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Abstract— In this paper, we present a technique to automati-
cally synthesize dancing moves for arbitrary songs. Our current
implementation is for virtual characters, but it is easy to use the
same algorithms for entertainer robots, such as robotic dancers,
which fits very well to this year’s conference theme.

Our technique is based on analyzing a musical tune (can be
a song or melody) and synthesizing a motion for the virtual
character where the character’s movement synchronizes to
the musical beats. In order to analyze beats of the tune, we
developed a fast and novel algorithm. Our motion synthesis
algorithm analyze library of stock motions and generates new
sequences of movements that were not described in the library.
We present two algorithms to synchronize dance moves and
musical beats: a fast greedy algorithm, and a genetic algorithm.
Our experimental results show that we can generate new
sequences of dance figures in which the dancer reacts to music
and dances in synchronization with the music.

Index Terms— Motion Planning, Virtual Choreography, Mo-
tion Analysis, Motion Synthesis, Beat Analysis.

I. I
Human animation plays an important role in computer

graphics, computer games, and virtual reality systems. There
are two main methods to generate automated human anima-
tion, (i) synthesize new motion from scratch [8], [11], [14],
and (ii) synthesize new motion from existing motion data [1],
[2], [3], [4]. Both have their advantages and disadvantages,
for example, if an algorithm can generate a requested motion
automatically from scratch, a wider range of movements
can be achieved. However, in most cases due to the high
dimensionality of the problem, generating a motion from
scratch takes a long time. On the other hand, if the algorithm
uses an external motion library, it can quickly generate the
motion. The drawback in this approach is, in most of the
cases the variety of the generated motion is limited by the
library.

Regardless of the method of choice, the goal of the human
animation is to simulate humans doing some task. In most
cases, visual quality of the animation is used as a metric to
evaluate an animation. While vision plays an important role in
viewers perception, another sense, hearing is also important.
If the animation is in synchronization with the sound, the
experience would become more exciting.

In this paper, we present our approach to combine sound
with motion synthesis. Our aim is to generate a dance
sequence in which the virtual dancer dances to the beats

Fig. 1. A dancing figure.

of the music. Our system has three components: (i) music
analyzer, (ii) motion analyzer and (iii) motion synthesizer.
Through our novel music analyzing algorithm, we find the
beats in the music. We do not have any restriction for the
type of the music, it can be a song or it can be a melody. We
use a stock motion library containing motion capture data.
Our motion analyzing algorithm identifies similar frames in
the motion capture data and finds dance figures (a sequence
of frames that can be grouped together) and moves (sharp
changes in the motion of some body parts: hip, hand, elbow,
knee or foot). It is our motion synthesis algorithm’s job to
generate a sequence of dance figures where dance moves
are synchronized with musical beats. For motion synthesis,
we propose two algorithms: a greedy algorithm and a genetic
algorithm which tries to increase the synchronization between
moves and beats.

Although our current implementation is for virtual charac-
ters using motion capture data (see Figure 1), our algorithms
are general and can be easily applied to real robots making
them closer to humans as they entertain humans. For exam-
ple, a motion analyzer component can use a robot’s control
data instead of motion capture data. Alternatively, the dance
sequence for a human character can be used to control a
humanoid robot [17], [21].

We would like the emphasize the fact that all the com-
ponents of our system is fully automated, hence we can
generate dance sequence from arbitrary tunes, using arbitrary
motion capture data without human intervention. There have



been similar work before, but either the musical beats were
periodic, i.e., no need to find them [5] or they were manually
selected [9]. To the best of our knowledge, we are the
first researchers which have fully automated dance sequence
generator for human animation.

We will talk about the related work in the next section.
Section III describes our system. Sections IV, V and VI
describes the components of our system. We present our
experimental results in Section VII. Section VIII concludes
our paper.

Our web based dance sequence generator will be available
shortly at http://www.cse.wustl.edu/∼bayazit.

II. RW

Although developed independently, some of the key fea-
tures of our system are similar to Kim et al.’s rhythmic-
motion synthesis [5]. We both analyzed some motion capture
data, identified motion primitives and dance moves, and
synthesized a dance sequence. However, there are three sig-
nificant differences between the systems. Kim et al. assumed
the input sound had periodic beats, restricting the system to
musical tunes with repetitive beats. Furthermore, those beats
were not identified automatically. In contrast, we capture the
arbitrary musical beats from any given tune. They have used
a dance-move-music-beat matching algorithm similar to our
greedy algorithm. On the other hand, we are presenting a
second algorithm based on genetic algorithms. The advantage
of using a genetic algorithm is the ability to optimize the
dance sequence globally. A greedy algorithm had limited
backtrack ability if things go wrong. We noticed that our
genetic algorithm generates more variety in the dance figures.
Finally, we have implemented a different algorithm to identify
dance moves. Jehan et al. [9] developed a system that can
generate dance video of real people based on stock video.
However, the dance moves in the original video frames were
manually selected.

