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Abstract

In the theory of the fractional quantum Hall effect, much attention is paid to the

correspondence between fractional quantum Hall wave functions and conformal blocks

in certain rational conformal field theories (CFT). This correspondence is powerful,

enabling the calculation of the fractional statistics of a state that would be difficult

if not impossible to calculate directly from the wave functions. But it is, in general,

conjectural, remaining without microscopic justification in many cases of interest,

and involves heavy mathematical machinery. We detail an alternative method to

calculate Abelian and non-Abelian fractional statistics, the coherent state method.

The method relies on assumptions which are independent of those underlying the

CFT correspondence, so it serves as an independent check of results for the statistics

where they exist, and an alternative source of results when a CFT is not known. We

show how the coherent state method can be used to derive the statistics of several

increasingly complicated trial wave functions: ν = 1/2 Laughlin, Moore-Read, and

k = 3 Read-Rezayi. We discuss implications of our method for a possible notion of

braiding statistics of the Gaffnian state, a “nonunitary” quantum Hall state for which

the ramifications of the CFT correspondence are less well understood. We go on to
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derive formulas for the counting of zero modes of all these states on the torus.
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Chapter 1

Introduction

1.1 Quantum Hall effect

The observation of the fractional quantum Hall (FQH) effect [1] has led to waves

of new insights into the nature of electronic states of matter. Among many other

novel properties, excitations in the two-dimensional many-electron FQH systems can

exhibit fractional charges and fractional statistics. To see how these effects arise in

the quantum Hall effect, we will first introduce the classical Hall effect.

We imagine a conducting strip in the x-y plane with width w in the x̂ direction

(see Fig. 1.1). An electronic current I = −newv flows in the ŷ direction on the strip,

where n is the electron density, −e is the electric charge, and v = −vŷ is the electron

velocity. We apply a magnetic field B = Bẑ perpendicular to the strip, which causes

a Lorentz force that deflects the flowing electrons in the x̂ direction. A buildup of

excess charge on one side of the conductor and a corresponding charge deficiency on
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1.1 Quantum Hall effect

Figure 1.1: The classical Hall effect.

the other side establishes a potential difference across the transverse direction, called

VH , the Hall potential. Its gradient is Ex, the Hall field. In equilibrium the Lorentz

force exactly balances the force from the Hall field,

vB

c
=
VH
w
. (1.1)

The quantity,

VH
I

= − B

nec
, (1.2)

is called the Hall resistance, denoted Ryx = −Rxy or RH . Its measurement allows a

determination of the sign of the charges which carry the current.

Now let us imagine that instead of a conducting strip, we have a two dimensional

“electron gas”, which can be realized in certain semiconductor heterostructures such

as MOSFETs (metal–oxide–semiconductor field-effect transistors) and HEMTs (high

electron mobility transistors). For weak magnetic fields, the classical linear relation-

ship between RH and B is observed. However, a quantum regime is entered for low

2



1.1 Quantum Hall effect

temperatures (∼ 1 K), high magnetic fields (∼ 10 T), and clean samples with electron

mobilities ∼ 104 cm2/Vs (though mobilities as high as ∼ 106 cm2/Vs are possible [2]).

In this regime, the relationship between the Hall resistance and magnetic field is not

linear as in Eq. (1.2). The Hall resistance shows plateaux around certain ranges of

magnetic field (Fig. 1.2). The value of resistance at these plateaux is universal, oc-

curring at a fixed value regardless of the precise details of the samples used to observe

the effect. These plateaux occur at

RH =
h

e2

1

ν
. (1.3)

The ratio h/e2 is the quantum of resistance, about 25.813kΩ. ν is a dimensionless

number characterizing each plateau. Initially, plateaux were observed for integral

values of ν [3]. This phenomenon, now known as the “integer quantum Hall” (IQH)

effect, has a theoretical explanation in terms of filled Landau levels, which will be

elaborated below. Later, plateaux were discovered at fractional values of ν with

odd denominators [1], such as 1/3, 2/3, 2/5, . . . , and still later at even denominators,

5/2 [4] and 3/2 [5], which was termed the “fractional quantum Hall effect” (FQHE).

These plateaux could not be readily explained in terms of filled Landau levels, or any

other picture based on non-interacting electron states. Their explanation required

the introduction of interactions between the many electrons within a partially filled

Landau level. Over the same ranges of magnetic field giving rise to plateaux, the

resistance in the direction of current flow goes to zero, meaning the current flows

3



1.1 Quantum Hall effect

Figure 1.2: Hall resistance RH and longitudinal resistance R. The numbers with
arrows indicate the value of ν at each plateau. Reproduced from Ref. [6].

without dissipation.

The IQHE occurs when an integer number of Landau levels are filled; to review

this effect, then, we will briefly review the physics of Landau levels. For now, we

make the approximation that the electrons do not interact and that all their spins are

polarized in the direction of the magnetic field. In this approximation, the problem of

electrons in a magnetic field can be analyzed in terms of a single-electron Hamiltonian,

H =
1

2m
(p− e

c
A)2. (1.4)

4



1.1 Quantum Hall effect

A is the magnetic vector potential, defined by B = ∇×A. We have a gauge degree

of freedom in A, and for our purposes it is convenient to choose Landau gauge,

A = (0, Bx, 0). Then

H =
p2
x

2m
+

1

2m

(
py −

eBx

c

)2

. (1.5)

We will attempt to find a seperable solution of the form ϕky(x, y) = exp(ikyy)fky(x).

This is an eigenstate of py, which commutes with the Hamiltonian, so we can replace

py by its eigenvalue ~ky. Now,

H =
p2
x

2m
+
mω2

c

2
(x− `2ky)

2, (1.6)

where ωc = eB/mc is the cyclotron frequency, and ` =
√

~c/eB is the magnetic

length. This looks like the Hamiltonian of a 1D harmonic oscillator in x, with center

shifted by `2ky. Thus fky(x) is a harmonic oscillator wave function, and the (unnor-

malized) eigenstate ϕ is,

ϕky ,n(x, y) = exp(ikyy) exp

(
− 1

2`2
(x− `2ky)

2

)
Hn

(
1

`
(x− `2ky)

)
, (1.7)

where Hn(x) is the nth Hermite polynomial. For each value of n, there is a family

of degenerate orbitals, each a state of a quantum harmonic oscillator centered at a

different position. Together these orbitals are called a Landau level. Each of these

harmonic oscillators has energy En = ~ωc(n+ 1/2), independent of ky. If we impose

periodic boundary conditions in y, which is equivalent to working on a cylinder, ky

5



1.1 Quantum Hall effect

Figure 1.3: The two lowest Landau level bases on the cylinder. a) The “original”
basis, ϕcny ,0(x, y). The orbitals are localized in x, with separation by κ = 2π/Ly.
They encircle the cylinder in y. b) The dual basis, ϕcnx,0(x, y). Orbitals are localized
in y with separation κ̄ = 2π/Lx and encircle the torus in x. Reproduced from Ref. [7].

becomes quantized as ky = κny where κ = 2π/Ly and ny = 0, 1, . . . , Ly − 1. Then

the wave functions are

ϕcny ,n(x, y) = exp(iκyny) exp

(
−1

2
(x− κny)2

)
Hn(x− κny), (1.8)

in units where the magnetic length ` is set equal to 1. The wave functions in the

lowest Landau level (LLL), with n = 0, form rings around the circumference of the

cylinder at x = κny for each ny (Fig. 1.3).

Of course, we could have made a different choice for A, which would lead to

a different set of eigenfunctions. For instance, the choice A = (−By, 0, 0) would,

along with periodic boundary conditions in x, produce another family of harmonic

oscillators in y which we call ϕcn(x, y). In the LLL these wave functions form rings

6



1.1 Quantum Hall effect

at y = κ̄nx, where κ̄ = 2π/Lx and nx = 0, 1, . . . , Lx − 1. For a boundary which is

periodic in both x and y, equivalent to working on a torus, either of these Landau level

descriptions (suitably generalized) could form the basis of electron wave functions.

This freedom to choose a convenient Landau level basis will play a key role in the

method discussed in this work. A more thorough introduction to Landau levels in

the context of this method will be given in Sec. 2.1.

The dimensionless number ν, defined in Eq. (1.3) as the coefficient of the Hall

resistance, can be expressed as the Landau level filling factor, or the ratio between

the number of electrons, Ne, and the magnetic flux Φ,

ν = Ne
Φ0

Φ
, (1.9)

where Φ0 = hc/e is the magnetic flux quantum. The IQHE occurs when a Landau

level is exactly filled, i.e., when ν is an integer. For a finite range of magnetic field

values around exact integer filling, ν = n + ε for n an integer and |ε| << 1, the

mismatch between number of electrons and number of flux quanta will cause electrons

to occupy orbitals in the n + 1st Landau level or holes to develop in the nth level,

depending on the sign of ε. These can be viewed as excitations above the ground

state that occurs at ν = n. One might expect that the deviations from exact filling

would diminish the unique properties of the quantum Hall states, the quantized Hall

resistance and zero longitudinal resistance. In fact, they do not. The Hall resistance is

exactly quantized at an integer or fractional unit of e2/h to accuracy of up to one part

7



1.1 Quantum Hall effect

in 109 [8] over the entire range of magnetic field values giving rise to the plateau. The

presence of disorder is essential to the existence of these plateaux [9, 10]. Disorder

is caused by sample impurity sites, which give rise to localized electron states, in

contrast to the current which is carried by nonlocal, extended states. Over the range

of magnetic field values giving rise to the plateaux, the occupancy of the extended

states does not change. Any change in the occupancy of states, reflected by the

change in the filling factor ν, is absorbed by the impurity sites which do not affect

the current. See Fig. 1.4.

The FQHE occurs at fractional ν, corresponding to partially filled Landau levels.

The properties of the states at FQH plateaux can not be explained in terms of non-

interacting electrons. In a remarkable insight, Laughlin [11] used a variational method

to produce a wave function that captures the behavior of electrons in the ν = 1/3

state,

Ψ3(z1, z2, . . . , zN) =
∏
i<j

(zi − zj)3e−
∑
i|zi|

2/4, (1.10)

where zj = xj + iyj is the 2D coordinate of the jth electron, and the wave function

is derived using symmetric gauge, A = B/2(−y, x, 0). This construction can be

generalized to Ψm =
∏

i<j(zi − zj)m exp(−
∑

i |zi|
2 /4), which describes the ν = 1/m

plateaux for m an odd integer. As any two electrons approach each other and their

separation goes to zero, the Laughin wave functions vanish as the mth power in the

separation. The excitations in the wave functions away from exact ν = 1/m filling

are quasiparticles/quasiholes with a charge e∗ that is a fraction of the electron charge,

8



1.1 Quantum Hall effect

Figure 1.4: Integer quantum Hall density of states. The shaded regions are extended
states, which are capable of carrying current. The dashed line is the Fermi energy, εF .
When the Fermi energy is between the shaded regions, the occupied extended states
are far below the Fermi level. Perturbing the Fermi energy by changing the magnetic
field strength will not cause any change in the current so long as the extended states
are far from the Fermi level. For these regions of magnetic field strength, the current
will be exactly quantized in the Hall plateaux.

9



1.2 Anyon Statistics

e∗ = e/m. This fractional charge has been experimentally measured through various

methods, including resonant tunneling through antidots [12], shot noise [13, 14], and

local compressibility [15]. The excitations are predicted to be neither fermions nor

bosons, but “anyons” [16] which obey “fractional statistics” [17].

1.2 Anyon Statistics

A wave function of identical bosons is symmetric in exchange of the positions of the

particles, Ψb(x1, x2) = Ψb(x2, x1), while a wave function of identical fermions is an-

tisymmetric, Ψf(x1, x2) = −Ψf(x2, x1). The properties under exchange of identical

particles define the statistics of a system1. We can view a QH wave function as a map

Ψ : X → C from a configuration space of particle coordinates, X, to the complex

plane. For two2 identical bosons in d-dimensional space the näıve configuration space

S is S = Rd × Rd, and for identical fermions is S = Rd × Rd

{set of coincident points(x, x)}. However, these näıve configuration spaces do not

respect the indistinguishability of the particles. For any identical particles, con-

figurations such as (x1, x2) should be physically indistinguishable from the inter-

changed configurations (x2, x1). We define an equivalence relation between such

points, (x1, x2) ∼ (x2, x1). Then the configuration space for the two examples men-

1More specifically, the statistics defined in this way is known as the “exchange statistics”. One
can also define statistics through the number of distinct ways one can add additional particles to a
system; this is called the “exclusion statistics” [18].

2We will restrict ourselves to discussion of two identical particles. The extension to N identical
particles will not affect the conclusions, since any exchange involving> 2 particles can be decomposed
into a sequence of two-particle exchanges.

10



1.2 Anyon Statistics

tioned above is S/ ∼, i.e., the näıve configuration space modulo the equivalence

relation. In other words, physically indistinguishable configurations are represented

by a single point in configuration space. Let us consider the homotopy class of paths

which continuously connect the real-space particle coordinates (x1, x2) with (x2, x1).

For d ≥ 3, all such paths are homotopic, and the homotopy class has one element. For

fermions, such a path is a monodromy, encircling the singularity in configuration space

where the particles coincide. The wave function is not a single-valued in the space

S, and exchanging particles along such a path results in the wave function acquiring

a −1. For bosons, there is no singularity in the configuration space and the wave

function is not affected by particle exchanges. These are the only two possibilities

for particle statistics in d ≥ 3 dimensional space. In this space, exchange of identical

particles defines a representation of the symmetric group S2, so exchanging particles

twice (as in Fig. 1.5) must return the wave function to itself. Thus, exchanging once

can only result in a change of sign of the wave function.

These same properties do not hold true for d = 2 dimensions. There, infinitely

many homotopy classes connect (x1, x2) to (x2, x1). The particles could be exchanged

one “half-turn”, either clockwise or counterclockwise, three half-turns clockwise or

counterclockwise, five half-turns, etc., and all of these paths are topologically distinct.

Notably, exchanging the particles twice, as in Fig. 1.5, is not equivalent to the identity.

The paths which exchange two particles on the plane are called “braiding paths” or

“braids”, which define elements of the “braid group” [19], and their action on the wave

functions defines a representation of this group. The configuration space of particles

11



1.2 Anyon Statistics

Figure 1.5: Left: The worldlines of two particles involved in a braiding operation
(immediately followed by another braiding operation). Right: The worldlines of
two particles undergoing the “identity” braid, i.e., remaining stationary. The space
depicted in this figure is two-dimensional, with later times shown higher. If, in fact,
the particles do not live in two dimensions but in d ≥ 3 dimensions, then the two
processes depicted here, the double braid and the identity braid, are equivalent. On
the other hand, if the particles actually do live in two spatial dimensions as shown,
then there is no guarantee that the two processes depicted here are equivalent.

12



1.2 Anyon Statistics

which live in two dimensions thus has a richer structure than that of particles in three

or more dimensions. Consequently, the wave functions of particles in two dimensional

space can have statistics that are neither boson nor fermion statistics [20]. Such

particles are called “anyons” [16]. Exchanging two particles by a counterclockwise

half-turn, which we call the “elementary braid”, can generally result in a wave function

Ψ(. . . , xj, xi, . . . ) = eiθΨ(. . . , xi, xj, . . . ), where θ is called the “statistical angle”.

Particles with θ = 0 are bosons, and with θ = π are fermions. In two dimensions

θ may take on any value. Those particles for which a finite number of exchanges in

the same direction will return the wave function to itself, i.e. those particles with

statistical angle θ = fπ for some fraction f , are said to have “fractional statistics”.

Defined in this way through particle monodromies, the statistical angle is not

unique. If we multiply the wave functions by an arbitrary phase depending on the

particle coordinates, ψ → exp[iα(r1, r2)]ψ, this is equivalent to making a local gauge

transformation, A → A + ∇α. Introducing such a phase can shift the statistical

angle defined through monodromy by an arbitrary amount. The equivalent gauge

transformation may introduce long-range interaction terms into the Hamiltonian of

the system. The intuitive notion of “statistics”, however, is that the statistics should

reflect some property of the particles and not be affected by an arbitrary gauge

choice. Two general strategies for arriving at a consistent definition of statistics

are the following. We could choose a preferred gauge, such as one with no long-

range interaction terms in the Hamiltonian. Adopting such a gauge convention would

produce a unique statistical angle from monodromy. Or, instead of fixing a certain
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1.2 Anyon Statistics

gauge, we can choose to define the statistics through a physical process. We can

physically drag the two particles along an exchange path, using local potentials which

move over time, and we imagine this process is performed infinitesimally slowly. We

call such a process “adiabatic transport”. If two particles are exchanged in such a way,

then in addition to the phase from monodromy the wave function will accumulate a

“Berry phase” [21] eiγ, where

γ = i

∫
C
dz〈Ψ(z)|∇zΨ(z)〉. (1.11)

C is the exchange path, and z represents all the parameters along the path. The

Berry phase is, like the phase from particle monodromy, gauge dependent. However,

the product of those two phases is not gauge dependent, and uniquely characterizes

the statistics of particles in two dimensions.

Excitations in the Laughlin states are anyons with statistical angle θ = νπ. This

was proved by Arovas, Schrieffer, and Wilczek [22], who calculated the Berry phase

arising from exchange of two ν = 1/m Laughlin quasiholes. This result can be

extended to Laughlin-type excitations in any Abelian state3.

3The Laughlin-type excitations of a state may be composites of more elementary excitations. In
states for which this is so, there is a certain proscription for finding the statistics of the elementary
excitations from the statistics of the Laughlin-type composites.
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1.3 Non-Abelian Statistics

1.3 Non-Abelian Statistics

The configuration space of the particles might not be completely described by particle

position. There may be internal degrees of freedom needed to specify the state.

Said differently, for given fixed particle positions there may be many states in the

Hilbert space. Suppose further that these states cannot be distinguished by any

local measurement. Then an exchange of particles might not result in just a phase

multiplication, but can result in a matrix multiplication that acts on those internal

degrees of freedom. Both the monodromy phase and Berry phase will have a matrix

character. The matrices for exchange of different pairs of particles will, in general, be

different and will not commute. Thus, if one braids a sequence of pairs of particles

in an N particle state, the order in which the pairs are braided will affect the overall

result. We say that particles of this kind, whose braids do not commute, have non-

Abelian statistics. Particles for which the order of braiding operations does not

matter, or for which the braiding matrix is the identity times a phase, are said to

have Abelian statistics.

Non-Abelian statistics might be realized in certain QH states [23]. Recent evidence

[24] suggests that the Moore-Read “Pfaffian” state [23], which has non-Abelian exci-

tations, correctly describes the ν = 5/2 quantum Hall plateau [4]. However, a direct

measurement of non-Abelian statistics remains elusive. If such states are found, they

have many features which would be attractive in a fault-tolerant quantum computer

[25, 26]. The internal degrees of freedom of such states could form the qubits of the
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1.4 Finding statistics of FQH wave functions

quantum computer, and operations would be performed on those qubits by braiding

quasiparticles. The fault-tolerance comes about automatically from the inability of

local perturbations to couple to the internal degrees of freedom, thus the state of the

qubits at any time is stable against dephasing and decoherence.

1.4 Finding statistics of FQH wave functions

For a large class of Abelian and non-Abelian FQH states, we have preferred trial wave

functions. In the non-Abelian case there is a large gauge degree of freedom which

amounts to choosing a basis for each particle configuration. If one could choose a

basis for which all Berry phases are zero, then the statistics of the state could be

read off from analytic properties of the wave functions. In this basis, the statistics

comes purely from the particle monodromies. The conformal field theory (CFT)

conjecture of Moore and Read (MR) [23] gives a proscription for choosing such a

basis. MR observed that is it possible to choose basis states such that the analytic

parts of the wave functions are given by conformal blocks in certain rational CFTs.

It is conjectured [23, 27] that the basis thus chosen has the property that the Berry

connection (the argument of the Berry phase integral in Eq. (1.11)) vanishes.

There is much support for the CFT conjecture, but no general proof. The direct

calculation of the adiabatic transport of quasihole excitations has been performed for

Abelian states [22], and recently for p+ ip wave superfluids [28, 29] and Moore-Read-

type QH states [30]. For the Moore-Read “Pfaffian” state, mentioned above, a number
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1.4 Finding statistics of FQH wave functions

of non-rigorous techniques for finding the statistics have been developed earlier as

alternatives to CFT. The first such technique is based on the interpretation [31, 32,

33, 34, 35] of the Pfaffian state as a p+ip wave Bardeen-Cooper-Schrieffer (BCS) state

of composite fermions [36]. The second technique employs the strategy of viewing a

complicated, interacting, many-body state as the adiabatic descendant of a simple,

non-interacting state. Using “adiabatic continuity” between the two, properties of the

interacting state can be inferred from properties of the non-interacting state. These

non-interacting states are given by taking the “thin torus limit”, which had been

considered earlier in Ref. [37]. In a series of recent works [38, 39, 40, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50, 7], it has been demonstrated that FQH states and their excitations

can be described in this limit through simple strings of integers, or “patterns”. These

same patterns arise in the study of FQH states using Jack polynomials [51, 52, 53],

and are related to the “patterns of zeros” describing these states [54, 55, 56, 57].

Adiabatic continuity between the thin torus patterns and FQH states is been utilized

in the so-called “coherent state method”. This method has been used, in addition to

the other methods mentioned above, to derive the statistics of the Pfaffian state [42].

Prior to that, it had also been used to derive the statistics of the Laughlin state [40].

However, no method for deriving the Pfaffian statistics, other than the field-theoretic

approach, had thus far been generalizable to more complicated non-Abelian states.

The main result of this thesis is to make the case that the coherent state method

can be generalized to more complicated states. For some states, the coherent state

method has provided the first independent confirmation of the CFT conjecture. In
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1.4 Finding statistics of FQH wave functions

particular, this method has been used to derive the statistics of the k = 3 Read-Rezayi

state [58] in Ref. [7].

The bulk of this work is spent developing the formalism of the coherent state

method in detail by showing how it can be applied to a series of increasingly complex

trial wave functions. However, it may be useful to present a sketch of the method

first, with references to those sections containing further details. We begin with a

complex many-body interacting FQH wave function on the torus, or a degenerate

set of such wave functions. We want to know the statistics of the excitations of the

underlying state, which we find through braiding quasiholes via adiabatic transport.

The problem is that, in general, calculating the result of braiding using the many-

body wave functions is too difficult to perform analytically. To simplify the problem,

we use adiabatic continuity. We smoothly deform the Hamiltonian of the FQH wave

functions of interest to the limit where one torus dimension becomes small and the

other becomes large, while keeping their product constant. This transformation takes

the torus into a ring which we call the “thin torus limit”, effectively mapping the

2D system onto a 1D system. In this limit, the interacting many-body FQH wave

functions become non-interacting product states in the lowest Landau level (LLL)

basis. The formalism for the LLL basis on the torus is developed in Sec. 2.1.

In Sec. 2.2 we construct a basis for the Laughlin states on the thin torus. The

thin torus states are simple products of LLL orbitals, with each orbital having some

definite electron occupation number. The list of occupation numbers of each orbital,

a string of integers called the “pattern”, serves as a unique label for each state. The
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1.4 Finding statistics of FQH wave functions

ground-state patterns are periodic, formed from repeating integer strings. A state

with quasiholes in the 2D system maps in the thin torus limit to a pattern with domain

walls between different ground state strings. These latter states are characterized by

the positions of all their domain walls, and by the sequence of ground state strings

between domain walls.

The thin torus states do not permit braiding, so we evolve the thin torus states

into states in the 2D limit in Sec. 2.3. We can see that they do not permit braiding

by imagining an exchange of two domain walls in a thin torus state. The only way

to exchange them to have them pass “through” each other, which would by necessity

involve nontrivial interactions between them. Only when interactions play essentially

no role can the effect of braiding reasonably be assumed to be topological and yield

well-defined statistics. It is clear, then, that to have a useful notion of quasihole

braiding built from the simple domain wall patterns, we must use states that live

on a 2D torus, not the 1D thin torus limit. We adiabatically increase the small

dimension of the torus such that no transitions are induced between any states. The

simple 1D product states each evolve to a 2D state that is no longer a simple LLL

orbital product. The domain walls are still localized along one dimension of the torus,

but are completely delocalized, wrapping around the torus, in the other.

In Sec. 2.4 we construct localized quasihole states from the delocalized states,

using a coherent state ansatz. As in the thin limit, exchanging the delocalized domain

wall objects through adiabatic transport is not well defined, since they still have to

pass through each other to exchange positions. We need a way to localize the domain
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1.4 Finding statistics of FQH wave functions

walls in both dimensions, using them to form localized quasiholes. To accomplish this,

we introduce a coherent state ansatz. However, even with the localized quasiholes in

the coherent states, we still cannot find the result of braiding. Any braiding path must

somewhere bring two quasiholes to the same x position, even if their absolute distance

remains large, and whenever quasiholes coincide in x the coherent state ansatz is no

longer a valid description of localized quasiholes.

This problem can be resolved using a dual coherent state basis which is defined

for quasiholes that are well separated in y. We develop this dual basis in Sec. 2.6. In

Sec. 2.7 we construct transition matrices between the two coherent state bases, and

use symmetries to constrain the matrix elements. Using the two coherent state bases

and the transition matrices between them, we are able to find the Berry phase from

exchanging quasiholes through adiabatic transport. This calculation is performed in

Sec. 2.8.

The procedure described above is presented in Chapter 2 for the Abelian ν = 1/2

Laughlin state. The procedure is generalized in Chapter 3 to a non-Abelian state, the

Moore-Read “Pfaffian” state. We show in Chapter 4 that the coherent state method

is generalizable to more complicated non-Abelian states by deriving the statistics of

the k = 3 Read-Rezayi state [58]. The contents of these Chapters originally appeared

in Ref. [7].

The CFT conjecture gives a way to find the statistics of a FQH wave function

through the monodromies of a conformal block in some CFT. Some wave functions

are connected through this conjecture to “nonunitary” CFTs, so called because their
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1.4 Finding statistics of FQH wave functions

energy-momentum tensors are non-Hermitian. The conformal block monodromies are

also nonunitary in such CFTs, thus quasihole monodromy would induce a nonunitary

transformation on the wave functions constructed from those CFTs. However, adia-

batic transport of quasiholes in a FQH wave function must always result in a unitary

transformation to the state. So the implications of the QH-CFT connection for this

state are not clear. What happens when quasiholes in these states are braided is

an open question (and, at the least, requires great care to make well-defined). One

such nonunitary state is the Gaffnian [59]. In Chapter 5 we provide insight into the

braiding holonomies of this state by exchanging Gaffnian coherent state quasiholes

through adiabatic transport. This Chapter has appeared as a preprint, Ref. [60].

Chapter 6 contains previously unpublished results. In Chapter 6, we use the

thin torus states that underlie the coherent state method to derive formulae for

the counting of the number of zero modes in all the states mentioned above. Such

counting formulae have previously been derived for all of these states on the sphere

[58, 61, 62, 63, 64]; in that geometry the wave functions have a polynomial structure

that can aid zero-mode counting. No such polynomial structure exists in the wave

functions on the torus. There, the patterns arising in the thin torus limit serve as a

natural bookkeeping device. The thin torus patterns allow the development of count-

ing formulae on the torus, but also allow the rederivation of formulae on the sphere,

which serves as a useful check of the results.

Certain derivations are detailed in four Appendices.
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Chapter 2

The Laughlin State

Laughlin’s ν = 1/m wave functions [11] are the most elementary examples of a

rich class of quantum Hall trial wave functions. These wave functions are generally

characterized by a set of analytic requirements, the most basic of which enforces that

the wave function is entirely contained in the lowest Landau level (LLL). Laughlin’s

original construction of incompressible quantum liquids in a 2D planar geometry

has been generalized by Haldane to states living on a sphere [65] enclosing monopole

charges and to states on a torus [66]. The torus construction has also revealed that the

ν = 1/m Laughlin state is m-fold degenerate on the torus, while it is nondegenerate on

the sphere. The nontrivial torus degeneracy was later understood to be the hallmark

of topological order [67], and to be a necessary condition for the presence of anyonic

excitations [68]. Here we focus on the torus.

We will first review the formalism of the LLL orbitals on the torus. We then find

This chapter originally appeared in Ref. [7].
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2.1 Landau levels on the torus

a natural a basis for the Laughlin states using LLL orbitals and construct this basis

in the thin torus limit. We use this basis along with adiabatic continuity to construct

localized quasiholes in the non-thin limit, with both torus dimensions finite, through

the coherent state ansatz. Using two mutually dual coherent state bases we can

implement a braiding procedure, which allows us to find a representation of the braid

group of Laughlin quasiholes.

2.1 Landau levels on the torus

We work on a torus, identified as a rectangular 2D domain of dimensions Lx and Ly

subject to (magnetic) periodic boundary conditions. We take the magnetic vector

potential to be in Landau gauge, A = (0, x). The magnetic length ` =
√

~c/eB

is set equal to 1. Then LxLy = 2πL, where L equals the number of magnetic flux

quanta through the surface of the torus, which also equals the number of orbitals in

the lowest Landau level (LLL). An infinite cylinder is obtained in the limit Lx →∞,

with Ly kept finite. We first construct a basis of the LLL on such a cylinder. It is

given by ϕcn(z) = ξn exp(−1
2
x2− 1

2
κ2n2), where κ = 2π/Ly, z = x+ iy is the particle’s

complex coordinate, and ξ = exp(κz). This notation differs from that of Eq. (1.8)

where n labeled the Landau level (here 0) and ny labeled the ky eigenvalue (here n).

From the LLL states ϕcn on the infinite cylinder one can construct LLL states ϕn that

satisfy proper periodic magnetic boundary conditions (cf. Ref. [66]) on a torus with

finite Lx = κL. Fixing some unimportant overall phases, these boundary conditions
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2.1 Landau levels on the torus

Figure 2.1: Landau level basis on the torus of dimensions Lx × Ly. The orbitals
ϕn(z) form a 1D periodic “lattice” in the x direction. Each orbital ϕn(z) localizes
a particle at x = κn while being delocalized in the y direction, leading to a “ring
shape” geometry. Consecutive orbitals are separated by a distance κ.

read

ϕn(z + Lx) = eiκyϕn(z)

ϕn(z + iLy) = ϕn(z) ,

(2.1)

for the present gauge, and the orbitals ϕn(z) satisfying these conditions are then

simply obtained by “repeating” the LLL orbitals of the cylinder along the x direction:

ϕn(z) =
∑
j

ϕcn+jL(z) . (2.2)

For both the cylinder and the torus (with sufficiently large Lx), the n-th LLL orbital

has the “ring shape” geometry shown in Fig. 2.1. The orbital ϕn(z) localizes a particle

in the x direction around x = κn to within one magnetic length, such that consecutive
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2.1 Landau levels on the torus

orbitals are separated by a distance κ. At the same time, each orbital is completely

delocalized in y. We can view the orbitals ϕn as forming a 1D periodic “lattice”

along the x direction, with each orbital representing a lattice site. Note that we have

ϕn+L(z) = ϕn(z), and in this sense the “orbital lattice” satisfies ordinary periodic

boundary conditions in n. A “thin torus limit” [69, 38, 39, 40, 41, 42, 43, 44, 45, 46,

47, 48, 49, 50, 7] can be defined as κ� 1. In this limit, the orbitals in the basis (2.2)

are well separated and have negligible overlap.

