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ABSTRACT OF THE DISSERTATION

Explicit Bases of Motives over Number Fields with Application to Feynman Integrals

by

Yu, Yang

Doctor of Philosophy in Mathematics,

Washington University in St. Louis, 2016.

Professor Matthew Kerr, Chair

Let K∗(k) be the algebraic K-theory of a number field k and MT (k) the Tannakian

category of mixed Tate motives over k. Then Ext1
MT (k)(Q(0),Q(n)) = K2n−1(k) ⊗ Q.

Periods of mixed Tate motives give zeta and multiple zeta values. These extension classes

show up in settings like Feynman integral and Mahler measure.

Chapter 1 contains background material on higher Chow groups, KLM formula and

Feynman integrals. In Chapter 2, we construct explicit bases for these extension classes

mapping to Lin(ζk) (∀n, k). In Chapter 4, we study the Feynman integral of the three

spoke wheel graph, reinterpret it as an image of regulator using higher Abel-Jacobi maps

and theoretically prove that it is a rational multiple of zeta three. In Chapter 5, a reflexive

graph polytope based on the graph polynomial is constructed. In Chapter 6, to generalize

the results beyond wheel with three spokes, a criterion is given on the vanishing of graph

symbols. An essential blow-up construction is reinterpreted in toric language to reveal

the ambient space’s combinatorial structure.
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1. Backgrounds.

1.1 Introduction

Let ζN ∈ C∗ be a primitive N th root of 1 (N ≥ 2). The seminal article [1] of

A. Beilinson concludes with a construction of elements Ξb (b ∈ (Z/NZ)∗) in motivic

cohomology

H1
M (Spec(Q(ζN)),Q(n)) ∼= K

(n)
2n−1 (Q(ζN))⊗Q

mapping to Lin(ζbN) =
∑

k≥1
ζkbN
kn
∈ C/(2πi)nR under his regulator. Since by Borel’s

theorem [2] rkK
(n)
2n−1(Q(ζN))Q = 1

2
φ(N) (for N ≥ 3), an immediate consequence is that

the {Ξb} span K
(n)
2n−1(Q(ζN))Q; indeed, Beilinson’s results anticipated the eventual proofs

[3,4] of the equality (for number fields) of his regulator with that of Borel [5]. An expanded

account of his construction was written up by Neukirch (with Rapoport and Schneider)

in [6], up to a “crucial lemma” ((2.4) in [op. cit.]) which is required for the regulator

computation but left unproved.

The intervening years have seen some improvements in technology, especially Bloch’s

introduction of higher Chow groups [7], which yield an integral definition of motivic

cohomology for smooth schemes X. In particular, we have1

H1
M (Spec(Q(ζN)),Z(n)) ∼= CHn (Q(ζN), 2n− 1)

:= H2n−1 {Zn(Q(ζN), •), ∂} ,

1We use the shorthand CH∗(F, ∗) (Z∗(F, ∗), etc.) for CH∗(Spec(F ), ∗) (F a field).
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and can ask for explicit cycles in ker(∂) ⊂ Zn (Q(ζN), 2n− 1) representing (multiples

of) Beilinson’s elements Ξb. Another relevant development was the explicit realization of

Beilinson’s regulator in [8–10] as a morphism ÃJ of complexes, from a rationally quasi-

isomorphic subcomplex Zn
R(X, •) of Zn(X, •) to a complex computing the absolute Hodge

cohomology of X. Here this “KLM morphism” yields an Abel-Jacobi mapping

AJ : CHn (Q(ζN), 2n− 1)⊗Q→ C/(2πi)nQ, (1.1)

and in the present note we shall construct (for all n) higher Chow cycles

Ẑb ∈ ker(∂) ⊂ Zn
R(Q(ζN), 2n− 1)⊗Q

with

(n− 3)Nn−1Ẑb ∈ Zn
R (Q(ζN), 2n− 1)) and AJ(Ẑb) = Lin(ζbN).

(See Theorems 2.4.2, with Ẑ = (−1)n

Nn−1 Z̃ .) This is entirely more explicit than the con-

structions in [1,6], and yields a transparent computation of the regulator, hence removing

any confusion around the aforementioned lemma. Furthermore, in concert with the antic-

ipated extension of ÃJ to the entire complex Zn(X, •) (making (1.1) integral), we expect

that our cycles will be useful for studying the torsion in CHn (Q(ζN), 2n− 1) as begun

in [11] (cf. Remark 2.4.1).

The Feynman integrals of certain families of graphs exhibit interesting patterns of zeta

and multiple zeta values.They are periods of underlying mixed Tate motives. Applying

the technique of Feynman parameters [12], the problem comes down to studying the

motives associated to graph polynomials. By [13], general graph’s motive are mixed

tate. Therefore it is natural to ask the following question: for what kind of graphs, their

graph polynomial are mixed tate, and how does this property relate to the combinatorial

structure of a graph.

2



Broadhurst and Kreimer [14] computed Feynman amplitudes using numerical and

analytic methods for certain families of graphs. The first attempt to give an algebro-

geometric explanation to this problem is given by Bloch, Esnualt and Kreimer [15], where

they interpreted Feynman integral as periods of mixed Hodge structure. In [16],Bloch,

Kerr and Vanhove initiate a new method to interpret Feynman integrals as the pairing

of an image of a higher Abel-Jacobi map and a rational homology class, applying this to

the sunset graph. Their approach starts with completing a certain K-theoretic “graph

symbol” and the ambient space is a toric variety arising from a reflexive polytope. In

[17], rich tools are developed on the topics of symbols over toric varieties. This motivates

our work to apply the symbol approach to other graphs.

1.2 Definition of Higher Chow cycle groups

Bloch defined higher Chow groups in [7], with the objective to define an integral coho-

mology theory to represent up to torsion the weighted-graded pieces of higher K−theory.

Bloch’s idea is to construct a chain complex the elements of which in every degree n are

cycles of co-dimension q of X×∆n. One motivation would be as follows. For an algebraic

variety X defined over an infinite field, one wants to have an algebro-geometric version

of singular homology theory. This motivates to consider the morphisms from algebraic

n−simplex ∆n to X. And it turns out it is more appropriate to consider the correspon-

dences, i.e. the sub-varieties in the product space X×∆n. Another motivation for higher

Chow group is if one patches two copies of X ×∆n along X × ∂∆n, and call it SmX , then

Karoubi-Villamay theory says Km(X) is a direct summand of K0(SmX ).

Here we use a cubical version of higher Chow group, which is equivalent to the sim-

plicial version above.

3



Let �n := (P1 \ {1})n with coordinates (z1, ..., zn). For a multi-index J ⊂ {1, ..., n}

and function f : J → {0,∞}, define subsets ∂Jf�
n :=

⋂
j∈J{zj = f(j)}, and put ∂�n :=⋃

j(∂
j
0�

n ∪ ∂j∞�n). One has inclusion and projection maps

ιj,k : �n−1 ↪→ �n (z1, ..., zn−1) 7→ (z1, ..., zj−1, k, zj..., zn−1)

(k = 0 or ∞) and

πj : �n � �n−1 (z1, ..., zj, ..., zn) 7→ (z1, ..., ẑj, ..., zn).

Now, let X be an algebraic variety defined over an infinite field k and Zp(X × �n)

the abelian group of codimension-p algebraic cycles defined over k.

Definition 1.2.1 The admissible cycles are the formal sums of irreducible subvarieties

Z ∈ ZP (X ×�n) such that Z intersects all faces properly. In another words, Z ∩ (X ×

∂Jf�
n) has codimension p in X×∂Jf�n (∀J, f). We denote the group of admissible cycles

by cp(X,n) ⊂ ZP (X ×�n).

One can have a class of “trivial” admissible cycles by pulling back admissible cycles along

projection to faces, called degenerate cycles:

dP (X,n) :=
∑
j

π∗j c
p(X,n− 1) ⊂ cp(X,n).

Definition 1.2.2 The higher Chow precycles are the following group

Zp(X,n) :=
cp(X,n)

dp(X,n)
.

We define the Bloch differential

∂B : Zp(X,n)→ Zp(X,n− 1)

Z 7→
∑
j

(−1)j(∂j0 − ∂j∞)Z,

4



which satisfies ∂B ◦ ∂B = 0. This makes Zp(X, ·) a chain complex. A higher Chow cycle

is a closed precycle, and the higher Chow groups are the cohomology groups of the chain

complex:

CHp(X,n) := H−n{Zp(X, ·), ∂B}.

1.3 Properties of higher Chow groups

Let f : X → Y be a map of varieties. The pull-back and push-forward give rise

to the pull-back map f ∗ : CHq(Y, p) → CHq(Y, p) if f is flat, and the push-forward

map f∗ : CHq+d(X, p) → CHq(Y, p) if f is a proper of relative dimension d. These are

functorial, when the composition is defined.

Besides functoriality, we list several properties of higher Chow groups which will used

later in this thesis.

1. Homotopy. Let pX : X × A1 → X be the projection. Then

p∗X : CHq(X, p)→ CHq(X × A1, p)

is an isomorphism.

2. Localization. Let i : Z → X be a closed codimension d subscheme of a quasi-

projective variety X, and j : U → X the complement. Then the sequence

zq−d(Z, ∗) i∗−→ zq(X, ∗) j∗−→ zq(U, ∗)

defines a quasi-isomorphism zq−d(Z, ∗)→ cone(j∗)[−1], giving rise to the long exact

localization sequence

...→ CHq−d(Z, p)
i∗−→ CHq(X, p)

j∗−→ CHq(U, p)
δ−→ CHq−d(Z, p− 1)→ ....

5



3. Products. There are functorial maps of complexes

�X,Y : zq(X, ∗)⊗Z z
q
′

(Y, ∗)→ zq+q
′

(X ×k Y, ∗)

which are associative and (graded) commutative. Following �X,X by the pull-back

via the diagonal makes the bi-graded group ⊕p,qCHq(X, p) into a bi-graded ring,

graded-commutative in p.

4. Comparison with K-theory. Let X be a smooth quasi-projective variety. There are

natural isomorphisms

CHq(X, p)⊗Q ∼= Kp(X)(q),

where Kp(X)(q) is the weight q subspace (for the Adams operations) in the rational

higher algebraic K−theory of X, Kp(X)⊗Q.

Let X be a smooth variety, Y ↪→ X an open embedding. D = X \Y a codimension 1

divisor. A situation we encountered a lot is that of a precycle ξ in Zp(Y, n) which gives

a higher Chow cycle on Y , but whose extension to X does not meet the faces of X ×�n

properly. So two questions naturally arise. One is : could we modify or move ξ such that

it will meet the faces of X × �n properly? The second is : does the moved cycle give a

higher Chow cycle in X?

The first question is answered by Bloch’s moving lemma [5], which says

Zp(X, ·)
Zp−1(D, ·)

ι∗−→ Zp(Y, ·)

is a quasi-isomorphism. Intuitively, this says we could “move” a closed precycle ξ on Y

by adding an exact precycle, such that the result extends to an admissible cycle Ξ on X

such that ∂B(Ξ− ξ) is supported on D. This yields a residue map

Res : CHp(Y, n)→ CHp−1(D,n− 1).

6



See Matt Kerr’s thesis [8]. The residue map fits in the long-exact sequence

→ CHP (X,n)
j∗−→ CHP (Y, n)

Res−−→ CHp−1(D,n− 1)
ι∗−→ CHp(X,n− 1),

which answers the second question. So when Res(ξ) vanishes, ξ could be lifted to a higher

Chow cycle class Ξ in X.

In practice, D could be singular and it is hard to compute its higher Chow group. So

we could break D into smooth strata and define higher residue maps from Y to stratas.

The idea is we want to take successive higher residue maps and Res(ξ) = 0 when all higher

residue maps vanish. Although higher residue maps could be defined in broader cases,

for our convenience, here we just let D be a normal crossing divisor. In [10] two ways

to define the higher residue maps are given, here we only mention one that uses Gysin

spectral sequence which take residues consecutively from highest codimension strata to

codimension− 1 strata.

Let D =
⋃
Di be a NCD, DI :=

⋂
i∈I Di, D

k =
⋃
|I|=kDI and D̃k ∼= q|I|=kDI .

Define(mostly 3rd quadrant) double complexes

KX\Y (p)a,b0 := Zp+a(D̃−a,−b)

with vertical differential ∂B, horizontal differential

Gy := 2πi
∑
|I|=−a

∑
i∈I

(−1)<i>I\{i}(ιDI⊂Di\{i})∗

(< i >J := position in which i occurs in J), and total differential D := ∂B + (−1)bGy.

In the first sheet E1, we have K(p)a,b1
∼= H2p+2a+b

K (D̃−a,Q(p + a)). Consider the

quotient double complex

K≤−k(p)a,b :=


0 a > −k

Ka,b a ≤ −k

.

7



Since residue is the dual of Gysin morphism, the map of double complexes

KX\Y (p)a,b0 � K≤−kX\Y (p)a,b0 ,

induces higher residue maps.

We would use the higher residue maps on CHn(Y, n). We will first take the Resn to

the highest codimension stratas, and on ker(Resn) we take Resn−1 dimension 1 stratas,

so on so force as follows

CHn(Y, n)
Resn−−→ CH0(D̃n),

ker(Resn)
Resn−1

−−−−→ CH1(D̃n−1, 1),

ker(Resn−1)
Resn−2

−−−−→ CH2(D̃n−2, 2),

.

.

.

ker(Res2)
Res1

−−→ CHn−1(D̃1, n− 1),

and ker(Rex1) � CHn(X,n).

Especially, we have ker(Res1) =
⋂

ker(R̂es
i
). Here R̂es

i
are the iterated Poincáre

residues,

CHn(Y, n)
R̂es

i

−−→ CHn−i(D̃i \ D̃i+1, n− i).

Definition 1.3.1 Let F be a field. For n ≥ 2 let KM
n (F ) denote the quotient of the

abelian group ⊗nZ[P1
F \ {0,∞}] by the Steinberg relations: the subgroup generated by all

permutations of

α1 ⊗ α2 ⊗ ...⊗ αn + β1 ⊗ α2 ⊗ ...⊗ αn − α1β1 ⊗ α2⊗ ...⊗ αn,

α1 ⊗ α2 ⊗ ...⊗ αn + α2 ⊗ α1 ⊗ ...⊗ αn, α1 ⊗ (1− α1)⊗ ...⊗ αn.

For n < 2, put KM
1 (F ) := F ∗ and KM

0 (F ) := Z.

8



We shall write elements of ⊗nZ[P1
F \ {0,∞}] additively and elements of the quotient

multiplicatively(eg. {α1, ..., αn}).

Milnor symbols satisfy Steinberg relations:

Lemma 1.3.2 if (·, ·) is a symbol then (assuming all terms are defined)

• (a,−a) = 1;

• (b, a) = (a, b)−1;

• (a, a) = (a,−1) is an element of order 1 or 2;

• (a, b) = (a+ b,− b
a
).

1.4 Iterated residues in toric setting

In the case when X is toric variety, [17] develops powerful techniques to compute the

iterated residues. Here we briefly review their construction related to our cases.

Let P∆ be a n−dimensional toric variety with toric coordinates x1, ..., xn and P∆̃ be

a smooth toric variety lying over it. We know that a toric variety can be decomposed

as disjoint union of torus orbits of different dimensions. For convenience, we apply [17]’s

notation, but with slight differences. Use ∆(i) to denote the set of closures of codimension-

i orbits. For example, for a σ ∈ ∆(i), D∗σ ⊂ P∆ represents the corresponding orbit and

Dσ represents it closure. And

D := ∪σ∈∆(1)Dσ = tni=1(tσ∈∆(i)D∗σ)

is the complement of (C∗)n in P∆.

Actually, we can always construct a polytope whose combinatorial structure(its face

structure) describes the intersection behavior of D, and this is the polytope ∆ to which

P∆ is associated via the normal fan construction.
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Now suppose we could find a change of toric coordinates to xσj such that

D∗σ = {xσ1 , ..., xσn−i ∈ C∗} ∩ {xσn−i+1 = · · · = xσn = 0} ⊂ P∆.

This new set of coordinates makes a new symbol {xσ1 , ..., xσn−i}. It will facilitate our

computation of higher residue maps.

Lemma 1.4.1 the diagram

CHn(P∆̃ \ D̃, n) CHn−i(D∗σ̃, n− i)

CHn(X̃∗, n) CHn−i(D∗σ̃, n− i)

I∗

Resiσ̃

Resiσ̃

I∗σ̃

commutes for any σ̃ ∈ ∆(i), as does a similar diagram with all tildes removed.

The lemma above enable us to compute the Resiσorσ̃ (bottom row) on ξ.

Proposition 1.4.2 For σ ∈ ∆(i), and σ̃ ∈ ∆̃(i− k) lying over σ in the above sense,

Resiσξ =(I∗σ)〈±{xσ1 , ..., xσn−i}〉

Resi−kσ̃ ξ = (I∗σ̃)〈±{xσ1 , ..., xσn−i, yσ̃1 , ..., yσ̃k}〉,

where the parenthetical expressions are optional.

