer classes. The final step, updating

version numbers and marking existing instances as stale, is straightforward and may

be done in any order (since execution of dynamic code is halted during committal).

5 Further Applications

The pairing of dynamic classes and the dynamic class loader could be used to provide

support for run-time code modification and updating in any system. This improves

on prior approaches because it does not require modification of the language or the

JVM. It is also simpler to use and maintain than alternate approaches.

If modification of the JVM was allowed in a given application, the use of the

dynamic class loader would be even more versatile. By adding a global reference

replacement mechanism to the JVM, references to old versions of a class’s instances

could be replaced with pointers to new replacement instances after reloading and

migrating.
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6 Future Work

One area of future work is to allow class renaming and package reassignment in

addition to inheritance changes. Many of the same underlying reloading techniques

will be used to accomplish this.

Another area of future work involves modifying JPie so that the application

being developed runs in a separate JVM from JPie itself. This would allow the pro-

grammer’s application to be killed and restarted without restarting JPie. With this

modification, the programmer would have the option of restarting the application af-

ter drastic hierarchy modifications, eliminating the possibility of abandoned instance

failures.

7 Conclusion

We have presented a class reloading mechanism which supports the ability to modify

the class hierarchy in a live development system without modification of the language

or the JVM. Live modification of the class hierarchy encourages experimentation,

creating a fluid development process lacking the penalties typically associated with

making design changes after implementation has begun.

We provide a fluid development environment that supports maximally live

type-safe class hierarchy modification to the extent that there is no extra burden on

the developer. While drastic changes may require a developer to restart an applica-

tion, the more frequent kinds of incremental changes and minor class hierarchy design

changes can proceed during live execution without the overhead of specifying object

migration.
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A Implementation Verification

As stated in Section 3.1, we can classify the effects of hierarchy modification into

three broad categories. Modifying the class hierarchy can lead to: the removal of

inherited members from a class, the addition of inherited members to a class, and

differences in types between old and new instances of a class. These effects manifest

themselves very differently in compiled and dynamic code.

In this section, we discuss the verification procedure used to insure that all

modification scenarios behave as expected. We first explain the test scenario in gen-

eral, and then we examine each type of effect in detail.

A.1 Test Scenario

A rather complex class hierarchy modification is required to generate all possible

effects of a hierarchy modification. The class hierarchy modification we used is pre-

sented in Figure 5. Each class is shown with the methods it declares (or overrides).

Configuration 1 Configuration 2

Parent
Methods: p

A
Methods: a

B
Methods: b, i

C
Methods: c

D
Methods: d

E
Methods: a, e

I
Methods: i

Parent
Methods: p

A
Methods: a

B
Methods: b, i

C
Methods: c

E
Methods: a, e

D
Methods: d

I
Methods: i

Figure 5: Class hierarchy used for testing, shown before and after modification. Com-
piled classes are shown in gray, dynamic classes in white. I is an interface.

Test Case Justification

This test hierarchy, when coupled with both compiled and dynamic test code, allows

us to test all effects of class hierarchy modification. First, because the hierarchy
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contains both compiled and dynamic classes, we can ensure that both compiled and

dynamic code operate as expected after the modification.

Second, because both D and E gain, lose, and keep some of their inherited

members, we are able to test the effects of each of these changes. (For example, D

loses the inherited method b, gains the inherited method c, and keeps the inherited

method p). It is important to note that the members gained and lost are both

compiled and dynamic.

Finally, this hierarchy lets us test two special cases. First, the use of the inter-

face I lets us test correct functionality when classes gain or lose inherited interfaces.

Second, because E overrides an inherited method a, we are able to verify the behavior

when the inherited method is lost during modification.

A.2 Effects of Hierarchy Modification

In this section, we examine the effects of hierarchy modification to ensure that they

are handled correctly within the system. We first consider the effects on compiled

code, and then the effects in the dynamic domain.

Effects of Hierarchy Modification in Compiled Code

In order to verify appropriate behavior in the compiled domain, a compiled Tester

class was created. A portion of the code for this class is given in Figure 6. Essentially,

the test method takes in a Parent object, and determines its true compiled type. The

compiled type is printed, and the appropriate methods are called.