It is clear that the choice of LLL orbital basis made above treats the x direction

on the torus differently from the y direction. However, nothing prevents us from

exchanging the roles of x and y. A “dual” basis of states ϕn localized at y = κn (for

κ = 2π/Lx), encircling the torus in the x direction (Fig. 1.3), can be obtained by

formally “rotating” the ϕn basis, followed by a gauge transformation, via

ϕn(z) = exp(ixy)ϕn(−iz)|κ→κ . (2.3)

Alternatively, it can be shown (via Poisson resummation) that the ϕn basis thus

defined is related to the original basis (2.2) through a discrete Fourier transform, i.e

ϕn(z) =
1√
L

∑
n′

exp(−i2π
L
nn′)ϕn′(z) . (2.4)

In the presence of the magnetic field, the single-particle Hamiltonian commutes
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2.1 Landau levels on the torus

with two magnetic translation operators, whose form in the chosen gauge is given by

tx = e−κ(∂x−iy)

ty = e−κ∂y .

(2.5)

The orbital bases ϕn and ϕn have simple transformation properties under the action

of these two non-commuting translation operators. One easily verifies that

txϕn(z) = ϕn+1(z) txϕn(z) = e2πin/Lϕn(z) (2.6a)

tyϕn(z) = e−2πin/Lϕn(z) tyϕn(z) = ϕn+1(z) . (2.6b)

All orbitals are thus invariant under the action of the operators t L
x and t Ly , which

represent magnetic translations by Lx and Ly in the respective direction. This is

equivalent to the observation that both the ϕn as well as the ϕn orbitals satisfy the

same periodic magnetic boundary conditions (2.1) appropriate to the gauge A =

(0, x).

We finally mention some other important symmetries of the problem under con-

sideration. Inversion symmetry acts on wave functions via Iψ(z) = ψ(−z), and on

the basis states defined above via

Iϕn(z) = ϕ−n(z) , Iϕn(z) = ϕ−n(z) . (2.7)

Similarly, while there is neither time reversal symmetry nor mirror symmetry in the
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2.2 Laughlin states in the thin torus limit

presence of the constant magnetic field, the combined symmetry does exist. We denote

by τx the antilinear operator that acts on wave functions via τxψ(z) = ψ(−z∗)∗, and

on basis states via

τxϕn(z) = ϕ−n(z) , τxϕn(z) = ϕn(z) , (2.8)

where the second equation follows from the first with Eq. (2.4). The reflectional part

of τx is obviously a reflection about the y axis. We can similarly define an antilinear

operator τy that performs a reflection about the x axis in conjunction with time

reversal, and which acts on basis states via

τyϕn(z) = ϕn(z) , τyϕn(z) = ϕ−n(z) . (2.9)

2.2 Laughlin states in the thin torus limit

Let |ψc〉, where c = 0 . . .m− 1, denote the m incompressible Laughlin-type ground-

state wave functions at filling factor ν = 1/m on the torus. We may expand the

states |ψc〉 in the basis of the LLL Fock space that is derived from the single-particle

basis ϕn:

|ψc〉 =
∑
{mn}

C{mn}|m1,m2 . . .mL〉 . (2.10)

Here, mn denotes the number of particles in the state ϕn, and we consider a system

with a fixed number L = LxLy/2π of flux quanta or LLL orbitals. For the time being,

we will use Ly to parameterize the aspect ratio of the torus. The coefficients C{mn}
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2.2 Laughlin states in the thin torus limit

depend on the y perimeter Ly of the torus. In the thin torus limit Ly → 0, the states

(2.10) evolve into states dominated by a single pattern of occupancy numbers {mn}.

E.g, the state with c = 0 evolves into the Fock state |100 . . . 100 . . . 〉 (where dots

indicate that 1’s are separated by m−1 zeros), and states with c > 0 are obtained by

repeated application of the translation operator Tx. Tx is the many-particle version

of the single particle translation operator tx discussed above, and acts on a thin torus

pattern such as 100 . . . 100 . . . as a right shift. For any value of the perimeter Ly, the

Laughlin states |ψc〉 are ground states of a “pseudopotential” Hamiltonian [65, 70],

whose action within the LLL explicitly depends on Ly. The evolution of the states

|ψc〉 with Ly can be understood as the adiabatic evolution of the ground states of the

pseudopotential Hamiltonian H(Ly) as the parameter Ly is slowly changed. This has

been studied in some detail for m = 3 in Ref. [38], where is was shown numerically

that the gap above the ground states never closes as a function of Ly.

The thin torus states discussed here are formally identical to the Tau-Thouless

states proposed in Ref. [71]. When considered in the “2D-limit” Lx = Ly =∞, these

states do not have long range charge density wave (CDW) order. In contrast, the

thin torus states considered here can be characterized as 1D CDW states breaking the

translational symmetry of the system. This is so since in the thin torus limit, the LLL

orbitals ϕn are well separated by a distance κ = 2π/Ly (Fig. 1.3), and the symmetry

breaking pattern of occupancy numbers becomes visible as a CDW modulation. The

findings of Ref. [38] imply that the Laughlin states retain the CDW order of the thin

torus limit on any torus with at least one of the dimensions Lx, Ly finite. Related
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2.2 Laughlin states in the thin torus limit

rigorous results have been discussed in Ref. [72]. However, as long as both Lx and Ly

are large compared to the magnetic length, the CDW order is exponentially small.

The physics of the incompressible fluid is thus quickly approached as Lx, Ly become

large, and in particular the notion of braiding statistics can be made arbitrarily well

defined on a large but finite torus. This, together with the fact that the states on

such a torus are adiabatically connected to simple product states sharing all their

essential quantum numbers, is the foundation of the method discussed here.

For simplicity we will now focus on the case m = 2, the bosonic ν = 1/2 Laughlin

state with ground-state patterns 101010 . . . and 010101 . . . , respectively. The general

case was worked out in Ref. [40]. However, here we will discuss an improved variant

of the method, which was used in Ref. [42] to derive the statistics of the Pfaffian

state. The two degenerate m = 2 Laughlin states on the torus are the unique zero-

energy eigenstates of the V̂0 Haldane pseudopotential at filling factor ν = 1/2. As

in other cases where parent Hamiltonians for incompressible trial states are known,

further zero-energy states exist at smaller filling factors: The excitations associated

with elementary quasihole-type excitations are in one-to-one correspondence with the

zero modes of the parent Hamiltonian at filling factor ν < 1/2. This is again true

at any value of the perimeter Ly, and in particular the number of zero modes for

any fixed number of constituent particles (electrons) N does not depend on Ly. We

will extend the assumption of adiabatic continuity to the entire zero-mode sector.

The thin torus limit of a Laughlin state with n quasiholes can easily be worked out

directly from the Ly → 0 limit of the Hamiltonian [38], or from the same limit of the
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2.2 Laughlin states in the thin torus limit

wave function on the torus or cylinder [69]. A state with a single Laughlin quasihole

evolves into a thin torus state that has a single domain wall between the two ground-

state patterns. We can distinguish domain-wall states in two “topological sectors”,

according to the two possible phases of the charge density wave to the left and to

the right of the domain wall, i.e., 1010 99
90101... or 01010 99
9010... . The 1D domain walls

can be ascribed a fractional charge by means of the usual “Su-Schrieffer” counting

argument [73]. This charge (here 1/2) generally agrees [38, 46] with the charge of

Laughlin quasiholes, as it should by adiabatic continuity.

We introduce notation |a, c) for LLL product states with a domain wall at position

a in topological sector c:

|a, 0) =
∣∣∣. . . 1010101010 99

901010101010 . . .
)

(2.11a)

|a, 1) =
∣∣∣. . . 01010101010 99

90101010101 . . .
)

(2.11b)

The curved ket indicates that these are “bare” product states to be distinguished

from states that have undergone adiabatic evolution, which we will discuss below.

The number a is a half-odd integer labeling the domain-wall position relative to the

LLL orbitals, such that a±1/2 are the orbital indices of the LLL orbitals adjacent to

the domain wall. The two possible values of the topological sector label c distinguish

the sequence of ground-state patterns in the two states of Eq. (2.12). It is worth

noting that in principle, the topological sector is already determined by the value of

exp(iπa) and so the notation of Eq. (2.11) may seem slightly redundant. We find
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2.2 Laughlin states in the thin torus limit

it advantageous, though, to include the topological sector information explicitly into

the sector label, especially with regard to more general cases discussed later.

The above observations immediately generalize to states with two quasiholes,

whose thin torus limits are given by product states corresponding to patterns with two

domain walls. These states are labeled |a1, a2, c), with occupation number patterns

for the values of c = 0, 1 given by:

|a1, a2, 0) =
∣∣∣. . . 1010 99

9010101010 99
90101010 . . .

)
(2.12a)

|a1, a2, 1) =
∣∣∣. . . 01010 99

9010101010 99
9010101 . . .

)
(2.12b)

We will always take a1 to be less than a2, such that a1 and a2 refer to the first and

second domain wall, respectively. It is clear from Eq. (2.12) that the two domain-wall

positions are also subject to the constraint

a2 − a1 = 1 mod 2 . (2.13)

Again, the label c explicitly distinguishes the two possible sequences of ground-state

patterns, even though in principle this information is also contained in the values of

exp(iπa1) or exp(iπa2). The labels a1, a2, and c describing a given two–domain-wall

state are unique when the condition

0 < a1 < a2 < L (2.14)
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2.2 Laughlin states in the thin torus limit

is imposed. Whenever the domain-wall positions satisfy (2.14), we will say that they

are given “in the default frame”. However, since we are working on the torus and

LLL orbitals satisfy the periodic boundary condition ϕn ≡ ϕn+L, it is desirable to

admit domain-wall positions that refer to more general reference frames also. We

thus define the states |a1, a2, c) for all a1, a2 satisfying

a1 < a2 < a1 + L , (2.15)

together with the following identification:

|a1, a2, c) ≡ |a2 − L, a1, c
′) , (2.16)

where c′ = 1 + c mod m (here m=2). We will say that the domain-wall positions a1,

a2 lie in an f frame if

f < a1 < a2 < f + L . (2.17)

The standard frame is the 0 frame. If necessary, repeated application of Eq. (2.16)

allows one to transform domain-wall positions between different frames, where the

roles of the first and second domain wall may be exchanged; whenever this happens,

the topological sector label c changes also, as stated in Eq. (2.16). This fact follows

from Eq. (2.13), since the value of c is determined by the value of the position of,

say, the first domain wall modulo 2, as discussed above. Note that L = 2N + 2 is

even for states with two domain walls. The topological sector label is therefore frame
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2.3 Delocalized quasihole states

Figure 2.2: Top: A possible arrangement of two domain walls is shown in a “repeated
zone scheme” with the domain-wall positions marked by the bold 00 strings. The
dotted line (red) marks the boundaries of the 0 frame and the dot-dashed line (blue)
marks a shifted frame, the 6 frame. Bottom: The second domain wall moves to a new
position. When viewed from the 0 frame, this domain wall moves across the frame
boundary where it becomes the first domain wall in a different topological sector.
Viewed from the 6 frame, the domain wall does not move across the boundary and
the topological sector does not change.

dependent. This is of a piece with the fact that the topological sector changes when

one quasihole is transported around one of the “holes” of the torus, as we will discuss

in detail below (see Fig. 2.2). The transformation properties of topological sectors

under the exchange of two quasiholes along nontrivial loops (going once around the

torus) are thus encoded in the thin torus patterns. This is a key ingredient of the

method presented here, and sector transformation rules analogous to Eq. (2.16) will

be of much importance especially in the non-Abelian states to be discussed below.

2.3 Delocalized quasihole states

The notion of braiding is not well defined in the thin torus limit. In order for a well-

defined statistics to emerge from an adiabatic exchange of quasiholes, throughout

the exchange the quasiholes must be spatially localized in both x and y, and at the

same time must be kept away from each other at distances large compared to their
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2.3 Delocalized quasihole states

individual spatial extent. Both are not simultaneously possible in the thin torus limit.

Hence, in order to “braid” quasiholes through adiabatic transport, we will need to

work with states that live not on a thin torus but on a full-sized torus with Lx, Ly both

large. Formally, the assumption of adiabatic continuity means the following. There

exists a family of unitary operators Ŝ(Ly, L
′
y) that describe the adiabatic evolution of

the eigenstates (in particular the zero modes) of the pseudopotential Hamiltonian at

perimeter L′y into those at Ly. In particular, we define Ŝ(Ly) ≡ Ŝ(Ly, 0), the unitary

operator that evolves thin torus states, Eqs. (2.11), (2.12), into states at finite Ly.

We hence define the “dressed” or adiabatically evolved domain-wall states as the

descendants of thin torus states via the operator Ŝ(Ly). In particular, for states with

a single domain wall, we write

|a, c, Ly〉 = Ŝ(Ly) |a, c) , (2.18)

where we will suppress the label Ly whenever no confusion can arise, using the regular

ket to denote dressed states as opposed to bare domain-wall states. For sufficiently

large Ly (and Lx = 2πL/Ly), the states in Eq. (2.18) describe a quasihole immersed

into a Laughlin liquid (here with ν = 1/2). The quasihole is localized in x around

x = κa. However, it is entirely delocalized in the y direction. To see this, we consider

the operator Ty which is the many-body analogue of the single-particle translation

operator ty discussed above. The bare domain-wall states are Ty eigenstates by con-

struction, with eigenvalues that are easily calculated from the pattern of occupation
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2.3 Delocalized quasihole states

Figure 2.3: A two-quasihole dressed domain-wall state. These states are adiabatically
evolved from the “bare” thin torus domain-wall states but live on the full-sized torus.
The quasiholes described by this state are localized at some position in the x direction
but delocalized in the y direction.

numbers. Since the pseudopotential Hamiltonian commutes with the magnetic trans-

lation operators for any value of Ly, so does the adiabatic evolution operator Ŝ(Ly).

It follows that the dressed domain-wall states transform under magnetic translations

in the same manner as the bare ones do. The states in Eq. (2.18) are thus still Ty

eigenstates, with eigenvalues identical to those of their bare counterparts. It is clear

that in such a state, the quasihole must be completely delocalized in the y direc-

tion (see Fig. 2.3). Again, these observations can be extended to states with two

quasiholes,

|a1, a2, c, Ly〉 = Ŝ(Ly) |a1, a2, c) . (2.19)

Here, two Laughlin quasiholes in the topological sector c are localized in x around

x1 = κa1 and x2 = κa2, respectively, and are both delocalized in y. Note that the x

separation between the two quasiholes depends on Ly via ∆x = κ∆a = 2π(a2−a1)/Ly.
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The two delocalized quasiholes in the state |a1, a2, c, Ly〉 will be uncorrelated as long

as ∆x is much larger than a magnetic length (set equal to 1). There are certainly no

such correlations in the thin torus limit, and even at finite Ly both the correlation

length of the incompressible fluid and the range of the interaction remain on the

order of a magnetic length. As we increase Ly, the adiabatic evolution will therefore

not induce any correlations between the two quasiholes as long as ∆x � 1 remains

satisfied. In this case, the local properties of each of the quasiholes will be the same

as those of the single quasihole described by Eq. (2.18).

We emphasize once more that the adiabatically continued domain-wall states in

Eqs. (2.18) and (2.19) are neither simple product states, nor are they any longer

“thin torus states” in any sense. Rather, the assumption of adiabatic continuity

allows one to organize the zero-mode subspace into a basis labeled by 1D patterns

for any value of Ly. These patterns carry information about the properties under

magnetic translations not only of the thin torus states, but also of their adiabatically

descended counterparts at finite Ly. Finally, it will be of some significance that, since

the adiabatic evolution operator Ŝ(Ly) is unitary, the dressed states of Eqs. (2.18)

and (2.19) are orthonormal, since the thin torus product states certainly are.

2.4 Coherent states

Individually, the members of the basis of zero-mode states defined above describe

delocalized Laughlin quasiholes. In order to analyze the braiding statistics of these
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quasiholes, we need to form states where quasiholes are localized in both x and

y. Laughlin has constructed analytic wave functions for such states [11], which are

also zero-energy eigenstates of the pseudopotential Hamiltonian. It must therefore be

possible to write these localized quasihole states as superpositions, or coherent states,

in the zero-mode basis defined in the preceding section.

We consider the single-quasihole case first. According to the above, it must be

possible to write

|ψc(h)〉 =
∑
a

C(h, a)|a, c〉 (2.20)

for a state with a quasihole localized at complex coordinate h = hx + ihy. Here,

we anticipate that to localize a quasihole, it is sufficient to include states of a single

topological sector into the superposition, such that the localized quasihole state still

carries a well-defined sector label. The left-hand side of Eq. (2.20) is assumed to be

a Laughlin single-hole state. Interestingly, as long as we assume that a zero-mode

basis |a, c〉 with the properties claimed in the preceding section exists, the coefficients

C(h, a) of this expansion are fully determined. To this end, we note that

(a′, c|a, c〉 = const × δa,a′ . (2.21)

The vanishing of Eq. (2.21) for a 6= a′ follows since for different domain-wall positions

the bare state |a′, c) and the dressed state |a, c〉 have different Ty eigenvalues, as is

easily seen by writing out the corresponding domain-wall patterns and calculating

the action of Ty. On the other hand, the constant in Eq. (2.21) does not depend on a,
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since states with different domain-wall position a are related by repeated application

of Tx. From Eqs. (2.20) and (2.21), it follows that

C(h, a) ∝ (a, c|ψc(h)〉 . (2.22)

We also expect only those states |a, c〉 to have any appreciable weight in the coherent

state (2.20) whose domain-wall position x = κa is close to the x position hx of the

quasihole. We will assume that the coefficients C(h, a) in this region are not affected

by a change from periodic to open boundary conditions, as long as the torus is cut into

a cylinder by a cut along y that is far away in x from the quasihole. In particular, it

is clear from the discussion in Sec. 2.1 that such a cut would affect the local structure

of the ϕn LLL basis (in terms of which the states |a, c〉 have been defined) only by

negligible amounts (for large Lx). For cylindrical topology, however, it is possible to

evaluate the right-hand side of Eq. (2.22) explicitly. For definiteness, we explicitly

write out the wave function for the Laughlin state |ψc(h)〉 on a cylinder of perimeter

Ly:

ψc(h; z1 . . . zN) =
∏
i

(ξi − η)
∏
i<j

(ξi − ξj)2 × e−1/2
∑
i x

2
i . (2.23)

Here, ξi = exp(κzi) and η = exp(κh). Evaluating Eq. (2.22) amounts to evaluating

the coefficients of “dominance patterns” in the polynomial of Eq. (2.23). This can be

done using “squeezed lattice” methods discussed in Refs. [41, 44]. This shows that

the above wave function does indeed lie in a definite topological sector, as defined by
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the thin cylinder limit.1 One finds:2

|ψc(h)〉 = N
∑
a

φ(h, κa)|a, c〉 , (2.24)

where

φ(h, x) = exp

[
1

2
i(hy + π/κ)x− 1

4
(hx − x)2

]
, (2.25)

and N is a normalization constant independent of h. The general form of the coherent

state wave function Eq. (2.25) could have been guessed based on the following obser-

vations. As a function of x, φ(h, x) can be interpreted as a “minimum uncertainty”

coherent state of a particle confined to one spatial dimension. This is consistent with

the fact that, after projection into a single Landau level, the x and y components

of the position operator do not commute, but satisfy a position-momentum–type

commutation relation [x, y] ∝ i. y position can thus be regarded as x momentum,

and vice versa. It is thus natural that the y position of the quasihole enters as a

momentum-like phase twist in Eqs. (2.24), (2.25). On the other hand, as a function

of h, φ(h, x) looks like a lowest Landau level orbital of a charge 1/2 degree of freedom

in the same magnetic field that is felt by the underlying electrons. These heuristic

considerations will later allow us to generalize the coherent state form Eq. (2.24) to

more complicated cases, where a direct derivation of the kind outlined here is not

straightforward.

1The other sector can be reached by multiplication with
∏
i ξi.

2An hy-dependent phase has been dropped for simplicity. As a result, note that the original
Laughlin state Eq. (2.23) is single valued in hy, whereas Eq. (2.24) is not.
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The next logical step is to generalize the expression (2.24) to states with two

localized quasiholes. This is not difficult, as long as the two quasiholes at complex

positions h1 and h2 are well separated along the x axis, i.e., h2,x − h1,x � 1. In this

case, we can argue that the presence of the one quasihole does not influence the other,

and the natural generalization of the coherent state Eq. (2.24) takes on the following

form:

|ψc(h1, h2)〉 = N 2
∑′

a1<a2

φ(h1, κa1)φ(h2, κa2) |a1, a2, c〉 . (2.26)

The function φ(h, x) is just as defined in Eq. (2.25). The prime in the above sum

denotes the restriction of the domain-wall positions to values corresponding to the

topological sector c. These are different for a1 and a2, as a result of Eq. (2.13). To

be precise, we can define the topological sector c for two quasiholes via the following

constraint on the domain-wall positions:

a1 = 2n1 − 1/2 + c , a2 = 2n2 + 1/2 + c (2.27)

with integers n2 ≥ n1. By default, the sum in Eq. (2.26) is further restricted to

domain-wall positions within the default frame, Eq. (2.14). The restriction to a

different frame according to (2.17) will be indicated by a subscript f , |ψc(h1, h2)〉f .

For as long as the condition h2,x − h1,x � 1 holds, Eq. (2.26) can be inferred

from Eq. (2.24) in a more formal way, using assumptions about the action of local

operators on the adiabatically continued domain-wall basis. Locality arguments of

this kind will play an important role in the following, and we will devote the next
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section to the development these arguments.

2.5 Locality

It is useful to formalize the assumptions that enter the factorized two-quasihole ansatz,

Eq. (2.26). This naturally leads to general assumptions about the matrix elements

of local operators within the zero-mode basis of adiabatically continued domain-wall

states defined above, which will be of further relevance in much of the following.

Let ρ̂(~r) be a local operator, localized at some position ~r = (rx, ry). We will later

consider ρ̂(~r) to be the operator for the local charge density at ~r, but for now we

wish to consider a generic (not necessarily single-particle) local operator. The action

of this operator within the LLL Fock space depends on the aspect ratio of the torus.

We first consider the action of ρ̂(~r) on a bare domain-wall state |a1, a2, a3, . . . , c)

(which for finite Ly is not an eigenstate of the pseudopotential Hamiltonian). Quite

obviously, the operator ρ̂(~r) can only generate matrix elements between this state

and some other domain-wall state |b1, b2, b3, . . . , c) if the associated pattern of orbital

occupancy numbers differs only locally between these two states, for orbitals whose

location lies within a magnetic length of rx. We will usually be interested in cases

where the domain-wall positions κa1, κa2, κa3, . . . are all separated by much more

than a magnetic length. In this case, for the matrix element between these two states

to be finite, it is clear that either ai = bi for all i, or there is a single j such that

aj 6= bj, with both κaj and κbj in the vicinity of rx. Otherwise the patterns associated
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with the two states would differ even in orbitals that are far removed from rx along

the x axis, and their matrix element would be exponentially small. In particular,

matrix elements between states in different topological sectors are not possible (in

the thermodynamic limit). Although at large Ly, the dressed domain-wall states

|a1, a2, a3 . . . , c〉 are quite different from their bare counterparts, they still describe

topological defects inserted into the torus at x positions κai. We will assume here

and in the following that if the associated patterns of two dressed domain-wall states

differ by many microscopic degrees of freedom, then this is also true for dressed

states themselves. In particular, if the patterns of two states differ in orbitals whose

separation along the x axis is large compared to one magnetic length, we assume that

their matrix element for any local operator will be negligible. For states with well

separated domain walls, the observation made above for bare states then extends to

their dressed counterparts. I.e., non-zero matrix elements are of the form

〈. . . ai . . . |ρ̂(~r)| . . . bi . . . 〉 = ρ(ai, bi) , (2.28)

where the ellipses represent other domain-wall positions, which must remain fixed

but otherwise do not affect the value of the matrix element, and again κaj ≈ κbj ≈

rx to within a magnetic length. With these assumptions, we can easily show that

Eq. (2.26) describes two localized quasiholes, assuming that Eq. (2.24) describes a

single localized quasihole. Let now ρ̂(~r) be the local density operator. We consider

the expectation value 〈ψc(h1, h2)|ρ̂(~r)|ψc(h1, h2)〉 for |h2x − rx| � 1, and show that

42



2.5 Locality

this expectation value reduces exactly to that of 〈ψc(h1)|ρ̂(~r)|ψc(h1)〉, which we know

to describe a single quasihole at position h1. Using Eq. (2.28), we have

〈ψc(h1, h2)|ρ̂(~r)|ψc(h1, h2)〉

= N 4
∑′

a1,a2

∑′

b1,b2

φ(h1, κa1)∗φ(h2, κa2)∗φ(h1, κb1)φ(h2, κb2) 〈a1, a2, c| ρ̂(~r) |b1, b2, c〉

' N 4
∑′

a1,a2,b1

φ(h1, κa1)∗φ(h2, κa2)∗φ(h1, κb1)φ(h2, κa2) 〈a1, a2, c| ρ̂(~r) |b1, a2, c〉

= N 4
∑′

a1,a2,b1

φ(h1, κa1)∗φ(h1, κb1)φ(h2, κa2)∗φ(h2, κa2) ρ(a1, b1)

' N 2
∑′

a1,b1

φ(h1, κa1)∗φ(h1, κb1) ρ(a1, b1) .

(2.29)

In the above, the primes on the sums enforce all the necessary constraints such that

the bras and kets correspond to domain-wall patterns in the topological sector c, cf.

Eq. (2.27). In the second line, we have used that the matrix elements are diagonal in

the second domain-wall position for |h2x − rx| � 1. Furthermore, for h2x − h1x � 1

the constraint a1, b2 < a2 which the domain-wall positions obey becomes irrelevant

due to the Gaussian nature of the φ functions, and the sum over a2 in the third line

simply yields the normalization of the single-quasihole state, Eq. (2.24). The last line

is, however, identical to 〈ψc(h1)|ρ̂(~r)|ψc(h1)〉. In words, this shows that when ~r is

far away along the x axis from the second quasihole, the expectation value of ρ̂(~r)

reduces to that of a state with a single quasihole at h1. Similar arguments show that

if ~r is far away along the x axis from the first quasihole, 〈ρ̂(~r)〉 reduces to that of a
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state with a single quasihole at h2. Together, this shows that for h2x − h1x � 1, the

state (2.26) describes two quasiholes localized at h1 and h2.

2.6 Dual description

The coherent state expression (2.26) is in principle suited to calculate the Berry

connection governing adiabatic transport [21, 59, 16]. However, as the arguments in

the preceding section have made clear, Eq. (2.26) can be expected to be accurate

only in the limit of quasiholes that are well separated along the x axis. As can be

seen in Fig. 2.6, the x separation of the quasiholes must vanish at some point for any

exchange path, even though the absolute distances between the quasiholes remain

large throughout. As a result, Eq. (2.26) is by itself not sufficient to fully calculate

the result of adiabatic transport.

The resolution to this problem lies in making use of the modular S invariance of

the torus. Though we have so far only used the thin torus limit Ly → 0, the physics

must be invariant under an exchange of x and y. In doing so, we may now define a

zero-mode basis by working from the limit Lx → 0. In this limit, the zero modes of

the pseudopotential Hamiltonian are domain-wall states that are occupation number

eigenstates in the ϕn basis. The corresponding ground-state and domain-wall patterns

are the same as those appearing in the Ly → 0 limit, except that the associated charge

density waves extend along the y direction of the torus. We denote the bare domain-

wall states in the ϕn basis with an overline, e.g. |a1, a2, c) for a two–domain-wall
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state. We now proceed in a manner that is completely analogous to the definition of

the “original” zero-mode basis on a general torus, Eq. (2.19). To this end, we define

a unitary operator S(Lx) that describes the adiabatic evolution of states from the

“narrow x limit” to a finite value of Lx. We then define the general zero-mode basis

for two-quasihole states via

|a1, a2, c, Lx〉 = S(Lx)|a1, a2, c) , (2.30)

where again, we will drop the label Lx on the left-hand side whenever no confusion

is possible. The states in Eq. (2.30) describe quasiholes that are localized in y but

delocalized around the torus along x. Similar definitions are made for states with n

quasiholes. We can form localized quasihole states in a manner completely analogous

to Eq. (2.26). So long as Eq. (2.26) describes two localized quasiholes at positions h1

and h2 for any aspect ratio of the torus, invariance of the physics under exchange of

x and y implies that the following expression will do the same in terms of the dual

zero-mode basis Eq. (2.30):

|ψc(h1, h2)〉 = N̄ 2
∑
a1<a2

φ(h1, κa1)φ(h2, κa2)|a1, a2, c〉 (2.31)

where

φ(h, y) = φ(−ih, y)|κ→κ = exp

[
− i

2
(hx + π/κ)y − 1

4
(hy − y)2

]
, (2.32)
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and Eq. (2.31) is now applicable to the case h2y − h1y � 1. We thus have at least

one valid coherent state expression for any configuration of the two quasiholes along

the exchange path shown in Fig. 2.6. At some points along the path, however, we

will be forced to translate back and forth between the two coherent state expressions

(2.26) and (2.31). This task is nontrivial. To see this, it is important to note that

the topological sector label c has different meanings in the original zero-mode basis

Eq. (2.19) and the dual zero-mode basis Eq. (2.30): in the former, it means that

the state evolves into a well defined charge density wave product state in the limit

Ly → 0, characterized by a certain sequence of ground-state patterns separated by

domain walls; in the latter, it means the same in the opposite thin torus limit, Lx → 0.

It will turn out that a state that carries a definite sector label c in the original basis,

Eq. (2.19), is a superposition of states carrying different topological sector labels in

the dual basis Eq. (2.30), and vice versa. The same is true for the coherent state

expressions Eqs. (2.26) and (2.31). While the relation between the sets of states

|ψc(h1, h2)〉 and |ψc(h1, h2)〉 is thus not diagonal in the topological sector label c, for

given quasihole coordinates h1, h2 both sets span the same subspace, namely the

space associated with having quasiholes localized at h1, h2. The relation between the

states |ψc(h1, h2)〉 and |ψc(h1, h2)〉 is thus diagonal in the quasihole positions, and we

may write

|ψc(h1, h2)〉 =
∑
c′

uσcc′(h1, h2)|ψc′(h1, h2)〉 . (2.33)

Note that above, we had defined |ψc(h1, h2)〉 only for h2x > h1x, and |ψc′(h1, h2)〉 only
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for h2y > h1y. While we will stick to these restrictions most of the time, we will gen-

erally let |ψc(h2, h1)〉 ≡ |ψc(h1, h2)〉 and |ψc′(h2, h1)〉 ≡ |ψc′(h1, h2)〉 for convenience.

