
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-70

2004-09-02

Robust Header Compression (ROHC) in Next-Generation Network Robust Header Compression (ROHC) in Next-Generation Network

Processors Processors

David E. Taylor, Andreas Herkersdorf, and Gero Dittmann

Robust Header Compression (ROHC) provides for more efficient use of radio links for wireless

communication in a packet switched network. Due to its potential advantages in the wireless

access area andthe proliferation of network processors in access infrastructure, there exists a

need to understand the resource requirements and architectural implications of implementing

ROHC in this environment. We presentan analysis of the primary functional blocks of ROHC and

extract the architectural implications on next-generation network processor design for wireless

access. The discussion focuses on memory space andbandwidth dimensioning as well as

processing resource budgets. We conclude with an examination of... Read complete abstract on Read complete abstract on

page 2. page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Taylor, David E.; Herkersdorf, Andreas; and Dittmann, Gero, "Robust Header Compression (ROHC) in Next-
Generation Network Processors" Report Number: WUCSE-2004-70 (2004). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/1040

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1040?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1040&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1040

Robust Header Compression (ROHC) in Next-Generation Network Processors Robust Header Compression (ROHC) in Next-Generation Network Processors

David E. Taylor, Andreas Herkersdorf, and Gero Dittmann

Complete Abstract: Complete Abstract:

Robust Header Compression (ROHC) provides for more efficient use of radio links for wireless
communication in a packet switched network. Due to its potential advantages in the wireless access area
andthe proliferation of network processors in access infrastructure, there exists a need to understand the
resource requirements and architectural implications of implementing ROHC in this environment. We
presentan analysis of the primary functional blocks of ROHC and extract the architectural implications on
next-generation network processor design for wireless access. The discussion focuses on memory space
andbandwidth dimensioning as well as processing resource budgets. We conclude with an examination
of resource consumption and potential performance gains achievable by offloading computationally
intensiveROHC functions to application specific hardware assists. We explore the design tradeoffs for
hardware as-sists in the form of reconfigurable hardware, Application-Specific Instruction-set Processors
(ASIPs), andApplication-Specific Integrated Circuits (ASICs).

https://openscholarship.wustl.edu/cse_research/1040?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1040?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1040&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2004-70

Robust Header Compression (ROHC) in Next-Generation Network
Processors

Authors: Taylor, David E.; Herkersdorf, Andreas; Doring, Andreas; Dittmann, Gero

Abstract: Robust Header Compression (ROHC) provides for more efficient use of radio links for wireless
communication in a packet switched network. Due to its potential advantages in the wireless access area and
the proliferation of network processors in access infrastructure, there exists a need to understand the resource
requirements and architectural implications of implementing ROHC in this environment. We present an analysis
of the primary functional blocks of ROHC and extract the architectural implications on next-generation network
processor design for wireless access. The discussion focuses on memory space and bandwidth dimensioning
as well as processing resource budgets. We conclude with an examination of resource consumption and
potential performance gains achievable by offloading computationally intensive ROHC functions to application
specific hardware assists. We explore the design tradeoffs for hardware assists in the form of reconfigurable
hardware, Application-Specific Instruction-set Processors (ASIPs), and Application-Specific Integrated Circuits
(ASICs).

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Header Compression (ROHC) in Next-Generation Network Processors

David E. Taylor, Andreas Herkersdorf, Andreas Döring, Gero Dittmann

WUCSE-2004-70

September 13, 2002

Applied Research Laboratory
Department of Computer Science and Engineering
Washington University in Saint Louis
Campus Box 1045
One Brookings Drive
Saint Louis, MO 63130
david.taylor@wustl.edu

This report is a summary of an investigation performed by David E. Taylor during a summer internship at the
IBM Zurich Research Laboratory under the guidance of Andreas Herkersdorf. Andreas Döring and Gero
Dittmann provided invaluable insight and contributions to the analysis. Herkersdorf is currently with the
Institute of Integrated Systems, Technical University of Munich, Germany (e-mail: a.herkersdorf@tum.de).
Döring and Dittmann are with IBM Zurich Research Laboratory (e-mail: {ado,ged}@zurich.ibm.com).

Abstract

Robust Header Compression (ROHC) provides for more efficient use of radio links for wireless commu-
nication in a packet switched network. Due to its potential advantages in the wireless access area and
the proliferation of network processors in access infrastructure, there exists a need to understand the re-
source requirements and architectural implications of implementing ROHC in this environment. We present
an analysis of the primary functional blocks of ROHC and extract the architectural implications on next-
generation network processor design for wireless access. The discussion focuses on memory space and
bandwidth dimensioning as well as processing resource budgets. We conclude with an examination of re-
source consumption and potential performance gains achievable by offloading computationally intensive
ROHC functions to application specific hardware assists. We explore the design tradeoffs for hardware as-
sists in the form of reconfigurable hardware, Application-Specific Instruction-set Processors (ASIPs), and
Application-Specific Integrated Circuits (ASICs).

1

ROHC
Compressor

Reference HeaderReference Header

IPv6/UDP/RTP headers
Voice Datagrams w/

ROHC headers
Voice Datagrams w/

Radio Link
ROHC
Decompressor

IPv6/UDP/RTP headers
Voice Datagrams w/

Figure 1: Example scenario of ROHC compression/decompression of IPv6/UDP/RTP headers for commu-
nication over a radio link.

1 Introduction

Header compression provides for more efficient use of link bandwidth in a packet switched network by
leveraging header field redundancies in packets belonging to the same flow. The key observation that many
packet header fields such as source and destination addresses remain constant throughout the duration of a
flow while other fields such as sequence numbers change predictably allows header compression techniques
to transmit only a few bytes of header information per packet. Typically, reference copies of the full headers
are stored at the compression and decompression points in order to reliably communicate and reconstruct
original packet headers. Particulars of packet header field classification into static and dynamic sets depend
upon the communication protocols and encoding techniques employed by the compression scheme. We
provide a brief history of header compression techniques in Section 2.

Link efficiency comes at the cost of processing and memory resources in the nodes communicating
over the link. While this may not be a favorable tradeoff in many environments such as communication
over optical fiber, it is particularly advantageous for communication over radio links due to their high cost
relative to the provided bandwidth [1]. Recently introduced as a new standard by the IETF, Robust Header
Compression (ROHC) seeks to provide reliable header compression for efficient use of links with high
loss rates [2]. As an example of the potential value of ROHC, consider a mobile handset transmitting
voice datagrams using IPv6/UDP/RTP as shown in Figure 1. In order to achieve a high perceived quality
of response, voice datagrams are typically on the order of 20 bytes while IPv6/UDP/RTP headers are on
the order of 100 bytes. ROHC achieves typical header sizes of one to four bytes which could reduce the
overhead in our example by a factor of 100 and the total bandwidth consumption by a factor of six. In order
to facilitate our discussion, an overview of ROHC is provided in Section 3.

Clearly, ROHC deployment for wireless networking requires implementation at both ends of the radio
link. While implementation in handsets, mobile terminals and “appliances” raises many interesting issues,
our discussion focuses on the use of ROHC at access and aggregation nodes in wireless networks. As
shown in Figure 2, Base Station Controllers (BSCs) which concentrate multiple links from Base Station
Transceivers (BSTs) in cellular networks are primary examples. Industry estimates suggest that BSC link
rates may soon reach 2.5 Gb/s, imposing a uni-directional throughput constraint of over 7.8 million packets
per second for minimum size packets. For orthogonal ingress and egress processing of our 120 byte voice
datagram example, the throughput constraint is over 5.2 million packets per second. In order to understand
the required resources of implementing ROHC in this environment, we provide an analysis of the primary
functional blocks employed by ROHC in Section 4.

Due to the need for programmability, flexibility, and rapid deployment of new applications, services,
and protocols at network edges, access routers and aggregation nodes increasingly employ network proces-
sors. Designed for high-speed packet processing, network processor architectures seek to achieve maximum

2

TRX

TRX

TRX

TRX

TRX

144k − 2Mbps

TRX

TRX

TRX

TRX

622Mbps (4k+ flows)

622Mbps (4k+ flows)

microwave
leased copper NP

BSC
2.5Gbps (16k+ flows)

BSS

NP

BTS

NodeB

NP

BTS

NodeB

2.5Gbps (16k+ flows)

144k − 2Mbps

Figure 2: Block diagram of 3G wireless access network. Link bandwidths are based on future capacity
estimates for 3G wireless systems (WCDMA, EDGE, GSM).

flexibility while meeting the real-time throughput constraints imposed by the supported link rates. As in
most systems, flexibility is provided via software programmable processors, either General Purpose Pro-
cessors (GPPs) or processors with optimized instruction sets. Based on our functional analysis, we extract
architectural implications of ROHC implementation on network processor design for the wireless access
environment in Section 5. A key result is that the processor memory interfaces should be dimensioned to
provide an aggregate bandwidth greater than eight times the bandwidth of the supported link in order to
support worst case traffic patterns. This poses a challenge for processors designed to support high speed
links or many aggregated links, such as those targeted to the wireless access infrastructure. Based on re-
sults from preliminary implementation efforts, ROHC may easily saturate instruction per packet budgets in
next generation network processors [3]. In order to meet throughput constraints and maximize the number
of available software instructions per packet, many network processors also contain optimized datapaths
and application-specific hardware assists for redundant and computationally intensive tasks. While many
processor architectures include hardware assists for essential ROHC functions such as packet classification
and Cyclic Redundancy Check (CRC) computations, there is no support for ROHC encoding and decoding
functions which comprise approximately one third of the per-packet workload. We envision that this will
change in the future; hence, we examine the resource requirements and potential performance gains of im-
plementing ROHC encoding and decoding functions in application-specific hardware assists in the form of
reconfigurable hardware, Application-Specific Instruction set Processors (ASIPs), and Application-Specific
Integrated Circuits (ASICs) in Section 6.

Note that we assume a working knowledge of the IP and UDP protocols. The aforementioned Real-
time Transport Protocol (RTP) provides “end-to-end network transport functions suitable for applications
transmitting real-time data, such as audio, video or simulation data, over multicast or unicast network ser-
vices” [4]. For the purpose of our discussion, it is only important to note that each header contains a
sequence number (SN) and timestamp (TS) used for maintaining packet ordering and calculating link jitter,
respectively.

2 A Brief History of Header Compression

The notion of header compression was introduced by Jacobson in 1990 for the purpose of improving inter-
active terminal response of low-speed serial modem links [5]. Nine years later, Degermark, Nordgren, and
Pink developed techniques for compressing permutations of IPv4 headers, IPv6 base and extension head-

3

ers, TCP and UDP headers, and encapsulated IPv4 and IPv6 headers for transmission over lossy links [6].
That same year Casner and Jacobson added a specification for compressing IP/UDP/RTP headers commonly
referred to as CRTP [7].

Seeking to improve performance over lossy links with long round-trip times (RTT), a group of re-
searchers from Ericsson and Lulea University proposed Robust Checksum-based Header Compression (ROCCO)
as an Internet Draft in June 1999 [8]. Coupled with transport and link layer protocols capable of partitioning
checksum coverage into sensitive and insensitive regions [9], ROCCO was designed to perform well with
audio and video codecs which tolerate bit errors in data frames. Studies showed that ROCCO compressed
headers to half of the size of those provided by CRTP and remained robust over links with BER rates an
order of magnitude higher [10]. In July 2000, Ericsson and Japan Telecom successfully completed a field
trial of VoIP over WCDMA using ROCCO [11].

