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Abstract

In the theory of the fractional quantum Hall effect, much attention is paid to the
correspondence between fractional quantum Hall wave functions and conformal blocks
in certain rational conformal field theories (CFT). This correspondence is powerful,
enabling the calculation of the fractional statistics of a state that would be difficult
if not impossible to calculate directly from the wave functions. But it is, in general,
conjectural, remaining without microscopic justification in many cases of interest,
and involves heavy mathematical machinery. We detail an alternative method to
calculate Abelian and non-Abelian fractional statistics, the coherent state method.
The method relies on assumptions which are independent of those underlying the
CF'T correspondence, so it serves as an independent check of results for the statistics
where they exist, and an alternative source of results when a CFT is not known. We
show how the coherent state method can be used to derive the statistics of several
increasingly complicated trial wave functions: v = 1/2 Laughlin, Moore-Read, and
k = 3 Read-Rezayi. We discuss implications of our method for a possible notion of
braiding statistics of the Gaffnian state, a “nonunitary” quantum Hall state for which

the ramifications of the CFT correspondence are less well understood. We go on to
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derive formulas for the counting of zero modes of all these states on the torus.
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Chapter 1

Introduction

1.1 Quantum Hall effect

The observation of the fractional quantum Hall (FQH) effect [1] has led to waves
of new insights into the nature of electronic states of matter. Among many other
novel properties, excitations in the two-dimensional many-electron FQH systems can
exhibit fractional charges and fractional statistics. To see how these effects arise in
the quantum Hall effect, we will first introduce the classical Hall effect.

We imagine a conducting strip in the z-y plane with width w in the z direction
(see Fig. 1.1). An electronic current I = —newv flows in the § direction on the strip,
where n is the electron density, —e is the electric charge, and v = —vy is the electron
velocity. We apply a magnetic field B = BZ perpendicular to the strip, which causes
a Lorentz force that deflects the flowing electrons in the Z direction. A buildup of

excess charge on one side of the conductor and a corresponding charge deficiency on



1.1 Quantum Hall effect

Figure 1.1: The classical Hall effect.

the other side establishes a potential difference across the transverse direction, called
Vi, the Hall potential. Its gradient is E,, the Hall field. In equilibrium the Lorentz

force exactly balances the force from the Hall field,

BV
e (1.1)
c w
The quantity,
Vi B
I 1.2
I nec’ (1.2)
is called the Hall resistance, denoted R,, = —R,, or Ry. Its measurement allows a

determination of the sign of the charges which carry the current.

Now let us imagine that instead of a conducting strip, we have a two dimensional
“electron gas”, which can be realized in certain semiconductor heterostructures such
as MOSFETSs (metal-oxide—semiconductor field-effect transistors) and HEMTs (high
electron mobility transistors). For weak magnetic fields, the classical linear relation-

ship between Ry and B is observed. However, a quantum regime is entered for low
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temperatures (~ 1 K), high magnetic fields (~ 10 T), and clean samples with electron
mobilities ~ 10* cm?/Vs (though mobilities as high as ~ 10% cm?/Vs are possible [2]).
In this regime, the relationship between the Hall resistance and magnetic field is not
linear as in Eq. (1.2). The Hall resistance shows plateaux around certain ranges of
magnetic field (Fig. 1.2). The value of resistance at these plateaux is universal, oc-
curring at a fixed value regardless of the precise details of the samples used to observe

the effect. These plateaux occur at
1
Ry =——. (1.3)

The ratio h/e? is the quantum of resistance, about 25.813k). v is a dimensionless
number characterizing each plateau. Initially, plateaux were observed for integral
values of v [3]. This phenomenon, now known as the “integer quantum Hall” (IQH)
effect, has a theoretical explanation in terms of filled Landau levels, which will be
elaborated below. Later, plateaux were discovered at fractional values of v with
odd denominators [1], such as 1/3,2/3,2/5, ..., and still later at even denominators,
5/2 [4] and 3/2 [5], which was termed the “fractional quantum Hall effect” (FQHE).
These plateaux could not be readily explained in terms of filled Landau levels, or any
other picture based on non-interacting electron states. Their explanation required
the introduction of interactions between the many electrons within a partially filled
Landau level. Over the same ranges of magnetic field giving rise to plateaux, the

resistance in the direction of current flow goes to zero, meaning the current flows
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Figure 1.2: Hall resistance Ry and longitudinal resistance R. The numbers with
arrows indicate the value of v at each plateau. Reproduced from Ref. [6].

without dissipation.

The IQHE occurs when an integer number of Landau levels are filled; to review
this effect, then, we will briefly review the physics of Landau levels. For now, we
make the approximation that the electrons do not interact and that all their spins are
polarized in the direction of the magnetic field. In this approximation, the problem of

electrons in a magnetic field can be analyzed in terms of a single-electron Hamiltonian,

H=_—(p—--A)?% (1.4)



1.1 Quantum Hall effect

A is the magnetic vector potential, defined by B = V x A. We have a gauge degree
of freedom in A, and for our purposes it is convenient to choose Landau gauge,

A = (0, Bx,0). Then

2 2
D 1 eBx
H=—"*+4+— -— . 1.5

2m * 2m <py c ) (1.5)

We will attempt to find a seperable solution of the form ¢y, (x,y) = exp(ikyy) fr, ().
This is an eigenstate of p,, which commutes with the Hamiltonian, so we can replace

py by its eigenvalue hk,. Now,

mw?

p2 27, \2
H:%—F 5 (x—éky)