1.5 Deligne cohomology complex

Deligne cohomology is introduced in [18], designed to be the target of Beilinson reg-

ulator from motivic cohomology. As KLM formula is a lift of the Beilinson regulator to

Bloch’s higher Chow complex, it is natural to see Deligne cohomology is also the target

of KLM formula. Deligne cohomology could be defined for any field of character 0, here

we only consider Q.
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Definition 1.5.1 For smooth quasi-projective(d−dimensional)X, the a−currents Da(X)

are functionals on the space of compactly supported C∞ forms of degree 2d−a. A current

η ∈ F bDa(X) if it kills Γc(F
d−b+1Ω2d−a

X∞ ).

Example 1.5.2 The integration against a real-codimension a C∞−Borel-Moore chain Γ

on X, denoted by δΓ.

Example 1.5.3 Differential a−forms with log poles along subvarieties of X.

Example 1.5.4 On �n, we define the following,

Rn : =
n∑
j=1

((−1)n2πi)j−1log(zj)
dzj+1

zj+1

∧ ... ∧ dzn
zn

δTz1∩...∩Tzj−1

Ωn := ∧nj=1

dzj
zj
, Tn :=

n⋂
j=1

Tzj :=
n⋂
j=1

z−1
j (R≤0∪{∞}).

Lemma 1.5.5 Rn, Ωn, and Tn satisfy the following residue formula

d[Rn]− Ωn + (2π
√
−1)nδTn = 2π

√
(− 1)

n∑
i=1

R(z1, ..., ẑi, ..., zn)δ(zi = 0).

Proof See the proof in [17].

For a precycle ξ ∈ Zp(X,n), let Rξ := (πX)∗(π�)∗Rn, and we define Ωξ and Tξ

similarly. Then we have

d[Rξ] = Ωξ − (2π
√
−1)nδTξ + 2π

√
−1R∂ξ. (1.2)

For convenience, we follow the definition of Deligne cohomology in [9].

Definition 1.5.6 For smooth projective variety X, Deligne cohomology group H2p−n
D (X,Q(p))

is the (2p− n)-th cohomology of the following complex:

C ·D(X,Q(p)) := (C ·+1
top (X;Q(p))⊕ F pD·+1(X)⊕D·(X))[−1]

where D(T,Ω, R) = (−∂topT,−d[Ω], d[R]− Ω + δT ).
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H2p−n
D (X,Q(p)) sits in a short-exact sequence

0→ Jp,n(X)Q → H2p−n
D (X,Q(p))→ Hgp,n(X)Q → 0,

where

Hgp,n(X)Q := HomQ−MHS(Q(0), H2p−n(X),Q(p))

= F pH2p−n(X,C) ∩H2p−n(X,Q(p)),

Jp,n(X)Q := Ext1Q−MHS(Q(0), H2p−n−1(X,Q(p)))

=
H2p−n−1(X,C)

F pH2p−n−1(X,C) +H2p−n−1(X,Q(p))
.

When X is smooth projective and n ≥ 1, it is easy to see Hgp,n(X)Q = 0. In a triple

(Γ,Ω, K) which is D closed, (Ω, K) define the map to Hgp,n(X)Q.

1.6 KLM formula

The KLM formula says for Z ∈ Zp
R(X,n) ∂B-closed, its image in H2p−n

D (X,Q(p)) is

represented by

Z 7→ ((2πi)pTZ , (2πi)
p−nΩZ , (2πi)

p−nRZ). (1.3)

Here Zp
R(X,n) is a complex quasi-isomorphic to Zp(X,n), elements of which are required

to intersect some real analytic subset properly, see [8]. RZ(respectively for TZ ,ΩZ) =

(πX)∗(π�)∗Rn(Tn,Ωn).

Now suppose for ξ ∈ Zp
R(X,n) ∂B-closed, and n ≥ 1. Since [Tξ] and [Ωξ] define

the map to Hgp,n(X)Q (which is zero for n ≥ 1), there exist K ∈ F pD2p−n−1(X) and

Γ ∈ C2p−n−1
top (X;Q(p)) such that Ωξ = d[K] and Tξ = ∂Γ. Therefore if we define

R̃ξ := Rξ −K + (2πi)nδΓ, (1.4)
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then by (1.5.5), R̃ξ is a closed current and defines a class [R̃ξ] ∈ H2p−n−1(X,C) projecting

to

AJp,nX (ξ) ∈ Jp,n(X)Q ∼=
H2p−n−1(X,C)

F pH2p−n−1(X,C) +H2p−n−1(X,Q(p))
.

The maps {AJp,n(ξ)} are called regulator maps because they are lifts of Beilinson

regulators. Assume X is projective and defined over a number field F . By composing

structure morphism X → Spec(F ) → Spec(Q) we could view X as a variety over Q.

Applying AJp,n for this X to the cycle-classes which are defined over Spec(OF ) and

composing with the projection to real Deligne cohomology will give Beilinson’s regulator.
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2. An explicit basis for the rational higher Chow groups of

abelian number fields.

2.1 Beilinson’s Construction

2.1.1 Notation.

Let ζ be a primitive N -th root of unity, i.e. ζ = exp(2πi( a
N

)), where a is coprime to

N . Each such a yields an embedding σ of F := Q[ω]
(ωN−1)

into C (by sending ω 7→ ζ). (If

N = 2, then F = Q and ω = ζ = −1.)

Working over any subfield of C containing ζ, write

�n := (P1 \ {1})n ⊃ Tn := (P1 \ {0, 1})n

with coordinates (z1, ..., zn). We have isomorphism from Tn to Gn
m with coordinates

(t1, ..., tn), given by ti = zi
zi−1

. Define a function

f(z1, · · · , zn) := 1− ζt1 · · · tn

on Tn(with b coprime to N), and normal crossing subschemes

Sn = {z ∈ Tn| some zi =∞} ⊃ Sn ∪ |(f)0| =: S̃n ⊂ Tn.

(Alternatively, we may view these schemes as defined over F by replacing ζb with ωb.)
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Now consider the morphism

ιn : Tn−1 → Tn

(t1, ..., tn−1) 7→ (t1, ..., tn−1, (ζ
bt1, ..., tn−1)−1).

We record the following:

Lemma 2.1.1 ιn sends Tn−1 isomorphically onto |(fn)0|, with ιn(S̃n−1) = |(fn)0| ∩ Sn.

Proof To clarify, when we define S̃n−1 = Sn−1 ∪ |(f)0|, we mean f(z1, · · · , zn−1) =

1− ζt1 · · · tn−1. Then the lemma follows straight forward.

We also remark that the Zariski closure of ιn(Tn−1) in �n is just ιn(Tn−1).

2.1.2 Results for Betti cohomology.

The construction just described has quite pleasant cohomological properties, as we

shall now see.

Lemma 2.1.2 As a Q−MHS,

Hq(Tn;Sn) ∼=


Q(−n) , q = n

0 , q 6= n

.

Lemma 2.1.3 As a Q−MHS,

Hq(Tn, S̃n) ∼=


Q(0)⊕Q(−1)⊕ . . .⊕Q(−n) , q = n

0 , q 6= n

.

Proof This is clear for (T1, S̃1) ∼= (Gm, {1, ζ̄}). Now consider the exact sequence

H∗−1(Tn, Sn)
ι∗n−→ H∗−1(Tn−1, S̃n−1)

δ−→

H∗(Tn, S̃n)→H∗(Tn, Sn)
ι∗n−→ H∗(Tn−1, S̃n−1)
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of Q-MHS, associated to the inclusion (Tn−1, S̃n−1) ↪→ (Tn, Sn). (This is just the relative

cohomology sequence, once one notes that the pair ((Tn, Sn), ιn(Tn−1, S̃n−1)) = (Tn, Sn∪

ιn(Tn−1)) = (Tn, S̃n) by lemma (2.1.1)). If ∗ 6= n, then the underlined terms are 0 via

Lemma (2.1.2) and induction. If ∗ = n, then the end terms are 0 via Lemma (2.1.2) and

induction, and

0→ Hn−1(Tn−1, S̃n−1)
δ−→ Hn(Tn, S̃n)→ Hn(Tn, Sn)→ 0 (2.1)

is a short-exact sequence.

Now observe that:

• Hn(Tn, Sn;C) = F nHn(Tn, Sn;C) is generated by the holomorphic form

η := 1
(2πi)n

dt1
t1
∧ · · · ∧ dtn

tn
;

• Hn−1(Tn−1, S̃n−1;Q) is generated by images e(Ui) of the cells ∪ni=0Ui = [0, 1]n \ ∪nl=1{∑
xi = l − a

N
, where e : [0, 1]n → Tn is defined by (x1, · · ·, xn) 7→ (e2πix1 , · · ·,

e2πixn) = (t1, · · ·, tn);

and

•
∫
e(Ui)

dx1 ∧ · · ·dxn ∈ Q.

(Writing S1 for the unit circle,
(
(S1)n, (S1)n∩S̃n

)
is a deformation retract of (Tn, S̃n). The

e(Ui) visibly yield all the raltive cycles in the former, justifying the second observation.)

Together these immediately imply that 2.1 is split, completing the proof.
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2.1.3 Results for Deligne cohomology

Recall that Beilinson’s absolute Hodge cohomology [1] of an analytic scheme Y over

C sits in an exact sequence

0→ Ext1
MHS(Q(0), Hr−1(Y,A(p)))→ Hr

D(Y,A(p))

→ HomMHS(Q(0), Hr(Y,A(p)))→ 0.

(Here we use a subscript ”D” since the construction after all is a ”weight-corrected”

version of Deligne cohomolgy; the subscript ”MHS” of course means ”A-MHS”.) We

shall not have any use for details of its construction here.

Lemma 2.1.4 The map ι∗n : Hn
D(Tn, Sn;A(n)) → Hn

D(Tn, S̃n;A(n)) is zero (A = Q or

R).

Proof Consider the exact sequence

→ Hn
D(Tn, Sn;Q(n))

ι∗n−→ Hn
D(Tn−1, S̃n−1;Q(n))

δD−→ Hn+1
D (Tn, S̃n;Q(n))→ .

It suffices to show that δD is injective. Now

HomMHS

(
Q(0), Hn(Tn−1, S̃n−1;Q(n))

)
= {0}

HomMHS

(
Q(0), Hn+1(Tn, S̃n;Q(n))

)
= {0}

by lemma 2.1.3, and so δD is given by

Ext1
MHS

(
Q(0), Hn−1(Tn−1, S̃n−1;Q(n))

) δD−→ Ext1
MHS

(
Q(0), Hn(Tn, S̃n;Q(n))

)
.

Since (2.1) is split, the corresponding sequence of Ext1-groups is exact, and δD is injective.
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2.1.4 Results for motivic cohomology

Let X be any smooth simplicial scheme (of finite type), defined over a subfield of C.

We have Deligne class maps (A = Q or R)

cD,A : Hr
M(X,Q(p))→ Hr

D(Xan
C ,A(p)).

The case of particular interest here is where r = 1, X is a point, and

cD,A(Z) =
1

(2πi)p−1

∫
Zan
C

R2p−1 ∈ C/A(p), (2.2)

where(interpreting log(z) as the 0-current with branch cut along Tz := z−1(R−))

R2p−1 :=

2p−1∑
k=1

(2πi)k−1R
(k)
2p−1

=

2p−1∑
k=1

(2πi)k−1log(zk)
dzk+1

zk+1

∧ · · ·dz2p−1

z2p−1

· δTz1∩···Tzk−1

(2.3)

is the regulator current of KLM formula, belonging to D2p−2
(
(P1)×(2p−1)

)
.

Now take a number field K, [K : Q] = d = r1 + 2r2, and set

dm = dm(K) :=



r1 + r2 − 1, m = 1,

r1 + r2, m > 1, odd

r2, m > 0, even

.

For X defined over K, write X̃an
C := qσ∈Hom(K,C)(X

σ)anC and

Hr
M(X,Q(p)) Hr(X̃an

C ,R(p))

Hr
D
(
X̃an

C ,R(p)
)+

c̃+
D,R

c̃D,R

for the map sending Z 7→ (cD,R
(σ
Z
)
)σ, which factors through the invariants under de

Rham conjugation. If X = Spec(K), then we have Hr(X̃an
C ,R(p)) ∼= R(p − 1)⊕d and

Hr(X̃an
C ,R(p))+ ∼= R(p− 1)⊕dp . Write Hr

M(X,R(p)) = Hr
M(X,R(p))⊗Q R.
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Lemma 2.1.5 For X = Spec(K),G×nm,K , (TnK , SnK), or (TnK , S̃nK),

c̃+
D,R ⊗ R : Hr

M(X,R(p))→ Hr
D(X̃an

C ,R(p))+

is an isomorphism (∀r, p).

Proof By [4], the composition

K2p−1(OK)⊗Q
∼=−→ H1

M(Spec(K),Q(p))
c̃+D,R−−→ R(p− 1)⊕dp

· 2
(2πi)p−1

−−−−−→ Rdp

is exactly the Borel regulator (and the groups are zero for r 6= 1). The lemma follows for

X = Spec(K).

Let Y be a smooth quasi-projective variety, defined over K, and pick p ∈ Gm(K).

Write Y
ı
↪−→ Gm,Y


↪−→ A1

Y

κ←−↩ Y for the Cartesian products with Y of the morphisms

Spec(K)
ıp
↪−→ Gm,K


↪−→ A1

K

ı0←−↩ Spec(K). Then by the homotopy property, ı∗ : Hr
K(Gm,Y ,R(p))

→ Hr
K(Y,R(p)) ∼= Hr

K(A1
Y ,R(p)) splits the localization sequence

κ∗−→ Hr
K(A1

Y ,R(p))
∗−→ Hr

K(Gm,Y ,R(p))
Rex−−→ Hr−1

K (Y,R(p− 1))
κ∗−→

for K =M,D (in particular, κ∗ = 0). It follows that

Hr
K(Gm,Y ,R(p)) ∼= Hr

K(Y,R(p))⊕Hr−1
K (Y,R(p− 1)),

compatibly with cD,R; applying this iteratively gives the lemma for G×nm,K .

Finally, both (Tn, SnK) and (TnK , S̃nK) may be regarded as (co)simplicial normal cross-

ing schemes X ·. (That is, writing S̃nK = ∪Yi), we take X0 = TnK , X1 =
∐

i Yi, X
2 =∐

i<j Yi∩Yj, etc.) We have spectra sequence Ei,j
1 = H2p+j

K (X i,R(p))⇒ H2p+i+j
K (X ·,R(p)),

compatible with cD,R, and all X i are disjoint unions of powers of Gm,K . Lemma is proved.

Lemma 2.1.6 The map ι∗n : Hn
M(Tn, Sn;A(n))→ Hn

M(Tn−1, Sn−1;A(n)) is zero (A = Q

or R) .
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2.1.5 The Beilinson elements.

For any smooth quasi-projective variety X, we have

CHp(X, r) ∼= H2p−r
M (X,Z(p)). (2.4)

This isomorphism does not apply for singular varieties(e.g. our simplicial schemes above),

and for our purposes in this paper it is the right-hand side of (2.4) that provides the correct

generalization. In particular, we have

Hr
M(X × (�a, ∂�a),Q(p)) ∼= Hr−a

M (X,Q(p))

where ∂�a is defined as in Chpater 1. We note here that the (rational) motivic cohomol-

ogy of a cosimplicial normal-crossing scheme X · can be computed via(the simple complex

associated to )a double complex:

Ea,b
0 := Zp(Xa,−b)]Q ⇒ H2p+a+b

M (X ·,Q(p)), (2.5)

where ”]” denotes cycles meeting all compoenents of all Xq>a × ∂εI�−b properly.

Continuing to write ti for zi
zi−1

, we shall now consider

f(z) = fn−1(z1, ..., zn−1) := 1− ωbt1 · · · tn−1

as a regular function on �n−1
F , and

Z :=
{

(z; f(z)), tN1 , ..., t
N
n−1|z ∈ �n−1 \ |(f)0|

}
as an element of

ker
{
Zn(�n−1 \ |(f)0|, n)]Q

∂⊕
∑

(ρεi)
∗

−−−−−−→

Zn(�n−1 \ |(f)0|, n− 1)⊕ (⊕i,εZn(�n−2 \ |(f |zi=ε)0|), n)Q
}
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hence of Hn
M
(
�n−1

F \ |(f)0|), ∂�n−1 \ ∂|(f)0|;Q(n)
)

(where ∂|(f)0| := ∂�n−1 ∩ |(f)0| =

∪i,ε|(f |zi=ε)0|), and ] indicates cycles meeting faces of ∂�n−1 \ ∂|(f)0| properly). For

simplicity, we write the class of Z in this group as a symbol {fn−1, t
N
1 , ..., t

N
n−1}.

We have a vertical localization exact sequence

ln−1{t1, · · · tn−1}

Hq
M(Tn−2; S̃n−2;Q(n− 1))

Hn
M(�n−1 \ |(f)0|; ∂�n−1 \ |(f)0|;Q(n))

Hn−1
M (Tn−1, Sn−1;Q(n− 1))

{f, tl1, · · · , tln−1}

Hn
M(�n−1, ∂�n−1;Q(n)) CHn(F, 2n− 1)

∼=

3
Res|(f)0|

i∗

∈
.

in which eveidently

Res|(f)0|
{
fn−1, t

N
1 , ..., t

N
n−1

}
= ı∗n−1

{
tN1 , ..., t

N
n−1

}
.