In July 2001, the Robust Header Compression (ROHC) framework was presented as a new standard for
header compression by a large working group of the IETF [2]. While designed to be a general framework
extensible to new protocol stacks, much of the standard focuses on efficiency and robustness of IP/UDP/RTP
compression for wireless communication over radio links. Several related standards have been proposed,
including a specification for completely removing headers of IP/UDP/RTP packets, termed 0-byte com-
pression, for use over existing cellular links based on GSM and IS-95 [12][13][14]. In May 2002, several
companies participated in a successful first trial of the major parts of the ROHC standard including robust-
ness tests over emulated WCDMA/3G links [11].

3 Header Compression with ROHC

The general approach of Robust Header Compression (ROHC) is to establish a common context at the
compressor and decompressor by transmitting the full packet header, then gradually transition to higher
levels of compression via the use of various encoding techniques and packet formats. ROHC is designed
to be a flexible header compression framework capable of supporting several protocol stacks. General
packet formats, compressor and decompressor finite state machines, modes of operation, error recovery and
correction mechanisms, and encoding methods are defined at the framework level. Each supported protocol
stack defines a “profile” within the ROHC framework. Profiles fully specify the detailed packet formats,
state transition logic, and state actions as well as the encoding methods used for each header field in the
protocol stack.

The ROHC framework and profiles for RTP, UDP, ESP, and uncompressed headers are defined in [2].
A specification for running ROHC over the Point-to-Point Protocol (PPP), commonly used for initialization
and communication of control information, is defined in [14]. As mentioned in the previous section, a Link
Layer Assisted (LLA) profile for IP/UDP/RTP, which is capable of completely removing packet headers, is
defined in [13][12].

For the purpose of our study, we focus on supporting the general ROHC framework as well as the
standard IP/UDP/RTP compression profile. RTP/UPD/IP compression operates via the following principle:
establish functions from the RTP sequence number (SN) to other fields, then reliably communicate the SN.
When functions change, parameters must be updated. The following sections briefly describe the major
aspects of the ROHC framework and associated IP/UDP/RTP profile in order to facilitate discussion of our
functional analysis and architectural implications on next-generation network processor design. Note that
we delve into the details of field encoding and decoding techniques in Section 3.5 as these comprise one
third of the processing workload; hence, our analysis of application-specific hardware assists in Section 6
focuses on these functions.

4

3.1 Assumptions

ROHC was designed under assumptions about the supporting layers and environment of use. We list several
of the key assumptions here:

• Channels of a single radio link can have different BER, bandwidth, etc.

• Multi-access per channel is achievable by maintaining multiple contexts per channel identified by
Context Identifiers (CIDs)

• Channels between compressor and decompressor must maintain ordering and not duplicate packets

• Packet length is provided by lower layers, most likely the link layer

• ROHC deals with residual errors in delivered headers via internal mechanisms to prevent or reduce
damage propagation to higher layers

• Link layer must provide for compression parameter negotiation

3.2 Packet Formats

In order to reliably initialize static header fields and dynamic header field functions at the compressor and
decompressor, ROHC defines several packet formats at the framework level and allows individual profiles
to define profile-specific packet formats. For the purpose of our discussion, it only is necessary to note
the major packet types. Initialization and Refresh (IR) packets carry static header field information as well
as dynamic header field function parameters. Compressed header formats may be defined by the profile;
however at minimum, they must carry a Context Identifier (CID). Note that the CID field may be eliminated
if only one context exists on the given channel; otherwise, the CID field may either define 16 contexts per
channel or 16k contexts per channel by selecting either the “small” or “large” CID size.

Feedback from decompressor to compressor may be sent as acknowledgments in individual packets
or encapsulated in compressed packets, termed “piggybacked” feedback, if a compressed context exists in
the reverse direction. Acknowledgments may positively acknowledge successful decompression (ACK) or
negatively acknowledge decompression failures due to incorrect dynamic header field function parameters
(NACK) or static header field information (STATIC-NACK).

3.3 Compressor & Decompressor Finite State Machines

ROHC compression is essentially the interaction between compressor (CFSM) and decompressor (DFSM)
finite state machines. Logically, there is one state machine pair (CFSM/DFSM) per context. Both machines
start in the lowest compression state and gradually transition to higher states, yet transitions need not be
synchronized. Normally, only the CFSM temporarily transits back to lower states. The DFSM only transits
back upon context damage detection.

The states of the Compressor Finite State Machine (CFSM) are listed below with their associated prop-
erties:

• Initialization & Refresh (IR): Initialize static context at decompressor; recover from errors; transmit
complete header plus additional information.

5

U−Mode: Timeout

R−Mode: STATIC−NACK
O−Mode: STATIC−NACK

O−Mode: Optimistic Appr. (static & dynamic) or ACK
U−Mode: Optimistic Appr. (static & dynamic)

R−Mode: ACK

U−Mode:

R−Mode: ACK
O−Mode:

R−Mode: NACK or Update

IR

U−Mode: Timeout

R−Mode: STATIC−NACK
O−Mode: STATIC−NACK

U−Mode: Optimistic Appr. (static)

R−Mode: ACK
O−Mode: Optimistic Appr. (static) or ACK FO

U−Mode: Optimistic Appr. (dynamic)

R−Mode: ACK
O−Mode: Optimistic Appr. (dynamic) or ACK SO

U−Mode: Timeout or Update
O−Mode: NACK or Update

Figure 3: Compressor Finite State Machine (CFSM) for Robust Header Compression (ROHC).

k out of n CRC failures2 2 k out of n CRC failures1 1

No DynamicSC

Success

NC No Static

Success Success

FC

Figure 4: Decompressor Finite State Machine (DFSM) for Robust Header Compression (ROHC).

• First Order (FO): Efficiently communicate packet stream irregularities; occasionally transmit dy-
namic packet header field information (usually partially compressed); occasionally update static packet
header fields.

• Second Order (SO) Maintain optimal compression efficiency; compressed header is completely pre-
dictable given the sequence number; compressor is confident that the decompressor has correct SN
function parameters; transmit encoded dynamic fields.

A state machine diagram of the CFSM is shown in Figure 3. The states of the Decompressor Finite State
Machine (DFSM) are listed below with their associated properties:

• No Context (NC): No successful decompression verified by CRC; transit to Full Context (FC) state
upon receipt of static and dynamic information and successful decompression verified by CRC.

• Static Context (SC): Normally, successful decompression of a header sent by compressor in First Or-
der (FO) state warrants transition to Full Context (FC) state; transit to NC upon several decompression
failures of headers sent in FO state as detected by CRC.

• Full Context (FC): Valid context with static and dynamic header field information; transit to SC upon
repeated decompression failures as detected by CRC.

A state machine diagram of the DFSM is shown in Figure 4. State transitions are addressed within the
context of our analysis provided in Section 4. We refer the reader to [2] for more detailed explanations of
states, their uses and properties.

6

O−Mode R−Mode

U−Mode

Feedback(U)

Feedback(U)

Feedback(O)

Feedback(R)

Feedback(O)

Feedback(R)

Figure 5: Diagram of compression mode transitions in ROHC; feedback arrows denote multi-way hand-
shakes between compressor and decompressor.

3.4 Modes of Operation

ROHC modes of operation determine state machine transition logic and state actions. The CFSM and
DFSM states remain the same for all modes. The optimal mode of operation depends upon environmental
characteristics such as feedback abilities, error probability and distribution, etc. The ROHC specification
states that all implementations must include all three modes.

Initially, all contexts must begin in Unidirectional mode (U-Mode) in which packets are sent from com-
pressor to decompressor only, as the return path is assumed to be unavailable or “undesirable”. CFSM
transitions in U-Mode are due to periodic timeouts and irregularities in dynamic header field patterns. U-
Mode is less efficient with higher probability of loss propagation than bi-directional modes. Bidirectional
Optimistic Mode (O-Mode) utilizes a feedback channel for error recovery requests; hence, it does not employ
periodic refresh as in U-Mode. O-Mode maximizes compression efficiency, minimizes feedback channel us-
age, and reduces error propagation; however, context invalidation may be higher than R-mode during long
error or loss bursts.

Bidirectional Reliable Mode (R-Mode) intensively uses a feedback channel to acknowledge all context
updates. Note that not all packets update the context. R-Mode employs “stricter” logic to prevent synchro-
nization loss of CFSM/DFSM; therefore, it maximizes robustness against loss and damage propagation. It
may have a lower probability of context invalidation than O-mode, but it also may deliver more damaged
headers when the context is invalid.

As shown in Figure 5, compression mode transfers may occur from any mode to any mode. The decision
to move from one mode to another is initiated by the decompressor. The ROHC specification describes in
detail the variables and multi-way handshakes, denoted by the “feedback” arrows in Figure 5, to reliably
transition from one mode to another. All feedback sent between compressor and decompressor during a
mode transition must by protected by a CRC.

3.5 Encoding Methods

The encoding method for dynamic fields in the packet headers is selected based on the dynamic pattern of
the specific field. Hence, several encoding methods may be employed for the dynamic fields in a single
packet header. Note that while the encoding methods are specified for the ROHC framework, several of the
methods are specific to IP/UDP/RTP headers.

7

3.5.1 Least Significant Bits (LSB) Encoding

LSB encoding is applied to header fields subject to small changes. Quite simply, the k least significant
bits of the field are transmitted. The decompressor derives the original value using a reference value, vref ,
which must include the untransmitted bits. Correctness is guaranteed if the compressor and decompressor
use interpretation intervals in which the original value resides and the transmitted k LSBs are unique to the
original value.

LSB Interpretation Interval Function The LSB interpretation interval may be expressed as a function:

f(vref , k) = [vref − p, vref + (2k − 1) − p] (1)

For any k, the k LSBs must uniquely identify a value in f(vref , k). p is a shifting parameter that may be
tuned for efficiency. For example:

• For increasing values, set p to -1; the interpretation interval becomes:

f(vref , k) = [vref + 1, vref + 2k] (2)

• For non-decreasing values, set p to 0.

• For small negative changes and larger positive changes, it may be desirable to have 3

4
of the interval

used for positive changes; in this case, set p to 2k−2 − 1; the interpretation interval becomes:

f(vref , k) = [vref − 2k−2 + 1, vref + 3 ∗ 2k−2] (3)

The compressor uses as vrefc
the last compressed value protected by a CRC. The decompressor uses as vrefd

the last decompressed value verified by a CRC. k is selected as the minimum value such that v falls in the
interpretation interval f(vrefc

, k). This selection function is referred to as g(vrefc
, v).

3.5.2 Window-based LSB (WLSB) Encoding

Window-based LSB (WLSB) Encoding provides for robust LSB encoding when the compressor is unable to
determine the exact reference value, vrefd

, in use by the decompressor. The compressor maintains a sliding
window of possible vrefd

values and calculates k such that all vrefd
candidates produce the correct v. Letting

vrefmin
and vrefmax

be the lower and upper bounds of the sliding window, respectively, then k is chosen as
follows:

k = max(g(vrefmin
, v), g(vrefmax

, v)) (4)

The window is advanced based on positive acknowledgments (ACKs) or the window width limit.

3.5.3 Scaled RTP Timestamp Encoding

Due to fixed sampling periods employed in real-time applications such as audio and video, the RTP Times-
tamp (TS) usually increases by an integral of a fixed time interval. When such fixed intervals exist, TS may
be derived by the linear function:

TS = TS SCALED ∗ TS STRIDE + TS OFFSET (5)

8

where TS STRIDE is the fixed time interval, TS SCALED is the integral multiple, and TS OFFSET is the
linear offset.

