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ABSTRACT OF THE DISSERTATION

Theory and Application of Dynamic Analog Memory based on Fowler-Nordheim Quantum

Tunneling

by

Mustafizur Rahman

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2023

Professor Shantanu Chakrabartty, Chair

Traditionally, memory devices store information in a static manner be it charge-based

devices like floating-gates of FeFET or any other method for that matter such as spin-based,

electrochemical-based, magnetic-based, etc. But what if memory storage became dynamic

in nature and you can control the dynamics? My thesis is based on these premises where I

investigate the theory and application of Dynamic Analog Memory (DAM). In my thesis,

I answer the questions on how to design such a DAM and what optimal characteristics it

needs to have for it to demonstrate advantages over traditional memory devices.

To this end, my thesis first focuses on a self-powered dynamical system that is implemented

by depositing charges on an electronically isolated poly-silicon island where the charge leaks

through to a semiconductor substrate. The amount of leakage is synchronized not only

across multiple tunneling junctions but also across different dies. The dynamical system

can be desynchronized by coupling external signals to it. I designed a synaptic memory

element that exploits the desynchronization between two dynamical systems to implement

an analog memory. First, I characterize the plasticity and the energy required for updating

the analog memory. Then I show tunable memory consolidation properties of these synaptic

elements using a benchmark random-pattern experiment. Furthermore, I will show that when

Fowler-Nordheim quantum tunneling process is used as the leakage mechanism for the DAM,

xi



the synaptic elements can exhibit optimal memory consolidation and task-specific based

consolidation which can be used in continual learning scenarios. Finally, I also demonstrate

that by exploiting the tradeoff between the memory retention period and the energy required

for updating the analog memory information can be stored by expending less than 1pj

of energy per bit during the training phase of an artificial neural network, four orders of

magnitude improvement than conventional memory.

Next, I have implemented a novel class of quantum-secure dynamic encryption key distribution

and authentication protocols exploiting the security primitives and synchronization capabilities

of these self-powered dynamical systems. The FN-dynamical systems are not only synchronized

with each other but also the dynamic profile can be modeled accurately with respect to

time. I proposed a key exchange protocol that uses publicly available identical copies of

self-powered chipsets where the temporal dynamics on the hardware chipsets are synchronized

with its software clone i.e. the analytical model running on a server. I show that the dynamic

keys derived from these temporal dynamics meet the National Institute of Standards and

Technology (NIST) criteria. I also prove the security of these protocols under a standard

model and against different adversarial attacks. I have also investigated the robustness of

these protocols using hardware results and propose error-correcting protocols to mitigate

noise-related artifacts. Finally, I propose a synchronized pseudo-random number generator

(SPRNG) that uses a combination of a fast, low-complexity linear-feedback-shift-register

(LFSR) based PRNG and a slow but secure, synchronized seed generator based on self-powered

FN-dynamical system. I investigated protocols to periodically and securely generate random

bits using the self-powered FN-dynamical system for seeding the LFSR. The time-varying

random seeds extend and break the LFSR periodic cycles, thus making it difficult for an

attacker to predict the random output or the random seed.
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Chapter 1

Introduction

We humans have had the need to store information from the beginning of time and as such

memory devices have existed long before the modern era. Since the time when human beings

started to learn to communicate we have passed down our learnings to the new generation

through some means of memory or storage devices. One of the earliest examples of such a

memory device dates back to 2500 B.C. when Mesopotamians stored information about their

laws, literature, religion, and sciences on impressed clay tablets. However, they soon found

out that clay tablets lack the durability that they required. As such they started to etch their

inscriptions onto stones as shown in Fig. 1.1 for longer retention of their information [81]. Fast

forward a few thousand years and we have a new generation of information storage devices

as can be seen in Fig. 1.1 [123]. In 1950 magnetic tape was used for storing information

which is one of the oldest technologies for electronic data storage. Gradually, over the next

70 years, we introduced newer generations of electronic storage devices which decreased

in form factors but became better at storing more information. Emphasis was once again

given to retaining the information as long and as accurately as possible which meant that

information was stored in a static manner. Therefore, the underlying principle in information

storage throughout the history of memory devices has been the fact that they are static in

nature. But what if the memory devices became dynamic meaning information was stored in

a dynamic system rather than the conventional static devices? Can we satisfy the general

criteria of memory devices, i.e. retention and accuracy, while at the same time exploring new

frontiers in modern applications with such a dynamic memory?

My thesis is based on these premises where I investigate the theory and application of

Dynamic Analog Memory (DAM). From a biological perspective, it makes sense for memory

devices to store information in a dynamic system as it is very well known that biological

synapses store memories through multiple electrochemical processes. Therefore, we might be

able to take advantage of such a dynamic memory to further our advancement in the Artificial

1



Figure 1.1: Evolution of memory device from being a stone slab in 2500 B.C. to electronic
memory devices in modern era

Intelligence (AI) or neuromorphic engineering domain. In addition, when information is

stored in a dynamic system, it inherently adds a layer of protection to the stored memory

since it will not be enough just to know the state of the memory at any one particular

moment to extract the information. Rather one would need to know other details such as

the phase or initial condition of the system to decipher what is stored in them. This opens

up potential applications in the cryptographic security domain. In my thesis, I answer the

questions on how to design such a DAM and what optimal characteristics it needs to have for

it to demonstrate advantages over traditional memory devices in the AI and cryptographic

security domain.

1.1 Dynamic Memory in AI

There is a growing evidence from the field of neuroscience and neuroscience inspired AI

about the importance of implementing synapses as a complex high-dimensional dynamical

system [15, 46], as opposed to a simple and a static storage element, as depicted in standard

neural networks [113]. This dynamical systems viewpoint has been motivated by the hypothesis

that complex interactions between plethora of biochemical processes at a synapse produces

synaptic metaplasticity [3] and plays a key role in synaptic memory consolidation [80]. Both
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these phenomena have been observed in biological synapses [133, 132] where the synaptic

plasticity (or ease of update) can vary depending on age and task-specific usage that is

accumulated during the process of learning. In literature these long-term synaptic memory

consolidation dynamics have been captured using different analytical models with varying

degrees of complexity [15, 46, 109, 10, 44, 45]. One such model is the cascade model [15] which

has been shown to achieve the theoretically optimal memory consolidation characteristic for

benchmark random pattern experiments. However, the physical realization of cascade models

as described in [15] uses a complex coupling of dynamical states and diffusion dynamics, which

is difficult to mimic and scale in-silico. Similar optimal memory consolidation characteristics

have been reported in the context of continual learning in artificial neural networks (ANN)

where synapses that are found to be important for learning a specific task are consolidated

(or become rigid) [69, 26, 82, 136, 78, 8]. As a result, when learning a new task the synaptic

weight does not significantly deviate from the consolidated weights, hence, the network seeks

solutions that work well for as many tasks as possible. However, these synaptic models are

algorithmic in nature and it is not clear if the optimal consolidation characteristics can be

naturally implemented on the synaptic device in-silico. Also, it is not clear if the consolidation

properties of the physical synaptic device can be tuned to achieve different plasticity-stability

trade-offs and hence can overcome the relative disadvantages of the EWC models. In my

thesis, I investigate a simple differential memory device that operates using the physics of

Fowler-Nordheim (FN) quantum-mechanical tunneling and show that such an on-device

memory element can achieve tunable synaptic memory consolidation characteristics similar

to the algorithmic consolidation models.

Another unresolved challenge in the design of energy-efficient machine learning (ML) and

neuromorphic processors is the implementation of reliable and scalable synaptic weights or

memory [23]. Ideally, the synaptic weights should be “analog” and should be implemented

on a non-volatile, and yet easily modifiable storage device [130]. Furthermore, if these

memory elements are integrated in proximity with the computing circuits or processing

elements, then the resulting compute-in-memory (CIM) architecture [2, 128] has the potential

to mitigate the “memory wall” [110, 61, 29] which refers to the energy-efficiency bottleneck

in ML processors that arises due to repeated memory access. In most practical and scalable

implementations, the processing elements are implemented using CMOS circuits; as a result,

it is desirable that the analog synaptic weights be implemented using a CMOS-compatible

technology. In literature, several multi-level non-volatile memory devices have been pro-

posed for implementing analog synapses. These include two-terminal memristive devices
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such as resistive random-access memories (RRAM) [6], magnetic random-access memories

(MRAM) [47], Phase Change Memory (PCM) [22], Spin-Transfer Torque Magnetic RAM

(STT-MRAM) [68], Conductive Bridge RAM [63] or the three-terminal devices like the

floating-gate transistors [92], ferroelectric field-effect transistor-based memory (FeFET) [39],

Charge Trap Memory [129] and Electrochemical RAMs (ECRAM) [120]. In all of these

devices, the analog memory states are static in nature, where each of the states needs to be

separated from others by an energy barrier ∆E. For example, in RRAM devices the state of

the conductive filament between two electrodes determines the stored analog value, whereas

in charge-based devices like floating-gates or FeFET, the state of polarization determines

the analog value. To ensure non-volatile storage, it is critical that the energy-barrier ∆E

is chosen to be large enough to prevent memory leakage due to thermal-fluctuations and

other environmental disturbances. However, the height of the energy barrier ∆E also sets

the fundamental limit on the energy dissipated to switch between different analog storage

states. For example, switching the RRAM memory state requires 100 fJ per bit [131], whereas

STT-MRAM requires about 4.5pJ per bit [38]. A learning/training algorithm that adapts the

stored weights in quantized steps (. . . ,Wn−1,Wn,Wn+1, . . . ) so as to minimize a system-level

loss-function L(W ) has to dissipate minimum energy of (. . . ,∆En−1,∆En,∆En+1, . . . ) for

memory updates. Separating the static states by an energy-barrier also allows the learning

algorithm to precisely control the parameter retention time (parameter leakage) between

subsequent parameter updates, however, this mode of updates does not exploit the physics of

learning to optimize for energy-efficiency. In many energy-efficient ML training formulations,

and in particular analog ML systems, the loss-function L(W ) is represented by an equivalent

energy-functional of a physical ML system [76], and learning/training involves a natural

evolution of the system dynamics towards the minimum energy (optimal) state based on input

stimuli (or equivalently training data). Thus, the physics of the system evolution process

selects the minimum energy path toward the desired optimum. A synaptic element that is

matched to this system dynamics needs to be adaptive with respect to its memory retention

time which can then be traded-off with respect to the energy-dissipation per update. In my

thesis I present such a synaptic element that uses dynamical states (instead of static states)

to implement analog memory and is matched to the dynamics of ML training.
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1.2 Dynamic Memory in cryptographic security

Securing information exchange with internet-of-things (IoTs) is becoming ever more important

due to the proliferation of these platforms in domains ranging from infrastructure-IoTs [11]

to medical-IoTs [12]. In one study [1] it is claimed that around 98% of the IoT data traffic is

unencrypted and hence vulnerable to a data breach. Conventional data encryption techniques

like RSA are too computationally prohibitive to be universally implemented on these low-

resource platforms and reducing the computational complexity makes the approach vulnerable

to quantum attacks. For instance, it is estimated in literature that a quantum computer

with 8194 logical qubits using Shor’s Algorithm would be able to break the Rivest-Shamir-

Adleman(RSA)[108] system with a key size of 4096 bits in 229 hours while for Discrete log

problem with a key size of 521 bits it would take 55 hours for a quantum computer with 4719

logical qubits, again using the Shor’s Algorithm[95]. Symmetric key algorithms like Advanced

Encryption Standard (AES-256) can be customized for IoT platforms and are considered

to be secure against quantum attack [95], provided the security of the initial key-exchange

can be guaranteed. Quantum key distribution(QKD)[16] which is based on the principles of

quantum-mechanics, like quantum entanglement [41] or the no-cloning principle [50],[101]

could be used to guarantee the security of the initial key-exchange. However, one of the

major drawbacks of current state-of-the-art QKD systems is that they require dedicated

and specialized peer-to-peer communication links [124],[37],[72],[134]. Not only do these

links require careful maintenance and calibration to ensure quantum-coherence, but these

systems are also expensive and not portable. Hence, current QKD systems cannot be scaled

for internet-scale key distribution [62],[19] and communications involving lightweight IoT

devices with resource constraints will still be vulnerable to quantum attacks. Therefore, we

need a framework that does not require any modifications to the existing communication

infrastructure, can be scaled to a large number of IoTs, and is potentially secure against

quantum attacks.

One such approach could be silicon-based chipsets with the capability of integrating billions

of transistors and memory elements [32] which can be manufactured on a large scale and at a

low-cost [55]. If a physical feature on these chipsets could be exploited to implement a secure

one-way function, then a hardware-software approach could be used to support key distribution

over public channels. In the literature, a few hardware-software key exchange methods have

been proposed. In [36] a hardware-software key exchange technique was proposed that
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exploited correlations across chaotic wavepackets in classic optical communications channels.

However, the method still requires peer-to-peer connectivity between the users and hence has

similar scaling disadvantages as QKD methods. The hardware-software approach proposed

in [66] used chaos synchronization to distribute random keys over public channels. However,

due to the lack of reliable synchronization, this approach incurs significant errors during

decryption. Recently, Physical Unclonable Function(PUF) based hardware-based encryption

key distribution has been proposed. A specific variant of this technique, described in [14]

as Public Physical Unclonable Function(PPUF) has been used for public-key cryptography

and leverages the difficulty of accessing physical information stored on chipsets. However,

in PPUF the stored information is static in nature and hence is potentially vulnerable to

machine learning attacks [34, 86]. To overcome this limitation, in my thesis, I propose a novel

class of symmetric key distribution protocols that leverages basic security primitives offered

by low-cost, hardware chipsets containing millions of self-powered micro-dynamical systems.

The secret keys are stored in a dynamic manner and the encrypting keys are derived from the

temporal dynamics of the device which makes the keys immune to any potential side-channel

attacks, malicious tampering, or snooping.

Another aspect of securing wireless communications in internet-of-things (IoT) is the need

for both generation and synchronization of random numbers in real-time. Random-number-

generators (RNGs) are used for producing cryptographic keys which are basically a sequence

of random binary numbers. In addition to using a random number as a secure token,

for secure communications, there is also a need for synchronization of the tokens between

the communicating parties. While asymmetric key encryption could be used to avoid this

challenge, they are computationally too expensive to be universally implemented on these

resource-constrained devices. On the other hand, a symmetric key encryption scheme can be

customized for IoT platforms but requires a shared secret key [57]. Any static information

stored on the IoT, such as a SecureID, used as the shared secret will be vulnerable to a

machine learning type of attack [86]. Therefore, there is a need for a piece of dynamic

information embedded into these IoT devices that can be synchronized in real-time. One such

method for achieving this could be using a combination of a timing reference extracted from

a global-positioning-system (GPS) and a timing reference generated locally using phased-

locked oscillators. Unfortunately, in many IoT applications, this framework is impractical

due to resource constraints together with the fact that many IoT devices may not have

access to a GPS signal. To overcome this challenge, in my thesis, I designed an architecture
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of a synchronized-PRNG (SPRNG) that can be used for generating synchronized pseudo-

random binary sequences without the need for any GPS reference signal. The SPRNG uses a

combination of a fast, low-complexity LFSR-based PRNG and a slow but secure, synchronized

seed generator based on the self-powered dynamic memory elements [137, 91, 104].

1.3 Contributions

There are four significant contributions in this dissertation and they are summarized as

follows.

1: I designed a differential dynamic analog memory device that stores information on a self-

powered micro-dynamic system. I show that when the dynamic system operates using

the physics of Fowler-Nordheim (FN) quantum-mechanical tunneling, the fabricated

memory device (FNDAM) can achieve optimal memory consolidation characteristics

previously only shown in algorithmic consolidation models. This is the first work to

show on-device task-specific memory consolidation properties which outperforms other

algorithms when used in continual learning application. I have also characterized the

memory capacity of an artificial neural network based on FNDAM and showed that

on-device memory elements can achieve the theoretical limits.

2: I have investigated the energy-efficiency imbalance between the training and the inference

phases observed in neuromorphic learning systems. I have proposed that data retention

capacity can then be traded-off with respect to the energy dissipation per update to

reduce the energy requirement during the training phase of an artificial neural network.

I have shown that the dynamic nature of FNDAM can be exploited to match this

profile. I have also performed chip-in-the-loop training with the fabricated FNDAM

and have validated that energy usage during the training phase is much lower than

other conventional memory. I show that information can be stored by expending less

than 1pJ of energy per bit on FNDAM, a four orders of magnitude improvement.

3: I designed a novel class of symmetric key distribution protocols that leverages basic

security primitives offered by low-cost, hardware chipsets containing millions of syn-

chronized self-powered dynamic systems. I have derived encryption keys from the

temporal dynamics of a physical device and showed that the keys are immune to any
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potential side-channel attacks, malicious tampering, or snooping. I also show that the

derived key-strings can pass the randomness test as defined by the National Institute of

Standards and Technology (NIST) suite. The key-strings are then used in two SPoTKD

(Self-Powered Timer Key Distribution) protocols that exploit the timer’s dynamics as

one-way functions: (a) protocol 1 facilitates secure communications between a user

and a remote Server; and (b) protocol 2 facilitates secure communications between two

users. I have investigated the security of these protocols under the standard model and

against different adversarial attacks. Using Monte-Carlo simulations, I also investigate

the robustness of these protocols in the presence of real-world operating conditions and

propose error-correcting SPoTKD protocols to mitigate these noise-related artifacts.

4: I have designed a synchronized pseudo-random number generator (SPRNG) that uses

a combination of a fast, low-complexity linear-feedback-shift-register (LFSR) based

PRNG and a slow but secure, synchronized seed generator based on a self-powered

dynamic system that has been previously used as time-keeping devices. I have explored

protocols to periodically and securely generate random bits using the self-powered

timers for seeding the LFSR. I have shown that the time-varying random seeds extend

and break the LFSR periodic cycles, thus making it difficult for an attacker to predict

the random output or the random seed. Using the National Institute of Standards

and Technology (NIST) test suite I verify the randomness of the measured seeds using

an ensemble of self-powered timers fabricated in a standard CMOS process and the

random bit sequences generated by a software-seeded LFSR.

1.4 Organization of this Dissertation

The remaining chapters in this dissertation are organized as follows: Chapter 2 presents

the construction of the FNDAM along with the details of the fabricated array of FNDAM.

It contains the analytical derivation of consolidation properties of FNDAM which shows

FN-tunneling as the optimum leakage process. It shows simulated results that conform with

the derived analytical expressions. It also shows results validating the memory capacity of an

artificial neural network based on FNDAM. Finally, it shows the results of the application of

FNDAM in continual learning scenarios. The results in this chapter are based on [104].
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Chapter 3 builds up on the previous chapter and discusses the application of FNDAM

regarding the energy efficiency of an artificial neural network during the training phase. It

presents the argument for a tradeoff between memory retention and the energy barrier for

a memory update in the training phase. It characterizes the weight update of FNDAM in

response to various inputs. It includes details of a chip-in-the-loop training and corresponding

results showing energy-efficiency balance between the training and the inference phases.

Finally, it compares the energy usage of FNDAM with resistive random-access memories

(RRAM) for training a deep neural network. The results in this chapter are based on [91].

Chapter 4 presents the application of an FN-dynamical system in the cryptographic key

exchange domain. The framework for the key exchange protocol is first described. After that,

it discusses the unique features of an on-device FN-dynamical system i.e. security primitives

which are then exploited to design a key exchange protocol called Self- Powered Timer

Key Distribution (SPoTKD). It also contains the security analysis of SPoTKD under the

standard model. The performance of SPoTKD is then compared with other state-of-the-art

key exchange protocols. It also presents the noise robustness of the framework and explores

an error correction version of SPoTKD. The results in this chapter are based on [106].

Chapter 5 presents the concept of the synchronized pseudo-random number generator

(SPRNG). It shows the complete system-on-chip prototype array of synchronized self-powered

timers (SSPT) to generate dynamic random seeds for the LFSR. It also presents a secure seed

exchange protocol for the SPRNG system. Measured results for random seed generation and

synchronization from fabricated prototypes are shown. It also contains a statistical analysis

of the random number generated using the NIST test suite. The results in this chapter are

based on [105].