Proposition 2.1.7 Z lifts to a class Ξ̃ ∈ CHn(F, 2n− 1)Q.

Proof Apply (2.1.5) and Lemma 2.1.6.

This is essentially Beilinson’s construction; we normalize the class by

Ξ :=
(−1)n

Nn−1
Ξ̃.
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2.2 The Higher Chow cycles

2.2.1 Representing Beilinson’s elements.

We first describe (2.5) more explicitly in the relevant cases. As above, write ∂ :

Zn(�r, s)]Q → Zn(�r, s− 1)]Q for the higher Chow differential, and

δ : Zn(�r, s)]Q → ⊕i,εZ
n(�r−1, s)]Q

for the cosimplicial differential
∑r

i=1(−1)i−1((ρ0
i × id�s)∗ − (ρ∞i × id�s)

∗). A complex of

cocycles for the top motivic cohomology group in (2.1.5) is given by J n
� (k) :=

Zn
M
(
(�n−1

F , ∂�n−1
F ), k

)
Q :=

n−1⊕
a=0

⊕
(I,ε)
|I|=a

Zn
(
�n−a−1

F , a+ k
)]
Q (2.6)

with differential D := ∂ + (−1)n−a−1δ. These are, of course, the simple complex resp. to-

tal differential associated to the natural double complex Ea,b
0 =

⊕
(I,ε)
|I|=a

Zn
(
�n−a−1

F ,−b
)]
Q.

Analogously one defines J n
�\f (k) := Zn

M
(
(�n−1

F \|(f)0|, ∂�n−1
F \∂|(f)0|), k

)
Q and J n−1

f (k) :=

Zn−1
M
(
(Tn−2, S̃n−2), k

)
Q so that J n−1

f (•) ı∗−→ J n
� (•) → J n

�\f (•) are morphisms of (homo-

logical) complexes.

Now define

θ : J n
� (k)→ Zn(F, n+ k − 1)Q

by simply adding up the cycles (with no signs) on the right-hand side of (2.6). (Use the

natural maps �n−a−1 × �a+k → �n+k−1 obtained by concatenating coordinates.) Then

we have

Lemma 2.2.1 θ is a quasi-isomorphism of complexes.

Proof Checking that θ is a morphism of complexes is easy and left to reader. The

a = n− 1, (I, ε) = ({1, ..., n− 1}, 0) term of (2.6) is a copy of Zn(F, n+ k − 1) in J n
� (k)
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which leads to a morphism ψ : Zn(F, n + • − 1) → J n
� (•) with θ ◦ ψ = id. Moreover, it

is elementary that ψ is a quasi-isomorphism: taking d0 = ∂ gives

Ea,b
1 =

⊕
(I,ε)
|I|=a

CHn(�n−a−1
F ,−b)Q ∼= CHn(F,−b)⊕2a(n−1

a ),

hence Ea,b
2 = 0 except for En−1,b

2
∼= CHn(F,−b), which is exactly the image of ψ(ker∂).

By the moving lemmas of Bloch [19] and [20], we have another quasi-isomorphism

J n
� (•)

ı∗J n−1
f (•)

'−→ J n
�\f (•),

which enables us to replace any Y�\f ∈ ker(D) ⊂ J n
�\f (n) by a homologous Y ′�\f arising

as the restriction of some Y ′�(n) with DY ′� = ı∗(Y
′′

f ), Y ′′f ∈ ker(D) ∈ J n−1
f (n − 1). This

gives an ”explicit” prescription for computing Res|(f)0| in (2.1.5).

Now we come to our central point: the cycle Z = {fn−1, t
N
1 , ..., t

N
n−1} already belongs to(

Zn(�n−1
F , n)]Q ⊂

)
J n

� (n), without ”moving” it by a boundary. Its restriction to J n
�\f (n)

is clearly D-closed, and DZ = ı∗{tN1 , ..., tNn−1} =: ı∗T . By Proposition 2.1.7, the class of

T in homology of J n−1
f (•) is trivial, and so there exists T ′ ∈ J n−1

f (n) with DT ′ = −T .

Writing

W := ı∗T
′
, Z̃ := Z +W ,

we now have DZ̃ = 0. This allows us to make a rather precise statement about the lift

in Proposition 2.1.7. Writing πi : �2n−1 � �n−i for the projection (z1, ..., z2n−1) 7→

(z1, ..., zn−i), we have

Theorem 2.2.1 Ξ̃ has a representative in Zn(F, 2n− 1)Q of the form

L̃ = L + W = L + W1 + W2 + · · ·+ Wn−1, (2.7)
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where L = θ(Z) (i.e., Z interpreted as an element of Zn(F, 2n−1)Q) and Wi is supported

on π−1
i |(fn−i)0|.

Proof Viewing (|(fn−1)0|, ∂|(fn−1)0|) ∼= (Tn−2, S̃n−2) as a simplicial subscheme X• of

(�n−1, ∂�n−1) =: X•, Xi−1 ⊂ X i−1 comprises 2i−1
(
n−1
i−1

)
copies of |(fn−i)0| ⊂ �n−1. We

may decompose

W ∈
n⊕
i=1

⊕
(I,ε)
|I|=i−1

ı∗Z
n−1(|(fn−i)0|, n+ i− 1)]Q ⊂

n−1⊕
i=1

Ei−1,−n−i+1
0

into its constituent pieces Wi ∈ Ei−1,−n−i+1
0 , and define Wi := θ(Wi) and W := θ(W).

Clearly supp(Wi) ⊂ π−1
i |(fn−i)0|, and L̃ := θ(Z̃) is ∂-closed, giving the desired represen-

tation.

Remark 2.2.2 In fact, σ(L ) belongs to Zn
R(Spec(C), 2n − 1)Q for σ ∈ Hom(F,C): the

intersections Tz1 ∩ · · ·Tzk(ρεI)∗σ(L ) are empty excepting Tz1 ∩ · · ·Tzk ∩σ(L ) for k ≤ n−1

and Tz1∩···Tzk∩(ρ0
n)∗σ(L ) for k ≤ n−2, which are both of the expected real codimension.

A trivial modification of the above argument them shows that the Wi may be chosen so that

the σ(Wi) (and hence σ(L̃ ))) are in Zn
R(Spec(C, 2n − 1)Q as well. We shall henceforth

assume that this has been done.

2.3 Computing the KLM map.

We begin by simplifying the formula (2.2) for the regulator map.

Lemma 2.3.1 Let K ⊂ C and suppose Z ∈ ker(∂) ⊂ Zn
R(Spec(K), 2n− 1)Q satisfies

Tz1 ∩ · · ·Tzn ∩ Zan
C = ∅. (2.8)

Then

cD,Q(Z) =

∫
ZanC ∩Tz1 ···∩Tzn−1

log(zn)
dzn+1

zn+1

∧ · · · ∧ dz2n−1

z2n−1
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in C/Q(n).

Proof We have cD,Q(Z) =

n−1∑
k=1

(2πi)k−n
∫
ZanC

R
(k)
2n−1 +

∫
ZanC

R
(n)
2n−1 +

n−1∑
k=1

(2πi)k−n
∫
ZanC

R
(n+k)
2n−1 .

The terms
∫
ZanC

Rk
2n−1 are zero by type, since dimCZC = n − 1, and the

∫
ZanC

R
(n+k)
2n−1 are

integrals over Zan
C ∩ Tz1 ∩ · · ·Tzn+k−1

= ∅. So only the middle term remains.

Lemma 2.3.2 For any σ ∈ Hom(F,C), Tz1 ∩ · · ·Tzn ∩ σ(L̃ ) = ∅.

Proof From Theorem 2.2.1, σ(Wi) is supported over π−1
i (|(fn−i)0|); that is, on σ(Wi)

we have z1 · · · zn−i = ζ̄b, and so Tz1 ∩ · · · ∩ Tzn−i ∩ σ(W) = ∅ since ζ̄b /∈ (−1)n−iR+. On

σ(L ), zn = fn−1(z1, · · ·zn−1) = 1− ζbt1 · · · tn−1 (where ti = zi
zi−1

); and on Tzi , ti ∈ [0, 1].

It follows that on Tz1 ∩ · · ·Tzn ∩ σ(L ), zn belongs to R− ∩
(
1− ζb[0, 1]

)
, which is empty.

We may now compute the regulator on the cycle of Theorem2.2.1, independently of

the choice of the Wi:

Theorem 2.3.1 cD,Q(σ(Ξ)) = Lin(ζb) ∈ C/Q(n).

Proof By Lemmas 2.3.1 and 2.3.2, we obtain cD,Q(σ(L̃ )) =∫
σ(L )anC ∩Tz1∩···∩Tzn−1

log(zn)
dzn+1

zn+1

∧ · · · ∧ dz2n−1

z2n−1

+
n−1∑
i=1

∫
σ(Wi)anC ∩Tz1∩···∩Tzn−1

log(zn)
dzn+1

zn+1

∧ · · · ∧ dz2n−1

z2n−1

,
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in which the second term is 0 since σ(Wi)
an
C ∩ Tz1 ∩ · · · ∩ Tzn−1 = ∅ (∀i). The remaining

(first) term becomes ∫
z̄∈R×(n−1)

−

log(fn−1(z̄))
dtN1
tN1
∧ · · · ∧

dtNn−1

tNn−1

=

(−N)n−1

∫
t̄∈[0,1]×(n−1)

log(1− ζbt1 · · · tn−1)
dt1
t1
∧ · · ·dtn−1

tn−1

=

(−N)n−1

∫ ζb

0

∫ un−1

0

· · ·
∫ u2

0

log(1− u1)
du1

u1

∧ · · ·dun−1

un−1

=

(−1)nNn−1Lin(ζb),

(2.9)

where un−1 = ζbtn−1, un−2 = ζbtn−2tn−1, ..., u1 = ζbt1 · · · tn−1.

To write the image of our cycles under the Borel regulator, we refine notation by

writing σa (for σ : ω 7→ e
2πia
N ), fn−1,b = 1 − ωbt1 · · · tn−1, Ξb, L̃b, Lb, etc. So Theorem

2.3.1 reads cD,Q(σa(Ξb)) = (−1)nNn−1Lin(e
2πiab
N ), and one has the

Corollary 2.3.3 Let N ≥ 3 and set

A :=
{
a ∈ N

∣∣ (a,N) = 1 and 1 ≤ a ≤
⌊
N
2

⌋}
;

then for any b ∈ A,

c̃+
D,R(Ξb) =

(
πn(Lin(e

2πiab
N )
)
a∈A
∈ R(n− 1)⊕

1
2
φ(N),

where πn : C→ R(n−1) is iIm [resp. Re] for n even [resp. odd]. If N = 2, then c̃+
D,R = 0

for n even and c̃+
D,R(Ξ1) = ζ(n) ∈ R(n− 1) for n odd.

As an immediate consequence, we get a (rational) basis for the higher Chow cycles

on a point over any abelian extension of Q:

Corollary 2.3.4 The {Ξb}b∈A span CHn(F, 2n−1)Q. Moreover, for any subfield E ⊂ F,

with Γ = Gal(F/E), there exists a subset B ⊂ A (with |B| = dn(E)) such that the{∑
γ∈Γ

γΞb

}
b∈B

span CHn(E, 2n− 1)Q.
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Proof In view of Lemma 2.1.5, for the first statement we need only check the linear

independence of the vectors v(b) in Corollary 2.3.3. Let χ be one of the 1
2
φ(N) Dirichlet

characters modulo N with χ(−1) = (−1)n−1; and let ρα : C|A| → C|A| be the permutation

operator defined by µ(v)j = vα·j, where α ∈ (Z/NZ)∗ is a generator. Then the linear

combinations

vχ :=
∑
b∈A

χ(b)v(b) =

(
1

2

N∑
b=1

χ(b)πn

(
Lin(e

2πiab
N )
))

a∈A

are independent (over C) provided they are nonzero, since their eigenvalues χ(α) under

ρα are distinct. By the computation in [21], if χ is induced from a primitive character χ0

modulo N0 = N/M , then (with µ = Möbius function, τ(·) = Gauss sum)

vχ1 =
1

2Mn−1

∑
d|M

µ(d)χ0(d)dn−1

 τ(χ0)L(χ0, n),

the last two factors of which are nonzero by primitivity of χ0; the bracketed term is∏
p > 1 prime

p|M

(1− χ0(p)pn−1) , hence also nonzero.

The second statement follows at once, since the composition of
∑

γ∈Γ with CHn(E, 2n−

1)Q ↪→ CHn(F, 2n− 1)Q is a multiple of the identity.

2.4 Explicit representatives

We finally turn to the construction of the cycles described by Theorem 2.2.1. Here

the benefit of using tNi (at least, if one is happy to work rationally) comes to the fore:

it allows us to obtain uniform formulas for all N , and to use as few terms as possible;

in fact, it turns out that for all n it is possible to take W3 = · · · = Wn−1 = 0. (While

it is easy to argue abstractly that Wn−1 can always be taken to be zero, this stronger
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statement surprised us.) For brevity, we shall use the notation (f1(t, u, v), . . . , fm(t, u, v))

for {
(f1(t, u, v), . . . , fm(t, u, v))| ti, u, v ∈ P1

}
∩�m;

all precycles are defined over F = Q(ω), and we write ξ := ωb.

2.4.1 K3 case (n = 2)

Let Z =
(

t
t−1
, 1− ξt, tN

)
, as dictated by Theorem ??; then all ∂εiZ = 0. In partic-

ular,

∂0
1Z =

(
1− ξt, tN

)
| t
t−1

=0 = (1, 0) = 0

and

∂0
2Z =

(
ξ−1

ξ−1−1
, ξ−N

)
=
(

1
1−ξ , 1

)
= 0.

So we may take W = 0 and Z̃ = Z .

In contrast, if we took Z =
(

t
t−1
, 1− ξt, t

)
, then ∂0

2Z =
(

1
1−ξ , ξ

−1
)

and a nonzero

W -term is required. (Of course, if one wants to treat torsion, this approach becomes

necessary.)

2.4.2 K5 case (n = 3)

Of course Z =
(

t1
t1−1

, t2
t2−1

, 1− ξt1t2, tN1 , tN2
)
. Taking

W1 =
1

2

(
t1
t1−1

, 1
1−ξt1 ,

(u−tN1 )(u−t−N1 )

(u−1)2 , tN1 u,
u
tN1

)
,

we note that z2 = 1
1−ξt1 =⇒ t2 = (1−ξt1)−1

(1−ξt1)−1−1
= 1

ξt1
=⇒ f2(t1, t2) = 0. Now we have

∂Z = ∂0
3Z =

(
t1
t1−1

, t2
t2−1

, tN1 , t
N
2

)∣∣∣
1−ξt1t2=0

=
(

t1
t1−1

, 1
1−ξt1 , t

N
1 ,

1
tN1

)
and

∂W1 = −∂∞3 W1 = −2 · 1
2

(
t1
t1−1

, 1
1−ξt1 , t

N
1 ,

1
tN1

)
= −∂Z .

28



Therefore Z̃ = Z + W1 is closed.

Remark 2.4.1 See [11, §3.1] for a detailed discussion of properties of these cycles, esp.

the (integral!) distribution relations of [loc. cit., Prop. 3.1.26].

In particular, we can specialize to N = 2 to obtain

2Z̃ = 2
(

t1
t1−1

, t2
t2−1

, 1 + t1t2, t
2
1, t

2
2

)
+
(

t1
t1−1

, 1
1−t1 ,

(u−t21)(u−t−2
1 )

(u−1)2 , t21u,
u
t21

)
in Z3

R(Q, 5), spanning CH3(Q, 5)Q ∼= K5(Q)Q, with

cD,Q(2Z̃ ) = −8Li3(−1) = 6ζ(3) ∈ C/Q(3).

2.4.3 K7 case (n = 4)

Set

Z =
(

t1
t1−1

, t2
t2−1

, t3
t3−1

, 1− ξt1t2t3, tN1 , tN2 , tN3
)
, W1 = 1

2

(
W (1)

1 + W (2)
1

)
,

W (1)
1 =

(
t1
t1−1

, t2
t2−1

, 1
1−ξt1t2 ,

(u−tN1 )(u−tN2 )

(u−1)(u−tN1 tN2 )
, u
tN1
, u
tN2
, 1
u

)
,

W (2)
1 =

(
t1
t1−1

, t2
t2−1

, 1
1−ξt1t2 ,

(u−tN1 )(u−tN2 )

(u−1)(u−tN1 tN2 )
,
tN1
u
,
tN2
u
, u
tN1 t

N
2

)
,

W2 = −1
2

(
t1
t1−1

, 1
1−ξt1 ,

(v−tN1 u)(v−ut−N1 )

(v−u2)(v−1)
,

(u−tN1 )(u−vt−N1 )

(u−v)2 ,
vtN1
u
, v
tN1 u

, u
v

)
.