Objects of type D and E created both before and after the hierarchy modification

are passed to this test method. As discussed in Section 3.2, we expect instances

created before hierarchy modification to behave like their old types when interacting

with compiled code (and new instances to behave as their new types.) We choose not

to throw AbandonedInstanceExceptions within compiled code, since compiled code

may not necessarily be written to expect such exceptions.

The only real case of interest here is when compiled code calls dynamic code

polymorphically. In our test scenario, this occurs when objects of type E are passed

to the Tester class. New instances of type E will be of type B, and will have method

b called. However, compiled code will see old instances of type E as instances of

type A. Because a is overridden in E, when the inherited method a is lost, the user is

prompted to chose whether to convert a to a normal method in E, or to delete it.
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public void test(Parent p) {

System.out.println("Tester: p is an instance of Parent - result: "
+ p.p());

if (p instanceof A)
System.out.println("Tester: p is an instance of A - result: "

+ ((A) p).a());
if (p instanceof B)
System.out.println("Tester: p is an instance of B - result: "

+ ((B) p).b());
if (p instanceof I)
System.out.println("Tester: p is an instance of I - result: "

+ ((I) p).i());
}

Figure 6: Implementation of test method for testing compiled code.

If the method is deleted, compiled code will no longer call a method polymor-

phically on old instances of E. Instead, the code declared in A will be executed. If,

however, E contains dynamic code matching the signature of a (i.e. the method is

converted to a regular method), this code will still be called polymorphically on old

instances of E when method a is called. Should the dynamic code ever be deleted

(or its signature modified), the compiled code will simply begin executing the code

declared in A for old instances.

Effects of Hierarchy Modification in Dynamic Code

Because the user interacts directly with dynamic code, we require far greater support

and tolerance for the effects of hierarchy modification. For example, a hierarchy mod-

ification may change in a variable’s type, which can cause dynamic code to become

invalid. Additionally, code written after the modification may not be able to exe-

cute on old instances because old instances do not contain the appropriate compiled

inherited methods. Finally, method overriding may change as a result of hierarchy

modification. All of these issues must be dealt with appropriately.

In order to verify each of these scenarios, a dynamic class DynamicTester is

used. When instances of this class are created, instances of D and E are created

as member variables. So, we can encapsulate old and new instances of D and E by

creating DynamicTester instances before and after hierarchy modification.

There are four cases of interest in the dynamic domain which arise from hi-

erarchy modification. We first consider the effects of losing inherited members due
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to hierarchy modification. Dynamic code accessing these members should become

invalidated. To test this, we write code in DynamicTester which calls methods that

will be removed (for example, code which calls method b on an instance of D could

be used). Then, the hierarchy is modified, and we certify that the code is invalidated

with the appropriate error message.

Next, we consider the effects of losing inherited members on overriding mem-

bers in dynamic code. For example, E loses the inherited member a, which it overrides,

during the hierarchy modification. Assuming E’s implementation of a contains no su-

per calls, the dynamic code may still be syntactically valid. However, it may have a

completely different semantic meaning. So, when performing the hierarchy modifica-

tion, the system recognizes this, and asks the user if she wants to remove the method

or convert it to a normal method.

Additionally, we consider the effects of gaining inherited members as a result

of hierarchy modification. If these members are dynamic, they should be accessible

to both new and old instances of the dynamic class. (Consideration of new compiled

members is given below.) For example, both new and old instances of D should be

able to access the inherited method c. We test this by writing code in DynamicTester

which calls this method, and test the code on both old and new instances.

Finally, we consider the effects of gaining compiled inherited members. Because

these members are accessed through the dynamic class’ compiled peer instances, these

members will be unavailable in old instances of dynamic classes. While we are able

to write dynamic code which accesses these members, the code will not execute on

old instances. Instead, AbandonedInstanceExceptions will be thrown, notifying the

user that the code is valid, but cannot be executed on old instances. New instances,

however, will be able to access the compiled inherited members as expected.

A.3 Conclusion

Using the test scenarios presented, we have exhaustively considered the effects of

hierarchy modification. The majority of hierarchy modifications are well supported

within the system. When the effects cannot be easily supported (i.e. without mi-

gration of data to new instances), the execution fails gracefully. We feel that this

guarantees a quite sufficient amount of functionality for the user, while avoiding the

burdens of data migration. This issue is discussed further in Section 1.2.
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