, (1.6)

where w. = eB/mc is the cyclotron frequency, and ¢ = \/hc/eB is the magnetic
length. This looks like the Hamiltonian of a 1D harmonic oscillator in x, with center
shifted by ¢*k,. Thus fi,(z) is a harmonic oscillator wave function, and the (unnor-

malized) eigenstate ¢ is,

o (.) = exp(ikyy) exp (—2%2(;5 - z%ﬁ) H, (%(m - e?z@) o

where H,(z) is the nth Hermite polynomial. For each value of n, there is a family
of degenerate orbitals, each a state of a quantum harmonic oscillator centered at a
different position. Together these orbitals are called a Landau level. Each of these
harmonic oscillators has energy E,, = hw.(n + 1/2), independent of k,. If we impose

periodic boundary conditions in y, which is equivalent to working on a cylinder, &,
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b) L.

bR

L. &
) |||||

Figure 1.3: The two lowest Landau level bases on the cylinder. a) The “original”
basis, goflyvo(x,y). The orbitals are localized in x, with separation by x = 27/L,.
They encircle the cylinder in y. b) The dual basis, @, ,(z,y). Orbitals are localized
in y with separation k£ = 27/ L, and encircle the torus in . Reproduced from Ref. [7].

becomes quantized as k, = skn, where k = 27/L, and n, = 0,1,...,L, — 1. Then

the wave functions are

. 1
(pfly’n(x, y) = exp(ikyn,) exp <—§(a: — /-my)2> H,(x — kny), (1.8)

in units where the magnetic length ¢ is set equal to 1. The wave functions in the
lowest Landau level (LLL), with n = 0, form rings around the circumference of the
cylinder at = = xn,, for each n, (Fig. 1.3).

Of course, we could have made a different choice for A, which would lead to
a different set of eigenfunctions. For instance, the choice A = (—By,0,0) would,
along with periodic boundary conditions in z, produce another family of harmonic

oscillators in y which we call @¢(x,y). In the LLL these wave functions form rings
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at y = Rng, where K = 27/L, and n, = 0,1,..., L, — 1. For a boundary which is
periodic in both x and y, equivalent to working on a torus, either of these Landau level
descriptions (suitably generalized) could form the basis of electron wave functions.
This freedom to choose a convenient Landau level basis will play a key role in the
method discussed in this work. A more thorough introduction to Landau levels in
the context of this method will be given in Sec. 2.1.

The dimensionless number v, defined in Eq. (1.3) as the coefficient of the Hall
resistance, can be expressed as the Landau level filling factor, or the ratio between

the number of electrons, N,, and the magnetic flux &,

(1.9)

where ®5 = hc/e is the magnetic flux quantum. The IQHE occurs when a Landau
level is exactly filled, i.e., when v is an integer. For a finite range of magnetic field
values around exact integer filling, v = n + € for n an integer and |e|] << 1, the
mismatch between number of electrons and number of flux quanta will cause electrons
to occupy orbitals in the n 4 1st Landau level or holes to develop in the nth level,
depending on the sign of e. These can be viewed as excitations above the ground
state that occurs at ¥ = n. One might expect that the deviations from exact filling
would diminish the unique properties of the quantum Hall states, the quantized Hall
resistance and zero longitudinal resistance. In fact, they do not. The Hall resistance is

exactly quantized at an integer or fractional unit of €?/h to accuracy of up to one part
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in 10° [8] over the entire range of magnetic field values giving rise to the plateau. The
presence of disorder is essential to the existence of these plateaux [9, 10]. Disorder
is caused by sample impurity sites, which give rise to localized electron states, in
contrast to the current which is carried by nonlocal, extended states. Over the range
of magnetic field values giving rise to the plateaux, the occupancy of the extended
states does not change. Any change in the occupancy of states, reflected by the
change in the filling factor v, is absorbed by the impurity sites which do not affect
the current. See Fig. 1.4.

The FQHE occurs at fractional v, corresponding to partially filled Landau levels.
The properties of the states at FQH plateaux can not be explained in terms of non-
interacting electrons. In a remarkable insight, Laughlin [11] used a variational method
to produce a wave function that captures the behavior of electrons in the v = 1/3

state,

2
U3(z1,29,...,2N) = 1_[(2z — z;)Pem il /A (1.10)

i<j
where z; = x; + 1y; is the 2D coordinate of the jth electron, and the wave function
is derived using symmetric gauge, A = B/2(—y,x,0). This construction can be

generalized to W,,, = [[,_;(z — 2;)™ exp(— 3, |zi|* /4), which describes the v = 1/m

i<y
plateaux for m an odd integer. As any two electrons approach each other and their
separation goes to zero, the Laughin wave functions vanish as the mth power in the

separation. The excitations in the wave functions away from exact v = 1/m filling

are quasiparticles/quasiholes with a charge e* that is a fraction of the electron charge,



1.1 Quantum Hall effect

N(E)

E

Figure 1.4: Integer quantum Hall density of states. The shaded regions are extended
states, which are capable of carrying current. The dashed line is the Fermi energy, €.
When the Fermi energy is between the shaded regions, the occupied extended states
are far below the Fermi level. Perturbing the Fermi energy by changing the magnetic
field strength will not cause any change in the current so long as the extended states
are far from the Fermi level. For these regions of magnetic field strength, the current
will be exactly quantized in the Hall plateaux.



1.2 Anyon Statistics

e* = e/m. This fractional charge has been experimentally measured through various
methods, including resonant tunneling through antidots [12], shot noise [13, 14], and
local compressibility [15]. The excitations are predicted to be neither fermions nor

bosons, but “anyons” [16] which obey “fractional statistics” [17].