Chapter 6 presents a summary of this research, along with key contributions of this

dissertation and potential directions for future research.
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Chapter 2

Synaptic Memory Consolidation using

FN-tunneling

This chapter introduces the concept of differential dynamic analog memory based on FN-

tunneling along with the topic of memory consolidation. It explores how to achieve on-device

synaptic memory consolidation using FNDAM. Since FNDAM was used primarily as a

synaptic memory element in this chapter, it is thus being referred to as FN-synapse for the

rest of the chapter. This chapter has supplemental information which is included in Appendix

A. This chapter is based on the published work [104].

2.1 Introduction

There is a growing evidence from the field of neuroscience and neuroscience-inspired AI about

the importance of implementing synapses as a complex high-dimensional dynamical system [15,

46], as opposed to a simple and static storage element, as depicted in standard neural

networks [113]. This dynamical systems viewpoint has been motivated by the hypothesis that

complex interactions between the plethora of biochemical processes at a synapse (illustrated

in Fig. 2.1(a)) produces synaptic metaplasticity [3] and plays a key role in synaptic memory

consolidation [80]. Both these phenomena have been observed in biological synapses [133, 132]

where the synaptic plasticity (or ease of update) can vary depending on age and task-specific

usage that is accumulated during the process of learning. In literature, these long-term

synaptic memory consolidation dynamics have been captured using different analytical models

with varying degrees of complexity [15, 46, 109, 10, 44, 45]. One such model is the cascade

model [15] which has been shown to achieve the theoretically optimal memory consolidation

characteristic for benchmark random pattern experiments. However, the physical realization

of cascade models as described in [15] uses a complex coupling of dynamical states and

10



diffusion dynamics (an example illustrated in Fig. 2.1(b) using a reservoir model), which is

difficult to mimic and scale in-silico. Similar optimal memory consolidation characteristics

have been reported in the context of continual learning in artificial neural networks (ANN)

where synapses that are found to be important for learning a specific task are consolidated

(or become rigid) [69, 26, 82, 136, 78, 8]. As a result, when learning a new task the synaptic

weight does not significantly deviate from the consolidated weights, hence, the network seeks

solutions that work well for as many tasks as possible. However, these synaptic models are

algorithmic in nature and it is not clear if the optimal consolidation characteristics can be

naturally implemented on the synaptic device in-silico. Also, it is not clear if the consolidation

properties of the physical synaptic device can be tuned to achieve different plasticity-stability

trade-offs and hence can overcome the relative disadvantages of the EWC models. In this work,

we report that a simple differential device that operates using the physics of Fowler-Nordheim

(FN) quantum-mechanical tunneling can achieve tunable synaptic memory consolidation

characteristics similar to the algorithmic consolidation models. The operation of the synaptic

device, referred to in this chapter as the FN-synapse, can be understood using a reservoir

model as shown in Fig. 2.1 (c)). Two reservoirs with fluid levels W+ and W− are coupled to

each other using a sliding barrier X. The barrier is used to control the fluid flow from the

respective reservoirs into an external medium. The respective flows, which are modeled by

functions J(W+) and J(W−), at time-instant t are modulated by the position of the sliding

barrier X(t) and the level of fluid in the external reservoir m(t). In this reservoir model, the

synaptic weight is stored as Wd =
1
2
(W+ −W−) whereas Wc =

1
2
(W+ +W−) serves as an

indicator of synaptic usage with respect to time.

In the Methods section we show that for a synapse based on a general differential reservoir

model (without making assumptions on the nature of the flow function J(.)) the synaptic

weight Wd evolves in response to the external input X(t) according to the coupled differential

equation

dWd

dt
= −r(t)Wd +X(t) (2.1)

where

r(t) =
d2Wc

dt2

(
dWc

dt

)−1

(2.2)

11



Wc

Wd

t0
t1
t2

t0

t1

t2

J(W+) J(W-)

X(t)

Wd

Wc

t1
t1

t2
t2

t0 t0

EC

EF

EC

EF

FN Barrier FN Barrier

Floating 
Gate

Floating 
Gate

electron
gas

electron
gas

g12 g23
u1

u2 u3

5
0
0
 μ

m

1
0
0
 μ

m

A B C

DEF

W+

W-

W+ W-

m(t)

J(W+) J(W -)

m(t)

Figure 2.1: :(A) An illustration of a biological synapse with different coupled biochemical
processes that determine synaptic dynamics (B) physical realization of the cascade model
reported in [15] that captures the consolidation dynamics using fluid in reservoirs uk that
are coupled through parameters gkj. (C) illustration of the FN-synapse dynamics using
a differential reservoir model and its state at time-instants t0,t1, and t2;(D) Energy-band
diagram to show the implementation of the reservoir model in (C) using the physics of
Fowler-Nordheim quantum-mechanical tunneling where a single synaptic element (as shown
in (E)) which stores the weight Wd as the differential charge stored between each tunneling
junction i.e. Wd =

W+−W−

2
and the common-mode tunneling voltage Wc as the average of

the individual charges i.e. Wc = W++W−

2
and (E) micrograph of a single FN-synapse;(F)

Micrograph of an array of FN-synaptic devices fabricated in a standard silicon process.

is a time-varying decay function that models the dynamics of the synaptic plasticity as a

function of the history of synaptic activity (or its usage). The usage parameter Wc evolves

according to

dWc

dt
= −J (Wc) +m(t) (2.3)

based on the functions J(.) and m(t). Equations 2.1- 2.3 show that the weight Wd update

does not directly depend on the non-linear function J(.) but implicitly through the common-

mode Wc. Furthermore, equation 2.1 conforms to the weight update equation reported in

the EWC model [69] where it has been shown that if r(t) varies according to the network

Fisher information metric, then the strength of a stored pattern or memory (typically defined
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in terms of signal-to-noise ratio) decays at an optimal rate of 1/
√
t when the synaptic

network is subjected to random, uncorrelated memory patterns. In Methods, we show that

if the objective is to maximize the operational lifetime of the synapse, then equating the

time-evolution profile in equation 2.2 to r(t) ≈ O(1/t) [69] leads to an optimal J(.) of the

form J(V ) ∝ V 2 exp (−β/V ) where β is a constant. The expression for J(V ) matches the

expression for a Fowler-Nordheim (FN) quantum-mechanical tunneling current [79] indicating

that optimal synaptic memory consolidation could be achieved on a physical device operating

on the physics of FN quantum-tunneling.

To verify on-device optimal consolidation dynamics we fabricated an array of FN-synapses and

Fig. 2.1 (d)-(e) shows the micrograph of the fabricated prototype. In the Methods Section,

we show the mapping of the differential reservoir model using the physical variables associated

with FN quantum tunneling and Fig. 2.1(f) shows the mapping using an energy-band diagram.

Similar to our previous works [137, 138, 106], the tunneling junctions have been implemented

using polysilicon, silicon-di-oxide, and n-well layers, where the silicon-di-oxide forms the

FN-tunneling barrier for electrons to leak out from the n-well onto a polysilicon layer. The

polysilicon layer forms a floating-gate where the initial charge can be programmed using

a combination of hot-electron injection or quantum-tunneling [91, 90].The synaptic weight

is stored as a differential voltage Wd = 1
2
(W+ − W−) across two floating-gates as shown

in Fig. 2.1 (f). The voltages on the floating-gates W+ and W− at any instant of time are

modified by the differential signals ±1
2
X(t) that are coupled onto the floating-gates. The

dynamics for updating W+ and W− are determined by the respective tunneling currents J(.)

which discharge the floating-gates. In the Appendix A Fig. A.1 we describe the complete

equivalent circuit for the FN-synapse along with the read-out mechanism used in this work to

measure Wd. The presence of additional coupling capacitors in Fig. S1 provides a mechanism

to inject a common-mode modulation signal m(t) into the FN-synapse. We will show in

the results section that m(t) can be used to tune the memory consolidation characteristics

of the FN-synapse array to achieve memory capacity similar to or better than the cascade

consolidation models (with different degrees of complexities) or the task-specific synaptic

consolidation corresponding to the EWC model.
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Figure 2.2: : (A) A random set of potentiation and depression pulses of equal magnitude and
duration applied to the FN-synapse leading to (B) bidirectional evolution of weight (Wd) and
(C) the corresponding trajectory followed by the common-mode tunneling node (Wc).

2.2 Results

2.2.1 FN-synapse Characterization

The first set of experiments was designed to understand the metaplasticity exhibited by FN-

synapses and how the synaptic weight and usage change in response to external stimulation.

The charge stored on the floating-gates in the FN-synapse was first initialized according

to the procedure described in the Methods Section and in the Appendix A. The tunneling

barrier thickness in FN-synapse prototype shown in Fig. 2.1 (d)-(e) was chosen to be greater

than 12nm which makes the probability of direct-tunneling of electrons across the barrier to

be negligible. The probability of FN-tunneling of electrons across the barrier (as shown in

Fig. 2.1 (f)) is reduced to be negligible by lowering the electric potential of the tunneling

14



nodes W+ and W− (see Fig. A.1 in the Appendix A) with respect to the reference ground to

be less than 5V. In this state, the FN-synapse behaves as a standard non-volatile memory

storing a weight proportional to Wd = W+ −W−. To increase the magnitude of the stored

weight a differential input pulse ±1
2
X is applied across the capacitors that are coupled to

the floating-gates (see Fig S1). The electric potential of the floating-gate W− is increased

beyond 7.5V where the FN-tunneling current J(W−) is significant. At the same time the

electric potential of the floating-gate W+ is also pushed higher but W− > W+ such that the

FN-tunneling currents J(W+) < J(W−). As a result, the W− node discharges at a rate that

is faster than the W+ node. After the input pulse is removed, the potential of both W− and

W+ are pulled below 5V and hence the FN-synapse returns to its non-volatile state.

Fig. 2.2 (a)-(c) shows the measured responses which show that an FN-synapse can store

both the weight and the usage history. When a series of potentiation and depression pulses

of equal magnitude and duration is applied to the FN-synapse, as shown in Fig. 2.2 (a),

the weight stored Wd evolves bidirectionally (like a random walk) due to the input pulses

(see Fig. 2.2 (b)). Meanwhile, the common-mode potential Wc decreases monotonically with

the number of input pulses irrespective of the polarity of the input, as shown in Fig. 2.2

(c). Therefore, Wc reliably tracks the usage history of the FN-synapse whereas Wd stores

the weight of the synapse. Fig. 2.3 (a) and (b) show the measured weight update ∆Wd in

response to different magnitudes and duration of the input pulses. For this experiment the

common-mode Wc =
1
2
(W+ + W−) is held fixed. In Fig. 2.3 (a) we can observe that for

a fixed magnitude of input voltage pulses (= 4V) ∆Wd changes linearly with pulse width.

Whereas Fig. 2.3 (b) shows that the updated ∆Wd changes exponentially with respect to the

magnitude of the input pulses (duration = 100ms). Thus, the results show that pulse width

modulation or pulse density modulation provides more accurate control over the synaptic

updates. Furthermore, in regard to energy dissipation per synaptic update pulse width

modulation is also more attractive than using pulse magnitude variation. The energy required

to write each time on FN-synapse can be estimated by measuring the energy drawn from the

differential input source X in Fig. S1 to charge the coupling capacitor Cc and is given by

Ewrite =
1

2
Cc(X)2 (2.4)

This means that using a smaller pulse magnitude accompanied by longer pulse width is

preferable to the other way around in the context of write energy dissipation for the same
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A B C

Figure 2.3: : (A) Dependence of change in magnitude of weight with change in pulse-
width which follows a linear trajectory defined by y = mx + c (where m = 0.005136 and
c = −6.227× 10−5). (B) Dependence on pulse magnitude of the input pulse which follows
an exponential trajectory defined by y = c × exp(ax + b) + d (where a = 1, b = −6.611,
c = 0.009959 and d = −0.0002142). (C) Change in the magnitude of successive weight
updates (∆Wd) corresponding to a repeated stimulus.

desired change in weight. However, this would come at a cost of slower writing speed.

Therefore, a trade-off exists. For the fabricated FN-synapse prototype, the magnitude of the

coupling capacitor Cc is approximately 200f F which leads to 400f J for an input voltage

pulse change of 2V across Cc. For the differential input voltage pulse of 4V, a total of 800f

J of energy was dissipated for each potentiation and depression of the synaptic weights.

When the common-mode Wc is not held fixed, irrespective of whether the weight Wd is

increased or decreased (depending on the polarity of the input signal) the common-mode

always decreases. Thus, Wc serve as an indicator of the usage of the synapse. Fig. 2.3 (c)

shows the metaplasticity exhibited by an FN-synapse where we measured ∆Wd as a function

of usage by applying successive potentiation input pulses of constant magnitude (4V) and

width (100ms). Fig. 2.3 (c) shows that when the synapse is modulated with the same

excitation successively, the amount of weight update decreases monotonically with increasing

usage, similar to the response illustrated in Fig. 2.1 (c) and (f).
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Figure 2.4: : (A) Set of 10×10 randomized noise inputs fed to a network of 100 FN-synapses
initialized to store an image of the number 0 and (B) the corresponding memory evolution.
Comparison of (C) signal strength, (D) noise strength and (E) SNR for a network size of 100
synapses measured using the fabricated FN-Synapse array (shown in Fig. 2.1(F)) over 25 (for
γ1) and 15 (for γ2) Monte-Carlo runs. (F) SNR comparison of the γ1 and γ2 models with the
analytical model over 1000 Monte Carlo simulations. The legends associated with the plots
are specified as (γ, Number of Monte-Carlo runs).

2.2.2 FN-synapse Network Capacity and Memory lifetime without

plasticity modulation

The next set of experiments was designed to understand the FN-synaptic memory consolidation

characteristics when the array is excited using a random binary input pattern (potentiation

or depression pulses). This type of benchmark experiment is used extensively in memory

consolidation studies [15, 69] since analytical solutions exist for limiting cases that can

be used to validate and compare the experimental results. A network comprising of N

FN-synapses is first initialized to store zero weights (or equivalently W− = W+). New

memories were presented as random binary patterns (N dimensional random binary vector)

that are applied to the N FN-synapses through either potentiation or depression pulses.

Each synaptic element was provided with balanced input i.e. an equal number of potentiation
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and depression pulses. The goal of this experiment is to track the strength of a memory

that is imprinted on this array in the presence of repeated new memory patterns. This is

illustrated in Fig 2.4 (a) and (b) where an initial input pattern (a 2D image of the number

’0’ comprising of 10x10 pixels) is written on a memory array. The array is then subjected to

images of noise patterns that are statistically uncorrelated to the initial input pattern. It can

be envisioned that as additional new patterns are written to the same array, the strength of

a specific memory (of the image ’0’) will degrade. Similar to the previous studies [15, 69] we

quantify this degradation in terms of signal-to-noise ratio (SNR). If n denotes the number of

new memory patterns that have been applied to an empty FN-synapse array (initial weight

stored on the network is zero), then the Methods Section shows that for the pth update the

retrieval memory signal S(n, p) power, the noise ν(n, p) power and the SNR(n, p) can be

expressed analytically as

S2(n, p) =
1

(n+ γ)2
; ν2(n, p) =

n

N(n+ γ)2
; SNR(n, p) =

√
N

n
. (2.5)

where γ > 0 is a device parameter that depends on the initialization condition, material

properties, and duration of the input stimuli.

Equation 2.5 shows that the initial SNR is
√
N and the SNR falls off according to a power-law

decay with a slope of 1√
n
. Like previous consolidation studies [15] we will assume that a

specific memory pattern is retained as long as its SNR exceeds a predetermined threshold

(unity in this experiment). Therefore, according to equations 2.5 the network capacity and

memory lifetime for FN-synapse scales linearly with the size of the network N when the

initial weight across all synapses is zero. We verified the analytical expressions in equation 2.5

for a network size of N = 100 using results measured from the FN-synapse chipset. Details

of the hardware experiment are provided in the Methods. Fig. 2.4 (c), (d), and (e) shows the

retrieval signal, noise, and SNR obtained from the fabricated FN-synapse network for two

different values of γ. We observe that the SNR obtained from the hardware results conforms

to the analytical expressions relatively well. The slight differences can be attributed to the

Monte-Carlo simulation artifacts (only 25 and 15 iterations were carried out). In Fig. S3 we

show verification of these analytic expressions using a behavioral model of the FN-synapse

which mimics the hardware prototype with great accuracy (as shown in Fig. S2). Details on

the derivation of FN-synapse model are provided in the Methods Section. The simulated

results in Fig. 2.4 (c), (d), and (e) verify that results from the software model can accurately
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track the hardware FN-synapse measurements for both values of γ when subjected to the

same stimuli. Therefore, FN-synapse and its behavioral model can be used interchangeably.

The results in Fig. 2.4 (f) also show that when the number of iterations on the Monte-Carlo

simulation is increased (1000 iterations), the simulated SNR closely approximates the analytic

expression. This verifies that hardware FN-synapse is also capable of exactly matching the

optimal analytic consolidation characteristics. Fig. 2.3 (c) shows the measured evolution

of weights stored in the FN-synapse where initially the weights grow quickly but after a

certain number of updates settle to a steady value irrespective of new updates. This implies

that the synapses have become rigid with an increase in their usage. This type of memory

consolidation is also observed in EWC models which have been used for continual learning.

However, note that, unlike EWC models that need to store and update some measure of

Fisher information, whereas, here the physics of the FN-synapse device itself can achieve

similar memory consolidation without any additional computation.

2.2.3 Plasticity modulation of FN-Synapse Models

In our next set of experiments, we verified that the plasticity of FN-synapses can be adjusted

to mimic the consolidation properties of both EWC and steady-state models (such as cascade

models). While the EWC model only allows for the retention of old memories, steady-

state/cascade models allow for both memory retention and forgetting. As a result, these

models avoid blackout catastrophe whereas an EWC network is unable to retrieve any previous

memories or store new experiences as the network approaches its capacity. Steady-state

models allow the network to gracefully forget old memories and continue to remember new

experiences indefinitely. For an FN-synapse network, a coupling capacitor in each synapse

(shown in Fig. S1) which is driven by a global voltage signal Vmod(t) (which produces

m(t) = dVmod(t)
dt

) can control the plasticity of the FN-synapse to mimic the characteristics of a

steady-state model. Details of the modified FN-synapse achieving a steady-state response

are provided in the Methods Section. To understand and compare the blackout catastrophe

in FN-synapse models with a steady-state model e.g. the cascade model we define the

metric #patterns.retained as the total number of memory patterns whose SNR exceeds 1 at

any given point of time. The #patterns.retained for FN-synapse network with modulation

profiles m0(t), m1(t), m2(t), m3(t) and m4(t) of size N = 1000 is shown in Fig. 2.5 (a)

together with those for cascade models of different levels of complexity [15] (denoted by
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c = 1, .., 5).In order to calculate the #patterns.retained the SNR resulting from each stimulus

was calculated and tracked at every observation to determine the number of such stimuli

that had a corresponding SNR greater than unity. The profiles of m1(t), m2(t) and m3(t)

are produced by changing Vmod(t) at each update as three quarter, half and quarter of the

average of ∆Wd across all the synapses during the latest update respectively while m0(t)

is achieved through a constant voltage signal Vmod(t). We can observe in Fig. 2.5 (a) that

the FN-synapse network with m0(t) forgets all observed patterns in addition to not forming

any new memories as #patterns.retained goes to zero as the network capacity is reached

starting from an empty network. Whereas in the case for FN-synapse under m1(t) and m2(t)

modulation profile the #patterns.retained reaches a finite value similar to that of the cascade

models. This indicates that the FN-synapse network when subjected to plasticity modulation

profiles continues to form new memory while gracefully forgetting the old ones. For the

m3(t) modulation profile the network is slowly evolving and has yet to reach the steady state

condition within 2000th update. The FN-synapse network under the m4(t) modulation profile,

which switches between m0(t) and m1(t) periodically, is in an oscillatory steady-state with

the same periodicity as the modulation profile itself. However, note that the network does not

suffer from blackout catastrophe and has a variable capacity. This shows that the capacity of

the FN-synapse network can also be tuned to the specificity of different applications. From

the figure, we also observe that the steady state network capacity for m2(t) modulation

profile is higher than that of cascade models. Note here that network capacity for cascade

models may be increased by increasing the complexities of the synaptic model. Nevertheless,

we find that network capacity for FN-synapse is comparable to cascade models of moderate

complexities.

In order to understand the plasticity modulation further, we investigated the SNR for patterns

introduced to a non-empty network. For this experiment, we tracked the 1000th pattern

observed by the network of N = 1000 synapse. Fig 2.5 (b) shows the SNR of this pattern

under m1(t) − m4(t) modulation profile along with cascade models of various complexity.

Note that the x-axis now represents the age of the stimulus, i.e. the number of patterns

observed after the tracked pattern. For the modulation profile m1(t) the initial SNR is large,

comparable to that of cascade models, but the SNR falls off quickly indicating high plasticity.

Whereas for modulation profile m2(t) and m3(t) the initial SNR is smaller than m1(t) but it

falls off at a much later time similar to cascade models with high complexities. These SNR

profiles for FN-synapse model with modulation m1(t)−m3(t) are similar to that of a constant

weight decay synaptic model used in deep learning neural network as a regularization method.
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Figure 2.5: : Comparison of (A) no. of patterns retained by networks composed of 1000
synapses following different synaptic models when exposed to 2000 patterns and (B) steady-
state SNR of the 1000th update (p = 1000) of networks consisting of 1000 synapses with
various synaptic models when exposed to subsequent updates.