This allows us to write relations such as Eq. (2.33) without distinguishing different

cases. The transition functions uσcc′(h1, h2) are then meaningful in regions where both

|h1x − h2x| � 1 and |h1y − h2y| � 1, since it is only in these regions where we have

defined both |ψc(h1, h2)〉 and |ψc′(h1, h2)〉 through coherent state expressions. The

final technical obstacle is to sufficiently determine these transition functions from

symmetries and topological considerations.

To this end, we begin by distinguishing two regions of the 2-hole configuration

space. Let σ = sgn(h1x − h2x)sgn(h1y − h2y). σ = ±1 then refers to first and

second quasihole configuration in Fig. 2.4, respectively. We will first be interested

in the “local” dependence of the transition functions on coordinates within each of

these regions. Later we will use the fact that these regions are actually connected

by “global” trajectories where one quasihole is taken around one of the holes of the

torus (Fig. 2.5). For now we will not allow these global moves. Within each of these

regions, we now show that the local dependence of the u functions on coordinates is

as follows,

uσcc′(h1, h2) = ξσcc′ e
i/2(h1xh1y+h2xh2y) ≡ ξσcc′u(h1, h2) , (2.34)

where the parameters ξσcc′ are complex constants and u(h1, h2) is the phase function

ei/2(h1xh1y+h2xh2y).

The h1, h2 dependence of uσcc′ can be locally determined from the Berry connec-
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Figure 2.4: The two possible configurations of two quasiholes, which are distinguished
by the value of σ = sgn(h1x − h2x)sgn(h1y − h2y). Left: σ = +. Right: σ = −.

tions. Using the coherent state expressions in Eqs. (2.26) and (2.31) on the full-sized

torus (κ, κ� 1), the Berry connections can be calculated to be

i 〈ψc(h1, h2)|∇h1,2 |ψc(h1, h2)〉 = −1

2
(0, h1x,2x)

i〈ψc(h1, h2)|∇h1,2 |ψc(h1, h2)〉 =
1

2
(h1y,2y, 0).

(2.35)

An essential ingredient in the above is the fact that the zero-mode basis states we

have defined are orthonormal, as explained at the end of Sec. 2.3. This is where the

assumption of adiabatic continuity is crucial in our approach. Obtaining Eq. (2.35) is

then straightforward, since in the limit κ, κ� 1, the remaining sums can be replaced

by Gaussian integrals.

Let us consider an adiabatic process where one quasihole is fixed at h1 and the

other is dragged from h2 to h′2 (which are both in the same region σ). This process

is described by a unitary operator, which acts separately on each term on both sides

48



2.7 Symmetries and further simplifications

of Eq. (2.33), yielding

exp

(
i

∫ h′2

h2

dh ·
[
−1

2
(0, hx)

])
|ψc(h1, h

′
2)〉

=
∑
c′

uσcc′(h1, h2) exp

(
i

∫ h′2

h2

dh ·
[

1

2
(hy, 0)

])
|ψc′(h1, h′2)〉 .

(2.36)

The above equation may be compared to Eq. (2.33) evaluated at (h1, h
′
2) instead of

(h1, h2). This yields a relationship between the u functions at these two locations,

uσcc′(h1, h
′
2) = uσcc′(h1, h2) exp

(
i

∫ h′2

h2

dh ·
[

1

2
∇hhxhy

])

= uσcc′(h1, h2) exp

(
1

2
i(h′2xh

′
2y − h2xh2y)

) (2.37)

where we used the fact that (hy, 0) = − (0, hx)+∇hhxhy. In order to satisfy Eq. (2.37),

the dependence of u on h2 must be proportional to ei/2h2xh2y . Using a similar argument

in which the quasihole at h2 remains fixed while the quasihole at h1 is moved, we find

that the dependence of u on h1 is proportional to ei/2h1xh1y . Therefore the general

form of the u functions is given by Eq. (2.34).

2.7 Symmetries and further simplifications

With the above considerations, the transition functions uσcc′ have been reduced to

parameters ξσcc′ , of which there are eight at ν = 1/2. We will now establish further

relations between these parameters using symmetries and adiabatic transport along

the “global” trajectories mentioned above.
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2.7 Symmetries and further simplifications

First, we derive relations arising from properties under magnetic translations. The

magnetic many-body translation operators Tx, Ty introduced above have the following

effect on the dressed domain-wall states:

Tx |a1, a2, c〉 = |a1 + 1, a2 + 1, 1− c〉

Tx|a1, a2, c〉 = e2πi/L
∑
j nj |a1, a2, c〉

(2.38)

Ty |a1, a2, c〉 = e−2πi/L
∑
j nj |a1, a2, c〉

Ty|a1, a2, c〉 = |a1 + 1, a2 + 1, 1− c〉
(2.39)

where c = 0, 1, and nj is the orbital index of the orbital occupied by the j-th particle

in the thin torus pattern associated with the state. For the bare product states

associated with these patterns, the above identities are direct consequences of Eqs.

(2.6) for the single particle translation operators. However, the properties under

magnetic translations remain the same for the dressed states, as explained in Sec.

2.3. Note that the basis states |a1, a2, c〉 are eigenstates of Ty whereas Tx changes the

topological sector label, and vice versa for the basis states |a1, a2, c〉.

Equations (2.38) and (2.39) allow us to work out the properties of the coherent

states under magnetic translations. The fact that both sides of Eq. (2.33) must

transform the same way under these translations poses severe constraints on the

coefficients ξσcc′ . Observing that for given domain-wall positions,

∑
j

nj =
1

2
L(

1

2
L+ c)− 1

2
(a1 + a2), (2.40)
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2.7 Symmetries and further simplifications

it is a simple thing to verify the following properties of the coherent states under

magnetic translations:

Tx |ψc(h1, h2)〉 = e−iκ/2(h1y+h2y)+iπ |ψ1−c(h1 + κ, h2 + κ)〉

Tx|ψc(h1, h2)〉 = eiπλ+iπc|ψc(h1 + κ, h2 + κ)〉
(2.41)

Ty |ψc(h1, h2)〉 = eiπλ+iπc |ψc(h1 + iκ, h2 + iκ)〉

Ty|ψc(h1, h2)〉 = eiκ/2(h1x+h2x)+iπ|ψ1−c(h1 + iκ, h2 + iκ)〉
(2.42)

where we define λ = νL (which in the present case, evaluates to the integer L/2 =

N + 1).

We can use these translational properties to constrain the eight ξσcc′s. We recast

Eq. (2.33) in matrix form,

 |ψ0(h1, h2)〉

|ψ1(h1, h2)〉

 = u(h1, h2)Ξσ

 |ψ0(h1, h2)〉

|ψ1(h1, h2)〉

 , (2.43)

where we have used Eq. (2.34), and Ξσ is the matrix with elements ξσcc′ . Let us apply

Ty to Eq. (2.43).

eiπλ σz

 |ψ0(h′1, h
′
2)〉

|ψ1(h′1, h
′
2)〉

 = u(h′1, h
′
2)Ξσ(eiπ)σx

 |ψ0(h′1, h
′
2)〉

|ψ1(h′1, h
′
2)〉

 (2.44)

The positions h′j = hj + iκ for j = 1, 2, and the u(h1, h2) function has been shifted by

absorbing the spatially dependent phase in Eq. (2.42). If we compare Eq. (2.44) to
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2.7 Symmetries and further simplifications

Eq. (2.43) evaluated at the shifted positions (h′1, h
′
2), we find that the two equations

are consistent, provided that the Ξσ matrix satisfies the following constraint:

Ξσ = eiπλ+iπ σzΞ
σ σx. (2.45)

We can derive another constraint using the same logic after translating Eq. (2.43)

with Tx:

Ξσ = eiπλ+iπ σxΞ
σ σz. (2.46)

These two sets of equations constrain the Ξσ matrix to be of the following form,

Ξσ =
ξσ√

2

 1 eiπλ+iπ

eiπλ+iπ −1

 , (2.47)

where ξσ is a pure phase, and the overall normalization factor 1/
√

2 has been deter-

mined from the requirement that Ξσ is a unitary matrix. Thus, after using transla-

tions we have only two unknowns remaining: The overall phases ξ+ and ξ−. Only

the relative phase between the two will have physical significance.

In order to fix this relative phase, we will now drag one of the quasiholes in a two

quasihole state along a “global path”, i.e., a path where the quasihole disappears on

one end of the standard frame (see Sec. 2 and Fig. 2.2) and reappears at the other.

The merit of such a path is that it connects the σ = + and σ = − configuration while

maintaining both conditions |h1x − h2x| � 1, |h1y − h2y| � 1. Let us consider the
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2.7 Symmetries and further simplifications

Figure 2.5: Different configurations σ can be connected by dragging one quasihole
along a global path. Initially, the two quasiholes at h1 and h2 are in configuration
σ = +. Keeping the quasihole at h1 fixed, the quasihole at h2 can be moved along
one of two paths: path a, in which the quasihole at h2 moves around the torus in the
x direction to h2a, or path b, in which the quasihole at h2 moves around the torus in
the y direction to h2b. Both paths can be used to change the configuration σ while
keeping quasiholes well separated in both x and y. At the same time, the topological
sector also changes.

coherent state |ψc(h1, h2)〉, Eq. (2.26), with two quasiholes in the topological sector

c in the σ = + configuration. We will drag the second quasihole along path “a”

as shown in Fig. 2.5. We will do so by continuously changing the position of this

quasihole from a value hi2 with hi2x well within the boundaries 0 and Lx to a value

hf2 with Lx < hf2x < h1x + Lx. The default frame introduced in Sec. 2.2 is not suited

to describe this process continuously. We thus choose an f frame as described in

Secs. 2.2 and 2.4, and consider the state |ψc(h1, h2)〉f , i.e., the coherent state (2.26)

with the sum restricted to the f frame. For this we choose a parameter f such that

κf < h1x < hi2x < hf2x < κ(f+L) = κf+Lx. Note that as long as the x position h2x of

the second quasihole is well between h1x and Lx, one has |ψc(h1, h2)〉f
.
= |ψc(h1, h2)〉,

where
.
= denotes equality up to exponentially small terms. In this case the weight
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2.7 Symmetries and further simplifications

of both Gaussians in the coherent state is well contained within both frames, and

so |ψc(h1, h2)〉f and |ψc(h1, h2)〉 may be used interchangeably. However, as soon as

h2x approaches Lx, we must work with |ψc(h1, h2)〉f . In this regime, we will see

that the coherent state |ψc(h1, h2)〉f is identical up to a phase to the (default frame)

state |ψc′(h2 − Lx, h1)〉. That is, the second quasihole reappears on the left end of

the standard frame, thus becoming the new ‘first’ quasihole (Figs. 2.2 and 2.5).

However, in the default frame the final state will be in a different topological sector

with c′ = 1− c. At the same time, the quasiholes are now in the σ = − configuration.

This allows us to obtain one more relation between the transition functions uσcc′ and

their defining parameters ξσcc′ .

We first establish the precise relationship between |ψc(h1, h2)〉f and |ψc′(h2 −

Lx, h1)〉, where h2x exceeds Lx by more than a magnetic length. One finds:

|ψc(h1, h2)〉f = ei/2h2yLx+iπη+iπ|ψ1−c(h2 − Lx, h1)〉f−L

.
= ei/2h2yLx+iπη+iπ|ψ1−c(h2 − Lx, h1)〉 (2.48)

where in the first identity we have passed to the f − L frame by straightforwardly

plugging the identification (2.16) into the coherent state (2.26). The second identity

follows from the fact that for h2x well exceeding Lx, the states |ψc′(h2 − Lx, h1)〉f−L

and |ψc′(h2−Lx, h1)〉 are again identical up to exponentially small terms, as discussed

above.

Next we look at the comparatively trivial issue of how the dual state |ψc′(h1, h2)〉
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2.7 Symmetries and further simplifications

transforms along the same path, where h2 is again taken from hi2 to hf2 . Since the

motion is chiefly along the x direction, there is no need for a change of the frame for

the |a1, a2, c′〉 basis states. By inspection of Eq. (2.31), it is easy to see that we have

|ψc′(h1, h2)〉 = e−iπ(1/2+c′)|ψc′(h1, h2 − Lx)〉 . (2.49)

While the states |ψc′(h1, h2)〉 are not single valued under a shift of quasihole positions

by Lx, path a in Fig. 2.5 can be described continuously without leaving the default

frame. Since we have established that both |ψc(h1, h2)〉f and |ψc′(h1, h2)〉 describe

states with quasiholes in the same position for h1 fixed and h2 along the path a in

Fig. 2.5, a relation of the form

|ψc(h1, h2)〉f =
∑
c′

u+
cc′(h1, h2)|ψc′(h1, h2)〉 . (2.50)

must again hold for (some neighborhood of) this path. It is clear that the coeffi-

cient functions u+
cc′(h1, h2) appearing in there must be the analytic continuation (for

h2x > Lx) of those already defined, since 1) the arguments leading to the functional

dependence Eq. (2.34) can be extended to the regime h2x > Lx and 2) for h2x < Lx

the functions in Eq. (2.50) must be identical to those in Eq. (2.33). At the same time,

for h2x > Lx we have by definition

|ψc(h2 − Lx, h1)〉 =
∑
c′

u−cc′(h1, h2)|ψc′(h1, h2 − Lx)〉 . (2.51)
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2.7 Symmetries and further simplifications

After plugging Eqs. (2.48) and (2.49) into Eq. (2.50), and further Eqs. (2.34) and

(2.47) into both Eqs. (2.50) and (2.51), comparing coefficients leads to the following

additional relation between the ξ parameters:

ξ− = ξ+ e−iπ/2 (2.52)

All ξ parameters are thus defined up to some overall phase ξ. We have

Ξ+ =
ξ√
2

 1 eiπλ+iπ

eiπλ+iπ −1



Ξ− =
ξ√
2
e−iπ/2

 1 eiπλ+iπ

eiπλ+iπ −1

 . (2.53)

We note that processes similar to our moves along global paths play a fundamental

role in all studies of anyonic statistics on the torus (see, e.g., Ref. [68]). Unlike in the

present case, it is usually assumed from the beginning that these anyons are entities

carrying a representation of the braid group. Typically, complete monodromies are

considered, where the particle moves back into its original position after following a

path associated with one of the generators of the fundamental group of the torus.

In the present case, it is of some importance that these global moves end before the

quasihole crosses over back into a configuration labeled by the initial σ value, thus

changing the value of σ.
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2.8 Braiding

Figure 2.6: Exchange path for two quasiholes. First, the quasihole at h2 is dragged
along path C1 to ha. There the coherent state representation is changed from the
original basis to the dual basis using Eq. (2.33). The quasihole at ha is then dragged
along C2 to hb, and the representation is changed back to the original basis. The
quasihole at hb is moved along C3 to hc. At this point both quasiholes are moved to
their final positions: the quasihole at h1 goes to h2 and the quasihole at hc goes to
h1.

2.8 Braiding

With the transition functions Eq. (2.33) now fully defined via Eqs. (2.34) and (2.53),

the result of adiabatic transport along an exchange path as shown in Fig. 2.6 can

be calculated without difficulty. We assume that in the beginning, the quasiholes

are arranged at positions h1 and h2 as shown, with h2x − h1x � 1. The quasihole

initially at h2 is then dragged into the position hc directly opposite the other quasihole,

via path segments C1, C2, C3 which are separated by points ha, hb. Finally, the

quasihole at h1 is moved into position h2, and the other quasihole is moved from

hc into h1, completing the exchange. When the one quasihole reaches the point ha,

we pass from the coherent state expression (2.26) to the dual expression (2.31) via
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2.8 Braiding

the transition functions, and use the dual coherent state expression to calculate the

adiabatic transport along the path segment C2. At the point hb, the state is again

re-expressed in terms of the original coherent state expression (2.26), which may be

used to describe the completion of the exchange.

Let the initial state be |ψc(h1, h2)〉, the state that lies in the topological sector c

as defined by the Ly → 0 limit. Adiabatic transport along the path C1 will change

the coherent state according to

|ψc(h1, h2)〉 → eiγ1 |ψc(h1, ha)〉 (2.54)

where, using Eq. (2.35),

γ1 = i

∫
C1
dh′2 · 〈ψc(h1, h

′
2)|∇h′2

|ψc(h1, h
′
2)〉

=

∫
C1
dh ·

[
−1

2
(0, hx)

]
. (2.55)

At ha we reexpress the state in the dual basis, using Eqs. (2.33) and (2.34):

eiγ1 |ψc(h1, ha)〉 = eiγ1u(h1, ha)
∑
c′

ξ+
cc′ |ψc′(h1, ha)〉 . (2.56)

We proceed by moving the same quasihole along the path segment C2. This process

is easily described in terms of the dual basis states |ψc′(h1, h′2)〉, which appear on the

right-hand side of Eq. (2.56). In this basis the adiabatic process is simply described
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2.8 Braiding

by the acquisition of a phase eiγ2 , where, using again Eq. (2.35),

γ2 = i

∫
C2
dh′2 · 〈ψc′(h1, h′2)|∇h′2

|ψc′(h1, h′2)〉

=

∫
C2
dh ·

[
1

2
(hy, 0)

]
, (2.57)

which does not depend on the “dual” sector label c′. At the endpoint hb of C2 we

have thus transitioned into the state

eiγ1+iγ2u(h1, ha)
∑
c′

ξ+
cc′ |ψc′(h1, hb)〉 . (2.58)

The key observation is that this state is still in the topological sector c as defined in

the original coherent state basis, i.e., is of the form |ψc(hb, h1)〉 times a phase. To see

this, note that the quasiholes are now in the σ = −1 configuration, and we have from

Eq. (2.53)

ξ+
cc′ = eiπ/2ξ−cc′ . (2.59)

The state (2.58) can thus be rewritten as

eiπ/2eiγ1+iγ2u(h1, ha)u(hb, h1)−1
∑
c′

u(hb, h1)ξ−cc′ |ψc′(h1, hb)〉

= eiπ/2eiγ1+iγ2u(h1, ha)u(hb, h1)−1|ψc(hb, h1)〉

(2.60)

The rest of the exchange path is trivially described using the coherent states |ψc(h′1, h′2)〉.

The phase γ3 associated with the path segment C3 is again given by an integral over
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2.8 Braiding

a Berry connection of the form Eq. (2.55). The final move along the “baseline” C4

is carried out by moving both quasiholes, one from hc into h1, and the other from

h1 into h2. The components of the Berry connection associated with each complex

coordinate are, however, both of the same form, Eq. (2.35). For the remaining phases

we thus get

γ3,4 =

∫
C3+C4

dh ·
[
−1

2
(0, hx)

]
. (2.61)

The entire exchange process thus results in the following transformation of the state:

|ψc(h1, h2)〉 → eiπ/2ei
∑4
i=1 γiu(h1, ha)u(hb, h1)−1 |ψc(h1, h2)〉 (2.62)

As apparent from Eq. (2.34), the u factors in the above equation equal i(haxhay −

hbxhby)/2 = −i/2
∫
C2 dh · (hy, hx). When combined with the expression for γ2, all

contour integrals can be combined into a single integral equal to the Aharonov-Bohm

phase ΦAB =
∫
C dh · [−1/2(0, hx)], corresponding to a charge −1/2 particle moving in

a unit magnetic field. We thus recover the well-known result [22] that the exchange

of two Laughlin quasiparticles results in the acquisition of a phase, which is equal to

the sum of the Aharonov-Bohm phase and a purely topological, statistical part:

|ψc(h1, h2)〉 → eiΦABeiπ/2 |ψc(h1, h2)〉 . (2.63)

We emphasize once more that we did not assume a priori that any aspect of this

phase is topological. Rather, this result followed naturally from the coherent state
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ansatz Eqs. (2.26), (2.31), and the constraints we have derived. Note that one can

read the statistical phase of π/2 directly off Eq. (2.59), which relates the transition

functions for different quasihole configurations. While we have focused on the simplest

case of ν = 1/2 for clarity, the case ν = 1/m can be treated by the same method

through straightforward generalization3 [40].

3Some care must be given to fermion negative signs at odd denominator filling factors, in equations
such as (2.38), (2.39), and (2.16). See Ref. [40].
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Chapter 3

The Moore-Read State

3.1 Generalized coherent state ansatz

An appealing aspect of the method developed above, thus far for Laughlin states, is

that the Berry connections Eq. (2.35) are trivial, i.e., essentially contributing only to

the AB-phase. In contrast, all aspects relating to the statistics are manifest in the

transition functions (cf. Eq. (2.59)), which need to be evaluated only at two isolated

points. This fact might suggest that the same method may be amenable to discuss

non-Abelian states in relatively simple terms as well, if suitably generalized. That

this is so has been shown in Ref. [42] for the special case of the Moore-Read (Pfaffian)

state. In the following, we will review this method, emphasizing aspects that need

nontrivial generalization when compared to the Laughlin case. We will later show

that the same method may then, with little or no further modification, be applied to

This chapter originally appeared in Ref. [7].
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3.1 Generalized coherent state ansatz

more complicated non-Abelian states also.

The ν = 1 (bosonic) Moore-Read, in planar geometry, is the state described by

the following wave function:

ψPf(z1, . . . , zN) = Pfaff

[
1

zi − zj

]∏
i<j

(zi − zj)2e−
∑
i|zi|

2/4 (3.1)

The torus degeneracy of this state is 3, and torus wave functions for the three ground

states have been worked out in Ref. [74]. A program similar to the one described for

Laughlin states can now be implemented. A study [42] of the special Hamiltonian

[74] associated with the Pfaffian state has demonstrated that again, the three ground

states are adiabatically connected to a thin torus limit, in which the ground-state

patterns 111111..., 020202..., and 202020... emerge.

The elementary quasihole-type excitations, which are again zero modes of the

special Hamiltonian, turn out to evolve into charge 1/2 domain walls between 1111 . . .

and 2020 . . . ground-state patterns. Periodic boundary conditions on the torus then

require such domain walls to occur in even numbers. This observation is the thin

torus statement of the well-known fact that the elementary Pfaffian quasiholes may

only be created in pairs [23]. For the minimum number of two quasiholes, one thus

has four topological sectors corresponding to the sequences of thin torus ground-state

patterns shown in Table 3.1.

As in the Laughlin case, we denote these two–domain-wall states |a1, a2, c), and

their adiabatically continued counterparts by |a1, a2, c〉. We assume that a coherent
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3.1 Generalized coherent state ansatz

ansatz of a form similar to Eq. (2.26) and its dual version Eq. (2.31) also describe

localized quasiholes in this non-Abelian state. In particular, we assume a Gaussian

form for the coherent state form factors φ(h, x) in the expression

|ψc(h1, h2)〉 = N
∑
a1<a2

φ(h1, κa1)φ(h2, κa2) |a1, a2, c〉 (3.2)

for quasiholes well separated along the x axis. A Gaussian form for φ(h, x) is essen-

tially dictated by the fact that x and y are conjugate variables, as argued in Sec.

2.4. Unlike in the case of Laughlin quasiholes, however, we cannot extract all the

parameters entering this expression from the analytic wave functions. Instead, we

will have to rely more on symmetries and other consistency requirements to do this.

We will thus initially assume φ(h, x) to be of the following generic form:

φ(h, x) = exp
[
iβ(hy + δ/κ)x− γ(hx − x)2

]
. (3.3)

Unlike in the case of the Laughlin state, we cannot derive Eq. (3.3) analytically from

the Pfaffian 2-hole wave functions [23, 74]. We observe, however, that these wave

functions are holomorphic in the quasihole positions h1, h2. We thus require the

same for the coherent state (3.2), except for an overall normalization factor that

depends on the quasihole positions only (and in particular does not depend on the

parameters a1, a2 in Eq. (3.2)). Equation (3.3) is certainly the simplest expression

that satisfies all these requirements, and is consistent with the fact that x and y
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3.1 Generalized coherent state ansatz

are conjugate variables, the latter implying that y position enters as x momentum.

The discussion of Sec. 2.4 then makes it natural to expect that, as a function of h,

Eq. (3.3) should have the form of a LLL orbital for a charge 1/2 degree of freedom

in a unit magnetic field (for some choice of vector potential, and where boundary

conditions in hy may be twisted). This implies β = 1/2, γ = 1/4, as for the ν = 1/2

Laughlin state. We will show shortly that β = 1/2 also follows more rigorously from

duality requirements. The parameter γ merely controls the shape of the quasiholes.

Its precise value will not be needed in the following.

Naively, it appears that the parameter δ can be formally absorbed into a shift of

the coordinate origin. This is, however, not quite right. We will again require that

there is a formally equivalent way to write two-hole states in the dual basis, defined

as before via adiabatic evolution of domain-wall states:

|ψc(hi, hj)〉 = N ′
∑
a1<a2

φ(hi, κa1)φ(hj, κa2)|a1, a2, c〉 (3.4)

where

φ(h, y) = φ(−ih, y)|κ→κ

= (const) exp
[
−iβ(hx + δ/κ)y − γ(hy − y)2

]
.

(3.5)

It is clear that the formal equivalence between Eq. (3.2) and Eq. (3.4) does not survive

arbitrary shifts of the origin for the quasihole coordinates h1, h2. It is also clear that

the coherent state expressions (3.2)–(3.5) assume definite relations between the orbital
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3.1 Generalized coherent state ansatz

indices in the LLL bases ϕn and ϕ̄n, respectively, which define the properties of these

orbitals under magnetic translations, Eq. (2.6), and determine the positions of these

orbitals in space1. The choice of coordinate system, and its relation to the orbital

indices, is also encoded in the definition of the symmetry operators I, τx, τy, Eqs.

(2.7)-(2.9), together with their geometric interpretation given above. We may use this

to severely constrain the possible values of δ. Indeed, these symmetries fix δ to be

a multiple of π. Since the same conclusion will also emerge from duality arguments

below, we will not pause here to show this in detail2. The final result for the braid

matrix will depend on δ only via e2iδ, which is fully determined and equals unity.

There is one more parameter entering the generalized coherent state ansatz that

is not yet explicit in Eqs. (3.2) and (3.4). This parameter enters when generalizing

Eq. (2.27), which fixes the relation between the domain-wall positions a1,2 entering

the coherent states and an adjacent LLL orbital with index, e.g., 2n1,2. In the case

of Laughlin states, a single domain wall has inversion symmetry, and this symme-

try clearly demands that the position a of this domain wall is defined as shown in

Eq. (2.12), i.e., as the position halfway in between the adjacent ground-state patterns.

1Note that a coordinate shift in particular changes both the magnetic vector potential and the
quasiperiodic boundary condition in x on wave functions. The constant ∆ in A = (0, x + ∆)
determines the locations of the LLL orbitals ϕn. An additional phase twist in the magnetic boundary
condition in x does the same for the orbitals ϕn. In this sense, fixing ∆ and the magnetic boundary
conditions leads to a preferred set of coordinate systems on the torus, which up to scaling (κ→ κ̄)
is symmetric with respect to the LLL bases φn and φ̄n. Here, the index n is always defined via
properties under magnetic translations, Eq. (2.6).

2One may consider a generalized version of the coherent state (3.2), with δ replaced by δ1 in
the first φ-factor, and by δ2 in the second. Consistent behavior of this expression under τy requires
δ1 = δ2 mod π/β. Consistent behavior under I requires δ1 = −δ2 mod π/β. This yields that
either δ1,2 = 0 mod π/β, or δ1,2 = π/(2β) mod π/β. We can then take δ1 = δ2 ≡ δ without loss
of generality, since shifting δi by π/β only results in an overall change of phase. Cf. Sec. 3.2, where
furthermore β = 1/2 is derived.
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3.1 Generalized coherent state ansatz

More precisely, it must be the distance hx− a between this domain-wall position and

the x position of a quasihole that suppresses the amplitude in the coherent states

(2.20) or (2.26). There is no similar symmetry argument for the Pfaffian domain-wall

patterns. Here, quasiholes must always come in pairs, as mentioned above. Consider

a 2-hole coherent state, Eq. (3.2), in the topological sector c = 1, Table 3.1. It is

clear that the domain-wall position a1 entering the coherent state must be of the form

a1 = 2n1 − s, where 2n1 is the position of the first 0 of the string, and s is a shift

parameter that defines the position of the domain wall relative to this leading 0. For

suitably chosen quasihole positions, an inversion symmetry leaving the coherent state

invariant will map one quasihole onto the other. This does not fix the parameter

s, but merely implies that the second domain wall must be assigned the position

a2 = 2n2 + s, where 2n2 is the position of the last 0. In the topological sector c, we

can thus write

ai = 2ni + fi(c) , (3.6)

where f1(1) = −s, f2(1) = +s as discussed above, and the values for fi(c) for c > 1

can be related to those for c = 1 by magnetic translations in x as shown in Table 3.1.

Here, we have defined η = 0 for even particle number N , η = 1 for N odd. Note that

the even- or oddness of the particle number N is just determined by the length of the

1111 . . . string in the patterns of Table 3.1.

Equations (3.2)-(3.5), together with the shifts in the domain-wall positions given

by Eq. (3.6) and Table 3.1, define the generalized coherent state ansatz. We will now
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3.2 Translational symmetry

c Thin torus pattern f1(c) f2(c)
1 11111110202020201111111 −s s
2 11111111020202011111111 −s+ 1 s+ 1
3 02020201111111102020202 s− 1 −s+ η
4 20202020111111110202020 s −s+ η + 1

Table 3.1: Thin torus patterns for a two–domain-wall Moore-Read state, and the
offset functions of those domain walls. The latter are defined in terms of the shift
parameter s, and relate domain-wall positions ai to orbital positions 2ni (underlined)
via ai = 2ni + fi(c). Some offset functions depend on the particle number parity η,
with η = 0 (η = 1) when N is even (odd).

show that this ansatz can be used to make precise statements about the statistics of

the Pfaffian, and other non-Abelian states.

3.2 Constraints from translational symmetry

With the generalized coherent state ansatz in place, we continue by carrying out steps

similar to those described in Secs. 2.6 and 2.7 for Laughlin states. Equation (2.33),

the general relation between the coherent state in the two mutually dual bases, can be

carried over unchanged. Again, the transition matrices appearing in these relations

are strongly constrained by translational symmetry. To utilize this, we first state

some of the analogues of Eqs. (2.41), (2.42):

Tx |ψc(h1, h2)〉 = e−iβκ(h1y+h2y)−2iβδ
∣∣ψT (c)(h1 + κ, h2 + κ)

〉
(3.7a)

Ty|ψc(h1, h2)〉 = eiβκ(h1x+h2x)+2iβδ
∣∣ψT (c)(h1 + iκ, h2 + iκ)

〉
. (3.7b)

These properties again follow straightforwardly from the associated transformation
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3.2 Translational symmetry

c T (c) F (c)
1 2 3 + η
2 1 4− η
3 4 2
4 3 1

Table 3.2: Transformation properties of the states shown in Table 3.1. Here, it is
assumed that the sector c refers to the original zero-mode basis, defined through the
Ly → 0 limit. Translating the state with Tx would transition the state into sector
T (c). After dragging a quasihole along the path a in Fig. 2.5 the state would transition
from sector c into sector F (c), which is dependent on the particle number parity η.

properties of the dressed domain-wall states, Eqs. (2.38) and (2.39). However, the

relation of the shifted sector T (c) to the original sector c is different in the present

case. These relations can easily be read off the patterns in Table 3.1 and are sum-

marized in Table 3.2. The remaining two transformation laws depend more critically

on the value of β, and allow us to determine its value. We focus on the action of

Ty on |ψc(h1, h2)〉 first. Since by duality, |ψc(h1, h2)〉 is a superposition of the states

|ψc′(h1, h2)〉, Eq. (3.7b) implies that

Ty |ψc(h1, h2)〉 = |ψc(h1 + iκ, h2 + iκ)〉 × phase factor . (3.8)

Here, we have also used that Ty does not change the topological sector c when acting

on |a1, a2, c〉, Eq. (2.39). The left-hand side of the last equation is easily evaluated

using Eq. (2.39) inside the coherent state expression. For c = 1 domain-wall states,

e.g., one finds
∑
ni = L2/2 − (a1 + a2)/2 for the sum in Eq. (2.39). With this one
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3.2 Translational symmetry

finds that Eq. (3.8) indeed holds, provided that

β = 1/2 , (3.9)

as anticipated earlier in the preceding section. With this, one then finds

Ty|ψc(h1, h2)〉 = eiπN |ψc(h1 + iκ, h2 + iκ)〉 ×


1 for c = 1, 2

−1 for c = 3, 4

, (3.10a)

and similarly

Tx|ψc(h1, h2)〉 = eiπN |ψc(h1 + iκ, h2 + iκ)〉

×


1 for c = 1, 2

−1 for c = 3, 4

.