1.2 Anyon Statistics

A wave function of identical bosons is symmetric in exchange of the positions of the
particles, Wy (x1,x2) = Wy(xe, 1), while a wave function of identical fermions is an-
tisymmetric, W¢(z1,x9) = —W¢(xe,z1). The properties under exchange of identical
particles define the statistics of a system!. We can view a QH wave function as a map
VU : X — C from a configuration space of particle coordinates, X, to the complex
plane. For two? identical bosons in d-dimensional space the naive configuration space
S is S = R? x R, and for identical fermions is S = R? x R?

{set of coincident points(z,x)}. However, these naive configuration spaces do not
respect the indistinguishability of the particles. For any identical particles, con-
figurations such as (x1,23) should be physically indistinguishable from the inter-
changed configurations (z3,x1). We define an equivalence relation between such

points, (z1,xs) ~ (z2,21). Then the configuration space for the two examples men-

More specifically, the statistics defined in this way is known as the “exchange statistics”. One
can also define statistics through the number of distinct ways one can add additional particles to a
system; this is called the “exclusion statistics” [18].

2We will restrict ourselves to discussion of two identical particles. The extension to N identical
particles will not affect the conclusions, since any exchange involving > 2 particles can be decomposed
into a sequence of two-particle exchanges.

10



1.2 Anyon Statistics

tioned above is S/ ~, i.e., the naive configuration space modulo the equivalence
relation. In other words, physically indistinguishable configurations are represented
by a single point in configuration space. Let us consider the homotopy class of paths
which continuously connect the real-space particle coordinates (x1, z3) with (2, z1).
For d > 3, all such paths are homotopic, and the homotopy class has one element. For
fermions, such a path is a monodromy, encircling the singularity in configuration space
where the particles coincide. The wave function is not a single-valued in the space
S, and exchanging particles along such a path results in the wave function acquiring
a —1. For bosons, there is no singularity in the configuration space and the wave
function is not affected by particle exchanges. These are the only two possibilities
for particle statistics in d > 3 dimensional space. In this space, exchange of identical
particles defines a representation of the symmetric group S;, so exchanging particles
twice (as in Fig. 1.5) must return the wave function to itself. Thus, exchanging once
can only result in a change of sign of the wave function.

These same properties do not hold true for d = 2 dimensions. There, infinitely
many homotopy classes connect (x1, z3) to (xg, 7). The particles could be exchanged
one “half-turn”, either clockwise or counterclockwise, three half-turns clockwise or
counterclockwise, five half-turns, etc., and all of these paths are topologically distinct.
Notably, exchanging the particles twice, as in Fig. 1.5, is not equivalent to the identity.
The paths which exchange two particles on the plane are called “braiding paths” or
“braids”, which define elements of the “braid group” [19], and their action on the wave

functions defines a representation of this group. The configuration space of particles

11
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o o/ /o o/
N

AN
IR Y A -4
\ t

t A\
o o,/ | So o/

Figure 1.5: Left: The worldlines of two particles involved in a braiding operation
(immediately followed by another braiding operation). Right: The worldlines of
two particles undergoing the “identity” braid, i.e., remaining stationary. The space
depicted in this figure is two-dimensional, with later times shown higher. If, in fact,
the particles do not live in two dimensions but in d > 3 dimensions, then the two
processes depicted here, the double braid and the identity braid, are equivalent. On
the other hand, if the particles actually do live in two spatial dimensions as shown,
then there is no guarantee that the two processes depicted here are equivalent.

12



1.2 Anyon Statistics

which live in two dimensions thus has a richer structure than that of particles in three
or more dimensions. Consequently, the wave functions of particles in two dimensional
space can have statistics that are neither boson nor fermion statistics [20]. Such
particles are called “anyons” [16]. Exchanging two particles by a counterclockwise
half-turn, which we call the “elementary braid”, can generally result in a wave function
V(.. zj,x,...) = ePU(... x;2j,...), where 0 is called the “statistical angle”.
Particles with § = 0 are bosons, and with § = 7 are fermions. In two dimensions
0 may take on any value. Those particles for which a finite number of exchanges in
the same direction will return the wave function to itself, i.e. those particles with
statistical angle 8 = fr for some fraction f, are said to have “fractional statistics”.
Defined in this way through particle monodromies, the statistical angle is not
unique. If we multiply the wave functions by an arbitrary phase depending on the
particle coordinates, ¥ — explia(ry,72)]1), this is equivalent to making a local gauge
transformation, A — A 4 Va. Introducing such a phase can shift the statistical
angle defined through monodromy by an arbitrary amount. The equivalent gauge
transformation may introduce long-range interaction terms into the Hamiltonian of
the system. The intuitive notion of “statistics”, however, is that the statistics should
reflect some property of the particles and not be affected by an arbitrary gauge
choice. Two general strategies for arriving at a consistent definition of statistics
are the following. We could choose a preferred gauge, such as one with no long-
range interaction terms in the Hamiltonian. Adopting such a gauge convention would

produce a unique statistical angle from monodromy. Or, instead of fixing a certain

13



1.2 Anyon Statistics

gauge, we can choose to define the statistics through a physical process. We can
physically drag the two particles along an exchange path, using local potentials which
move over time, and we imagine this process is performed infinitesimally slowly. We
call such a process “adiabatic transport”. If two particles are exchanged in such a way,
then in addition to the phase from monodromy the wave function will accumulate a

“Berry phase” [21] €7, where

7:i/dz(\11(z)|vz\lf(z)). (1.11)

c

C is the exchange path, and z represents all the parameters along the path. The
Berry phase is, like the phase from particle monodromy, gauge dependent. However,
the product of those two phases is not gauge dependent, and uniquely characterizes
the statistics of particles in two dimensions.

