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Abstract— This paper describes a scheduling abstraction,
called group scheduling, that emphasizes fine grain configurability
of scheduling system semantics. The group scheduling approach
described and evaluated in this paper is an extremely flexible
framework within which a wide range of scheduling semantics
can be expressed. The paper describes both the OS and mid-
dleware based implementations of the framework, and shows
through evaluation that they produce the same behavior from a
non-trivial set of application computations. Further, the evalua-
tion shows that the framework can easily support application-
aware scheduling algorithms to improve performance.

I. INTRODUCTION

Distributed real-time and embedded (DRE) systems are
increasingly common across a wide range of application
domains. Constraints on application computation behavior in
DRE systems are becoming ever more detailed and diverse
as the applications become more complex. This trend is
illustrated by the range of constraints associated with the
application domains we have been considering over the last
year, which include: industrial automation, military command
and control, and life science laboratory experiment con-
trol/management.

The challenge these systems pose for the application de-
signer is the increasing complexity of the application seman-
tics and the resulting difficulty of expressing those semantics
in terms of commonly available programming models, within
which the scheduling model is the most prominent aspect.
The challenge addressed by this paper, which faces both
application and systems designers, is that no single scheduling
model is adequate for expressing the full range of scheduling
semantics for DRE endsystems. We use the term “DRE
endsystem” to refer to an individual computational node within
a (possibly distributed) DRE system.

Traditional DRE endsystem designs have assumed that
the underlying OS provided a single scheduling model. The
most typical endsystem scheduling model is some form of
priority scheduling. DRE endsystem designers have tended to
provide a single scheduling model for three major reasons.
First, priority scheduling is relatively simple to understand
and to implement. Second, the execution semantics of many
DRE applications are appropriately expressed in terms of
priorities. Third, the range of application semantics for which
priority scheduling can be used has been extended by the
development of theories for mapping application semantics

to priority assignments. Examples of this approach include:
rate monotonic analysis and scheduling [11], earliest deadline
first [11], maximum urgency first [18], and least laxity [18],
[12] schemes.

The flexibility of priority scheduling for DRE endsystems
has obviously been a design strength. However, it has also
been a weakness because endsystem designers have continued
to provide this fixed scheduling model even when it placed
an undue burden on the application designers to map appli-
cation semantics to priority assignments. For example, Linux
provides a dynamic priority scheme fairly typical of general
purpose systems by default. It also provides a fixed priority
(SCHED FIFO) scheme for use by computations that take
precedence over computations within the default scheduling
class. While this is appropriate for a fairly wide range of
applications, priorities are not adequate to express many of
the ever more complex DRE application semantics

Endsystem scheduling frameworks have historically in-
creased their flexibility by increasing the configurability of low
level resource arbitration mechanisms, rather than focusing
on direct support for the application level resource control
requirements. However, this places an undue burden on ap-
plication developers who are then responsible for expressing
the application-level resource requirements in terms of the low
level mechanisms whose semantics may differ considerably.

In this paper we focus on the problem of providing an
endsystem scheduling framework within which we can max-
imize the correspondence between the application scheduling
semantics and the semantics of the endsystem scheduling
model supporting the application. We call our framework
“Group Scheduling” because it emphasizes representation of
the groups of computation components comprising an ap-
plication. Further, it recognizes the diversity of scheduling
semantics by permitting each group to use the scheduling
algorithm most appropriate to the set of computations it
controls. Hierarchic composition of groups permits the DRE
system designer to construct the scheduler for the system as
a whole.

Group Scheduling thus provides an extremely flexible model
that can be used to express an extremely wide range of
application and endsystem scheduling semantics. The group
scheduling model emphasizes the ease and clarity with which
developers can express the scheduling semantics of the appli-



cation in operational terms. Further, as we demonstrate in this
paper, the group scheduling model can be implemented at both
the OS and Middleware levels.

Implementation of the group scheduling model raises a
number of important issues, including: (1) the fidelity with
which application resource requirements can be expressed
and enforced, (2) the portability of the framework across a
range of OS platforms, and (3) the degree of augmentation
of commonly available system capabilities required to support
application semantics in particular contexts. We address these
issues in the rest of the paper. However, it is also important
to note that in a DRE system, each endsystem must not only
control access to its local resources, it must also participate
in end-to-end resource allocations for distributed application
computations crossing endsystem boundaries. In collaboration
with colleagues at URI and Ohio University, we have de-
veloped and evaluated a multi-level scheduling and resource
management architecture.

The rest of the paper first discusses the motivations and
challenges of our work in Section II, and the essential aspects
of the group scheduling framework in Section III. We then
describe the implementation details for the work describe int
his paper in Section IV. Section V presents the experimental
results demonstrating the validity of the claims we have made
about our system. We then discuss related work in Section VI,
while Section VII presents our conclusions and discusses
future work.