Generating new motion from motion capture data is a well
studied problem. Pullen and Bregler presented an animation
system which generates new animation through motion data
with human assistance [20]. Barbic; et al. [2] segmented
motion capture data into distinct behaviors. Wang and Bon-
deheimer [23] evaluated a new cost metric for selection
of transition frames. Kovar et al. [13] developed an algo-
rithm to remove artifacts after merging motion data from
different frames. Pettre et al. [19] combined probabilistic
motion planning with motion capture data, and used warping
technique to blend frames. Kovar et al. [12] presented motion
graphs similar to our transition graph. Arikan and Forsyth [1]
used randomized search to generate natural looking motion.
Wiley and Hahn [24], showed an interpolation algorithm
to synthesize desired moves from predefined data. Both
Nakaoka et al. [17] and Safonova et al. [21] used motion
capture data to generate new moves for humanoid robots.
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Fig. 2. System overview.

There have been some work on musical beat detection.
Harper and Jernigan [7] used recurrent timing networks to
detect the beats. Hainsworth and Macleon [6] used particle
filters to identify the beats. Laroche [15] used maximum
likelihood assuming the tempo was constant. Jensen and
Andersen [10] found most probable beat intervals by using a
feature extracted from note onsets. Scheirer [22] used filter-
banks to predict the beats in the music.

III. S O
As discussed in Section I, our system has three components

(see Figure 2). The music analyzer processes a musical tune
and finds the musical beats (low frequency sounds). The
motion analyzer processes motion capture data to find dance
figures and moves. Usually motion capture data are long se-
quences of frames and similar frames exist in different times.
Our motion analyzing component identifies such frames and
builds a transition graph. Each node of the graph represents
the start of a new dance figure. A dance figure is basically a
sequence of consecutive frames. The motion synthesizer gets
the beats, transition graph and moves and tries to generate
a sequence of dance figures that will be synchronized to
musical beat. We have developed two algorithms for the
motion synthesizer. Our first algorithm is a greedy algorithm.
It continuously adds new figures to the dance sequence. Since
there may be more than one figure that can be added to the
end of a dance sequence, the greedy algorithm selects the
figure that will give maximum synchronization between mu-
sical beats and dance moves. In order to increase the variety
of dance figures, we also consider probabilistic selection.
Our second algorithm is a genetic algorithm that tries to
increase dance-move music-beat synchronization. The genes
in the algorithm represent sequence of dance figures. The
algorithm uses the amount of synchronization between moves
and beats as the fitness function. If it is necessary either
motion synthesizing algorithm can change the timing of the
dance figures to fit musical beats.



IV. M A
As discussed in III, the goal of the music analyzer is to

identify musical beats. We believe that, most of the beats are
where the bass sounds are (such as when the drums play).
Bass sounds are mostly low frequency sounds. We would like
to find the envelope for them and find the peak points in the
envelope which are good candidates for possible beat points.
In our implementation, any peak point whose value is greater
than the average value of peaks of the envelope, is treated as a
beat. Figure 3 is a good example of the peak points matching
the beat of a sound. So, in order to find beat, we need to
find low frequency sounds first, then find their envelope. The
easiest way to get low frequency sounds is to apply a low-
pass filter to the audio data. There are several such filters.
It is important for us to have an algorithm suitable for real-
time or fast static applications, so we use a low-pass filter
based on convolution which is common in signal processing
applications.

Convolution for two discrete signals x[n] and y[n] can be
defined as:

conv(x, y)[n] = ∑∞k=−∞ x[k]y[n − k].
It can also be defined as response of a Linear-Time-

Invariant system with impulse response y[n] to an input
x[n] [18]. In this work, x[n] is always the audio signal
whereas y[n] is the Finite Impulse Response (FIR) of a Low-
Pass filter system. Please note that y[n] values are indepen-
dent of the audio signal and can be read from a lookup
table. Our beat detection algorithm can be summarized as in
Algorithm IV.1. In the algorithm, lp1 is an order n-FIR filter
for a given frequency cutoff, conv is convolution function.
abs is the absolute value function, subsample is the function
to reduce sample rate, max is the maximum points in the
envelope.