On the other hand, the SNR profile for the 1000th pattern under m4(t) modulation has both

high initial SNR and a large lifetime. However, from Fig 2.5 (b) we observe that the network

is in an oscillatory state which indicates that this profile is specific to the 1000th pattern,

and if we tracked any other pattern the SNR profile would be different. This is not the case

for the cascade models which would consistently have similar SNR profiles irrespective of

the pattern that is tracked. Nevertheless, this SNR profile for the FN-synapse model would

repeat itself corresponding to the periodicity of the modulation profile. This suggests that

the amount of plasticity and memory lifetime for the FN-synapse model is readily tunable

and depends on the amount of modulation provided to the network. We have also verified

that the synaptic strength of FN-synapse is bounded similarly to that of the cascade models.

This can be observed in Fig. S11 which shows that the variance in retrieval signal (Noise)

of an FN-synapse network with both constant modulation and time-varying modulations

remains bounded. Furthermore, Fig. S12 shows that plasticity modulation indeed introduces

a forgetting mechanism as the SNR for different modulation profiles (when tracked from an

empty network) starts to fall off earlier than the one without modulation. In addition to

different modulation profiles, the plasticity-lifetime tradeoff of the FN-synapse model can

also be achieved by varying the parameter γ as shown in Fig S13. Therefore, our synaptic
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models can exhibit memory consolidation properties similar to both EWC and steady-state

models while being physically realizable and scalable for large networks.

2.2.4 Continual Learning using FN-synapse

The next set of experiments was designed to evaluate the performance of FN-synapse neural

network for a benchmark continual learning task. A fully-connected neural network with

two hidden layers was trained sequentially on multiple supervised learning tasks. Details

of the neural network architecture and training are given in the Methods Section and in

Appendix A. The network was trained on each task for a fixed number of epochs and after

the completion of its training on a particular task tn, the dataset from tn was not used for

the successive task tn+1.

The aforementioned tasks were constructed from the Modified National Institute of Standards

and Technology (MNIST) dataset, to address the problem of classifying handwritten digits

in accordance with schemes popularly used in several continual-learning literature [58]. Also

known as incremental domain learning using split-MNIST dataset, each task of this continual

learning benchmark dictates the neural network to be trained as a binary classifier which

distinguishes between a set of two hand-written digits, i.e. the network is first trained to

distinguish between the set [0, 1] as t1 and is then trained to distinguish between [2, 3] in t2,

[4, 5] in t3, [6, 7] in t4 and [8, 9] in t5. Thus, the network acts as an even-odd number classifier

during every task.

Fig. S7 (a)-(e) compares the task-wise accuracy of networks trained with different learning

and consolidation approaches. Note here that the absence of a data-point corresponding to a

particular approach indicates that the accuracy obtained is below 50%. All the approaches

taken into consideration perform equally well at learning t1 as illustrated in Fig. S7 (a).

However, as the networks learn t2 (see Fig. S7 (b)), the performance of both EWC [69] and

online EWC [82] degrade for task t1 as do the networks with conventional memory using

SGD and ADAM. The FN-synapse based networks on the other hand retain the accuracy of

task t1 far better in comparison. This advantage in retention comes at the cost of learning

t2 marginally poorer than others. This trend of retaining the older memories or tasks far

better than other approaches continues in successive tasks. Particularly, if we consider the

retention of t1 when the networks are trained on t3 (see Fig. S7 (c)), it can be observed
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Figure 2.6: : (A) Overall average accuracy comparison of SGD and ADAM with FN-synapse,
ADAM with EWC and Online EWC, SGD and ADAM with conventional memory. (B)
Distribution of the usage profile of weights in the output layer and the input layer of the
FN-synapse neural network. Overall Average Accuracy comparison of incremental-domain
learning scenarios on the Permuted MNIST dataset using (C)ADAM with EWC, ADAM with
FN-Synapse and ADAM with conventional memory and (D)ADAGRAD with conventional
memory and ADAGRAD with FN-synapse

that it is only the FN-synapse based networks that retain t1 while others fall below the 50%

threshold. Similar trends can be observed in Fig. S7 (d) and (e). There are a few instances

during the five tasks where the EWC variants and SGD with conventional memory marginally

outperform or match the FN-synapse in terms of retention. However, if the overall average

accuracy of all these approaches is compared (see Fig. 2.5 (c)), it is clearly evident that both

the FN-synapse networks significantly outperform the others. It is also worth noting here

that even when a network equipped with FN-synapse is trained using a computationally-

inexpensive optimizer such as SGD, it shows remarkably superior performance than highly

computationally-expensive approaches such as ADAM with conventional memory and ADAM

with EWC variants.
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The only drawback of the FN-synapse based approach is that its ability to learn the present

task slightly degrades with every new task. This phenomenon results from the FN-synapses

becoming more rigid and can be seen in Fig. 2.5 (d) which shows the evolution of plasticity

of weights in the output and input layer of the network with successive tasks with respect to

Wc. As mentioned earlier, Wc keeps track of the importance of each weight as a function

of the number of times it is used. The higher the Wc of a particular weight, the less it has

been used and therefore, the more plastic it is and sensitive to change. On the other hand, a

more rigid and frequently used weight has a lower value of Wc. Suppose the output layer

is considered from Fig. 2.5 (d). In that case, it can be observed that with each successive

task the Wc of the weights of the network collectively reduces, leading to more consolidation

and consequently leaving the network with fewer plastic synapses to learn a new task. In

comparison, the majority of the weights in the input layer remain relatively more plastic (or

less spread out) owing to the redundancies in the network arising from the vanishing gradient

problem (see Discussion for more details). In Fig. S5 we show that the ability of the network

to learn or forget new tasks is a function of the initial plasticity of the FN-synapses and can

be readily adjusted.

In addition to the split-MNIST benchmark, the performance of FN-synapse based network

was compared with EWC for the permuted MNIST benchmark. These incremental-domain

learning experiments were carried out by randomly permuting the order of pixels of the

images in the MNIST dataset in accordance with [58] to create new tasks. The overall

average accuracy for 10 Monte Carlo simulations when using ADAM as the optimizer with

EWC, FN-Synapse and conventional memory is depicted in Fig. 2.6 (c). We can observe

from Fig 2.6 (c) that despite not being as retentive as EWC in this particular scenario, the

network equipped with FN-synapse as the memory element performs better than the network

without any memory consolidation mechanism, thereby exhibiting continual learning ability.

Furthermore, when compared to a network with traditional memory employing an optimizer

like ADAGRAD, which has been shown to be suitable for this learning scenario [58], the

FN-synapse network with ADAGRAD exhibits marginal improvements without any drop in

performance with respect to the former as shown in Fig. 2.6 (d).
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2.3 Materials and Methods

The main methods are described in this section while Appendix A includes additional details,

supporting information, and figures.

2.3.1 Weight Update For Differential Synaptic Model

Consider the differential synaptic model described by Fig. 2.1 (c) where the evolution of two

dynamical systems with state variables W+ and W− is governed by

dW+

dt
= −J(W+) +

1

2
X(t) +

1

2
m(t) (2.6)

dW−

dt
= −J(W−)− 1

2
X(t) +

1

2
m(t) (2.7)

where J(.) is an arbitrary function of the state variables, +1
2
X(t) or −1

2
X(t) are differential

time varying inputs and m(t) is a common mode modulation input. In this differential

architecture, we define the weight parameter Wd as Wd =
1
2
(W+ −W−) which represents the

memory and the common-mode parameter Wc as Wc =
1
2
(W+ +W−) which represents the

usage of the synapse. Applying this definition to 2.6 and 2.7, we obtain:

d(Wc +Wd)

dt
= −J(Wc +Wd) +

1

2
X(t) +

1

2
m(t) (2.8)

d(Wc −Wd)

dt
= −J(Wc −Wd)−

1

2
X(t) +

1

2
m(t) (2.9)

Now, adding and subtracting 2.8 and 2.9, we get:

dWc

dt
= −

(
J(Wc +Wd) + J(Wc −Wd)

2

)
+m(t) (2.10)

dWd

dt
= −

(
J(Wc +Wd)− J(Wc −Wd)

2

)
+X(t) (2.11)

Assuming that Wc >> Wd, applying Taylor series expansion on 2.10 and 2.11 leads to
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dWc

dt
= −J (Wc) +m(t) (2.12)

dWd

dt
= −J ′ (Wc)Wd +X(t). (2.13)

This means that the modulation input impacts the usage of the synapse. Therefore, the

plasticity of the synapse can be tuned using m(t) when needed. Now we first look into

the trivial case when a constant modulation input is provided, i.e. m(t) = c where c is an

arbitrary constant. In this scenario the plasticity of the synapse is solely dependent on the

usage of the synapse as m(t) does not change with time. Substituting the derivative of Wc

from 2.12, when m(t) is constant, into 2.13, the rate of change in Wd can be formulated as:

dWd

dt
= −

[
d2Wc

dt2

(
dWc

dt

)−1
]
Wd +X(t) (2.14)

Please refer to the Appendix A for detailed derivation. Equation 2.14 shows that the change

in weight ∆Wd is directly proportional to the curvature of usage while being inversely

proportional to the rate of usage.

2.3.2 Optimal Usage Profile

We define the decaying term in 2.14 as

r(t) = −

[
d2Wc

dt2

(
dWc

dt

)−1
]

(2.15)

Now, comparing the weight update equation in 2.14 to the weight update equation for EWC

in the balanced input scenario, the decay term has the following dependency with time for

avoiding catastrophic forgetting.

r(t) = O

(
1

t

)
(2.16)

Now, the usage of a synapse is always monotonically increasing and since Wc represents the

usage, it too needs to be monotonic. At the same time, Wc also needs to be bounded, therefore
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Wc has to monotonically decrease with increasing usage while satisfying the relationship in

equation 2.16. It can be shown that equation 2.16 and 2.15 can be satisfied by any dynamical

system of the form

Wc =
1

f(log t)
(2.17)

where f(.) ≥ 0 is any monotonic function. Substituting equation 2.17 in 2.15 we obtain the

corresponding usage profile as follows

r(t) =
1

t

(
1 +

2f ′(log t)

log t
− f ′′(log t)

f ′(log t)

)
(2.18)

where f ′(log t) and f ′′(log t) are derivatives of f(log t) with respect to log t. While several

choices of f(.) are possible, the simplest usage profile can be expressed as

Wc =
β

log(t)
(2.19)

where β is an arbitrary constant. The corresponding non-linear function in this model is

determined by substituting equation 2.19 in equation 2.12 to obtain

J (Wc) =
1

β
W 2

c exp

(
− β

Wc

)
. (2.20)

The expression for J(.) in equation 2.20 bears similarity with the form of FN quantum-

tunneling current [79] and Fig. 2.1(d)-(f) shows the realization of equations 2.6 and 2.7 using

FN tunneling junctions.

2.3.3 Achieving Optimal Usage Profile on FN-synapse

For the differential FN tunneling junctions shown in Fig. 2.1(f) and its equivalent circuit

shown in the Fig. S1, the dynamical systems model is given by

CT
dW+

dt
= −J(W+) +

Cc

2

dvin
dt

(2.21)
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CT
dW−

dt
= −J(W−)− Cc

2

dvin
dt

(2.22)

where W+,W− are the tunneling junction potentials, Cc is the input coupling capacitance,

vin(t) is the input voltage to the coupling capacitance and CT = Cc + Cfg is the total

capacitance comprising of the coupling capacitance and the floating-gate capacitance Cfg.

J(.) are the FN tunneling currents given by

J
(
W+

)
=

(
k1
k2

)(
W+

)2
exp

(
− k2
W+

)
(2.23)

J
(
W−) =

(
k1
k2

)(
W−)2 exp(− k2

W−

)
(2.24)

where k1 and k2 are device-specific and fabrication-specific parameters that remain relatively

constant under isothermal conditions. Following the derivations in the previous sections and

the expression in equation 2.19 leads to a common-mode voltage Wc profile as

Wc(t) =
k2

log(k1t+ k0)
(2.25)

where k0 = exp
(

k2
Wc0

)
and Wc0 refers to the initial voltage at the floating-gate.

2.3.4 FN-synpase Network SNR Estimation for Random Pattern

Experiment

Upon following the same procedure used in previous sections, the weight update equation for

an FN-synapse using equation 2.21 and equation 2.22 can be expressed as

CT
dWd

dt
= −

[
d2Wc

dt2

(
dWc

dt

)−1
]
Wd + Cc

dvin
dt

(2.26)

We designed the floating-gate potential and the input voltage pulses such that the FN-dynamics

is only active when there is a memory update. Therefore, the dynamics in equation 2.26

evolve in a discrete manner with respect to the number of modulations. Assuming CT = Cc
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we formulate a discretized version of the weight update dynamics from equation 2.26 in

accordance with the floating-gate potential profile of the device expressed in equation 2.25 as

follows

△Wd(n)

△t
= −k1

(
1 +

2

log (k1△tn+ k0)

)(
1

k1△tn+ k0

)
Wd(n− 1)

+
△vin(n)

△t

(2.27)

Wd(n) =

[
1−

(
1 +

2

log (k1△tn+ k0)

)(
1

n+ k0
k1△t

)]
Wd(n− 1)

+ (vin(n)− vin(n− 1))

(2.28)

where n represents the number of patterns observed and ∆t is the duration of the input pulse.

Let us denote the weight decay term as

α(n) =

[
1−

(
1 +

2

log (k1△tn+ k0)

)(
1

n+ k0
k1△t

)]
(2.29)

Thus, we obtain the weight update equation with respect to the number of patterns observed

as

Wd(n) = α(n)Wd(n− 1) + (vin(n)− vin(n− 1)) (2.30)

When we start from an empty network i.e. Wd(0) = 0, the memory update can be expressed

as a weighted sum over the past input as

Wd(n) =
n−2∑
i=1

{
(α(i+ 1)− 1)

(
n∏

j=i+2

α(j)

)
vin(i)

}
+ (α(n)− 1)vin(n− 1) + vin(n)

(2.31)

We define the retrieval signal and the noise associated with it as per the definition in [15].

For a network comprising of N synapses, each weight in the network is indexed as Wd(a, n)
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where a = 1, ..., N . Similarly, the input applied to the ath synapse after n patterns is vin(a, n).

Then, the signal strength for the pth update (where p < n) introduced to the initially empty

network tracked after n patterns can be formulated as:

S(n, p) =
1

N

〈
N∑
a=1

Wd(a, n)vin(a, p)

〉
(2.32)

where angle brackets denote averaging over the ensemble of all of the input patterns seen by

the network. If we assume that the input patterns are random binary events of ±1 and are

uncorrelated between different synapses and memory patterns then substituting equation

2.31 in 2.32 we obtain

S(n, p) = (α(p+ 1)− 1)
n∏

j=p+2

α(j) (2.33)

Given that in equation 2.29, k0 = O(1019) and k1 = O(1016), the term
(
1 + 2

ln (k1△tn+k0)

)
≈ 1,

the signal power simplifies to:

S2(n, p) =
1

(n+ γ)2
(2.34)

where γ = k0
k1△t

and depends on the pulse-width △t and the initial condition k0. The above

equation shows that the signal’s strength is a function of the system parameter γ and decays

with the number of memory patterns observed. If we assume that the weight Wd(n) is

uncorrelated from the input vin(n) and that the inputs vin(1), vin(2), ...vin(n) are uncorrelated

from each other, then the corresponding noise power is given by the variance of the retrieval

signal expressed in equation 2.32. This can be estimated as the sum of the power of all signals

tracked at n except for the retrieval signal corresponding to the pth update we are tracking

and is given by:

ν2(n, p) =
1

N

n∑
i=1,i ̸=p

S2(n, i) (2.35)

However, in order to derive a more tractable analytical expression for further analysis we

added the retrieval signal as well into the summation which introduces a small error in
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the estimation (overestimating the noise by the retrieval signal term). This leads us to the

following estimation of the noise power:

ν2(n, p) =
n

N(n+ γ)2
(2.36)

Based on the value of n in comparison to γ, we obtain two trends for the noise profile. When

γ >> n,

ν(n, p) =
1√
N

(√
n

γ

)
(2.37)

which implies that noise increases with increase in updates initially. On the other hand, when

γ << n,

ν(n, p) =

√
n√
Nn

=
1√
N

(
1√
n

)
(2.38)

which implies that noise falls with increase in updates in the later stages. The signal-to-noise

ratio (SNR) of a network of size N can then be obtained as:

SNR(n, p) =

√
S2(n, p)

ν2(n, p)
=

√
N

n
(2.39)

2.3.5 FN-synapse with Tunable Consolidation Characteristics

In the previous sections, we derived the analytical expressions for the memory retrieval signal,

the noise associated with it, and the corresponding SNR for the case when the modulation

input m(t) was kept constant. This led to a synaptic memory consolidation which is similar

to that of EWC. However, blackout catastrophic forgetting occurs in networks with such

memory consolidation due to the absence of a balanced pattern retention and forgetting

mechanism. The forgetting mechanism is naturally present in a steady state model such as

the cascade model which does not suffer from memory “blackouts”. Since the increase in

retention is equivalent to an increase in rigidity and forgetting is tantamount to a decrease

in rigidity, it is necessary to adjust the plasticity/rigidity of the synapse accordingly. From

Fig. 2.2 (a) and (b) we notice that without external modulation Wc decreases monotonically

31



with each new update which correspondingly makes the synapse only rigid. Therefore, to

balance the same, the idea is to keep Wc as steady as possible to keep the synapse plastic as

long as possible by applying a modulation profile m(t) that recovers/restores Wc after every

synaptic update. This results in m(t) of the form

m(t) = m(i)δ(t− iT ) (2.40)

where δ(t) is the Dirac-delta, m(i) is the magnitude of the modulation increment, and T is

the time between each modulation increment. This increment is determined by the rate of

the differential update to the FN-synapse. Integrating this form of m(t) into equation 2.12

leads to
dWc

dt
= −J (Wc) +m(i)δ(t− iT ) (2.41)

which implies a tunable plasticity profile for the FN-synapse. An analytical solution to the

differential equation 2.41 is difficult and hence we resort to a recursive solution. Due to the

nature of the m(t), it can be seen that the initial condition of the variable Wc changes at

increments of T , whereas between two modulation increments Wc evolves naturally according

to equation 2.25. Thus, the dynamics of Wc in the presence of the modulation increments

can be described as

Wc(t) =



Wc0 ; t = 0

Wc(t) + Vmod(t) ; t = iT

k2
log(k1(t−iT )+exp(

k2
Wc(iT )

))
; iT < t < (i+ 1)T

(2.42)
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where Vmod(t) is an external voltage signal applied to the FN-synapse as shown in Fig. A.1

in the Appendix A and is given by:

Vmod(t) =
∞∑
i=1

m(i)δ(t− iT ) (2.43)

In this case the change in plasticity of the synapse is determined by the step-size of the

staircase voltage function Vmod(t). Note that the weight update equation in 2.13 is still valid

since m(t) is kept constant during differential input.

Although an analytic expression for the SNR is no longer tractable in this iterative form, the

ability of the modulation term to regulate the plasticity and induce a more graceful form of

forgetting is shown in the corresponding no. of patterns retained plot in Fig 2.5(a) and the

SNR plot Fig 2.5(b) for various modulation input profiles.

2.3.6 Programming and Initialization of FN-synapses

The potential corresponding to the tunneling nodes W+ and W− can be accessed through

a capacitively coupled node, as shown in Fig. S1. This configuration minimizes readout

disturbances and the capacitive coupling also acts as a voltage divider so that the readout

voltage is within the input dynamic range of the buffer. The configuration also prevents

hot-electron injection of charge into the floating gate during readout operation. Details

of initialization and programming are discussed in [90], so here we describe the methods

specific for this work. The tunneling node potential was initialized at a specific region where

FN-tunneling only occurs while there is a voltage pulse at the input node and the rest of

the time it behaves as a non-volatile memory. This was achieved by first measuring the

readout voltage every 1 second for a period of 5 min to ensure that the floating gate was not

discharging naturally. During this period the noise floor of the readout voltage was measured

to be ≈ 100µV . At this stage, a voltage pulse of magnitude 1 V and duration 1 ms was

applied at the input node and the change in readout voltage was measured. If the change

was within the noise floor of the readout voltage, the potential of the tunneling nodes were

increased by pumping electrons out of the floating gate using the program tunneling pin.
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This process involves gradually increasing the voltage at the program tunneling pin to 20.5

V (either from external source or from on-chip charge pump). The voltage at the program

tunneling pin was held for a period of 30s, after which it was set to 0 V. The process was

repeated until a substantial change in the readout voltage was observed (≈ 300µV ) after

providing an input pulse. The readout voltage in this region was around 1.8 V.