Direct computation shows

∂Z = −∂0
4Z = −∂∞4 W (1)

1 = −∂∞4 W (2)
1 ,

∂W1 = −1
2
∂∞3 W (1)

1 + 1
2
∂∞4 W (1)

1 − 1
2
∂∞3 W (2)

1 + 1
2
∂∞4 W (2)

1 ,

∂W2 = −∂∞3 W2 = 1
2
∂∞3 W (1)

1 + 1
2
∂∞3 W (2)

1 ,

which sum to zero.
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Alternately, we can take

W1 =
(

t1
t1−1

, t2
t2−1

, 1
1−ξt1t2 ,

(u−tN1 )(u−tN2 )

(u−1)(u−tN1 tN2 )
,
tN1
u
,
tN2
u
, u
tN1 t

N
2

)
,

W2 =
(

t1
t1−1

, 1
1−ξt1 ,

(u−vtN1 )(u−vt−N1 )

(u−v)2 ,
vtN1
u
, v
tN1 u

, u
v
, v − 1

)
.

Writing

V1 =
(

t1
t1−1

, t2
t2−1

, 1
1−ξt1t2 , t

N
1 , t

N
2 ,

1
tN1 t

N
2

)
,

V2 =
(

t1
t1−1

, 1
1−ξt1 ,

(u−tN1 )(u−t−N1 )

(u−1)2 ,
tN1
u
, 1
tN1 u

, u
)
,

one has ∂Z = −V1, ∂W1 = −V2 + V1, ∂W2 = V2; so again Z̃ is a closed cycle.

For the general n construction to appear natural, we need to write out one more case.

2.4.4 K9 case (n = 5)

Begin by writing

Z =
(

t1
t1−1

, t2
t2−1

, t3
t3−1

, t4
t4−1

, 1− ξt1t2t3t4, tN1 , tN2 , tN3 , tN4
)
,

W1 = 1
2

(
t1
t1−1

, t2
t2−1

, t3
t3−1

, 1
1−ξt1t2t3 ,

(u−tl1)(u−tl2)(u−tl3)

(u−1)2(u−tl1tl2tl3)
,
tN1
u
,
tN2
u
,
tN3
u
, u
tN1 t

N
2 t

N
3

)
,

W (1)
2 =

(
t1
t1−1

, t2
t2−1

, 1
1−ξt1t2 ,

(u−tN1 v)(u−tN2 v)

(u−tN1 tN2 v)(u−v)
, v
u
,
tN1 v

u
,
tN2 v

u
, u
vtN1 t

N
2
, v − 1

)
,

W (2)
2 =

(
t1
t1−1

, t2
t2−1

, 1
1−ξt1t2 ,

(u−tN1 v)(u−tN2 v)

(u−tN1 tN2 v)(u−v)
,
vtN1
u
, v
u
,
tN2 v

u
, u
vtN1 t

N
2
, v − 1

)
,

W (3)
2 =

(
t1
t1−1

, t2
t2−1

, 1
1−ξt1t2 ,

(u−tN1 v)(u−tN2 v)

(u−tN1 tN2 v)(u−v)
,
vtN1
u
,
vtN2
u
, v
u
, u
vtN1 t

N
2
, v − 1

)
,

W (4)
2 =

(
t1
t1−1

, t2
t2−1

, 1
1−ξt1t2 ,

(u−tN1 v)(u−tN2 v)

(u−vt−N1 t−N2 )−1(u−v)3
,
vtN1
u
,
vtN2
u
, v
utN1 t

N
2
, u
v
, v − 1

)
,

W2 = 1
2

(
W (1)

2 −W (2)
2 + W (3)

2 −W (4)
2

)
.
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To compute the boundaries, introduce

U1 =
(

t1
t1−1

, t2
t2−1

, t3
t3−1

, 1
1−ξt1t2t3 , t

N
1 , t

N
2 , t

N
3 ,

1
tN1 t

N
2 t

N
3

)
,

U2 =
(

t1
t1−1

, t2
t2−1

, 1
1−ξt1t2 ,

(u−tN1 )(u−tN2 )

(u−tN1 tN2 )(u−1)
, 1
u
,
tN1
u
,
tN2
u
, u
tN1 t

N
2

)
,

U3 =
(

t1
t1−1

, t2
t2−1

, 1
1−ξt1t2 ,

(u−tN1 )(u−tN2 )

(u−tN1 tN2 )(u−1)
,
tN1
u
, 1
u
,
tN3
u
, u
tN1 t

N
2

)
,

U4 =
(

t1
t1−1

, t2
t2−1

, 1
1−ξt1t2 ,

(u−tN1 )(u−tN2 )

(u−tN1 tN2 )(u−1)
,
tN1
u
,
tN2
u
, 1
u
, u
tN1 t

N
2

)
,

U5 =
(

t1
t1−1

, t2
t2−1

, 1
1−ξt1t2 ,

(u−tN1 )(u−tN2 )(u−t−N1 t−N2 )

(u−1)3 ,
tN1
u
,
tN2
u
, 1
utN1 t

N
2
, u
)

and

V1 =
(

t1
t1−1

, 1
1−ξt1 ,

(u−tN1 v)(u−t−N1 v)

(u−v)2 , v
u
,
tN1 v

u
, v
utN1

, u
v
, v − 1

)
,

V2 =
(

t1
t1−1

, 1
1−ξt1 ,

(u−tN1 v)(u−t−N1 v)

(u−v)2 ,
vtN1
u
, v
u
, v
tN1 u

, u
v
, v − 1

)
,

V3 =
(

t1
t1−1

, 1
1−ξt1 ,

(u−tN1 v)(u−t−N1 v)

(u−v)2 ,
vtN1
u
, v
utN1

, v
u
, u
v
, v − 1

)
.

Then ∂Z = U1, ∂W1 = −U1 + 1
2

(−U2 + U3 −U4 + U5), ∂W (1)
2 = −V1 + U2, ∂W (2)

2 =

−V2 + U3, ∂W (3)
2 = −V3 + U4, and ∂W (4)

2 = U5 − V1 + V2 − V3; and so Z̃ is closed.

As for n = 3, we obtain a generator for CH5(Q, 9)Q ∼= K9(Q)Q by setting N = 2 and

ξ = −1; the integral cycle 2Z̃ has cD,Q(2Z̃ ) = 15ζ(5).

2.4.5 General n construction (n ≥ 4)

To state the final result, we define

Z :=
(

t1
t1−1

, . . . , tn−1

tn−1−1
, 1− ξt1 · · · tn−1, t

N
1 , . . . , t

N
n−1

)
,

W1 := 1
n−3

W̃1 := (−1)n−1

n−3
×(

t1
t1−1

, . . . , tn−2

tn−2−1
, 1

1−ξt1···tn−2
,

(u−tN1 )···(u−tNn−2)

(u−tN1 ···tNn−2)(u−1)n−3 ,
tN1
u
, . . . ,

tNn−2

u
, u
tN1 ···tNn−2

)
,
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and

W2 := 1
n−3

n−1∑
i=1

(−1)i−1W (i)
2 ,

where for 1 ≤ i ≤ n− 2, W (i)
2 :=

(
t1
t1−1

, . . . , tn−3

tn−3−1
, 1

1−ξt1···tn−3
,

(u−tN1 v)···(u−tNn−3v)

(u−tN1 ···tNn−3v)(u−v)n−4 ,

vtN1
u
, . . . , v

u
, . . . ,

vtNn−3

u
, u
vtN1 ···tNn−3

, v − 1
)

(with v
u

occurring in the (n+ i− 1)th entry1) and W (n−1)
2 :=

(
t1
t1−1

, . . . , tn−3

tn−3−1
, 1

1−ξt1···tn−3
,

(u−tN1 v)···(u−tNn−3v)

(u−t−N1 ···t−Nn−3v)−1(u−v)n−2
,

vtN1
u
, . . . ,

vtNn−3

u
, v
utN1 ···tNn−3

, u
v
, v − 1

)
.

Theorem 2.4.2 Z̃ = Z + W1 + W2 yields a closed cycle, with the properties described

in Theorem 2.3.1. (In particular, this recovers the second K7 construction and the K9

construction above, for n = 4 and 5.)

Proof Writing

Y0 := ∂0
nZ =

(
t1
t1−1

, . . . , tn−2

tn−2−1
, 1

1−ξt1···tn−2
, tN1 , . . . , t

N
n−2,

1
tN1 ···tNn−2

)
,

Yi := ∂0
2n−1W

(i)
2 (i = 1, . . . , n− 1), and Xi,j := ∂∞j W (i)

2 (j = 1, . . . , n− 2), one computes

that ∂Z = (−1)n−1Y0,

∂W̃1 = (−1)n∂∞n W̃1 +
n−1∑
i=1

(−1)i∂∞i W̃1 = (−1)n(n− 3)Y0 +
n−1∑
i=1

(−1)iYi,

and ∂W (i)
2 = Yi +

∑n−2
j=1 (−1)jXi,j. We have therefore

∂Z̃ =
1

n− 3

n−1∑
i=1

n−2∑
j=1

(−1)i+j−1Xi,j, (2.10)

and for each i > j the reader will verify that Xi,j = Xj,i−1, so that the terms on the

right-hand side of (2.10) cancel in pairs.

1That is, either before (i = 1), after (i = n− 2), or in the middle of the sequence
vtN1
u ,

vtN2
u , . . . ,

vtNn−3

u .
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2.5 Beyond abelian field extensions.

In algebraic number theory, it can be shown that every cyclotomic field is an abelian

extension of the rational number field Q [22]. The Kronecker-Weber theorem provides a

partial converse: every abelian extension of Q is contained within some cyclotomic field.

Since we have constructed the explicit basises of motives for all cyclotomic fields, all the

higher Chow groups over abelian extensions are availble now.

We want to extend our work to general number field. Francis Brown [23] constructed

Dedekind zeta motives over totally real number fields applying hyperbolic geometry.

Rob de Jeu [24] uses relative K-theory to construct symbols which are mapped to Borel’s

regulators. Motivated by Rob’s work, we construct the following higher Chow cycle over

a non-abelian field.

Consider the field F = Q[ 3
√

2, ζ3], (ζ3 is the third root of unity). Its Galois group is

S3, so F is a non-abelian field extension.

We give the following higher Chow cycle Z

Z1 + Z2 + Z3 + Z4 + Z5 =(
t,

(t− 3
√

2)3

t3 − 2
, 1 +

t
3
√

2

)
−
(
t, 2, (

t+ 3
√

2

t− 3
√

2
)2
)

+
(
− 3
√

2, t,
(t− 2)2

(t− 4)(t− 1)

)
+ (

3
√

2ζ3, t,
(t+ ζ3)3

(t− 1)3
) + (

3
√

2ζ̄3, t,
(t+ ¯ζ3)3

(t− 1)3
).

Compute the Bloch boundary,

∂BZ1 = 2(
3
√

2, 2)− (
3
√

2ζ3, 1 + ζ3)− ( 3
√
ζ

2

3, 1 + ζ3
2) + (− 3

√
2, 4)

= 2(
3
√

2, 2)− (
3
√

2ζ3,−ζ̄3)− ( 3
√
ζ

2

3,−ζ3) + (− 3
√

2, 4),

∂BZ2 = −2(− 3
√

2, 2) + 2(
3
√

2, 2),

∂BZ3 = −(− 3
√

2, 4) + 2(− 3
√

2, 2),

∂BZ4 = (
3
√

2ζ3,−ζ̄3),
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∂BZ5 = (
3
√

2ζ2
3 ,−ζ3).

Therefore Z is ∂B closed.

34



3. Preliminaries and Definitions.

3.1 Graph hypersurface and Graph symbol

We start by defining the graph symbol for a graph.

Definition 3.1.1 For a graph Γ with e edges, let A1, ..., Ae represent coordinates in Pe−1.

Its coordinate symbol is the Milnor symbol {−A1

Ae
, ...,−Ae−1

Ae
} ⊂ KM

e−1(C∗)e−1.

Here KM
e−1(C∗)e−1 is the Milnor-K group associated to the field of rational functions over

Pe−1.

The definition of coordinate symbols is actually independent from the choice of edge

whose corresponding coordinate appear in the denominator.

Lemma 3.1.2 Coordinate symbols are well defined up to a possible negative sign.

Proof We just need to show that

{−A1

Ae
, ...,−Ae−1

Ae
} = {−A2

A1

, ...,−Ae
A1

}−1l

in KM
e−1(C(Pe−1)) for some power l. By steinberg relation 1.3.2,

{−A1

Ae
,−A1

Ae
...,−Ae−1

Ae
} = E = {−A1

Ae
,−Ae

A1

...,−Ae−1

Ae
}, (3.1)

E is the identity of Milnor group.

35



{−A1

Ae
,−A2

Ae
...,−Ae−1

Ae
} = {−A1

Ae
,−A2

Ae
...,−Ae−1

Ae
}{−A1

Ae
,−Ae

A1

...,−Ae−1

Ae
}

= {−A1

Ae
,−A2

Ae
×−Ae

A1

...,−Ae−1

Ae
}

= {−A1

Ae
,−A2

A1

...,−Ae−1

Ae
}.

= {−A1

Ae
,−A2

A1

...,−Ae−1

A1

}

= {−A2

A1

, ...,−Ae
A1

}(−1)(e−1)

Since what we finally care about is the regulator of this Milnor symbol, we will see

this negative sign will not make a difference.

Definition 3.1.3 For a graph Γ with k edges we assign to every edge ei a variable xi,

then its graph polynomial, which is also known as the first Symanzik polynomial, is defined

by

Φ(x1, ..., xk) =
∑
T∈T

∏
ei /∈T

xi, (3.2)

The graph hypersurface XΓ is hypersurface defined by the zero locus of graph polynomial

in projective space Pk−1

Definition 3.1.4 For a graph Γ, its graph symbol ξΓ is the restriction of its coordinate

symbol along the X∗Γ, here X∗Γ = XΓ ∩ (C∗)e−1.

For the graph Γ, the Feynman integral we concerned about is

I =

∫
σ

Ω

Φ2

where σ = {(A1, ..., Ak)|Ai ≥ 0} is the real simplex in projective space Pk−1, Ω =∑6
1(−1)iAidA1 ∧ ...d̂Ai...dAk.

Here we recall several important combinatorial properties of graph hypersurface from

[25].
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3.2 BEK’s blow up

In this part we review a sequential blow-ups constructed in [15], which gives a toric

boundary whose combinatorial properties is essential to our final goal.

Proposition 3.2.1 Let Γ be as above. Define

η = ηΓ =
Ω2n−1(A)

Φ2
Γ

.

Then there exists a tower

P = Pr
πr,r−1−−−→Pr−1

πr−1,r−2−−−−−→ ...
π2,1−−→ P1

π1,0−−→ P2n−1;

π = π1,0 ◦ ... ◦ πr,r−1

where Pi is obtained from Pi−1 by blowing up the strict transform of a coordinate linear

space Li ⊂ XΓ and such that

(i)π∗ηΓ has no poles along the exceptional divisors associated to the blowups.

(ii) Let B ⊂ P be the total transform in P of the union of coordinate hyperplanes ∆2n−2 :

A1A2 · ... · A2n = 0 in P2n−1. Then B is a normal crossings divisor in P . No face(=

non-empty intersection of components) of B is contained in the strict transform Y of XΓ

in P .

(iii)the strict transform of σ2n−1(R) in P does not meet Y .

The proof in in [15]. The algorithm to construct the blowups will be following. In the

first place, we always consider the linear spaces contained in the graph hypersurface. We

have a lemma which gives a characterization of these spaces.

Lemma 3.2.2 A coordinate linear space L : Ae1 = ... = Aep = 0 is contained in XΓ if

and only if the union of the edges e1 ∪ ... ∪ ep supports a loop(i.e. writing ΓL for this

subgraph, including all endpoints of the ei, we have h1(ΓL) > 0).
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Let S denote the set of coordinate linear spaces which are maximal and contained in

the graph hypersurface , i.e. L ∈ S, L ⊂ L
′ ⊂ XΓ ⇒ L = L

′
. Notice these linear spaces

correspond to subgraphs with no external edges and supporting one loop. Define

F = {L ⊂ XΓ coordinate linear space |L =
⋂

L(i), L(i) ∈ S}.

Let Fmin ⊂ F be the set of minimal elements in F . Define P1
π1,0−−→ P2n−1 to be the

blowup of elements of Fmin. Now define F1 to be the collection of strict transforms in

P1 of elements in F \ Fmin. Again elements in F1,min are disjoint, and we define P2 by

blowing up elements in F1,min.

The exceptional locus we get from this blow up have nice geometric structure and

graphical interpretation.

Definition 3.2.3 Define the modified quotient graph Γ//Γ
′

to be the graph obtained from

Γ by contracting each connected component of Γ
′

to a point. Do not identify the points

associated to different components.