Excitations in the Laughlin states are anyons with statistical angle § = vr. This
was proved by Arovas, Schrieffer, and Wilczek [22], who calculated the Berry phase
arising from exchange of two v = 1/m Laughlin quasiholes. This result can be

extended to Laughlin-type excitations in any Abelian state.

3The Laughlin-type excitations of a state may be composites of more elementary excitations. In
states for which this is so, there is a certain proscription for finding the statistics of the elementary
excitations from the statistics of the Laughlin-type composites.

14



1.3 Non-Abelian Statistics

1.3 Non-Abelian Statistics

The configuration space of the particles might not be completely described by particle
position. There may be internal degrees of freedom needed to specify the state.
Said differently, for given fixed particle positions there may be many states in the
Hilbert space. Suppose further that these states cannot be distinguished by any
local measurement. Then an exchange of particles might not result in just a phase
multiplication, but can result in a matrix multiplication that acts on those internal
degrees of freedom. Both the monodromy phase and Berry phase will have a matrix
character. The matrices for exchange of different pairs of particles will, in general, be
different and will not commute. Thus, if one braids a sequence of pairs of particles
in an NN particle state, the order in which the pairs are braided will affect the overall
result. We say that particles of this kind, whose braids do not commute, have non-
Abelian statistics. Particles for which the order of braiding operations does not
matter, or for which the braiding matrix is the identity times a phase, are said to
have Abelian statistics.

Non-Abelian statistics might be realized in certain QH states [23]. Recent evidence
[24] suggests that the Moore-Read “Pfaffian” state [23], which has non-Abelian exci-
tations, correctly describes the v = 5/2 quantum Hall plateau [4]. However, a direct
measurement of non-Abelian statistics remains elusive. If such states are found, they
have many features which would be attractive in a fault-tolerant quantum computer

25, 26]. The internal degrees of freedom of such states could form the qubits of the

15



1.4 Finding statistics of FQH wave functions

quantum computer, and operations would be performed on those qubits by braiding
quasiparticles. The fault-tolerance comes about automatically from the inability of
local perturbations to couple to the internal degrees of freedom, thus the state of the

qubits at any time is stable against dephasing and decoherence.

1.4 Finding statistics of FQH wave functions

For a large class of Abelian and non-Abelian FQH states, we have preferred trial wave
functions. In the non-Abelian case there is a large gauge degree of freedom which
amounts to choosing a basis for each particle configuration. If one could choose a
basis for which all Berry phases are zero, then the statistics of the state could be
read off from analytic properties of the wave functions. In this basis, the statistics
comes purely from the particle monodromies. The conformal field theory (CFT)
conjecture of Moore and Read (MR) [23] gives a proscription for choosing such a
basis. MR observed that is it possible to choose basis states such that the analytic
parts of the wave functions are given by conformal blocks in certain rational CFTs.
It is conjectured [23, 27] that the basis thus chosen has the property that the Berry
connection (the argument of the Berry phase integral in Eq. (1.11)) vanishes.

There is much support for the CFT conjecture, but no general proof. The direct
calculation of the adiabatic transport of quasihole excitations has been performed for
Abelian states [22], and recently for p+ ip wave superfluids [28, 29] and Moore-Read-

type QH states [30]. For the Moore-Read “Pfaffian” state, mentioned above, a number
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1.4 Finding statistics of FQH wave functions

of non-rigorous techniques for finding the statistics have been developed earlier as
alternatives to CFT. The first such technique is based on the interpretation [31, 32,
33, 34, 35] of the Pfaffian state as a p+ip wave Bardeen-Cooper-Schrieffer (BCS) state
of composite fermions [36]. The second technique employs the strategy of viewing a
complicated, interacting, many-body state as the adiabatic descendant of a simple,
non-interacting state. Using “adiabatic continuity” between the two, properties of the
interacting state can be inferred from properties of the non-interacting state. These
non-interacting states are given by taking the “thin torus limit”, which had been
considered earlier in Ref. [37]. In a series of recent works [38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 7], it has been demonstrated that FQH states and their excitations
can be described in this limit through simple strings of integers, or “patterns”. These
same patterns arise in the study of FQH states using Jack polynomials [51, 52, 53],
and are related to the “patterns of zeros” describing these states [54, 55, 56, 57].
Adiabatic continuity between the thin torus patterns and FQH states is been utilized
in the so-called “coherent state method”. This method has been used, in addition to
the other methods mentioned above, to derive the statistics of the Pfaffian state [42].
Prior to that, it had also been used to derive the statistics of the Laughlin state [40].
However, no method for deriving the Pfaffian statistics, other than the field-theoretic
approach, had thus far been generalizable to more complicated non-Abelian states.
The main result of this thesis is to make the case that the coherent state method
can be generalized to more complicated states. For some states, the coherent state

method has provided the first independent confirmation of the CF'T conjecture. In
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1.4 Finding statistics of FQH wave functions

particular, this method has been used to derive the statistics of the k = 3 Read-Rezayi
state [58] in Ref. [7].