2.3.7 Hardware and Software Experiments for Random Pattern

updates

The fabricated prototype contained 128 differential FN tunneling junctions, which correspond

to 64 FN-synapses. However, due to the peripheral circuitry only one tunneling node could be

accessed at a time for readout and modification. Now, since the memory pattern is completely

random, each synapse can be modified independently without affecting the outcome of the

experiment. Therefore, two tunneling nodes were initialized following the method described in

the aforementioned section. Input pulses of magnitude 4V and duration 100ms were applied

to both the tunneling nodes. The change in the readout voltages was measured, and the

region where the update sizes of both the tunneling node would be equal was chosen as the

initial zero memory point for the rest of the experiment. The nodes were then modified with

a series of 100 potentiation and depression pulses of magnitude 4.5v and duration 250 ms

and the corresponding weights were recorded. This procedure represented the 100 updates

of a single synapse. The tunneling nodes were then reinitialized to the zero memory point

and the procedure was repeated with different random series of input pulses representing the

modification of the other 99 synapses in the network. The first input pulses of each series of

modifications form the tracked memory pattern. To modify the value of γ the FN-synapses

were initialized at a higher tunneling node potential.

The behavioral model of the FN-synapse was generated by extracting the device parameters

k1 and k2 from the hardware prototype. The extracted parameters have been shown to

capture the hardware response with an accuracy greater than 99.5% in our previous works

[137, 138]. These extracted parameters were fed into a dynamical system that follows the

usage profile described in the hardware implementation subsection and follows the weight

update rule elaborated in the SNR estimation subsection to reliably imitate the behavior of

the FN-synapse. The behavioral model network was started with exactly the same initial

condition as hardware synapses and subjected to the exact memory patterns used for the
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hardware experiment for the same number of iterations. The simulation was also extended to

1000 iterations and the corresponding responses are included in Fig 3 (f).

2.3.8 Probabilistic FN-Synapse Model

(a)

(c)

(b)

(d)

(e)

(f)

Figure 2.7: (a) Comparison between the output of the probabilistic FN-synapse model and
the deterministic behavioral model and the (b) corresponding deviation. (c) The SNR of
the network for different tunneling regions for Wc0 = 3.4V, 3.1V, and 2.8V and (d)-(f) their
corresponding update size in terms of no. of electrons per update.

Adaption of FN-synapse occurs by the tunneling of electrons through a triangular FN

quantum-tunneling barrier. The tunneling current density is dependent on the barrier profile

which in turn is a function of the floating-gate potential. When W+,W− is around 7 V the

synaptic update ∆Wd due to an external pulse can be determined by the continuous and

deterministic form of the FN-synapse model (as described in the previous sections). Since

the number of electrons tunneling across the barrier is relatively large (≫ 1), the method

is adequate for determining ∆Wd. However, once W+,W− is around 6 V, each update

occurs due to the transport of a few electrons tunneling across the barrier and in the limit
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by a single electron tunneling across the barrier at a time. In this regime, the continuous

behavioral model is no longer valid. Therefore, the behavioral model of the FN-synapse

has to switch to a probabilistic model. In this mode of operation, we can assume that each

electron tunneling event follows a Poisson process where the number of electrons e+(n), e−(n)

tunneling across the two junctions during the nth input pulse is estimated by sampling from

a Poisson distribution with rate parameters λ+, λ− given by

λ+(n) =
AJ(W+(n))

q
(2.44)

λ−(n) =
AJ(W−(n))

q
. (2.45)

q is the charge of an electron, and A is the cross-sectional area of the tunneling junction.

Using the sampled values of e+(n), e−(n), the corresponding discrete-time stochastic equation

governing the dynamics of the tunneling node potentials W+(n),W−(n) is given by

W+(n) = W+(n− 1)− qe+(n)

CT

(2.46)

W−(n) = W−(n− 1)− qe−(n)

CT

(2.47)

where CT is the equivalent capacitance of the tunneling node.

We have verified the validity/accuracy of the probabilistic model against the continuous-time

deterministic model in high tunneling rate regimes. Fig. 2.7 (a) shows that the output of

the probabilistic model matches closely to the deterministic model and the deviation which

arises due to the random nature of the probabilistic updates (shown in Fig. 2.7 (b)) is within

200µV . Using the probabilistic model we performed the memory retention and network

capacity experiments (as discussed in the main manuscript) by initializing the tunneling

nodes at a low potential. In this regime, each update to the FN synapse results from the

tunneling of a few electrons. Fig. 2.7 (c) and (d) show that even when each update sizes are

on the order of tens of electrons, the network capacity and memory retention time remains

unaffected. However, as the synaptic voltage is modified by less than ten electrons per update

(shown in Fig. 2.7 (e)), the SNR curve starts to shift downwards and the network capacity

along with memory retention time decreases. The tunneling node potential can be pushed

further down to a region where the synapses might not even register modifications at times

and at other times update sizes drop down to a single electron per modification (see Fig. 2.7
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(f)). In this regime, the SNR curve shifts down further, and the SNR decay still obeys the

power-law curve.

2.3.9 Neural Network Implementation using FN-synapses

The MNIST dataset was split into 60,000 training images and 10,000 test images which

yielded about 6000 training images and 1000 test images per digit. Each image, originally

of 28×28 pixels, was converted to 32x32 pixels through zero-padding. This was followed by

standard normalization to zero mean with unit variance. The code for implementing the

non-FN-synapse approaches such as EWC and online EWC was obtained from the repository

mentioned in [58]. To enforce an equitable comparison, the same neural network architecture

(as shown in Fig. S6), in the form of a multi-layered perceptron (MLP) with an input layer of

1024 nodes, two hidden layers of 400 nodes each (paired with the ReLU activation function)

and a softmax output layer of 2 nodes, has been utilized by every method mentioned in this

work. Based on the optimizer in use, a learning rate of 0.001 was chosen for both SGD and

ADAM (with additional parameters β1, β2 and ϵ set to 0.9,0.999 and 10−8 respectively for

the latter). Each model was trained with a mini-batch size of 128 for a period of 4 epochs.

Similar to the continual learning experiments conducted on split-MNIST, benchmark incremental-

domain learning experiments were also carried out by randomly permuting the order of pixels

of the images in the MNIST dataset in accordance with [58] which is referred to as the

Permuted-MNIST. The architecture of the neural network employed is similar to the one

for the split-MNIST with the exception of being equipped with 1000 neurons in each of the

two hidden layers instead of 400 and with 10 neurons in the output layer instead of 2. This

essentially means that at each task, the network learns a new set of permutations of the 10

digits. The network was trained on 10 such tasks for 3 epochs using a learning rate of 0.0001

for ADAM and 0.001 for ADAGRAD.

Corresponding to every weight/bias in the MLP, an instance of the FN-synapse model was

created and initialized to a tunneling region according to the initialWc value. As demonstrated

by the measured results, ∆Wd can be modulated linearly and precisely by changing the

pulse-width of the potentiation/depression pulses. Therefore, each weight update (calculated

according to the optimizer in use) is mapped as an input pulse of proportional duration for

the FN synapse instance. Then, every instance of the FN-synapse model is updated according
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to Eq. 2.27 and the Wd thus obtained in voltage is scaled back to a unit-less value and within

the required range of the network.

2.4 Discussion

In this work, we reported a differential FN quantum-tunneling based synaptic device that can

exhibit near-optimal memory consolidation that has been previously demonstrated using only

algorithmic models. The device called FN-synpase, like its algorithmic counterparts, stores

the value of the weight and relative usage of the weight that determines the plasticity of the

synapse. Similar to algorithmic consolidation models, an FN-synapse, ‘protects’ important

memory by reducing the plasticity of the synapse according to its usage for a specific task.

However, unlike its algorithmic counterparts like the cascade or EWC models, the FN-Synapse

doesn’t require any additional computational or storage resources. In EWC models memory

consolidation in continual learning is achieved by augmenting the loss function using penalty

terms that are associated with either Fisher information [69] or the historical trajectory

of the parameter over the course of learning [26, 82]. Thus, the synaptic updates require

additional pre-processing of the gradients, which in some cases could be computationally and

resource intensive. FN-synapse on the other hand, does not require any pre-processing of

gradients and instead can exploit the physics of the device itself for synaptic intelligence and

for continual learning. For some benchmark tasks, we have shown an FN-synapse network

shows better multi-task accuracy compared to other continual learning approaches. This

leads to the possibility that the intrinsic dynamics of the FN-synapse could provide important

clues on how to improve the accuracy of other continual learning models as well.

Fig. 2.5 (c)-(d) also show the importance of the learning algorithm in fully exploiting the

available network capacity. While the entropy of the FN-synapse weights for the output layer

is relatively high, the entropy of the weights of the input layer is still relatively low, implying

most of the input layer weights remain unused. This is an artifact of vanishing gradients in a

standard backpropagation-based neural network learning. Thus, it is possible that improved

backpropagation algorithms [35, 119] might be able to mitigate this artifact and in the process

enhance the capacity and the performance of the FN-synapse network. In Fig. S9 we show

that FN-synapse-based neural network is able to maintain its performance even when the

network size is increased. Thus, it is possible that the network becomes capable of learning
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more complex tasks due to an increase in the overall plasticity of the network while ensuring

considerably better retention than neural networks with traditional synapses.

In addition to being physically realizable, the FN-synapse implementation also allows interpo-

lation between a steady-state consolidation model and the EWC consolidation models. This

is important because it is widely accepted that the EWC model can potentially suffer from

blackout catastrophe [69] as the learning network approaches its capacity. During this phase,

the network becomes incapable of retrieving any previous memory as well as is unable to learn

new ones [69]. Steady-state models such as the cascade consolidation models and SGD-based

continuous learning models avoid this catastrophe by gracefully forgetting old memories. As

shown in Fig. 2.5 (a), an FN-synapse network, through the use of a global modulation factor

m(t), is able to interpolate between the two models. In fact, the results in Fig. 2.5 (a) and

(b), show that the number of patterns/memories retained in an FN-synapse network under

modulation profile m2(t) at steady state is higher compared to that of a high-complexity

cascade model for a network size of N = 1000 synapses. Even though we have not used the

interpolation feature for benchmark experiments, we believe that this attribute is going to

provide significant improvements for continuous learning of a large number of tasks.

The interpolation property of FN-synapse could mimic some attributes of metaplasticity

observed in biological synapses and dendritic spines [87]. The role of metaplasticity, the

second-order plasticity of a synapse which assigns a task-specific importance to every successive

task being learned [75], is widely accepted as the fundamental component of neural processes

key to memory and learning in the hippocampus [4, 3]. Since unregulated plasticity leads

to runaway effects resulting in previously stored memories being impaired at saturation of

synaptic strength [20], metaplasticity serves as a regulatory mechanism that dynamically

links the history of neuronal activity with the current response [60]. The FN-synapse mimics

the same regulatory mechanism through the decaying term r(t) that takes into account the

history of usage or neuronal activity to determine the plasticity of the synapse for future use

as well as prevents runaway effects by making the synapses rigid at saturation.

The on-device memory consolidation in FN-synapse can not only minimize the energy

requirements in continual learning tasks, additionally, the energy required for a single

synaptic weight update is also lower than memristor-based synaptic updates for a fixed

precision of update. This attribute has been validated in our previous works [91] where the

update energy was estimated to be as low as 5f J increasing up to 2.5p J depending on the

39



status of the FN-synapse and the desired change in synaptic weights. Note that the energy

required to change the synaptic weight is derived from the FN-tunneling current and not

from the electrostatic energy used for charging the coupling capacitor. Thus, by designing

more efficient charge-sharing techniques across the coupling capacitors the energy-efficiency

of FN-synaptic updates can be significantly improved. Furthermore, when implemented on

more advanced silicon process nodes, the capacitances could be scaled which can improve the

energy-efficiency of FN-synapse by an order of magnitude. Compared to memristor-based

synapses, the FN-synapse can also exhibit high endurance 106 − 107 cycles without any

deterioration. However, the key distinction lies in terms of the dynamic range of the stored

weights. Generally, a single memristor has two distinct conductive states (corresponding

to ‘0’ or ‘1’) which give each device a 1-bit resolution. When used in a crossbar array,

highly-dense designs can reach densities up to 76.5nm2 per bit as reported by [100] where a

3-D memristor array was constructed using Perovskite quantum wires. The dynamic range

or resolution of such designs is determined by the number of memristive devices that can be

packed into the smallest feasible physical form factor. If we consider multi-level memristors

instead, the resolution per memristor can reach up to 3-5 bits depending on the number of

stable distinguishable conductive states [77, 127, 56]. In comparison, the dynamic range of

the FN-synapse (a single device) is considerably higher as it is determined by the number

of electrons stored on the floating-gates which in-turn is determined by the FN-synapse

form-factor and the dielectric property of the tunneling barrier. Thus, theoretically, the

dynamic range and the operational-life of the FN-synapse seem to be constrained by the

single-electron quantization. However, at low-tunneling regimes, the transport of single

electrons across the tunneling barrier becomes probabilistic where the probability of tunneling

is now modulated by the external signals X(t) and m(t). In the Methods Section and in Fig.

S4 we show that a stochastic dynamical system model emulating the single-electron dynamics

in the FN-synapse can produce O(1/
√
t) consolidation characteristics for the benchmark

random input patterns experiment for an empty network. The SNR still follows the power-law

curve and the FN-synapse network continues to learn new experiences even if the synaptic

updates are based on discrete single-electron transport. A more pragmatic challenge in using

the FN-synapse will be the ability of the read-out circuitry to discriminate between the

changes in floating-gate voltage due to single-electron tunneling events. For the magnitude

of the floating-gate capacitance, the change in voltage would be in the order of 100nV per

tunneling event. A more realistic scenario would be to measure the change in voltage after

1000 electron tunneling events which would imply measuring 100 µV changes. Although
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this will reduce the resolution of the stored weights/updates to 14 bits, recent studies have

shown that neural networks with training precisions as low as 8 bits [115] and networks with

inference precisions as low as 2-4 bits [30, 31] are often capable of exhibiting remarkably

good learning abilities. In Fig. S10 we show that for the split-MNIST task, the performance

of the FN-synapse based neural network remains robust even in the presence of 5% device

mismatch.

Another point of discussion is whether the optimal decay profile r(t) ≈ O(1/t) can be

implemented by other synaptic devices, in particular, the energy-efficient memristor-based

synapses that have been proposed for neuromorphic computing [89, 65, 122, 43, 97, 98].

Recent works using memristive devices have demonstrated on-device metaplasticity [48],

however, achieving an optimal decay profile would require additional control circuitry, storage

and read-out circuits. In this regard, we believe that the FN-synapse represents one of the

few, if not the only class of synaptic devices that can achieve optimal memory consolidation

on a single device.
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Chapter 3

Adaptive Synaptic Array using

FNDAM

This chapter is an extension of the work discussed in Chapter 2 which presents the application

of FNDAM regarding the energy efficiency of an artificial neural network during the training

phase. It shows the adaptive nature of FNDAM with respect to the loss function that the

network is trying to minimize. This chapter has supplemental information which is included

in Appendix B. The results in this chapter are based on [91].

3.1 Introduction

Implementation of reliable and scalable synaptic weights or memory remains an unresolved

challenge in the design of energy-efficient machine learning (ML) and neuromorphic proces-

sors [23]. Ideally, the synaptic weights should be “analog” and should be implemented on a

non-volatile, and yet easily modifiable storage device [130]. Furthermore, if these memory

elements are integrated in proximity with the computing circuits or processing elements,

then the resulting compute-in-memory (CIM) architecture [2, 128] has the potential to

mitigate the “memory wall” [110, 61, 29] which refers to the energy-efficiency bottleneck in

ML processors that arises due to repeated memory access. In most practical and scalable

implementations, the processing elements are implemented using CMOS circuits; as a result,

it is desirable that the analog synaptic weights be implemented using a CMOS-compatible

technology. In literature, several multi-level non-volatile memory devices have been pro-

posed for implementing analog synapses. These include two-terminal memristive devices

such as resistive random-access memories (RRAM) [6], magnetic random-access memories

(MRAM) [47], Phase Change Memory (PCM) [22], Spin-Transfer Torque Magnetic RAM

(STT-MRAM) [68], Conductive Bridge RAM [63] or the three-terminal devices like the
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floating-gate transistors [92], ferroelectric field-effect transistor-based memory (FeFET) [39],

Charge Trap Memory [129] and Electrochemical RAMs (ECRAM) [120]. In all of these

devices, the analog memory states are static in nature, where each of the states needs to be

separated from others by an energy barrier ∆E. For example, in RRAM devices the state of

the conductive filament between two electrodes determines the stored analog value, whereas

in charge-based devices like floating-gates or FeFET, the state of polarization determines

the analog value. To ensure non-volatile storage, it is critical that the energy-barrier ∆E

is chosen to be large enough to prevent memory leakage due to thermal-fluctuations and

other environmental disturbances. However, the height of the energy barrier ∆E also sets

the fundamental limit on the energy dissipated to switch between different analog storage

states. For example, switching the RRAM memory state requires 100 fJ per bit [131], whereas

STT-MRAM requires about 4.5pJ per bit [38]. A learning/training algorithm that adapts the

stored weights in quantized steps (. . . ,Wn−1,Wn,Wn+1, . . . ) so as to minimize a system-level

loss-function L(W ) has to dissipate minimum energy of (. . . ,∆En−1,∆En,∆En+1, . . . ) for

memory updates. Separating the static states by an energy-barrier also allows the learning

algorithm to precisely control the parameter retention time (parameter leakage) between

subsequent parameter updates, however, this mode of updates does not exploit the physics of

learning to optimize for energy-efficiency. In many energy-efficient ML training formulations,

and in particular analog ML systems, the loss-function L(W ) is represented by an equivalent

energy-functional of a physical ML system [76], and learning/training involves a natural

evolution of the system dynamics towards the minimum energy (optimal) state based on input

stimuli (or equivalently training data). Thus, the physics of the system evolution process

selects the minimum energy path toward the desired optimum. A synaptic element that is

matched to this system dynamics needs to be adaptive with respect to its memory retention

time which can then be traded-off with respect to the energy-dissipation per update.

In this work we present such a synaptic element that uses dynamical states (instead of

static states) to implement analog memory and is matched to the dynamics of ML training.

The core of the proposed device is itself a micro-dynamical system and the system-level

learning/training process modulates the dynamical state (or state trajectory) of the memory

ensembles. The concept is illustrated in Fig. 3.1(b), which shows a reference ensemble

trajectory that continuously decays towards a reference zero vector without the presence

of any external modulation. However, during the process of learning, the trajectory of the

memory ensemble is pushed towards an optimal solution W∗. The main premise of this

work is that the extrinsic energy (...,∆En−1,∆En. . .∆En+1, ...)required for modulation, if
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matched to the dynamics of learning, could reduce the energy-budget for ML training. This

is illustrated in Fig. 3.1(c) which shows a convergence plot corresponding to a typical ML

system as it transitions from a training phase to an inference phase. During the training

phase, the synaptic weights are adapted based on some learning criterion whereas in the

inference phase, the synaptic weights remain fixed or are adapted intermittently to account

for changes in the operating conditions. As a result, during the training phase, the number

of weight updates is significantly higher than during the inference phase. Take for example

support-vector machine (SVM) training, the number of weight updates scale quadratically

with the number of support vectors and the size of the training data, whereas adapting the

SVM during inference only scales linearly with the number of support-vectors [102]. Thus, for

a constant energy dissipation per update, the total energy-dissipated due to weight updates

is significantly higher in training than during inference. However, if the energy-budget per

weight update could follow a temporal profile as shown in Fig.3.1c, wherein the energy

dissipation is no longer constant, but inversely proportional to the expected weight-update

rate, then the total energy dissipated during training could be significantly reduced. One

way to reduce the synaptic weight update or memory write energy budget is to trade-off the

weight’s retention rate according to the profile shown in Fig. 3.1c. The desired retention rate

profile could then be achieved by adaptively changing the energy-barrier height as shown in

Fig. 3.1c - inset. During the training phase, the synaptic element can tolerate lower retention

rates or parameter leakage because this physical process could be matched to the process

of weight decay or regularization, a technique commonly used in ML algorithms to achieve

better generalization performance [83]. As shown in Fig. 3.1c, the synapse’s retention rate

should increase as the training progresses such that at convergence or in the inference phase

the weights are stored as a non-volatile memory.