Proposition 3.2.4 Let G ⊂ Γ be a subgraph, and suppose h1(G) > 0. Then L(G) : Ae =

0, e ∈ G is contained in XΓ. Let P → P(EΓ) be the blow up of L(G) ⊂ P(EΓ), and let

F ⊂ P be the exceptional locus. Let Y ⊂ P be the strict transform of XΓ in P . Then we

have canonical identifications

F ∼= P(EG)× P(EΓ//G) (3.3)

Y ∩ F =
(
XG × P(EΓ//G)

)
∪
(
P(EG)×XΓ//G

)
. (3.4)

See proof in [BEK]. BEK’s construction will yield a toric variety. We will come back to

this point in a later chapter. Now we want to show how to compute the residue maps of

graph symbol ξΓ restricted on the graph hypersurface in this setup.

First we need an important lemma about graph hypersurfaces.
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Proposition 3.2.5 Let Γ
′ ⊂ Γ be a subgraph, and assume h1(Γ) > 0. We have Edge(Γ) =

Edge(Γ
′
) q Edge(Γ//Γ

′
). Suppose edge variables A1, ..., Ar are associated to Γ

′
and

Ar+1, ..., Am to Γ//Γ
′
. Then the graph polynomials satisfy

ΦΓ = ΦΓ′ (A1, ..., Ar) · ΦΓ//Γ′ (Ar+1, ..., Am) + F (A1, ..., Am) (3.5)

where the degree of F in A1, ..., Ar is strictly greater than the degree of ΦΓ′ .

Now apply the notation from section 1.4, let Dσ be an exceptional divisor got from

blowing up a subgraph Γ
′
. By (3.3), we immediately get a set of local toric coordinates

on D∗σ. More specifically, by blowing up linear space L(Γ
′
), we do a change of coordinates

A2 = B2 · A1, ..., Ar = Br · A1,

and F is defined by A1 = 0. Therefore

{B2, ..., Br, Ar+1, ..., An} ∩ {A1 = 0}

gives the local toric coordinates we need. Then by lemma 1.4.2

(I∗σ)〈{B2, ..., Br, Ar+1, ..., An}〉

gives Res1
D∗σ(ξ).

Notice by (3.5), the degree of F in A1, ..., Ar is strictly greater than the degree of ΦΓ′ .

So on D∗σ, F will vanish. The reason is as follows. After change of coordinates, the graph

polynomial becomes:

ΦΓ = A1
q
(
ΦΓ′ (1, ..., Br−1, Br) · ΦΓ//Γ′ (Ar+1, ..., Am) + A1

pF (1, B2, ..., Am)
)
.

Therefore we have the strict transformation of graph hypersurface as

ΦΓ|D∗σ = ΦΓ′ (1, ..., Br) · Amr+1ΦΓ//Γ′ (1, ...,
Am
Ar+1

). (3.6)
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The upshot is if the graph polynomials of Γ
′

and Γ//Γ
′

define trivial symbols, then

Res1
D∗σ(ξ) is trivial.

For higher codimension stratas, we could do a similar analysis of local coordinates for

the blowup. We give a criteria here to determine whether the graph symbol ξ can be

extended.

Proposition 3.2.6 For a graph Γ, if for all its subgraphs Γ
′

and corresponding modified

quotient graph Γ//Γ
′
, their graph polynomial defines a trivial symbol, i.e. ξΓ′ = 0 and

ξΓ//Γ′ = 0, then ξΓ could be completed to a higher Chow cycle on Y , Y is the strict

transformation of XΓ in BEK’s blow up.
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4. Motivic interpretation of Feynman integration for three

wheels spoke graph.

4.1 Set up of Three-wheel spokes

4.1.1 Three wheels spokes

From now on, we will focus on three-wheels spoke graph Γ3.

A1

A2 A3

A4

A5

A6

Figure 4.1. Three wheel spokes

For three-wheel spoke graph, the Feynman integral is

I =

∫
σ

Ω

Φ2

where σ = {(A1, ..., A6)|Ai ≥ 0} is the simplex in projective space P5, Ω =
∑6

1(−1)iAidA1∧

...d̂Ai...dA6. We let η := Ω
Φ2 . From section 11 [15], H5(P5 \XΓ) ∼= Q(−3), and η generates

this group.
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We have graph symbol ξ = {−A1

A6
, ...,−A5

A6
}. Notice T5 =

⋂5
i=1{−

Ai
A6
≤ 0} ∪ {Ai

A6
=

∞} = σ. Φ is the graph polynomial defined as in (3.1.3). From(BEK)

XΓ3
∼= Sym2P2.

Therefore its singular locus SingXΓ
the diagnoal ∆ ∼= P2. And by [26], H4(XΓ,Q) =

Q(−2) ⊕ Q(−2), and is generated by ∆ and {0} ⊗ P2 ⊕ P2 ⊗ {0}. The point is these

classes are defined over Q.

Lemma 4.1.1 [η] is defined over Q.

Proof We have long exact sequence

...→ H6(P5)→ H6(P5,P5 \XΓ)→ H5(P5 \XΓ)→ H5(P5)→ ...

By duality, we haveH5(P\XΓ) ∼= H4(XΓ)/im(H4(P5)). Therefore, H5(P\XΓ) is generated

by a class defined over Q. Notice η is fixed under Galois actions, [η] is also defined over

Q.

4.1.2 Construction of the toric variety

We will first do a BEK’s blow up

π1 : P → P5

to separate σ and XΓ3 . Γ3 has 6 5-edge subgraphs, 3 4-edge subgraphs, and 4 3-edge

subgraphs. According to BEK’s blow up procedure, we will first blow up the 6 points

corresponding to 5-edge subgraphs, and then blow up the linear spaces corresponding to

3-edge and 4-edge subgraphs. We get a smooth toric variety, and P \ (C∗)5 is a NCD

which has 19 components. We take DAi1 ,...,Aik
to represent the component corresponding

to subgraph with edges Ai1 , ..., Aik .
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Notice the strict transformation Y of XΓ3 is still singular [15], we need to do one more

blow up

π̃ : P̃ → P,

along the singular locus. Let D ⊂ P̃ be the strict transformation of P \ (C∗)5, and we

call it the boundary.

4.2 Reinterpretation of Feynman Integral

We pull back the integration I along the composition of blowups

π1 ◦ π̃ : P̃ → P → P5

For convenience, we let in P̃ we still use σ, η and ξ to denote the strict transformation

of σ and pull back of η and ξ (η and ξ are the same as defined in 4.1). η can be viewed

as a 5−current on P̃ and η ∈ F 5D5(P̃ ). Then in P̃

I =

∫
σ

η =

∫
P̃

δσ ∧ η.

Notice that in P̃ \ D,

d[Rξ] = Ωξ − (2π
√
−1)nδTξ + 2π

√
−1R∂ξ,

and σ = Tξ, so we have

I =
−1

(2πi)n

∫
P̃

(d[Rξ]− Ωξ −KD) ∧ η

where KD represents a current supported on D. Since Ωξ ∧ η and KD ∧ η are 0 by type,

I becomes ∫
P̃

d[Rξ] ∧ η.
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We want to apply integration by parts and consider the residue of η. However, η has

double poles along Y and E. By lemma 4.5.1, ∃ η̂ = η + dτ , such that η̂ and τ have log

poles along Y and E.

In P5, we know the singular locus of the graph hypersurface SingXΓ

∼= P2. Let {L(Γ
′
)}

be the linear spaces along which the BEK’s blow ups take place. When dim(SingXΓ
∩

L(Γ
′
)) = 1 or 2, Bl(

SingXΓ
∩L(Γ′ )

)(SingXΓ
) = SingXΓ

. So after the BEK’s blow up procedure

has been applied to P5, the strict transformation of SingXΓ
in Y is P2 blown up at several

points. Therefore the exceptional divisor E in P̃ is a P2 bundle over P2 blown up at several

points and Y ∩ E is a P1 bundle. By projective bundle formula, its third cohomology

group is trivial. The class of double residue along Y ∩ E is 0.

Consider in the double complex of Gysin spectral sequence with NCD defined by Y

and E. Since the class of double residue along Y ∩E is 0, we could modify η̂ by an exact

form such that the double residue along Y ∩ E is vanishing.

Therefore we could take residue along Y and E. Then

I =

∫
P̃

d[Rξ] ∧ η̂ +

∫
P̃

d[Rξ] ∧ dτ.

=

∫
P̃

[Rξ]|Y ∧ResY η̂ +

∫
P̃

[Rξ]|E ∧ResE η̂

Applying argument in (4.3), we are able to substitute [Rξ] by a closed current [RΞ]

which could be lifted to AJ(Ξ),

∫
Y ∪E

[Rξ] ∧ResY η̂ =

∫
Y ∪E

[RΞ] ∧ResY η̂

By lemma (4.1.1), ResY ∪E η̂ is defined over Q, by Poincare duality corresponding to

a rational homology class Z → Spec(Q) on Y ∪ E. So the Feynman integral becomes

∫
Z

[RΞ].
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Pushing this regulator forward to Spec(Q) rewrites Feynman integral as an image of Borel

regulator CH3(SpecQ, 5) −→ C/Q(3). In this way, we theoretically proved Feynman

integral is a rational multiple of ζ(3).

4.3 Computation of H3(D+)

In this section, we want to show that we could find [RΞ] such that

RΞ|Y = Rξ|Y +R|Y ,

where R is some current which will be killed by pairing with residue of η̂, and [RΞ] is a

closed current which could be lifted to the Abel-Jacobi image of Ξ.

Now let us reconsider the graph symbol ξ. ξ represents a class in CH5((C∗)5, 5), to be

able to extend it to a class in CH5(P̃ , 5), we need the higher residue map on all stratas

to vanish, which is checked in section 6.1.1. But we also need the extension of ξ to P̃ to

intersect all faces properly.

For the {DAi}, when i = 6, ξ = {∞, ...,∞} on D∗A6
, so ξ is not intersecting properly

there. On the other hand, when i 6= 6, ξ consists of 5 regular functions only one of which

is constantly 0.

For the {DI}, where |I| = 5, i.e. the boundary components corresponding to 5 edge

subgraphs, again, when 6 /∈ I, ξ = {0, ..., 0}. So ξ is not behaving properly there. When

6 ∈ I, notice DI is the exceptional divisor obtained by blowing up a point, and ξ consists

of 5 regular functions on (DI)
∗ except one is constantly ∞.

For the {DI}, where |I| = 3, when 6 /∈ I, ξ has 3 entries which is constantly 0 on

(DI)
∗. When 6 ∈ I, ξ has 3 entries which is constantly ∞ on (DI)

∗. Similarly, ξ does

not intersect properly on (DI)
∗ when |I| = 4. Now the point is, we need to apply Bloch’s

moving lemma to ξ obtain a precycle on P̃ . And the moving process only happens where ξ
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does not intersect properly. We call the locus where ξ does not intersect properly the bad

locus and denote it by D+. As we will see later, it is important to know the combinatorial

structure of D+.

DA1

DA2A3A5 DA1A2A4 DA1A3A5 DA4A5A6 DA2A3A4A5 DA1A3A4A6 DA1A2A5A6

DA2A3A4A5A6

Figure 4.2. Structure of D+

Each node in the graph represents a divisor of boundary component and a line con-

necting them represents that their intersection is nonempty.

We have shown that the residue maps of ξ to all smooth substrata will vanish. So by

Bloch’s moving lemma on higher Chow groups,

ξ = j∗Ξ + ∂µ

for Ξ ∈ CH5(Y, 5) and µ ∈ CH5(Y \ (D+ ∩ Y ), 6). The point here is that since the locus

where ξ does not intersect faces properly is D+, the moving lemma takes place exactly

on the complement of D+.
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Now modulo currents supported on D+ and working on Y , we could apply (1.3) to Ξ

and ξ + ∂µ and have

((2πi)5Tξ, 0, Rξ) +D((2πi)5Tµ, 0,
1

2πi
Rµ) ≡ ((2πi)5TΞ, 0, RΞ). (4.1)

By proposition(3.2.1), we know Tξ ∩ Y = ∅. So we get

TΞ = −∂Tµ + SD+ , (4.2)

where SD+ is a chain supported on D+ ∩ Y . Y is a smooth projective variety, so TΞ is an

exact current. Let TΞ = ∂Γ. Therefore SD+ is also an exact current. Let SD+ = ∂γ. Up

to current supported on D+

Γ = −Tµ + γ.

By (1.5.6), (4.1) shows

Rξ + d[
1

2πi
Rµ] + (2πi)5δTµ ≡ RΞ. (4.3)

So we have

Rξ + d[
1

2πi
Rµ] + (2πi)5δγ ≡ RΞ − (2πi)5δΓ. (4.4)

Notice by (1.4),

RΞ − (2πi)5δΓ (4.5)

defines a closed current representing the regulator class of Ξ in H4(Y,C/Q(5)).

Now notice SD+ is a three chain supported on D+ ∩ Y . If H3(D+ ∩ Y ) = 0, we could

choose γ such that γ is also supported on D+ ∩ Y . The upshot is if this is true, then Rξ

will equal to R̃Ξ up to currents supported on D+.

Proposition 4.3.1 H3(D+ ∩ Y ) = {0}.

Proof We will either compute through Mayer-Vietoris spectral sequence or directly

compute Mayer-Vietoris spectral sequence.
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Part of the first page of Mayer-Vietoris spectral sequence is as follows:

0 −→ H1(D[2]) −→H1(D[1])

H2(D[2]) −→H2(D[1]) −→ H2(D[0])

H3(D[1]) −→ H3(D[0]).

Notice by the intersection behavior of components of D+ ∩ Y , D[2] = ∅. Therefore it

is enough to show the target spaces H2(D[1]) and H3(D[0]) are trivial.

For subgraph G with edges {A1, A2, A5, A6},

Y ∩DA1A2A5A6 = (XG × P1) ∪ (P3 ×XΓ//G)

= ({A2 + A3 + A4 + A5 = 0} × P1) ∪ (P3 × {A1A6 = 0}).
(4.6)

So Y ∩ DA1A2A5A6 is a copy of P2 × P1 intersecting two copies of P3. By applying MV

Figure 4.3. Y ∩DA1A2A5A6

sequence to it, we know H3 of it is {0}.

For subgraph with edges {A2, A3, A6}

Y ∩DA2A3A6 = (XG × P1) ∪ (P2 ×XΓ//G)

= ({A2 + A3 + A6 = 0} × P1) ∪ (P2 × {A3A5 + A3A6 + A5A6 = 0}).
(4.7)

Computation of MV sequence shows H3 of it is {0}.
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For subgraph with edges {A2, A3, A4, A5, A6}, the graph polynomial is

A5A6 + A4A6 + A3A6 + A3A5 + A3A4 + A2A6 + A2A5 + A2A4 = 0.

Notice it could be transformed into

1

A6

=
1

A2 + A3

+
1

A4 + A5

.

So it is a cone over a cone over P1. Therefore its 3rd homology group is {0}.

For subgraph with edge A1, the graph polynomial Φ is

A4A5A6 + A3A4A5 + A2A4A5 + A2A5A6 + A2A4A5 + A2A3A5 + A2A3A4.

Let A2 + A4 = B0, A2 + A3 + A5 = B1, A3 + A4 + A6 = B2, −A2 = C0,−A3 = C1,

−A1 = C2, then the graph polynomial is transformed into

Φ = B0(B1B2 − C2
1)− C2

1B2.

Let X be the hypersurface defined by Φ = 0. For convenience, let Q3 = B1B2 − A2
1,

K3 = C2
1B2. Let p = (1, 0, 0, 0, 0), then the projection from p induces isomorphism

B0, B1, B2, C0, C1 in P4 from X \(X∩V(Q3)) to P3\V(Q3). Also X∩V(Q3) = V(Q3, K3).

We have

· · · →H3
c (X \ (X ∩ V(Q3)))→ H3(X)→ H3(X ∩Q3)

→ H4
c (X \ (X ∩ V(Q3)))→ H4(X)→ · · ·.

For H3
c (P3 \ V(Q3)), notice P3 \ V(Q3) in P4 is a cone over P2 \ V(Q3) in P3. So H3

c (P3 \

V(Q3)) = 0(by Artin’s vanishing Theorem). On the other hand, for V(Q3, K3), it is

defined by 
B1B2 − C2

1 = 0,

C2
0B2 = 0.

whose solution sets are
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
B2 = 0,

C1 = 0.

or


C0 = 0,

B1B2 − C2
1 = 0.

So it is a P2 normal crossing P2. Therefore

H3(X ∩ V(Q3)) = H3(V(Q3, K3)) = {0}.

Now for DA2A3A6 ∩DA1 , notice it is isomorphic to P1 × P2, and (P1 ∩ Y )× (P2 ∩ Y )is

given by

{A2 + A4 = 0, A1 = 0} × P2 ∪ P1 × {A3A5 + A3A6 + A5A6 = 0}.

Therefore we know the corresponding map in spectral sequence is 0.

For DA1A2A4 ∩DA1 and DA1 ∩DA2A3A4A5 , for same argument as above, we know the

corresponding map in spectral sequence is 0.

ForDA2A3A4A5∩DA2A3A4A5A6 , DA2A3A4A5A6 is contained in a P4 parameterizing tangents

to point A2 = A3 = A4 = A5 = A6 = 0. DA2A3A4A5 = P3 × P1, where P3 parametrizes the

tangents A2 = A3 = A4 = A5 = 0. P4 and P3 × P1 normal crosses in a copy of P3. And

DA2A3A4A5 ∩DA2A3A4A5A6 is given by
A2 + A3 = 0,

A4 + A5 = 0.

we know the corresponding map in spectral sequence is 0.