TS STRIDE is explicitly communicated from compressor to decompressor. TS OFFSET is implic-
itly communicated by sending several uncompressed TS values from which the decompressor can extract
its value. Note that TS OFFSET is updated locally at TS wraparound via special interpretation interval
rules. Following initialization, only TS SCALED is communicated between compressor and decompressor.
Specifically, it is sent compressed via WLSB or timer-based encoding.

3.5.4 Timer-based RTP Timestamp Encoding

When fixed sampling intervals are employed by applications and packets are transmitted in lock-step with the
sampling, the RTP Timestamp (TS) not only increases by an integral of a fixed time interval, TIME STRIDE,
but it may also be approximated by a linear function of the time of day. Deviations in this approximation
are due to delay jitter; therefore, the approximation is refined using k LSBs of the scaled TS.

In order to determine the number of LSBs needed to refine the linear approximation, the compressor
maintains a sliding window of potential TS reference values employed by the decompressor as well as their
arrival times at the compressor. Let Tj and aj be the timestamp and arrival time for header j.

Delay jitter perceived at the decompressor, J , is due to contributions from inter-packet jitter before
compression, Max Jitter BC, and jitter properties of the communication channel, Max Jitter CD. Note that
Max Jitter CD is a parameter that is initialized and may be updated throughout the duration of a context.
The compressor calculates Max Jitter BC for each new header n according to Equation 6 for all j in the
sliding window.

Max Jitter BC = max{|(Tn − Tj) −
an − aj

TIME STRIDE
|} (6)

Accounting for clock quantization errors, the total delay jitter may be expressed as follows:

J = Max Jitter BC + Max Jitter CD + 2 (7)

Finally, the compressor selects the k LSBs necessary for refinement according to the following equation:

k = dlg(2 × J + 1)e (8)

Note that this calculation is similar to WLSB encoding with p = 2k−1 − 1. The compressor sends k bits of
the scaled timestamp to the decompressor.

The decompressor maintains as a reference the scaled timestamp, Tref , and arrival time, aref , of the last
successfully decompressed header. The approximated timestamp, Tapprox, of an arriving packet n at time
an is calculated as follows:

Tapprox = Tref +
an − aref

TIME STRIDE
(9)

This approximation is refined via the k LSBs transmitted by the compressor using LSB decoding with
p = 2k−1 − 1.

3.5.5 IPv4 Identifier (IP-ID) Offset Encoding

Offset encoding assumes that the IP-ID increases for each outgoing packet. Therefore, it is more efficient to
encode the offset relative to the RTP Sequence Number (RTPSN) where:

Offset = IPID − RTPSN (10)

9

For transmission, the offset is compressed and decompressed using WLSB encoding with p = 0. Network
byte order is synchronized using the NBO or NBO2 flag in the header.

3.5.6 Extension Header Compression

ROHC defines a list compression technique for IP header extension chains and CSRC lists in RTP head-
ers. We do not anticipate a large contribution to processing and memory resource consumption due to list
compression; therefore, it is excluded from our analysis.

3.6 CRC

For initialization packets, ROHC employs an 8-bit CRC covering all packet fields, excluding the payload.
The polynomial is given below:

1 + x + x2 + x8 (11)

For compressed headers, ROHC calculates the CRC over all of the header fields of the original packet.
Header fields are split into two groups, namely CRC-STATIC and CRC-DYNAMIC based on their frequency
of change between packets. The static portion of the CRC is calculated over a list of the CRC-STATIC fields
concatenated in the order in which they appear in the original packet header, then stored with the context.
The CRC calculation continues over the CRC-DYNAMIC fields concatenated in their original order. The
static portion of the CRC is only recomputed when CRC-STATIC fields change. Note that the CRC is used
to detect bit errors incurred during transmission as well as invalid context information caused by missed or
incorrect context updates; therefore, two CRC widths are used to ensure uniqueness between CRC values
for context updates. The polynomials used for compressed headers are listed below:

1 + x + x3 (12)

1 + x + x2 + x3 + x6 + x7 (13)

4 Functional Analysis of ROHC

In order to understand the architectural implications of implementing ROHC in a network processor, we
must analyze the fundamental operations and interactions of the functional blocks described in the ROHC
specification. While there is inevitable variance depending upon implementation decisions and environ-
ments, a fundamental analysis provides valuable insight into issues such as resource requirements and scal-
ability. It is important to note that we do not address ROHC performance or compression efficiency, and we
attempt to keep our analysis as implementation and traffic independent as possible. Given the absence of
open ROHC implementations and packet traces of high bandwidth links with aggregated 3G traffic, we seek
to establish useful bounds for network processor architects. To facilitate our discussion without significant
loss of generality, we present a logical block diagram of an ROHC Compressor/Decompressor in Figure 6.
For the following discussion, we assume that a single logical entity in the network processor is responsible
for ROHC compression and decompression.

As reflected in Figure 6, a network processor may support several links. Since there may be multiple
channels per link and the number of contexts and compression profile may be configured on a per-channel
basis in ROHC, the network processor must provide a mechanism for identifying the link and channel of all
arriving and departing packets. As specified by ROHC, the network processor must also provide the length
of link layer frames passed to the compressor/decompressor.

10

Context
Memory

Timer

CRC

MFSMCFSM
DFSM

Context Processor

Encoding/Decoding
Header Field Modification

Buffer

Packet Output

Buffer
Feedback

Parser

k

Timestamp Datapath
Control

1link

linkm

channel1

channel n

context1

context

context1

context

channel1

channel n

context1

context

context1

context k

k

k

Figure 6: Logical block diagram of ROHC Compressor/Decompressor for IP/UDP/RTP compression.

The Packet Modification Buffer is assumed to be a local or dedicated memory space where packets
may be temporarily stored during compression and decompression. A large, presumably external, Context
Memory provides storage for all of the per-context information such as state, mode, reference values, etc.
The Feedback Buffers allow “piggybacked” feedback to be stored and later retrieved when the context
addressed by the feedback is made active via receipt of a packet or specific feedback processing. The
remaining blocks are discussed in more detail in the following sub-sections.

4.1 Context Processor

The Context Processor may be viewed as implementing the core of the ROHC framework. In essence,
the Context Processor coordinates packet parsing, context fetches and updates, state and mode transitions,
field encoding, and error checking for each ROHC packet. While we assume the general structure and
interfaces of the Context Processor remain constant for all ROHC profiles, all packets are processed by
three profile-specific sub-blocks: a Packet Parser, a Compression or Decompression Finite State Machine
(CFSM/DFSM), and a Mode Finite State Machine. Note that ROHC profiles are assigned on a per-context
basis; therefore, the processing performed by each sub-block may change on a per-packet basis for a Context
Processor serving many channels.

4.1.1 Packet Parser

The Packet Parser may be viewed as a finite state machine capable of decoding the many permutations of
packet header formats. The minimal set of headers recognized by the parser must include the base and
extension headers of the protocols supported by the ROHC profile as well as the profile-specific packet
headers. Based on a link and channel identifier, the parser may determine the direction and profile of the
packet; for example, ROHC compression for IP/UDP/RTP.

One of the primary functions of the Packet Parser is returning the context identifier (CID) for the packet
so that the context information may be retrieved from Context Memory. For packets with compressed
headers, the CID is contained in the ROHC header. The Packet Parser must simply search for the bit-pattern

11

identifying the CID field. For uncompressed headers, the CID must be assigned by a block capable of
binding the packet to an established ROHC flow or allocating a new CID for the flow.

Based on the mode and compression/decompression state of the context, the Packet Parser must also
extract the header fields requiring encoding or decoding. These fields are passed by the Context Processor
to the appropriate encoding or decoding block. When the parser detects “piggybacked” feedback, the infor-
mation is stored in per-channel, per-context feedback buffers. Finally, the Packet Parser must extract CRC
values for error detection.

4.1.2 Compression/Decompression Finite State Machines (CFSM/DFSM)

Compression and Decompression Finite State Machines (CFSM/DFSM) dictate the format of transmitted
packets and feedback. We seek to determine the amount of state information required per-context by the
CFSM/DFSM. Coupled with the results of packet parsing, field encoding/decoding, and CRC computations,
the mode of operation stored with the context information determines state transitions and actions. In the
case of decompression, all modes share the same Decompression Finite State Machine (DFSM) transition
logic shown in Figure 4. “Success” is defined as a decompression of a header that passes the CRC check.
Note that transitions to lower compression states occur when a certain percentage of the most recent header
decompression attempts fail. The transition parameters used by the DFSM are configurable, such as the
number of failures in the Full Context (FC) state, k2, out of the last n2 packet headers. Implementation
requires a sliding window of width n which indicates decompression “success” or “failure” for the most
recent n packet headers. If the sum of “failures” in this window reaches k, then a downward transition is
triggered. This window along with two pairs of parameters must be stored with the context information.
Decompression state actions such as field decoding and feedback transmission differ for each mode.

While state transitions and actions of the Compressor Finite State Machine (CFSM) differ for each mode
of operation, we observe that the structure remains static as shown in Figure 3. Due to the lack of feedback
channel in Unidirectional Mode (U-Mode), all forward transitions depend on the “confidence” of the com-
pressor that the decompressor has the static and/or dynamic context necessary to successfully decompress
the header. “Confidence” is established based on the “optimistic approach principle” which stipulates that
the compressor send several packets containing the same information according to the lower compression
state. ROHC uses this qualitative specification to allow for implementation flexibility. A straightforward
implementation simply requires a parameter n and a counter count for each transition utilizing “optimistic
approach”.

Downward transitions occur due to periodic timeouts and pattern changes in the packet stream. Due to
the lack of a feedback channel, the CFSM must periodically transit back to lower compression states. ROHC
stipulates that the CFSM should transit back to the IR state less frequently than to the FO state; therefore,
timeout values should be maintained with the context information. If the packet header to be compressed
does not adhere to the established pattern, the CFSM must immediately transit back to the FO state in order
to establish the new dynamic information.

Transitions in Bidirectional Reliable Mode (R-Mode) utilize the “secure reference principle” where
“confidence” of synchronization with the decompressor is based solely on the receipt of acknowledgments
(ACKs); therefore, no parameters need be stored with the context. Downward transitions are triggered by
negative acknowledgments of static (STATIC-NACK) or dynamic (NACK) context information or the need
for updates. State transition logic for Bidirectional Optimistic Mode (O-Mode) is a blend of the principles
employed by U-Mode and R-Mode. Forward transitions in O-Mode depend on the “optimistic approach
principle” but the optimistic confidence may be confirmed via use of optional ACKs. Likewise, downward
transitions occur due to the receipt of NACKs and STATIC-NACKs which eliminates the need for timeouts.

12

Table 1: Parameters stored with context information for implementation of a CFSM/DFSM.

FSM Mode Transition Parameter(s) Est.
Size

DFSM All Modes FC→SC n1, k1, win1 4 B
All Modes SC→NC n2, k2, win2 4 B

CFSM U-Mode IR→FO nstat, countstat 2 B
U-Mode FO→SO ndyn, countdyn 2 B
U-Mode IR→SO nsd, countsd 2 B
U/O-Mode SO→IR timeout1 2 B
U/O-Mode SO→FO timeout2 2 B
U/O-Mode FO→IR timeout3 2 B

Total 20 B

Based on the preceding analysis, the CFSM/DFSM may be implemented as a single profile-specific sub-
block of the Context Processor. Each context must simply store the current state and mode, along with the
parameters reflected in Table 1.