In this work, we describe a dynamic analog memory (DAM) that can exhibit a temporal

profile similar to that of Fig. 3.1c. Furthermore, the memory is implemented on a standard

CMOS process without the need for any additional processing layers. Fig. 3.1d shows a

micrograph of a DAM array where each element of the array implements the circuit shown

in Fig. 3.1e. In Appendix B I we provide additional details for implementing the circuit of

Fig. 3.1e in a standard CMOS process. The proposed DAM requires a Fowler-Nordheim

(FN) quantum-tunneling barrier which can be created by injecting sufficient electrons onto a

polysilicon island (floating-gate) that is electrically isolated by thin silicon-di-oxide barriers

[79]. As the electron tunnels through the triangular barrier, as shown in Fig. 3.1f, the

barrier profile changes which further inhibits the tunneling of electrons. We have previously
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shown that the dynamics of this simple system are robust enough to implement time-keeping

devices [137] and self-powered sensors [90]. In this work, we use a pair of synchronized

FN-dynamical systems to implement a DAM suitable for implementing ML training/inference

engines. Figure 3.1(g) shows the dynamics of two FN-dynamical systems, labeled as SET

and RESET, whose analog states continuously and synchronously decay with respect to time.

In our previous work [137, 90], we have shown the dynamics across different FN-dynamical

systems can be synchronized with respect to each other with an accuracy greater than

99.9%. However, when an external voltage pulse modulates the SET system, as shown in Fig.

3.1g, the dynamics of the SET system become desynchronized with respect to the RESET

system. The degree of desynchronization is a function of the state of the memory at different

time instances (Fig. 3.1g, insets g1-g3) which determines the memory’s retention rate. For

instance, at time-instant t1, a small magnitude pulse would produce the same degree of

desynchronization as a large magnitude pulse at the time-instant t3. However, at t1 the pair

of desynchronized systems (SET and RESET) would resynchronize more rapidly as compared

to desynchronized systems at time-instants t2 or t3. This resynchronization effect results in

shorter data retention; however, this feature could be leveraged to implement weight-decay

in ML training. At time-instant t3, the resynchronization effect is weak enough that the

FN-dynamical system acts as a persistent non-volatile memory with high data-retention time.

In the Methods section, we describe how the FN-dynamical system mathematical model can

be matched to ML training formulation and the weight-decay dynamics required for learning

and generalization. The model also shows that the voltage or energy required for updating

the memory can be annealed according to the profile shown in Fig. 3.1c.

3.2 Result

3.2.1 Dynamic analog memory with asymptotic non-volatile stor-

age

The dynamics of the FN-tunneling based DAM (or FN-DAM) were verified using prototypes

fabricated in a standard CMOS process (micrograph shown in Fig. 3.1d.). The FN-DAM

devices were programmed and initialized through a combination of FN tunneling and hot

electron injection. A detailed description of the general programming process can be found in
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Figure 3.2: a) WS (solid line) and WR (dashed line) response under three different operating
regimes (zoomed insets: a1, a2, a3) determined by FN-DAM initialization voltage. b)-d)
FN-DAM response (w) calculated as the difference between WS and WR voltage values in
the three regimes demonstrating different plasticity. Dots are measured data points while
lines correspond to fit the data.

the Methods section where we describe implementation specific to this work. The tunneling

nodes (WS and WR in Fig. 3.1e) were initialized to around 8 V and decoupled from the

readout node by a decoupling capacitor to the sense buffers (shown in Appendix B Fig. B.1).

The readout nodes were biased at a lower voltage (around 3 V) to prevent hot electron

injection [118] onto the floating-gate during the readout operation. The capacitive decoupling

of the read-out circuitry from the memory also reduces the effect of read disturbances and in

Appendix B Fig. B.2, we show measurement results that verify that the effect of read disturb

is random and the magnitude of the disturbance is less than the precision of the memory

update and read-out circuits.

Fig. 3.2 shows the measured dynamics of the FN-DAM device in different initialization

regimes used in ML training, as described in Fig. 3.1g. The different regimes were obtained

by initializing the tunneling nodes (WS and WR) to different voltages (see Methods section),
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whilst ensuring that the tunneling rates on the WS and WR nodes were equal. Initially

(during the training phase), tunneling-node voltages were biased high (readout node voltage

of 3.1 V), leading to faster FN tunneling (Fig. 3.2, inset a1). A square input pulse of 100

mV magnitude and 500 ms duration (5 fJ of input energy) was found to be sufficient to

desynchronize the SET node by 1 mV. This desynchronization, w = (WS − WR), stores

the state of the dynamical analog memory. However, as shown in Fig. 3.2(b), the rate of

resynchronization in this regime is high, which leads to a decay in the stored weight down to

30% in 40 s. At t = 90 s, the voltage at node WS has reduced (readout node voltage of 2.9 V

shown in Fig. 3.2, inset a2), and a larger voltage amplitude (500 mV) is required to achieve

the same desynchronization magnitude of 1 mV. This corresponds to an energy expenditure

of 125 fJ. However, as shown in Fig. 3.2(c), the rate of resynchronization is low in this regime,

leading to a decay in the stored weight down to 70% of its value in 40 s. Similarly, at a later

time instant t = 540 s (Fig. 3.2, inset a3), a 1 V signal desynchronizes the recorder by 1 mV,

and as shown in Fig. 3.2(d), in this regime 95% of the stored weight value is retained after

40 s. This mode of operation is suitable during the inference phase of machine learning when

the weights have already been trained, but the models need to be sporadically adapted to

account for statistical drifts. Modeling studies described in Appendix B show that the write

energy per update starts from as low as 5 fJ and increases to 2.5 pJ over a period of 12 days.

During the same time, the memory becomes less plastic with the increase in the memory

retention time as shown in Appendix B. Asymptotically, the FN-DAM exhibits retention

times similar to that of other FLASH-based memory.

The next set of experiments verified if the analog state of an FN-DAM device can be

adapted (incremented or decremented) using digital pulses (using a digital logic or a spiking

neuron). Each of the differential DAM elements in the FN-DAM device was programmed

by independently modulating the SET and RESET junctions shown in Fig. 3.1(e). The

corresponding WS and WR nodes were initially synchronized with respect to each other. After

a programming pulse was applied to the SET or RESET control gate, the difference between

the voltages at the WS and WR nodes was measured using an array of sense buffers. In the

results shown in Fig. 3.3a-d, a sequence of 100 ms-long 3V SET and RESET pulses was

applied. The measured difference between the voltages at the WS and WR nodes indicates

the current state of the memory. Each SET pulse increments the state while a RESET

pulse decrements the state. In this way, the FN-device can implement a DAM that is

bi-directionally programmable with unipolar pulses. Note that, unlike conventional FLASH

memory, the magnitude of the programming pulse is significantly lower. Fig. 3.3d also shows
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Figure 3.3: (a-b) SET and RESET input sequence. c) Change in WS and WR potentials due
to SET and RESET pulses. d) DAM response calculated as the difference between WS and
WR voltages. e-f) FN-DAM response to SET pulses of varying frequency. Error bars indicate
standard deviation estimated across 12 devices.

the cumulative nature of the FN-DAM updates which implies that the device can work as an

incremental/decremental counter.

Fig. 3.3e-f show measurement results that demonstrate the resolution at which an FN-DAM

can be programmed as analog memory. The analog state can be updated by applying digital

pulses of varying frequency and variable number of pulses. In Fig. 3.3e, four cases of applying

a 3 V SET signal for a total of 100 ms are shown: a single 100 ms pulse; two 50 ms pulses;

four 25 ms pulses; and eight 12.5 ms pulses. The results show the net change in the stored

weight was consistent across the 4 cases. A higher frequency leads to finer control of analog

memory updates. Note that any variations across the devices can be calibrated or mitigated

by using an appropriate learning algorithm [25]. The variations could also be reduced by

using careful layout techniques and precise timing of the control signals.

3.2.2 Characterization of FN-DAM

The FN-DAM device can be programmed by changing the magnitude of the SET/RESET

pulse or its duration (equivalently number of pulses of fixed duration). Fig. 3.4a shows the
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Figure 3.4: (a) DAM response to pulses of different magnitude but same duration (10 ms).
b) DAM response to a varying number of pulses of 4V amplitude and 10 ms duration. c)
Change in DAM response with each pulse of the same magnitude (4V) and duration (10
ms). d) FN-DAM response measured at 100oC when a SET pulse is applied to 12 different
FN-DAM elements (each color corresponds to a different memory element).

response when the magnitude of the SET and RESET input signals varies from 4.1 V to

4.5 V. The measured response shown in Fig. 3.4a shows an exponential relationship with

the amplitude of the signal. When short-duration (10 ms) pulses are used for programming,

the stored value varies linearly with the number of pulses, as shown in Fig. 3.4b. However,

repeated application of pulses with constant magnitude produces successively smaller changes

in programmed value due to the dynamics of the DAM device (Fig. 3.4c). One way to

achieve a constant response is to pre-compensate the SET/RESET control voltages such that
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a target voltage difference w = (WS − WR) can be realized. The differential architecture

increases the device’s state robustness against disruptions from thermal fluctuations (Fig.

3.4d). The stored value on DAM devices will leak due to thermal-induced processes or

due to trap-assisted tunneling. However, in DAM, the weight is stored as the difference in

the voltages corresponding to WS and WR tunneling junctions which are similarly affected

by temperature fluctuations. This is shown in Fig. 3.4d where the FN-DAM array was

programmed/operated at 100 C and the dynamic response was measured over a duration of

15 hours. The baseline drift due to the memory read-out circuits was first calibrated during

the first 400 minutes and used for zeroing out the dynamical response of each of the FN-DAM

devices. Then, at 400 min time instant a SET pulse (3.3V for 1-second duration) was applied

to all the FN-DAM devices which programmed all the devices to a specific memory state.

The degree of desynchronization was continuously measured and is plotted in Fig. 3.4d. Over

a duration of 8 hours, the drift in the stored analog value is less than 10%. This result could

also be used to estimate the memory retention time as described in Appendix B, which is

expected to vary depending on the current state of the memory.

3.2.3 FN-DAM based Co-design of Classifiers and Neural Networks

We first experimentally demonstrate the benefits of FN-DAM based weights when training

a simple linear classifier. For these results, two FN-DAM devices were independently

programmed according to the perceptron training rule [18]. We trained the weights of a

perceptron model to classify a linearly separable dataset comprising 50 instances of two-

dimensional vectors, as shown in Fig. 3.5a. During each epoch, the network loss function

and gradients were evaluated for every training point in a randomized order, with the time

interval between successive training points being two seconds. Fig. 3.5b shows that after

training for 5 epochs, the learned boundary can correctly classify the given data. Fig. 3.5c

shows the evolution of weights as a function of time. As can be noted in the figure, initially

the magnitude of weight updates (negative of the cost function gradient) was high for the

first 50 seconds, after which the weights stabilized and required smaller updates. The energy

consumption of the training algorithm can be estimated based on the magnitude and number

of the SET/RESET pulses required to carry out the required update for each misclassified

point. As the SET/RESET nodes evolve in time, they require larger voltages for carrying

out updates, as shown in Fig. 3.5d. The gradient magnitude was mapped onto an equivalent
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Figure 3.5: a) Test data set with randomly initialized decision boundary b) Decision boundary
after training. c) Evolution of weights (w0 and w1) after 5 epochs. D) Input voltage required
for initiating a unit change in weights (Ws,0,WR,0,Ws,1,WR,1). e) Energy (E(w0), E(w1))
expended in updating the weights (w0 and w1). f) Average magnitude of weight update and
average energy required for each epoch.

number of 1 kHz pulses, rounding to the nearest integer. Fig. 3.5e shows the energy (per

unit capacitance) required to carry out the weight update whenever a point was misclassified.

Though the total magnitude of weight update decreased with each epoch, the energy required

to carry out the updates had lower variation (Fig. 3.5f). The relatively larger energy required

for smaller weight updates at later epochs led to longer retention times of the weights.

Similar energy-dissipation and weight update profiles were also obtained when a larger

FN-DAM array is used to store the training parameters of a three-layer neural network

implementing a multi-layer perceptron (MLP). Details of the network architecture and

training procedure are described in the Methods section and in Appendix B. Fig. 3.6(a–c)

show the FN-DAM training dynamics when the MLP neural network is trained on the Fisher

Iris dataset [42]. In particular, Fig. 3.6c shows that by adapting the programming pulses, the
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Figure 3.6: : a-c) Experimental training on Fisher Iris dataset over 5 trials: a) 5-fold cross-
validation accuracy of model over 20 epochs for training set (120 points) and validation set
(30 points) b) Total pulses required in implementing weight update for entire synaptic array
during each epoch. c) Energy per unit capacitance expended in updating the weights. Note:
the scale of the Y-axis is set to match that of the panel (b). Error bars in (a), (b), and (c)
indicate standard deviation estimated across 5 trials. d-e) Simulated training on MNIST
dataset: d) Network loss for 3 types of network models. Inset shows the same data with the
x-axis in the log scale. e) Energy dissipated in updating the network weights for 3 types of
network models. Inset shows the same data with the X-axis in the log scale.

energy-dissipation profile across training and inference can be equalized, as was proposed in

Fig. 3.1c. The dynamical systems model summarized in the Methods section can also be used

to evaluate the energy-efficiency gains that can be obtained by co-designing a convolutional

neural network (CNN) training engine using FN-DAMs. Details of the CNN architecture
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are provided in Appendix B. The result of the co-design is shown in Fig. 3.6d and in Table

1 where we show that an FN-DAM based deep neural network (DNN) can achieve similar

classification accuracy as a conventional DNN. To compare the energy dissipation of the

FN-DAM neural network implementation, we used an RRAM energy per bit dissipation

metric (100 fJ/bit) [131] and for an FN-DAM implementation we used an energy dissipation

model described in Appendix B. Note that amongst CMOS-compatible non-volatile analog

memories, RRAM is one of the most energy-efficient synapses. The result in Fig. 3.6e

shows that training an FN-DAM based neural network dissipates significantly lower energy

compared to the RRAM-based neural network. Note that for this demonstration, only the

fully connected layers were trained while the feature layers were kept static. This mode of

training is common for many practical DNN implementations on edge computing platforms

where the goal is not only to improve the energy-efficiency of inference but also for training

[117]. The results in Fig. 3.6e and Table 1 show that the neural network training and

accuracy are robust even when a mismatch is introduced into the FN-DAM model. Details of

the mismatch model are provided in the Methods section.

table here

3.3 Discussions

In this work, we reported a Fowler-Nordheim quantum tunneling-based dynamic analog

memory (FN-DAM) whose physical dynamics can be matched to the dynamics of weight

updates used in ML or neural network training. During the training phase, the weights stored

on FN-DAM are plastic in nature and decay according to a learning-rate evolution that is

necessary for the convergence of the gradient-descent training [94]. As the training phase

transitions to an inference phase, the FN-DAM acts as a non-volatile memory. As a result,

the trained weights are persistently stored without requiring any additional refresh steps

(used in volatile embedded DRAM architectures [121]). The plasticity of FN-DAM during

the training phase can be traded off with the energy-required to update the weights. This is

important because the number of weight updates during training scales quadratically with the

number of parameters, hence the energy-budget during training is significantly higher than

the energy-budget for inference. The dynamics of FN-DAM bear similarity to the process

of annealing used in neural network training and other stochastic optimization engines to
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overcome local minima artifacts [27]. Thus, it is possible that FN-DAM implementations or

ML processors can naturally implement annealing without dissipating any additional energy.

If such dynamics were to be emulated on other analog memories, it would require additional

hardware and control circuitry.

Several challenges exist in scaling the FN-DAM to large neural-networks. Training a large-

scale neural network could take days to months [112] depending on the complexity of the

problem, the complexity of the network, and the size of the training data. This implies that

the FN-DAM dynamics need to match the long training durations as well. Fortunately, the

1/log characteristic of FN devices ensures that the dynamics could last for durations greater

than a year [138]. The other challenge that might limit the scaling of FN-DAM to large

neural networks is the measurement precision. The resolution of the measurement and the

read-out circuits limit the energy-dissipated during memory access and how fast the gradients

can be computed (Appendix B Fig. B.5). For instance, a 1 pF floating-gate capacitance can

be initialized to store 107 electrons. Even if one were able to measure the change in synaptic

weights for every electron tunneling event, the read-out circuits would need to discriminate

100 nV changes. A more realistic scenario would be measuring the change in voltage after

1000 electron tunneling events which would imply measuring 100 µV changes. However, this

will reduce the resolution of the stored weights/updates to 14 bits. This resolution might be

sufficient for training a medium-sized neural network; however, it is still an open question if

this resolution would be sufficient for training large-scale networks [28, 54]. A mechanism

to improve the dynamic range and the measurement resolution is to use a current-mode

readout integrated with current-mode neural network architecture. If the read-out transistor

is biased in weak-inversion, 120 dB of dynamic range could be potentially achieved. However,

note that even in this operating mode, the resolution of the weight would still be limited

by the number of electrons and the quantization due to electron transport. Addressing this

limitation would be a part of future research.

If the proposed FN-DAM were to be used as a static analog memory, then measuring 1mV

differences to distinguish between different memory states would be challenging, especially if

device mismatch were to be taken into account. However, the analog value stored on the

FN-DAM array is updated within a learning loop that minimizes a system-level objective

function (cumulative loss or distance). Thus, the effect of any static mismatch across the

memory cells gets calibrated during the process of training. The important aspect for the

calibration process to be successful is that the memory update be monotonic with respect
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to error-gradient and the precision of the updates be high enough (typically greater than

12 bits). Both of these requirements are met by FN-DAM due to the physics of electron

tunneling. In fact, the effect of calibration due to learning can be seen in the FN-DAM neural

network training (Fig. 3.6d, e) where the classification accuracy is independent of the initial

choice of the FN-DAM state and the mismatch in FN-DAM device characteristics. The effect

of blurring, due to the presence of thermal noise is in fact beneficial for training the neural

network since it helps in overcoming artifacts due to local minima. Once the FN-DAM has

transitioned to a non-volatile state (during inference), the effect of blurring is significantly

reduced as the energy barrier separating different analog states is significantly higher than

energy due to thermal fluctuations. However, the effect of blurring due to measurement noise

needs to be compensated by averaging or increasing the cumulative measurement time.

In this work, we have used a voltage buffer (source follower) to read the state of the FN-DAM

cell. However, a current mode readout could also be used which to differentiate mV changes

in FN-DAM voltages. In particular, if the read-out transistor is biased in weak-inversion, then

the exponential dependence between the gate voltage and the drain current could be used to

amplify the change in voltage. We have previously used this method in [84] for floating-gate

current memory arrays and in [74] we reported an active feedback-based approach to improve

the resolution of the voltage-mode read-out. However, in both these implementations there

will exist a trade-off between the accuracy of the measurement resolution and the read-out

speed.

Another limitation that arises due to a finite number of electrons stored on the floating-

gate and transported across the tunneling barrier during SET and RESET, is the speed

of programming. Shorter duration programming pulses would reduce the change in stored

voltage (weight) which could be beneficial if precision in updates is desired. In contrast, by

increasing the magnitude of the programming pulses, as shown in Fig. 3.4(a), the change in

stored voltage can be coarsely adjusted. However, this would limit the number of updates

before the weights saturate. Note that due to device mismatch, the programmed values would

be different on different FN-DAM devices.

In terms of endurance, after a single initialization, the FN-DAM can support 103−104 update

cycles before the weight saturates. However, at the core FN-DAM is a FLASH technology

and could potentially be reinitialized again. Given that the endurance of FLASH memory is

103 [6], it is anticipated that FN-DAM to have an endurance of 106 − 107 cycles. In terms
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of other memory performance metrics, the ION/IOFF ratio for the FN-DAM is determined

by the operating regime and the read-out mechanism. Appendix B Fig. B.5 shows the

expected ratio estimated using the FN-DAM model. Also, FN-DAM when biased as a non-

volatile memory requires on-chip charge-pumps only to generate high-voltage programming

pulses for infrequent global erase; thus, compared to FLASH memory, FN-DAM should have

fewer failure modes [47]. Since FN-DAM can also be implemented on conventional FLASH

memories, the synapses could be scaled to future 3-D and 2.5D FLASH processes where high

synaptic densities can be achieved for the implementation of large-scale neural networks.

The main advantage of FN-DAM compared to other emerging memory technologies is its

scalability and compatibility with CMOS. At its core, FN-DAM is based on floating-gate

memories which have been extensively studied in the context of machine learning architectures

[92]. Furthermore, from an equivalent circuit point of view, FN-DAM could be viewed as a

capacitor whose charge can be precisely programmed using CMOS processing elements. Due

to its unique decay characteristics, FN-DAM also provides a balance between weight-updates

that are not too small so that learning never occurs versus weight-updates being too large

such that the learning becomes unstable. The physics of FN-DAM ensures that weight

decay (in the absence of any updates) towards a zero vector (due to resynchronization)

which is important for neural network generalization [96]. For implementing a large-scale

neural network, the FN-DAM form-factor would be required to be reduced which would

affect device variability and mismatch. However, in our prior work [137, 90] we have shown

that the dynamics of the FN-DAM cell (in steady-state) is determined primarily by the

gate-oxide thickness, a parameter that is very well controlled across processes. An oxide

thickness greater than 10nm ensures that the electron-leakage mechanism is dominated by FN

quantum tunneling (instead of direct quantum tunneling). Thus, FN-DAM devices should

be implementable on most sub-10nm CMOS processes that allow the fabrication of thicker

gate-oxide transistors for input/output devices.