Consider DA2A3A4A5A6 and DA4A5A6 , similarly we get the definition

A6(A4 + A5) = 0.
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This is just a point.

DA2A3A6 ∩DA1A2A5A6 is a point.

4.4 Vanishing of graph symbol along all stratas

In section 4.3, we want to complete the graph symbol ξ to a higher Chow cycle over

Y . (Here we use the notation in 1.3.) To be able to do this, we need to make sure all its

higher residues maps Resi on all stratas vanishes. First notice in three spoke wheel case,

all the stratas D̃k are defined over Q. By Beilinson-Soulé vanishing conjecture, which

says that CHp(k, n) = {0} for p < n+1
2

, the target spaces of Resi for i > 1 are all {0}. So

we only need to check Res1. For this, R̂es
i

have to vanish for all i. By proposition 3.2.6,

we only need to check the vanishing of graph symbols on all subgraphs and modified

quotient graphs.

Remark 4.4.1 In general cases, it is very difficult to compute the higher residue maps.

The subgraph Γ124 with edges {A1, A2, A4} and its modified quotient graph Γ//Γ124

are as follows. The graph polynomial of Γ124 is

A4
A1

A2

A6

A3

A5

Figure 4.4. Subgraph with three edges and its modified quotient graph

A1 + A2 + A4 = 0,
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which gives −A1

A4
+ (−A2

A4
) = 1. So the symbol {−A1

A4
,−A2

A4
} is trivial. For Γ//Γ124, its

garph polynomial is

A3A5 + A3A6 + A5A6 = 0,

⇐⇒ 1

−A3

A6

+
1

−A5

A6

= 1.

therefore its graph symbol {−A3

A6
,−A5

A6
} is trivial.

The subgraph Γ1256 with edges {A1, A2, A5, A6} and its modified quotient graph

Γ//Γ1256 are as follows. The graph polynomial of Γ1256 is

A6

A1

A2

A5

A3 A4

Figure 4.5. Subgraph with four edges and its modified quotient subgraph.

A1 + A2 + A5 + A6 = 0,

⇐⇒− A1

A6

+ (−A2

A6

) + (−A5

A6

) = 1.

So the symbol

{−A1

A6

,−A2

A6

,−A5

A6

}

={−A1

A6

,−A2

A6

+−A5

A6

,−A2

A5

}

={−A1

A6

, 1− (−A1

A6

),−A2

A5

}

=0.

For Γ//Γ124, its garph polynomial is

A3A4 = 0,

52



therefore its graph symbol is trivial.

The subgraph Γ12345 with edges {A1, A2, A3, A4, A5} and its modified quotient graph

Γ//Γ12345, the graph symbol will be shown to be 0 in lemma 6.1.1 .

Therefore we have shown that the higher residues of ξ vanish on all substratas.

4.5 Lemma about reducing the order of the double pole

Let ΩΓ is a differential form defined on P2n−1 \XΓ, with double poles along XΓ. We

want to take residue of ΩΓ, which only makes sense for differential forms with log poles.

Fortunately, we can modify this while fixing the integral value.

Lemma 4.5.1 Let P be a projective variety, and D be a normal crossing divisor in

P , X be a hypersurface in P , and XD = X ∩ D. Let η ∈ Hk(P \ X,D \ X) having

double pole along X. Then ∃τ ∈ Ak−1(P \ X) and η̂ ∈ Ak(P ) < logX > such that,

η̂ = η + dτ, ι∗τ = dκ.

Consider the following two complexes:

Ak−1(P \X) Ak−1(D \XD)

Ak(P \X) Ak(D \XD)

and
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Ak−1(P ) < logX > Ak−1(D) < logXD >

Ak(P ) < logX > Ak(D) < logXD >

which are quasi-isomorphic, and both compute Hk(P \ X,D \ X). [(η, 0)] lives in first

complex and represent the class [η]. Hence ∃ ε̃ ∈ Ak−1(P ) < logX >, s.t. −D[ε̃, 0] +

[η̂, ε] = [η, 0]. Notice we can always extend ε to whole P , we actually have −D[τ, κ] +

[η̂, 0] = [η, 0]. Proved.
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5. Graph polytope of three wheels.

5.1 Newton polytope associated to graph polynomial

For reasons, we changed our labeling of the edges of three wheels. Sorry for the

inconvenience for the readers.

x0

x1 x2

x3

x4

x5

Figure 5.1. Three wheel spokes 2

Consider the first Symanzik polynomial of three wheels. To this polynomial, we

associate a Newton polytope as follows. Firstly consider the set M ⊂ Zn corresponding

to exponents of monomials appearing in U with nonzero coefficients and secondly the

convex hull

∆U := {
∑
m∈M

amm|am ≤ 0,
∑

am = 1} (5.1)

of these points.
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Notice ∆U is a 5 dimensional 0 − 1 polytope in R6. So to get a full dimensional

polytope we consider the Newton Polytope of U(1, x1, ..., x5), which is the projection of

∆U to hyperplane X0 = 0.

Also we want our polytope to be reflexive. ∆2U := 2∆U(1,...,x5) + (−1,−1,−1,−1,−1)

is a reflexive polytope. Its 16 vertices are as follows:

[−1,−1, 1, 1, 1] [−1, 1, 1,−1, 1] [−1, 1, 1, 1,−1] [1,−1,−1, 1, 1]

[1,−1, 1, 1,−1] [1, 1,−1,−1, 1] [1, 1,−1, 1,−1] [1, 1, 1,−1,−1]

[−1,−1,−1, 1, 1] [−1,−1, 1,−1, 1] [−1, 1,−1,−1, 1] [−1, 1,−1, 1,−1]

[−1, 1, 1,−1,−1] [1,−1,−1,−1, 1] [1,−1,−1, 1,−1] [1,−1,−1, 1,−1].

LetP∆2Ube the toric variety associated to ∆2U . We compute ∆◦2U , the dual polytope

of ∆2U , whose vertices are :

[−1, 0,−1, 0,−1] [0, 0,−1, 0, 0] [0, 1, 0, 0, 0] [1, 1, 0, 0, 0]

[0, 0, 0, 1, 0] [−1, 0, 0, 0, 0] [1, 1, 1, 1, 1] [0, 0, 0, 0, 1]

[0, 0, 1, 1, 1] [0, 0, 0, 0,−1] [0,−1, 0,−1,−1] [−1,−1,−1,−1,−1]

[1, 0, 0, 0, 0] [0, 0, 0,−1, 0] [0,−1, 0, 0, 0] [0, 0, 1, 0, 0].

Later on, we will use [i] to denote the i-th vertex of ∆2U and ∆◦2U , depending on the

context.

I put all the other combinatorial data of this polytope in the appendix.

There is an interesting graphical interpretation of this polytope. In P5, we let hyper-

plane xi = 0 to represent the edges xi in the graph. Then the linear subspace defined

by equations xjk = 0, k = 1, ..., n corresponds to the subgraph consisting edges xjks. P2∆

is closed related to the toric variety obtained by blowing up the linear subspaces corre-

sponding to 3 and 5 edge sub graphs containing a loop. Each vertex in ∆◦2U canonically

corresponds to a subgraph as follows. If we let [−1,−1,−1,−1,−1] to represent edge
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x0, [1, 0, 0, 0, 0] to represent edge x1, so on and so forth. Then [0, 0, 1, 1, 1] will represent

the subgraph consisting edges x4, x5, x6 since it is the sum of [0, 0, 0, 0, 1], [0, 0, 0, 1, 0],

[0, 0, 1, 0, 0]. Similarly, [0,−1, 0,−1,−1] will represent the subgraph x0, x1, x3 since it is

the sum of [−1,−1,−1,−1,−1], [1, 0, 0, 0, 0], [0, 0, 1, 0, 0].

One may ask “why is this correspondence canonical ?” The answer is we have the

following interesting observation of ∆U and ∆2U : we can factor the restriction of graph

polynomial to facets with a graphical interpretation. Each vertex of the above two poly-

topes corresponds to a monomial in edge variables. Therefore, a facet of them will corre-

spond to a subpolynomial of ΦΓ. For example, one facet F = [0, 1, 3, 4, 5, 7, 9, 13, 15]. It

corresponds to subpolynomial

x3x4x5 + x2x3x5 + x1x4x5 + x1x3x4

+ x1x2x5 + x1x2x3 + x3x5x0 + x1x5x0 + x1x3x0

=(x1x3 + x1x5 + x3x5)(x0 + x2 + x4).

Notice here x0 +x2 +x4 is the graph polynomial of the subgraph Γ
′

with edges x0, x2 and

x4. x1x3 + x1x5 + x3x5 is also a graph polynomial of ΓK3//Γ
′
.

The upshot is according to the bijection [27] between faces of a polytope and its dual,

F corresponds to [−1, 0,−1, 0,−1], which by our method corresponds to Γ
′
.

Actually, all facet polynomial of ∆U can factor as ΦΓ∗ΦΓ//Γ∗ , where Γ∗ is the corre-

sponding subgraph assciated to the vertex of ∆◦2U dual to the facet.

We do not see such patterns on higher codimension faces. Since ΦΓ∗ΦΓ//Γ∗ could be

viewed as the graph polynomial of the graph constructed by connecting ΦΓ∗ and ΦΓ//Γ∗

using one edge, it is obvious not all graphs will posses this property.
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Question 5.1.1 Give a criteria for graph Γ, such that we could construct a reflexive

polytope ∆Γ, all of whose facet polynomials could be factored as product of subgraph and

modified quotient graph’s graph polynomial.

Example 5.1.2 For all 2−connected graphs with less or equal than 7 edges, this property

holds.

I put some of the examples I computed in the appendix.

Also notice that not all subgarphs of threespoke graph appears in the set of facets of

polytope. So it is natural to ask

Question 5.1.3 What kind of subgraphs by the correspondence rule we mentioned will

appear in the reflexive polytope’s list of facets?

In the three wheel spoke graph case, subgraphs with 3 and 5 edges appears. No

obvious pattern is discovered for more general graphs so far.

5.2 An explanation based on face polynomial in toric variety setting

Notice question 5.1.1 is purely combinatorial. In this section, we give an explanation

which could possibly be generalized to a large class of graphs.

First we give an introduction to face polynomial from [17] and [28].

Let ∆ ⊂ Rn be a reflexive polytope, and

F =
∑

m∈∆∩Zn
αmx

m ∈ C[x±1
1 , ..., x±1

n ]

a nonzero Laurent polynomial with support MF := {m ∈ Zn|αm 6= 0} contained in ∆.

Let P∆ be the toric variety associated to ∆ [29], let XF ⊂ P∆ be the zero-locus of the
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section of −KP∆
given by F . Let D∗σ be the torus orbits, here we use σ ∈ ∆(i) to represent

the faces of ∆. D∗σ is defined by a set of toric coordinates

D∗σ := {xσ1 , ..., xσn−i ∈ C∗} ∩ {xσn−i+1 = · · · = xσn = 0}.

The the face polynomials of F attached to σ ∈ ∆(i) is obtained by rewriting x−oσF (x) in

the {xσj}nj=1 and setting xσn−i+1 = ··· = xσn = 0 to get a Laurent polynomial in xσ1 , ···, xσn−i.

The support MFσ of Fσ lies in σ − oσ, and its vanishing locus is D∗F,σ = XF ∩ D∗σ.

Now we do a BEK style blow up but only along the linear subspaces corresponding to

three and five edges subgraphs and get a toric variety PBEK. Let P2∆ be the toric variety

associated to ∆,
∑

PBEK
and

∑
P2∆

be the fan of theses two varieties. Notice
∑

PBEK
and∑

P2∆
have same set of one rays, there exists a fan

∑
m which subdivides both of them.

This implies a smooth toric P∑
m

variety lying over P2∆ and PBEK [30].

P5

P2∆ PBEK

P∑
m

π1 π2

Figure 5.2. Relationships between toric varieties
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Notice the subdivides in fans corresponds to blow up of locus with co-dimension

greater or equal than two. Then π1 ◦π−1
2 is isomorphism when restricted to co-dimension

one orbits.

The upshot is by 3.6, we know the graph polynomial on D∗σ in PBEK has the form

ΦΓ′ (1, ..., Br) · ΦΓ//Γ′ (Ar+1, ..., Am), then the face polynomial on D∗σ in P2∆ also has the

form ΦΓ′ (1, ..., Br) · ΦΓ//Γ′ (Ar+1, ..., Am). Then by definition of face polynomial, proved.

Remark 5.2.1 Notice the above proof did not answer the second question. And it could

be generalized to the case where a reflexive polytope could be constructed for the graph.

While we do have cases where a canonical reflexive polytope does not exist but the face

polynomials of the graph polytope still factor as product of subgraph and modified quotient

graphs’ graph polynomials.

5.3 smoothing of the graph toric variety

P2∆ is not smooth. As we could see in Chapter 4, we would like the ambient space we

work in to be smooth. Partial desingularizations of P2∆ can be obtained by subdividing

faces of ∆◦ and replacing
∑

(∆◦) by the refinement from the fan on the subdivision. In

particular, a maximal triangulation of ∂∆◦ if a collection of simplices θ

• ∪αθα = ∂∆◦

• the union of vertices of the {θα} is ∂∆circ ∩ Zn

• θα ∩ θβ(if nonempty) is a common face of θα and θβ (∀α, β).

When θ has a projective support [28], is is called a maximal projective triangulation and

a theorem of Batyrev [28] asserts that after the refinement, the toric variety we get is

projective , with at worst singularities in codimension ≥ 4.
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For three wheel spokes, the general theory only guarantee the less than co-dimension1

singularities. It turns out actully the MPCP process actually give a smooth variety. For

the refined toric variety to be smooth, we need all faces of ∆◦ after subdivision to be a

simplex [29]. Notice there are rectangular two faces of ∆◦, we need subdivide them in

to two triangles and check these subdivisions induces subdivisions on higher dimension

faces.

Notice every edge of ∆◦ could be associated to a subgraph. Based on this association,

there are three kinds of rectangles. Here the label of the vertices is the same as in the

appendix.

• [14, 10, 2, 15], where [14] represents the subgraph with edges x0, x2, x5, [10] repre-

sents the subgraph with edges x0, x1, x2, x4, x5, [2] represents edge x2 = 0, where

[15] represents the subgraph with edges x1, x2, x4

• [14, 11, 8, 5],where [11] represents the subgraph without edge x3, where [8] represents

the subgraph without edge x1, and [5] represents the edge x5

• [14, 2, 6, 7] where [6] represent edge x4, and [7] represent the subgraph without edge

x0.

Notice π1 : P∑
m
→ P2∆ gives a way to subdivide these faces, and since P∑

m
is smooth,

it turns out toric variety get from MPCP process is also smooth. P∑
m

is a choice of

MPCP-desingularization. Since P∑
m

is a blow-up of PBEK , and PBEK is smooth, so is

P∑
m

.

61



6. Beyond wheel with three spokes.

We know the n−spoke wheel gives ζ(2n− 3), so it is reasonable to expect that there is

a uniform way to explain at least for this family of graphs, why their Feynman integral

gives zeta values. So in this chapter we try to generalize the approaches we applied to

three wheel spokes graphs to more general graphs.

Our general plan is to construct a toric variety P (where D = P \ (C∗)•), with Y be

the strict transformation of graph hypersurface in P . We hope to complete graph symbol

ξ defined on Y ∗ := (P \D)∩ (C∗)•, to Ξ, then rewrite the Feynman integral as a pairing

of AJ(Ξ) and a rational homology class. As we will see in this chapter, some steps go

through, while some other steps do not, which indicates interesting questions.

6.1 Further discussion on vanishing of graph symbols

As we saw in chapter 4, the graph symbol ξ = {−A1

Ae
, ...,−Ae−1

Ae
} is ∂B-closed on (C∗)•

and hence ∂B-closed on Y ∗. Thus, to be able to extend it to Y , we need all of its higher

residues to vanish. And we know that if all of a graph’s subgraphs and modified quotient

graphs’ graph symbol vanish, Res1 will vanish. Hence it is natural to ask the question

for which graphs their graph symbol will vanish.

We immediately have several simple observations

Lemma 6.1.1 For a graph Γ, let Γ
′

be a graph obtained by adding on external edge to

Γ(h1(Γ) = h1(Γ
′
)), then ξΓ vanishes if and only if ξΓ′ does.
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Proof Since such an external edge must be contained in any spanning tree, therefore Γ

and Γ
′

have the same graph polynomial.

Lemma 6.1.2 For a given graph Γ and an edge e, suppose ξΓ vanishes. Let e be sub-

stituted by two parallel edges e1, e2, then for the new graph Γ
′
, its graph symbol ξΓ′ still

vanishes.