Algorithm IV.1 Find-Beats(x)
1: lx = conv(x, lp1) //Initial Low Pass filtering
2: ax = abs(lx) //Extract absolute values
3: x2 = subsample(ax) //Subsampling
4: e = conv(x2, lp2) //Very Low Pass Filtering
5: averageMax = max(e)/length(max(e))
6: return max(e) > averageMax

Line 1 in Algorithm IV.1 is the initial low pass filtering.
There are two reasons for initial low pass filtering. First,
low frequencies convey better information regarding the beat
points which are mostly effected by bass sounds. Second,
there is a practical problem in filtering. If the cut of frequency
of envelope detection is too low (i.e. corresponding to a few
beats per second), the FIR filter may fail. Recall that typical
audio frequency is 44.1KHz. During the envelope detection,
in order to filter very low frequencies (less than 4Hz), we
need an intermediate signal which has a frequency between
4Hz and 44.1kHz. Hence, the initial low-pass filtering does
the anti-aliasing for subsampling for the intermediate signal,
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have peaks in beat locations.

which has a sampling frequency of 100 Hz. Line 2 restricts
the envelop to above 0 values. Line 3 reduces sampling rate.
Line 4 finds the envelop. Line 5 finds the average value for
the envelope peaks and Line 6 returns the peaks that are
higher than the average.

V. M A
After extracting the beat times from the music, our aim

is to create a dance sequence from the given motion capture
data and synchronize it with the music. In order to make
such a synchronization we need to find suitable frames in
motion capture data that we can match with beats in music.
A simple approach of assuming the motion capture data is
in synchronization with the music beat usually fails, since
musical rhythms changes frequently, and unless the motion
capture data was recorded using the same music, there will
always be synchronization problems. Also, we may want to
use motion capture data from the different sources, recorded
at different times. Hence, our goal is to analyze motion data
and extract the dance figures and moves. We define dance
figures and dance moves in the following way:
• A dance figure, IFi, is a sequence of motion frames,

f i
0 . . . f i

lasti . A dance figure can be followed by another
dance figure, if the last frame of the former figure is
similar to first frame of the later. i.e.for figures IFi and
IF j, IF j can follow IFi if and only if f i

lasti ' f j
0.

• A dance move is a motion frame that has significant
change in the direction of the movement of some body
part (hip, hand, elbow, knee or feet).

Our motion capture data is in Biovision Hierarchical Data
format (BVH). This format provides skeleton hierarchy infor-
mation as well as motion data. Using hierarchical information
we can identify individual body parts or overall body pose.
Identifying a body pose is very important since, the raw
motion data is highly position-based. There may be cases
where two frames may have similar poses yet their positions



Fig. 4. Two similar dance frames.

and orientation may be far apart due to a dancer’s tendency to
turn and walk while dancing (see Figure 4). Hence, although
the chance of finding the similar frames in motion data is low,
it is very likely to find similar body postures due to repetitive
nature of dance figures in a performance. Remember that two
figures can be consecutive in the dance sequence only if the
previous figure’s last frame is similar to next figure’s first
frame. We need to define similarity between two frames in
the following way.

Definition: Two frames fi and f j a of motion M, are
similar if and only if there exists an arbitrary translation T xz
on the XZ plane and an arbitrary rotation Ry around Y axis
such that the points in Txz(Ry( fi)), (i.e., transformed fi), and
f j are closer to each other than ε.

If two frames fi and f j are similar, it is easy to observe
that we can move from fi to f j+1 and vice versa, provided
that we apply the necessary transformation first.

Using this property, we identify similar frames in the
motion capture data (see Figure 5(b)). Once similar frames
are identified, we can use them as the starting points for dance
figures. If fi and f j are similar, then we may have a figure
starting with fi, and another figure starting at f j. Since their
starting points are the same, both figures can be interchanged
in the animation. A more formal definition of a dance figure
is the following:

Definition: A dance figure is a sequence of frames fi . . . f j
from the motion capture data, M, when
• ∀ fk( fk ∈ { fi, f j}),∃ f ( f ∈ M) : fk ' f , i.e., there are

some frames in motion capture data that are similar to
fi and f j,

• ∀ fk( fk ∈ fi+1 . . . f j−1),∀ f ( f ∈ M) : ( fk , f ) → ( fk ; f ),
i.e., there are no frames in motion capture data that are
similar to frames inside the dance figure (other than start
and end).