Like other analog non-volatile memories, FN-DAM could be used in any previously proposed

compute-in-memory (CIM) architectures. However, in conventional CIM implementations,

the weights are trained offline and then downloaded on the chip without retraining the

processor [23]. This makes the architecture prone to analog artifacts like offsets, mismatches,

and non-linearities. On-chip learning and training mitigate this problem whereby the weights

self-calibrate for the artifacts to produce the desired output [130]. However, to support

on-chip training/learning, weights need to be updated at a precision greater than 12 bits [54].
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In this regard, FN-DAM exhibits a significant advantage compared to other analog memories.

Even though in this proof-of-concept work, we have used a hybrid chip-in-the-loop training

paradigm, it is anticipated that in the future the training circuits and FN-DAM modules

could be integrated together on-chip.

From a neuromorphic point of view, FN-DAMs could be used to mimic network-level

synaptic adaptation or pruning which plays a pivotal role in determining the optimal network

configuration during the process of learning. For instance, it has been reported that a child’s

brain has significantly denser connectivity than an adult brain [2] and consumes 50% of the

body’s resting energy metabolism (BMR). Years of learning and synaptic pruning produce a

network that tends towards optimality in terms of both energy and performance in adulthood

when the brain accounts for only 20% of the BMR [2]. The adaptability of the proposed

FN-DAM could be used to mimic this effect in artificial machine-learning systems.

If the FN-DAM updates are driven by constant voltage pulses (or fixed energy pulses like

spikes) then the memory could be used to emulate the aging effects in synaptic plasticity that

are observed in neurobiological systems [128]. Like biological synapses, the relative change in

the value stored on FN-DAM or synaptic efficacy reduces with time for the same magnitude

of applied input voltage pulses (or stimuli) [21]. Exploiting this feature of the FN-DAM

to mimic neurobiologically relevant synaptic dynamics in artificial neural networks was the

concept of chapter 2.

3.4 Methods

3.4.1 Initialization of the FN-DAM array

For each node of each recorder, the readout voltage was programmed to around 3 V while

the tunneling node was operating in the tunneling regime (Appendix B Fig. B.1). This was

achieved through a combination of tunneling and injection. Specifically, VDD was set to 7

V, input to 5 V, and the program tunneling pin was gradually increased to 23 V. Around

12–13V the tunneling node’s potential would start increasing. The coupled readout node’s

potential would also increase. When the readout potential went over 4.5 V, electrons would

start injecting into the readout floating gate, thus ensuring its potential was clamped below

58



5 V. After this initial programming, VDD was set to 6 V for the rest of the experiments.

See Appendix B for further details. After one-time programming, the input was set to 0

V, the input tunneling voltage was set to 21.5 V for 1 minute and then the floating gate

was allowed to discharge naturally. Readout voltages for the SET and RESET nodes were

measured every 500 milliseconds. The rate of discharge for each node was calculated, and

a state where the tunneling rates would be equal was chosen as the initial synchronization

point for the remainder of the experiments.

3.4.2 FN Tunneling dynamics

The Fowler-Nordheim tunneling current is a function of the floating-gate capacitance CT and

the floating-gate voltage V (t) and is given by:

IFN (V (t)) = CT
d (V (t))

dt
= CT

(
k1
k2

)
V 2 exp

(
−k2
V

)
(3.1)

where k1 and k2 are device specific parameters. Solving 3.1 leads to the floating-gate voltage

V (t) as [137, 90]

V (t) =
k2

log (k1t+ k0)
(3.2)

where k0 depends on the initial condition as:

k0 = exp

(
−k2
V0

)
(3.3)

3.4.3 Weight decay model and FN-DAM dynamics

Many neural network training algorithms are based on solving an optimization problem of

the form [18]:

min
w̄

H(w) =
α

2
|w̄|+ L(w̄) (3.4)

where w̄ denotes the network synaptic weights, L(•) is a loss-function based on the training

set and α is a hyper-parameter that controls the effect of the L2 regularization. Applying
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gradient descent updates on each element wi of the weight vector w̄ as:

wi,n+1 − wi,n = −αηnwi,n − ηn
δL (w̄)

δwi,n

(3.5)

Where the learning rate ηn is chosen to vary according to ηn ≈ O(1/n) to ensure convergence

to a local minimum [94].

The naturally implemented weight decay dynamics in FN-DAM devices can be modeled by

applying Kirchhoff’s Current Law at the SET and RESET floating gate nodes (see Fig. 3.1e).

CT
d

dt
(WS) + IFN (WS) = CC

d

dt
(VSET ) (3.6)

CT
d

dt
(WR) + IFN (WR) = CC

d

dt
(VRESET ) (3.7)

Where CFG + CC = CT is the total capacitance at the floating gate. Taking the difference

between the above two equations, we get:

CT
d

dt
(WS −WR) + IFN (WS)− IFN (WR) = CC

d

dt
(VSET − VRESET ) (3.8)

For the differential architecture, w = WS −WR. Let Vtrain = V SET − VRESET , the training

voltage calculated by the training algorithm. In addition, IFN is substituted from Eqn. 3.1.

Let CC/CT = CR, the input coupling ratio:

dw

dt
= −(IFN (WS)− IFN (WR))

CT

+ CR
d

dt
(Vtrain) (3.9)

dw

dt
=

−
(

k1
k2

)
W 2

R exp
(
− k2

WR

)
+
(

k1
k2

)
W 2

S exp
(
− k2

WS

)
WR −WS

w + CR
d

dt
(Vtrain) (3.10)

Discretizing the update for a small time-interval ∆t

wn+1 = wn +
−
(

k1
k2

)
W 2

R exp
(
− k2

WR

)
+
(

k1
k2

)
W 2

S exp
(
− k2

WS

)
WR −WS

wn∆t+ CR∆Vtrain,n (3.11)

Let µ = WR/WS

wn+1 = wn−
(
k1
k2

)
WS exp

(
− k2
WS

) µ2 exp
(
− k2

WS

(
1− 1

µ

))
− 1

µ− 1
wn∆t+CR∆Vtrain,n (3.12)

60



Assuming that the stored weight (measured in mV) is much smaller than node potential (¿

6V) i.e., w ≪ WR(andWR ≈ WS) and taking the limit (µ → 1) using L’Hôpital’s rule:

wn+1 =

(
1−

(
k1
k2

)
(2WS + k2) exp

(
− k2
WS

)
∆t

)
wn + CR∆Vtrain,n (3.13)

WS follows the temporal dynamics given in Eqn. 3.2,

wn+1 =

(
1− k1

(
2

log (k1n∆t+ k0)
+ 1

)(
1

k1n∆t+ k0

))
wn∆t+ CR∆Vtrain,n (3.14)

Comparing the above equation to Eqn. 3.5, the weight decay factor for the FN-DAM system

is given as:

αηn = k1

(
2

log (k1n∆t+ k0)
+ 1

)(
1

k1n∆t+ k0

)
→ O

(
1

n

)
(3.15)

Note that the assumption w << WS/R in equation (10) makes the mathematical model of

the synapse more tractable but is not a requirement for the memory to function. The caveat

in relaxing the w << WS/R requirement is that the weight decay factor will not scale as

1/n during the initial phases of training. However, as shown in Fig. 3.6(d)-(e) for MNIST

training, the learning process is able to compensate for this deviation.

3.4.4 Chip-in-the-loop linear classifier training

A hybrid hardware-software system was implemented to carry out an online machine-learning

task. The physical weights (w̄ = [w1, w2]) stored in two FN-DAM devices were measured and

used to classify points from a labeled test data set in software. We sought to train a linear

decision boundary of the form:

f (x̄, w̄) = x2 + w1x1 + w0 (3.16)

x̄ = [x1, x2] are the features of the training set. For each point that was misclassified, the

error in the classification was calculated and a gradient of the loss function with respect to

the weights was calculated. Based on the gradient information, the weights were updated in

hardware by application of SET and RESET pulses via a function generator.
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The states of the SET and RESET nodes were measured every 2 seconds and the weight of

each memory cell, i, was calculated as:

wi = 1000× (WR,i −WS,i) (3.17)

The factor of 1000 indicates that the weight is stored as the potential difference between

the SET and RESET nodes as measured in mV. We followed a stochastic gradient descent

method. We defined the loss function as:

Ln (w̄) = ReLU (1− ynf (x̄n, w̄)) (3.18)

The gradient of the loss function was calculated as:

Gn(w̄) =
∂Ln (w̄)

∂w̄
(3.19)

The weights needed to be updated as

wn+1 = wn − λnGn (w̄) (3.20)

Here λn is the learning rate as set by the learning algorithm. The gradient information is

used to update FN-DAM by applying control pulses to SET/RESET nodes via a suitable

mapping function T:

Vtrain,n = T (λnGn (w̄)) (3.21)

Positive weight updates were carried out by application of SET pulses and negative updates

via RESET pulses. The magnitude of the update was implemented by modulating the number

of input pulses.

3.4.5 Memory Retention Model

In FN-DAM the parameter is stored as the difference (w) between the dynamical SET

(WS) and RESET (WR) nodes as w = Ws − WR. Due to resynchronization between the

dynamical nodes, there is a finite time before memory can be read. Moreover, the rate of

resynchronization is a function of the state of the nodes (Fig. 3.2), therefore, w can have a

range of around 1V. Assuming 8-bit storage precision to be sufficient for machine learning
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applications, each memory state is separated from each other by 4 mV. The retention time

corresponds to the time it takes for w to reduce from 8 mV to 4 mV. This time is determined

by the time-evolution of the FN-DAM voltage V (V0, t) which is determined by the parameter

array K = [k1, k2], and a potential V0 that determines the region of operation (Fig. 3.2 ).

Based on equation (3.1) V (V0, t) is given by:

V (V0, t) =
k2

log
(
k1t+ exp

(
k2
V0

)) (3.22)

The parameter array K is estimated from experiments that were carried out at room temper-

ature. Retention time Tret is calculated by solving the following equation:

V (WR + 0.008, Tret)− V (WR, Tret) = 0.004 (3.23)

where WR is varied from 5.5 to 7 V, to simulate different operating regimes. These simulation

results are shown in Appendix B Figure. 3.4a. The retention times could then be estimated

at different operating temperatures by using the Arrhenius equation to estimate k1 as a

function of temperature as

k1 (T ) = k1 (T0) exp

(
−Ea

k

(
1

T
− 1

T0

))
(3.24)

For instance, in our retention estimation shown in Appendix B Figure B.4a, we assumed

activation energy Ea = 0.6 eV , k is the Boltzmann’s constant (8.617eV/K) and T0 = 25oC.

Also, Appendix B Figure B.4b. shows that the retention model given by equations (3.22)

and (3.23) matches the measured results at 100oC.

3.4.6 Chip-in-the-loop MLP training on Fisher-Iris dataset

A larger FN-DAM array chipset was used for chip-in-the-loop neural network training on

the Fisher Iris dataset. The chipset contains 128 individually selectable and programmable

tunneling devices. By utilizing them in pairs, 64 synaptic weights could be implemented. Of

the 64 FN-DAM elements, 51 elements were used to store the training weights of a three-layer

neural network model (5 units corresponding to 4 input features and one for the bias term in

the input layer, 7 units (including 1 bias unit) in the hidden layer and 3 units in the output
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layer). A 5-fold cross-validation analysis was performed by splitting the Iris dataset into sets

of 30 points each. Over 5 training sessions, each of the 5 sets was used to validate the model

trained on the remaining 4 sets (120 points). The training was conducted over 20 epochs. In

each epoch, the training set was randomly shuffled, and a batch size of 10 points was selected.

During each batch update, weight updates were calculated through backpropagation with

stochastic gradient descent. These weight updates were carried out in hardware through

the application of SET/RESET pulses to the corresponding memory cell. Retention of the

trained MLP parameters was verified using bake experiments as described in Appendix B

and summarized in Fig. B.9 and B.10.

3.4.7 FN-DAM based CNN Implementation

The performance of FN-DAM model was compared to that of a standard network model. A

15-layer convolutional neural network was trained on the MNIST dataset using the MATLAB

Deep Learning Toolbox. For each learnable parameter in the CNN, a software FN-DAM

instance corresponding to that parameter was created. In each iteration, the loss of the

network function and gradients were calculated. The gradients were used to update the

weights via the Stochastic Gradient Descent with Momentum (SGDM) algorithm. The

updated weights were mapped onto the FN-DAM array. The weights in the FN-DAM array

were decayed according to Eqn. 3.20. These weights were then mapped back into the CNN.

This learning process was carried on for 9 epochs. In the 10th epoch, no gradient updates

were performed. However, the weights were allowed to decay for the last epoch (note that

in the standard CNN case, the memory was static). A special case with a 0.1% randomly

assigned mismatch in the floating gate parameters (k1 and k2) was also implemented.
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Chapter 4

Cryptographic Key exchange based on

FN-dynamical system

This chapter presents the application of the FN-dynamical system in the cryptographic

security domain. The FN-dynamical system was previously used as a time-keeping device and

also time itself has been used in this work as a one-way function for the key exchange protocol.

As such, from this point onward the memory elements will be referred to as FN-timers. This

work exploits both the dynamic nature of the information stored as well as the fact that the

dynamical system is self-powered to design a key exchange framework that will be secure

even with the advent of a quantum computer (proved in the following sections). The results

in this chapter are based on [106].

4.1 Introduction

Securing information exchange with internet-of-things (IoTs) is becoming ever more important

due to the proliferation of these platforms in domains ranging from infrastructure-IoTs [11]

to medical-IoTs [12]. In one study [1] it is claimed that around 98% of the IoT data traffic is

unencrypted and hence vulnerable to a data breach. Conventional data encryption techniques

like RSA are too computationally prohibitive to be universally implemented on these low-

resource platforms and reducing the computational complexity makes the approach vulnerable

to quantum attacks. For instance, it is estimated in the literature that a quantum computer

with 8194 logical qubits using Shor’s Algorithm would be able to break the Rivest-Shamir-

Adleman(RSA)[108] system with a key size of 4096 bits in 229 hours while for Discrete log

problem with a key size of 521 bits, it would take 55 hours for a quantum computer with 4719

logical qubits, again using the Shor’s Algorithm[95]. Symmetric key algorithms like Advanced

Encryption Standard (AES-256) can be customized for IoT platforms and are considered
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Figure 4.1: Framework underlying SPoTKD protocols: the synchronization and time-
irreversibility of self-powered timers is exploited to implement one-way functions and facilitate
secure key exchange over public channels.

to be secure against quantum attack [95], provided the security of the initial key-exchange

can be guaranteed. Quantum key distribution(QKD)[16] which is based on the principles of

quantum-mechanics, like quantum entanglement [41] or the no-cloning principle [50],[101]

could be used to guarantee the security of the initial key-exchange. However, one of the

major drawbacks of current state-of-the-art QKD systems is that they require dedicated and

specialized peer-to-peer communication links [124],[37],[72],[134]. Not only do these links

require careful maintenance and calibration to ensure quantum-coherence, but these systems

are also expensive and not portable. Hence, current QKD systems cannot be scaled for

internet-scale key distribution [62],[19] and communications involving lightweight IoT devices

with resource constraints will still be vulnerable to quantum attacks.

In this work, we propose a hardware-software Self-Powered Timer based Key distribution

(SPoTKD) framework that does not require any modifications to the existing communication

infrastructure, can be scaled to a large number of IoTs, and is potentially secure against
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quantum attacks. The approach relies on the trend that silicon-based chipsets with the

capability of integrating billions of transistors and memory elements [32] can be manufactured

on a large scale and at a low-cost [55]. If a physical feature on these chipsets could be exploited

to implement a secure one-way function, then a hardware-software approach could be used to

support key distribution over public channels. In this work, we propose one such method

that exploits the synchronization capabilities and security features of our previously reported

[137] self-powered timekeeping devices. The basic framework for SPoTKD is illustrated in

Figure 4.1 where multiple identical copies of self-powered timer chipsets are openly distributed

to all the users. Each of the timers on these chipsets is synchronized with its software clone

running on a server. The key exchange between the server and the user is achieved based

on this synchronization and time-evolution is used to implement a secure one-way function.

It is to be noted that once the secret keys have been established and exchanged between

the two parties, traditional symmetric cryptographic algorithms can be used for secure

communications and user authentication[9].

The rest of this chapter is organized as follows. Section 4.2 briefly describes other related

protocols based on hardware-software based key distribution. Section 4.3 provides a brief

background of the previously reported self-powered timers and their essential security features

that have been exploited in the design of the SPoTKD protocols. In Section 4.4, we propose

two SPoTKD protocols, one between a server and any user, and the other between two users.

In Section 4.5 we analyze the security of the proposed protocols under various adversarial

attacks. The robustness of the protocol to operating and hardware artifacts have been

analyzed in Section 4.6 and in Section 4.7 we introduce a variant of the protocol that uses

error-correction codes to improve noise-robustness. We conclude the chapter in Section 4.8

with discussions about the challenges.

4.2 Related Works

In the literature, a few hardware-software key exchange methods have been proposed. In

[93] a hardware-software public-key cryptography system for wireless networks was proposed

based on Rabin’s Scheme [103]. However, the security of Rabin’s Scheme relies on the

difficulty of factorizing large numbers, hence, it has similar vulnerabilities as the classical

DH or RSA methods. Meanwhile, the one-way function (time irreversibility) implemented
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in SPoTKD is based on the principle of physics. Thereby SPoTKD does not suffer from

such vulnerabilities. In [36] a hardware-software key exchange technique was proposed that

exploited correlations across chaotic wavepackets in classic optical communications channels.

However, the method still requires peer-to-peer connectivity between the users and hence

has similar scaling disadvantages as QKD methods. On the other hand, SPoTKD uses

silicon-based chipsets containing self-powered timers. Therefore, SPoTKD has the advantage

against such key distribution methods for platforms with low computational resources. The

hardware-software approach proposed in [66] used chaos synchronization to distribute random

keys over public channels. However, due to the lack of reliable synchronization, this approach

incurs significant errors during decryption. Recently, Physical Unclonable Function(PUF)

based hardware-based encryption key distribution has been proposed. A specific variant of

this technique, described in [14] as Public Physical Unclonable Function(PPUF) has been

used for public-key cryptography and leverages the difficulty of accessing physical information

stored on chipsets. However, in PPUF the stored information is static in nature and hence is

potentially vulnerable to machine learning attacks [34, 86]. Whereas in SPoTKD the keys

are derived from dynamic information that changes with time.

4.3 Self-powered Timer Security Primitives

The SPoTKD protocol exploits the physical features of self-powered timers to ensure the

security of the key exchange. The design and the operating principle of self-powered timers

have been previously reported in [137, 138]. In this section, we discuss the basic security

primitives offered by the timer’s physical response that will form the axiomatic core of the

security analysis for SPoTKD that is presented later in this chapter.

4.3.1 Self-powered timers are immune to power side-channel at-

tacks

A simplified equivalent circuit model of the self-powered timer is shown in Fig 4.2(a) where

a leakage-current Jtunnel is used to discharge a floating-gate capacitor CT . Thus, once the

floating-gate capacitor CT is charged or programmed initially, no external power is required to

drive the dynamics of the discharge process. The change in the floating-gate charge/voltage
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Figure 4.2: (a) Micrographs of self-powered timers (labeled as D-C1, D-C2, D-C3, D-C4) with
different form factors and features that determine the parameters of the timer behavioral
model in equation 4.1. The equivalent circuit model for a single timer along with the readout
circuit is shown in the inset. (b) The temporal responses were measured using these timers
for (a) different initialization conditions. (c) Synchronization of a timer’s temporal response
with the same form factors across multiple chipsets after the initial transient response. (d)
Desynchronizing the temporal response of different timers by coupling an external source of
energy into two of the timers at the time-instant denoted by A.

is monotonic with respect to the time elapsed and this feature has been previously used for

time-keeping, synchronization, and authentication [137, 5]. For this work, the self-powered

operation decouples the timer from the external power supply. This provides security against

any power side-channel attack that might be aimed at gaining knowledge about the current

state of the timer by observing fluctuations in the supply-current.
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4.3.2 Self-powered timers are immune to electromagnetic side-

channel attacks

The leakage current Jtunnel in the self-powered timer is implemented using Fowler-Nordheim(FN)

tunneling of electrons through a thin gate-oxide barrier. In [138], we have shown that the

operation of the timers is robust even when the FN tunneling current is as low as one

electron per second (or less than an attoampere). From a security point of view, the low

tunneling current practically eliminates any electromagnetic (EM) emission and hence any

EM side-channels. Also, any unauthorized attempt to access the timer-state using an EM

probe desynchronizes or destroys the state of the timer.