II. MOTIVATION AND CHALLENGES

Many DRE systems involve a non-trivial number of compu-
tations whose activity must be coordinated. One common sce-
nario is sets of computations operating on one or more streams
of data. Each computations can often be viewed as a pipeline
of computation components. Examples of such systems that we
have been using to motivate and guide the work described here
include: multi-channel sensor fusion for DRE systems such
as sensor nets or laboratory science, multi-channel audio data
mixing, or sensor data processing in military applications such
as time constrained targeting (TCT). These and other classes of
applications have a number of common characteristics that we
have abstracted into a representative application architecture
we used to help with the design and evaluation of our OS and
middleware based group scheduling framework.

In the rest of this paper we focus on an example, drawn
from the DARPA PCES canonical video processing challenge
problem, which exhibits several characteristics emphasizing
the need for flexible scheduling support for many DRE ap-
plication areas. (1)Each computation is implemented by a set
of components operating on a stream of data elements in the
form of a pipeline. These sets of computation components may
be supported on a single computer, or by several computers
in a distributed system. For the results reported here we
have concentrated on computations supported by a single
endsystem. (2)Data elements, called frames, move through the
pipelines as they are processed. (3)Processing of a frame by
a computation component can require widely varying CPU

time. This can be true of many applications, but is particularly
true of video processing applications. (4)Multiple pipeline
computations are supported by the DRE system as a whole.
This is an important property of the experimental conditions
because it makes the scheduling problem both realistic and
complex enough to show that priority driven and other popular
scheduling algorithms have important limitations.(5)Balanced
progress by multiple computations can be an important appli-
cation behavior constraint. This is true of many applications
which fuse data from several sources, but is particularly easy
to see in the case of supporting multiple video streams that
are meant to be viewed concurrently.

Resource contention of three types must be resolved by the
scheduling policy of the DRE endsystem: (1)conflict between
computation components, (2)conflict between computations,
and (3) conflict between DRE application computations and
other computations on a given endsystem. The group schedul-
ing framework provides the DRE system designer with the
ability to address these types of conflicts using separate group
representations, and thus individual scheduling policies.
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Fig. 1. Computation Pipeline

Our example application consists of a collection of compu-
tation pipelines as shown in Figure 1. The urgency of com-
putations performed by a pipeline determines the criticality
of that pipeline. For example, each pipeline could represent
a series of image processing computations on an image sent
by a UAV to a shipboard computer. If a particular pipeline is
identified as sending a sensitive image like an enemy battle-
tank, the shipboard computer increases the criticality of this
pipeline. There are several interesting performance metrics for
this application. First, the processing of a critical stream must
take preference over the processing of others. Second, the
processing of streams within the same class must be balanced
since we assume they represent streams of video that will
generally be viewed together. Third, we are interested in the
overall frame throughput of the applications. Finally, we are
also interested in how the pipeline based computations can
share CPU resources with other computations on the system.

Each pipeline is implemented as a set of active objects [10]
under the ACE ORB (TAO)[3]. An active object is essentially
the combination of a worker thread and a queue on which the
work items are placed. The set of frames processed by each



pipeline is created by a separate thread executed periodically.
It is important to note that a thread within TAO middleware
receives the messages, and must be included in the group that
controls the execution of the pipeline to properly control each
computation. We use the RTCORBA features in TAO, includ-
ing the thread-pools [15], to achieve individual control of each
pipeline. We define a computation stream as a combination of
an RTCORBA thread and a pipeline of computation nodes
(A computation stream = Message receiver RTCORBA thread
+ Pipeline threads that process the message). Each frame is
received by the computation stream’s RTCORBA thread which
waits on a socket that is advertised to the frame generating
thread for the stream. The nature of the TAO implementation
dictates that the sending of a frame by the source thread,
through the enqueuing of the frame at the input of the first
pipeline stage, and the return to the source thread completes
the TAO message exchange operation. This then permit TAO
to start the execution of the active objects which will pass the
frame through the pipeline.

Note that the combination of balanced progress (5) and
variable execution time (3) constraints is particularly difficult
for traditionally popular scheduling algorithms to satisfy in
this example. The group scheduling framework allows us to
explicitly represent multi-level computation structures as hier-
archically defined groups and to associate scheduling decision
functions having appropriate semantics with each group. In
turn this enables us to create a representation of the application
semantics that is both easy to understand and effective during
execution.

III. GROUP SCHEDULING MODEL

The group scheduling model used to describe the scheduling
semantics in this paper is a simple, but important, vari-
ation on hierarchical descriptions of scheduling that have
been developed by several other researchers [17], [16], [8].
What distinguishes the group scheduling framework is (1) an
emphasis on arbitrary grouping of computation components
for representation of application computations as well as
other reasons, (2) association of arbitrary scheduling decision
functions with the groups to produce an extremely flexible
scheduling framework capable of clearly and easily expressing
a wide range of scheduling semantics, and (3) existence of both
OS and middleware implementations of the framework in the
popular open source Linux platform.