Once we have identified the dance figures, we build the
transition graph to represent movements between figures
(Figure 5(c)).

Our next goal is to identify dance moves in a dance figure.
As we have mentioned above a dance move is a significant

(a)

f 98f 0 f 10 f 22 f 36 f 64

F1 F2 F3 F4 F5

(b)

f 98f 0

F1 F2

F4

F5

F3

(c)

f 0 f 98

m3 m2

m1

m4

F4

F5

F3

F1 F2

(d)
Fig. 5. An example motion capture data with dance figures and moves:
(a) frames of initial motion capture data, (b) similar frames ( f10 ' f36,
f22 ' f64), and dance figures (F1, . . . , F5), (c) transition graph based, (d)
dance moves (mi) within figures.

change in one of the limbs’ movement. In order to decide if
there is a significant change, we look for sharp changes in
velocity of the body part that we are interested in. We use
the current position of the body part, position of the body
part in the previous frame and the time rate of motion data
to find the velocity vector, ~Vi, of the body part in frame
fi. The significance of the change in the velocity vector or a
body part, then can be found using vector dot product ~Vi−1. ~Vi.
Note that, ~Vi−1. ~Vi = |Vi−1||Vi| cos(θ), where θ is the angle
between the two vectors. If the two vectors are opposite
in the direction, (see Figure 6), the dot product becomes
negative. The magnitude of the dot product is also important
since it is proportional with the scalar velocities and change
in direction. We utilize these observations and use the dot
product of velocities to find moves. If any of the body parts
in a frame has a dot product less than a threshold value τ,
that frame is designated as a dance move.

VI. M S
Once we have identified the beats of the music, dance

figures, and dance moves, we can generate a sequence of
dance figures where dance moves are synchronized to dance
beats. In the simplest form, motion synthesizer moves on the
transition graph and selects the figures with the maximum
synchronization to the data. However, the moves in raw
data do not necessarily have to be synchronized with the
music beats (Figure 7(a)), motion synthesizer may increase
or decrease the speed of a frame to fit the beat interval
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Fig. 6. Dance move for a hand. The hand is located at positions
Xi−1, Xi, Xi+1 at the frames fi−1, fi, fi+1. Since, the direction of velocity vector
is significantly changed, there is a dance move at frame fi.

(Figure 7(b)). It may not be possible to match all the beats to
all the moves, but synthesizer tries to maximize the matches.

We propose two algorithms to find a good sequence of
dance figures that is synchronized with music. The first one
is a greedy algorithm with backtracking, which tries to find
the best matching frame among the closest dance moves, take
it as a greedy choice and repeat the same process. If the
algorithm gets stuck in a node it stores the current sequence
as a possible solution, backtracks and tries other directions.
In the end, the best solution among the possible solutions is
returned.

The other algorithm is a genetic algorithm that tries to
optimize the dance sequence by taking a number of valid
random dance figures as a population, applying the genetic
operators of crossover and mutation to create new genera-
tions. Both greedy algorithm and genetic algorithm use the
same evaluation function, S core(x), to decide how good a
solution is. S core takes a sequence of dance figures (not
necessarily the same length as the song), considers how
much of the song is covered by the sequence, how good the
beats and moves match and how much the speed of frames
were modified and returns a score. Our score function for a
sequence S of dance figures is: S core(S ) = w1∗beatpercent+
w2 ∗ beatpercent + w3 ∗ length − w4 ∗ avgspeeddev, where
• beatpercent: percentage of music beats in S that are

synchronized with a dance move.
• movepercent: percentage of dance moves in S that are

synchronized with a music beat.
• length: number of beats in the portion of the song which

S can cover.
• avgspeeddev: average speed deviation weighted by du-

rations of dance figures in S.
1) Greedy Algorithm: In the greedy algorithm, we walk

on the transition graph (see Figure 5). We always keep track
of the last synchronized move. When we encounter a new
dance move mi, our goal is to synchronize a beat with
this move by changing the speed of the dance. If we can
synchronize it with a beat in the music, we record it as the last
synchronized move. Otherwise we continue walking on the
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Fig. 7. Music beats vs. dance moves. (a) Without any modification by
motion synthesizer, dance moves and music beats may be asyncronized. (b)
Motion synthesizer modifies the length of moves to fit music beats. The
strength of moves and beats are not normalized. However, the larger the
value the stronger the beat or more dramatic the dance move is.