4.1.3 Mode Finite State Machine (MFSM)

We assume that a mode variable is maintained for each context. The value of the variable controls context
attributes such as state actions and usable packet types. In many cases, the behavior of compressor or
decompressor is restricted during mode transitions.

4.2 Timer

The Timer block shown in Figure 6 simply denotes the existence of a timing mechanisms available for
maintaining timeout timers while in Unidirectional Mode (U-Mode). At minimum, the Context Processor
must maintain per-context timeout values relative to a free-running timer. When a packet arrives on a given
context, the Context Processor must detect if a timeout has occurred for the context. Several design options
exist for such a mechanism and selection of the ideal approach largely depends on the implementation
platform.

4.3 Field Encoding & Decoding

Header field encoding and decoding are major consumers of processing resources. We first present an
analysis of the computational requirements of the encoding schemes presented in Section 3.5. Memory
resources required for encoding parameters are addressed in Section 5.6.

Table 2 presents the frequency of fundamental operations employed in each encoding and decoding
technique. Note that the number of operations required for LSB encoding and decoding are based upon
the analyses presented in the following sub-sections. Also note that the number of operations required
for timer-based TS encoding depends upon the width, j, of the sliding window of reference values. The
set of fundamental operations has direct implications on the Instruction Set Architecture (ISA) of network
processor for pure software implementations of ROHC.

13

Table 2: Core function frequency in ROHC encoding techniques for IP/UDP/RTP compression, where j is
the width of the sliding window of reference values. All functions operate on integer operands.

Technique Add/Sub. Mult. Div./Mod. Compare LSL lg() Ceiling Abs.
LSB Encode 6 0 0 0 1 2 1 2
WLSB Encode 12 0 0 1 2 4 2 4
IP-ID Encode 13 0 0 1 2 4 2 4
SN Encode 12 0 0 2 2 4 2 4
Scaled TS Encode 13 0 1 1 2 4 2 4
Timer TS Encode 3j + 3 1 j j − 1 0 1 1 0
LSB Decode 5 1 1 1 1 0 0 0
IP-ID Decode 6 1 1 1 1 0 0 0
SN Decode 5 1 1 2 1 0 0 0
Scaled TS Decode 6 2 2 1 1 0 0 0
Timer TS Decode 7 1 2 1 1 0 0 0

−1k−5

> 4

p=2

k
RTPSN

p=1
1

0

RTPSN
RTPSNrefmin

ref
max

Encode
WLSB

Figure 7: Block diagram of RTP Sequence Number (RTPSN) Encoder employing WLSB Encoder block.

−1k−5 1

0

> 4

RTPSNref

p=2

LSBm

p=1

RTPSNDecode

Figure 8: Block diagram of RTP Sequence Number (RTPSN) Decoder employing LSB Decoder block.

We observe that WLSB encoding is used as a building block for several encoding techniques. As re-
flected in Table 2, most encoding techniques contribute only a few additional computations on top of those
required for WLSB encoding or LSB decoding. In order to illustrate how a WLSB Encoder may be used
as a functional component, a block diagram of an RTPSN Encoder is shown in Figure 7. Note that shifting
parameters are selected based on feedback from the WLSB result. This ensures that as the width of the
interpretation interval grows beyond a threshold, it is proportionally shifted to provide 31

32
of the interval for

positive changes. Figure 8 illustrates how an LSB Decoder may be used as a functional component in a
RTPSN Decoder. Complementary to the encoder, the shifting parameters are selected based on the number
of bits received in the ROHC header.

We also observe that the core operations, such as logarithms, employed in LSB encoding are expensive
to implement in both software and hardware. Due to the potential usefulness of WLSB Encoder and LSB
Decoder blocks, the following sub-sections discuss their design and efficient implementation. We note that

14

g(vrefc
, v) = min(k|vrefc

− a2k−b + c ≤ v ≤ vrefc
+ 2k − 1 − a2k−b + c) (16)

g(vrefc
, v) = min(k| lg (

v − vrefc
− c + 1

1 − a2−b
) ≤ k ≤ lg (

vrefc
− v + c

a
) + b) (17)

the structure of the functions allows for optimizations which eliminate the high cost of implementing the
core operations independently.

4.3.1 WLSB Encoder

As previously stated, WLSB encoding chooses the minimum number of least significant bits of a value to
send such that the bits will uniquely identify the original value given a set of likely reference values in use
by the decompressor. This task is formalized in Equation 4. The LSB Selection Function employed by the
WLSB encoder may be expressed as follows:

g(vrefc
, v) = min(k|vrefc

− p ≤ v ≤ vrefc
+ 2k − 1 − p) (14)

Note that the shifting parameter p may take on values that are functions of k, as specified in the previous
examples. In order to find a closed-form solution for k, a parameterized function of p must be set. Based on
the previous examples, the following function is proposed.

Parameterizing the LSB Selection Function Let p be represented by the function:

p = a × 2k−b − c (15)

with passed parameters a, b, and c. The following examples show how p may be set:

• For p = 0, set a = 0, b = 0, c = 0

• For p = −1, set a = 0, b = 0, c = 1

• For p = 2k−2 − 1, set a = 1, b = 2, c = 1

Replacing p with the parameterized function, the selection function takes the form of the inequality
shown in Equation 16. Solving for k yields the inequality shown in Equation 17. Since k must be an
integral number of bits, the inequalities and min function may be eliminated as follows:

k = dlg (
v − vrefc

− c + 1

1 − a2−b
)e (18)

Note that the WLSB Encoder performs this computation twice, once with the minimum reference value and
once with the maximum reference value, selecting the maximum result. If the value of k computed by the
WLSB Encoder is smaller than the minimum value allowed by the available packet format, then the smallest
available value of k is used.

15

+

1 1 10 0 0 0 0

−

>

+1

k = 4

x

5 4 3 2 1 067

10

Leftmost ’1’
5 4 3 2 1 067

y

10 0 0 00 10

Leftmost ’1’
Fractional PartFractional Part

b = 1

Figure 9: Example of LSB Selection Function computation via bit string searches. Equation is of the form
k = db + lg x − lg ye.

Efficient Implementation While Equation 18 may easily be specified in a high-level language for im-
plementation in a General-Purpose Processor (GPP), we continue our analysis to investigate opportunities
for optimized implementations. We first note that the negative exponential in the denominator may lead
to the need for floating-point division if implemented literally. Logarithms are also typically expensive to
implement in software due to the need for approximation arithmetic or lookup tables. In an effort to avoid
these expensive computations, we re-formulate the LSB Selection Function as follows:

k = db + lg (|v − vrefc
− c + 1|) − lg (|2b − a|)e (19)

This form of the function eliminates the need for floating point division and reduces the exponential to a
simple Logic Shift Left (LSL) operation. The need for an efficient mechanism for computing the binary
logarithms remains. Taking advantage of the ceiling operation, the logarithms and remaining arithmetic are
efficiently computed using bit string searches.

Let x = |v − vrefc
− c + 1| and let y = |2b − a|; Equation 19 becomes:

k = db + lg x − lg ye (20)

We can easily compute the integral part of the binary logarithms by locating the bit-location of the most
significant ’1’. We refer to the bits to the right of this bit-location as the fractional part. A simple compare
of the fractional parts of the logarithms determines whether or not to add an additional bit to the value of k

found by adding b and the integral part of lg x minus the integral part of lg y. To clarify, an example starting
from Equation 20 is shown in Figure 9.

4.3.2 LSB Decoder

As previously stated, the decompressor derives the original value from the received LSBs using a reference
value, vrefd

, and an interpretation interval. Let m be the number of LSBs received by the compressor.
Let |m| be the value of the received LSBs. The original value, vd, is determined to be the value in the
interpretation interval whose m LSBs are equal to |m|. Like the WLSB Encoder, the LSB Decoder must

16

1 1 10 0 0 0 0
3 2 1 0
1 00 1

m = 4

|m| = 5

>+1

10

(n − m) MSBs

1 1 00 0 01 1

w

5 4 3 2 1 067

m LSBs

vd

Figure 10: Example of LSB Decoder operation, where w = vrefd
− a2m−b + c is the left end-point of the

interpretation interval and m is the number of received LSBs.

employ the parameterized function of p. Hence, the interpretation interval employed by the LSB decoder
may be expressed as follows:

f(vrefd
, m) = [vrefd

− a2m−b + c, vrefd
+ 2m(1 − a2−b) − 1 + c] (21)

Selecting the value within the interval matching the received LSBs may be done in several ways. We focus
on an efficient computational implementation which avoids lookup tables or multiple iterations.

Efficient Implementation Let w be the left end-point of the interpretation interval; therefore, w = vrefd
−

a2m−b + c. Let |w|m be the value of the m LSBs of w, which may be expressed as:

|w|m = (w)modulo(2m) (22)

Let |w|n−m be the value of the n−m MSBs of w, where n is the width in bits of w. This may be expressed
as:

|w|n−m = w − |w|m (23)

We note that the original value, vd, may be selected from the interpretation interval expressed in Equation 21
as follows:

If |m| ≥ |w|m, then vd = (|w|n−m + |m|); else vd = (|w|n−m + 2m + |m|)

While this may easily be specified in high-level GPP instructions, we also provide an example of an
optimized solution using bit-level optimizations as shown in Figure 10.

4.4 CRC

ROHC requires support for CRC computations based on three different polynomials in both components. In
the compressor, a CRC checksum is generated from the original header and is transmitted with the header
depending on the compression mode. In the decompressor, this checksum is compared to the checksum

17

Table 3: Area and propagation delay for CRC calculation. ASIC results based on area optimized synthesis
targeting IBM Cu-11 process assuming worst-case delays. FPGA results based on synthesis with Synplicity
Synplify Pro targeting a Xilinx Virtex-E (-8) device using worst-case delay estimates. FPGA area estimates
assume 423 LUT/FF pairs per mm2.

ASIC FPGA
Width Logic Area Tp Area Tp
(bits) Depth mm2 (ns) LUTs mm2 (ns)
8 3 0.0013 1.73 33 .078 2.15
16 4 0.002 1.79 57 .135 3.03
32 4 0.0037 1.87 78 .185 3.42

of the restored header. The computation of CRC checksums with generator polynomials of small degree
(here 3, 7, and 8) is comparatively simple. Furthermore, the checksums can be computed on a consecutive
sequence of input words. For this type of task look-up based methods are preferred in software implemen-
tations and can be used for hardware as well. For a polynomial degree d and input width w bits per lookup,
table sizes of d× 2w bits result. For software implementations utilizing standard memory widths, it is worth
illustrating the performance tradeoffs that arise when deciding how the table entries for polynomial degrees
of 3 or 7 bits may be efficiently packed into memory words. For example, utilizing one memory word
per 3-bit entry simplifies table address generation but is space inefficient. Concatenating 10 3-bit entries
and storing them in a single 32-bit word is space efficient but consumes additional processing cycles for
table address generation due to the need for an integer divide and shifting operations to extract the desired
result from the resulting memory word. Hence, for CRC computations with polynomials of such a small
degree, direct computation in software is worth considering. It consists of a mask and parity computation
for each output bit. On a processor with a population count instruction, such as the SPARC V9, only a few
instructions are needed per output bit.