A. Group Scheduling Implementation Core

A group is defined as a collection of computation compo-
nents with an associated scheduling decision function (SDF)
that selects among the group members when invoked. Each
member of a group can have information associated with it,
as required by the SDF. Groups can also be members of
other groups, thus supporting hierarchical composition of more
complex SDFs, culminating in the creation of an SDF for the
system as a whole, the system SDF (SSDF). A subset of the
computations on a system can be placed under SSDF control
because both the OS and middleware implementations of

group scheduling permit the default Linux scheduler to make
a decision if the SSDF does not make a choice. Computations
can be placed under exclusive control of the SSDF or joint
control of the SSDF and the default Linux scheduler as the
user desires.

The group scheduling framework emphasizes modularity of
the SDF implementations and thus makes it relatively easy
for users to implement their own SDFs if the library of avail-
able functions does not include one matching the scheduling
semantics they desire. The group scheduling framework can
thus easily subsume all of the popularly scheduling models by
providing matching SDFs. However, it can support application
specific and otherwise highly specialized scheduling semantics
with equal ease, as illustrated by the frame-progress scheduler
used to control frame processing by pipelines in Scenario 3
described in Section V. The application specific specializa-
tion of the frame-progress scheduler depends on application
specific information about computation progress that can be
supplied through the scheduling parameter modification inter-
face, or through use of a memory segment shared among all
applications and the SDF.

The semantics of the OS and middleware implementations
of the group scheduling model are the same in most ways, but
differ in some important aspects that are described next.

B. OS Level Group Scheduling

The OS level implementation of group scheduling enjoys
several advantages over the middleware version. First, it pro-
vides integrated control over all computation components in
the Linux system, including hardware interrupt handlers, soft
interrupt (Soft-IRQ) handlers, tasklets and bottom halves [6].
In contrast, the middleware implementation can only control
threads. Second, the overhead of performing the context switch
is lower in the OS implementation because the scheduling
decision made by the SSDF and the actual context switch
are both in OS context. The middleware version must use
an indirect mechanism, priority manipulation and signals to
accomplish the same objective. Third, the SDFs have a much
wider range of computation and system state information
available at minimal cost because the SSDF executes in OS
context.

These advantages enjoyed by the OS implementation are
real but not definitive for the frame processing example imple-
mentation discussed in this paper. However, other applications
involving the integrated group scheduling control of interrupt
handlers and network protocol processing are examples of
application semantics that can only be implemented under
the OS group scheduling implementation. the obvious disad-
vantage of the OS group scheduling implementation is that it
requires access to the source of the OS and a wide range of
subtle modifications to the OS management of computation
components to produce the unified scheduling framework.

C. Middleware Level Group Scheduling

The group scheduling API is consistent across middleware
and OS implementations, but the mechanisms differ because



the middleware version requires several utility threads, of
which the most important are the scheduling thread which
evaluates the SSDF, and the block catcher which helps detect
state changes of the controlled threads which are an implicit
part of the OS group scheduling implementation. The API
which permit application code to provide scheduler-specific
parameters and to construct the SSDF are socket based in
the middleware version as opposed to the ioctl based calls
in the OS implementation. The most significant limitation of
the middleware version is that it lacks the easy access to
computation state (RUNNABLE, BLOCKED, etc.) enjoyed
by the OS version. Instead the middleware version must
go to some lengths, described in Section IV, to track the
computation state change. As shown in Section V, the behavior
of the middleware version closely matches that of the OS
version, but must pay a price in context switch overhead.
However, the middleware version enjoys the advantage of
significantly easier portability to other platforms since it only
depends on commonly provided OS capabilities.

IV. MIDDLEWARE IMPLEMENTATION

This section provides several implementation details for the
middleware version of group scheduling that are relevant for
understanding the evaluation and results of the example appli-
caiton described in Section V. In the following discussion, we
refer to threads under the control of the middleware scheduler
as controlled threads. We use the native OS priority model
as an enforcement mechanism for the decisions made by the
SSDF. To achieve this, we use five different priority levels as
shown in Table I. MAX PRIO is the maximum priority in the
SCHED FIFO scheduling class.

Other than the controlled threads, the group scheduler uses
4 internal threads, listed in Table I for its own functioning. The
Reaper thread helps in shutting down and gaining control of
the system in case of a fault hierarchy. Scheduling is done
in the context of the Group Scheduler thread. The Block
Catcher thread is a thread that helps us to detect blocking of
a controlled task and this runs immediately after a controlled
task blocks. Requests to the group scheduler are handled by
the API thread.