The bulk of this work is spent developing the formalism of the coherent state
method in detail by showing how it can be applied to a series of increasingly complex
trial wave functions. However, it may be useful to present a sketch of the method
first, with references to those sections containing further details. We begin with a
complex many-body interacting FQH wave function on the torus, or a degenerate
set of such wave functions. We want to know the statistics of the excitations of the
underlying state, which we find through braiding quasiholes via adiabatic transport.
The problem is that, in general, calculating the result of braiding using the many-
body wave functions is too difficult to perform analytically. To simplify the problem,
we use adiabatic continuity. We smoothly deform the Hamiltonian of the FQH wave
functions of interest to the limit where one torus dimension becomes small and the
other becomes large, while keeping their product constant. This transformation takes
the torus into a ring which we call the “thin torus limit”, effectively mapping the
2D system onto a 1D system. In this limit, the interacting many-body FQH wave
functions become non-interacting product states in the lowest Landau level (LLL)
basis. The formalism for the LLL basis on the torus is developed in Sec. 2.1.

In Sec. 2.2 we construct a basis for the Laughlin states on the thin torus. The
thin torus states are simple products of LLL orbitals, with each orbital having some
definite electron occupation number. The list of occupation numbers of each orbital,

a string of integers called the “pattern”, serves as a unique label for each state. The
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1.4 Finding statistics of FQH wave functions

ground-state patterns are periodic, formed from repeating integer strings. A state
with quasiholes in the 2D system maps in the thin torus limit to a pattern with domain
walls between different ground state strings. These latter states are characterized by
the positions of all their domain walls, and by the sequence of ground state strings
between domain walls.

The thin torus states do not permit braiding, so we evolve the thin torus states
into states in the 2D limit in Sec. 2.3. We can see that they do not permit braiding
by imagining an exchange of two domain walls in a thin torus state. The only way
to exchange them to have them pass “through” each other, which would by necessity
involve nontrivial interactions between them. Only when interactions play essentially
no role can the effect of braiding reasonably be assumed to be topological and yield
well-defined statistics. It is clear, then, that to have a useful notion of quasihole
braiding built from the simple domain wall patterns, we must use states that live
on a 2D torus, not the 1D thin torus limit. We adiabatically increase the small
dimension of the torus such that no transitions are induced between any states. The
simple 1D product states each evolve to a 2D state that is no longer a simple LLL
orbital product. The domain walls are still localized along one dimension of the torus,
but are completely delocalized, wrapping around the torus, in the other.

In Sec. 2.4 we construct localized quasihole states from the delocalized states,
using a coherent state ansatz. As in the thin limit, exchanging the delocalized domain
wall objects through adiabatic transport is not well defined, since they still have to

pass through each other to exchange positions. We need a way to localize the domain
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1.4 Finding statistics of FQH wave functions

walls in both dimensions, using them to form localized quasiholes. To accomplish this,
we introduce a coherent state ansatz. However, even with the localized quasiholes in
the coherent states, we still cannot find the result of braiding. Any braiding path must
somewhere bring two quasiholes to the same z position, even if their absolute distance
remains large, and whenever quasiholes coincide in x the coherent state ansatz is no
longer a valid description of localized quasiholes.

This problem can be resolved using a dual coherent state basis which is defined
for quasiholes that are well separated in y. We develop this dual basis in Sec. 2.6. In
Sec. 2.7 we construct transition matrices between the two coherent state bases, and
use symmetries to constrain the matrix elements. Using the two coherent state bases
and the transition matrices between them, we are able to find the Berry phase from
exchanging quasiholes through adiabatic transport. This calculation is performed in
Sec. 2.8.

The procedure described above is presented in Chapter 2 for the Abelian v = 1/2
Laughlin state. The procedure is generalized in Chapter 3 to a non-Abelian state, the
Moore-Read “Pfaffian” state. We show in Chapter 4 that the coherent state method
is generalizable to more complicated non-Abelian states by deriving the statistics of
the k = 3 Read-Rezayi state [58]. The contents of these Chapters originally appeared
in Ref. [7].

The CFT conjecture gives a way to find the statistics of a FQH wave function
through the monodromies of a conformal block in some CFT. Some wave functions

are connected through this conjecture to “nonunitary” CFTs, so called because their
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1.4 Finding statistics of FQH wave functions

energy-momentum tensors are non-Hermitian. The conformal block monodromies are
also nonunitary in such CFTs, thus quasihole monodromy would induce a nonunitary
transformation on the wave functions constructed from those CFTs. However, adia-
batic transport of quasiholes in a FQH wave function must always result in a unitary
transformation to the state. So the implications of the QH-CFT connection for this
state are not clear. What happens when quasiholes in these states are braided is
an open question (and, at the least, requires great care to make well-defined). One
such nonunitary state is the Gaffnian [59]. In Chapter 5 we provide insight into the
braiding holonomies of this state by exchanging Gaffnian coherent state quasiholes
through adiabatic transport. This Chapter has appeared as a preprint, Ref. [60].

Chapter 6 contains previously unpublished results. In Chapter 6, we use the
thin torus states that underlie the coherent state method to derive formulae for
the counting of the number of zero modes in all the states mentioned above. Such
counting formulae have previously been derived for all of these states on the sphere
[58, 61, 62, 63, 64]; in that geometry the wave functions have a polynomial structure
that can aid zero-mode counting. No such polynomial structure exists in the wave
functions on the torus. There, the patterns arising in the thin torus limit serve as a
natural bookkeeping device. The thin torus patterns allow the development of count-
ing formulae on the torus, but also allow the rederivation of formulae on the sphere,
which serves as a useful check of the results.