In hardware implementations, the choice of input width of the computation dictates the size and depth of
logic. Table 3 lists the area and logic depth for computing the three polynomials in parallel. Results show the
area and speed for implementations with input widths of 8, 16, and 32 bits. Results for ASIC implementation
are derived from area optimized synthesis targeting the IBM CU-11 process utilizing worst-case propagation
delay estimates. Results for FPGA implementation are derived from synthesis with Synplicity Synplify Pro
targeting a Virtex-E device utilizing worst-case propagation delay estimates for a device with a -8 speed
grade. FPGA area estimates are explained in Section 6.1.1. Note that since the output size is 3, 7, and 8
bits, respectively, the result of the CRC computation fits in one 32-bit word. Hence, all three checksums
could be implemented as an instruction set extension and comfortably combined into a single instruction on
a 32-bit processor. The individual results could be extracted by shift operations. The same argument holds
for a strongly-tailored ASIP implementation.

5 Architectural Implications for Network Processors

Insertion of ROHC compression and decompression in the packet processing path of a network processor
presents several architectural implications. Header compression logically resides between the link layer,
commonly called Layer 2, and the network layer, commonly called Layer 3, in the protocol stack. Insert-
ing header compression and decompression in the ingress and egress packet processing paths of a network
processor requires additional processing, memory, and interconnection resources. It is our intention to es-
tablish bounds on the amount of additional resources to serve as “engineering bands” for network processor

18

Interconnect
Processor

Fast−Path Interconnect

I−face
DRAM

Schedule

CPU
Core(s)

Queue &

Cache

ROHC
Assist

Header
Parse

Classify
& Route

CRC

BridgeSRAM
I−face

SAR

TI

Physical Links

I−face
Control

Figure 11: Block diagram of a generic network processor architecture utilizing hardware assists and hierar-
chical interconnection.

SwitchFast Path

Reassembly
Classification &

P
R

I
TI

Queuing &
Scheduling

Processing

Link

ROHC
Decompress

Frame
PacketRoute Lookup

Figure 12: Logical block diagram of ingress data path including ROHC decompression.

architects. For the purpose of our analysis, we employ a generic network processor architecture utilizing
hardware assists and hierarchical interconnection as shown in Figure 11. Note that Figure 11 includes an
ROHC Assist hardware assist block. We motivate the need for this block in the following section and analyze
the performance and resource tradeoffs in Section 6.

5.1 Functional Placement

A logic block diagram of the ingress datapath of a network processor supporting ROHC is shown in Fig-
ure 12. Note that following frame reassembly, packets containing compressed headers must be passed to
the ROHC Decompressor with an identifier specifying the arrival link and channel as well as the frame
length. Header decompression must precede Route Lookup & Classification, as the fields used for packet
classification are contained in the original packet header. The network processor must support some form of
Internal Packet Route (IPR) function capable of recognizing compressed headers and routing the packets to
the ROHC Decompressor prior to classification. This could pose a problem for architectures that implement
fixed datapaths between the Frame Reassembly and the Route Lookup & Classification blocks in order to
maximize throughput for typical network traffic.

In order to transmit packets with compressed headers, the network processor must be able to instantiate
an ROHC Compressor prior to Frame Segmentation as shown in Figure 13. As previously mentioned,
this requires that an IPR have the ability to identify and pass packets requiring header compression to the
ROHC Compressor along with the outgoing link, channel and Context Identifier (CID). Placement of the
ROHC Compressor relative to Queuing & Scheduling depends on a number of factors such as the ROHC
implementation platform and scheduling algorithms. The following sub-sections discuss the influences and
requirements ROHC places on the various components of network processor architecture, beginning with
the packet parsing and classification.

19

SwitchFast Path

Scheduling

Compress

Classification &

R
P

Link
TI

I
Segmentation
Frame

Packet
Processing

Queuing &

ROHC
Route Lookup

Figure 13: Logical block diagram of egress data path including ROHC compression.

5.2 Frame Reassembly & Packet Parsing

As previously mentioned, high-performance network processors often employ some form of “fast path” in
which packets requiring “normal” processing are handled by optimized blocks, bypassing general purpose
processing engines. One of the most fundamental and common tasks handled in a “fast path” is link layer
frame segmentation and reassembly. ROHC defines a segmentation and reassembly protocol which may
require modifications to fixed Frame Segmentation & Reassembly blocks. Note that the protocol is only
used when a packet is larger than the largest size supported by the link layer; therefore, its use in many
environments is obsolete. In order to offload the packet classification and route lookup functions, the “fast
path” must include some form of header parser which extracts the required header fields. This functionality
may be contained in the Frame Segmentation & Reassembly block or implemented as a separate component.
In order to leverage “fast path” components for ROHC functionality such as flow classification and CRC
computations, the header parser must recognize a new class of header formats defined by each ROHC profile.
This suggests that a programmable header parsing block, similar to the one described in [15], would be a
favorable architectural feature of a network processor supporting ROHC.

5.3 Packet Classification

Within the context of ROHC, a flow refers to a sequence of packets that demonstrate the necessary redun-
dancy in static fields as defined by the ROHC profile. In order to bind an uncompressed packet to an ROHC
flow, the static fields of the packet headers must be compared against the set of established flows. This is
precisely the function performed by packet classifiers which typically search filter tables used for network
management and firewalls. Most packet classifiers are capable of performing filter matches on header fields
such as the IP source and destination addresses, transport protocol, and transport source and destination
ports. For ROHC compression of IPv6/UDP/RTP and IPv4/UDP/RTP, the fields that must be examined in
order to identify a flow are reported in [2] and summarized in Table 4. The total search key sizes for IPv4
and IPv6 headers are 140 bits and 352 bits, respectively. Note that if the IPv6 Flow Label is used (non-zero)
the number of bits to be examined could be as low as 20 bits.

At minimum, ROHC requires that the packet classification block support exact match lookups using
search keys with configurable widths. This type of search may be efficiently implementing using hash-
ing techniques; however, it is likely that more elaborate algorithms will be employed in packet classifiers
employed by next-generation network processors. For high-performance packet classifiers, many network
processor platforms make use of Ternary Content Addressable Memory (TCAM) or ASICs implementing
proprietary algorithms. We note that the case of binding an IPv6/UDP/RTP header to an ROHC flow could
pose a problem for such implementations, as the required 352 bit search key is wider than the maximum
width provided by commercially available classifiers.

Ideally, entries in the classification table would contain the CID of the ROHC flow to be compressed.
This implies that updates be generated by a block responsible for managing the CID space of each channel.
Since there is no explicit flow termination signal in current packet switched networks, a suitable control
block must manage the CID space of each channel. This control block could be integrated with the filter

20

Table 4: Packet header fields examined for classification of ROHC flows.
Header Field Size (bits)
IPv4 Version 4

Protocol 8
Src.Addr. 32
Dest.Addr. 32

IPv6 Version 4
Flow Label 20
Next Hdr. 8
Src.Addr. 128
Dest.Addr. 128

UDP Src. Port 16
Dest. Port 16

RTP SSRC 32
Total IPv4/UDP/RTP 140

IPv6/UDP/RTP 352
IPv6 Flow Label 20

and route database manager of the packet classifier. At minimum, the control block must implement a
CID allocation algorithm such as Least Recently Used (LRU), manage a set of connection timers, and
generate appropriate feedback such as the “REJECT” feedback message used to inform a compressor that
no compression context is available for a new flow.

5.4 Timestamping

A mechanism for assigning an arrival time to ingress packets is required in order to support timer-based RTP
Timestamp encoding. Ideally, each packet should be stamped at the transmission interface, immediately
following reassembly, and prior to any pre-decompression buffering. The arrival timestamp may be carried
in an internal header, or shim, and passed to the decompressor along with the packet. Non-deterministic
buffering delays prior to decompression should be kept to less than a few microseconds. RTP Timestamps
are usually on the order of milliseconds; therefore, such small buffer delays should not make contributions
to the jitter calculations performed during timer-based RTP Timestamp decoding.

5.5 Scheduling & Queuing

An in-depth discussion of the affects of ROHC on scheduling and queuing mechanisms in next-generation
network processors in large wireless network aggregation nodes is beyond the scope of our discussion.
However, we would like to enumerate a few peculiarities in the ROHC standard which imply that further
study on this topic would be beneficial.

1. Non-deterministic processing time due to radio link properties and application behavior

2. Change of total packet length

3. Decompressor creates packets in reverse direction for acknowledgments in a bi-directional modes

4. Decompressor may create bursts of decompressed packets when using “negative caching”

21

5.6 Memory Resources

All header compression schemes achieve transmission efficiency by trading off memory resources. In
essence, headers are redundantly stored instead of transmitted. We examine the amount of memory space
and bandwidth required to support ROHC in large aggregation nodes.

5.6.1 Space Requirements

Since the compressor must maintain multiple reference values for sliding windows, there is a significant
difference between the amount of memory space utilized by an ROHC compressor and decompressor. In
IP/UDP/RTP compression, several fields require the compressor to store multiple reference values in a
sliding window when WLSB encoding is used. In order to formulate an upper bound on capacity estimates,
we account for per-context memory requirements of a compressor. As shown in Table 5, the memory space
required for a reference header and encoding parameters for ROHC compression of IPv4/UDP/RTP and
IPv6/UDP/RTP differ by only one byte. Assumptions guiding our choosing sliding windows of width 10 and
encoding parameter sizes are provided in the Appendix. Using 244 bytes as the upper bound for reference
header and encoding parameters and adding the 20 bytes for state machine transition parameters, 264 bytes
seems to be a reasonable approximation for the per-context memory requirements for ROHC compression.
We also performed this analysis for decompression and found that the per-context memory requirements
for ROHC decompression of IPv4/UDP/RTP and IPv6/UDP/RTP are approximately 100 bytes less than that
required for compression.

While the specific configuration of contexts per channel, channels per link, and links per port will vary
depending on the application or access router configuration, we anticipate that a single network processor
may need to support thousands of concurrent contexts. Based on our per-context estimates, total memory
requirements for context information exceeds 1MB for four thousand flows. This implies that off-chip
SDRAM should be used for context storage as on-chip memory resources are typically limited to a few
kilobytes. While commodity SDRAM products provide ample space for context information storage, we
examine the additional off-chip memory bandwidth required to support ROHC.

5.6.2 Bandwidth Requirements

ROHC memory bandwidth consumption will depend heavily upon implementation design decisions and
target platforms. Similarly, dimensioning of memory interface bandwidth for network processors is difficult
due to the heterogeneity of applications. Processor architects employ various “rules of thumb” in order
to gain a first-order approximation of the required memory bandwidth. For the purpose of our analysis,
we choose a conservative rule that states the memory interface should provide four times the bandwidth
of the aggregate link rate. For example, a network processor supporting an aggregate link throughput of
1 Gb/s should employ a 4 Gb/s memory interface. This rule is based upon the assumption that a packet
must be written to memory when received, read from memory for processing, written back to memory after
processing, and read from memory for transmission for a total of four transits over the memory interface.
It should be noted that some processor architectures employ register pipelines to avoid reading packets
from memory for processing. Any packet modifications are applied when the packet is read from memory
prior to transmission, resulting in a total of two transits over the memory interface. Given that the wireless
access environment requires support for many low-speed or aggregated links, we envision that the number of
processing engines in the network processor will be less than the number of links. An architecture employing
register pipelines requires an additional packet memory between the ports and pipelines as packets may

22

Table 5: Context memory space usage for reference headers and encoding parameters for ROHC
IP/UDP/RTP compression. Assumes n = 10 for WLSB window widths, see the Appendix for further
explanation.