TABLE I

PRIORITY LEVELS FOR MIDDLEWARE SCHEDULING

Reaper thread MAX PRIO
Blocked Controlled threads MAX PRIO-1
Group Scheduler threads (SSDT and API) MAX PRIO-2
Currently Scheduled thread MAX PRIO-3
Block Catcher thread MAX PRIO-4
Other Controlled threads MAX PRIO-5

Figures 2 and 3 illustrate the sequence of events that take
place during blocking and unblocking of a thread.

A controlled thread is about to make a system call that may
cause the thread to block (1). Since we are using the ACE
toolkit that provides a wrapper layer for all system calls, these
changes were very much localized and hence this approach is
highly scalable. All system calls that may block are wrapped
as follows.

Fig. 2. Scenario when a controlled task is about to make a blocking system
call

Fig. 3. Scenario when a blocked controlled task unblocks

wrapped_system_call(){
before_system_call_hook()
system_call()
after_system_call_hook()

}

The before system call hook sets the status of the calling
thread to MAY BLOCK (2). This is to explicitly assist the
scheduler with information about possible blocking. If the
thread really blocks, the block catcher thread wakes up. The
status of the blocked thread is changed to BLOCKED (3).
Apart from changing the status of the blocked thread to
BLOCKED, the block catcher bumps up the priority of the
blocked thread to that of the blocked controlled threads in
Table I. The block catcher thread wakes up the scheduler
thread (4). The scheduler thread calls the SSDF which picks
up the most eligible thread to run.

After a (possibly blocking) system call returns, a thread
calls the after system call hook function (5). This function
ascertains whether the thread was really blocked on the system
call. If it did really block, its status is changed from BLOCKED
to UNBLOCKED. If the thread had not blocked on the system
call, the status of the thread is changed to RUNNABLE and the
thread continues to run.

The scheduler thread is woken up (6) to indicate the
unblocking of a thread and hence the need for a scheduling
decision. The scheduler changes the status of (possibly mul-
tiple) UNBLOCKED threads to RUNNABLE, so that they could
all be considered for scheduling. The scheduler chooses the
most eligible thread to run (7).

Figure 4 summarizes the different states of a controlled
thread. A thread is in the RUNNABLE state if it is ready
to run and is an eligible candidate that could be picked
up to run by the SSDF. The execution of these threads are
controlled by sending SIGSTOP and SIGCONT signals. A
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controlled task that is about to make a system call that could
block, makes a state transition to the MAY BLOCK state. If
a controlled task really blocked after making a system call,
then its state is marked as BLOCKED. Once the system call
unblocks the controlled thread unblocks and starts running
again changing its state to UNBLOCKED. The scheduler gets
informed immediately about the unblocking and changes its
state to RUNNABLE again.

V. EVALUATION

We now proceed to evaluate our implementation described
in Section IV in the context of the challenges provided by the
motivating application described in Section II. The goal of our
evaluation is to demonstrate the following -

� Necessity and Sufficiency of the group scheduling
paradigm

� Several applications require simple policies which are
quite hard (sometimes impossible) to express in terms
of existing lower level scheduling policies

� Group scheduling paradigm raises the level of abstraction
for specifying application policies so that applications can
directly express their policies in terms of the computation
hierarchy offered by the group scheduling programming
model

� Efficient implementation of group scheduling middleware
is possible which makes our solution directly applicable
to a wide variety of platforms and operating systems

For this evaluation, we put some raw bytes as the payload
in the stimuli for the application. Realistically, this could be
an image frame that is being sent by an image source. In
the following discussion, we use the term frames instead
of stimuli. We state a simple (and quite realistic) application
policy for our example application -

1) Preference to critical streams over non-critical streams
2) A computation stream needs to be drained as fast as

possible.
3) Receiving an input frame is more important than frame

processing in a pipeline
4) Balanced progress, in terms of number of frames pro-

cessed, among the non-critical streams in the face of
variable computation times for frames passing through
the pipeline

A. Qualitative Evaluation

It is obvious that expressing the above high-level application
policies using existing low-level scheduling policies and pri-
ority assignments is tedious and error-prone. Moreover, they

are inadequate to express the notion of balanced progress due
to lack of a priori knowledge of varying execution times on
the computation nodes.

Group scheduling paradigm is a generalization of conven-
tional scheduling paradigms and hence sufficient to express
existing low-level scheduling policies like FIFO and round-
robin. Moreover, it enables us to let application-specific poli-
cies be directly expressed as scheduling policies, thus closing
the gap between higher level application policies and lower
level scheduling policies for computation elements. Not only
does this raise the level of abstraction for the application
developer, but it is also necessary for several applications.

We now demonstrate the sufficiency aspect as to how we
can express our application policies in terms of the group
scheduling computational model described in Section III. In
the course of doing this, we find the inadequacy of existing
low-level policies to capture application policy (4) which then
leads to the necessity aspect of group scheduling.