(3.10b)

The relations worked out above impose strong constraints on the transition matrices

ucc′(h1, h2) defined in Eq. (2.33). We apply Ty to Eq. (2.33) using Eqs. (3.7b) (with

β = 1/2) and (3.10a). On the resulting equation, we use Eq. (2.33) again, obtaining

a relation between the coherent states |ψc(h1, h2)〉:

χ(c)eiπN
∑
c′

ucc′(h1 + iκ, h2 + iκ)|ψc′(h1 + iκ, h2 + iκ)〉 =

∑
c′

ucc′(h1, h2)eiκ(h1x+h2x)/2+iδ
∣∣ψT (c′)(h1 + iκ, h2 + iκ)

〉
,

(3.11)
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where χ(c) = 1 (χ(c) = −1) for c = 1, 2 (c = 3, 4). For the local dependence of

functions ucc′(h1, h2) on coordinates, Eq. (2.34) can again be derived, using the same

method as in Sec. 2.6, assuming again |h1x−h2y| � 1, |h1y−h2y| � 1. When plugged

into Eq. (3.11), the dependence on quasihole coordinates drops out, except for the

dependence on the quasihole configurations shown in Fig. 2.4, which is again denoted

by σ = ±1. This gives the following equation for the coefficients ξσcc′ , Eq. (2.34),

χ(c)eiπN−iδξσcc′ =
∑
c′′

δT (c′),c′′ξ
σ
cc′′ , (3.12)

where the linear independence of the kets in Eq. (3.11) was used. For fixed c, σ,

this can be looked at as an eigenvalue problem for the quantities ξσcc′ , c
′ = 1 . . . 4.

Obviously, solutions only exist if ±eiπN−iδ is an eigenvalue of the matrix δT (c′),c′′ on

the right-hand side. This is only the case for

exp(2iδ) = 1 . (3.13)

The coherent states are invariant, up to an unimportant phase, under δ → δ + 2π.

Hence Eq. (3.13) narrows possible values of δ down to two inequivalent possibilities.

Our result for the statistics, however, will be the same for δ = 0 and δ = π. We will

thus keep δ as a parameter, but use Eq. (3.13) wherever convenient.

Since the eigenvalues of δT (c′),c′′ are doubly degenerate, Eq. (3.11) does not com-

pletely determine the coefficients ξσcc′ . To this end, we must also consider the equation
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that is obtained by acting with Tx on Eq. (2.33). In an analogous manner, this gives

rise to the equation ∑
c′′

δT (c),c′′ξ
σ
c′′c′ = χ(c′)eiπN−iδξσcc′ , (3.14)

which differs from Eq. (3.12) only by a replacement of the ξ matrix by its transpose.

To explicitly solve the constraints (3.12), (3.14), the following transformation is

useful. We define new topological sector labels (µν), µ, ν = ±1 via the following

superposition of states carrying c labels:

|ψµν〉 =
1√
2

[
|ψc=2−ν〉+ µeiπη−iδ |ψc=3−ν〉

]
|ψµν〉 =

1√
2

[
|ψc=2−µ〉+ νeiπη−iδ|ψc=3−µ〉

]
,

(3.15)

where the dependence on h1 and h2 has been suppressed. The significance of the

states |ψµν〉 is that under translations in both Tx and Ty, they are now diagonal

in the µν label. Transition matrices ũµν,µ′ν′ and coefficients ξ̃σµν,µ′ν′ can be defined

analogous to Eqs. (2.33) and (2.34), and are related to the quantities ucc′ and ξσcc′ via

the transformation Eq. (3.15). In terms of the matrices ξ̃
σ
, the constraints (3.12),

(3.14) read

ξ̃
σ

= D ξ̃ξξ
σ
D = D′ ξ̃ξξ

σ
D′ , (3.16)

where D = diag(1, 1,−1,−1) and D′ = diag(1,−1, 1,−1) are diagonal matrices. It is

clear from Eq. (3.16) that only the diagonal elements of ξ̃
σ

are unconstrained, whereas

the remaining ones must vanish. The transition matrix is thus diagonal in the µν
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3.2 Translational symmetry

basis. We write:

ξ̃σµν,µ′ν′ = δµ,µ′δν,ν′ ξ
σ
µν , (3.17)

|ψµν(h1, h2)〉 = uµν(h1, h2)|ψµν(h1, h2)〉

= ξσµνu(h1, h2)|ψµν(h1, h2)〉 ,
(3.18)

where u(h1, h2) is as defined below Eq. (2.34), and no summation over indices is

implied. We drop the tilde from now on, since there should be no confusion between

the coefficient ξσµν above and the coefficient ξσcc′ defined earlier. (Note again that µν

should be viewed as the single index of a diagonal matrix element). By unitarity of

the transition matrixes, the ξσµν ’s are pure phases.

The subscript µν carries direct information about the properties of the states

|ψµν(h1, h2)〉, |ψµν(h1, h2)〉 under translation. From the definitions (3.15), it is easily

verified directly that

〈ψµν(h1, h2)|Ty |ψµν(h1, h2)〉 ≈ ν e−iκ/2(h1y+h2y)+iπη ≈ 〈ψµν(h1, h2)|Ty|ψµν(h1, h2)〉 ,

〈ψµν(h1, h2)|Tx |ψµν(h1, h2)〉 ≈ µ eiκ/2(h1x+h2x)+iπη ≈ 〈ψµν(h1, h2)|Tx|ψµν(h1, h2)〉 .

(3.19)

Since Tx, Ty are unitary operators, an expectation value of almost unit modulus

implies that the states |ψµν(h1, h2)〉, |ψµν(h1, h2)〉 are, to good approximation, eigen-

states of these operators, with the approximate eigenvalue given by the expectation

value. Even though the |ψµν(h1, h2)〉, |ψµν(h1, h2)〉 describe states of localized quasi-

holes, this is possible since Tx and Ty translate by distances κ and κ, respectively,
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which are small compared to the size of the quasiholes (on the order of a magnetic

length). To the extent that we can regard these states as Tx, Ty eigenstates, the

different associated eigenvalues already imply that the transition functions must be

diagonal in the µν basis, Eq. (3.18). This argument has been used in Ref. [42].

Naively, however, in treating the states |ψµν(h1, h2)〉, |ψµν(h1, h2)〉 as Tx, Ty eigen-

states one neglects terms that scale as 1/
√
L. The present treatment shows that no

such approximation is necessary in deriving Eq. (3.18).

3.3 Constraints from global paths

The transition functions are thus far described by eight unknown phase parameters

ξσµν , Eq. (3.18). Each of these parameters describes the relation between the pair of

coherent states |ψµν(h1, h2)〉 and |ψµν(h1, h2)〉 within various patches of the two-hole

configuration space. As already discussed in Sec. 2.7, these patches may be connected

through paths where one quasihole is dragged across a frame boundary, Fig. 2.5. This

then leads to relations between the ξ parameters on different patches. In the case

of the Laughlin state, all patches have been so connected, and there was only one

independent parameter. It turns out that in the present case, the configuration space

comes in two disjoint segments, which cannot be linked through paths as shown in

Fig. 2.5, or any paths that maintain the conditions that the two quasiholes remain

well separated in both x and y.

Equation (2.48) is straightforwardly generalized to the present case, following the
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same reasoning:

|ψc(h1, h2)〉f
.
= eih2yLx/2+iLδ/2 |ψF (c)(h2 − Lx, h1)〉 . (3.20)

Here again, f denotes a frame that will allow us to extend h2x beyond Lx, which

has been assumed in the above equation. Equation (2.48) is just a special case of

Eq. (3.20) for L = 2N + 2, δ = π, as befits the ν = 1/2 Laughlin 2-hole state. For

the ν = 1 Moore-Read state, however, one has L = N + 1 in the presence of two

quasiholes. Also, the function F (c) assigns to c the new sector that one enters when

the second quasihole is dragged across the frame boundary along the path shown in

Fig. 2.5. The value of F (c) can easily be read off the patterns that define the 2-hole

sectors in Table 3.1. Note however, that the patterns shown in the table correspond

to the case of even particle number N , as the 1111 strings are even in length. As a

new feature, F (c) depends on the particle number parity as shown in Table 3.2.

Likewise, Eq. (2.49) may be generalized to

|ψc′(h1, h2)〉 = e−iπf2(c′)|ψc′(h1, h2 − Lx)〉 . (3.21)

When analyzed in the µν basis, Eq. (3.15), both the above equations imply that the

sector labeled µν transitions into the sector labeled µ,−ν when the quasihole with

coordinate h2 is dragged along path a shown in Fig. 2.5. Specifically, Eq. (3.20)
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implies

|ψµν(h1, h2)〉f
.
= ei/2h2yLx+iLδ/2 |ψµ,−ν(h2−Lx, h1)〉 ×


1 for N even, ν = 1,

µeiδ+iπN otherwise,

(3.22)

while Eq. (3.21) gives

|ψµν(h1, h2)〉 = e−iπf2(2−µ)|ψµ,−ν(h1, h2 − Lx)〉 . (3.23)

Using the same arguments given below Eq. (2.50), we may apply Eq. (3.18) to an

f -frame state |ψµν(h1, h2)〉f with two quasiholes in the σ = + configuration:

|ψµν(h1, h2)〉f = ξ+
µνu(h1, h2)|ψµν(h1, h2)〉 . (3.24)

Here again h2x > Lx, such that (h1, h2) can be taken to be the final configuration

of the path a shown in Fig. 2.5. Plugging in Eqs. (3.22) and (3.23) gives a relation

between the states |ψµ,−ν(h2 − Lx, h1)〉 and |ψµ,−ν(h1, h2 − Lx)〉. On the other hand,

these equations are, by definition, related via

|ψµ,−ν(h2 − Lx, h1)〉f = ξ−µ,−νu(h2 − Lx, h1)|ψµ,−ν(h1, h2 − Lx)〉 . (3.25)

Comparing these two relations, recalling u(h1, h2) = ei/2(h1xh1y+h2xh2y), gives the fol-
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lowing relation between ξ+
µν and ξ−µ,−ν .

ξ−µ,−ν = ξ+
µν e

−iLδ/2−iπf2(2−µ) ×


1 for N even, ν = 1,

µe−iδ+iπN otherwise,

(3.26)

We may also link patches of configuration space labeled by different µ, ν, and σ by

dragging one of the quasiholes along path b shown in Fig. 2.5. This is obviously a

dual version of the process just considered, and by following completely analogous

reasoning, we find the following relation complementing Eq. (3.26):

ξ−−µ,ν = ξ+
µν e

−iLδ/2−iπf2(2−ν) ×


1 for N even, µ = 1,

νe−iδ+iπN otherwise,

(3.27)

The above two equations allow us to relate any of the parameters ξσµν with the same

value of σµν = ±1. The transition functions have thus been reduced to two unknown

phases, where only the relative phase will be of interest. Together with the shift

parameter s, this phase will be determined in the final step by using the locality

considerations of Sec. 2.5.

3.4 Pfaffian braiding

Given that the transition functions are diagonal in the µν basis (Eq. (3.18)), the

result of adiabatic exchange of the two quasiholes in the state |ψµν(h1, h2)〉 is nec-

essarily diagonal in this basis as well. Even in a non-Abelian state, it is of course
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possible to diagonalize any given generator of the braid group, which describes the

(counter-clockwise) exchange of any two quasiholes. The phase picked up during the

exchange will, however, depend on the index µν. Given the parameters ξσµν defining

the transition functions, we can calculate this phase in a manner that is completely

analogous to that discussed in Sec. 2.8. In particular, the expressions (2.35) for

the Berry connections carry over to the present case. The calculation is thus the

same within each µν sector. In particular, we recall that the statistical part of the

Berry phase could be directly read off Eq. (2.59). Equation (2.63) can therefore be

generalized to read

|ψµν(h1, h2)〉 → eiΦAB
ξ+
µν

ξ−µν
|ψµν(h1, h2)〉 . (3.28)

We denote by γµν the topological part of this phase:

eiγµν =
ξ+
µν

ξ−µν
. (3.29)

By means of the relations (3.26) and (3.27) derived in the preceding section, it is

clear that all phases γµν can be related to γ++. These relations depend both on the

parameter s, as well as the particle number parity η. We must, therefore, distinguish

the case of even (η = 0) and odd (η = 1) particle number N . In each case, using

L = N + 1 we find that only even multiples of δ enter, which are zero modulo 2π.

Hence the parameter δ does not enter the result, as anticipated earlier. For N even
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(superscript e), we find:

γe+− = γe−+ = −γe++ + 2πs, γe−− = γe++ + π − 4πs . (3.30)

Likewise, for N odd (superscript o), we find:

γo+− = γo−+ = −γo++ + 2πs, γo−− = γo++ − 4πs . (3.31)

There are thus three remaining parameters in the theory, which can be taken to be the

phases γe++ and γo++, and the shift parameter s. It turns out that these parameters

are highly constrained by locality considerations of the kind discussed in Sec. 2.5.

The adiabatic transport of the quasiholes is facilitated by local potentials that pin

the quasiholes to a certain location that gradually changes with time. The matrix

elements of these local potentials in the dressed domain-wall basis are subject to the

general considerations for local operators made in Sec. 2.5. From these considerations

it follows that the patterns contributing to the coherent states before and after the

quasihole exchange can only change for orbitals whose x position (κn, where n is the

orbital index) is within a magnetic length (plus the range of the local potentials) of

the exchange path. Regions far to the left or right of the initial quasihole positions do

not participate in the exchange process, i.e., orbitals in this region are far away from

any point on the exchange path. According to the above, this implies that in this

region, the pattern associated with dressed domain-wall states entering the coherent
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state is unaffected during the exchange process.

Let us consider the implications of this for the case where the initial state is in

the sector labeled c = 3, Table 3.1. Since for a state initially in the c = 3 sector, all

patterns form one of the two possible 2020 strings far to the left and far to the right

of the quasiholes, this must also be true after the exchange process, with the 2020

patterns unchanged. This, however, implies that the state is still in the c = 3 sector

after the exchange. Identical observations can be made for the c = 4 sector.

It is easy to translate these statements into the µν basis. In order for the exchange

process to be diagonal in the sectors c = 3 and c = 4, the phases γµν must be

independent of µ when ν = −1. This is true for both even and odd particle number.

We thus have:

eiγ
e
+− = eiγ

e
−− , eiγ

o
+− = eiγ

o
−− . (3.32)

Note that in the case of even or odd particle number, the 1111 strings linking domain

walls in the sectors c = 3, c = 4 are even/odd in length, respectively. The locality as-

sumptions made in Sec. 2.5 further imply that the matrix elements of local operators

cannot depend on the length of the 1111 string as long as the domain walls are well

separated, since in this case such matrix elements do not depend on the separation of

the quasiholes. In particular, this implies that the Berry connection is insensitive to

particle number parity (which is solely encoded in the length of 1111 strings) for well

separated quasiholes. This is manifest in equations (2.35) which hold independent of

particle number. However, this reasoning breaks down for dressed domain-wall states
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whose domain walls are not well separated. Referring to the original basis |a1, a2, c〉,

this happens when two quasiholes are not well separated in x. In this regime, it is

reasonable to expect that matrix elements between dressed domain-wall states do de-

pend on whether the (short) 1111 strings of patterns entering the coherent states are

even or odd in length. This is not manifest in our formulation, since in this regime,

we always work with the dual |a1, a2, c〉 basis. However, the transition functions that

we calculated can be expected to “know” of these parity effects. Hence, we expect

that the phases in Eq. (3.32), which describe braiding in the c = 3, 4 sectors, will

depend on particle number parity.

The situation is quite the opposite for the sectors c = 1 and c = 2. Here, locality

requires that the string pattern to the far left and right of the dressed domain-wall

states forming the coherent states remain of the 1111 form before and after the ex-

change. This only forbids transitions from the sectors c = 1, 2 into the sectors c = 3, 4.

This we already know from the fact that exchange processes are diagonal in the µν

basis, which followed from properties under translation. However, this does not forbid

transitions between the sectors c = 1 and c = 2.

On the other hand, the 2020 strings forming the links between domain walls in

these sectors, and which become short during the exchange process, carry no informa-

tion about the particle number parity. This information remains hidden in the 1111

strings, which remain arbitrarily long during the exchange, in the limit of large L.

We thus conclude that within the c = 1, 2 subspace, the braid matrix describing the

result of the adiabatic exchange of the quasiholes is independent of particle number
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parity. In the µν basis, this leads to the following requirements:

eiγ
e
++ = eiγ

o
−+ , eiγ

e
−+ = eiγ

o
++ . (3.33)

Using Eqs. (3.30) and (3.31), the latter reduce to the same equation, γe+++γo++ = 2πs

mod 2π. Equations (3.32) give two more, 2γe++ = 6πs− π mod 2π, and 2γo++ = 6πs

mod 2π. The solutions to these equations are of the form

s =
3

8
− r

4
(3.34a)

γe++ = γo+− = γo−+ = γo−− =
5

8
π − 3

4
πr (3.34b)

γo++ = γe+− = γe−+ = γe−− =
1

8
π +

1

4
πr , (3.34c)

where r ∈ Z. This amounts to eight inequivalent possible solutions for the statistics.

To discuss the relation between these different solutions, we first generalize our result

to the case of 2n quasiholes on the torus. This will show that up to unitary trans-

formations (taking on the form of simple phase conventions), all solutions are related

by overall Abelian phases. We will further obtain a useful pictorial representation of

Pfaffian statistics, and relate it to more standard ones.
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3.5 Representation of the braid group of 2n MR

quasiholes

The locality arguments used above immediately allow one to generalize the results

obtained thus far for two quasiholes to the general case of 2n quasiholes. Consider

the result of exchanging two quasiholes in a topological sector as defined by taking in

the Ly → 0 limit, e.g. Fig. 3.1. Such states are the analogue of the states |ψc(h1, h2)〉

defined above, generalized to 2n quasiholes. Locality then implies that the result of

exchanging two quasiholes can at most affect the string linking the associated domain

walls in the sector label. Furthermore, the presence of other quasiholes, which are

assumed to be well away along the x axis, cannot affect the result of the exchange.

One can therefore infer the result of exchanging any two quasiholes in a state of 2n

quasiholes from the results established above for states of two quasiholes.

These results can be generally stated as follows:

• If the two quasiholes to be exchanged are linked by a 1111 string in the topolog-

ical sector label, the state merely picks up a phase as a result of the exchange.

This phase is given by Eq. (3.34b) when the linking 1111 string is odd in length

(Fig. 3.1b), and by Eq. (3.34c) when the linking 1111 string is even in length.

• If the two quasiholes are linked by a 2020 string, then upon exchange, the state

will remain in the same topological sector with an amplitude eiθ/
√

2, where

θ = π(1/8 + r/4 + (−1)r/4). It will transition with an amplitude (−1)rieiθ/
√

2
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into the sector with the linking 2020 string shifted.3

These rules are represented graphically in Fig. 3.1. To make connection with the

standard way to represent these statistics [27, 32, 33, 35], we introduce a Majorana

fermion degree of freedom ηi associated with the i-th domain wall in the string pat-

terns associated with our topological sectors. Let the pair η2j, η2j+1 be associated

with the left and right domain wall of a 1111 string. We then introduce fermion

operators cj = (η2j + iη2j+1)/2. Each cj is now associated to a 1111 string. The

topological Hilbert space can be constructed by acting with the operators c†j on the

vacuum of the cj operators, where states have the j-th fermion occupied if the j-th

1111 string in the associated topological sector label is odd in length, and unoccupied

otherwise. It is easy to check that according to the above rules, the exchange of the

i-th and (i+ 1)-th quasihole is then represented by the operator

eiθ exp
(

(−1)r
π

4
ηiηi+1

)
(3.35)

within this fermionic space, as expected for the Pfaffian state. The sign of ηiηi+1 in the

above can be absorbed by a unitary transformation, facilitated by the operator
∏

j η2j.

With this, the non-Abelian part of the statistics is thus determined unambiguously

by the present formalism, whereas for the overall Abelian phase eiθ, there are eight

possible values. In the present case, these are all the values that are consistent with the

3Here, an additional phase factor eiδ that was present in Eq. (3.15), which would arise in the
off-diagonal matrix element with the conventions of the preceding sections, has been absorbed into
a sign convention for the adiabatically continued domain-wall state basis.
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3.5 Braid group representation

Figure 3.1: Graphical representation of the result of exchanging two Pfaffian quasi-
holes for two representative pairs. a) A possible state in which four quasiholes could
be prepared, labeled by its associated thin torus pattern. The state shown could be
a four-quasihole state, in which the 20 strings at either end would continue around
the torus, or could be a 2n-quasihole state for n > 2, in which the ellipses mask
additional domain walls in the thin torus pattern. The results of braiding any pair of
quasiholes will be the same in either case. In the following we show only the section
of the pattern relevant to the exchange; locality implies that only the segment of
the pattern within a magnetic length of the exchange path may be affected by the
exchange and the rest remains fixed. b) Upon exchange of the indicated quasiholes,
the state picks up the phase γo, given by Eq. (3.34b). Had the 11 string separating
the quasiholes been even in length, the phase would have been γe, Eq. (3.34c). In ei-
ther case the thin torus pattern, and thus the topological sector of the state, remains
unchanged, which is shown. c) When the two indicated quasiholes are exchanged
the state remains in the same topological sector or transitions into a sector with the
linking 20 string shifted. The amplitudes for these two possibilities are shown next
to the thin torus patterns for the sectors, where θ = π(1/8 + r/4 + (−1)r/4). r is an
integer labeling the eight possible values for the overall Abelian phase, where r = 0
reproduces the representation given by conformal block monodromies.
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3.5 Braid group representation

SU(2)2 fusion rules [75, 76]. For r = 0 one obtains the value that agrees [27] with the

transformation properties of the conformal blocks from which the Pfaffian many-body

wave functions are constructed [23]. The approach discussed here is thus consistent

with the CFT approach. For the Pfaffian case, the CFT approach was recently

backed more rigorously through plasma analogy methods [30]. Similar results can

also be obtained from the p+ ip-wave superconductor analogy [32, 33, 31], although

the present approach yields more information about the overall Abelian phase.
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Chapter 4

The k = 3 Read-Rezayi State

We have seen that the method developed above is sufficiently general to obtain the

statistics of Abelian FQH states and, with some adaptations, the non-Abelian Moore-

Read state. Here we will show that the techniques developed in the preceding sections

are indeed general enough to allow us to obtain, essentially without modification, the

statistics of a more complicated non-Abelian state as well. We will demonstrate this

for the k = 3 Read-Rezayi (RR) state [58].

We focus on the bosonic “root” (highest filling factor, or M = 0) state of the

k = 3 sequence. This state has ν = 3/2 and a torus degeneracy of 4. In taking

the thin torus limit, the ground states are adiabatically evolved into the patterns

0303 . . . , 3030 . . . , 1212 . . . and 2121 . . . [51, 77]. Elementary excitations evolve into

charge 1/2 domain walls between the 3030 and 2121 ground-state patterns, or into

charge 1/2 domain walls between 2121 and 1212 (see Table 4.2). Periodic boundary

This chapter originally appeared in Ref. [7].
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4.1 n quasiholes

conditions require that the former type of domain wall must come in pairs, but allow

the latter type to exist singly.

In the examples above, we found that to work out the braid group for n quasiholes

with general n, one needs to consider only braiding for pairs of quasiholes associated

with all possible pairs of domain walls, as given by all possible combinations of three

ground state patterns. Locality then implies that all the other ground state patterns

appearing in the topological sector label will not affect the result of braiding. To this

end, we will solve for the reduced braid matrix in the simple cases of n = 2 (Sec. 4.2

and App. A) and n = 3 (Sec. 4.3 and App. B). Together, these results can be used to

construct braid matrices for n-quasihole states, since these cases exhaust all possible

sequences of three ground state patterns separated by domain walls. However, the

solution of the n = 2 and n = 3 cases can be simplified if we first consider translational

properties of states with general n.

4.1 RR states with n quasiholes

In the Moore-Read case, we introduced sector labels (µ, ν) that encoded the properties

of states under translations. The conventions there made use of the fact that at filling

factor ν = 1, Tx and Ty commute. For the k = 3 RR state at ν = 3/2, we have to

proceed somewhat differently in exploiting translational properties.

To this end, we denote a thin torus state with n domain walls by |a1, . . . , an; c, α),

and the adiabatically evolved state by |a1, . . . , an; c, α〉. We introduce two labels c,
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4.1 n quasiholes

α to denote topological sectors, where α labels classes of sectors that are not related

by translation (see Tables 4.1, 4.2), and c = 0, 1 labels the two members of each class

that are related by translation. The meaning of c is thus very much the same as in

our discussion of Laughlin states. The utility of this labeling will become apparent

shortly; the dependence of various quantities on the c label will be constrained by

translational symmetries, and c is conserved during braiding, in much the same way

as for the Laughlin states. In contrast, the interesting non-Abelian behavior will be

associated with the α label.

We use the same mutually dual coherent state expressions as before (see Eqns.

(2.26) and (3.2)),

|ψc,α({h})〉 = N
∑

a1<...<an

n∏
j=1

φα,j(hj, κaj) |a1, . . . , an; c, α〉 (4.1)

|ψc,α({h})〉 = N ′
∑

a1<...<an

n∏
j=1

φα,j(hj, κaj)|a1, . . . , an; c, α〉 (4.2)

where the first is defined for n quasiholes that are well separated along the x axis,

and the second for n quasiholes that are well separated along the y axis. We have

used {h} for the set of quasihole positions h1, . . . , hn. For the same reasons that we

discussed in Sec. 3 originally for the Pfaffian, we will assume the generic Gaussian

form of φα,j(h, x) given in Eq. (3.3):

φα,j(hj, x) = exp
[
i (hjy + δ(α, j)/κ)x/2− γ(hjx − x)2

]
(4.3)
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4.1 n quasiholes

and

φα,j(hj, y) = φα,j(−ihj, y)|κ→κ = exp
[
−i(hjx + δ(α, j)/κ)y/2− γ(hjy − y)2

]
. (4.4)

In the above, we have already set β = 1/2, which follows in exactly the same way

as for the Pfaffian. We have written φ as a function of the sector α, to allow for

the possibility that the momentum shift δ may take on different values for quasiholes

associated with different types of domain walls. However, φ is independent of c since

the type of the j-th domain wall is invariant under translation.

Again, the two bases (4.1) and (4.2) are related to each other by a transition

matrix. In general, the elements of this matrix depend on both c and α.

|ψc,α({h})〉 =
∑
c′,α′

uσc,c′,α,α′({h})|ψc′,α′({h})〉 (4.5)

In complete analogy with Eq. (2.34), we can derive the local dependence of the tran-

sition matrix within each of the regions labeled by σ, which are components of the

quasihole configuration space with quasihole coordinates well separated in both x and

y (cf. Fig. 2.4 as well as Fig. 4.1 below),

uσc,c′,α,α′({h}) = ξσc,c′,α,α′ u({h}), (4.6)

again with u({h}) = ei/2
∑
j hjxhjy . For n = 2, there are 72 of these parameters ξσc,c′,α,α′ :

we distinguish two configurations σ (Fig. 2.4), and for each there is a 6× 6 matrix in
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4.1 n quasiholes

the sector labels.

We first state the translational properties of the n–domain-wall states, which are

the same as in Eqs. (2.38) and (2.39), since α is a spectator under translations. We

now adopt a natural definition for the c labels. Recall that the action of Ty is given

as follows,

Ty |a1, . . . , an; c, α〉 = exp

(
−2πi

L

∑
j

nj

)
|a1, . . . , an; c, α〉 (4.7)

where the nj are the orbitals occupied in the pattern labeling the state. We find that

the sum over the nj takes on the following form,

∑
j

nj =
1

2
L (νL− c)− 1

2

∑
j

aj mod L (4.8)

where c = 0, 1, and the domain-wall positions are defined via ai = 2ni + fi(c, α)

as before, with the orbital position 2ni defined in relation to the domain wall as

shown in Table 4.2. Equation (4.8) then defines c modulo 2, and α labels the three

“supersectors” formed by the translational pairs of states.

91



4.1 n quasiholes

The translational properties of the n–domain-wall states are

Tx |a1, . . . , an; c, α〉 = |a1 + 1, . . . , an + 1; 1− c, α〉

Tx|a1, . . . , an; c, α〉 = e−iπλ+iπc+κκ/2
∑
j aj |a1, . . . , an; c, α〉

(4.9)

Ty |a1, . . . , an; c, α〉 = eiπλ−iπc−κκ/2
∑
j aj |a1, . . . , an; c, α〉

Ty|a1, . . . , an; c, α〉 = |a1 + 1, . . . , an + 1; 1− c, α〉
(4.10)

where again we write λ = νL, this time with ν = 3/2.

As in the preceding cases, the translational properties of the coherent states follow

directly from Eqs. (4.9) and (4.10):

Tx |ψc,α({h})〉 = e−iκ/2
∑
j hjy−i/2

∑
j δ(α,j) |ψ1−c,α({h+ κ})〉

Tx|ψc,α({h})〉 = eiπλ−iπc|ψc,α({h+ κ})〉
(4.11)

Ty |ψc,α({h})〉 = e−iπλ+iπc |ψc,α({h+ iκ})〉

Ty|ψc,α({h})〉 = eiκ/2
∑
j hjx+i/2

∑
j δ(α,j)|ψ1−c,α({h+ iκ})〉,

(4.12)

where we have used the notation {h + κ} = h1 + κ, . . . , hn + κ, and similarly used

{h + iκ}. We can use these translational properties to completely determine the

dependence of the transition matrices on c. To make this decoupling more explicit,
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4.1 n quasiholes

we introduce two-component objects, denoted by a Ψ:

|Ψα({h})〉 =

 |ψ0,α({h})〉

ei/2
∑
j δ(α,j) |ψ1,α({h})〉



|Ψα({h})〉 =

 |ψ0,α({h})〉

ei/2
∑
j δ(α,j)|ψ1,α({h})〉

 ,

(4.13)

where the phase splitting between the c = 0 and c = 1 states has been introduced

with foresight to keep later phases in check. Correspondingly, we may view the full

transition matrix as a “supermatrix” Ξσ, i.e., an αmax×αmax matrix, the elements of

which are each 2 × 2 matrices denoted Ξσ
α,α′ . So we write the equation between the

original and dual bases as

|Ψα({h})〉 =
∑
α′

u({h})Ξσ
α,α′|Ψα′({h})〉 . (4.14)

Note the similarity of Eq. (4.14) to the Laughlin transition matrix Eq. (2.43), to

which Eq. (4.14) reduces for αmax = 1.
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4.1 n quasiholes

We rewrite Eqs. (4.11) and (4.12) in terms of the two-component basis.