Certain derivations are detailed in four Appendices.
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Chapter 2

The Laughlin State

Laughlin’s ¥ = 1/m wave functions [11] are the most elementary examples of a
rich class of quantum Hall trial wave functions. These wave functions are generally
characterized by a set of analytic requirements, the most basic of which enforces that
the wave function is entirely contained in the lowest Landau level (LLL). Laughlin’s
original construction of incompressible quantum liquids in a 2D planar geometry
has been generalized by Haldane to states living on a sphere [65] enclosing monopole
charges and to states on a torus [66]. The torus construction has also revealed that the
v = 1/m Laughlin state is m-fold degenerate on the torus, while it is nondegenerate on
the sphere. The nontrivial torus degeneracy was later understood to be the hallmark
of topological order [67], and to be a necessary condition for the presence of anyonic
excitations [68]. Here we focus on the torus.

We will first review the formalism of the LLL orbitals on the torus. We then find

This chapter originally appeared in Ref. [7].
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2.1 Landau levels on the torus

a natural a basis for the Laughlin states using LLL orbitals and construct this basis
in the thin torus limit. We use this basis along with adiabatic continuity to construct
localized quasiholes in the non-thin limit, with both torus dimensions finite, through
the coherent state ansatz. Using two mutually dual coherent state bases we can
implement a braiding procedure, which allows us to find a representation of the braid

group of Laughlin quasiholes.

2.1 Landau levels on the torus

We work on a torus, identified as a rectangular 2D domain of dimensions L, and L,
subject to (magnetic) periodic boundary conditions. We take the magnetic vector
potential to be in Landau gauge, A = (0,z). The magnetic length ¢ = \/W
is set equal to 1. Then L,L, = 2w L, where L equals the number of magnetic flux
quanta through the surface of the torus, which also equals the number of orbitals in
the lowest Landau level (LLL). An infinite cylinder is obtained in the limit L, — oo,
with L, kept finite. We first construct a basis of the LLL on such a cylinder. It is
given by ¢¢(z) = " exp(—32? — $k?n?), where k = 27/L,, z = x+ 1y is the particle’s
complex coordinate, and £ = exp(kz). This notation differs from that of Eq. (1.8)
where n labeled the Landau level (here 0) and n, labeled the k, eigenvalue (here n).
From the LLL states ¢¢ on the infinite cylinder one can construct LLL states ¢,, that

satisfy proper periodic magnetic boundary conditions (cf. Ref. [66]) on a torus with

finite L, = kL. Fixing some unimportant overall phases, these boundary conditions
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2.1 Landau levels on the torus

Figure 2.1: Landau level basis on the torus of dimensions L, x L,. The orbitals
©n(2) form a 1D periodic “lattice” in the x direction. Each orbital ¢, (z) localizes
a particle at * = kn while being delocalized in the y direction, leading to a “ring
shape” geometry. Consecutive orbitals are separated by a distance k.

read

on(z + La) = €V, (2)
(2.1)

Qpn(z + iLy) = Son(z) )

for the present gauge, and the orbitals ¢, (z) satisfying these conditions are then

simply obtained by “repeating” the LLL orbitals of the cylinder along the x direction:

on(2) = 3 $hasnl2). 22

For both the cylinder and the torus (with sufficiently large L, ), the n-th LLL orbital
has the “ring shape” geometry shown in Fig. 2.1. The orbital ¢, (2) localizes a particle

in the z direction around x = xkn to within one magnetic length, such that consecutive
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2.1 Landau levels on the torus

orbitals are separated by a distance k. At the same time, each orbital is completely
delocalized in y. We can view the orbitals ¢, as forming a 1D periodic “lattice”
along the x direction, with each orbital representing a lattice site. Note that we have
Yntrn(z) = @n(z), and in this sense the “orbital lattice” satisfies ordinary periodic
boundary conditions in n. A “thin torus limit” [69, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47,48, 49, 50, 7] can be defined as x > 1. In this limit, the orbitals in the basis (2.2)
are well separated and have negligible overlap.

It is clear that the choice of LLL orbital basis made above treats the x direction
on the torus differently from the y direction. However, nothing prevents us from
exchanging the roles of z and y. A “dual” basis of states p,, localized at y = &n (for
Rk = 2m/L,), encircling the torus in the z direction (Fig. 1.3), can be obtained by

formally “rotating” the ¢, basis, followed by a gauge transformation, via

Pn(2) = exp(iay)pn(—iz)|sr (2.3)

Alternatively, it can be shown (via Poisson resummation) that the @, basis thus

defined is related to the original basis (2.2) through a discrete Fourier transform, i.e

Pa(z) = . Z exp(—i2—ﬂnn')<pn/(z) : (2.4)

In the presence of the magnetic field, the single-particle Hamiltonian commutes
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2.1 Landau levels on the torus

with two magnetic translation operators, whose form in the chosen gauge is given by

t, = efn(az —iy)

(2.5)

_ %O
ty=e€e """,

The orbital bases ¢,, and p,, have simple transformation properties under the action

of these two non-commuting translation operators. One easily verifies that

toon(2) = Pnt1(2) tap,(2) = ™0, (2) (2.6a)

typa(z) = e g, (2) by (2) = Pnya(2) - (2.6b)
All orbitals are thus invariant under the action of the operators ¢, and tyL , which
represent magnetic translations by L, and L, in the respective direction. This is
equivalent to the observation that both the ¢, as well as the @, orbitals satisfy the
same periodic magnetic boundary conditions (2.1) appropriate to the gauge A =
(0, z).
We finally mention some other important symmetries of the problem under con-
sideration. Inversion symmetry acts on wave functions via [¢(z) = 9(—z), and on

the basis states defined above via

Ipn(2) = pn(2), 19,(2) =P_,(2). (2.7)