4.3.3 Dynamics of the self-powered timers can be synchronized

One of the essential attributes of the timer that is important for the realization of the

SPoTKD protocol is that the timer’s temporal responses can be synchronized not only with

respect to each other but also to a well-defined behavioral (or software) model. For this work,

we use a specific form of the timer behavioral model that is given by

Itimer(t) = p3 exp
[
− p2

log(p1t+ p0)

]
. (4.1)

where Itimer(t) is the current measured at time instant t quantifying the state of the timer.

The current is measured using a read-out metal-oxide-semiconductor field-effect transistor

(MOSFET) whose gate is coupled to the floating-gate, as shown in Fig. 4.2(a). The behavioral

model in equation 4.1 assumes that the read-out transistor is biased in a specific regime,

details of the derivation of the behavioral model are given below.

In [137] it was shown that the floating gate(FG) potential of the timer can be described using

a first-order differential equation

VFG(t) =
βtox0

ln(p1t+ p0)
(4.2)

where VFG(t) is the potential of the timer at time instant t and p0 and p1 are the model

parameters defined as

p0 = exp
(βtox0

V0

)
, p1 =

A0αβ

CT tox0
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Here V0 refers to the initial voltage, A0 is the tunneling junction area, tox0 is the average oxide

thickness of the device and CT is the total capacitance of FG. α and β are functions of the

material properties and depends on the technology used for fabricating the timers. When the

floating gate is coupled to the gate of a readout MOSFET which is biased in weak-inversion,

then its drain to source current(Itimer(t)) can be expressed as

Itimer(t) = I0 exp
[Kp(Vs − VFG(t)− VT )

UT

]
(4.3)

where Vs is the source voltage, VT is the threshold voltage of the MOSFET, I0 represents

a characteristic current of the MOSFET, Kp is the gate efficiency and UT is the thermal

voltage. Substituting VFG(t) from equation 4.2 we get

Itimer(t) = p3 exp
[
− p2

ln(p1t+ p0)

]
(4.4)

where p2 =
Kp

UT
βtox0, and p3 = I0 exp

[
Kp(Vs−VT )

UT

]
The tuple P = [p0, p1, p2, p3] in equation (4.1)

are the timer parameters that are determined by the device form factors and the device

initialization conditions. Figure 4.2(a) shows an example of a system-on-chip implementation

that integrates different timer structures with varying form-factors. The responses of these

timers with different initialization conditions are presented in Figure 4.2(b) which shows

that the temporal dynamics of each timer is unique and is determined by the tuple P . We

have previously shown that for a fixed set of timer parameters P the mathematical model

in equation 4.1 can capture the temporal behavior of the timer for more than a year with

an accuracy of greater than 0.5% [138]. This is shown in Figure 4.2(c), where the timers

with the same form-factor but integrated on different chipsets remain synchronized with

each other. The deviation between the timer’s responses is in the range of pico-amperes

and this synchronization error can be attributed to the measurement noise and not to the

synchronization error. For the SPoTKD protocol, the synchronization between the behavioral

model (or software timer) and the hardware timers will be used for key exchange. The key

exchange will exploit the asymmetry between the software timers and hardware timers where

that the hardware timer cannot be rewound (or time-irreversible) whereas its software clone

can be rewound to any previous time instant. This asymmetry is exploited as a one-way

function for securing the SPoTKD protocol. Note that the parameters P which determine

the dynamics of each timer, are never revealed publicly and therefore function as a private

key in our protocol. Later in Section 4.5, we show that it is practically impossible to extract

these parameters from measurements on the hardware timer itself.
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4.3.4 Self-powered timers are designed for one-time read and

tamper-resistant

In [138] we showed that the synchronization between the timers could be broken by injecting

an external signal into the floating-gate. This is demonstrated in Figure 4.2(d) where three

timers (with similar form factors) are synchronized with respect to each other till time-instant

’A’. Then at time-instant ’A’ an external energy-source is coupled to timers 2 and 3 (in this

case using capacitive coupling). As a result, these timers become de-synchronized from each

other. We will use this controlled de-synchronization feature to intentionally destroy the

dynamical state information stored on each timer once its state has been accessed. Thus,

each of the timers can only be used once to generate the key-string after which the state of

the timer is destroyed (or desynchronized). Note, the desynchronization of the timer can

also result when the timer is unintentionally probed (using hardware delamination or using

electromagnetic probing). This feature makes the basic timer tamper-resistant.

Figure 4.3: Dynamic binary state s(t) of a timer generated after the analog current is read-out
with an ADC. Illustration here shows the state s(t) corresponding to a 4-bit ADC.
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4.3.5 Bit generation using self-powered timer

We will assume that the state of the self-powered timer can be measured using an on-chip

analog-to-digital converter(ADC) where the least-significant-bit (LSB) represents a modulo-2

measurement of the timer value. Denoting the binary state s(t) ∈ {0, 1} of the timer as the

LSB obtained after the Itimer(t) is measured at a time-instant t, then s(t) can be expressed as

s(t) = ⌊Itimer(t)

δ
⌋ mod 2 (4.5)

where δ is the resolution of the ADC. This is illustrated in Figure 4.3 where a 4-bit ADC

is used to measure Itimer(t) to generate the LSB or s(t). For the protocols proposed in this

work, we will also assume that once the binary state of a timer is measured, its state is

destroyed through a process of desynchronization, as described in the section 4.3.4. This

implies that each timer can only be used once to generate a single bit ’s(t)’ at a given time t

for key-generation.

4.3.6 Summary of hardware security primitives offered by self-

powered timers

Here we summarize the security primitives that are offered by self-powered timers and will

serve as axioms for the proposed SPoTKD protocol:

SP1: It is practically impossible to access any information about the secret parameters or

the state of the timer using side-channels (power or electromagnetic) attacks.

SP2: The temporal behavior of each timer is unique and is determined by the timer’s secret

parameter tuple P .

SP3: The binary state of a timer s(t) as defined in equation 4.5 is dynamic in nature and

changes with time. As a result, the state of a timer is unpredictable without knowledge

about the secret parameters of the timer.

SP4: The hardware chipsets are designed in such a manner so that users are limited to

only the output of the chipsets after following a specific protocol (discussed in Section

IV). Any attempt to snoop on the hardware chipsets otherwise would result in the

destruction of the information embedded in the timers.
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SP5: The state of each timer in a chipset can only be accessed once, after which the state is

erased or destroyed.

SP6: The number of hardware chipsets that are available at any given instance of time is

finite.

Distribute Chipsets

Choose ‘G’ hash timers and 
‘N’ key timers at time ‘t’, 

To Generate key KB = {Q(t)}N

At t + Δt broadcast indexes of 
timer used and sampling time 

‘G+N’ dimensional tuples (O, H, t)

Compute key KB from tuples

Encrypted CommunicationEncrypt/Decrypt Message M
CM = E(M,KB) /  M = D(CM,KB)

Encrypt/Decrypt Message M
CM = E(M,KB) /  M = D(CM,KB)CM = E(M,KB)

Stored Timer Parameters 
Pi = {pi0 ,pi1 , pi2 , pi3} 

i=index of timer on chip

Wait Δt seconds

Figure 4.4: Basic SPoTKD protocol between the server and a user. Here E(M,KB) represents
an encryption function where message M is encrypted with key KB, D(CM ,KB) is the
decrypting function where CM is the cipher text being deciphered with key KB.

4.4 SPoTKD Protocol

The basic SPoTKD protocol is shown in Figure 4.4. A server creates multiple replicas

of chipsets each of which integrates a set T of C ∈ Z+ timers. Each timer in the set is

assumed to be initialized according to a parameter tuple P i, where 1 ≤ i ≤ C, as defined

in equation (4.1). Note that some of the parameters (initial charge on the floating-gate) in

the tuple are programmed by the server and some of the parameters (device form-factor) are

fixed post-fabrication. Also, note that only the server has access to this information, and

is kept secret from the users. These identically programmed chipsets are then distributed

to all the users over a public distribution channel, as shown in Fig. 4.1. When an intended

user wishes to communicate with the server, they arbitrarily choose to measure the binary

states of two sets of timers which will be referred to as ’hash’ timers and ’key’ timers. The
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objective is to use the G ’hash’ timers and N ’key’ timers to generate an N bit long binary key

KB ∈ {0, 1}N . To achieve this the outputs of G randomly chosen hash timers sH1(t), .., sHG
(t),

1 ≤ H1, .., HG ≤ C measured at time instant t are XOR-ed with each other to generate a

single bit X(t) according to

X(t) = sH1(t)⊕ sH2(t)⊕ sH3(t).....⊕ sHG
(t) (4.6)

Note that the time instant t ∈ R+ is referenced according to a universal standard time. The

key bits QL(t), L = 1, .., N are then generated at time t by XOR-ing the binary states of each

of the ’key’ timers sO1(t), .., sON
(t); 1 ≤ O1, .., ON ≤ C with X(t) according to

QL(t) = sOL
(t)⊕X(t) (4.7)

to generate KB = {QL}N .Note that since the state of each of the timers can only be accessed

once, the ‘hash’ and the ’key’ timers need to be different, namely {O1, .., ON}∩{H1, .., HG} = ∅.
Also, note that the user can only access the N bit key string {QL}N and not the binary

states of the ’key’ timers or X(t) from the hardware chipsets.

In the next step of the SPoTKD protocol, as shown in Figure 4.4, the user waits for a random

time-duration ∆t seconds after which they broadcast a G+N dimensional tuple (O,H, t)

over the public channel. Note that here t indicates the time at which the G ’hash’ and

N ’key’ timers were accessed and only the indices of the timers are broadcasted (and not

measured output). The server then uses the tuples (O,H, t) and its knowledge of the ’secret’

parameters Pi, 1 ≤ i ≤ C to decipher the binary states of all these timers and compute the

key KB completing the key exchange.

The SPoTKD protocol shown in Figure 4.4 is suitable for communicating between a user

and a server that owns and initializes all the timer chipsets. However, key exchange between

two users can also be facilitated with the help of the server acting as a trusted third party,

as shown in Figure 4.5. In this protocol, both the users broadcast their tuples (O,H, t)A

and (O,H, t)B over a public channel. The server deciphers both keys, KA and KB according

to previous protocol. The server then generates a new key KR which is a function of the

keys KA and KB. This function f : {0, 1}2N → {0, 1}N is decided by the server and can
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Figure 4.5: SPoTKD protocol for exchanging keys between two users with the server acting
as a trusted third party.

be any mathematical operation ranging anything from multiplication to complex hashing.

This operation is never revealed and changed for every session. The server then sends cipher

texts CA = E(KR,KA) to user A and CB = E(KR,KB) to user B containing the key KR

encrypted using KA and KB respectively. The users can decrypt the cipher text to know

the secret key KR. For further communication, each user uses this key KR to encrypt and

decrypt their messages with each other. Since all keys are randomly generated and have

never been used before then anyone intercepting the cipher text will not gain any information

regarding the secret key being used. Note that in this protocol the users do not need to

match either the timers they used in the chip or the time at which they will generate their

respective keys. They only need to agree upon their time of communication and can generate

their keys beforehand individually. In order to update any new session key between two users,

the users would need to use a new set of timers and follow the same protocol for exchanging

keys with the server acting as the trusted third party.
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4.5 Security and Performance Analysis

According to the recommendation by the National Institute of Standards and Technology

(NIST), a 256-bit key is sufficient for symmetric key algorithms to be secure [49] even in

the presence of a quantum computer. While using Grover’s algorithm, a quantum computer

with 6681 logical qubits and approximately 3.36× 107 physical qubits would require around

2.29×1032 years for a brute force search attack on AES-GCM cryptosystem with a 256-bit key

size [95]. Hence, for the rest of the chapter, we will show test results corresponding to 256-bit

keys, generated from G = 128 hash timers and N = 256 key timers for all analysis purposes.

Note that, the number of hash timers used in key generation determines the complexity of

the key generation. We will show that G = 128 hash timers are sufficient for the protocol to

be secure. Increasing the number of hash timers would further increase the complexity but

would come at the cost of noise robustness. Since the scope of this work is only to propose a

secure key exchange protocol that can be used for symmetric-key encryption schemes, our

security analysis will only focus on showing that the key exchange protocol is quantum secure.

Figure 4.6: Pass percentage obtained using the NIST randomness test suite applied to the
keys generated using the SPoTKD protocol, as a function of the resolution b of the ADC
used to measure the state of the ’key’ timers.
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For our first analysis, we consider the scenario where an attacker simply attempts to guess

the key without any information about the key generation system. As long as the keys that

are generated from the timers are completely random in nature, the attacker will not gain

any unfair advantage. So we tested the secret keys generated according to the SPoTKD

protocol described in Section 4.4 with the NIST test suite for checking the randomness of bit

stream[13]. The suite usually consists of fifteen different tests to measure the randomness

in a certain bitstream. However, a few of these tests require a large sequence of bitstreams

which does not apply for a length of 256-bit keys. Therefore, in our analysis, we show the test

result for 5 of the suitable tests. The binary states for the hash timers were always measured

with an 11-bit ADC irrespective of the key timers. This was performed to ensure better

noise robustness. If a higher resolution ADC was used to sample the hash timers, then the

noise robustness of the protocol would decrease (discussed in Section VI). Using Monte Carlo

simulations, we sampled 106 keys at random time instances using a b-bit ADC (or 2b− 1 level

quantizer) for the key timers. We extracted the parameter tuples P = [p0, p1, p2, p3] from

the timer responses shown in Figure 2(b) and then randomized within the range of these

actual hardware parameters to represent unique timers in our simulations. This ensures that

each timer used in the simulation can actually be realized in hardware chipsets. Figure 4.6

shows the pass percentage, i.e. the percentage of keys from the 106 samples that passed the

test, as the resolution ’b’ of the ADC is varied for the key timers. We can observe from the

plots that for large values of ’b’, almost all the generated keys pass the test. The randomness

degrades for ADC resolution less than 8 bits showing that a 9-bit ADC for the key timers

should be sufficient to generate high-quality keys. This shows that keys derived from the

timer responses are completely random in nature and any attempt to guess the key would

result in a brute-force search which is the same as breaking the AES-256 encryption scheme

discussed above. Moreover, it also means that the binary state of each timer is uncorrelated

with other timers and an attacker cannot simply sample the binary states of any one timer

and can predict what other timers’ response would be at any given point in time. This is in

accordance with the axioms SP2 and SP3 discussed in Section 4.3.

Next, we consider the information that is available to an attacker and investigate whether he

can gain any advantage while predicting the key-string with the information available to him.

So, here we note down all the information and resources about the key exchange framework

that is potentially available to an attacker:
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I1: We assume that the attacker can passively eavesdrop on the communications over the

public channel. This means that the attacker would know which timers were used for a

particular key-string.

I2: We also assume that the attacker has access to the hardware chipsets.

I3: The attacker knows the underlying principle of the timers’ behavior and other logistics

of the protocol as described in this work.

I4: The attacker has access to a fully functioning quantum computer.

Now considering I1 and I2, a potential attack could be launched by the adversary where

they sample the timers on their copy of the chipset as soon as the user broadcasts a tuple

(O,H, t) over the public channel. However, the key that the attacker generates will be at a

time instant t+∆t, where ∆t is the time that the user waits after they have generated the

key. Since the timer values are dynamic in nature, the key generated by the attacker KE

will be different from the key generated by the user KB. To quantify the disparity between

the keys, we use Shannon information entropy to measure how much information can the

attacker gain about KB using their own key KE. The average Shannon information entropy

contained in each bit generated by the attacker can be expressed as

HSE = −d log2 d− (1− d) log2(1− d) (4.8)

where d is the average difference in bits between KB and KE. The parameter HSE quantifies

the uncertainty of the attacker for every bit of the key KB that he or she tries to predict

using KE. When d = 0 i.e. the attacker generates the same key as the user, the information

entropy of the attacker is zero, this is because the attacker can predict the key with perfect

certainty. A similar argument can be made for the other extreme scenario, when d = 1, as the

attacker can simply invert each bit that he or she generates and produce KB. The entropy

HSE is also equal to 0 in this case. On the other hand, when d = 0.5 exactly half of the bits

of KE do not match with KB. This means that if the attacker were to randomly guess all the

key-bits they would, on average, end up with the same number of matched bits. Therefore,

the attacker has 1 bit of uncertainty for every bit generated and zero information gain on the

key. The entropy HSE thus takes the maximum value of 1 in this case.

In order to mimic such a kind of attack we sampled a set of timers and generated keys at

random time instances, representing the user’s key, and also sampled the same set of timers
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at a later instant, which represents the attacker’s key. After that, we calculated the entropy

for each sample. Figure 4.7 shows the average uncertainty per bit generated by the attacker

when he or she samples the same timer array used by the user. We can observe from the

figure that for keys generated with high-resolution ADC, the attacker has almost 1 bit of

uncertainty per bit. This means that the attacker is unable to gain any information about

the user’s key from sampling their own timer chipset. The overall trend for the curves with

the same wait period (which corresponds to ∆t) can be explained by the fact that at higher

resolution, the LSB contains minimum information about the whole dynamic response of the

timer. Moreover, the LSB changes much more frequently, and therefore key generated using

LSB is more difficult to predict for the same waiting period. It gets increasingly easier to

predict as the resolution of the ADC is decreased since the LSB changes slowly and sampling

yields more information. The uncertainty can be increased for a lower-resolution ADC by

Figure 4.7: Uncertainty per bit measured for three different waiting periods ∆t as a function
of the resolution b of the ADC used for measuring the state of the ’key’ timers.

increasing the waiting period ∆t which is shown in Figure 4.7 where the curve shifts towards

the left as we increase ∆t. This is because as ∆t is increased, the probability that an ADC

bit has changed will also increase, thereby sampling the bits will not provide any useful

information.
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However, average Shannon information entropy HSE is agnostic of the position of the

mismatched bits. For instance, one pathological case could be that always the first half of the

key-string obtained by the attacker is mismatched while the second half always matches with

the true key-string. In this scenario, HSE would still be 1, but the attacker can easily guess

the correct key-string. In our next analysis, we show that the probability of such a case is

negligible (practically does not exist). Using Monte Carlo simulations with ADC resolution

b=12-bits, we counted how many times each of the key-bits in the 256-bit key string gets

mismatched among all the iterations and calculated the probability of mismatch for each

bit index. Figure 8 shows the probability of mismatch for each bit index after different

waiting periods. We can observe that as the waiting period increases each bit index has

an approximately equal probability of 0.5 for being mismatched. This shows that there is

no bias with respect to the positioning of the mismatched bits and each key bit generated

by the attacker has an equal probability of being correct or incorrect which is the same as

purely guessing. For a lower waiting period, the probability of mismatch decreases for all the

bit indices which is in accordance with our previous analysis, but the mismatch probability

is approximately the same irrespective of the bit position. Thus, as long as a reasonable

resolution ADC is used for measuring the state of the timer and the waiting period is large

enough, the attacker will not be able to predict what key string was generated by a user.

Therefore, I1 and I2 do not reveal any information about the secret key and the attacker

would still need to resort to brute force search for a successful attack. So far we have shown

that the key exchange protocol is secure based on the facts that the keys used are completely

random in nature and from the public information available during the key exchange the

attacker can not gain any information about the random keys. Next, we consider I3 available

to an attacker and investigate whether they could predict the keys by using their knowledge

about the timer behavioral (or software) model. However, since they do not have access

to the timer initialization parameters Pi, they cannot use the public information (O,H, t)

to decipher the states sOl
(t). Also, the attacker is unable to rewind the hardware timer on

their copy of the chipset to measure the states sOl
(t) going back in time. Therefore, the

only way to predict KB would be to solve equation 4.7 for each bit of the key for finding the

secret parameters P1, P2...PN . In the next set of analyses, we will show that it is practically

impossible to find the secret parameters from the hardware chipsets themselves.

First, we consider equation 1 where the parameters could be regressed if a timer is sampled

multiple times to measure Itimer(t) at different time instances. However, this is only true if the

attacker can get access to the precise value of Itimer(t). From equation 2 we observe that the
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Figure 4.8: Probability that the binary states of timers used in key generation have changed
after the waiting period ∆t hours. Here the resolution of the ADC used for key generation
is b=12-bits. The variance across different Monte-carlo trials is highlighted by the shaded
region.

binary state of the timer only provides a single bit of information about Itimer(t). Moreover,

axiom SP4 dictates that even the single bit of information about Itimer(t) is XOR-ed with

other G hash timers’ binary states. The attacker has only access to the XOR-ed output due

to the manner in which hardware chipsets are designed. Therefore each bit of key-string

the attacker samples from the hardware chipsets will be derived from G + 1 timers. Note

that there is no analytical solution for equation 4.7 so the attacker will have to resort to a

brute-force numerical search. We now show how the SPoTKD protocol is secure against such

attacks under the standard model.