Proof Write Γ’s graph polynomial as

ΦΓ = P1xe + P2,

where xe is the variable corresponding to edge e, P1 and P2 are two polynomials. Notice

P1xe corresponds to the set of spanning trees which do not contain edge e, denoted as

T1, and P2 corresponds to the set which do, denoted as T2. Define T1
′

to be the set of

spanning trees of Γ
′

which do not contain e1 and e2. T2
′

is defined similarly. There is a

one to one map from T1 to T1
′

and one to two correspondence from T2 to T2
′
. Therefore,

we know

ΦΓ′ = P1xe1xe2 + P2(xe1 + xe2),

and

ΦΓ′ = 0⇐⇒ 0 = P1
1

1
xe1

+ 1
xe2

+ P2.

ξΓ = { xe
xn
, σ}. Then ξΓ′ = {xe1

xn
,
xe2
xn
, σ}. Notice if we working ⊗Q, then

ξΓ′ = {(xe1
xn

)−1, (
xe2
xn

)−1, σ}

= { 1
xe1
xn

+
1
xe2
xn

,−(
xe1
xe2

), σ}

= {( 1
xe1
xn

+
1
xe2
xn

)−1,−(
xe1
xe2

), σ}−1

= {( 1
xe1
xn

+
1
xe2
xn

)−1, σ,−(
xe1
xe2

)}.

Vanishing of ξΓ implies vanishing of {( 1
xe1
xn

+ 1
xe2
xn

)−1, σ}.

63



Lemma 6.1.3 For a given graph Γ and an edge e, suppose ξΓ vanishes. Subdivide e to

two edges e1 and e2 to get Γ
′
, then for the new graph Γ

′
, its graph symbol ξΓ′ still vanishes.

• • • • •
e e1 e2

Figure 6.1. Subdividing an edge

Proof Write Γ’s graph polynomial as

ΦΓ = P1xe + P2.

Notice P1xe corresponds to the set of spanning trees which do not contain edge e, denoted

as T1, and P2 corresponds to the set which do, denoted as T2. Define T1
′

to be the set

of spanning trees of Γ
′

which do not contain e1 or e2. T2
′

is the set of spanning trees

which contain both of e1 and e2. There is a one to two map from T1 to T1
′

and one to

one correspondence from T2 to T2
′
. Therefore, we know

ΦΓ′ = P1(xe1 + xe2) + P2.

By a similar reasoning as in lemma 6.1.2, ξΓ′ vanishes.

We give a criterion addressing the problem of vanishing of graph symbol.

For a planar graph Γ, its modified dual graph is defined as follows.

Definition 6.1.4 Γ∨ has a vertex vF for each face F of Γ, vF1 and vF2 in Γ∨ are connected

if and only if F1 and F2 share at least one edge.

Theorem 6.1.1 For a planar graph Γ, consider it modified dual graph Γ∨. Let v ∈ Γ∨

be the vertex corresponding the unbounded face . Then ξΓ vanishes if h1(Γ∨ \ v) = 0.
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Proof We know ξK3 vanishes. Any Γ satisfying h1(Γ∨ \ v) = 0 could be obtained by

adding double edge and subdividing edge from K3. Then by lemma 6.1.2 and lemma

6.1.3, we proved the result.

We are also interested for what kind of graphs, their graph symbol vanishes.

Lemma 6.1.5 For a graph Γ and its subgraph Γ
′ ⊂ Γ, if ξΓ′ is non vanishing, then ξΓ is

not vanishing either.

Proof We could do a BEK style blow up along the linear subspace corresponding to Γ
′

and let F be the exceptional divisor. By (3.3),

F ∼= P(EG)× P(EΓ//G).

So ResF (ξΓ) could be factored as product of ξΓ′ and ξΓ//Γ′ . Since ξΓ vanishes. Both

ξΓ′ and ξΓ//Γ′ should equal identity elements in their Milnor-K group. Then we get a

contradiction.

For three wheels spoke graph K4, ξK4 does not vanish. Otherwise AJ(ξK4) would be

torsion and does not yield zeta value. Notice if h1(Γ∨ \ v) 6= 0, then there always exists

an subgraph Γ
′
, which could be obtained from K4 by subdividing edges. Therefore by

the above lemma for such graph their graph symbols do not vanish.

Proposition 6.1.6 For a planar graph Γ without multiple edges, let v ∈ Γ∨ be the vertex

corresponding the face F ⊂ Γ which has the maximal number of edges. ξΓ does not vanish

if h1(Γ∨ \ v) 6= 0.

Based on the conclusions, we immediately know for all one-loop graphs, all sunset

family graphs, all subgraphs of three wheel spokes, their graph symbols will vanish. On

the other hand, all wheel spokes and zig-zag graphs, their graph symbols will not vanish.
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6.2 Toric interpretation of BEK’s blow up.

In [BEK], section 7, the authors applied a sequence of blow ups along linear subspace

in Pn. These subspaces correspond to subgraphs whose first homology group is nonzero.

Actually, we get a toric variety out of this, which we denote as PBEK . For three wheel

spokes graph, we are going to blow up linear subspaces corresponding to 3, 4 and 5 edges

subgraphs with nonzero first homology group.

Lemma 6.2.1 Let NR = R, where N = Zn is a lattice. N has standard basis e1, ..., en.

Set e0 = −e1 − e2 − ... − en. Each subset of {e0, e1, ..., en} can generate a cone. All

such cones form a fan Σ. Then the toric variety associated with Σ, denoted by XΣ is

isomorphic to Pn.

So Pn itself is a toric variety determined by the fan Σ.

Definition 6.2.1 Let σ = Cone(u1, ..., un) be a smooth cone in a lattice N , where

u1, ..., un is a basis for N . σ is contained in a fan Σ. Let u0 = u1 +u2 + ...+un and Σ
′
(σ)

be the set of cones generated by subsets of {u0, u1, ..., un}, not containing {u1, ..., un}.

Then Σ∗(σ) = Σ
′
(σ) ∪ Σ\{σ} is called the star subdivision of Σ along σ.

Lemma 6.2.2 Σ∗(σ) is a refinement of Σ, and the induced toric morphism φ : XΣ∗(σ) −→

XΣ makes XΣ∗(σ) the blow up of XΣ at the distinguished point γσ corresponding to the

cone σ.

In another words, to blow up a affine toric variety along its distinguished point, it is

enough to add the ray which is the sum of all the generators of the corresponding cone

and perform the ∗−subdivision.

Lemma 6.2.3 For a cone σ generated by standard basis (e1, e2, ..., en) in Zn, Xσ
∼= Cn.

And its distinguished point is (0, 0, ..., 0).
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Consider the fan Σ such thatXΣ ' Pn. Pn can be covered by n+1 affine varieties which are

all isomorphic to Cn. Under the homogeneous coordinate, the n+ 1 distinguished points

for these affine varieties are exactly (1, 0, ..., 0), (0, 1, 0, ..., 0), ...(0, 0, ..., 1), (−1, ...,−1).

Therefore by 6.2.1 and 6.2.2, blowing up these points corresponds to adding rays generated

by (1, 1, ..., 1), (−1, 0, 0, ..., 0)(0, -1 ,0 , ..., 0), ...,(0, 0, ...,−1) to Σ.

Similarly, blowing up of larger dimensional linear subspaces also has nice descriptions.

Let σ and e1, e2, ..., en be the same as in 6.2.2. Let τ = Cone(e1, ..., er), 2 ≤ r ≤ n be a face

of σ. τ corresponds to an open orbit O(τ) whose closure V (τ) is isomorphic to {0}×Cn−r,

which is actually the subspace Sr = {(0, ..., 0,︸ ︷︷ ︸
r of them

∗, ∗, ..., ∗)}. Now let e0 = e1 + ... + er and

consider the fan

Σ∗(τ) = {Cone(A)|A ⊆ {e0, e1, ..., en}, {e1, ..., er} is not subset of A }. (6.1)

Then XΣ∗(τ) is the blow up of Cn along the n− r dimensional linear subspace Sr.

We deduce from the above discussion that in Pn, to blow up the linear subspace

defined by Xi1 = 0, ..., Xik = 0 (Xjs are homogeneous coordinates)corresponds to add

the ray generated by ei1 + ei2 + ...+ eik in Σ.

More generally, let Σ be a fan in NR ' Rn and assume that τ ∈ Σ has the property

that all cones of Σ containing τ are smooth. Let uτ = Σρ∈τ(1)uρ and for each cone σ ∈ Σ

containing τ , set

Σ∗σ(τ) = {Cone(A)|A ⊂ {uτ ∪ σ(1), τ(1) " A}. (6.2)

Then the star subdivision of Σ relative to τ is the fan

Σ∗(τ) = {σ ∈ Σ|τ * σ} ∪
⋃
τ⊂σ

Σ∗(σ)(τ). (6.3)

The fan Σ∗(τ) is a refinement of Σ and hence induces a toric morphism

φ : XΣ∗(τ) → XΣ. (6.4)
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XΣ∗(τ) is the blow up of XΣ along Vτ .

The following fact helps us to keep tract of the strict transformations of linear sub-

spaces.

Lemma 6.2.4 τ and σ are two cones in Σ satisfying τ ⊆ σ. We do a star-subdivision

for σ. Let V (τ) and Ṽ (τ) be the closure of orbits in the interior of τ before and after the

blowup. Then Ṽ (τ) is the strict transformation of V (τ).

Based on above facts, we can describe BEK′s blow up in toric language. First we con-

structed a fan Σ as in Lemma 2.1. We let each ray ei to represent the i−th edge Ei in the

Feymann Graph. A subgraph with edges Ei1 , ..., Eik will corresponds to a linear subspace

L defined by Xi1 = 0, ..., Xik = 0. Then blowing up a linear subspace L corresponds to

add the ray which is the sum of corresponding rays ei1 , ..., eik in Σ.

6.3 Newton Polytope of Graph Polynomial

For a graph Γ, its graph polynomial ΦΓ gives rise a Newton Polytope ∆Γ. On one

hand, the combinatorics of ∆Γ totally determines the algebra-geometric properties of P∆,

the toric variety we associate to the graph. On the other hand, ∆Γ should also encodes

info about the graph Γ. So we believe these Newton Polytopes from graphs deserve

careful studys.

Lemma 6.3.1 Let n = #E(Γ), then ∆Γ is n− 1 dimensional polytope in Rn.

Because the vertices of ∆Γ all have #E(Γ) − h1(Γ) many 1s as their entries, ∆Γ is

contained in the hyperplane {(x0, ..., xn−1)|Σxi = #E(Γ) − h1(Γ)}. This proves ∆Γ has

dimension less or equal than n − 1. On the other hand, if we pick an edge e ∈ Γ which

has distinct endpoints, and consider the graph Γ/e. All spanning trees T in Γ/e can be
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lifted to a spanning tree T ∪{e} in Γ. Vertices corresponding to these spanning trees will

have 0 in e’s place. And Γ also have spanning trees which does not contain e. Vertices

corresponding to the second kind of spanning tress will have 1 in e’s place. By induction,

we know the first set of vertices have rank n − 2. Therefore, the rank of ∆Γ should be

larger than n− 2.

We project to this polytope to hyperplane by just let one of the graph variable to

be 1, which is the same as ignore one of the entries of ∆Γ’s vertices. Notice that, we

actually don’t lose any graphical information by doing this, since the sum of entries is

#E(Γ) − h1(Γ), we can deduce the deleted term is 1 or 0 by summing the rest of the

terms. For convenience, we still use ∆Γ to denote the resulting polytope.

For a graph Γ, let V (Γ) be the set of vertices of Γ. Consider the set of graphs, S3
1,

such that for Γ ∈ S3
1, h1(Γ∨ \ vun) = 1, and ∃Γ′ ⊂ Γ, such that all faces of Γ

′
are

triangles except the unbounded face. vun corresponds to the unbounded face. The reader

may wonder why we consider such graphs. Actually, two important families of graphs :

wheels spokes and zig-zag graphs belong to this set and it is generalization of three spoke

wheel graph.

For Γ ∈ S3
1, we have a canonical way to translate ∆Γ into reflexive polytope. Consider

the polytope ∆2Γ := 2∆Γ + (−1, ...,−1).

Lemma 6.3.2 ∆2Γ is a reflexive polytope.

First, we notice that ∆2Γ always contains origin. For Γ ∈ S3
1, Γ can be decomposed

into a maximal chain of faces and an extra edge. For a certain edge e belongs to some

face, we can extend e into a spanning tree T1 by adding adjacent edges in each face. We

can also just extend e into another spanning tree T2 by always adding the other edge in

the faces. The upshot of this is this amounts to say there always exit two vertices in ∆2Γ,
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Figure 6.2. Maximal chain of faces

whose sum is (0, 0, ...,−2, ..., 0), with −2 in the place corresponding to e. Similarly, we

can construct two spanning trees who do not both contain a edge e. We can choose e

to be the edge shared by two triangular faces. Separate the remaining four edges in two

sets; each of them is connected. Then we can extend them into spanning trees having

different edges in the triangle faces. In this way, we show that there exits two vertices in

∆2Γ, their sum is (0, 0, ..., 2, ..., 0), with 2 in the place corresponding to e.

We also have the following lemma about reflexive polytope.

Lemma 6.3.3 A lattice polytope P is reflexive. ⇐⇒ For any facet F of P , there is no

lattice point between the hyperplane spanned by F and its parallel through origin.

∆2Γ can be viewed as cutting the polytope [−1, 1]n with rational hyperplanes. Since

origin is the only internal lattice point in [−1, 1]n, it is easy to see there is no lattice

point between these rational hyperplanes and their parallel through origin. Therefore,

we proved lemma 1.3.

Therefore can associate a Gorenstein Fano toric variety PΓ to it.

We have a description of what ∆◦2Γ looks like. By combinatorics, we know that for a

reflexive polytope P , its dual polytope P ◦ is defined as follows:

P ◦ = {~x|~x · ~y ≥ −1,∀~y ∈ P}. (6.5)
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In our situation, since we know all the vertices of ∆2Γ have (n+1)/2 “−1” entries and

(n− 1)/2 “1” entries or (n+ 1)/2 “1” entries and (n− 1)/2 “− 1” entries. Immediately,

we know the special points (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 1), and (−1,−1, ...,−1) are

in ∆◦2Γ. Because ∆2Γ defines an embedding into projective space, these points have to be

vertices of ∆◦2Γ.
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7. Appendix.

7.1 Data of the graph polytope

The set of points of ∆U are

[−1,−1, 1, 1, 1] [−1, 1, 1,−1, 1] [−1, 1, 1, 1,−1] [1,−1,−1, 1, 1]

[1,−1, 1, 1,−1] [1, 1,−1,−1, 1] [1, 1,−1, 1,−1] [1, 1, 1,−1,−1]

[−1,−1,−1, 1, 1] [−1,−1, 1,−1, 1] [−1, 1,−1,−1, 1] [−1, 1,−1, 1,−1]

[−1, 1, 1,−1,−1] [1,−1,−1,−1, 1] [1,−1,−1, 1,−1] [1,−1,−1, 1,−1].

We compute its dual polytope ∆◦U . Its points are

(−1,−1,−1,−1,−1) (0, 1, 0, 0, 0) (0, 0, 1, 0, 0) (1, 0, 0, 0, 0)

(0, 0, 0, 0, 1) (0, 0, 0, 1, 0) (1, 1, 1, 1, 1) (−1, 0, 0, 0, 0)

(0,−1, 0, 0, 0) (0, 0,−1, 0, 0) (0, 0, 0,−1, 0) (0, 0, 0, 0,−1)

(0,−1, 0,−1,−1) (−1, 0,−1, 0,−1) (1, 1, 0, 0, 1) (0, 0, 1, 1, 1),

which are labeled as

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16.
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Then ∆◦U ’s facets are

[0, 1, 3, 9, 10, 11, 12, 13, 14], [0, 1, 4, 7, 9, 10, 13, 14], [0, 1, 2, 7, 10, 11, 12, 13],

[0, 2, 5, 7, 8, 11, 12, 13, 15], [0, 4, 5, 7, 8, 9, 13, 15], [0, 2, 4, 7, 8, 10, 12, 15],

[0, 3, 5, 8, 9, 11, 12, 13], [0, 3, 4, 8, 9, 10, 12, 14], [1, 4, 5, 6, 7, 9, 13, 14, 15],

[1, 2, 5, 6, 7, 11, 13, 15], [1, 2, 4, 6, 7, 10, 14, 15], [1, 3, 5, 6, 9, 11, 13, 14],

[1, 2, 3, 6, 10, 11, 12, 14], [3, 4, 5, 6, 8, 9, 14, 15],

[2, 3, 5, 6, 8, 11, 12, 15], [2, 3, 4, 6, 8, 10, 12, 14, 15].