Similarly, while there is neither time reversal symmetry nor mirror symmetry in the
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2.2 Laughlin states in the thin torus limit

presence of the constant magnetic field, the combined symmetry does exist. We denote
by 7, the antilinear operator that acts on wave functions via 7,9 (z) = ¥(—2*)*, and

on basis states via

Topn(2) = 0n(2), TPn(2) = Pn(2), (2.8)

where the second equation follows from the first with Eq. (2.4). The reflectional part
of 7, is obviously a reflection about the y axis. We can similarly define an antilinear
operator 7, that performs a reflection about the z axis in conjunction with time

reversal, and which acts on basis states via

Tyon(2) = 0n(2) , 7,0,(2) =P_,(2). (2.9)

2.2 Laughlin states in the thin torus limit

Let [¢¢), where ¢ = 0...m — 1, denote the m incompressible Laughlin-type ground-
state wave functions at filling factor v = 1/m on the torus. We may expand the
states |1¢) in the basis of the LLL Fock space that is derived from the single-particle
basis ¢,:

V%) = Z Cimaymi, mg...myp) . (2.10)
{mn}

Here, m,, denotes the number of particles in the state ¢,, and we consider a system
with a fixed number L = L, L, /27 of flux quanta or LLL orbitals. For the time being,

we will use L, to parameterize the aspect ratio of the torus. The coefficients Cy, 3
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2.2 Laughlin states in the thin torus limit

depend on the y perimeter L, of the torus. In the thin torus limit L, — 0, the states
(2.10) evolve into states dominated by a single pattern of occupancy numbers {m,,}.
E.g, the state with ¢ = 0 evolves into the Fock state [100...100...) (where dots
indicate that 1’s are separated by m — 1 zeros), and states with ¢ > 0 are obtained by
repeated application of the translation operator T,. T, is the many-particle version
of the single particle translation operator ¢, discussed above, and acts on a thin torus
pattern such as 100...100... as a right shift. For any value of the perimeter L, the
Laughlin states [1)¢) are ground states of a “pseudopotential” Hamiltonian [65, 70],
whose action within the LLL explicitly depends on L,. The evolution of the states
|4¢) with L, can be understood as the adiabatic evolution of the ground states of the
pseudopotential Hamiltonian H(L,) as the parameter L, is slowly changed. This has
been studied in some detail for m = 3 in Ref. [38], where is was shown numerically
that the gap above the ground states never closes as a function of L,,.

The thin torus states discussed here are formally identical to the Tau-Thouless
states proposed in Ref. [71]. When considered in the “2D-limit” L, = L, = oo, these
states do not have long range charge density wave (CDW) order. In contrast, the
thin torus states considered here can be characterized as 1D CDW states breaking the
translational symmetry of the system. This is so since in the thin torus limit, the LLL
orbitals ¢,, are well separated by a distance x = 27/L, (Fig. 1.3), and the symmetry
breaking pattern of occupancy numbers becomes visible as a CDW modulation. The
findings of Ref. [38] imply that the Laughlin states retain the CDW order of the thin

torus limit on any torus with at least one of the dimensions L,, L, finite. Related
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2.2 Laughlin states in the thin torus limit

rigorous results have been discussed in Ref. [72]. However, as long as both L, and L,
are large compared to the magnetic length, the CDW order is exponentially small.
The physics of the incompressible fluid is thus quickly approached as L, L, become
large, and in particular the notion of braiding statistics can be made arbitrarily well
defined on a large but finite torus. This, together with the fact that the states on
such a torus are adiabatically connected to simple product states sharing all their
essential quantum numbers, is the foundation of the method discussed here.

For simplicity we will now focus on the case m = 2, the bosonic v = 1/2 Laughlin
state with ground-state patterns 101010... and 010101 ..., respectively. The general
case was worked out in Ref. [40]. However, here we will discuss an improved variant
of the method, which was used in Ref. [42] to derive the statistics of the Pfaffian
state. The two degenerate m = 2 Laughlin states on the torus are the unique zero-
energy eigenstates of the Vo Haldane pseudopotential at filling factor v = 1/2. As
in other cases where parent Hamiltonians for incompressible trial states are known,
further zero-energy states exist at smaller filling factors: The excitations associated
with elementary quasihole-type excitations are in one-to-one correspondence with the
zero modes of the parent Hamiltonian at filling factor v < 1/2. This is again true
at any value of the perimeter L,, and in particular the number of zero modes for
any fixed number of constituent particles (electrons) N does not depend on L,. We
will extend the assumption of adiabatic continuity to the entire zero-mode sector.
The thin torus limit of a Laughlin state with n quasiholes can easily be worked out

directly from the L, — 0 limit of the Hamiltonian [38], or from the same limit of the
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2.2 Laughlin states in the thin torus limit

wave function on the torus or cylinder [69]. A state with a single Laughlin quasihole
evolves into a thin torus state that has a single domain wall between the two ground-
state patterns. We can distinguish domain-wall states in two “topological sectors”,
according to the two possible phases of the charge density wave to the left and to
the right of the domain wall, i.e., 1010:0101... or 01010:010... . The 1D domain walls
can be ascribed a fractional charge by means of the usual “Su-Schrieffer” counting
argument [73]. This charge (here 1/2) generally agrees [38, 46] with the charge of
Laughlin quasiholes, as it should by adiabatic continuity.