Fig. 5. Group hierarchy for Scenario1

1) Scenario1: In this scenario, we try to map the four
application policies to existing lower-level scheduling policies
expressed within the group scheduling computational model.
The group scheduling model allows us to specify each of
the policies intuitively. To express policy (1) we want the
scheduler to give preference to the critical stream over all
other threads in the system including threads in the non-critical
stream. The Group scheduling computational model, shown in
Figure 5 is used to specify this policy. A Critical Stream group
is created to represent a critical stream. By default, any thread
registered with the group scheduler is considered to be more
eligible than one that is not registered and hence the group
scheduler picks up an unregistered thread for execution only
if none of the registered threads are in the RUNNABLE state.
This is indicated in Figure 5 by the arrow marked “Implicit
choice”.

To specify policy(3), we intuitively divide the processing
of a frame in two computational parts - (1) input processing
of a frame (by an RTCORBA thread) and (2) the pipeline
computation. The computation threads in the critical pipeline
are represented by the Pipeline Threads group. Between
these two computations, the input processing and hence the
RTCORBA thread has to be given preference, as per policy
(3). Hence a sequential scheduling policy is chosen for the
Critical Stream group. In this policy, threads/groups are given



preference in the order of their registration (joining a group)
with the group scheduler. In all the scenarios that we describe
here, the RTCORBA thread joins its parent group (in this case,
Critical Streams group) before the Pipeline Threads group and
hence is preferred over the latter.

To specify policy(2), we choose a static priority scheduler,
with priorities increasing across the pipeline stages with the
last stage having the highest priority. This ensures that a
message flows across the pipeline before a new message will
be processed.

For policy (4), in this scenario, we rely on the default policy
of the vanilla Linux scheduler since all the non-critical stream
threads are under its control.

2) Scenario2: This scenario attempts to address policy (4),
that we left to the control of the vanilla Linux scheduler
in Scenario1. To this end, the non-critical streams are also
brought under the control of the group scheduler. Intuitively,
we divide the different non-critical streams into groups as
shown in Figure 6, each Pipeline Thread group is similar
to that in Scenario1. The critical stream should be given
preference over this collection of non-critical streams. To
express this policy, the non-critical stream groups are all
grouped together under the group Non-critical Streams and
this group gets less preference when compared to the Critical
Streams group.

To achieve balanced frame progress (policy 4), we try to
map this policy in terms of a round-robin scheduling policy for
the Non-critical streams group. Note that Figure 6 shows the
group hierarhcy for both Scenerios 2 and 3 - Scenario 2 uses
the Round-Robin(RR) scheduler for the Non-critical streams
group and Scenario 3 uses the Frame progress scheduler. A
specified quantum of time is allotted for each non-critical
stream hoping that this would balance the progress among
the different streams.

Fig. 6. Group hierarchy for Scenario2/3

3) Scenario3: In Scenario2, we map policy(4) to a round-
robin scheduling policy among the non-critical streams. If
the computation times on a pipeline node can vary based on
the type of frame that it is processing, then it creates an
imbalance in the number of frames that can be processed
by different pipelines within the same time duration. The
requirement of balanced progress is very often true in the
kinds of applications discussed in Section II. Hence it is
necessary to be able to specify such policies in terms of higher

level programming models. Group scheduling provides such a
programming model.

The group scheduling hierarchy for this scenario is shown in
Figure 6, which is similar to Scenario2, except for the schedul-
ing policy that is associated with the Non-critical Streams
group. In this scenario, an application specific scheduler is
used for scheduling the non-critical pipelines. The aim of
our application specific scheduler is to maintain balance of
progress across multiple pipelines. The scheduler ensures that
no non-critical stream gets more than N stimuli ahead of the
other non-critical streams, where N is application defined.
This can also be observed visually using the visualizer tool
described in Section V-B

Having demonstrated the very intuitive style of specifying
application policies, we now proceed to demonstrate that our
group scheduling implementation indeed satisfies the appli-
cation policies. We used a mix of visualization tools and
quantitative analysis for this purpose.

B. Instrumentation, Logging and Visualization tools

We used the Datastream Kernel Interface (DSKI) and
Datastream User Interface (DSUI) logging framework and
postprocessing tools to instrument our application, the group
scheduler and the Linux kernel [14]. We used the visualizer
tool to generate the execution interval diagram, shown in
Figure 7, to qualitatively examine how well our group schedul-
ing implementations enforce the application specified policies
discussed previously. For example, Figure 7 shows a screen-
shot of the visualizer tool displaying information mined using
post-processing tools from the logged DSUI and DSKI events
from an experimental run of Scenario3 using the middleware
implementation of the group scheduler.