Header Field Size Ref.Hdr. Total
(bytes) (bytes) (bytes)

IPv4 Version 0.5 0.5 0.5
Hdr. Len. 0.5 0 0
TOS 1 1 1
Total Len. 2 0 0
IP-ID 2 n × 2 + 5 25
Flags 0.5 0.5 0.5
Frag. Offset 1.5 0 0
TTL 1 1 1
Protocol 1 1 1
Hdr. Chk. 2 0 0
Src. Addr. 4 4 4
Dst. Addr. 4 4 4

Total 20 37
IPv6 Version 0.5 0.5 0.5

Traffic Class 1 1 1
Flow Label 2.5 2.5 2.5
Payload Len. 2 0 0
Next Hdr. 1 1 1
Hop Limit 1 1 1
Src. Addr. 16 16 16
Dst. Addr. 16 16 16

Total 40 38
UDP Length 2 0 0

Checksum 2 0 0
Src. Port 2 2 2
Dst. Port 2 2 2

Total 8 4
RTP Flags, CC,

M, PT 2 2 2
SSRC 4 4 4
SN 2 n × 2 + 5 25
TS 4 n × 8 + 31 111
CSRC 0-60 0-60 0-60

Total 12 - 72 134-194
Total IPv4/UDP/RTP 40-100 183-243

IPv6/UDP/RTP 60-120 184-244

23

βCc (P +βH)

PktContextPkt
Packet Processing

Cc (P +β

Memory

H)

ΗP

(P + H)

βΗP

(P + H)

Interface

Figure 14: First-order memory bandwidth usage model for ROHC compression in the egress packet pro-
cessing path of a network processor.

arrive simulataneously on each link. Since we seek to establish conservative bounds for the additional
memory bandwidth required for ROHC, we utilize the single memory interface architecture for our analysis.

In order to gain a first-order approximation for the additional memory bandwidth required for ROHC,
we must first establish some assumptions. Due to the large number of supported channels at an aggregation
node in the network, we assume that context information is stored off-chip. We also assume that ROHC
processing does not require additional reading and writing of packet data, as ROHC processing may utilize
an on-chip buffer like the Packet Modification Buffer shown in Figure 6. Based on these assumptions, the
only additional memory accesses generated by ROHC processing is for context fetches and updates.

As shown in Figure 14, we assume that packet headers are compressed by some factor β that ranges
from zero to one. Initialization headers which contain the entire original header correspond to β = 1, while
contexts with high compression efficiency corresponds to β ≤ 0.1. While all of the context information
must be fetched in order to decompress or compress a packet header, only a portion of the context needs to
be updated and written back to memory. We make the first-order approximation that the amount of context
information written back to memory is proportional to the compression factor β. In general, small headers
require few updates of context information while larger headers induce more context information updates.

Based on these assumptions, we find that context accesses for ROHC compression contribute an addi-
tional (1 + β)×Cc bytes per packet of memory bandwidth where Cc is the size of the compression context.
Similarly, context accesses for ROHC decompression contribute an additional (1+β)×Cd bytes per packet
of memory bandwidth where Cd is the size of the decompression context. As we seek to garner upper-
bounds for worst-case design, we will continue our analysis for the compression case since Cc was found
to be 264 bytes in the previous section, approximately 100 bytes more than Cd. Note that the analysis for
decompression is symmetric with only a change in the value of the context size.

Letting H and P be the length in bytes of the packet header and packet payload, respectively, we
assume that packet storage upon arrival and fetch prior to processing consumes 2 × (P + H) bytes per
packet of memory bandwidth. Packet storage after processing and header compression and packet fetch
for transmission, requires 2 × (P + βH). Given a fixed link rate, R, expressed in bytes per second, the
number of packets per second equals R

P+H
. Thus, the amount of memory bandwidth required for a system

without ROHC processing is 4 × R bytes
sec

. The expression for memory bandwidth requirements for ROHC
compression processing relative to link speed becomes:

MemBW = [2 +
264 × (1 + β)

P + H
+

2 × (P + βH)

P + H
] × R

bytes

sec
(24)

Note that the memory bandwidth scaling factor relative to the link rate is now a function of the header size,
payload size, and β. A plot of the memory bandwidth scaling factor versus payload size over the range of
β values for ROHC compression of IPv6/UDP/RTP headers is given in Figure 15. Note that we assumed a
static uncompressed header size, H , of 100 bytes.

Supporting our previous example of 20 byte voice datagrams with 100 byte IPv6/UDP/RTP headers

24

4

5

6

7

8

9

10 90 170 250 330 410 490

Payload Length (bytes)

M
em

or
y

B
W

 S
ca

li
ng

 (
re

la
ti

ve
 to

 li
nk

 r
at

e)

β = 1.0

β = 0.0

β = 0.5

Figure 15: Memory bandwidth scaling factor relative to supported link rate versus packet payload size for
ROHC compression of IPv6/UDP/RTP headers. Assumes static uncompressed header size of 100 bytes.

would require a total memory bandwidth of approximately 8.4 times the link rate, more than double the
bandwidth required for normal packet processing. For a network processor supporting a bi-directional
2.5 Gb/s link or 5 Gb/s total throughput, this implies that the memory interface be dimensioned for 42 Gb/s.
Using a standard datapath width of 128 bits, this implies that the interace must be operated at over 328 MHz
for standard memory technologies or 164 MHz for Dual Data Rate (DDR) memory technologies [16, 17].
Note that we have assumed simplistic packet handling and application of ROHC compression to 100% of
the link traffic. Our results imply that ROHC processing has a significant cost in terms of off-chip memory
bandwidth consumption. As link speed increases continue to outpace memory technology improvements,
optimized fast-path or header-only processing techniques may become essential to meeting throughput con-
straints especially when supporting additional memory-intensive applications.

5.7 Processing Resources

The following analysis seeks to assess the impact of ROHC given the capacity of current network processors,
as well as provide motivation for the architectural enhancements for supporting ROHC in next-generation
network processors which are discussed in Section 6. Due to the complexity of the ROHC standard and
lack of open implementations at this time, we construct reasonable estimates of the required processing
resources based on publicly available data from initial header compression development efforts. It must be
emphasized that we only seek to establish some intuition regarding processing resource consumption and
scaling in order to facilitate our architectural discussion.

We begin by establishing bounds on the number of instruction cycles required for compression and
decompression in purely software-based implementations. Starting with a lower bound, we analyze the per-
formance results reported in [5] for the comparatively simple TCP/IP header compression scheme. Based
on the processing times given for the various test platforms, we estimate that compression requires approxi-
mately 460 cycles per packet while decompression requires approximately 200 cycles per packet.

In order to formulate an upper bound, we analyze results reported at a recent IETF meeting for an initial
ROHC implementation by Roke Manor Research [3]. Running on a 270MHz SUN Ultra 5 workstation,
header compression required 41µs per packet while header decompression required 56µs per packet. Given

25

that the SUN Ultra 5 is equipped with an UltraSPARC IIi processor which is a 4-way SuperScalar architec-
ture [18][19], we assume that efficiency ranges from one instruction per cycle to four instructions per cycle.
Based on these assumptions we extrapolate that in this first-pass version of ROHC, compression requires
between 11,070 instructions per packet and 44,280 instructions per packet while decompression requires
between 15,120 instructions per packet and 60,480 instructions per packet.

We believe that these estimates must be further refined within the context of a network processor. Given
the absence of an operating system, efficiencies achievable via code optimizations, and the offloading of
packet classification to dedicated hardware in a network processor, we believe that the performance of ROHC
software could be improved by an order of magnitude. Making this admittedly optimistic assumption, we
will use the estimate of 1,500 instructions per packet for the remainder of the discussion. Given that this
estimate is approximately three times higher than the requirements for TCP/IP header compression, we do
not feel that it is unrealistic.

We now compare this processing resource consumption estimate to the capacity claims of current gener-
ation network processors from major producers targeting the OC-48 (2.5Gb/s) access market [20][21][22].
Due to the variety of processor architectures and varying degrees to which the processors offload tasks to
on-chip hardware assists, we find that the total MIPS provided by current generation products ranges from
2,128 MIPS to 5,400 MIPS. Assuming these products must process orthogonal ingress and egress flows, we
assume a total throughput constraint of 5Gb/s. Based on this assumption, we extract a budget range of 3.4 to
8.6 instructions per byte of link traffic. For our 120 byte IP/UDP/RTP voice packet example, the processing
resources budgets for these products range from 408 to 1032 instructions per packet.

Comparing these capacities with our estimates of ROHC processing requirements, we find that applica-
tion demands may be more than double the processor capacity. Even if we make the assumption that the
next generation of these products will possess double the current processing capacity, ROHC could very
well consume all of the processing resources leaving no cycles available for mandatory packet processing or
additional service applications. Clearly, ROHC serves as another example of the need for more processing
resources in network processors. In order to meet this demand, system architects could simply increase the
number of parallel processors in the system. We now investigate the more intriguing architectural question
of how to accommodate ROHC in next-generation network processors via the use of application specific
hardware assists.

6 Offloading ROHC Functions to Application-Specific Hardware Assists

A significant portion of the implementation complexity of ROHC lies in the functionality and interactions
of the Compressor and Decompressor Finite State Machines (CFSM/DFSM) and the Mode Finite State
Machine (MFSM) that establish the context information, encoding parameters, and packet formats. The
software-programmable processing engines in network processors are well-suited for such tasks, suggesting
a hardware-software co-design to achieve a favorable balance among flexibility and performance. In this
section, we consider several of the computationally intensive and redundant tasks specific to ROHC as can-
didates for implementation as hardware assists. In addition to absolute processing times, the results reported
in [3] also provide a breakdown of the amount of time consumed by various steps in the compression pro-
cess. Correlating these results to the logical block diagram presented in Figure 6, we make the following
observations:

• Packet classification and context binding comprises approximately 14% of the workload

• Packet parsing comprises approximately one third of the workload

26

• CRC computations comprise 14% to 20% of the workload

• Header field encoding and decoding comprises approximately one third of the workload

As previously discussed, the contributions due to packet parsing, packet classification, and CRC com-
putations may be offloaded to existing hardware assists in current-generation network processor platforms.
Offloading the encoding and decoding of header fields allows a majority of the ROHC processing to be
done in hardware assists. We begin our analysis of ROHC hardware assists by examining the achievable
performance and die area required for Header Field Codecs in several implementation technologies with
varying degrees of flexibility. In order to evaluate the implications of a hardware-software co-design, we
continue with a discussion of the interconnection bandwidth consumption and hardware-software handovers
in Section 6.2. Although we do not provide an explicit analysis, we do believe that reconfigurable hardware
assists provide a viable high-performance option for the finite state machines of the Context Processor if
additional offloading were required to achieve a specific performance target. As in the previous sections, we
focus our analysis on supporting ROHC for IP/UDP/RTP headers.

6.1 Performance, Flexibility, & Size

In light of our previous analysis of ROHC header field encoding and decoding techniques, we now consider
implementation options for a set of ROHC Header Field Codecs hardware assists. Note that we consider two
general codec designs: generic codecs which require that the shifting parameters be passed with the input
values and field-specific codecs for each header field which are optimized for the known shifting parameters
and field width. Due to the nature of WLSB encoding, all of the encoders may be designed in an iterative
fashion which seeks to maximize logic reuse and minimize area, or they may designed in a pipelined fashion
which computes all intermediate results in parallel and allows a new set of fields to be issued every clock
cycle. We implemented the generic and field-specific encoders in both paradigms in order to effectively
explore the design space.