Tx |Ψα({h})〉 = e−iκ/2
∑
j hjy

 0 e−i
∑
j δ(α,j)

1 0

 |Ψα({h+ κ})〉

Tx|Ψα({h})〉 = eiπλ

 1 0

0 −1

 |Ψα({h+ κ})〉 ,

(4.15)

Ty |Ψα({h})〉 = e−iπλ

 1 0

0 −1

 |Ψα({h+ iκ})〉

Ty|Ψα({h})〉 = eiκ/2
∑
j hjx

 0 1

ei
∑
j δ(α,j) 0

 |Ψα({h+ iκ})〉 .

(4.16)

As before, (cf. Eqs. (3.12), (3.14)), when applied to Eq. (4.14), Eqs. (4.15) and

(4.16) each give a consistency equation that must be satisfied by every Ξσ
α,α′ :

Ξσ
α,α′ = eiπλ

 0 1

ei
∑
j δ(α,j) 0

Ξσ
α,α′

 1 0

0 −1

 (4.17)

Ξσ
α,α′ = eiπλ

 1 0

0 −1

Ξσ
α,α′

 0 1

ei
∑
j δ(α,j) 0

 , (4.18)

which imply

Ξσ
α,α′ =

ξσα,α′√
2

 1 eiπλ

e−iπλ −1

 , (4.19)

94



4.1 n quasiholes

together with the constraint

exp

(
2πiλ+ i

∑
j

δ(α, j)

)
= 1 . (4.20)

In the above, ξσα,α′ is an overall coefficient, and
√

2 is a normalization factor.

The phase choice we made in Eq. (4.13) has allowed us to decouple the α and

c indices within the transition function. We can write the matrix Ξσ defining the

transition function Eq. (4.14) as

Ξσ = ξσ ⊗M , (4.21)

where ξσ is the αmax × αmax matrix of coefficients ξσα,α′ and M is the 2× 2 matrix

M =
1√
2

 1 e−iπλ

eiπλ −1

 (4.22)

The α dependence of Ξσ is completely contained in the corresponding coefficient

matrix ξσ, and the c dependence is completely contained in the M matrix.

If we consider the translational properties of the states in the case of a single

quasihole, we can constrain some of the δ(α, j) parameters appearing above. For a

single quasihole on a torus, the only topological sectors respecting periodic boundary

conditions are those with domain walls between 2121 patterns, as shown in Table 4.1.

There are two such sectors, related by translation, so for a single quasihole αmax = 1.
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4.1 n quasiholes

Sector c, α Thin torus pattern f1(c, α)
0,1 21212121121212121 1/2
1,1 12121211212121212 −1/2

Table 4.1: Thin torus patterns for a single–domain-wall k = 3 Read-Rezayi state, and
the offset functions of the associated domain walls. The latter are fully determined
by inversion symmetry of the state. The orbital positions, 2ni, are underlined. Since
the sectors are all related by translation, α takes on a single value.

There is then only a single δ(α, j) parameter, which we call d. When we consider

Eq. (4.20) and note that in this case λ = νL = 3/2((2N + 1)/3) is half-odd integral,

we find d = π.

In general, the δ(α, j)s are each associated with a certain type of domain wall, so by

fixing d in the single-quasihole case we also fix any δ(α, j) associated with a 2121 99
91212-

type domain wall in an n-quasihole state. We can constrain the other δ(α, j)s to be

either 0 or π by considering Eq. (4.20) in the case n = 2. For two quasiholes there are

only two independent δ(α, j) parameters: δ(3, j), which is associated with 2121 99
91212-

type domain walls and is thus known to be π from the one-quasihole argument; and

δ(1, j) and δ(2, j), which are associated variously with domain walls between 1212

and 0303 strings, and which must be equal by the argument in Footnote 2, page 66.

For n = 2, we have λ = νL = 3/2((2N + 2)/3), which is an integer, and Eq. (4.20)

reduces to exp[i
∑

j δ(α, j)] = 1. This is already satisfied for δ(3, j) = π, and can be

satisfied for α = 2, 3 only if δ(1, j) = δ(2, j) = 0, π.

In the end, we want to find explicit expressions for the elements of the transition

matrices Ξσ, which we have reduced to the problem of finding the elements of the ξσ

coefficient matrices. This will be our task in the following sections.
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4.2 Two quasiholes

α Thin torus pattern f1(α) f2(α) F (α)
1 303030302121212030303030 s −s 2
2 121212120303030212121212 1− s 1 + s 1
3 121212112121212112121212 −1/2 1/2 3

Table 4.2: c = 0 thin torus patterns for a two–domain-wall k = 3 Read-Rezayi state,
and the offset functions of the associated domain walls. The orbital positions, 2ni, are
underlined. Patterns for c = 1 can be obtained by shifting each occupancy number
one orbital to the right, and c = 1 offset functions by adding or subtracting 1 to each
offset function above, whichever is more convenient.

4.2 RR states of n = 2 quasiholes

The thin torus patterns for two-quasihole states with c = 0 are given in Table 4.2. To

find the statistics of these quasiholes we must constrain the transition matrices Ξ+

and Ξ−. Both Ξσs have nine complex unknowns, the entries of the ξσ matrices. To

constrain these we will move the quasiholes around global paths, which we defined in

Sec. 2.7. We will then make further use of the mirror symmetry operation, which has

thus far only been discussed in Sec. 2.1 and very briefly in Sec. 3.2. As in the Moore-

Read case, we gain further constraints by imposing locality and unitarity. In the

general solution to these equations some unknown parameters still remain. We will

be able to constrain the latter by subsequently studying the case of three quasiholes

in Sec. 4.3.

4.2.1 Constraints from global paths

As discussed in sections 2.7 and 3.2, the transition matrices for different configurations

can be connected by dragging the quasiholes through the global paths in Fig. 2.5.

We first consider two quasiholes in the σ = + configuration, and imagine the right
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4.2 Two quasiholes

quasihole moving around the x direction of the torus along the path a in Fig. 2.5.

Using the reasoning of Sec. 3.3 we find the following effects on the coherent states:

|ψc,α(h1, h2)〉f
.
= eiLxh2y/2+iLδ(α,2)/2 |ψ1−c,F (α)(h2 − Lx, h1)〉

|ψc,α(h1, h2)〉 = e−iπf2(c,α)|ψc,α(h1, h2 − Lx)〉 .
(4.23)

Moving the quasihole along this path changes the sector label α for the original basis

into F (α), the values of which can be read off the patterns and are summarized in

Table 4.2.

To find a constraint on the ξσs, we write Eq. (4.23) in the two-component basis.

|Ψα(h1, h2)〉f
.
= eiLxh2y/2+iLδ(α,2)/2

 0 e−i/2
∑
j δ(α,j)

ei/2
∑
j δ(α,j) 0

∣∣ΨF (α)(h2 − Lx, h1)
〉

|Ψα(h1, h2)〉 = e−iπf2(α)

 1 0

0 −1

 |Ψα(h1, h2 − Lx)〉 ,

(4.24)

where we have used that fj(α) ≡ fj(0, α) = fj(c, α)− c mod 2. Applying Eq. (4.24)

98



4.2 Two quasiholes

to Eq. (4.14) gives

∣∣ΨF (α)(h2 − Lx, h1)
〉

=
∑
α′

u(h2 − Lx, h1)e−iLδ(α,2)/2−i/2
∑
j δ(α,j)

×

 0 1

ei
∑
j δ(α,j) 0

Ξ+
α,α′

 1 0

0 −1


× e−iπf2(α′)|Ψα(h1, h2 − Lx)〉 (4.25)

We can simplify Eq. (4.25) using Eq. (4.17).

∣∣ΨF (α)(h2 − Lx, h1)
〉

=
∑
α′

u(h2 − Lx, h1)e−iπλ−iLδ(α,2)/2−i/2
∑
j δ(α,j)

× Ξ+
α,α′e

−iπf2(α′)|Ψα(h1, h2 − Lx)〉 (4.26)

We want to write this as an equation between ξ− and ξ+, which we can do by noting

the equivalence between Eq. (4.26) as written and Eq. (4.14) evaluated at quasihole

positions (h2−Lx, h1). To make this equivalence manifest we can write the action of

the function F in matrix form as:

(B)α,α′ = δα,F (α′) (4.27)
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4.2 Two quasiholes

or

B =


0 1 0

1 0 0

0 0 1

 . (4.28)

Since the transition matrix in Eq. (4.14) evaluated at positions (h2−Lx, h1) involves

Ξ−, and the transition matrix in Eq. (4.26) is a product involving Ξ+, the equivalence

of Eqs. (4.14) and (4.26) implies:

ξ− = B−1diag
[
e−iπλ−iLδ(α,2)/2−i/2

∑
j δ(α,j)

]
ξ+diag

[
e−iπf2(α)

]
, (4.29)

where we canceled the matrix M common to both Ξσs, and the argument of diag[. . . ]

specifies the α-th diagonal entry of a diagonal matrix. If we use the values of f2(α)

from Table 4.2, Eq. (4.29) becomes

ξ− =


0 ∆ 0

∆ 0 0

0 0 1

 ξ+


p 0 0

0 p−1 0

0 0 −1

 e−iπ/2 . (4.30)

We have defined two phases: p = − exp [iπ(s+ 1/2)] and ∆ = exp [i(L/2 + 1)(π − δ)].

Note that for two quasiholes L is even and ∆2 = 1.

We can perform the same process in the y direction and drag the quasihole around

the global path marked b in Fig. 2.5. After an argument similar to that above we find
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4.2 Two quasiholes

another equation between ξ− and ξ+, which we invert to yield,

ξ+ =


p−1 0 0

0 p 0

0 0 −1

 ξ−


0 ∆ 0

∆ 0 0

0 0 1

 eiπ/2 (4.31)

Combining Eqs. (4.30) and (4.31) gives us a nontrivial consistency relation for ξ+.

ξ+ =


0 ∆p−1 0

∆p 0 0

0 0 −1

 ξ+


0 ∆p 0

∆p−1 0 0

0 0 −1

 (4.32)

Equation (4.32) gives us several equations between the matrix elements of ξ+, the co-

efficients ξ+
α,α′ . Equation (4.30) reduces the number of unknown ξσα,α′s from eighteen

to nine. The consistency relationship Eq. (4.32) further reduces the number of un-

known elements from nine down to five. A particular choice for the five independent

ξ+
α,α′s is the following:

ξ+ =


ξ11 ξ12 ξ13

ξ12 p2ξ11 −∆pξ13

ξ31 −∆pξ31 ξ33

 (4.33)

Note that any time the configuration index σ is omitted as in the above equation, we

take it to be σ = +.
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4.2.2 Constraints from mirror symmetry

We now make use of the antilinear symmetry operator τx defined in Sec. 2.1, i.e., the

combination of time reversal and mirror symmetry. Applying τx will exchange the x

positions of the quasiholes across the y axis. This operation changes the configuration

σ, which will allow us to derive another equation between ξ+ and ξ−. First, we

describe how this symmetry acts on an n-quasihole state.

From the definition Eq. (2.8), the effect of τx on bare LL product states is clear:

it reflects the original basis states across the y axis, and it has no effect on the

dual states. For bare product states with domain walls, the domain-wall positions

will be similarly reflected. τx commutes with the adiabatic evolution operators (as

constructed, e.g., in Ref. [40]) that define the delocalized quasihole states, thus its

action on those states is:

τx |a1, . . . , an; c, α〉 = |L− an, . . . , L− a1; c, Fτx(α)〉 (4.34a)

τx|a1, . . . , an; c, α〉 = |a1, . . . , an; c, α〉 . (4.34b)

We write that the position of the j-th dual-basis quasihole aj goes to L − aj in

Eq. (4.34a) so as to stay within the default frame. Also note that in general τx

might or might not change α, and we describe this change by some function Fτx , the

values of which can be found from the patterns. It turns out that for the case of two

quasiholes, Fτx(α) = α. Later when we analyze the case of three quasiholes, Fτx will

be a nontrivial mapping.
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Equation (4.34) allows us to derive how τx acts on coherent states of n quasiholes.

In terms of two-component states:

τx |Ψα({h})〉 = e−iLx/2
∑
j hjy−iL/2

∑
j δ(α,j)

∣∣ΨFτx (α)({−h∗ + Lx})
〉

(4.35a)

τx|Ψα({h})〉 = eiπ
∑
j fj(α)+i

∑
j δ(α,j)fj(α)|Ψα({−h∗ + Lx})〉 . (4.35b)

For now, we will restrict ourselves to the case of two quasiholes. In this case,

Eq. (4.35) simplifies to:

τx |Ψα(h1, h2)〉 = e−iLx/2
∑
j hjy |Ψα(h′1, h

′
2)〉 (4.36a)

τx|Ψα(h1, h2)〉 = |Ψα(h′2, h
′
1)〉 , (4.36b)

where for all indices j, h′j = −h∗j + Lx. To arrive at Eq. (4.36) we have used that

for two quasiholes the phase factors on Eq. (4.35a) and Eq. (4.35b) are both 1—the

former because L is even, and the latter can be seen by inserting the values of fj(α)

from Table 4.2—and Fτx(α) = α as noted above. Equation (4.36) allows us to apply τx

to Eq. (4.14). Let us begin with the two quasiholes in the σ = + configuration; when

we apply τx to Eq. (4.14) and compare the resulting equation to Eq. (4.14) evaluated

at the changed spatial coordinates, we find the simple relationship ξ−α,α′ = (ξ+
α,α′)

∗, or

ξ− = (ξ+)∗ . (4.37)

For the moment, we leave the relation (4.37) implicit, and use it in Appendix A to
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further reduce the number of independent parameters.

4.2.3 RR braiding for n = 2

We can perform the adiabatic exchange of two quasiholes using again the method of

Secs. 2.8 and 3.4 with minor generalizations. The details formally carry over from

Sec. 2.8 because all the Berry connections along the path segments considered above

are independent of the sector (see Eq. (2.55) for example). I.e., for the exchange of

two quasiholes as in Fig. 2.6, dragging the second quasihole along the path segment

C1 causes the wave functions in each sector to pick up the same phase exp [iγ1] defined

in Eq. (2.54). 
|Ψ1(h1, h2)〉

|Ψ2(h1, h2)〉

|Ψ3(h1, h2)〉

→ eiγ1


|Ψ1(h1, ha)〉

|Ψ2(h1, ha)〉

|Ψ3(h1, ha)〉

 (4.38)

Reiterating the remaining steps described in Sec. 2.8, the result of the adiabatic

exchange is the following:


|Ψ1(h1, h2)〉

|Ψ2(h1, h2)〉

|Ψ3(h1, h2)〉

→ eiΦABΞ+(Ξ−)−1


|Ψ1(h1, h2)〉

|Ψ2(h1, h2)〉

|Ψ3(h1, h2)〉

 . (4.39)

Once again we see that adiabatic exchange results in a path-dependent Aharonov-

Bohm phase and a topological, statistical part made of a product of the transition
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functions, which we call the braid matrix. The structure of this matrix is

Ξ+(Ξ−)† = χ⊗ I2×2 , (4.40)

where the translational, c-dependent part of the braid matrix is the product MM † =

I2×2, and we have defined the “reduced” braid matrix as the α-dependent part,

χ = ξ+(ξ−)† . (4.41)

We can constrain the form of the matrix χ by making an argument about the

locality of the exchange process, analogous to the argument made in Sec. 3.4. Recall

that according to the latter, only the string of the pattern that is between the domain

walls taking part in the exchange can be changed as a result of this process. Any

regions of the pattern far to the left or right of the initial positions must remain

unchanged after the exchange. For one, this requires the exchange processes to be

diagonal in c. This is already manifest by the structure of the braid matrix derived

thus far, Eq. (4.40). However, certain transitions of the α label are allowed. To see

this, we again refer to Table 4.2. One observes that transitions into and out of the

α = 1 sector are forbidden, since this is the only sector with 3030-type patterns far to

the left and far to the right of the domain walls. The other two sectors have 2121-type

patterns at the left and right end. Therefore, transitions between these sectors are

allowed.
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These considerations imply that the reduced braid matrix Eq. (4.41) must be of

the form:

χ = ξ+(ξ−)† =


· 0 0

0 · ·

0 · ·

 (4.42)

where dots indicate (potentially) non-zero matrix elements. Equation (4.42) gives

two independent constraint equations for the matrix elements ξα,α′ . We will also use

constraints for the ξα,α′s gained from the fact that ξ+ must be unitary:

ξ+(ξ+)† = I3×3 . (4.43)

Together, Eq. (4.42) and Eq. (4.43) provide enough constraint equations to fix the

ξα,α′ up to the parameter p, introduced after Eq. (4.30), which is in turn defined by

the shift parameter s defined in Table 4.2. These constraints allow us to write explicit

expressions for the elements of the braid matrix in terms of only the parameter p:

χ = eiπ/2


p−1 0 0

0 p(p+ p−1 − 1) ±
√
p+ p−1(1− p)

0 ±
√
p+ p−1(1− p) p+ p−1 − 1

 (4.44)

The details are presented in Appendix A. While p is still unknown at this stage, it

is no longer completely unconstrained. To further constrain the value of p and fully

determine the statistics, we must study the case of three quasiholes.
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α Thin torus pattern f1 f2 f3 F Fτx
1 30303021212112121203030 s 1/2 1− s 3 1
2 12121121212030303021212 −1/2 −s s 1 3
3 12121203030212121121212 1− s −1 + s −1/2 2 2
4 12121121212112121121212 −1/2 1/2 −1/2 4 4

Table 4.3: c = 0 thin torus patterns for a three–domain-wall k = 3 Read-Rezayi
state, and the offset functions of those domain walls. The orbital positions, 2ni, are
underlined. Patterns and offset functions for c = 1 can be obtained by, respectively,
shifting each pattern one orbital to the right and adding 1 to each offset function.

4.3 RR states of n = 3 quasiholes

We expect that we can gain new information about the statistics by braiding two

quasiholes among a system of three. To see this, note that as long as there are only

two quasiholes, boundary conditions require that both are associated with the same

“domain-wall type”. I.e., both domain walls must either occur between a 3030 string

and a 2121 string, or between two 2121 strings. Hence, we were not yet able to

study what happens when a quasihole associated with the former type is exchanged

with one associated with the latter type. To study such processes, we must consider

systems with three quasiholes. The relevant topological sectors are displayed in Table

4.3. It will suffice to exchange the first two quasiholes (along x). The “new” situation

described above will then occur in the sectors α = 1 and α = 2. Using locality

arguments analogous to the preceding section, we conclude that exchanging the first

two quasiholes in these sectors is a diagonal process, since it is not possible to reach

a different sector by replacing the string linking the associated domain walls. On

the other hand, by complete analogy with the preceding section, the same exchange

processes may lead to transitions between the α = 3 and α = 4 sectors. These
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processes are locally the same as those discussed for the α = 2 and α = 3 sectors

in the preceding section. Invoking again locality, within the α = 3, 4 subspace the

(reduced) braid matrix must be given by the same 2×2 block displayed in Eq. (4.44).

We used exactly the same argument before in Sec. 3.5, where we constructed the

2n-quasiparticle representation of the braid group from the two-quasiparticle braid

matrix for the Moore-Read state. These arguments constrain the form of the reduced

braid matrix associated with the first two quasiholes to be:

χ = eiπ/2



·

·

p(p+ p−1 − 1) ±
√
p+ p−1(1− p)

±
√
p+ p−1(1− p) p+ p−1 − 1


(4.45)

where the dots indicate some matrix element we do not yet know, and blank spaces

represent zeros. In the above, p is the same parameter appearing in Eq. (4.44), but

we leave it understood that the quantities χ, ξ and Ξ in this section refer to the

three-quasihole case, and are different from their two-quasihole counterparts. In the

above, we have anticipated that braiding will again be diagonal in the c label, and

χ is again defined through the action of braiding on the α label, which will follow

below.

We may again proceed by expressing χ through the transition matrix coefficients

ξσα,α′ and deriving various constraints on the latter, where now additional constraints

come from the 2 × 2 block in (4.45). The procedure is analogous to the preceding
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Figure 4.1: Configurations σ = (σ1, σ2). σ1 indicates the relative position of the
leftmost two quasiholes, σ2 indicates the position of the third quasihole relative to
the first two. Top (left to right): ++, +0, and +−. Bottom (left to right): −−, −0,
and −+.

section, where only one aspect requires nontrivial generalization: in the two-quasihole

section there were only two transition matrices, Ξ+ and Ξ−, one for each configuration.

For n quasiholes, we must distinguish n! configurations and define a transition matrix

for each. We choose the following notation to label these configurations. For an n-

quasihole system, we let σ = (σ1, . . . , σn−1). σ1 takes a value + or −, indicating

the relative position of the two leftmost quasiholes, in the same manner as in the

preceding section. σ2 takes a value +, −, or 0 and indicates the position of the third

quasihole relative to the first two, as shown in Fig. 4.1 for three quasiholes. We could

proceed further in the same way for n > 3 quasiholes, but n ≤ 3 suffices for our

purposes.

With these conventions, we can find the result of exchange of two quasiholes in
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terms of the transition matrices. As pointed out, we choose to braid the two leftmost

quasiholes and leave the third fixed. Further, let us say it is fixed “above” the other

two, so σ2 = +1. The exchange can be broken down into segments in complete analogy

with the two-quasihole case, yielding an equation analogous to Eq. (4.39):



|Ψ1({h})〉

|Ψ2({h})〉

|Ψ3({h})〉

|Ψ4({h})〉


→ eiΦABΞ++(Ξ−+)−1



|Ψ1({h})〉

|Ψ2({h})〉

|Ψ3({h})〉

|Ψ4({h})〉


. (4.46)

As anticipated above, using Eqs. (4.21), (4.22), we find

Ξ++(Ξ−+)† = χ⊗ I2×2 , (4.47)

which again defines the reduced braid matrix χ in terms of the coefficient matrices,

χ = ξ++(ξ−+)† . (4.48)

As in previous examples, we will use symmetries and global paths to constrain the ξσ

matrices, then use the implications of locality, Eq. (4.45), to find explicit expressions

for the elements of χ.

1Other choices for the configurations of the quasiholes will result in the same braiding matrices,
as it should be.
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4.3.1 Constraints from mirror symmetry

In Sec. 4.2.2, the action of τx on n quasihole states has been discussed, Eq. (4.35).

The three–domain-wall patterns are shown in Table 4.3, along with the values of

Fτx(α), which follow directly from these patterns. We can represent the map Fτx(α)

in matrix form:

Bτ =



1

0 1

1 0

1


. (4.49)

If we apply τx to Eq. (4.14), proceeding as in the derivation of Eq. (4.37) and using

information from Table 4.3, we find

ξgτx (σ) =



∆̃2

0 ∆̃2

∆̃2 0

1


(ξσ)∗



∆̃2

1

1

1


eiπλ+iπ , (4.50)

where the phase ∆̃ = exp[−iL(π − δ)/2]. Note that L is odd, so ∆̃2 = exp[i(π − δ)]

and ∆̃4 = 1. The function gτx(σ) gives the new configuration after reflection of the

quasiholes in configuration σ across the y axis, and its values are given in Table 4.4.

The matrix structure of the last equation is somewhat more complicated than

Eq. (4.37). Unlike the latter, Eq. (4.50) is not “self-dual”, i.e., we may obtain an
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analogous but different equation by using the “dual” mirror symmetry operator τy

instead (Sec. 2.1). It reads

ξgτy (σ) =



∆̃2

1

1

1


(ξσ)∗



∆̃2

0 ∆̃2

∆̃2 0

1


eiπλ+iπ . (4.51)

The function gτy(σ) captures the change in configuration under τy. Its values are

given in Table 4.4.

We now evaluate Eq. (4.50) for σ = (−,−), gτx(−,−) = (+,+), and Eq. (4.51) for

σ = (+,+), gτy(+,+) = (−,−), and plug one into the other. This gives the following

consistency equation for ξ++:

ξ++ =



1

0 ∆̃2

∆̃2 0

1


ξ++



1

0 ∆̃2

∆̃2 0

1


, (4.52)
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σ gx(σ) gy(σ) gτx(σ) gτy(σ)
++ −0 +− −− −−
+− ++ −0 −+ +0
−0 +− ++ +0 −+
−− +0 +0 ++ ++
+0 −+ −+ −0 +−
−+ −− −− +− −0

Table 4.4: The effect of various operations on the configuration of three quasiholes.
For a state in configuration σ, when the rightmost quasihole is dragged around the
torus along an a-type path (as shown in Fig. 2.5 for two quasiholes), the resulting
configuration is gx(σ). Similarly, gy(σ) is the resulting configuration when the topmost
quasihole is dragged along a b-type path. If a state in configuration σ is operated upon
by the mirror reflection τx, gτx(σ) is the resultant configuration. gτy(σ) is similarly
defined for the mirror reflection τy.

which constrains ξ++ to be of the form

ξ++ =



ξ11 ∆̃2ξ13 ξ13 ξ14

∆̃2ξ31 ξ22 ξ23 ∆̃2ξ34

ξ31 ξ23 ξ22 ξ34

ξ41 ∆̃2ξ43 ξ43 ξ44


. (4.53)

As before, when the configuration σ is omitted, we take it to be ++.

4.3.2 Constraints from global paths

We continue with our program by deriving constraints from “global paths”, as done

for the two-quasihole case in Sec. 4.2.1. We begin by generalizing Eq. (4.24) (cf.

Fig. 2.5) to the case of three quasiholes. In the two-quasihole case we assumed the

two quasiholes to be in a σ = + configuration, then moved the top right quasihole

around the x direction of the torus to the top left. In this section we will need to
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derive more general behavior, allowing that the rightmost quasihole can be at the top,

middle, or bottom relative to the other two quasiholes. The analogue of Eq. (4.23),

for a path similar to path a in Fig. 2.5, then becomes:

|ψc,α({h})〉f
.
= eiLxh3y/2+iLδ(α,3)/2

∣∣ψc+1,F (α)({h′})
〉

|ψc,α({h})〉 = e−iπfj(c,α)|ψc,α({h′})〉 .
(4.54)

Here fj(c, α) can be inferred from Table 4.3, and j equals 1, 2, or 3 if the quasihole

encircling the torus is respectively the first, second or third when viewed from the

y direction. The position {h′} = h3 − Lx, h1, h2. As before, the change in α after

moving the quasihole along the path is described by the function F (α). Its values

directly follow from the associated patterns, as discussed in Sec. 4.2.1, and they are

given in Table 4.3. We recast Eq. (4.54) in the two-component basis:

|Ψα({h})〉f
.
= eiLxh3y/2+iLδ(α,3)/2+i/2

∑
j δ(α,j)

 0 e−i
∑
j δ(α,j)

1 0

∣∣ΨF (α)({h′})
〉

|Ψα({h})〉 = e−iπfj(α)

 1 0

0 −1

 |Ψα({h′})〉 .

(4.55)

Just as in the two-quasihole case, Eq. (4.55) allows us to derive an equation between

the transition matrix in the configuration σ with the matrix in the configuration

gx(σ).

ξgx(σ) = B−1diag[e−iπλ−iLδ(α,3)/2−i/2
∑
j δ(α,j)]ξσdiag

[
e−iπfj(α)

]
. (4.56)
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The pairs (σ, gx(σ)) are summarized in Table 4.4. The matrix B is defined as in

Eq. (4.27), and for three quasiholes it has the form

B =



1

1 0

1

1


. (4.57)

In any specific instance of Eq. (4.56), one first chooses a starting configuration σ, and

identifies the corresponding y-direction index j of the quasihole that will encircle the

torus. j is in one-to-one correspondence with σ2: for σ2 is +, 0, or −, j is respectively

3, 2, or 1. For instance, were we to begin in configuration ++, then j = 3 and after

the encircling the system would be in configuration −0. Thus we find the relation

ξ−0 =



∆̃

0 ∆̃2

∆̃

1


ξ++



p

p−1

−1

−1


, (4.58)

where p is defined as before, p = −eiπ(s+1/2).

We can go through the same derivation for a path similar to path b in Fig. 2.5,

in which the top quasihole moves around the y direction of the torus and ends at the
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bottom. We find

ξgy(σ) = diag
[
e−iπfj(α)

]
ξσdiag[e−iπλ−iLδ(α,3)/2−i/2

∑
j δ(α,j)]B (4.59)

It is very important to note that for this path, the meaning of the index j is different

from the previous path. In the previous case, the quasihole encircled the torus in the

x direction, so the moving quasihole was the rightmost in horizontal (x) order but

was the j-th quasihole in vertical (y) order; in this case, the quasihole encircles the

torus in the y direction, so the moving quasihole is the topmost in vertical order but

is the j-th in horizontal order. As an example, if we begin in configuration −0, the

topmost quasihole is that on the left, so j = 1. Plugging in the appropriate values

from the tables,

ξ++ =



p−1

−1

p

−1


ξ−0



∆̃

∆̃ 0

∆̃2

1


(4.60)
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4.3 Three quasiholes

Combining Eqs. (4.60) and (4.58) gives us a consistency relation for ξ++,

ξ++ =



∆̃p−1

0 −∆̃2

∆̃p

−1


ξ++



∆̃p

∆̃p−1 0

−∆̃2

−1


, (4.61)

which further constrains ξ++ in addition to Eq. (4.53).

ξ++ =



ξ11 ∆̃2ξ13 ξ13 ξ14

∆̃2ξ13 ∆̃2p2ξ11 −∆̃−1pξ13 −∆̃−1pξ14

ξ13 −∆̃−1pξ13 ∆̃2p2ξ11 −∆̃pξ14

ξ41 −∆̃−1pξ41 −∆̃pξ41 ξ44


(4.62)

4.3.3 RR braiding for n = 3

As in the two-quasihole section, we will further determine the structure of the reduced

braid matrix using constraint equations from unitarity and from locality. Enforcing

locality means that we equate the matrix product for χ in Eq. (4.46) with the form

in Eq. (4.45), which is implied by locality, as we argued above. The details are given

in Appendix B, resulting in the following form for χ:
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4.3 Three quasiholes

χ = eiθ



p

p

p2(1− p) eiθ2p2
√
p+ p−1 − 1

eiθ2p2
√
p+ p−1 − 1 e2iθ2p(1− p)


(4.63)

where θ and θ2 are as yet undetermined phases.