Fig. 7. Execution Intervals of tasks in scenario3 - Middleware

The execution time-line depicted in Figure 7 clearly verifies
this behavior. The visualizer has been configured to show the
execution time-lines for all the pipelines.

Note that different message processing times could be
possible for the different pipelines. In our experiment, as seen
in Figure 7, we chose message types with lower processing
time to be passed through pipelines 3 and 5, although this is
configurable in our experimental setup.

A non-critical pipeline, when chosen to run, runs till it pro-
cesses a stimulus completely, i.e. the stimulus passes through



all stages of the pipeline, before any other pipeline starts
processing its own stimuli. This is also confirmed through
the visualizer. None of the non-critical pipeline executions
overlap. Arrival of a stimuli for the critical stream makes the
threads related to the critical stream to run. As seen in the
visualizer, pipeline1 was processing a stimulus when a stimuli
for the critical stream arrived. This is indicated by an event in
the START-END cycle row of the visualizer. This causes the
control to shift to the tasks in the critical stream.

The group scheduling thread and the block catcher thread
seen in the last two rows of the visualizer incur context
switch overhead in the middleware implementation as opposed
to the kernel-based implementation of the group scheduler,
which does not have this extra overhead. The execution of
the group scheduling thread is very frequent as seen in the
visualizer. This is because the group scheduling task is run at-
least once every time quantum, which is set to 10msec in our
implementation, and which is equal to the Linux schedulers
quantum in the 2.4 kernel series.

C. Quantitative Evaluation

The purpose here is to evaluate our group scheduling
implementation (both kernel and middleware) in the face of
background load competing with the application, in the face
of non-critical computations competing with critical compu-
tations within the application and the interference of the non-
critical computations with each other. We ran Scenario3 under
two experimental conditions - without any competing load and
with a competing load of two kernel compilations, one on
the local partition, while the other was on a NFS mounted
partition. Table II summarizes the results of our evaluation
and shows the CPU utilization of the individual computation
components in our application.

1) Effect of background load: The results in Table-II show
that the competing load did not affect our experiments which
ran exactly as though there was no other load on the ma-
chine. Inspite of background load, the CPU utilization of the
individual pipelines dont vary between the two experiments
or between the middleware and kernel implementations. This
shows that both the kernel and middleware schedulers are
robust with respect to resource partitioning in the face of
background system load.

2) Middleware scheduler overhead: The middleware sched-
uler incurs the overhead of maintaining two tasks to control
scheduling. The overhead in terms of context switches is
notable in the case of the middleware implementation. With the
middleware scheduler, the number of context switches raised
from around 2277 in the kernel experiment to 16846 for the
middleware experiment with no background load (See Table-
II). The overhead in terms of context switches is notable in the
case of the middleware implementation. This is because of the
extra context switches involved in switching to the scheduling
task and the block catcher tasks. For example, consider the
situation where the middleware scheduler had picked thread
A to run. At the end of a quantum, there is a context switch
to the scheduling task. Even if the scheduling task picks the

TABLE II

MIDDLEWARE OVERHEAD AND EFFECT OF BACKGROUND LOAD

Middleware Kernel
1 2 1 2

Experiment Duration(ms) 78452 78489 74755 74756
CPU % (Application) 79.86 79.83 77.28 77.32
CPU % (Total) 82.17 79.88 81.39 77.34
RTCORBA Threads(%) 0.267 0.274 0.244 0.263
Pipeline1(%) 7.768 7.765 7.621 7.620
Pipeline2(%) 14.979 14.980 14.613 14.616
Pipeline3(%) 8.383 8.383 8.222 8.222
Pipeline4(%) 3.478 3.479 3.440 3.442
Pipeline5(%) 15.774 15.773 15.381 15.381
Pipeline6(%) 16.251 16.234 15.736 15.735
Pipeline7(%) 12.009 12.010 11.731 11.734
Stimuli source(%) 0.291 0.294 0.288 0.309
Scheduling task(%) 0.594 0.569 NA NA
Block Catcher(%) 0.068 0.067 NA NA
Idle task(%) 17.673 20.075 18.306 22.52
Total Context Switches(CS) 30056 16846 47924 2277
CS to scheduler 18.255 32.761 NA NA
CS to block-catcher 3.782 6.826 NA NA
1 - With 2 kernel compilations, 2 - With no competing load
* - Pipeline tasks, RTCORBA threads, Stimuli Threads (for kernel)
* - Pipeline tasks, RTCORBA threads, Stimuli Threads,
Group Scheduling Task, Block Catcher (for middleware)

same thread A again, there is an extra context switch back to
A. This context switch will not be seen in case of the kernel
group scheduling implementation.

The group scheduler overhead itself was also found to be
very low. It is around 0.60% of the total CPU utilization
for the experiment in middleware, while in the kernel group
scheduling version it was 0.01%.