graph. Depending on the dance figure we are following (arcs
in the graph), we may have more than one dance figure to
continue on our walk. Our choice of next dance figure greatly
affects the success of the solution. Please note that, in order to
find the optimum choice we should do an exhaustive search
which is not feasible, hence the reason for using a greedy
algorithm. So, we select the dance figure which contains the
closest dance move we can synchronize with a music beat.
Although this greedy choice works well, we may end up in
an ending dance figure (no transformation to other figures
is possible, i.e.motion capture data ends there), or we may
not find a dance move that fits to a music beat before the
song ends or a time limit reached. In order to overcome
these issues, we implemented a backtracking mechanism.
If we reach a dead-end before the end of the song, we
store the sequence to dead-end as a possible solution and
backtrack to closest greedy decision point and follow the
second best greedy choice. The greedy algorithm is described
in Algorithm VI.2. One drawback of this algorithm is that it



does not promote visiting different figures in the dance graph.
Although it generates well synchronized solutions, in same
cases it may use a small subset of the dance graph. This
means the resulting dance sequence would have the repetition
of the same dance figures.

Algorithm VI.1 Greedy Choice(G,B,lastmove, lastbeat)
1: Q=empty priority queue of dance moves sorted by distance to

lastnode
2: find all the neighboring dance moves from lastmove and insert

them to Q
3: while Q is not empty and iteration limit not reached do
4: ni=Q.extract min()
5: if dance move can be matched with a beat b j then
6: if this this walk is not chosen and rejected before then
7: lastmove = ni
8: lastbeat = b j
9: return success

10: end if
11: else
12: find all the neighboring dance moves from ni and insert

them to Q
13: end if
14: end while
15: return failure

Algorithm VI.2 Greedy-Sequence(M,B)
1: G=Create-Graph(M)
2: lastmove = first dance move of graph
3: lastbeat = first beat in music
4: while while iteration limit not reached and lastbeat < end of

song do
5: result = Greedy Choice(G, B, lastmove, lastbeat)
6: if result = failure then
7: add the current solution to the set of possible solutions
8: backtrack to the previous successful greedy choice
9: if there are no more choices to backtrack then

10: break the while loop
11: end if
12: end if
13: end while
14: for all possible solutions S i do
15: f itness = S core(S i)
16: end for
17: return the solution S with the maximum fitness

To overcome this problem, we introduce a probabilistic
version of our greedy algorithm that probabilistically rejects
the best greedy choice based on the number of times that
the graph node is visited before. The more number of times
a graph node is visited before, the more likely that it will
be rejected in the next greedy choice. With this probabilistic
rejection included in the algorithm, the resulting solutions
usually contain wider selection of dance figures.

2) Genetic Algorithm: The other algorithm we propose
for finding a good sequence of dance figures that are syn-
chronized with the music is based on genetic algorithm [16].
We believe our synchronization problem is an optimization

problem for which genetic algorithms are well known. They
represent possible solutions as genes. They change the gene
pool at each iteration. The genes are probabilistically selected
using a fitness function, and crossovered to generate new
genes. Random mutations modify some genes to increase
the entropy of the system. At the end of the each iteration,
weakest genes are probabilistically removed from the gene
pool.

In our implementation, we used S core function as our
fitness function. The genes represent the consecutive dance
figures. For a gene to be valid, all the consecutive dance
figures in the genes must be neighbors in the transition graph.
We restrict our genetic operators to accept and produce valid
genes. The size of the genes may vary since the a sequence
may contain different number of figures.

We create our initial population as random walks in the
motion graph starting from the first figure. We end the walks
either upon reaching the end figure in the graph, or slightly
exceeding the tune length. Our crossover operator takes a
random figure F in the first parent and finds the same figure
in the second parent. If there are more than one instance
of the same figure, the algorithm probabilistically selects
one. In other words, if the first parent represents a sequence
{F0

1, . . . Fi
1, . . . Fk

1} and the second parent represents a se-
quence {F0

2, . . . F j
2, . . . Fm

2}, where Fi
1 = F j

2, then the
children will be F0

1, . . . F j
2, . . . Fm

2 and {F0
2, . . . Fi

1, . . . Fk
1}

.
For mutation, we select a random dance figure Fi in the

gene and try to find a single figure or a sequence of figures
that have start and end frames that are similar frames with
the start and end frames of Fi. If we can find such a figure or
figure sequence, we replace it with the selected figure in the
gene, thus protecting the validity of the gene. If we cannot
find a replacement for that figure, we try the next figure in
the gene and give up when we reach the end of the figure.