In deriving the above equation, only the zero-valued matrix elements of Eq. (4.45)

have been used. To enforce consistency between the two- and three-quasihole braiding

matrices, as dictated by locality, we must equate the 2× 2 block of Eq. (4.63) to that

of Eq. (4.45). Equating the expressions for the element χ33 gives us a consistency

relation that we can use to constrain p:

eiθp2(1− p) = eiπ/2p(p+ p−1 − 1) . (4.64)

If we define x = p+ p−1 for convenience and take the absolute square of Eq. (4.64),

we find

2− x = (x− 1)2 , (4.65)

which is solved when x is the golden ratio,

x = ϕ ≡ 1 +
√

5

2
. (4.66)

We have chosen the positive root because Eq. (B.9b) implies x ≥ 1. If we define the
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4.4 Braid group representation

angle a by p = exp(iπa) then x = 2 cos (πa) and Eq. (4.66) implies

a = ±1

5
. (4.67)

a is also related to the shift parameter s = a+ 1/2, and so Eq. (4.67) tells us2

s =
1

2
± 1

5
. (4.68)

The phase information in Eq. (4.64) fixes the overall phase θ,

eiθ = eiπs . (4.69)

There are two more consistency equations found from equating Eqs. (4.45) and (4.63).

One yields exp (iθ2) = ±1, and the other is trivially satisfied when x = ϕ. Up to

some signs, the braid matrices for two- and three-quasihole systems have thus been

completely solved for. We will discuss our solution(s) in the following section.

4.4 Representation of the braid group of n RR

quasiholes

In Sec. 4, we have found solutions for the braid matrices describing exchange processes

between two and three quasiholes that are consistent with the coherent state ansatz

2We leave it understood that this relation holds modulo 2.
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4.4 Braid group representation

Figure 4.2: Graphical representation of the result of exchanging two k = 3 Read-
Rezayi quasiholes for three example pairs. Top) A possible state in which five quasi-
holes could be prepared, labeled by its associated thin torus pattern. The state shown
could be a five-quasihole state, in which the 30 strings at either end would continue
around the torus, or could be an n-quasihole state for n > 5, in which the ellipses
mask additional domain walls in the thin torus pattern. The results of braiding any
pair of quasiholes shown here will be the same in either case. a) Upon exchange of
the indicated quasiholes, the state picks up the phase eiπ(1/2−a), where a is given by
Eq. (4.67) (with the lower sign correctly describing the conformal block monodromies
of the RR trial states). The thin torus pattern, and thus the topological sector of
the state, remains unchanged after the exchange, as shown. b) When the two indi-
cated quasiholes are exchanged the state remains in the same topological sector or
transitions into a sector with the linking 30 string changed to a 21 string. The am-
plitudes for these two possibilities are shown beneath the thin torus patterns for the
sectors, where ϕ is the golden ratio, Eq. (4.66). c) Upon exchange of the indicated
quasiholes, the state picks up the phase eiπ(1/2+2a). The thin torus pattern, and thus
the topological sector of the state, remains unchanged after the exchange, as shown.
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4.4 Braid group representation

for the k = 3, ν = 3/2 Read-Rezayi state. In the following, we discuss how many

independent solutions we have found, how they lead to general rules for the braiding

of n quasiholes, and how these solutions compare to those obtained by other methods.

By means of Eq. (4.66), we may now express the braid matrices for two quasiholes,

Eq. (4.44), and three quasiholes, Eq. (4.63), in terms of only the golden ratio ϕ and

the parameter a = ±1/5. The two-quasihole matrix is then

χ = eiπ/2


e−iπa

eiπaϕ−1 e−2iπaϕ−1/2

e−2iπaϕ−1/2 ϕ−1

 , (4.70)

and the three-quasihole matrix is

χ = eiπ/2



e2iπa

e2iπa

eiπaϕ−1 e−2iπaϕ−1/2

e−2iπaϕ−1/2 ϕ−1


. (4.71)

In writing these matrices, we have removed the ± from the off-diagonal elements,

choosing the + sign. Choosing the negative sign instead leads to a unitarily equivalent

solution, where the transformation is facilitated through multiplication of each state

by (−1)#30, where #30 is the number of 3030 . . . strings in the thin torus pattern

associated with that state. The arguments given below will make it obvious that this
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4.4 Braid group representation

equivalence also carries over to general n-quasihole sectors. We have thus obtained

only two unitarily inequivalent solutions. It is clear from the above that these two

solutions are closely related, namely by complex conjugation and an overall Abelian

phase −1. Thus, the non-Abelian content of the k = 3 state has been determined

uniquely by our method.

We will now use the locality arguments already made in Sec. 4.2.3 for states of

three quasiholes, and applied earlier in Sec. 3.5 to the Pfaffian case, to generalize

these solutions to the case of n quasiholes. In essence, these arguments implied that

the result of exchanging two neighboring quasiholes can only affect the ground-state

pattern linking the associated domain walls in the sector label, and only depend on

the sequence of three patterns that are separated by these two domain walls. For this,

however, all possibilities have been exhausted by considering two and three quasiholes,

respectively. We can thus list the following rules, applicable to general n-quasihole

states, obtained directly from Eqs. (4.70) and (4.71):

• If the two quasiholes to be exchanged are associated with domain walls between

ground-state strings . . . 3030 99
92121 99
9121 . . . or . . . 2121 99
91212 99
9030 . . . , then after ex-

change the state remains in the same sector and picks up the phase eiπ(1/2+2a).

• If the two quasiholes are associated with the pattern . . . 3030 99
921212 99
9030 . . . , then

after the exchange the state merely picks up the phase eiπ(1/2−a).

• If the quasiholes are associated with the pattern . . . 212 99
903030 99
921 . . . , after ex-

change the state will stay in same topological sector with amplitude eiπ(1/2+a)ϕ−1
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4.4 Braid group representation

Figure 4.3: Bratteli diagram of the k = 3 Read-Rezayi state with two possible paths
indicated. The red line corresponds to the sector label 12112112112112030212 and
the blue line corresponds to 302120302112112030.

and transition with amplitude eiπ(1/2−2a)ϕ−1/2 into a sector that has the ex-

changed quasiholes associated with the pattern . . . 2121 99
9121 99
9121 . . . .

• If the quasiholes are associated with the pattern . . . 2121 99
9121 99
9121 . . . , then after

exchange the state will stay in same topological sector with amplitude eiπ/2ϕ−1

and transition with amplitude eiπ(1/2−2a)ϕ−1/2 into a sector that has the ex-

changed quasiholes associated with the pattern . . . 212 99
903030 99
921 . . . .

These rules make it easy to visualize what is going on as a result of braiding in this

non-Abelian state, as depicted in Fig. 4.2. It remains to see which of our two solutions,

if any, agrees with the representation of the braid group obtained from conformal

block monodromies [78]. To make contact between these various representations, let

us observe that our representation of topological sectors as patterns separated by

domain walls is in natural one-to-one correspondence with the representation given
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4.4 Braid group representation

by paths meandering through a Bratteli diagram, Fig. 4.3. Here, the vertices of

the diagram are associated with the various ground-state patterns according to their

“height” in the diagram, and the links represent the possible domain walls between

them. A left-to-right path along the links of the diagram then represents an allowed

sequence of patterns separated by domain walls, hence, a topological sector. The same

diagrammatic labeling of sectors also naturally arises through fusion rules in the CFT

analysis of the RR states. With this identification, it becomes easy to see that the

above rules describing our solution are, for a = −1/5, in one-to-one correspondence

with the “tensor representation” established in Ref. [78] based on the analysis of

conformal blocks.

To make this point, we briefly review the latter. In the tensor representation

given by Slingerland and Bais [78], topological sectors, or paths through the Bratteli

diagram, are represented by tensor products of vectors vΛi,Λi+1
of the “domino” form

vΛ1,Λ2 ⊗ vΛ2,Λ3 ⊗ vΛ3,Λ4 ⊗ · · · ⊗ vΛn−1,Λn . Here, Λi represents the “height” of the i-th

vertex in the path (Fig. 4.3), Λi+1 = Λi±1, and vΛi,Λi+1
is a formal vector representing

a link between two neighboring vertices at heights Λi, Λi+1, respectively. At general

level k, Λi takes on values 0, . . . , k.

In this tensor product basis, exchange of the quasiholes with indices i and i+ 1 is

represented by a matrix Rk,i which acts only on the i-th and (i+ 1)-th factors [78]:

Rk,i vΛi,Λi+1 ⊗ vΛi+1,Λi+2 = α vΛi,Λi+1 ⊗ vΛi+1,Λi+2

Rk,i vΛi,Λi−1 ⊗ vΛi−1,Λi−2 = α vΛi,Λi−1 ⊗ vΛi−1,Λi−2

(4.72)
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Rk,i vΛi,Λi+1 ⊗ vΛi+1,Λi = −αq−1vΛi,Λi+1 ⊗ vΛi+1,Λi (Λi = 0)

Rk,i vΛi,Λi−1 ⊗ vΛi−1,Λi = −αq−1vΛi,Λi−1 ⊗ vΛi−1,Λi (Λi = k)

(4.73)

 Rk,i vΛi,Λi+1 ⊗ vΛi+1,Λi

Rk,i vΛi,Λi−1 ⊗ vΛi−1,Λi

 =

 −αq−Λi/2−1 1
bΛi+1cq −αq−1/2

√
bΛi+2cqbΛicq
bΛi+1cq

−αq−1/2

√
bΛi+2cqbΛicq
bΛi+1cq αqΛi/2 1

bΛi+1cq



×

 vΛi,Λi+1 ⊗ vΛi+1,Λi

vΛi,Λi−1 ⊗ vΛi−1,Λi

 (0 < Λi < k) (4.74)

where q = e2πi/(k+2), α = q(1−M)/(2(kM+2)), M is related to the filling factor via

ν = 3/(3M + 2), and “q-deformed integers” bmcq are defined as,

bmcq =
qm/2 − q−m/2

q1/2 − q−1/2
. (4.75)

In our case k = 3 and M = 0, so q = e2πi/5 and α = eiπ/10. In this case, it

is not difficult to check that Eqs. (4.72)–(4.74) reduce to the rules established in

the beginning of this section, once tensor products are reinterpreted as sequences of

patterns via paths in the Bratteli diagram.

To wit, our first rule is equivalent to Eq. (4.72). To see this, observe that the

two domain walls defined by the ground-state sequence . . . 3030 99
92121 99
9121 . . . could

be represented on the Bratteli diagram Fig. 4.3 by v0,1 ⊗ v1,2 or by v3,2 ⊗ v2,1, both

of which follow the form of Eq. (4.72). A similar observation can be made about

. . . 2121 99
91212 99
9030 . . . . The phase picked up by the states in Eq. (4.72) is α = eiπ/10,
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which is equivalent to the phase in our first rule eiπ(1/2+2a), where we take a = −1/5

here and in the following. Similarly, one can observe that the pattern in our sec-

ond rule is represented by the vectors in Eq. (4.73). The phase in that equation is

−αq−1 = e7iπ/10, which is equivalent to the phase in the second rule, eiπ(1/2−a). Fi-

nally, our third and fourth rules are together equivalent to Eq. (4.74). The patterns

. . . 212 99
903030 99
921 . . . and . . . 2121 99
9121 99
9121 . . . can be written as v1,0⊗ v0,1 and v1,2⊗ v2,1

or as v2,3 ⊗ v3,2 and v2,1 ⊗ v1,2, which appear in Eq. (4.74) for Λi = 1 and Λi = 2,

respectively. Up to a change in the order of the basis states, the matrix in Eq. (4.74)

for either value of Λi gives the matrix elements stated in the third and fourth rules;

this equivalence is shown here for Λi = 2:

 −αq−2 1
b3cq −αq−1/2

√
b4cqb2cq
b3cq

−αq−1/2

√
b4cqb2cq
b3cq αq 1

b3cq

 =

 e3iπ/10ϕ−1 e9iπ/10ϕ−1/2

e9iπ/10ϕ−1/2 eiπ/2ϕ−1



=

 eiπ(1/2+a)ϕ−1 eiπ(1/2−2a)ϕ−1/2

eiπ(1/2−2a)ϕ−1/2 eiπ/2ϕ−1

 .

(4.76)

We hence see that one of our two solutions does indeed agree with the prediction

based on conformal block monodromies, with the other one being closely related.

Furthermore, it appears that the solutions we obtained form a true subset of the

solutions that can be derived by imposing the relevant fusion rules, together with the

axioms defining general anyon models (see, e.g., Refs. [79, 75, 76]). If, in addition
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to the pentagon and hexagon equations, one imposes unitarity and modularity, these

admit four solutions [75, 80]. Two of these appear to be identical to ours, with the

other two related to the former by complex conjugation. We observe that in our

approach, there is no reason to expect that solutions automatically come in com-

plex conjugate pairs. This is so since the coherent state ansatz explicitly assumes a

holomorphic dependence on quasihole coordinates (see Sec. 3.1), corresponding to a

choice of sign for the magnetic field that renders trial wave functions for the RR state

holomorphic (in both electron and quasihole coordinates). Our findings thus seem to

imply that for the “missing” two solutions, one cannot construct holomorphic trial

wave functions that can be adiabatically deformed (through a continuous family of

local Hamiltonians) into the thin torus patterns we work with.
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Chapter 5

The Gaffnian State

In addition to the wave functions which arise from unitary CFTs, there is also consid-

erable interest in analytic trial states that are similarly related to nonunitary CFTs

[81, 82]. The physical interpretation of such states remains much more subtle. Here,

the field theoretic mapping employed in the unitary case does not lead to a topologi-

cal quantum field theory that can serve as the low energy effective theory of the state

in question. In particular, the conformal block monodromies cannot be interpreted

to describe adiabatic transport, as they do not result in unitary transformations on

states. In contrast, adiabatic transport describes (a limit of) the time evolution gov-

erned by a Hermitian Hamiltonian, and is therefore always described by a unitary

transformation. For these reasons, it has been argued [82, 28, 29, 83, 31] that states

obtained from nonunitary CFTs describe gapless critical points within the phase

diagram of quantum Hall states, especially in those cases where a local parent Hamil-

Parts of this chapter originally appeared in Ref. [60].
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tonian for the state exists. Examples of the latter kind include the Haldane-Rezayi

(HR) state [81], and the state known as Gaffnian, which has surfaced in the literature

as early 1993 through a fixed many-body clustering property [84], and which has been

thoroughly discussed and was proposed to be critical using a CFT construction [82],

The question arises what hidden orders can be identified in such nonunitary states,

whether they be remnants of topological orders or orders of a different kind. Unfor-

tunately, there is currently no efficient and universally applicable method to test for

the topologically ordered [67] nature of a state directly through the study of ground

state properties. Much progress along these lines has recently been made through the

analysis of entanglement spectra [85, 86], which are directly related to edge spectra.

It has been argued that the edge spectrum of the Gaffnian is inconsistent with that

of any unitary CFT, and that this contradicts the existence of a gap in the bulk

spectrum [83], which is required for a topological phase. In principle, topological

orders can be detected through nonlocal order parameters [87], though it remains dif-

ficult to explicitly construct such objects for general non-Abelian topological orders

in microscopic quantum Hall wave functions. The situation is similar in quantum

magnetism. There, nonlocal operators detecting a topological phase can be directly

constructed for toy models [88] defined on highly constrained Hilbert spaces where

a gauge structure is explicit (see Ref. [89] for a general discussion). However, such

order parameters generally remain elusive in models where similar physics is emergent

within the low energy sector of a larger Hilbert space (e.g., Ref. [90]). The situation

is much simpler in one-dimensional systems exhibiting a Haldane or Luttinger liquid
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phase. The hidden orders of these phases can be probed through nonlocal objects

measuring squeezed particle configurations [91, 92], and their origin is quite manifest,

e.g., in certain limits of Luttinger liquids where the wave function assumes a special

factorized form [93, 94, 95, 96]. For topological orders, on the other hand, the most

direct probe that can, in principle, be implemented at a microscopic wave function

level is the study of the braiding statistics of localized elementary excitations.

In this Chapter, we ask the question whether the Gaffnian trial wave functions

may define some unitary anyon model through the adiabatic transport of trial state

quasiholes in the presence of a finite size gap. Indeed, this question is mathemati-

cally well defined. The quasihole trial states can be characterized as the unique zero

modes of a local parent Hamiltonian [84, 82]. For given quasihole configuration, the

associated conformal block wave functions define a finite-dimensional subspace, which

can be interpreted as a fiber over a point in the quasihole configuration space. The

question is thus whether the holomomy associated with exchange paths in this con-

figuration space induces well-defined statistics. It is clear from the outset that if this

is so, the holonomies must be quite different from the conformal block monodromies,

since these holonomies give rise to unitary transformations on fibers. Physically, this

is clear from the fact that these holonomies describe the adiabatic transport of quasi-

holes protected by a finite size gap. Mathematically, it follows from the fact that the

connection on our vector bundle is a Wilczek-Zee connection defined in terms of a

physical scalar product.

The question defined above can be rigorously addressed only by calculating the
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Wilczek-Zee connection from the given analytic wave functions. Unfortunately, we do

not know how to do this for the Gaffnian state. Instead, we will use this question as a

testbed for the coherent state method. Our motivation to clarify the applicability of

this method to a nonunitary state is twofold. A negative result (no consistent anyon

model) would further strengthen the case that the TT limit contains information

about the gapped or gapless nature of the underlying state. This has been explored

recently for the HR state [44], though not with regard to statistics. On the other

hand, if a consistent anyon model is obtained, we can argue that this is at least a

very plausible scenario for the holonomies defined by the Gaffnian quasihole states,

as we will further elaborate below.

Some of the arguments underlying the coherent state method, in particular the

justification for the factorized form of the ansatz (see Eq. (5.3) below), also rest on a

notion of locality, which is more subtle in a gapless state. We argue however, that the

necessary assumptions still apply, as long as there is a finite gap in the charge sector

of the system, independent of the existence of gapless neutral excitations. The scaling

of the charge gap of the Gaffnian state has been discussed in some detail in Ref. [97],

but at the moment, the question whether it remains finite in the thermodynamic limit

has not been conclusively resolved to the best of our knowledge.

We will proceed in a manner largely the same as the RR case in Chapter 4: We

begin by considering properties of n-quasihole states. We then find the braiding ma-

trices for the cases n = 2 and n = 3, which are together sufficient to construct a

representation of the braid group of n quasiholes for any n. Details of these calcula-
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tions are presented in Appendices C and D.

5.1 General solution for n quasiholes

The thin torus patterns of the bosonic ν = 2/3 Gaffnian, and their relation to

the underlying minimal model CFT, have been thoroughly discussed by Ardonne

[98]. For the six degenerate Gaffnian ground states, these patterns read 200200 . . . ,

020020 . . . , and 002002 . . . , which we will call “(200)-type”, or 011011 . . . , 101101 . . . ,

and 110110 . . . , which we refer to as “(011)-type”. There are three elementary domain

wall strings: 100 and 001, which occur between (200)-type and (011)-type ground

states, and 010, which occurs between two different (011)-type ground states. These

domain walls may link various different combinations of ground state patterns, thus

forming charge 1/3 solitons. The number of LLL orbitals is L = (3N − n)/2.

To specify the topological sector labels, we follow the convention of Sec. 4.1: α

distinguishes classes of sectors that are not related by translation, and c = −1, 0, 1

distinguishes the three translationally-related members of each class for a given α.

Below, we will also use translational properties to define a unique convention for how

the c labels are to be assigned. As usual, the domain wall positions can change only

by multiples of a certain “stride” within each topological sector (here, multiples of

3), and are thus of the general form aj = 3nj + fj(c, α), with fj(c, α) an offset factor.

The latter’s value for symmetric domain walls is uniquely determined by symmetry.

However, for asymmetric domain walls, a certain ambiguity exists a priori in how to

132



5.1 n quasiholes

α Thin torus pattern f1(α) f2(α)
1 0020020011011011002002002 −s −2 + s
2 1101101100200200200110110 −1 + s 2− s
3 1101100101011011010110110 1 0

Table 5.1: c = 0 thin torus patterns for a two–quasihole Gaffnian state, and the offset
functions of the associated domain walls. The elementary domain wall strings are in
bold, and the orbital positions, 3nj, are underlined. Patterns for c = 1 (resp. −1)
can be obtained by shifting each occupancy number one orbital to the right (left),
and the shift functions obtained using fj(c, α) = fj(α) + c.

define the domain wall position precisely with respect to the adjacent orbitals. This

is accounted for by the shift—or asymmetry—parameter s. See Table 5.1 for details.

We define the coherent states as in Eqs. (4.1) and (4.2),

|ψc,α({h})〉 = N
∑

a1<...<an

n∏
j=1

φα,j(hj, κaj) |a1, . . . , an; c, α〉 , (5.1)

|ψc,α({h})〉 = N ′
∑

a1<...<an

n∏
j=1

φα,j(hj, κaj)|a1, . . . , an; c, α〉. (5.2)

However, here the Gaussian amplitude form factor,

φα,j(hj, aj) = exp

[
i

3
(hjy + δ(α, j)/κ)κaj − γ(hjx − κaj)2

]
, (5.3)

has a coefficient of 1/3 on the ihy term. This is because the “stride” of the Gaffnian

domain walls is different than the cases studied above. The dual counterpart to

Eq. (5.3) is

φα,j(hj, aj) = φα,j(−ihj, aj)|κ→κ̄, (5.4)

Here, as before, κ = 2π/Ly, κ̄ = 2π/Lx, and δ(α, j) can be shown to be 0 or π, taking
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5.1 n quasiholes

on the same value for symmetry-related (translation or inversion) domain walls. N

and N ′ are normalization factors.

Eqs. (5.1) and (5.2) are related by a linear transformation, and we define transition

functions uσc,c′,α,α′({h}) exactly as in Eq. (4.5). The transition functions’ dependence

on h, (c, c′), and (α, α′) separates into the following factorized form:

uσc,c′,α,α′({h}) = u({h})Mc,c′ξ
σ
α,α′ , (5.5)

with u({h}) and Mc,c′ fully determined by translational symmetry:

u({h}) = exp

(
iπ

3

∑
j

hjxhjy

)
, (5.6)

M =
1√
3


e2πi(L−1)/3 e−2πiL/3 e2πi/3

e−2πiL/3 1 e2πiL/3

e2πi/3 e2πiL/3 e2πi(L−1)/3

 . (5.7)

The matrix M is in the “natural” c basis, defined by,

∑
j

nj =
1

3
L(L− c)− 1

3

∑
j

aj mod L, (5.8)

where nj is the occupation number of the jth orbital in the pattern labeling the state.

Global paths (shown in in Fig. 2.5 for n = 2 quasiholes) constrain the ξσα,α′s as

before. For n quasiholes in configuration σ, we first consider moving the rightmost
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quasihole around the torus to become the leftmost. After this move the system is in

configuration gx(σ) (see Table 4.4), and continuity across the torus boundary dictates,

ξgx(σ) = B−1diag[e−2πiL/3−iLδ(α,n)/3−i/3
∑
j δ(α,j)]ξσdiag[e−2πifj(α)/3], (5.9)

in correspondence with Eqs. (4.29) and (4.56). The matrix B is defined as before (see

Eq. (4.28) for n = 2 and Eq. (4.57) for n = 3). Now consider moving the topmost

quasihole of a state in configuration σ up, so that it crosses the upper boundary to

become the bottommost quasihole in the resulting configuration gy(σ). The continuity

condition on the ξ matrices analogous to Eq. (5.9) reads,

ξgy(σ) = diag[e−2πifj(α)/3]ξσdiag[e−2πiL/3−iLδ(α,n)/3−i/3
∑
j δ(α,j)]B. (5.10)

In the previous cases, for each n we applied both global path equations in succession

to constrain ξσ for one particular quasihole configuration: σ = + for n = 2 and

σ = +,+ for n = 3. We generalize this be defining a special configuration for each n:

σI = +,+, · · · ,+. This is shown in Fig. 5.1. It is easy to see that σI is always invariant

under the two moves described above performed in succession, i.e., gy(gx(σI)) = σI .

Hence, Eqs. (5.9) and (5.10) together constrain the matrix elements of ξσI .

As before (Secs. 4.2.2 and 4.2.2), the system is symmetric under the operators τx

and τy which each induce reflection in their subscripted direction in conjunction with
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5.1 n quasiholes

Figure 5.1: We use σI as a shorthand for the n-quasihole configuration σ =
+,+, · · · ,+. This is the configuration in which the leftmost (first) quasihole is bot-
tommost, the next to the right (second) is the next above, and so on.

α Thin torus pattern f1(α) f2(α) f3(α)
1 002001101101101011011011002002 −s 0 s
2 110110101101100200200200110110 1 −2 + s 1− s
3 110110020020020011011010110110 −1 + s 2− s −1
4 110110101101101011011010110110 1 0 −1

Table 5.2: c = 0 thin torus patterns for a three-quasihole Gaffnian state, and the
offset functions of the associated domain walls. The elementary domain wall strings
are in bold, and the orbital positions, 3nj, are underlined. Patterns for c = 1(−1)
can be obtained by shifting each occupancy number one orbital to the right (left),
and the shift functions obtained using fj(c, α) = fj(α) + c.
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5.1 n quasiholes

time reversal. These symmetries further constrain the ξσs.

ξgτx (σ) = (Bτ )
−1diag[eiL/3

∑
j δ(α,j)](ξσ)∗diag[e2πi/3

∑
j(1+δ(α,j)/π)fj(α)], (5.11)

ξgτy (σ) = diag[e2πi/3
∑
j(1+δ(α,j)/π)fj(α)](ξσ)∗diag[eiL/3

∑
j δ(α,j)]Bτ . (5.12)

In the above, gτx(σ) is the configuration that results from starting with configuration

σ and sending x→ −x; and similarly gτy(σ) results from sending y → −y. The matrix

Bτ is defined as in Eq. (4.49) for n = 3, and is the identity for n = 2. Performing

the operations τx and τy in succession on a system starting in the configuration σI

gives σI again, i.e., gτy(gτx(σI)) = σI . In this way Eqs. (5.11) and (5.12) allow us to

further constrain the elements of ξσI .

We adiabatically transport quasiholes along the same path as before (see Secs. 2.8,

4.2.3, and 4.3.3, as well as Fig. 2.6). In the following expression we do not specify the

number of quasiholes, their configuration, or which adjacent pair is braided, though

these must all be specified to find a particular braiding matrix. In general, the result

of adiabatic transport, expressed as a matrix in the α vector space, is,



|Ψ1〉

|Ψ2〉

...

|Ψn〉


→ eiΦABΞσ(Ξσ′)†



|Ψ1〉

|Ψ2〉

...

|Ψn〉


. (5.13)

Here, ΦAB is the Aharonov-Bohm phase, equal to the charge of a quasihole, −1/3,
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times the area enclosed by the braiding path. The quantities |Ψα〉 are the three-

component column vectors with entires |ψc,α〉. Ξσ is the matrix ξσ ⊗M (where we

identify the states |ψc,α〉 with a formal tensor product basis |α〉⊗ |c〉). σ is the initial

configuration of the quasiholes, and σ′ the other configuration that occurs during

braiding (see Fig. 2.6), i.e., the one obtained from σ by crossing the line hjx = hix or

the line hjy = hiy.

It turns out that the result of braiding is always block diagonal in the c labels,

i.e., the braid matrix Ξσ(Ξσ′)† is of the form χi(n)⊗ Icmax×cmax , where we call χi(n) =

ξσ(ξσ
′
)† the “reduced” braid matrix associated with a counter-clockwise exchange of

the i-th and i+ 1-st of n quasiholes. This fact is a direct consequence of translational

invariance. Moreover, χi(n) is found to be independent of the initial configuration σ,

as one would expect.

As before, a final set of constraint equations comes from the imposition of certain

locality constraints on the braid matrix. The constraint equations, combined with the

above symmetries, then lead to a discrete set of (usually intimately related) solutions

for the statistics. We will discuss the full set of constraint equations and their solutions

in App. C for the two-quasihole case, and in App. D for the three-quasihole case.

Here we will summarize the results of this calculation by giving the (reduced) braid
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matrices obtained from it for both two and three particles:

χ1(2) = ξ+(ξ−)†

= e−iπ/3


e−iπa

eiπaϕ−1 e−2iπaϕ−1/2

e−2iπaϕ−1/2 ϕ−1

 , (5.14)

χ1(3) = ξ{++}(ξ{0+})†

= e−iπ/3



e2iπa

e2iπa

eiπaϕ−1 e−2iπaϕ−1/2

e−2iπaϕ−1/2 ϕ−1


, (5.15)

where a = ±1/5, and ϕ is the golden ratio, ϕ = (1 +
√

5)/2. The parameter s is

found to have one of two values: s = 2− 3a/2, one for each sign of a. Just as in the

case of the k = 3 Read-Rezayi state discussed in Chapter 4 there are two solutions,

which are related by an Abelian phase and complex conjugation. In the above, we

have also fixed a gauge degree of freedom associated with unitary transformations.

Together with the locality constraint described above, these two matrices imply

the result of braiding any adjacent pair in a state of n quasiholes. A “tensor rep-

resentation” of the statistics just as discussed in Ref. [78] can then immediately be
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constructed in complete analogy with Chapter 4.

5.2 Discussion

The two solutions obtained in the preceding section are related to one another sim-

ply by complex conjugation and an overall Abelian phase. They describe Fibonacci

anyons and are thus closely related to those obtained for the k = 3 Read-Rezayi (RR)

state in Chapter 4. In essence, the solutions obtained from the RR patterns and those

obtained here are the same up to an Abelian phase. This statement excludes global

exchange paths on the torus involving processes such as the ones depicted in Fig. 2.5,

as we will further explain below. This close correspondence between the solutions

found from RR and Gaffnian patterns is a manifestation of rank-level duality be-

tween the associated SU(2)3 and SU(3)2 fusion rules, respectively. This duality was

also discussed by Ardonne [98] in terms of domain walls. It is manifest in the Bratteli

diagrams of Fig. 5.2, which in the present context represent the rules for domain wall

formation between ground state patterns for the respective states. Note, however, that

there is a three-to-two correspondence between the RR and Gaffnian sectors, rather

than one-to-one. This is so since each sector, i.e., each path in the Bratteli diagram,

is threefold degenerate under translations in the Gaffnian case, but only twofold in

the RR case. The correspondence between Gaffnian and RR sectors is perfect if we

limit ourselves to the n−1 generators of the braid group σi,i+1, i = 1, . . . , n−1, which

exchange the i-th and i + 1-st quasihole. These generate the full braid group in the
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plane, but not on the torus. On the torus, these generators leave certain subspaces

of topological sectors invariant, which all start and end in the same pattern in the

topological sector label. These subspaces for the Gaffnian are then in correspondence

with similar subspaces for the RR state, in the sense that there are isomorphisms

between them that commute with braiding, except for an overall Abelian phase. This

correspondence, however, gets spoiled by the inclusion of the remaining generators

on the torus, which mix the subspaces. This happens differently for the Gaffnian and

the RR case, since there are six such subsectors in the former case, but only four in

the latter.