We note that given the current lack of insight into ROHC behavior, flexibility is essential for initial im-
plementations. As more experience is garnered, less-flexible implementations providing higher performance
may become favorable in the future. We consider three implementation options that represent a likely migra-
tion path for ROHC hardware assists. Regarding performance constraints, our analysis assumes a 2.5 Gb/s
bi-directional link; therefore, the hardware assists must provide for 2.6 million header encoding operations
per second and 2.6 million header decoding operations per second. An operation refers to the complete
encoding or decoding of all the dynamic header fields of the packet. In order for the generic codecs to meet
the throughput constraint, they must provide 7.8 million operations per second (Mops) as they must operate
on all three of the dynamic header fields in the IP/UDP/RTP stack. For ease in comparison, performance
results are listed with millions of packets per second (Mpkts).

6.1.1 Reconfigurable Hardware Assists

By augmenting a network processor with Reconfigurable Hardware Assists (RHAs), flexible implementa-
tions of computationally intensive and profile-specific functions may be realized. In order to assess the
achievable performance and size of ROHC Header Field Codecs implemented as RHAs, we designed and
implemented several codecs in VHDL. The designs were then synthesized using Synplicity’s Synplify Pro
targeting a Xilinx Virtex-E device. Achievable clock frequencies are based on worst-case delay estimates in
a device with a -8 speed grade. Based on the figures claimed in the Xilinx Virtex-E datasheet [23], a single
LUT/FF pair translates to 13.5 equivalent ASIC gates. A recent announcement by IBM and Xilinx claims

27

Table 6: Reconfigurable hardware resource usage and performance estimates for ROHC IP/UDP/RTP encod-
ing methods. LUT/FF usage and clock period estimates according to synthesis with Synplicity Pro targeting
a Xilinx Virtex-E (-8) device using worst-case delay estimates. Area estimates assume 423 LUT/FF pairs
per mm2.

Block cycles/op LUTs FFs Area Tclk Tput Tput
mm2 ns Mops Mpkts

Generic LSB Encoder (Pipelined) 1 1077 273 2.546 10.107 98.941 32.908
Generic LSB Encoder (Iterative) 2 694 297 1.641 9.749 51.287 17.096
Generic WLSB Encoder (Pipelined) 1 2250 603 5.319 10.057 99.433 33.144
Generic WLSB Encoder (Iterative) 4 714 417 1.688 9.77 25.589 8.530
IP-ID Encoder (Pipelined) 1 336 187 0.794 7.465 133.958 133.958
IP-ID Encoder (Iterative) 2 193 165 0.456 7.447 67.141 67.141
RTP SN Encoder (Pipelined) 1 559 221 1.322 7.547 132.503 132.503
RTP SN Encoder (Iterative) 4 198 151 0.468 7.379 33.880 33.880
RTP Scaled TS Encoder (Pipelined) 1 2279 590 5.388 10.181 98.222 98.222
RTP Scaled TS Encoder (Iterative) 4 727 386 1.719 9.749 25.644 25.644
Generic LSB Decoder 1 647 210 1.530 19.036 52.532 17.511
IP-ID Decoder 1 188 166 0.444 12.203 81.947 81.947
RTP SN Decoder 1 248 155 0.586 12.082 82.768 82.768
RTP Scaled TS Decoder 1 621 200 1.468 19.407 51.528 51.528

that forthcoming embedded Xilinx FPGA cores of 40k equivalent gates will require 7 mm2 in the IBM
Cu-08 process [24]. We therefore use the estimate of 423 LUT/FF pairs per mm2 for our area estimate. Our
implementation results are shown in Table 6.

A fairly large degree of size and speed optimization is achievable in FPGA technology via low-level
description and hand-placement of designs; however, our analysis focuses not on determination of absolute
performance, but extraction of relative trends between codec designs. Figure 16 illustrates the throughput
and area tradeoffs of employing different types of codecs. In general, iterative and generic codec designs are
more area efficient while a set of field-specific and pipelined codec designs provided better throughput. For
our example case of supporting 2.5 Gb/s links, we note that a combination of an iterative, generic WLSB
encoder and generic LSB Decoder exceeds the necessary throughput of 2.6 million packets per second with
better area efficiency than use of field-specific encoders. Specifically, a set of generic codecs provides a
worst-case throughput of 8.5 million packets per second while consuming approximately 3.218 mm2 of die
space. A set of pipelined, field-specific encoders provide the highest worst-case throughput at 98.2 million
packets per second, but require 7.5 mm2 of die area. Likewise, the collection of field-specific decoders
which collectively would 2.5mm2 of die space provide the highest worst-case throughput of 51.5 million
packets per second.

For a network processor employing generic codecs or supporting a single ROHC profile, reconfiguration
may be relatively infrequent implying that manually triggered reconfiguration of RHAs would be sufficient.
However for network processors supporting multiple ROHC profiles or higher link rates requiring the use
of profile-specific codec designs, run-time reconfiguration mechanisms would be required incurring an ad-
ditional hardware cost. We defer discussion of such mechanisms at this time.

Based on our preliminary implementation results, we also predict that implementation of a full ROHC
Compressor/Decompressor as an RHA would likely require more die area than available on-chip in the an-
nounced embedded FPGA cores. As additional service applications such as content filtering and transcoding

28

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

Codec Throughput (Mpkt/s)

C
od

ec
 A

re
a

(m
m

^2
)

Pipelined, Field-Specific Encoders

Pipelined, Generic Encoder

Iterative, Field-Specific Encoders

Iterative, Generic Encoder

Generic Decoder

Field-Specific Decoders

Figure 16: Area versus throughput tradeoff for various ROHC header field codec designs implemented as
Reconfigurable Hardware Assists (RHAs) in embedded FPGA technology.

are pushed to the network edge, fully offloading ROHC processing may become desirable. In such a case,
the network processor platform could be augmented with an additional reconfigurable hardware processing
element utilizing the Dynamic Hardware Plugins (DHP) architecture [25]. DHP was developed in order to
exploit the high-performance and flexibility provided by reconfigurable hardware technology for high-speed
network processing. By providing reconfigurable logic regions with static interfaces to on-chip I/O ports
and arbitrated off-chip memory resources, DHPs allow computationally intensive functions and applications
to be completely offloaded from the network processor without loss of flexibility.

6.1.2 Application Specific Instruction set Processors (ASIPs)

An ASIP is an alternative between GPPs and ASICs that combines the required flexibility with efficiency by
designing a specialized processor core for a class of applications—in our case header compression—such
that it is software programmable but its structure is optimized to speed up the common case. Interfaces
to the environment of the ASIP, including memories, are tailored to the application class, and processor
infrastructure that does not considerably contribute to processing performance is pruned off. This avoids
logic that is only rarely used but consumes area and power.

A significant improvement over a GPP stems from a specialized instruction set that speeds up frequently
used code sections and reduces program-memory requirements by implementing common combinations of
operations in hardware as extended instructions. An example for an ASIP specialized in header parsing for
10 Gb/s is given in [15]. The size of the parser, including a small instruction memory, is in the order of
0.45mm2 in a 0.18µm-process which demonstrates the area efficiency of the ASIP approach. Examples of
methods for the derivation of ASIP instruction sets from application representations can be found in [26, 27].

An ASIP for header compression can employ instructions of different complexity. Single instructions
can implement complete coding blocks, such as a WLSB encoder or an LSB decoder, or they can be more
basic functions such as a parameterized version of Figure 9, that can be used to implement a variety of

29

Table 7: ASIC resource usage and performance estimates for ROHC IP/UDP/RTP encoding methods. Area
and clock period estimates according to synthesis targeting IBM Cu-11 process with worst-case delay esti-
mates.

Block cycles/op Area Tclk Tput Tput
mm2 ns Mops Mpkts

Generic LSB Encoder (Pipelined, Area Optimized) 1 0.036 7.9 126.582 42.194
Generic LSB Encoder (Pipelined, Speed Optimized) 1 0.106 2.03 492.611 164.204
Generic LSB Encoder (Iterative, Area Optimized) 2 0.033 6.6 75.758 25.253
Generic LSB Encoder (Iterative, Speed Optimized) 2 0.079 2.04 245.098 81.699
Generic WLSB Encoder (Pipelined, Area Optimized) 1 0.072 10.5 95.238 31.746
Generic WLSB Encoder (Iterative, Area Optimized) 4 0.035 9.1 27.473 9.158
Generic LSB Decoder (Area Optimized) 1 0.042 13.5 74.074 24.691
Generic LSB Decoder (Speed Optimized) 1 0.121 2.74 364.964 121.655

codecs. This is a trade-off between efficiency, defined as performance per area, and flexibility.

In the ROHC case, the instructions should represent the basic functions that make up a compression
profile. When new compression profiles are specified they can be implemented with those basic ROHC
functions and be added to the ROHC ASIP’s functionality. If the ASIP is supposed to only run ROHC
then the framework around the profiles, which does not change, can even be implemented in a hard-wired
fashion. This solution combines the flexibility for new profiles with the most efficient implementation of the
framework.

If the goal is to also be open for future header compression schemes beyond ROHC then more flexi-
bility can be provided by adding instruction-set support for header-compression frameworks in general and
implementing the ROHC framework in ASIP software, thus shifting the trade-off between flexibility and
efficiency towards a less efficient but more generic implementation.

6.1.3 Application-Specific Integrated Circuits (ASICs)

As the ROHC specification matures and becomes more stable, flexibility may no longer be a necessity
and performance may become a higher priority. In such a case, Application-Specific Integrated Circuits
(ASICs) may be the prefered implementation technology for ROHC hardware assists as they provide high-
performance at low area cost for fixed functions. Results from synthesis of select ROHC codecs targeting the
IBM Cu-11 process with worst-case delay estimates are shown in Table 7. Note that design tools for ASIC
synthesis provide for a wide range of optimization parameters. We provide results for both area and speed
optimized synthesis runs in order to illustrate the spectrum of achievable results. Based on these results, a
set of generic codecs capable of performing 75 million encodes and decodes per second would require less
than 0.1 mm2 of die area.

6.2 Interconnection Architecture

Hardware assists reduce processor cycle consumption at the cost of additional overhead for communication
between processor and hardware assists. It is our aim to derive a first-order approximation of the additional
interconnection bandwidth required for software/hardware handovers for ROHC hardware assists. This
approximation will aid our discussion of interconnection architectures suitable for ROHC hardware assists,
including placement and coupling to the processor.

30

For the purpose of our analysis, we assume a generic processor architecture as shown in Figure 11 and
that the following steps contribute to interconnection bandwidth consumption:

1. Packet receive (TI/SAR to SDRAM interface): P + H

2. Packet load (SDRAM Interface to processor cache): P + H

3. Context load (SDRAM Interface to processor cache): Cc

4. Vector to hardware assists: HWAi

5. Return from hardware assists: HWAj

6. Context store (Processor cache to SDRAM interface): βCc

7. Packet store (Processor cache to SDRAM interface): P + βH

8. Packet transmit (SDRAM Interface to TI/SAR): P + βH

The quantities following each step refer to the amount of data per packet which must transit the intercon-
nect. Note that under these assumptions, interconnection bandwidth usage is equal to memory bandwidth
usage when no hardware assists are employed. Clearly, these assumptions do not take into consideration
the overhead incurred for interconnect transactions. For example, in high-performance bus-based intercon-
nects several cycles are consumed for arbitration and addressing. We assume that such overheads may be
accounted for by a general additive constant.

The values of HWAi, the size of arguments passed to the hardware assists, and HWAj , the size of
results returned to the processor, depend on the type of ROHC hardware assists employed in the system.
We examine the case of ROHC encoding employing a hardware assists for generic WLSB encoding, CRC
calculations, MFSM and CFSM state transitions. Based on our previous assumptions, the total amount of
information transferred, HWAi + HWAj , is approximately 85 bytes. Given that the amount of data per
packet passed between the processor and hardware assists is a constant, the amount of additional inter-
connection bandwidth required for these transactions relative to the supported link rate decreases with the
packet size. A plot of the additional interconnection bandwidth requirement relative to the supported link
rate versus packet payload size for ROHC compression of IPv6/UDP/RTP headers with hardware assists is
shown in Figure 17. Additional interconnection bandwidth for decompression is shown in Figure 18.