We introduce notation |a, ¢) for LLL product states with a domain wall at position

a in topological sector c:

la,0) = ‘ ..1010101010/01010101010 . . ) (2.11a)

la,1) = ‘ .01010101010{0101010101 .. ) (2.11Db)

The curved ket indicates that these are “bare” product states to be distinguished
from states that have undergone adiabatic evolution, which we will discuss below.
The number a is a half-odd integer labeling the domain-wall position relative to the
LLL orbitals, such that a +1/2 are the orbital indices of the LLL orbitals adjacent to
the domain wall. The two possible values of the topological sector label ¢ distinguish
the sequence of ground-state patterns in the two states of Eq. (2.12). It is worth
noting that in principle, the topological sector is already determined by the value of

exp(ima) and so the notation of Eq. (2.11) may seem slightly redundant. We find
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2.2 Laughlin states in the thin torus limit

it advantageous, though, to include the topological sector information explicitly into
the sector label, especially with regard to more general cases discussed later.

The above observations immediately generalize to states with two quasiholes,
whose thin torus limits are given by product states corresponding to patterns with two
domain walls. These states are labeled |aj, aq, ¢), with occupation number patterns

for the values of ¢ = 0,1 given by:

a1, as,0) = ‘ -.10101010101010:0101010 .. ) (2.12a)

a1, ag, 1) = ‘ ..01010010101010:010101 . .. ) (2.12D)

We will always take a; to be less than as, such that a; and as refer to the first and
second domain wall, respectively. It is clear from Eq. (2.12) that the two domain-wall

positions are also subject to the constraint
as—a; =1 mod2. (2.13)

Again, the label ¢ explicitly distinguishes the two possible sequences of ground-state
patterns, even though in principle this information is also contained in the values of
exp(imay) or exp(imas). The labels a1, aq, and ¢ describing a given two—-domain-wall

state are unique when the condition
0<a;<ay <L (2.14)
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2.2 Laughlin states in the thin torus limit

is imposed. Whenever the domain-wall positions satisfy (2.14), we will say that they
are given “in the default frame”. However, since we are working on the torus and
LLL orbitals satisfy the periodic boundary condition ¢, = ¢,.r, it is desirable to
admit domain-wall positions that refer to more general reference frames also. We

thus define the states |ay, ag, ¢) for all ay, as satisfying

a; <as <a;+ L, (2.15)

together with the following identification:

ai,as, ¢) = lag — Lyay, ) | (2.16)

where ¢ = 1+ ¢ mod m (here m=2). We will say that the domain-wall positions ay,
as lie in an f frame if

f<a<a< f+1L. (217)

The standard frame is the 0 frame. If necessary, repeated application of Eq. (2.16)
allows one to transform domain-wall positions between different frames, where the
roles of the first and second domain wall may be exchanged; whenever this happens,
the topological sector label ¢ changes also, as stated in Eq. (2.16). This fact follows
from Eq. (2.13), since the value of ¢ is determined by the value of the position of,
say, the first domain wall modulo 2, as discussed above. Note that L = 2N + 2 is

even for states with two domain walls. The topological sector label is therefore frame
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2.8 Delocalized quasihole states
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Figure 2.2: Top: A possible arrangement of two domain walls is shown in a “repeated
zone scheme” with the domain-wall positions marked by the bold 00 strings. The
dotted line (red) marks the boundaries of the 0 frame and the dot-dashed line (blue)
marks a shifted frame, the 6 frame. Bottom: The second domain wall moves to a new
position. When viewed from the 0 frame, this domain wall moves across the frame
boundary where it becomes the first domain wall in a different topological sector.
Viewed from the 6 frame, the domain wall does not move across the boundary and
the topological sector does not change.

dependent. This is of a piece with the fact that the topological sector changes when
one quasihole is transported around one of the “holes” of the torus, as we will discuss
in detail below (see Fig. 2.2). The transformation properties of topological sectors
under the exchange of two quasiholes along nontrivial loops (going once around the
torus) are thus encoded in the thin torus patterns. This is a key ingredient of the
method presented here, and sector transformation rules analogous to Eq. (2.16) will

be of much importance especially in the non-Abelian states to be discussed below.

2.3 Delocalized quasihole states

The notion of braiding is not well defined in the thin torus limit. In order for a well-
defined statistics to emerge from an adiabatic exchange of quasiholes, throughout
the exchange the quasiholes must be spatially localized in both x and y, and at the

same time must be kept away from each other at distances large compared to their
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2.8 Delocalized quasihole states

individual spatial extent. Both are not simultaneously possible in the thin torus limit.
Hence, in order to “braid” quasiholes through adiabatic transport, we will need to
work with states that live not on a thin torus but on a full-sized torus with L,, L, both
large. Formally, the assumption of adiabatic continuity means the following. There
exists a family of unitary operators S (Ly, L;,) that describe the adiabatic evolution of
the eigenstates (in particular the zero modes) of the pseudopotential Hamiltonian at
perimeter L, into those at L,. In particular, we define S (Ly) = S (Ly,0), the unitary
operator that evolves thin torus states, Eqs. (2.11), (2.12), into states at finite L,.
We hence define the “dressed” or adiabatically evolved domain-wall states as the
descendants of thin torus states via the operator S (Ly). In particular, for states with

a single domain wall, we write

la,c, L) = S(L,) |a,c) , (2.18)

where we will suppress the label L, whenever no confusion can arise, using the regular
ket to denote dressed states as opposed to bare domain-wall states. For sufficiently
large L, (and L, = 2nL/L,), the states in Eq. (2.18) describe a quasihole immersed
into a Laughlin liquid (here with v = 1/2). The q