Its codimension two faces are

[0, 1, 9, 10, 13, 14], [0, 1, 10, 11, 12, 13], [0, 3, 9, 11, 12, 13], [0, 3, 9, 10, 12, 14],

[1, 3, 9, 11, 13, 14], [1, 3, 10, 11, 12, 14], [0, 1, 7, 10, 13], [0, 4, 7, 9, 13],

[0, 4, 7, 10], [0, 4, 9, 10, 14], [1, 4, 7, 9, 13, 14], [1, 4, 7, 10, 14],

[0, 2, 7, 11, 12, 13], [0, 2, 7, 10, 12], [1, 2, 7, 11, 13], [1, 2, 7, 10],

[1, 2, 10, 11, 12], [0, 5, 7, 8, 13, 15], [0, 2, 7, 8, 12, 15], [0, 5, 8, 11, 12, 13],

[2, 5, 7, 11, 13, 15], [2, 5, 8, 11, 12, 15], [0, 4, 7, 8, 15], [0, 5, 8, 9, 13],

[0, 4, 8, 9], [4, 5, 7, 9, 13, 15], [4, 5, 8, 9, 15], [0, 4, 8, 10, 12],

[2, 4, 7, 10, 15], [2, 4, 8, 10, 12, 15], [0, 3, 8, 9, 12], [3, 5, 9, 11, 13],

[3, 5, 8, 9], [3, 5, 8, 11, 12], [3, 4, 8, 9, 14], [3, 4, 8, 10, 12, 14],

[1, 5, 6, 7, 13, 15], [1, 4, 6, 7, 14, 15], [1, 5, 6, 9, 13, 14], [4, 5, 6, 9, 14, 15],

[1, 2, 6, 7, 15], [1, 5, 6, 11, 13], [1, 2, 6, 11], [2, 5, 6, 11, 15],

[1, 2, 6, 10, 14], [2, 4, 6, 10, 14, 15], [1, 3, 6, 11, 14], [3, 5, 6, 9, 14],

[3, 5, 6, 11], [2, 3, 6, 11, 12], [2, 3, 6, 10, 12, 14],

[3, 5, 6, 8, 15], [3, 4, 6, 8, 14, 15], [2, 3, 6, 8, 12, 15]
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Its codimension three faces are

[0, 1, 10, 13], [0, 9, 13], [0, 9, 10, 14], [1, 9, 13, 14], [1, 10, 14], [0, 11, 12, 13],

[0, 10, 12], [1, 11, 13], [1, 10, 11, 12], [0, 3, 9, 12], [3, 9, 11, 13], [3, 11, 12],

[3, 9, 14], [3, 10, 12, 14], [1, 3, 11, 14], [0, 7, 13], [0, 7, 10], [1, 7, 13],

[1, 7, 10], [0, 4, 7], [0, 4, 9], [4, 7, 9, 13], [0, 4, 10], [4, 7, 10],

[4, 9, 14], [4, 10, 14], [1, 4, 7, 14], [0, 2, 7, 12], [2, 7, 11, 13], [2, 11, 12],

[2, 7, 10], [2, 10, 12], [1, 2, 7], [1, 2, 11], [1, 2, 10], [0, 7, 8, 15],

[0, 5, 8, 13], [5, 7, 13, 15], [5, 8, 15], [0, 8, 12], [2, 7, 15], [2, 8, 12, 15],

[5, 11, 13], [5, 8, 11, 12], [2, 5, 11, 15], [0, 4, 8], [4, 7, 15], [4, 8, 15],

[0, 8, 9], [5, 9, 13], [5, 8, 9], [4, 8, 9], [4, 5, 9, 15], [4, 8, 10, 12],

[2, 4, 10, 15], [3, 8, 9], [3, 8, 12], [3, 5, 9], [3, 5, 11], [3, 5, 8],

[3, 4, 8, 14], [1, 6, 7, 15], [1, 5, 6, 13], [5, 6, 15], [1, 6, 14], [4, 6, 14, 15],

[5, 6, 9, 14], [1, 2, 6], [2, 6, 15], [1, 6, 11], [5, 6, 11], [2, 6, 11],

[2, 6, 10, 14], [3, 6, 14], [3, 6, 11], [3, 5, 6], [2, 3, 6, 12], [3, 6, 8, 15]

Its one-dimension edges are

[0, 13], [0, 10], [1, 13], [1, 10], [0, 9], [9, 13], [9, 14], [10, 14], [1, 14], [0, 12],

[11, 13], [11, 12], [10, 12], [1, 11], [3, 9], [3, 12], [3, 11], [3, 14], [0, 7], [7, 13],

[7, 10], [1, 7], [0, 4], [4, 7], [4, 9], [4, 10], [4, 14], [2, 7], [2, 12], [2, 11],

[2, 10], [1, 2], [0, 8], [7, 15], [8, 15], [5, 13], [5, 8], [5, 15], [8, 12], [2, 15],

[5, 11], [4, 8], [4, 15], [8, 9], [5, 9], [3, 8], [3, 5], [1, 6], [6, 15], [5, 6],

[6, 14], [2, 6], [6, 11], [3, 6]
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7.2 Data of BEK’s toric variety’s normal fan

The one rays of the normal fan are

(−1,−1,−1,−1,−1), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (1, 0, 0, 0, 0), (0, 0, 0, 0, 1), (0, 0, 0, 1, 0),

(1, 1, 1, 1, 1), (−1, 0, 0, 0, 0), (0,−1, 0, 0, 0), (0, 0,−1, 0, 0), (0, 0, 0,−1, 0),

(0, 0, 0, 0,−1), (0,−1, 0,−1,−1), (−1, 0,−1, 0,−1), (1, 1, 0, 0, 1), (0, 0, 1, 1, 1).

Label them from 0 to 15. The two fans are

(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (0, 3), (3, 4), (0, 4), (1, 4), (2, 4), (2, 5), (0, 5),

(1, 5), (3, 5), (4, 5), (4, 6), (1, 6), (5, 6), (2, 6), (3, 6), (1, 7), (2, 7), (4, 7), (5, 7),

(0, 7), (3, 8), (5, 8), (4, 8), (2, 8), (0, 8), (1, 9), (5, 9), (0, 9), (3, 9), (4, 9), (3, 10),

(0, 10), (1, 10), (4, 10), (2, 10), (3, 11), (5, 11), (0, 11), (1, 11), (2, 11), (5, 12),

(3, 12), (11, 12), (10, 12), (8, 12), (1, 12), (4, 12), (0, 12), (2, 12), (5, 13), (9, 13),

(7, 13), (11, 13), (2, 13), (0, 13), (1, 13), (4, 13), (3, 13), (3, 14),

(5, 14), (6, 14), (0, 14), (9, 14), (10, 14), (2, 14), (4, 14), (1, 14),

(3, 15), (4, 15), (8, 15), (7, 15), (6, 15), (1, 15), (0, 15), (2, 15), (5, 15).
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three fans are

(0, 1, 2), (1, 2, 3), (0, 1, 3), (0, 3, 4), (0, 1, 4), (2, 3, 4), (0, 2, 4), (1, 2, 4),

(0, 2, 5), (1, 2, 5), (0, 3, 5), (2, 3, 5), (1, 3, 5), (1, 4, 5), (3, 4, 5), (0, 4, 5),

(1, 4, 6), (4, 5, 6), (1, 5, 6), (1, 2, 6), (2, 4, 6), (2, 5, 6), (1, 3, 6), (3, 4, 6),

(2, 3, 6), (3, 5, 6), (1, 2, 7), (1, 4, 7), (2, 4, 7), (4, 5, 7), (2, 5, 7), (1, 5, 7),

(0, 1, 7), (0, 2, 7), (0, 4, 7), (0, 5, 7), (3, 5, 8), (3, 4, 8), (4, 5, 8), (2, 3, 8),

(2, 5, 8), (2, 4, 8), (0, 4, 8), (0, 5, 8), (0, 3, 8), (0, 2, 8), (1, 5, 9), (0, 1, 9),

(0, 5, 9), (0, 3, 9), (3, 5, 9), (1, 3, 9), (0, 4, 9), (4, 5, 9), (3, 4, 9), (1, 4, 9),

(0, 3, 10), (1, 3, 10), (0, 1, 10), (3, 4, 10), (0, 4, 10), (1, 4, 10), (2, 4, 10), (2, 3, 10),

(0, 2, 10), (1, 2, 10), (3, 5, 11), (0, 3, 11), (0, 5, 11), (1, 3, 11), (1, 5, 11), (0, 1, 11),

(2, 3, 11), (0, 2, 11), (2, 5, 11), (1, 2, 11), (3, 5, 12), (3, 11, 12), (5, 11, 12), (3, 10, 12),

(5, 8, 12), (3, 8, 12), (1, 10, 12), (1, 11, 12), (1, 3, 12), (4, 10, 12), (3, 4, 12), (4, 8, 12),

(0, 5, 12), (0, 4, 12), (0, 11, 12), (0, 10, 12), (0, 8, 12), (0, 1, 12), (0, 3, 12), (1, 2, 12),

(0, 2, 12), (2, 5, 12), (2, 3, 12), (2, 10, 12), (2, 11, 12), (2, 4, 12), (2, 8, 12), (5, 9, 13),

(5, 7, 13), (5, 11, 13), (2, 7, 13), (2, 11, 13), (2, 5, 13), (0, 9, 13), (0, 11, 13), (0, 5, 13),

(0, 2, 13), (0, 7, 13), (1, 11, 13), (1, 9, 13), (1, 7, 13), (1, 5, 13), (1, 2, 13), (0, 1, 13),

(4, 9, 13), (4, 5, 13), (0, 4, 13), (1, 4, 13), (4, 7, 13), (3, 9, 13), (3, 5, 13), (3, 11, 13),

(0, 3, 13), (1, 3, 13), (3, 5, 14), (3, 6, 14), (5, 6, 14), (0, 3, 14), (5, 9, 14), (0, 9, 14),

(3, 9, 14), (0, 10, 14), (3, 10, 14), (2, 6, 14), (2, 3, 14), (2, 10, 14), (4, 5, 14), (3, 4, 14),

(0, 4, 14), (4, 10, 14), (4, 6, 14), (4, 9, 14), (2, 4, 14), (1, 3, 14), (1, 5, 14), (1, 6, 14),

(0, 1, 14), (1, 10, 14), (1, 9, 14), (1, 2, 14), (1, 4, 14), (3, 4, 15), (4, 8, 15), (3, 8, 15),

(4, 7, 15), (3, 6, 15), (4, 6, 15), (1, 6, 15), (1, 7, 15), (1, 4, 15), (0, 7, 15), (0, 8, 15),

(0, 4, 15), (2, 3, 15), (2, 4, 15), (2, 8, 15), (2, 7, 15), (2, 6, 15), (1, 2, 15), (0, 2, 15),

(5, 8, 15), (5, 7, 15), (2, 5, 15), (1, 5, 15), (0, 5, 15), (5, 6, 15), (3, 5, 15), (4, 5, 15).
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7.3 Examples of factorization of facet graph polynomials

7.3.1 Example 1

e1

e3

e2

e4

e5

Figure 7.1. Example 1

The combinatorial info of graph polytope is

spanning trees monomials coordinate of vertices label

e1e2e4 e3e5 (0, 0, 1, 0, 1) 0

e1e2e5 e3e4 (0, 0, 1, 1, 0) 1

e1e3e4 e2e5 (0, 1, 0, 0, 1) 2

e1e3e5 e2e4 (0, 1, 0, 1, 0) 3

e1e4e5 e2e3 (0, 1, 1, 0, 0) 4

e2e3e4 e1e5 (1, 0, 0, 0, 1) 5

e2e3e5 e1e4 (1, 0, 0, 1, 0) 6

e2e4e5 e1e3 (1, 0, 1, 0, 0) 7

.

The factorization of its facets are as follows
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facet face polynomial factorization

[0, 1, 2, 3, 5, 6] e3e5 + e3e4 + e2e5 + e2e4 + e2e5 + e1e4 (e1 + e2 + e3)(e4 + e5)

[2,3,4,5,6,7] e2e5 + e2e4 + e2e3 + e1e5 + e1e4 + e1e3 (e3 + e4 + e5)(e1 + e2)

[0, 1, 2, 3, 4] e3e5 + e3e4 + e2e3 + e2e4 + e2e3 1 · (e3e5 + e3e4 + e2e3 + e2e4 + e2e3)

[0, 1, 5, 6, 7] e3e5 + e3e4 + e1e5 + e1e4 + e1e3 1 · (e3e5 + e3e4 + e1e5 + e1e4 + e1e3)

[0, 2, 4, 5, 7] e3e5 + e2e5 + e2e3 + e1e5 + e1e3 1 · (e3e5 + e2e5 + e2e3 + e1e5 + e1e3)

[1, 3, 4, 6, 7] e3e4 + e2e4 + e2e3 + e1e4 + e1e3 1 · (e3e4 + e2e4 + e2e3 + e1e4 + e1e3)

[0, 1, 4, 7] e3e5 + e3e4 + e2e3 + e1e3 e3(e1 + e2 + e4 + e5)

.

7.3.2 Example 2

x1 x7

x3 x5

x2

x4

x6

Figure 7.2. Example 2

The combinatorial info of graph polytope is
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spanning trees monomials coordinate of vertices label

x1x2x4x6 x3x5x7 (0, 0, 1, 0, 1, 0, 1) 0

x1x2x4x7 x3x5x6 (0, 0, 1, 0, 1, 1, 0) 1

x1x2x5x6 x3x4x7 (0, 0, 1, 1, 0, 0, 1) 2

x1x2x5x7 x3x4x6 (0, 0, 1, 1, 0, 1, 0) 3

x1x2x6x7 x3x4x5 (0, 0, 1, 1, 1, 0, 0) 4

x1x3x4x6 x2x5x7 (0, 1, 0, 0, 1, 0, 1) 5

x1x3x4x7 x2x5x6 (0, 1, 0, 0, 1, 1, 0) 6

x1x3x5x6 x2x4x7 (0, 1, 0, 1, 0, 0, 1) 7

x1x3x5x7 x2x4x6 (0, 1, 0, 1, 0, 1, 0) 8

x1x3x6x7 x2x4x5 (0, 1, 0, 1, 1, 0, 0) 9

x1x4x5x6 x2x3x7 (0, 1, 1, 0, 0, 0, 1) 10

x1x4x5x6 x2x3x7 (0, 1, 1, 0, 0, 0, 1) 10

x1x4x5x7 x2x3x6 (0, 1, 1, 0, 0, 1, 0) 11

x1x4x6x7 x2x3x5 (0, 1, 1, 0, 1, 0, 0) 12

x2x3x4x6 x1x5x7 (1, 0, 0, 0, 1, 0, 1) 13

x2x3x4x7 x1x5x6 (1, 0, 0, 0, 1, 1, 0) 14

x2x3x5x6 x1x4x7 (1, 0, 0, 1, 0, 0, 1) 15

x2x3x5x7 x1x4x6 (1, 0, 0, 1, 0, 1, 0) 16

x2x3x6x7 x1x4x5 (1, 0, 0, 1, 1, 0, 0) 17

x2x4x5x6 x1x3x7 (1, 0, 1, 0, 0, 0, 1) 18

x2x4x5x7 x1x3x6 (1, 0, 1, 0, 0, 1, 0) 19

x2x4x6x7 x1x3x5 (1, 0, 1, 0, 1, 0, 0) 20

.
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One of the facet is [0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 18, 19]. The factorization is

as follows

x3x5x7 + x3x5x6 + x3x4x7 + x3x4x6 + x2x5x7 + x2x5x6 + x2x4x7 + x2x4x6+

x2x3x7 + x2x3x6 + x1x5x7 + x1x5x6 + x1x4x7 + x1x4x6 + x1x3x7 + x1x3x6

= (x7 + x6)(x3x5 + x3x4 + x2x5 + x2x4 + x2x3 + x1x5 + x1x4 + x1x3).

Notice x3x5 + x3x4 + x2x5 + x2x4 + x2x3 + x1x5 + x1x4 + x1x3 is the graph polynomial of

the subgraph consists of edges {x1, x2, x3, x4, x5}, and x7 + x6 is the graph polynomial of

the modified quotient graph consists of edges {x7, x6}.

Another facet is [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17]. The factorization is as fol-

lows

x3x5x7 + x3x5x6 + x3x4x7 + x3x4x6 + x2x5x7 + x2x5x6 + x2x4x6+

x2x4x5 + x1x5x7 + x1x5x6 + x1x4x7 + x1x4x6 + x1x4x5

= (x1 + x2 + x3)(x5x7 + x5x6 + x4x7 + x4x6 + x4x5).

Notice x1 +x2 +x3 is the graph polynomial of the subgraph consists of edges {x1, x2, x3},

and x5x7 + x5x6 + x4x7 + x4x6 + x4x5 is the graph polynomial of the modified quotient

graph consists of edges {x4, x5, x6, x7}.

The third non-isomorphic facet is [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The correspond-

ing polynomial is graph polynomial of modified quotient graph by deleting edge x1.

All facets are isomorphic to one of the above case and are listed below:

[0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 18, 19]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

[0, 2, 4, 5, 7, 9, 10, 12, 13, 15, 17, 18, 20]

[0, 1, 4, 5, 6, 9, 12, 13, 14, 17, 20]

.
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[1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 20]

[0, 1, 2, 3, 4, 13, 14, 15, 16, 17, 18, 19, 20]

[0, 1, 5, 6, 10, 11, 12, 13, 14, 18, 19, 20]

[2, 3, 4, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20]

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

.

.

7.4 Other examples

• All one loop graphs.

• Sunset family graphs(Grpah with two vertices and edges linking them).

• Dunce’s Cap

Figure 7.3. Dunce’s Cap

• Sunglasses’ graph
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Figure 7.4. Sunglasses’ graph
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