The subtle differences between our solutions for the Gaffnian and the RR case on

the torus are of a piece with the difference in overall Abelian phase. It is well known

that the overall Abelian phase could in principle assume any value in planar geometry,

but on the torus, it is constrained by the topological degeneracies characterizing the

state. In the coherent state method, one source of phase differences is the factor

i/3 in the coherent state ansatz, Eq. (5.3), which is generally related to the “stride”

of the domain wall in a given sector, which equals 3 in the present case and 2 in

the RR case (compare Eq. (4.3)). This stride is of course identical to the center-of-

mass degeneracy. In particular, one may see that the equations obtained from global

processes shown in Fig. 2.5 are quite sensitive to this stride and the associated phase

(see Eq. (C.1) in App. C). In view of the importance of these processes in our method,

and the fact that they spoil the correspondence between Gaffnian and RR topological

sectors as explained above, it may not be clear a priori that the consistency equations
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Figure 5.2: Bratteli diagrams depicting the c = 0 patterns in the RR state (top)
and the Gaffnian (bottom). Valid topological sectors on the torus are represented
by paths which start at the left, take one step right (either up or down) for each
quasihole in the state, and end on the same type of ground state pattern—(200)-type
or (011)-type—as they began, minding periodic boundary conditions. There is a one-
to-one correspondence between the paths in the lower diagram and the patterns in
Tables 5.1 and 5.2, and also between the valid paths in the upper and lower diagrams.
This latter correspondence is how the SU(2)3 and SU(3)2 rank-level duality manifests
in terms of patterns. It should be noted that for each sector which corresponds to a
path in one of these diagrams, there is for RR an additional sector related to the first
by translation, and two additional translated sectors for the Gaffnian.
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we obtain in both cases admit closely related solutions, in the sense discussed. That

this is so can be traced back to the fact that the translational degree of freedom,

c, decouples early on (see below Eq. (5.5)), and the remaining α degree of freedom

is fully analogous in both cases. This is how rank-level duality becomes manifest in

the present formalism. For similar reasons, our solutions for the Gaffnian and RR

states, which were both obtained at the maximum (bosonic) filling factor, could be

generalized quite easily to lower filling factors.

As emphasized initially, the Fibonacci-type solutions we obtained are distinct from

the anyon model associated with the conformal block monodromies of the Gaffnian

state. The latter describes so-called Yang-Lee anyons, whose relation to Fibonacci

anyons and the associated Galois duality has enjoyed much interest recently [99,

100]. Yang-Lee anyons are associated with nonunitary F -matrices consistent with

the SU(3)2 fusion rules. It has been known for some time, however, that the same

fusion rules admit unitary solutions of the Fibonacci type also; these are realized by

the non-Abelian spin singlet (NASS) state of Ref. [101]. Indeed, it is not difficult to

perform checks confirming that one of our solutions, that corresponding to s = 17/10,

agrees exactly with the monodromies of the NASS state (including the overall phase).

The dominance patterns of the NASS state have been discussed more recently [102],

and it seems clear that the calculation presented here can be carried over to this state

without essential changes. In all, this confirms once more for the case of SU(3)2 that

the coherent state ansatz produces a subset of all unitary anyon models consistent

with given fusion rules.
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In the case of the unitary NASS state, our results support the usual conjecture

that the holonomies associated with adiabatic transport agree with conformal block

monodromies. In the case of the Gaffnian, things are more subtle. We have argued

that in this case, provided that the coherent state ansatz is justified, the holonomies

give rise to a well defined Fibonacci anyon statistics, possibly (given the twofold

ambiguity of our solution) identical to those of the NASS state. In particular, we

believe that our ansatz is indeed well justified if the gap of the Gaffnian parent

Hamiltonian does not close in the charge sector. If so, this would presumably remain

a formal property of the Gaffnian state that is not robust to perturbations, even ones

that do not open a gap in the neutral sector. However, it might shine new light on

the formal connections between the Gaffnian and the NASS state, which have been

discussed previously [98].
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Chapter 6

Zero Mode Counting

Counting the number of zero-mode states has been an integral part of the study of

solvable FQH Hamiltonians on the sphere [58, 61, 62, 63, 64], where the counting

is aided by the polynomial structure of the underlying wave functions. No such

polynomial structure is apparent in the wave functions on the torus, however, so to

count states on that topology another source of structure information is needed. Such

information is provided by the thin torus patterns.

Using the method of Ref. [44], we will develop formulae to count the zero modes for

each state studied in previous chapters. This method makes use of the fact that, by

taking the zero-mode wave functions to the thin limit, both the position degeneracy

of the quasiholes and the topological sector degeneracy are made manifest through

the patterns. However, even though the thin limit is used, the results obtained do

not depend in any way on the aspect ratio. Adiabatic continuity between the thin

torus patterns and the bulk states ensures that the numbers of states in those two
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regimes are identical. Using the patterns from the thin torus limit, we will derive

formulae for the numbera of various states on the torus and on the sphere. Since the

latter have been derived previously, the sphere results will serve as a useful check on

the method.

Once again, we will begin with the simplest state, the ν = 1/2 Laughlin state,

and successively count the more complex MR, RR, and Gaffnian states.

6.1 ν = 1/2 Laughlin counting

We will count the number of zero modes of fixed particle number N and number of

domain walls n, which we call Φ(N, n). The number of orbitals in the LLL will be

called L; the orbitals are numbered sequentially from 0 to L − 1. For the ν = 1/2

Laughlin state [11], L = 2N + n on the torus and L = 2N + n− 1 on the sphere.

To count the zero modes on the sphere, we will make use of strings of integers from

the “prolate spheroid limit”, the limit in which the sphere is stretched along some axis

while keeping the surface area fixed. In this limit, integer patterns emerge. These

are equivalent to the “dominance patterns” in the Jack polynomial representation of

the wave functions on the sphere [51, 52, 53]. The sphere patterns are identical to

the patterns in the thin torus limit of the same state, save for one key difference. On

the torus, an FQH state has a set of degenerate ground state zero modes, whereas,

on the sphere, one zero mode is the unique ground state. Just as quasiholes on the

torus correspond, in the thin limit, to domain walls between ground state strings,
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Thin torus patterns Thin sphere patterns

99
90 99
901010 99
90 99
90101

0 99
90 99
90101 10 99
90 99
901

10 99
90 99
9010 1010 99
90 99
9

010 99
90 99
901 99
901010 99
9

1010 99
90 99
90 99
9010 99
901

99
901010 99
90 10 99
9010 99
9

99
9010 99
9010

0 99
9010 99
901

10 99
9010 99
90

Table 6.1: ν = 1/2 Laughlin zero mode patterns on the thin torus and thin sphere,

for N = 2 particles and n = 2 quasiholes. Domain wall positions are marked with 99
9.

so too will quasiholes on the sphere correspond to domain walls between the exact

same set of strings as on the torus. However, spherical boundary conditions dictate

that each thin sphere pattern return to the unique ground state string at the left

and right edges. Any pattern which has some non-ground-state string on the left

(resp. right) edge is said to have a domain wall located at zero (L). As an example,

recall from Chapter 2, the thin torus limits of the Laughlin ground states are 0101...

and 1010..., and domain walls appear as additional zeros in ground state strings, e.g.

010 99
9010 . . . . On the sphere, the ground state is 1010 . . . 1, and boundary conditions

dictate that this string must appear at the left and right edges of each pattern. A

detailed example is presented in Table 6.1, where, all the patterns for N = 2 particles

and n = 2 domain walls are shown.

To derive the zero-mode counting formulae, we first enumerate the possible posi-

tions the n domain walls can take within a pattern, which we call “position degen-
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eracy”. We first consider the counting on the sphere before considering the torus.

Domain walls take positions which are halfway between LLL orbitals—i.e., for the

domain wall string 0 99
90, the domain wall is not coincident with the left or the right

orbital, but is halfway between. A domain wall at the far left of the pattern is to the

left of orbital 0 at position −1/2, and a domain wall at the far right is at position

L− 1 + 1/2. To simplify the notation, we will refer to the position of the ith domain

wall shifted up by 1/2 as wi, for 0 ≤ i ≤ n−1. The wi are then integers characterized

by the conditions,

0 ≤ w0 < w1 < · · · < wn−1 ≤ L,

wi+1 − wi = 1 mod 2.

(6.1)

The enumeration of domain wall positions is implicit in Eq. (6.1). This enumera-

tion can become explicit if we introduce integers ki = (wi − i)/2. In terms of the ki,

both conditions in Eq. (6.1) together become,

0 ≤ k0 ≤ k1 ≤ · · · ≤ kn−1 ≤ (L− n+ 1)/2 = N, (6.2)

where the final equation at the right comes from the definition of L on the sphere.

The number of ways to satisfy this constraint is the same as the number of n-item

multisets—sets that allow repeated elements—with elements drawn from the integers

0 to N . The number of these is
((
N+1
n

))
, where

((
m
k

))
=
(
m+k−1

k

)
is read “m multichoose
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k”. Thus the number of Laughlin states on the sphere is,

ΦLaughlin

sphere
(N, n) =

((
N + 1

n

))
=

(
N + n

n

)
. (6.3)

This agrees with the formula in [61]. The example in Table 6.1 shows that there are

six zero-mode patterns on the sphere for N = 2 and n = 2, and indeed we see that

Φ(2, 2) = 6.

The zero-mode counting on the torus is very similar to that on the sphere, save

that patterns need not only begin in the 10 ground state, but could also begin in the

01 ground state. To count the position degeneracy of the domain walls, we adopt

the following procedure. We first consider a restricted subset of patterns of n domain

walls, in which each element is a pattern with a domain wall fixed at the far left.

In terms of the positions wi, this restriction fixes w0 = 0. We call this set S1, with

elements denoted s1, and |S1| = Φ0(N, n) is the number of patterns in this restricted

set. We wish to find the set of all patterns, which we can call S2, and ultimately find

the number of patterns Φ(N, n) = |S2|. We first construct a new set,

S1 × L− 1 = {(s1,m) : s1 ∈ S1,m ∈ {0, L− 1}} . (6.4)

The number of elements in this set is
∣∣S1 × L− 1

∣∣ = L |S1|. We can construct a

149



6.1 Laughlin counting

mapping from S1×L− 1 onto the full set of patterns using the translation operator,

g : S1 × L− 1→ S2,

(s1,m) 7→ Tms1. (6.5)

Said differently, the set S1 × L− 1 and the mapping allow us to construct all the

patterns from those in the restricted set by successively translating each restricted

pattern by m orbitals. In this way we generate patterns with domain walls fixed

not just at zero but at m for m ∈ {0, L − 1}. However, the set S1 × L− 1 contains

multiple copies of each pattern in S2. It is not difficult to see that,

∣∣g−1(s2)
∣∣ = n∀s2 ∈ S2. (6.6)

Thus, the total number of states is |S2| = L
n
|S1|, or,

ΦLaughlin
torus

(N, n) =
2N + n

n
Φ0(N, n). (6.7)

To find an expression for Φ0(N, n), we proceed by enumerating the domain wall

positional degeneracy as in the sphere counting. The domain wall positions wi, 0 ≤

i ≤ n− 1, follow the conditions,

0 = w0 < w1 < · · · < wn−1 ≤ L− 1,

wi+1 − wi = 1 mod 2.

(6.8)
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As before, we introduce integers ki = (wi− i)/2, in terms of which Eq. (6.8) becomes,

0 = k0 ≤ k1 ≤ · · · ≤ kn−1 ≤ N. (6.9)

The number of these is the number of multisets of n − 1 elements drawn from the

integers 0 to N ,

Φ0(N, n) =

((
N + 1

n− 1

))
. (6.10)

When we combine Eq. (6.10) with Eq. (6.7), we find the number of ν = 1/2 Laughlin

zero modes on the torus,

ΦLaughlin
torus

(N, n) =
2N + n

N + n

(
N + n

n

)
. (6.11)

We find that Φ(2, 2) = 9, which agrees with the explicit enumeration in Table 6.1.

We also notice that Φ(N, 0) = 2 for any N ; this number agrees with the torus ground

state degeneracy.

6.2 Moore-Read counting

The strategy for zero-mode counting demonstrated above can be generalized to more

complicated states. However, such generalization is not completely straightforward.

In the Abelian Laughlin case, the only zero-mode degeneracy that had to be enumer-

ated was domain-wall positional degeneracy. In the non-Abelian cases, there is some
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“internal degeneracy”, insofar as specifying the positions of all the domain walls does

not completely specify the state. We will develop in this section a means for counting

the number of such states with domain walls at identical positions by examining the

Bratteli diagram.

Recall from Chapter 3 the MR [23] thin torus ground states are 0202 . . . , 2020 . . . ,

and 1111 . . . . The thin sphere ground state is 2020 . . . 2. We work with the bosonic

ν = 1 state with L = N+n/2 orbitals on the torus and L = N+n/2−1 on the sphere.

As in the Laughlin case, the domain wall positions are halfway between orbitals, so

we call wi the position of the ith domain wall shifted up by 1/2.

On the sphere, the positions of the domain walls follow the general inequality

0 ≤ w0 ≤ w1 ≤ · · · ≤ wn−1 ≤ L. (6.12)

Equality between two adjacent domain wall positions wi and wi+1 is only possible

if the string separating domain walls i and i + 1 has even length. In that case,

wi+1−wi = 0 mod 2. If the length of the string separating i and i+ 1 is odd, which

can occur either for a 020- or a 111-type string, then wi+1 − wi = 1 mod 2 and the

two can never coincide. We can, in a certain sense, classify zero modes according

to the number of these odd-length strings occurring between all the domain walls in

their patterns. Different patterns can still have the same positional degeneracy so

long as they have the same number of odd-length strings between domain walls, as

we can quickly show. We introduce integers ki = (wi − `i)/2, where `i is the number
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6.2 Moore-Read counting

of odd-length strings left of domain wall i, and ` = `n−1 is the total number of odd-

length strings in the pattern (since, on the sphere, the final string is always even in

length). In terms of the kis, Ineq. (6.12) and the two constraints that follow can be

represented by,

0 ≤ k0 ≤ k1 ≤ · · · ≤ kn−1 ≤ (L− 1− `)/2, (6.13)

and the number of these multisets of the ki is,

((
L−1−`

2
+ 1

n

))
. (6.14)

To find the total number of patterns, we need only know the number of patterns with

` odd-length strings for each allowed value of `, then,

Φ MR
sphere

(N, n) =
∑
`

(
L−1−`

2
+ n

n

)
× (number of patterns with `). (6.15)

To determine the number of patterns with a certain `, we examine the MR Bratteli

diagram (see Fig. 6.1).

Recall that the sequences of ground state strings that define a pattern correspond

to a certain path through the Bratteli diagram of a state. The links in the path cor-

respond to the domain walls in the pattern. Each link in the path can be represented

as a vector pointing either up-and-right or down-and-right. A “kink” occurs between

any two successive links that differ in their up/down direction. Two domain walls in

a pattern are separated by an odd-length string if and only if the corresponding links
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6.2 Moore-Read counting

Figure 6.1: The Moore-Read state Bratteli diagram, with the paths for n = 4 links
shown in red. The left path has one kink, and thus ` = 1; the right path has ` = 3
kinks. These paths correspond to patterns with even N

in that pattern’s path have a kink between them. The number of patterns with `

odd-length strings is thus equal to the number of paths through the Bratteli diagram

with ` kinks.

To find a formula for the number of paths with ` kinks, we will first introduce

another integer F as follows. Every pattern of n domain walls must have at least

n/2 − 1 + η odd-length strings, where η = 1 when N is odd and 0 when N is even.

This is so because, in the path corresponding to a pattern, every second link will come

to an edge and must turn away, which produces a kink. The path with this minimum

number of kinks will begin at the bottom row and always proceed from bottom to

top and back, except for η (0 or 1) kinks in the middle row. A pattern with more

odd-length strings will have “extra” kinks in the middle row. These always come in

pairs, as adding an odd number of kinks to the middle would prevent the path from
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6.2 Moore-Read counting

Figure 6.2: MR Bratteli diagram where paths with n = 6 links are shown in red.
These correspond to patterns with n domain walls and N particles with N odd,
which must be so because the number of kinks in the middle of each path is odd. The
top path has ` = 5, F = 3. Under the analogy it can be mapped to the Laughlin
sphere ground state pattern. The bottom three paths have ` = 3, F = 1. They can
be mapped to Laughlin patterns with two domain walls.

ending at the proper edge. We call the number of kinks in the middle row F , where

F = `+ 1− n/2. (6.16)

Now we have distinguished two different kinds of kinks: Those at the edges of the

path, and those in the middle. This distinction will allow us to count the paths. We

represent each path as a string of integers as follows. Each kink in the top or bottom

row corresponds to a 0, and each kink in the middle corresponds to a 1 (see Fig. 6.2).
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6.2 Moore-Read counting

When we label the paths in this way, the numbers thus generated satisfy the ν = 1/2

Laughlin generalized Pauli principle [103], in that there is no more than one particle

in any two adjacent sites. We make an analogy in which the kinks represent “lattice

sites” and the kinks in the middle are “occupied”. Then the number of paths for a

given n and ` (or, equivalently, n and F ) is given by the number of Laughlin states

with L′ = `, N ′ = F , and n′ = L′ − 2N ′ = n/2 − F , where primed quantities are

properties of the analog state. Plugging these into Eq. (6.3), we find that,

ΦLaughlin

sphere
(N ′ = F, n′ = n/2− F ) =

(
n/2

F

)
. (6.17)

With Eq. (6.17) and the appropriate substitution of F into Eq. (6.15), we find

that the number of MR zero modes on the sphere is,

Φ MR
sphere

(N, n) =
∑

F=N mod 2

(
N−F

2
+ n

n

)(
n/2

F

)
. (6.18)

This agrees with the results derived in Ref. [61], in which a similar hierarchy approach—

enumerating the internal degeneracy of a state using the full counting of a simpler

state—was taken. In that reference, the author used the notation “n” for the number

of quasihole pairs, which is n/2 here.

The number of MR zero modes on the torus can be found in a similar fashion

to the MR zero modes on the sphere. As we did in the Laughlin case on the torus,

we will first consider a restricted set of patterns. In this case, we only include those
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6.2 Moore-Read counting

patterns which have a domain wall fixed at zero as before, but also an odd-length

string at the end of the pattern. The number of such patterns can be found by fixing

the number of odd-length strings, `, or equivalently fixing the number of kinks in

the Bratteli diagram path. Then the number of patterns in the restricted set with

a given number of kinks is the position degeneracy of the domain walls times the

internal degeneracy, or,

(
L−`

2
+ n− 1

n− 1

)
× (number of patterns with `). (6.19)

The number of patterns with ` odd-length strings can again be found from the

Bratteli diagram paths with ` kinks. However, the paths with ` kinks on the torus

will be superficially equivalent to the paths with ` − 1 kinks on the sphere. On the

torus, the two ends of each path must be joined together to enforce periodic boundary

conditions1. All paths in the restricted subset will have a kink at the “zero” location

where the ends of the path are joined. The definition of this set, including only those

patterns with a domain wall at zero and an odd-length string at the end, is equivalent

to including only those patterns with a domain wall at zero and which correspond to

paths with a kink at zero. When such a path is shown as in our diagrams here, this

kink will not be readily apparent, and so such a path will appear to have `− 1 kinks

if the boundary conditions are not taken into account.

1When N is odd, a path which begins on the bottom row must end at the top row. To obey
periodic boundary conditions, then, one must connect the two ends of the path with a twist when
N is odd, equivalent to joining the Bratteli diagram not on an ordinary 2D strip but on a Möbius
strip.

157



6.2 Moore-Read counting

We again make an analogy to Laughlin patterns by marking 0s on all kinks in

the top and bottom rows (including the kink at “zero”), and a 1 on all kinks in the

middle row. The patterns thus generated are the Laughlin patterns on the torus,

with L′ = `, N ′ = F , (where F = `− n/2 is again the number of kinks in the middle

row) and n′ = L′ − 2N ′ = n/2− F .

To generate the full set of patterns from the restricted set, we follow a similar

procedure as in the Laughlin torus case. We create a new set, in which we include

each pattern in the restricted set translated 0, 1, . . . , L − 1 times. Thus this set has

L times as many patterns as the restricted set. But there will be ` preimages of each

pattern under g. In the set language of Sec. 6.1,

∣∣g−1(s2)
∣∣ = `∀s2 ∈ S2. (6.20)

In Eq. (6.6), we found that |g−1(s2)| = n∀s2 ∈ S2, which is not identical to Eq. (6.20).

The behavior of Eq. (6.6) is actually special to the Laughlin case, in which an odd

string follows every domain wall in the pattern and thus a kink follows every link

in the path. For a given n in the Laughlin case, there is only a single `, ` = n, so

Eq. (6.6) is a special case of Eq. (6.20).

Then the number of unique patterns is,

Φ MR
torus

(L, n) =
∑
`

L

`

(
L−`

2
+ n− 1

n− 1

)
×ΦLaughlin

torus
(L′ = `,N ′ = F, n′ = n/2− F ), (6.21)
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6.3 RR counting

or, equivalently,

Φ MR
torus

(N, n) =
∑

F=N mod 2

2N + n
N−F

2
+ n

(
N−F

2
+ n

n

)(
n/2

F

)
. (6.22)

This is equivalent to the result in Ref. [44], where the authors work with the fermionic

ν = 1/2 MR state rather than the bosonic ν = 1 state. Eq. (6.22) gives the correct

state counting for every case except n = 0. There, we expect the formula to give the

ground state degeneracy, but instead ΦMR,torus(N, n = 0) = 4. In the next section

we will need to use this formula when n = 0, so we will multiply the formula by a

corrective factor. When N is even, the ground states are the three familiar 20 . . . ,

02 . . . , and 11 . . . patterns; when N is odd, only 111 . . . is possible. So our corrective

factor takes the form, (
31−η

4

)δn,0
, (6.23)

where, again, η = N mod 2.

6.3 k = 3 Read-Rezayi counting

The counting of the Read-Rezayi [58] zero modes will continue the trend started in

previous sections. The patterns can be broken into groups with a certain number of

odd-length strings, and the number in each group will be factorizable into a positional

degeneracy term times an internal degeneracy term. The latter will be found by

making an analogy to the MR patterns and using the formulae from the previous
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6.3 RR counting

section.

In Chapter 4 we saw that the RR thin torus ground state patterns are 3030 . . . ,

0303 . . . , 2121 . . . , and 1212 . . . . The sphere ground state is 3030 . . . 3. There are

L = (2N + n)/3 LLL orbitals on the torus, and L = (2N + n)/3 − 1 on the sphere.

Domain walls occur halfway between orbitals, so wi for 0 ≤ i ≤ n− 1 denotes the ith

domain wall position shifted up by 1/2.

To count the position degeneracy on the sphere, we follow the same procedure as

in the MR case. Again, we define ` as the number of odd-length strings. For such

states with a certain fixed `, the number of patterns that are equivalent up to changes

in domain wall positions is (
L−1−`

3
+ n

n

)
. (6.24)

The number of such patterns will given by an analogy to the MR counting.

Here, we define F = [3(`+ 1)− n]/2. As in the MR case, F encodes the locations

of kinks in the Bratteli diagram, but the encoding scheme is now different. If a link

which leads into a kink is directed up (respectively, down), we label the kink by the

number of rows between the kink and the top (bottom) row. See the top right of

Fig. 6.3. Kinks that occur at the top or bottom edge rows are always labeled 0.

Kinks in the two middle rows are labeled 2 or 1 depending on whether the incoming

link points away from or towards the nearest edge row. The value of F for a given

path is the sum over the integer labels on the kinks.

Again, we notice that the sequences of integers on the kinks form recognizable

160



6.3 RR counting

Figure 6.3: Boxed: The RR n = 6 paths for all the allowed values of F . Top right: A
depiction of the labeling scheme for the kinks. A kink that occurs at some position
with some orientation will be assigned an integer. Shown here are each possible
position and orientation of kinks and the integers assigned to them.
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6.3 RR counting

patterns. In this case, the patterns thus formed satisfy the generalized Pauli principle

for the MR states: no more than two particles in two sites. The number of paths with

given n and F is then equal to Φ MR
sphere

with L′ = `, N ′ = F , and n′ = 2(L′−N ′+1) =

2(n− F )/3,

Φ MR
sphere

(N ′ = F, n′ = 2
n− F

3
) =

∑
F ′=F mod 3

(F−F ′
2

+ 2n−F
3

2n−F
3

)(
n−F

3

F ′

)
. (6.25)

When Eq. (6.25) is combined with Eq. (6.24), we can find the total number of

zero modes,

Φ RR
sphere

(N, n) =
∑

F=N mod 3

(
N−F

3
+ n

n

) ∑
F ′=F mod 2

(F−F ′
2

+ 2n−F
3

2n−F
3

)(
n−F

3

F ′

)
. (6.26)

This agrees with the formula in Ref. [61].

To count RR zero modes on the torus, we will once again need to first count a

restricted subset of patterns which have a domain wall at zero and an odd-length final

string. The paths corresponding to these patterns will again have a “hidden” kink at

zero which comes from joining the two ends. If we follow the same general procedure

as before, we claim that for a fixed value of `, the number of zero modes is,

Φ RR
torus

(L, n, `) =
L

`

(
L−`

3
+ n− 1

n− 1

)
× Φ MR

torus
(L′ = `,N ′ = F, n′ = 2

n− F
3

). (6.27)
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where, on the torus, F = (3`− n)/2. Making the appropriate substitutions,

Φ RR
torus

(N, n) =
2N + n

3

∑
F=N mod 3

(
N−F

3
+ n− 1

n− 1

)
(6.28)

×
∑

F ′=F mod 2

2c
F−F ′

2
+ 2n−F

3

(F−F ′
2

+ 2n−F
3

2n−F
3

)(
n−F

3

F ′

)
, (6.29)

where c is the correction factor from the end of Sec. 6.2,

c =

(
31−η

4

)δn,F
, (6.30)

with η = F mod 2. As in the MR case, the above formula does not give the correct

result for n = 0. In fact, Eq. (6.28) with n = 0 has binomial coefficients with negative

arguments, which cannot be easily remedied with a constant correction factor. But

for every other value of n > 0 it produces the correct zero mode counting.

6.4 Gaffnian counting

The general strategy we have employed in each example thus far has been the fol-

lowing. We parametrize the zero modes by some `, or equivalently some F , and each

zero mode with the same F has the same positional degeneracy. Then we find the

number of zero modes with a certain F via an analogy to another state lower down

a “hierarchy” [61]. In our previous examples, this has been exactly the Read-Rezayi

hierarchy [58]; the Laughlin state is k = 1 on the hierarchy, the Pfaffian is k = 2,
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6.4 Gaffnian counting

and the state we have just counted in Sec. 6.3 is k = 3. In terms of patterns, the

analogy can be made manifest by labeling the Bratteli diagram paths of each zero

mode with integers on the kinks; those integers form the patterns of the state lower

in the hierarchy, for which we already have a counting formula.

A similar hierarchy approach will be employed to count the Gaffnian [59] zero

modes. We will see that the position degeneracy of the zero modes can again be

parametrized by some F , which can be used to find some labeling of the Bratteli

diagram paths, and those in turn give rise to patterns in another state. However, the

labeling strategy will not be the same as in previous cases.

The Gaffnian ground state patterns on the torus are the 200200 . . . -type patterns,

and the 011011 . . . -type patterns. The ground state on the sphere is 200200 . . . 2. The

number of orbitals in the LLL is L = (3N−n)/2 on the torus and L = (3N−n)/2−2

on the sphere. We adopt the convention that domain wall positions are located in the

middle orbital of the three-orbital-wide domain wall string, e.g., 10 99
90 and 01 99
90. The

Gaffnian domain wall positions are coincident with orbitals, unlike previous cases

where the domain walls were halfway between orbitals. For this reason we change the

labeling of the orbitals from [0, L − 1] to [1, L]. Then the domain wall positions wi

for 0 ≤ i ≤ n− 1 take values in the range [0, L+ 1].

In the MR and RR cases, the positions wi and wi−1 of two adjacent domain walls

were, at minimum, separated by 1 or 0 orbitals if the string separating them was odd

or even in length. In the Gaffnian case, different pairs of adjacent domain walls can

at minimum be separated by 0, 1, or 2 orbitals, and this separation constant depends
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6.4 Gaffnian counting

not on properties of the adjoining string but only on the types of the two domain

walls. Example patterns for each separation are . . . 200 99
9110 99
9020 . . . , . . . 200 99
91101 99
901 . . . ,

and . . . 101 99
901101 99
90 . . . , respectively. We define the minimum separation between wi

and wi−1 as gi = wi − wi−1 mod 3 for 1 ≤ i ≤ n − 1, and g0 = 0. We define

the cumulative separation `i =
∑i

j=0 gj, and ` = `n−1 (on the sphere). As before,

regardless of any differences in the sequence of ground state strings that make up the

pattern, two zero modes with the same ` will have the same degeneracy in domain

wall position. The domain wall positions on the sphere obey the constraints,

0 ≤ w0 ≤ w1 ≤ · · · ≤ wn−1 ≤ L+ 1

wi − wi−1 = gi mod 3.

(6.31)

In terms of sequential integers ki = (wi − `i)/3, Eq. (6.31) becomes the single con-

straint,

0 ≤ k0 ≤ k1 ≤ · · · ≤ kn−1 ≤ (L+ 1− `)/3. (6.32)

Introducing the integer F = [2(` + 1) − n]/3, the upper bound in (6.32) becomes

(N − F )/2. The number of choices for the kis is
((

(N−F )/2+1
n

))
=
(

(N−F )/2+n
n

)
.

Now we know the position degeneracy of each zero mode, parametrized by the

integer F , but we need to know how many zero modes there are with that F . As

before, we can find this by examining the paths through the Bratteli diagram. F

corresponds to a certain labeling of each path, which is not in this case a labeling of

integers on kinks. For the Gaffnian paths, F corresponds to the number of times the
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6.4 Gaffnian counting

path crosses the “center line” of the Bratteli diagram (see Fig. 6.4). On the sphere,

since each path must begin at the bottom row and end either at the bottom row (if

n is even) or top row (if n is odd), the maximum value of F is Fmax = n− 2. (In fact,

for N < n, the zero modes cannot make a pattern that corresponds to the maximally

crossed path. The actual maximum value of F is Fmax = min(N, n− 2).)