Relative to the interconnection bandwidth consumed by packet and context load and stores, the addi-
tional amount required for ROHC hardware assists is small. For our 20 byte voice datagram example an
additional 0.7×R bytes

sec
of interconnection bandwidth is required. These results imply that ROHC hardware

assists may be loosely coupled to the packet processor and utilize standard interfaces to on-chip intercon-
nect. If addressing and arbitration overheads are sufficiently large, hierarchical interconnect may be used to
eliminate the contributions of hardware assist communication from the FastPathInterconnect as shown
in Figure 11.

7 Conclusions

We have provided an overview of Robust Header Compression (ROHC) and extracted the primary functional
blocks required for an ROHC Compressor/Decompressor. From this analysis we examined the architectural
implications imposed by ROHC on network processors designed for use in wireless access infrastructure

31

Table 8: Accounting of bytes per packet required for communication between processor and ROHC hard-
ware assists.

Block Input HWAi Output HWAj Total
Description (bytes) Description (bytes) (bytes)

CFSM/DFSM transition parameters 20 win update 1
type/mode/state 1 count update 1
SN, ACK/update flags 3 timeout update 2 28

MFSM mode/trans state 1 mode/trans update 1
ACK/update flags 1 ACK type 1 4

Generic WLSB Encoder v, vrefmin
, vrefmax

3 × 12 k, flags 3 × 2
a, b, c 3 × 3 51

Generic LSB Decoder vref 3 × 4 v, flags 3 × 5
m, a, b, c 3 × 2
mval 3 × 4 45

IP-ID Encoder v, vrefmin
, vrefmax

6 k, flags 2
RTPSN Encoder v, vrefmin

, vrefmax
6 k, flags 2

RTP TS Encoder v, vrefmin
, vrefmax

12 k, flags 2 30
IP-ID Decoder vref , mval, m 5 val, f lags 3
RTPSN Decoder vref , mval, m 5 val, f lags 3
RTP TS Decoder vref , mval, m 10 val, f lags 5 31
CRC received 1 result 1 2

0.0

0.5

1.0

10 90 170 250 330 410 490

Payload Length (bytes)

In
te

rc
on

ne
ct

 B
W

 S
ca

li
ng

 (
re

la
ti

ve
 to

 li
nk

 r
at

e)

WLSB Encode

CFSM/DFSM

MFSM

CRC

Figure 17: Additional interconnect bandwidth requirement relative to supported link rate versus packet
payload size for ROHC compression of IPv6/UDP/RTP headers with hardware assists. Assumes hardware
assists implementing CFSM/DFSM, MFSM, Generic WLSB Encoder, and CRC. Assumes static uncom-
pressed header size of 100 bytes and excludes contributions for packet classification, frame CRC, and inter-
connect overheads such as arbitration and addressing.

such as Base Station Subsystems (BSS). Based on reasonable assumptions regarding the probable envi-
ronment of use we provided an estimate for the amount of memory required to store context information.

32

0.0

0.5

1.0

10 90 170 250 330 410 490

Payload Length (bytes)

In
te

rc
on

ne
ct

 B
W

 S
ca

li
ng

 (
re

la
ti

ve
 to

 li
nk

 r
at

e)

LSB Decode

CFSM/DFSM

MFSM

CRC

Figure 18: Interconnect bandwidth scaling factor relative to supported link rate versus packet payload
size for ROHC decompression of IPv6/UDP/RTP headers. Assumes hardware assists implementing
CFSM/DFSM, MFSM, Generic LSB Decoder, and CRC. Assumes static uncompressed header size of 100
bytes and excludes contributions for packet classification, frame CRC, and interconnect overheads such as
arbitration and addressing.

Assuming a context size of 264 bytes per context and a network processor supporting thousands of flows
implies that off-chip memory must be used for context storage. We then analyzed the required memory
bandwidth relative to the supported link rate and found that for small payload sizes ROHC requires a mem-
ory interface providing a bandwidth of up to nine times the link rate. This is a significant result given
standard industry practice of dimensioning network processor aggregate memory bandwidths equal to the
link rate or at most four times the link rate.

Based on initial implementation results and capacities of existing network processors, we argue that
ROHC imposes a significant strain on processing resources. We then explored the design space for application-
specific hardware assists for ROHC in the form of reconfigurable hardware, Application-Specific Instruction-
set Processors (ASIPs), and Application-Specific Integrated Circuits (ASICs). We showed that the additional
interconnection bandwidth required for software/hardware handovers is relatively small implying that hard-
ware assists could be loosely coupled to the packet processor and employ standard interfaces to on-chip
interconnect. We assert that supporting ROHC in next-generation network processors targeted to large ag-
gregation nodes in wireless access networks requires consideration at the architectural level. We also provide
evidence for continued incorporation of application-specific hardware assists in high-performance network
processor architectures.

Acknowledgments

We would like to thank Mark West for his prompt replies to our questions regarding his slides presented
at the ROHC Working Group meeting of the IETF. We also would like to thank Peter Buchmann for his
assistance with CAD tool flows for the ASIC hardware assists evaluation.

33

References

[1] Effnet, “An Introduction to EffnetEdge Header Compression Technology,” tech. rep., Effnet Inc., 888
Villa Street, Mountain View, CA 94041, USA, 2002.

[2] C. Bormann, et. al., “RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP,
ESP, and uncompressed.” RFC 3095, July 2001. IETF Network Working Group.

[3] M. West, “ROHC Implementation Experience,” in ROHC Working Group Meeting, 50th IETF Meeting,
March 2001.

[4] H. Schulzrinne, et. al., “RTP: A Transport Protocol for Real-Time Applications.” RFC 1889, January
1996. IETF Network Working Group.

[5] V. Jacobson, “Compressing TCP/IP Headers for Low-Speed Serial Links.” RFC 1144, February 1990.
IETF Network Working Group.

[6] M. Degermark, B. Nordgren, and S. Pink, “IP Header Compression.” RFC 2507, February 1999. IETF
Network Working Group.

[7] S. Casner and V. Jacobson, “Compressing IP/UDP/RTP Headers for Low-Speed Serial Links.” RFC
2508, February 1999. IETF Network Working Group.

[8] L.-E. Jonsson, M. Degermark, H. Hannu, and K. Svanbro, “RObust Checksum-based header COm-
pression (ROCCO).” Internet Draft, June 1999. IETF Network Working Group.

[9] L.-A. Larzon, M. Degermark, and S. Pink, “Efficient Use of Wireless Bandwidth for Multimedia Ap-
plications,” tech. rep., Lulea University of Technology, 2000.

[10] L.-A. Larzon, H. Hannu, L.-E. Jonsson, and K. Svanbro, “Efficient Transport of Voice over IP over
Cellular links,” in Globecom, 2000.

[11] M. Thoren, “Ericsson compression technology boosts 3G network capacity.” Ericsson Press Release,
May 2002.

[12] L.-E. Jonsson, “RObust Header Compression (ROHC): Requirements and Assumptions for 0-byte
IP/UDP/RTP Compression.” RFC 3243, April 2002. IETF Network Working Group.

[13] L.-E. Jonsson and G. Pelletier, “RObust Header Compression (ROHC): A Link-Layer Assisted Profile
for IP/UDP/RTP.” RFC 3242, April 2002. IETF Network Working Group.

[14] C. Bormann, “RObust Header Compression (ROHC) over PPP.” RFC 3241, April 2002. IETF Network
Working Group.

[15] G. Dittmann, “Programmable finite state machines for high-speed communication components,”
Master’s thesis, Darmstadt University of Technology, http://www.zurich.ibm.com/˜ged/
HeaderParser_Dittmann.pdf, 2000.

[16] Micron Technology Inc., “36Mb DDR SIO SRAM 2-Word Burst.” Datasheet, December 2002.

[17] Micron Technology Inc., “256Mb Double Data Rate (DDR) SDRAM.” Datasheet, October 2002.

[18] SUN, “Ultra 5 Workstation Hardware Specifications.” http://sunsolve.sun.com/
handbook_pub/Systems/U5/spec.html. SUN Microsystems.

34

[19] SUN, “UltraSPARC-IIi Processor.” http://www.sun.com/processors/
UltraSPARC-IIi/specs.html. SUN Microsystems.

[20] Intel, “IXP2400 Network Processor,” tech. rep., Intel Corporation, 2002. Product Brief.

[21] Motorola, “C-5e Network Processor Silicon Revision A0,” Tech. Rep. C5ENPDATA-DS/D, Motorola,
Inc., 2002. Revision 1.

[22] IBM, “PowerNP NP4GS3 Network Processor,” Tech. Rep. np3 ds TOC.fm.10, Internationl Business
Machines Corporation, 2002.

[23] Xilinx Inc., “Virtex-E 1.8V Field Programmable Gate Arrays.” Xilinx Datasheet (DS022), 2001.

[24] IBM and Xilinx, “IBM, Xilinx shake up art of chip design with new custom product.” Press Release,
June 2002. http://www-3.ibm.com/chips/products/asics/products/cores/efpga.html.

[25] D. E. Taylor, J. S. Turner, J. W. Lockwood, and E. L. Horta, “Dynamic Hardware Plugins (DHP):
Exploiting Reconfigurable Hardware for High-Performance Programmable Routers,” Computer Net-
works, vol. 38, pp. 295–310, February 2002. Elsevier Science.

[26] M. Arnold and H. Corporaal, “Designing domain-specific processors,” in Proceedings of the Ninth
International Symposium on Hardware/Software Codesign (CODES’01), pp. 61–66, April 2001.

[27] I.-J. Huang and A. M. Despain, “Generating instruction sets and microarchitectures from applications,”
in Proceedings of the International Conference on Computer Aided Design (ICCAD-94), pp. 391–396,
November 1994.

Appendix

For the purpose of our analysis, we must make several assumptions in order to estimate the amount of
memory required per ROHC context. Note that many header fields may either be inferred or reconstructed;
therefore, they need not be stored on a per-context basis. Specifically,

• Payload length fields are inferred from link layer frame lengths

• IPv4 options or padding are not allowed

• UDP checksum is either disabled or transmitted explicitly when enabled

For the following analysis we do not consider the requirements for the “negative caching” technique de-
scribed in [2] for rapid error recovery.

In order to estimate the size of sliding windows maintained by the compressor for WLSB encoded
fields, we assume an RTP flow for audio frames of 20ms duration transmitted over cellular links with an
RTT of 200ms. Assuming normal operating conditions, there can be as many as 10 outstanding packets
from the perspective of the compressor; therefore, the compressor will have to store 10 references values in
its sliding window. WLSB encoding p parameters a, b, and c are assumed to be one byte each. Local arrival
timestamps and variables TS STRIDE, TIME STRIDE, TS OFFSET, Max Jitter BC, and Max Jitter CD
for RTP Timestamp encoding are assumed to be four bytes each. Note that we are assuming a worst-case
circumstance with one context per channel; therefore, channel jitter variables must be stored with each
context.

35

	Robust Header Compression (ROHC) in Next-Generation Network Processors
	Recommended Citation
	Robust Header Compression (ROHC) in Next-Generation Network Processors

	tmp.1470340445.pdf.2J0ov