3) Balanced Progress of Non-critical streams: We now
proceed to analyze the interference among the non-critical
pipelines. To achieve this, we modified our experiment pa-
rameters in such a way that the pipelines are kept busy by
adjusting the send rate of the stimulus and the computation
times of the messages. Pipelines 3 and 5 were chosen to have
relatively lower message computation times when compared
to other pipelines.

When the frame processing time varies for different frame
types as shown in Figure 7, it becomes difficult to express
policy (4) in terms of existing low-level scheduling policies.
We attempt to do such a mapping in Scenario1 and Scenario2.
We now demonstrate that this approach fails and hence we
need to be able to specify the application policy directly as in
Scenario3.

We expect a balanced progress for each of the non-critical
streams in terms of the number of frames processed over a
period of time. We plotted the number of frames processed by
each non-critical pipeline against the total number of frames
processed by all the non-critical pipelines. Plots for the three
scenarios are shown in Figures 8-13.

Figures 8 and 9 show the frame progress for each non-
critical pipeline under Scenario1 with kernel and middleware
implementations respectively of the group scheduler. Here
only the critical stream is under group scheduling control and
all the non-critical streams are under the control of the Linux
scheduler. Even though none of the pipelines undergo starva-
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Fig. 8. Frame Progress with kernel Group Scheduling- Scenario1
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Fig. 9. Frame Progress with middleware Group Scheduling-
Scenario1
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Fig. 10. Frame Progress with kernel Group Scheduling- Scenario2
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Fig. 11. Frame Progress with middleware Group Scheduling-
Scenario2
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Fig. 12. Frame Progress with kernel Group Scheduling- Scenario3
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Fig. 13. Frame Progress with middleware Group Scheduling-
Scenario3

Fig. 14. Difference in progress across pipelines - Kernel Fig. 15. Difference in progress across pipelines - Middleware



tion, there is a lot of jitter in the frame progress which violates
application policy (4). The middleware and kernel based group
scheduling implementations show a similar behavior, although
it should be noted that Scenario1 is not affected by the group
scheduler implementation as far as the non-critical streams
as concerned, since they are under the control of the Linux
scheduler rather than the group scheduler and hence have no
influence over the scheduling decisions of the Linux scheduler.

Figures 10 and 11 show the frame progress for each non-
critical pipeline under Scenario2. Here all the non-critical
streams are under the control of the group scheduler. A
round-robin policy with a fixed time quantum was chosen for
scheduling among the non-critical pipelines. As seen in Figure
7, we have setup our experiment in such a way that the frames
passing through pipelines 1 and 3 cause lesser computation
times on the computation nodes on these pipelines, when
compared to the other pipelines. The result is that these two
pipelines get to process more frames in a specified period of
time due to the round-robin policy and the lower computation
times. Clearly this is a violation of application policy (4).

Figures 12 and 13 show the frame progress for each non-
critical pipeline under Scenario3. Here all the non-critical
pipelines are under the control of the group scheduler and
an application-specific scheduling policy is used. The appli-
cation specific scheduling policy uses the number of frames
processed by a pipeline as an input for making a scheduling
decision. The graphs show that the application policy of
balanced progress is satisfied very well. A feedback of the
number of frames processed so far by a pipeline is sent to
the group scheduler on the completion of processing of each
frame on that pipeline.

The variable execution time for a message in the different
stages of the pipeline make it difficult to chose apriori a
scheduling policy that will let us maintain the balance. Our
frame progress based scheduler maintains balance by ensuring
that no non-critical pipeline is more than one stimuli ahead
than the other non-critical streams.

The cumulative distributions in Figures 14 and 15 illustrates
this balanced frame progress for Scenario3 and imbalance
in frame progress for the other scenarios. We calculated the
maximum frame progress imbalance - the difference between
the number of frames processed by the pipeline that finished
processing the maximum number of frames, and the pipeline
that finished processing the minimum number of frames.
Moreover, in Scenario3 this balance is maintained over time,
whereas for the other scenarios the imbalance increases over
time. The maximum imbalance for Scenario3 is 1. There is
one instance of an imbalance of 2 for Scenario3 at the top of
the curve. We verified this to be an experiment termination
condition where one thread processed one more frame when
all the other pipeline threads were shutting down.

4) End-to-End Response time: We also measured the end-
to-end response time for processing a stimuli. The end-to-end
response time is the elapsed time between the stimulus source
generating a stimuli to be sent to a pipeline, and the time when
the stimuli has been completely processed by the last-stage of

the pipeline. TABLE III

END-TO-END RESPONSE TIMES

(in msec) Kernel Middleware
Scenario Minimum Maximum Minimum Maximum

1-C 354 363 356 365
2-C 357 368 359 368
3-C 359 368 361 370

1-NC 42707 78257 42983 78580
2-NC 3767 78382 343 75330
3-NC 626 49931 2510 49102

Table III gives the minimum and maximum end-to-end
response times for the critical stream(C) and all the non-
critical streams(NC). The end-to-end response times for the
critical computation is consistent across all scenarios. The vari-
ations in end-to-end response times among non-critical streams
across scenarios is due to varying scheduling policies used
in choosing among the non-critical computation groups. The
difference between the minimum and maximum values is due
to varying message processing times among the non-critical
streams, scheduling policy and critical stream processing.