We will enumerate the paths with an analogy, which can be found as follows. For

a given path, each kink that occurs in either of the the middle two rows is viewed as

an empty “lattice site”, whereas a kink at the top or bottom row is an “occupied”

site. For instance, the “maximally crossed” state will have Fmax − 1 kinks, all in the

middle two rows of the diagram. This path is analogous to a fully empty lattice. The

paths for some other F , less than Fmax, are generated by “occupying” (Fmax − F )/2

kinks. Occupying a formerly unoccupied kink is equivalent to flipping a kink from

row 1 to row 3 or from row 2 to row 0. Any kinks adjacent to the occupied one have

now become straightened, and are no longer occupiable. The equivalent statement in

terms of the analog pattern is that a 1 must be surrounded by 0s, and we see that

the patterns formed in this way are Laughlin patterns. The analogous quantities are

L′ = n − 3, N ′ = (n − F )/2 − 1, and n′ = F . Note that in all analogies considered

in previous Secs., F was a particle analog, i.e., N ′ = F . In this case F is a domain

wall analog, i.e., n′ = F . The internal degeneracy of the Gaffnian zero modes is thus

given by the Laughlin formula in Eq. (6.3),

ΦLaughlin

sphere
(N ′ =

Fmax − F
2

, n′ = F ) =

(
n+F

2
− 1

F

)
. (6.33)
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6.4 Gaffnian counting

Figure 6.4: The n = 6 Gaffnian paths on the sphere. The paths are organized into
groups with the same number of “center line” crossings, F . The F = 4, maximal
crossing, path is shown with unfilled circles on its kinks, representing unoccupied
“lattice sites” in a Laughlin analogy pattern. The lower values of F will “occupy”
successively more of these sites, with occupied sites shown as filled circles. If one
interprets the filled and unfilled circles as 0s and 1s respectively, the resulting patterns,
shown below each path, are ν = 1/2 Laughlin patterns on the sphere with F domain
walls.
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6.4 Gaffnian counting

The number of Gaffnian states on the sphere is then,

ΦGaffnian
sphere

(N, n) =
∑

F=n mod 3

(
N−F

2
+ n

n

)(
n+F

2
− 1

F

)
. (6.34)

This result agrees with the formula in Ref. [59]2.

To find the Gaffnian formula on the torus, we make use of the the familiar pro-

cedure of previous Sections. We initially restrict ourselves to a set containing the

patterns with a domain wall at zero which follows a kink in the path; we can enumer-

ate these using a straightforward extension of the Gaffnian sphere counting method.

To generate the full set of patterns, we translate each pattern in the restricted set

all possible ways, which generates a set with L times the number of patterns as the

restricted set. But this new set contains ` copies of each pattern having cumulative

separation `, so we divide by that number to correct the overcounting and sum over

the allowed values of ` (or, equivalently, F ). Some of the parameters on the torus are

different, namely Fmax = min(N, n) since paths need not only begin and end at the

edges of the diagram, and ` = `n which accounts for the separation across the torus

boundary between the “last” domain wall and the “first”.

In the end, it can be shown that the number of Gaffnian states on the torus is

given by,

ΦGaffnian
torus

(N, n) =
∑

F=n mod 3

3N + n
N−F

2
+ n

(
N−F

2
+ n

n

)
n

n+ F

(
n+F

2

F

)
. (6.35)

2In that reference, the author uses n to refer to the number of quasihole pairs, so our n is his 2n.
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6.4 Gaffnian counting

This formula has the advantage that it can be made to give the correct state counting

for n = 0. If we regard the term under the sum as an analytic function of n and take

the limit n → 0, then we find that Φ(N, n → 0) = 6, which agrees with the ground

state degeneracy.
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Appendix A

k = 3 Read-Rezayi solution: Two

quasiholes

We begin with Eqs. (4.42) and (4.43), the locality and unitarity conditions, respec-

tively, and seek to constrain the ξσα,α′ coefficients. As written, Eq. (4.43) does not

provide information about the overall phase of ξσ, which is the overall phase relation

between the two mutually dual bases. This phase is, a priori, arbitrary. We have,

however, chosen a phase convention by defining the action of the antilinear operator

τ for both bases (in agreement with the phase relation chosen in Eq. (2.4)). The

symmetry under τ gave rise to Eq. (4.37), which we can use together with Eq. (4.30)

(from the “global path” along x) to replace (ξ+)† in favor of ξ+, rewriting Eq. (4.43)

This appendix originally appeared in Ref. [7].
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as

ξ+


p 0 0

0 p−1 0

0 0 −1

 (ξ+)T


0 ∆ 0

∆ 0 0

0 0 1

 e−i
π
2 = I3×3 . (A.1)

We will expand this matrix product by plugging the form Eq. (4.33) for ξ+ derived

from global path constraints. This gives four independent constraint equations for

the ξα,α′s:

∆p3ξ 2
11 + ∆pξ 2

12 −∆p2ξ 2
13 = 0 (A.2a)

ξ31

(
−p2ξ11 + ∆pξ12

)
+ pξ13ξ33 = 0 (A.2b)

2∆pξ11ξ12 + pξ 2
13 = ei

π
2 (A.2c)

2pξ 2
31 − ξ 2

33 = ei
π
2 (A.2d)

Recall p = − exp
[
iπ(s+ 1

2
)
]

and ∆2 = 1. Similarly, we may use Eq. (4.37) in the

definition of the reduced braid matrix χ, Eq. (4.41), writing χ as ξ+(ξ+)T . Expanding

the latter again with Eq. (4.33) and comparing the result to the locality constraint

Eq. (4.42), we find two additional independent constraint equations:

(1 + p2)ξ11ξ12 −∆pξ 2
13 = 0 (A.2e)

ξ31 (ξ11 −∆pξ12) + ξ13ξ33 = 0 . (A.2f)
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We will use the constraint equations (A.2) to solve for the unknown elements of χ,

the dots in Eq. (4.42), which can be found from the expansion of the product ξ+(ξ+)T

to be:

ξ 2
11 + ξ 2

12 + ξ 2
13 = χ11 (A.3a)

p4ξ 2
11 + ξ 2

12 + p2ξ 2
13 = χ22 (A.3b)

2pξ 2
31 + ξ 2

33 = χ33 (A.3c)

∆ξ31

(
−p3ξ11 + ∆ξ12

)
−∆pξ13ξ33 = χ23 = χ32 (A.3d)

We can break the solution of Eqs. (A.2) into two major sections, which are based

on the two ways to satisfy the equation we obtain by combining Eqs. (A.2e) and

(A.2a):

p2ξ 2
11 + ξ 2

12 −∆ξ11ξ12 −∆p2ξ11ξ12 = 0 (A.4)

There are two solutions to this equation:

ξ12 = ∆p2ξ11 (A.5a)

or ξ12 = ∆ξ11 . (A.5b)

We will now show that the first of the above equations never leads to consistent

independent solutions, except in the special case ξ13 = 0. To see this, we feed Eqs.
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(A.5) back into Eq. (A.2e), and find, respectively, that

ξ 2
13 = p2(p+ p−1)ξ 2

11 (A.6a)

or ξ 2
13 = (p+ p−1)ξ 2

11 . (A.6b)

We first utilize the above to study all cases with ξ13 = 0. This implies either ξ11 =

0, or p ∈ {i,−i}. The former leads to a contradiction in Eq. (A.2c). It is then

straightforward to show that for p ∈ {i,−i}, the solutions of the system (A.2) produce

the braid matrix

χ = e−i
π
2


∓p 0 0

0 ∓p 0

0 0 1

 , (A.7)

with the upper (lower) sign corresponding to Eq. (A.5a) (Eq. (A.5b)). Equation (A.7)

corresponds to a consistent solution to the constraint equations (A.2). However, when

Eq. (A.7) is generalized to an n-quasihole system using the locality arguments of Sec.

3.5, it is not difficult to see that the resulting braid matrix violates the Yang-Baxter

equation. While this might suffice to rule out this solution, we have emphasized in

the beginning that our approach requires no a priori assumption that any aspect of

quasiparticle exchange is topological. We will thus show more directly in App. B that

Eq. (A.2) leads to contradictions in the present framework when three quasiholes are

considered. Since we can rule out the special solution leading to the upper sign in

Eq. (A.7), this case has not been mentioned in the main text.
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We now proceed by exploring solutions with ξ13 6= 0. We first show that Eq. (A.5a)

does not lead to further independent solutions. To this end, we plug Eqs. (A.5) first

into Eq. (A.2f),

ξ13ξ33 = −(1− p3)ξ31ξ11 (A.8a)

or ξ13ξ33 = −(1− p)ξ31ξ11 , (A.8b)

and similarly into Eq. (A.2b):

ξ13ξ33 = −(p2 − p)ξ31ξ11 (A.9a)

or ξ13ξ33 = −(1− p)ξ31ξ11 . (A.9b)

While Eqs. (A.8b) and (A.9b) are identical, Eqs. (A.8a) and (A.9a) turn out to be

consistent with one another only in cases where both sides vanish on both equations.

We have already discussed all cases with ξ13 = 0. To satisfy Eqs. (A.8a) and (A.9a),

we may thus focus on the case ξ33 = 0. On the right-hand side, we can rule out

ξ31 = 0 because, with ξ33 = 0, it contradicts Eq. (A.2d). We can similarly rule out

ξ11 = 0 because, with Eq. (A.5) and Eq. (A.6), it violates Eq. (A.2c). The only other

way to solve both Eqs. (A.8a) and (A.9a) is to have p = ±1. In this case, however,

both equations (A.5) are identical. Thus, Eq. (A.5a) does not produce independent

valid solutions, except for p ∈ {i,−i}, leading to the braid matrix Eq. (A.7) (upper

sign). As mentioned, the latter leads to inconsistencies in the case of three quasiholes.
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To find the solution to the constraints (A.2) that will be consistent with the three-

quasihole case, we now discard Eq. (A.5a) and proceed to work from Eq. (A.5b), and

the equations (A.6b), (A.8b) derived from it. First, we plug Eqs. (A.5b) and (A.6b)

into Eq. (A.2c), which will give us an explicit form for ξ 2
11 :

ξ 2
11 =

eiπ/2

(1 + p)2
. (A.10)

In particular ξ11 6= 0. From Eq. (A.8b) we thus obtain

(1− p)2ξ 2
31 =

ξ 2
13

ξ 2
11

ξ 2
33

= (p+ p−1)ξ 2
33 ,

(A.11)

where we have used Eq. (A.6b). Elimination of ξ33 by means of Eq. (A.2d) then gives

ξ 2
31 = (p+ p−1)

eiπ/2

(1 + p)2

= (p+ p−1)ξ 2
11

(A.12)

We can now revisit the unknown elements of χ. We rewrite Eq. (A.3) using the
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equations we have developed above.

p−1(1 + p)2ξ 2
11 = χ11 (A.13a)

p(p+ p−1 − 1)(1 + p)2ξ 2
11 = χ22 (A.13b)

(p+ p−1 − 1)(1 + p)2ξ 2
11 = χ33 (A.13c)

∆(1− p)(1 + p)2ξ31ξ11 = χ23 = χ32 (A.13d)

We need only plug into Eq. (A.13d) the square root of Eq. (A.12) to write each

element of χ in terms of ξ 2
11 , for which we have the expression in Eq. (A.10). We

can also absorb the ∆ factor in Eq. (A.13d) into the ± induced by taking this square

root. Thus we reach the following form of the braid matrix

χ = ei
π
2


p−1 0 0

0 p(p+ p−1 − 1) ±
√
p+ p−1(1− p)

0 ±
√
p+ p−1(1− p) p+ p−1 − 1

 , (A.14)

which was presented in the main text as Eq. (4.44).
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Appendix B

k = 3 Read-Rezayi solution: Three

quasiholes

Here we will solve a system of equations for the elements of the three-quasihole tran-

sition matrix elements ξα,α′ and the resulting braid matrix. The procedure is the

same as that employed for two quasiholes: Using various constraints on ξσ already

derived in the main text, we write out the matrix elements of the unitarity equation,

ξ++(ξ++)† = I4×4, and the locality constraint Eq. (4.45). This gives a system for

the remaining unknown elements of ξ++. However, we must recall that the form in

Eq. (4.45) was based, in part, on the two-quasihole braid matrix Eq. (4.44). In App.

A we found one other “special” solution for this matrix, namely Eq. (A.7) (upper

sign), that was not presented in the main text. Here we will consider this special so-

lution also, giving rise to a modified version of Eq. (4.45), and show that this solution

This appendix originally appeared in Ref. [7].
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leads to inconsistencies with three-quasihole braiding.

Just as we did in App. A, we first use the (antilinear) mirror symmetry to eliminate

complex conjugation from the definition of the reduced braid matrix, χ = ξ++(ξ−+)†.

This is achieved by using Eqs. (4.50) and (4.58). The result is

χ = ξ++



∆̃2p

p−1

−1

−1


(ξ++)T



∆̃−1

∆̃−1 0

1

1


e−iπλ+iπ . (B.1)

We will expand this matrix product using the constrained form of ξ++ in Eq. (4.62),

reproduced here:

ξ++ =



ξ11 ∆̃2ξ13 ξ13 ξ14

∆̃2ξ13 ∆̃2p2ξ11 −∆̃−1pξ13 −∆̃−1pξ14

ξ13 −∆̃−1pξ13 ∆̃2p2ξ11 −∆̃pξ14

ξ41 −∆̃−1pξ41 −∆̃pξ41 ξ44


, (B.2)

where we recall ∆̃4 = 1, and p is defined in terms of the shift parameter s as before.

We gain a system of constraint equations for the ξα,α′s by plugging Eq. (B.2) into

Eq. (B.1) and equating the product to one of the following expressions for χ that have

been derived from locality and from consistency with the two-quasihole solution. For

generic parameter p, we found that the latter must be of the form Eq. (4.45), which
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we reproduce here as

χloc = ei
π
2



·

·

p(p+ p−1 − 1) ±
√
p+ p−1(1− p)

±
√
p+ p−1(1− p) p+ p−1 − 1


, (B.3)

with blanks denoting zeros. The 2x2 block in the above was taken directly from the

two-quasihole solution, Eq. (A.14), as explained in the main text. For p ∈ {i,−i},

however, we found an additional solution to the two-quasihole system of equations,

leading to the form of the braid matrix Eq. (A.7). Using this form and the same

reasoning that lead to Eq. (B.3), for p ∈ {i,−i} the reduced braid matrix must be of

the form

χloc = e−i
π
2



·

·

∓p

1


, (B.4)

where the lower sign is just a special case of Eq. (B.3), but the upper sign corresponds

to the “special” solution.

We equate χloc to Eq. (B.1). We first focus on those matrix elements for which χloc

is identically zero in all cases. By means of Eq. (B.2), this gives rise to the following

three equations:
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∆̃(p− p2)ξ 2
13 + ∆̃−1p3ξ 2

11 − ∆̃p2ξ 2
14 = 0 (B.5a)

∆̃−1pξ 2
13 + (p3 − p2)ξ11ξ13 − ∆̃−1p2ξ 2

14 = 0 (B.5b)

ξ41

(
−p2ξ11 + ∆̃−1(p− p2)ξ13

)
+ ∆̃2pξ14ξ44 = 0. (B.5c)

We will also use equations gained from enforcing the unitarity of ξ++. If we expand

ξ++(ξ++)† = I4×4 using Eq. (B.2) we find the following independent equations:

|ξ11|2 + 2 |ξ13|2 + |ξ14|2 = 1 (B.5d)

3 |ξ41|2 + |ξ44|2 = 1 (B.5e)

ξ41

(
ξ ∗

11 − 2∆̃pξ ∗
13

)
+ ξ ∗

14 ξ44 = 0 (B.5f)

∆̃2ξ13ξ
∗

11 + p2ξ11ξ
∗

13 − ∆̃−1p |ξ13|2−∆̃−1p |ξ14|2 = 0 (B.5g)

For convenience, we may also write the unitarity condition in the form (ξ++)†ξ++ =

I4×4, yielding a similar (and equivalent) set of equations, one of them being 3 |ξ14|2 +

|ξ44|2 = 1. By comparison with Eq. (B.5e), this implies

|ξ14|2 = |ξ41|2 . (B.6)

Once the ξα,α′ are known, Eq. (B.1) allows us to obtain the following expressions for
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the unknown elements of χ:

χ11 = χ22 =
(

2∆̃−1pξ11ξ13 + ∆̃2pξ 2
13 + ∆̃2pξ 2

14

)
e−iπλ+iπ (B.7a)

χ33 =
(
−p4ξ 2

11 + 2∆̃2pξ 2
13 − ∆̃2p2ξ 2

14

)
e−iπλ+iπ (B.7b)

χ44 =
[
∆̃2(2p− p2)ξ 2

41 − ξ 2
44

]
e−iπλ+iπ (B.7c)

χ34 = χ43 =
[
ξ41

(
∆̃−1p3ξ11 + 2∆̃2pξ13

)
+ ∆̃pξ14ξ44

]
e−iπλ+iπ. (B.7d)

If we subtract Eq. (B.5b) (times ∆̃2) from Eq. (B.5a), the resultant equation can be

solved two ways.

ξ13 = −∆̃pξ11 (B.8a)

or ξ13 = ∆̃ξ11 (B.8b)

We can quickly eliminate one of these possibilities by comparing to the equations

from unitarity. When Eqs. (B.8) are put into Eq. (B.5g), they respectively produce

the equations

|ξ14|2 = −3 |ξ11|2 (B.9a)

or |ξ14|2 = |ξ11|2 (p+ p−1 − 1) . (B.9b)

Whereas we can put Eqs. (B.8) into Eq. (B.5d) and get the same equation for both

181



cases:

|ξ14|2 = −3 |ξ11|2 + 1 , (B.10)

which clearly contradicts Eq. (B.9a). Thus Eqs. (B.8a) and (B.9a) are not true.

Eliminating |ξ14|2 from Eqs. (B.9b) and (B.10) gives us an expression for |ξ11|2,

which we can turn into an expression for ξ 2
11 with the inclusion of some phase θ1.

ξ 2
11 =

eiθ1p

(1 + p)2
. (B.11)

Furthermore, putting Eq. (B.8b) into either Eq. (B.5a) or Eq. (B.5b) gives:

ξ 2
14 = ∆̃2(p+ p−1 − 1) ξ 2

11 (B.12)

which fixes the phase between ξ 2
14 and ξ 2

11 . Together with Eq. (B.6), this also implies

ξ 2
41 = e2iθ2∆̃2(p+ p−1 − 1) ξ 2

11 , (B.13)

where we introduced another phase θ2. Assuming first that ξ14 6= 0, we define eiθ2 =

ξ41/ξ14 (cf. Eq. (B.6)), we may solve Eq. (B.5c) for ξ44:

ξ44 = (2p− 1)∆̃2eiθ2ξ11 . (B.14)

It is easy to see that the last equation also holds in cases where ξ14 = ξ41 = 0.1 With

1In this case, Eqs. (B.5d), (B.8b) imply |ξ11| = 1/
√

3, and |ξ44| = 1 from Eq. (B.5e). From
Eq. (B.12), we must then have p + p−1 − 1 = 0, hence (2p − 1)3 = −3. The absolute values in
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Eqs. (B.8b), (B.12), (B.13), and (B.14) we can rewrite the unknown elements of χ in

terms of ξ 2
11 , and Eqs. (B.7) become

χ11 = χ22 = (1 + p)2ξ 2
11 e

−iπλ+iπ (B.15a)

χ33 = p(1− p)(1 + p)2ξ 2
11 e

−iπλ+iπ (B.15b)

χ44 = e2iθ2(1− p)(1 + p)2ξ 2
11 e

−iπλ+iπ (B.15c)

χ34 = χ43 = eiθ2
√
p+ p−1 − 1(1 + p)2ξ 2

11 e
−iπλ+iπ (B.15d)

Or, using Eq. (B.11),

χ = eiθ



p

p

p2(1− p) eiθ2p2
√
p+ p−1 − 1

eiθ2p2
√
p+ p−1 − 1 e2iθ2p(1− p)


(B.16)

where we have defined eiθ=eiθ1−iπλ+iπ. This is the result quoted in the main text as

Eq. (4.63). It is worth noting that once again, the δ parameters have dropped out.

The derivation of Eq. (B.11) is valid irrespective of the value of p, since we have thus

far not used the diagonal matrix elements of χloc, which may take on special values for

p ∈ {i,−i}. We are now able to rule out p ∈ {i,−i}, and thus the “special” solution

obtained in App. A. For in this case, Eq. (B.16) has non-zero off-diagonal matrix

Eq. (B.14) therefore work out, and Eq. (B.14) must thus hold for some phase θ2, which is then
defined through this equation.
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elements, whereas Eq. (B.4) does not. This justifies Eqs. (4.44) and (4.45) in the

main text, which ignore the “special” solution. Requiring consistency between the

non-zero matrix elements of Eqs. (4.45) and (4.63), which we have not done in this

Appendix, finally provides information about the phase p, relating it to the golden

mean. This short argument is presented in the main text.
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Appendix C

Gaffnian solution: Two quasiholes

The set of constraint equations to solve for the reduced braid matrix come from

enforcing the unitarity of the ξ matrices, the locality condition discussed in the main

text, and the global path relations Eqs. (5.9) and (5.10). We will begin by enforcing

the latter. As discussed above, we can apply Eqs. (5.9) and (5.10) in succession to

constrain ξσI because σI = gy(gx(σI)). Applying these two equations, with the data

from Table 5.1, results in the constraint equation

ξσI =


∆p−1

∆p 0

−1

 ξσI


∆p

∆p−1 0

−1

 , (C.1)

where p = − exp [−2πi(1 + s)/3], ∆ = exp [−2πi(L/2 + 1)D/3], and D = 0 or 1 if

the δ parameter for the 100-type domain walls is 0 or π, respectively. Equation (C.1)

This appendix originally appeared in Ref. [60].
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is satisfied when

ξσI =


ξ11 ξ12 ξ13

ξ12 p2ξ11 −∆pξ13

ξ31 −∆pξ31 ξ33

 . (C.2)

Mirror symmetry, Eqs. (5.11) and (5.12), can also produce a constraint equation

because gτy(gτx(σI)) = σI . However, in the case of two quasiholes, applying Eqs.

(5.11) and (5.12) in succession results in the trivial equation, ξσI = ξσI .

The process of solving for the reduced braid matrix is similar to the solution given

for n = 2 in Ref. [7]. We gain the following equations by demanding that ξσI is

unitary,

eiπ/3 = 2∆η−Dpξ11ξ12 + ηDpξ 2
13 , (C.3a)

eiπ/3 = 2ηDpξ 2
31 − ξ 2

33 , (C.3b)

0 = ∆η−Dp3ξ 2
11 + ∆η−Dpξ 2

12 −∆ηDp2ξ 2
13 , (C.3c)

0 = η−Dξ31

(
−p2ξ11 + ∆pξ12

)
+ ηDpξ13ξ33, (C.3d)

where η = exp (−2πi/3). Two additional equations come from the requirement that

braiding is local; as said above, this means that the result of braiding should only

depend on the sequence of three ground-state patterns forming the two domain walls

associated with the braided quasiholes, and that only the pattern in the middle may

change as a result of braiding. Imposing these locality considerations tells us that
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χ1(2) must be of the form

χ1(2) =


· 0 0

0 · ·

0 · ·

 , (C.4)

where “·”s are unknown, potentially nonzero, matrix elements for which we will solve.

By applying the form in Eq. (C.4) to the matrix χ1(2) = ξσI (ξσI
′
)† derived from adi-

abatic transport, the zero elements give two more independent constraint equations,

0 = η−D(1 + p2)ξ11ξ12 −∆ηDξ 2
13 , (C.5a)

0 = η−Dξ31 (ξ11 −∆pξ12) + ηDξ13ξ33. (C.5b)

Solving this system of six equations, (C.3) and (C.5), is formally similar to the

solution in the Appendices of Ref. [7], so the details will not be repeated here. Just

as in that reference, there are two solutions: A special solution in which p = ±i,

ξ 2
11 =

1

2
ηDeiπ/3p−1, (C.6a)

ξ12 = ∆ξ11, (C.6b)

ξ13 = ξ31 = 0, (C.6c)

ξ 2
33 = −eiπ/3, (C.6d)
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which produces the reduced braid matrix

χ1(2) = e2πi/3


p 0 0

0 p 0

0 0 e−iπ/3

 (C.7)

(but we will show in Appendix D that this solution is inconsistent with the equations

from three-quasihole braiding), and the consistent solution,

ξ 2
11 =

ηDeiπ/3

(1 + p)2
, (C.8a)

ξ12 = ∆ξ11, (C.8b)

ξ 2
13 = ηD(p+ p−1)ξ 2

11 , (C.8c)

ξ 2
31 = ηD(p+ p−1)ξ 2

11 , (C.8d)

ξ 2
33 = η−D(1− p)2ξ 2

11 , (C.8e)

which produces the reduced braid matrix

χ1(2) = e−iπ/3×
p−1 0 0

0 p(p+ p−1 − 1) ±eiπD/3(1− p)
√
p+ p−1

0 ±e−iπD/3(1− p)
√
p+ p−1 p+ p−1 − 1

 . (C.9)

This two-quasihole reduced braid matrix is the same as that in Ref. [7] except for two
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features: The D-dependent phase on the off-diagonal elements (though this will later

be removed with a unitary transformation), and the overall Abelian phase, which

here is e−iπ/3 and in Ref. [7] was eiπ/2.
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Appendix D

Gaffnian solution: Three quasiholes

The solution for the reduced braid matrix of three quasiholes begins similarly to that

for two quasiholes. We first constrain ξσI using global path relations, Eqs. (5.9) and

(5.10), and mirror symmetry, Eqs. (5.11) and (5.12). Applying the former two in

succession and filling in the data from Table 5.2 gives the constraint

ξσI =



∆̃p−1

0 −ηD

∆̃p

−1


ξσI



∆̃p

∆̃p−1 0

−ηD

−1


, (D.1)

where p is defined as in Appendix C, and ∆̃ = exp [−2πi(L/2 + 1)D/3]. This defini-

tion for ∆̃ is seemingly the same as that for ∆ in Appendix C, but in the case of two

quasiholes L = 1 modulo 3, and here L = 0 modulo 3.

This appendix originally appeared in Ref. [60].
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The two mirror symmetry equations, (5.11) and (5.12), can be applied in succes-

sion to ξσI to give

ξσI =



1

0 ηD

η−D 0

1


ξσI



1

0 η−D

ηD 0

1


. (D.2)

Equations (D.1) and (D.2) together constrain ξσI to be of the form

ξσI =



ξ11 ξ12 η−Dξ12 ξ14

ξ12 ηDp2ξ11 −∆̃pξ12 −∆̃−1pξ14

η−Dξ12 ∆̃pξ12 η−Dp2ξ11 −∆̃pξ14

ξ41 −∆̃−1pξ41 −∆̃pξ41 ξ44


. (D.3)

The structure of this matrix is almost identical to the corresponding matrix ξ++ in

Ref. [7], save that the D-dependent phases ηD and ∆̃ are different. There, ∆̃ was

defined such that ∆̃2 = eiπD, whereas here ∆̃2 = e2iπD/3 = η−D. We might then

find a braid matrix with a non-trivial dependence on D. However, the symmetry

relations in Eqs. (5.9), (5.10), (5.11), and (5.12) also have additional D-dependent

phases compared to their corresponding forms in Ref. [7], and we will see that by

following the same steps as in that reference to find the braid matrix solution, all the

D-dependent phases will conspire to cancel save for those on the off-diagonal elements
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which can be removed via a unitary transformation.

By requiring that ξσI be unitary, we find the following constraint equations,

1 = |ξ11|2 + 2 |ξ12|2 + |ξ14|2 , (D.4a)

0 = ∆̃ξ12ξ
∗

11 + ∆̃−1p2ξ11ξ
∗

12 − p |ξ12|2 − p |ξ14|2 , (D.4b)

0 = ξ41

(
ξ ∗

11 − 2∆̃−1pξ ∗
12

)
+ ξ ∗

14 ξ44, (D.4c)

1 = 3 |ξ41|2 + |ξ44|2 . (D.4d)

The locality of braiding tells us not only that some elements of χ1(3) must be zero,

as was the case for two quasiholes, but also that the 2 × 2 block with off-diagonal

elements must be equal to the equivalent 2 × 2 block in χ1(2). This is because the

sequences of ground state patterns of the domain walls associated with the quasiholes

to be braided are the same for those two supersectors in the two- and three-quasihole

cases. In other words, χ1(3) must be of the form

χ1(3) = e−iπ/3×

·

·

p(p+ p−1 + 1) ±eiπD/3(1− p)
√
p+ p−1

±e−iπD/3(1− p)
√
p+ p−1 p+ p−1 + 1


, (D.5)
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if Eq. (C.9) is the correct reduced braid matrix for two-quasiholes, and of the form

χ1(3) = e2πi/3



·

·

p 0

0 e−iπ/3


, (D.6)

with p = ±i, if Eq. (C.7) is the correct matrix (which we will show is not the case).

We find our constraint equations by equating the product χ1(3) = ξσI (ξσI
′
)†, obtained

from adiabatic transport, with the forms above. We can perform the two solutions

in parallel by using only the elements of Eqs. (D.5) and (D.6) that are zero in both.

This produces the constraint equations

0 = p3ξ 2
11 − ∆̃2(p− 1)pξ 2

12 − p2ξ 2
14 , (D.7a)

0 = ∆̃(p− 1)p2ξ11ξ12 + ∆̃2pξ 2
12 − p2ξ 2

14 , (D.7b)

0 = −ξ41

[
pξ11 + ∆̃(p− 1)ξ12

]
+ ξ14ξ44. (D.7c)
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The set of constraint equations, (D.4) and (D.7), is solved when

ξ 2
11 =

eiθ1

(1 + p)2
, (D.8a)

ξ12 = ∆̃−1ξ11, (D.8b)

ξ 2
14 = (p+ p−1 − 1)ξ 2

11 , (D.8c)

ξ 2
41 = e2iθ2(p+ p−1 − 1)ξ 2

11 , (D.8d)

(D.8e)

which produces the reduced braid matrix

χ1(3) = e−iπ/3+iθ1×

1

1

p(1− p) ±eiθ2+iπD/3p
√
p+ p−1 − 1

±eiθ2−iπD/3p
√
p+ p−1 − 1 e2iθ2(1− p)


. (D.9)

Just as in Appendix C, Eq. (D.9) is the same reduced braid matrix as was found

in Ref. [7] for three quasiholes, except that here the off-diagonal elements have an

additional D-dependent phase and the overall Abelian phase is different.

We have yet to enforce consistency between the 2 × 2 blocks in the two- and

three-quasihole braid matrices; to do so we equate Eq. (D.9) to Eqs. (D.5) and (D.6)

in turn. The latter produces a contradiction, because the off-diagonal elements of
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Eq. (D.9) are not zero for p = ±i. Thus Eq. (C.6) is not a consistent solution for two

quasiholes, and Eqs. (C.7) and (D.6) are not consistent braid matrices. Enforcing

consistency between Eqs. (D.5) and (D.9) implies that

p+ p−1 = ϕ, (D.10)

where ϕ is the golden ratio, ϕ = (1 +
√

5)/2. In other words,

p = exp

(
±iπ

5

)
, (D.11)

or, if we define a = ±1/5, p = exp (iπa). This is all the same as in Ref. [7]. However,

here the s parameter is defined differently in terms of p than in Ref. [7]; we have

defined p = − exp [−2πi(1 + s)/3], so the s parameter is also constrained to be

s = 2− 3a

2
. (D.12)

Consistency also implies

eiθ1 = p2, (D.13)

e2iθ2 = 1. (D.14)

The expressions for χ1(2) and χ1(3) in Eqs. (5.14) and (5.15), respectively, have

been simplified with respect to Eqs. (C.9) and (D.9) and have undergone a unitary
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transformation in which each state is multiplied by (−eiπD/3)#200, where #200 is the

number of 200200 . . . strings in the thin torus pattern associated with that state.

This unitary transformation removes the dependence on the unkonwn parameter D.
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