VII. E

In our experiments, we want to evaluate the performance
of our algorithms under different conditions. We have a set
of dance figures (70 total), and two songs. We have run our
algorithm on an Athlon 3200++ with 1GB Memory running
Linux. The animations of our experiments can be seen at
http://www.cse.wustl.edu/∼bayazit.

In our experiments, we have used two different songs,
”Breakdance” which is highly rhythmic, and, ”Garden” which
is slower. A significant difference between two songs is that,
Garden has some long periods without a beat. We designed
our experiments to: (i) verify that our genetic algorithm
works, (ii) evaluate the frame selection policy for each of
the motion synthesizing algorithm, and (iii) compare the
efficiency of each algorithm.

In order to verify our genetic algorithm, we investigated the
average fitness of the gene pool over each iteration. A well



designed genetic algorithm should converge to some value.
Figure 9 shows average fitness value of the gene pool after
each generation. x axis represents the generation number and
y axis represents the fitness score. We have run the genetic
algorithm for 60 generations. The experiment took 5 minutes
to finish. As it can be seen in the figure, the average score
of the gene pool increases as the number of generations
increases.

Next, we wanted to evaluate the figure selection bias of
each algorithm. In order to do that, for a given solution,
we counted how many times each dance figure occurred
in the solution. If an algorithm favors some figures, those
dance figures would be encountered more frequently than
other dance figures. Figure 8 is the histogram of the dance
figures that exist in the solution of each algorithm. This
figure helps us visualize how each algorithm selects dance
figures. x-axis represents frames. y-axis the frequency of the
frames. It is clear from the figure that, the greedy algorithm
favors some dance figures, since they have significant number
of occurrences. That was expected, since greedy algorithm
tries to match a move with the earliest beat, it would be
easier, if the algorithm selects the short dance figures. The
probabilistic greedy algorithm is more flexible since it has
fewer number of repetitive figures. That can be explained by
the fact that, although the greedy algorithm favors the earliest
beat, the probabilistic greedy algorithm remembers frequency
of a figure and is biased towards to less visited figures.
Among all three algorithms, the most flexible algorithm is
the genetic algorithm, since it selects several different figures.
The reason for that is, the genetic algorithm is a global
optimization algorithm, so instead of making decisions by
evaluating immediate choices, the genetic algorithm evaluates
a dance sequence’s overall performance.

Finally, we want to compare the solutions of our algorithms
for both songs. Table I shows the results. In the table, we
show the time to find a dance sequence Time, score of
the solution, Score, number of matched dance moves and
music beats, Matched Beat, number of beats missed for the
current solution Missed Beat, the average speed deviation
(Avg.Sp.Dv), and the length of the dance sequence (Length).
The solution times for both Greedy and Probabilistic Greedy
are very close to each other. They are very fast and their
performances are also close (number of matches, number of
misses as well as the length of the solution). On the other
hand, the genetic algorithm is significantly slower than other
two algorithms. And it missed more beats in ”Breakdance”,
however when we look at ”Garden”, we observe the ad-
vantage of the genetic algorithm. Remember that, ”Garden”
had some long intervals without a beat. The greedy and
the probabilistic greedy algorithms fail to pass through such
intervals since as they fail to find a beat, they continue to
explore the transition graph until the queue becomes full or
time out reached. In contrast, genetic algorithm already have
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Fig. 9. Average fitness of the genes in “Breakdance”.

some dance figures over the beatless intervals so they do not
need to explore the transition graph. As a result, the greedy
based algorithms could have find a solution to only %60 of
the song, yet genetic algorithm found a solution that reaches
the end of the song.

Our results suggested that, if a fast solution is required
and the variety of the figures are not important, a greedy
based algorithm is preferable. However, if the variety of the
figures are important or the song has long beatless intervals,
a genetic algorithm would be more efficient to find the dance
sequence.

VIII. C
In this paper, we describe a fully automated system to

synthesize a dance for virtual characters using motion capture
data. We present algorithms to identify the beats in the music,
and interesting moves in the motion data. We also propose
two algorithms that will synchronize interesting dance moves
with the music data to generate a sequence of dance moves.
Our system can generate sequence of the dance moves
that were not in the original motion capture data and our
algorithms are fast.

Our future work includes implementing the addition of
multiple characters and their coordination, and improving the
matching algorithm by including the beat magnitude and the
speed of dance moves.
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