VI. RELATED WORK

Related work can be organized into several categories if we
consider the dominant decomposition [19] as a classification
criterion. The obvious first category are those approaches that
adapt and wrap the common priority based scheduling scheme,
without introducing any fundamental change. Their dominant
decomposition concentrates on the semantics of the scheduling
algorithm, layering additional semantics on top of the basic
priority scheme in various ways. For example, rate monotonic
analysis and scheduling [11] assumes straightforward priority
scheduling, but provides an analysis method which maps real-
time constraints onto computation priorities. Similarly, earliest
deadline first [11] takes the basic real-time scheduling criterion
of deadline and uses it as the basis for a priority driven choice.
Maximum urgency first [12] and least laxity [12] schemes use
a similar technique, but vary the method by which the numeric
basis of the priority evaluation is calculated.

In Kokyu [7], the dominant decomposition is slightly dif-
ferent, concentrating on the mechanisms for re-ordering the
queues of schedulable entities. That created a slightly richer
approach to describing some aspects of system scheduling
semantics, but the fundamental assumption of priority schedul-
ing semantics remained unchanged. A slightly higher level
abstraction using essentially the same dominant decomposition
is the CORBA based resource broker service [4]. The higher
level abstraction of the resource broker includes the ability to
consider a range of system state information and to use either
priority or share based underlying scheduling semantics, but
the approach still assumes a static and uniform underlying
scheduling semantics from the endsystem.

Other approaches do adopt a different decomposition for
the scheduling semantics. For example, the Scout operating
system [13] concentrates on execution paths as the basis
for scheduling computations. This clearly changes the view
of a schedulable computation used by the scheduler, but it



continues the underlying assumption that all computations are
scheduled using the same view. Similarly, in TAO’s Dynamic
Scheduling Real-Time CORBA 2.0 implementation [9], the
view of a computation is changed to that of a distributable
thread, but a single view is still assumed to be adequate for
all computations, and the familiar priority scheduling model
is assumed for endsystem decision making.

In contrast, familiar hierarchical scheduling
frameworks [17], [16], [8] use the decision functions
themselves as the dominant decomposition, but make
no modifications to their view of the computations being
scheduled as individual threads of execution on the endsystem.
The BERT [2] scheduling algorithm slightly exceeded this
characterization by applying a slack stealing scheduling
algorithm to the path-oriented computation view of Scout.

The group scheduling approach described here and else-
where [5], [6] emphasizes clarity of expression in an effort
to provide the best possible support for application semantics.
The group abstraction is sufficiently general that it can be
used to implement the semantics of any of the previously
cited scheduling approaches, as well as composite scheduling
functions using more than one approach in different sections
of the SSDF. For example, group scheduling can be used to de-
scribe a computation path by grouping the set of computation
components within a group. The driving example described
here did this by grouping components of a pipeline together.
The group scheduling model can also be used to adopt the
decomposition used by hierarchical scheduling. The grouping
of the non-critical computations into a group controlled by the
RR or frame-based scheduler is an example of this.

VII. CONCLUSIONS AND FUTURE WORK

The group scheduling approach described and evaluated
here is an extremely flexible framework within which a wide
range of scheduling semantics can be expressed. This expres-
sive range includes that of several existing scheduling ap-
proaches normally considered disjoint, and permits the use of
different approaches within different portions of the composite
system scheduling decision function. Further, we have shown
that both an OS based and middleware based implementations
of the framework exist which support the same semantics,
with few limitations. The middleware implementation does
incur an unavoidable increase in context switching overhead,
but this is also essentially the minimum overhead possible
given the need for a user-level scheduling thread. Further, the
middleware implementation is not able to include interrupt
handler or other OS computation components under its control
as the OS implementation does, but this is also to be expected.
The greatest limitation of the middleware implementation is
the need for a mechanism by which the scheduling thread
can be notified when a controlled thread becomes unblocked.
We demonstrated a mechanism requiring a wrapper for each
potentially blocking system call. Alternately, some form of OS
support similar to scheduler activations [1] can be used.

Our future work includes investigation of how group
scheduling may be used for a variety of applications, in-

cluding: time division use of Ethernet to implement reliable
real-time QoS, extension of the group scheduling approach
to management of distributed computations, and its use for
supporting life science laboratory experiments requiring real-
time QoS.
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