Claim 1. The SPoTKD protocol is secure under the standard model.

Proof. Each key bit QL(t) is derived from the temporal responses of G+ 1 timers where G

is the number of hash timers used in key generation. Now, the temporal response of each

timer is determined by the secret parameter tuples P = [p0, p1, p2, p3]. Therefore, each key

bit, in turn, is determined by G + 1 tuples of P . We define pTotal as the total number of
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parameters from which each bit is derived which is given by

pTotal = 4(G+ 1) (4.9)

This means that the search space would be a matrix with pTotal dimensions. Now, let R

be the range of possible values for each of the pTotal parameters. Then the total number of

elements in the matrix i.e. the total search space SPTotal would be given by

SPTotal = R4(G+1) (4.10)

Even though the parameters P are determined by the timer initialization conditions and timer

form factors, they are calibration parameters. Assuming a double-precision floating-point for

the parameters implies that R = 263. This yields

SPTotal = 2252(G+1) (4.11)

For G = 128 hash timers (which were used in our simulations for generating the key

string) this would result in a search space of 232508 possible combinations. Therefore, an

attacker employing a brute-force search strategy would require 232508 bits of storage, which is

prohibitively large. Moreover, even if the attacker uses the fastest computer in the world

[126], which can perform 1019 computations per second, it will take them approximately

232444 seconds, or 232419 years to search the entire space. Since we assumed that the attacker

is only constrained by the computational/storage resources and time available to them, hence,

under the standard model, the SPoTKD protocol is secure.

Next, we consider I4 where we assume that the attacker has access to a quantum computer

with large enough storage space and computational resources to search the aforementioned

solution space in a reasonable amount of time. In this analysis, we show that our protocol

remains secure if we impose a physical constraint that limits the number of hardware chips

that the attacker can use for measurement.

Claim 2. The SPoTKD protocol is resistant to quantum attacks.

Proof. Equation (4.7) has no unique solution and since the parameters are randomly chosen

by the server, every solution within the search space is equally likely to be the correct one.

The only way to eliminate possible combinations from the solution set would be to sample
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each hardware timer at multiple time instances and solve equation 4.7 repeatedly. Since

equation 4.5 is symmetric the expected size of the solution set, denoted as E(SPJ), after each

sampling reduces by

E(SPJ) =
SPTotal

2J

=
2252(G+1)

2J

(4.12)

where J ∈ Z+ indicates the number of samples. This means that if the attacker can sample

each timer enough number of times, they can find out the initialization parameter P . However,

since the timers are designed for one-time reading (Axiom SP5 in section 4.3), the attacker

is unable to make multiple measurements on a timer using the same chipset. For each

measurement, the attacker would therefore require a new chipset. Thus, there is an upper

bound to the number of measurements that an attacker can perform, which is the total

number of chipsets CTotal available. Therefore we have

J ≤ CTotal (4.13)

Now if we constrain the total number of chipsets CTotal according to

CTotal < 252(G+ 1) (4.14)

then the attacker would still be unable to find the unique solution to equation 4.7 since

E(SPJ) > 2 ∀J (4.15)

Note that, the constraint here for an attacker is not the computational power available to

them but rather the physical resources they can acquire. Thus, the key exchange protocol is

resistant to quantum attacks.

In the next set of analyses, we want to show how the proposed key exchange protocol is

secure against the most popular kinds of attacks.

Claim 3. The proposed protocol is secure against man-in-the-middle attacks.

Proof. During the SPoTKD protocol, a user publicly broadcasts the tuples (O,H, t) indicating

the timer indexes the user sampled along with the time at which they were sampled. For
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an attacker to successfully impersonate the server, they will need to know the secret timer

parameters P , which is never revealed during any phase of the protocol. Also, our previous

analysis shows that it is practically impossible to find out these parameters using brute-force

search. Note that all the publicly distributed chipsets store the same information on the timers

and authentication is carried out only after the server and user have established a secure

channel subsequent to a successful key exchange. Thus, the attacker cannot impersonate any

user.

Claim 4. The proposed protocol is secure against replay attacks.

Proof. Once a set of timers is used for key exchange, they are desynchronized with respect

to the server’s model (Axiom SP5 in section 4.3). Thus, during every session, a new set

of timers is used to exchange keys. This means that a new key is generated for every new

session. Also, during the key exchange protocol, the measured states of the timers are never

made public. Therefore, the attacker cannot use any information from previous sessions to

their advantage. This implies that the SPoTKD protocol is secure against replay attacks.

Claim 5. SPoTKD protocol is secure against backward and forward traceability attacks.

Proof. In our protocol, the keys generated are random in nature as shown in figure 4.6 that

are not predictable. Also, each key is used only once. Therefore the key exchange at session

instance SSa can not be inferred from other keys at any other session SSb, where a ̸= b.

Moreover, we have shown in the previous claims that inferring any knowledge about the

secret parameters is also practically impossible. Therefore, the SPoTKD protocol is immune

to forward or backward traceability attacks.

Claim 6. SPoTKD protocol is resistant to de-synchronization attacks.

Proof. The robustness of the timer response ensures that the dynamics of the hardware timer

remain synchronized with its software model on the server. According to Axioms SP1-SP4

in section 4.3.6, the timer’s dynamic response on any user’s chip cannot be programmed

or altered by the attacker unless and until the attacker gets access to the chip physically.

In such a case where the user suspects that his or her chip may have been compromised

physically by an attacker, the user can simply discard the chip and procure a new one, since
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all the chipsets have the same information that is stored. Thus, the protocol is resistant to

de-synchronization attacks.

In addition, the construction, operating principle and inherent security of the quantum-

tunneling device i.e. the self-powered timer [137] also prevent the attacker to probe the state

of the timer by using any side-channel (power or electromagnetic) without affecting the state

of the timer (Axioms SP1-SP6 in section 4.3.6). Therefore, in this regard, the timer chipset

emulates a quantum communication channel [9] but uses an analog dynamical system that is

secure against any side-channel attacks.

We have evaluated the performance of our proposed protocol with similar hardware-software

based key exchange protocols such as PPUF [14] and some state-of-the-art key exchange

protocols such as RSA [108] that are currently being used. The comparison is summarized in

Table 1 with respect to criteria such as key length, security strength, computational cost, and

scalability. Here security strength measures the number of trials required to brute-force a

key irrespective of the key length. A 128-bit security means 2128 trials to break the protocol.

We also compared the computational resources required to perform a single key exchange

in terms of the number of computation cycles. And finally, scalability indicates the ease at

which the key exchange protocol can accommodate a large number of users. Since our goal

is to provide secure key exchange among a large number of users using low resources, these

features are extremely important to evaluate and compare different designs.

We start by evaluating the security strength of each protocol. For PPUF using 1024 bit

key, an attacker needs to perform 1.7x1029 cycles of simulation on average to find the secret

key [14]. Accounting for overhead computation this roughly translates to a 112-bit security.

According to NIST 2020 recommendations, RSA requires a key length of 3072-bits to achieve

a security strength of 128-bit. Now, since both QKD and SPoTKD use symmetric key

encryption (AES), a 256-bit key length corresponds to a security strength of 256-bit. Due to

the use of a large key size, both PPUF and RSA are computationally expensive. The PPUF

based key exchange protocol requires approximately 1016 cycles of computation [14] and RSA

requires O(107) computational cycles [107]. Even though QKD uses a much smaller key-string,

additional computation needs to be performed for the error reconciliation protocol. The

computational complexity is of order O(104) for a 256-bit key using common error-correcting

code [24]. Meanwhile, for the basic SPoTKD, the user needs to simply measure the state

of the timers once and perform G = 128 bit-wise XOR from the hash timers to generate
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Table 4.1: Performance Comparison between SPoTKD and other state-of-the-art key exchange
protocol

Key Security Computational

Protocol Length Strength Cost Scalability

(bits) (bits) (no. of cycles)

PPUF[14] 1024 112 O(1016) High

QKD[16] 256 256 O(104) Low

RSA[108] 3072 128 O(107) High

SpoTKD 256 256 O(102) High

the bit X(t). This can be done in log2(G) computational cycles. After that, the outputs of

the N key timers are XOR-ed with the bit X(t) in N cycles. In this regard, our protocol

is by far the most efficient. If error-correcting SPoTKD is used(discussed in Section VII),

the computational cost will be similar to that of QKD. In addition, we have shown in our

analysis that our protocol is resistant to quantum attacks, similar to QKD. In comparison,

however, QKD is expensive and in its current state is not portable or scalable to support

a large number of users. On the other hand, our protocol is based on silicon fabrication

87



technology which is relatively inexpensive at a production scale and the fabricated chipsets

can be easily distributed to millions of users.

Figure 4.9: Improvement in noise-robustness of the SPoTKD protocol when the resolution b
of the ADC used for measuring the state of the ’key’ timers is decreased. The variance across
different Monte-carlo trials is highlighted by the shaded region.

4.6 Noise Robustness

In the next set of experiments, we quantified the robustness of the SPoTKD protocols in

the presence of real-world operational artifacts. For instance, the timer on a physical chip

could inadvertently desynchronize with the software model on the server. This could be due

to fabrication mismatch, environmental variations, device degradation, and measurement

noise. To emulate this effect we performed a Monte Carlo study where we added White

Gaussian Noise to the timer response and then generated the keys by sampling at random

time instances.

In this case, the SNR is defined as

SNR =
PSignal

PNoise
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where PSignal is the square of the signal output measured from the timer and PNoise is the

signal variance. This ‘measured’ key was compared against the ‘gold’ key generated from the

software model in the server i.e. without any noise. Every instance where the keys do not

match perfectly is counted as a failure. Figure 4.9 shows the failure percentage, calculated as

the average number of failure instances over all the instances of simulation, at each noise

level. As expected, the failure percentage reduces with an increase in SNR.

Better noise robustness could be achieved by using low-resolution ADC for the key timers, as

shown in Figure 4.9. However, as we have shown in the previous section this could lead to

more information gained by a ‘knowledgeable’ attacker to predict the key. In order to mitigate

this threat, the server can recommend the user to opt for an increase in the wait-period

∆t and achieve the same level of uncertainty even for low-resolution ADC, as illustrated in

Figure 4.7. Thereby, a tradeoff exists between the level of security and the waiting period,

and the preference for one or the other depends on the target application.

4.7 Error Correcting SPoTKD

Distribute Chipsets

Choose ‘G’ hash timers and 
‘N’ key timers at time ‘t’, 

To Generate key KB = {Q(t)}N

Convert KB to mu(x)
Compute r(x) = mu(x) – q(x).g(x) 

Compute KB’ from tuples
Convert KB’ to ms(x)

Reconcile ms(x) with mu(x)
To compute KB

Encrypted CommunicationEncrypt/Decrypt Message M
CM = E(M,KB) /  M = D(CM,KB)

Encrypt/Decrypt Message M
CM = E(M,KB) /  M = D(CM,KB)CM = E(M,KB)

Stored Timer Parameters 
Pi = {pi0 , pi1 , pi2 , pi3} 

i=index of timer on chip

Wait Δt seconds and at t + Δt broadcast
indexes of timer used and sampling time 

‘G+N’ dimensional tuples (O, H, t) and r(x)

Figure 4.10: Modified SPoTKD protocol between a server and a user incorporating error-
correction
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In the previous section, we discussed how the protocol’s robustness to noise could be increased

by either trading off security or a waiting period. In this section, we will discuss a new protocol

shown in Figure 4.10 in which noise robustness can be improved without compromising either

security or waiting time by using standard error-correcting codes which are generally used in

digital communication. For our purpose, we will use cyclic-redundancy-check (CRC) for error

correction [99], even though other error-correcting codes could also be used.

Figure 4.11: Performance of the SPoKTD protocol in the presence of noise when error-
correction is used. A 16-bit ADC was used to measure the state of the ’key’ timers. The
variance across different Monte-carlo trials is highlighted by the shaded region.

The string of key-bits are represented as the coefficients of a message polynomial, m(x), over

a Galois field (GF2) and to find the CRC, the message polynomial is multiplied by xn and

then the remainder r(x) is found by dividing with an n-degree generator polynomial g(x).

The coefficients of the remainder polynomial are the bits of the CRC. This can be expressed

as

mu(x).x
n = q(x).g(x) + r(x) (4.16)

where q(x) is the quotient. Typically, mu(x).x
n−r(x) and g(x) is sent over the communication

channel. However, in this protocol we are sending r(x) i.e. only the CRC bits together

with the tuples (O,H, t)) over an insecure channel as illustrated in Figure 4.10, and g(x) is

assumed to be predetermined and a piece of public knowledge. This is because we do not

want to share the message mu(x) which is the key itself. The server generates the ms(x)

using the tuples (O,H, t)) information and the software model. Then, together with r(x) and
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Figure 4.12: Performance of the SPoTKD protocol in the presence of noise when using
error-correction and when the resolution b of the ADC used for measuring the state of the
’key’ timer is reduced. The variance across different Monte-carlo trials is highlighted by the
shaded region.

g(x) the sever can reconcile ms(x) with mu(x) up to a certain hamming distance. Thereby,

tolerating erroneous key-bits measured by the user due to noise.

From the security point of view, the attacker now has more information about the key as the

remainder r(x) is broadcast along with the (O,H, t)) tuples. For example, let m(x) be the

representation of a 256-bit key. Then the number of possible keys = 2256. We assume that

the attacker has an identical chip himself. Let g(x) be a 28-degree polynomial, then with

the knowledge of r(x) the number of possible keys is reduced to 2256−28 = 2228. Therefore,

the search complexity for an attacker decreases proportionally to the degree of the generator

polynomial used i.e. number of CRC bits.

In order to counteract this effect, the length of the key can be increased by an amount equal

to the degree of g(x). This would mean more timers are needed to be used for an effective

key length equal to the number of timers used minus the degree of g(x). In the example

described above, the number of timers required for a 256-bit effective key length would be

284.

According to Philip Koopman’s table of CRC generator polynomial [71], for a g(x) of 28

degrees and data-word length less than 483 bit, the least hamming distance that can be

91



corrected is 8. Therefore, we can allow up to 8 mismatches for the 284-bit key, which has

an effective key length of 256-bits, and then compare the noise robustness to the 256-bit

key. This is illustrated in Figure 4.11 which shows significant noise robustness improvement.

This is achieved without sacrificing any complexity and does not come at the cost of a longer

waiting period. Robustness can be further improved by using lower resolution ADC for

key-generation as shown in Figure 4.12 if the user opts for more accuracy and is compliant

with a longer waiting period.

4.8 Discussions and Conclusions

In this work, we introduced a novel key distribution framework, SPotKD, based on specific

security features of the previously reported self-powered time-keeping devices. We described

the key exchange protocol and also analyzed it both from a security and noise robustness

point of view. Our protocol is not only secure against most kinds of attacks but also proved

to be secure in the advent of a fully functional quantum computer in the future. We have

also evaluated the performance of our protocol against some state-of-the-art key distribution

schemes.

Several challenges exist in implementing the proposed key distribution system from a practical

point of view. At the core of the system is the self-powered timer technology which has been

successfully demonstrated in our prior work [137, 138]. However, designing the peripheral

circuitry that can realize the key generation protocol on-chip is yet to be accomplished. A

complete system-on-chip (SoC) should consist of an array of these timers and a combinational

logic circuit that will allow the user to arbitrarily choose any set of timers for key generation.

In addition, the circuit for destroying the timer’s information should also be integrated into

the chipsets. Furthermore, the design of the destruction circuit should be done in such a

manner that the timers’ temporal response becomes desynchronized even before the user can

access the output of the chipsets and remain desynchronized for a significant period after

read-out. Only then, the timers can be considered to be a one-time read device. Addressing

this challenge would be a part of future research.

Another limitation arises in scaling the framework due to the limited number of chips that

can be distributed while maintaining security against quantum attacks as discussed in claim

2. However, the limit on the number of chipsets can be increased by using more hash timers
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during key generation. It should also be noted that due to real-world artifact noise, increasing

the number of hash timers may lead to high failure rates during key exchange. The protocol

will remain secure albeit slight increase in the probability of a key exchange failure and a

trade-off exists between the security and the reliability of the SPoTKD protocol. In this

regard, incorporating error correcting mechanisms in the SPoTKD protocol will help to

address these limitations.

One other limitation to consider is that the underlying assumption for SPoTKD dictates

that the server has ample resources to securely store the timer parameters and to secure

access control. With respect to secure storage, the server can adopt traditional, high-end

and computationally intensive symmetric key encryption approaches. However, the protocol

in its current state will not remain secure if the server becomes compromised and the

attacker gains access to the timer initialization parameters using phishing techniques or by

compromising the access control protocols (similar to the attack models demonstrated for

trusted program modules [52]). This vulnerability can be overcome by adopting a distributed

server (Decentralized Cloud Storage) approach. The security of these types of storage systems

is well established [33] where AES-256 is used to encrypt the data and then each data is split

and stored across a distributed network. Another solution that we are currently investigating,

is storing the timer initialization parameters in a semi-persistent storage (memory whose

content is destroyed after a pre-determined time). This attribute will prevent against the

“record now decode later” attacks where the attacker logs the encrypted data with the hope

that a powerful computer will be available to successfully decrypt the data or the server

storage will be compromised at a much later time.

Our future work would focus on prototyping a self-powered timer system-on-chip with all

the basic hardware security primitives. We will then validate the SPoTKD protocol under

real-world conditions and over different distribution channels. This will open the possibility

of applying SPoTKD in areas such as quantum secure blockchains (based on symmetric-key)

and electronic voting.
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Chapter 5

SPRNG based on FN-dynamical

system

This chapter builds upon the work discussed in Chapter 4. Here, I design the framework of a

lightweight pseudo-random-number generator that is synchronized across multiple platforms

based on the FN-timers. It provides a faster method for generating random numbers to be

used by resource-constrained IoT. In addition to generating random numbers for cryptographic

keys, the framework also facilitates the secure exchange of the key between two users. The

key exchange protocol is an updated version of SPoTKD discussed in the previous chapter.

The results in this chapter are based on [105].

5.1 Introduction

Random-number-generators (RNGs) play an important role in many applications ranging

from optimization, game-theory, and simulations [7, 73, 85]. However, one of the most

important uses of RNGs is in the area of secure communications [111]. Traditionally, this is

achieved by encrypting the data using a sequence of random numbers i.e. cryptographic keys

produced by an RNG. These keys are then synchronized using a timing reference extracted

from a global-positioning-system (GPS) which also facilitates the exchange of encryption

keys [51, 125]. However, for battery-powered or passive internet-of-things (IoT) devices

where computational and energy resources are severely constrained this paradigm of secure

communication using traditional RNGs is not practical. In this chapter, we propose a novel

RNG architecture that can be used for securing communications in IoTs.

RNGs fall into two major categories, namely, the true-RNGs (TRNG) and the pseudo-RNGs

(PRNG). TRNGs generate random numbers based on non-deterministic physical processes
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Figure 5.1: The concept of GPS-free secure Communication in spatially separated IoTs with
SPRNGs: The IoTs generate random tokens using the SPRNG for use as cryptographic keys.
The tokens are generated using a combination of a fast, low-complexity LFSR seeded by the
Secure self-powered timers (SSPT). The synchronization of SSPT across both IoTA and IoTB

ensures that the random tokens X and Y exhibit a perfect cross-correlation, σXY = 1

such as thermal noise and entropy of natural phenomena [116]. Even though TRNGs are

preferred for cryptographic applications, they are generally expensive and might not produce

random numbers fast enough to be suitable for use in resource-constrained IoTs [59]. On the

other hand, a PRNG algorithm generates a sequence of numbers that is not truly random but

whose statistical properties match that of a random number. In literature, there are many

different types of PRNG that have been proposed [17]. However, for resource-constrained

IoTs, the preferable PRNG is the one that is computationally inexpensive, fast, and can
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be easily fabricated and integrated into a System-on-Chip (SoC). In this regard, a Linear-

Feedback-Shift-Register (LFSR) architecture is an optimal choice [70]. It can be efficiently

implemented using only flip-flops and XOR gates. An LFSR takes an initial value called

seed as an input and generates each output bit with only a single shift operation, which

satisfies both the low resource and the fast output requirement. However, one of the biggest

challenges for an LFSR-based PRNG is the fact that the period is fixed and there is a need

for reseeding to break the periodicity. While using a longer length LFSR or multiple LFSR

would increase this periodicity, the problem still remains where once the period is reached the

LFSR would start to repeat the random sequence. Furthermore, if the LFSR is seeded with

a pre-stored static seed on boot-up, then it produces the same sequence of random numbers

over and over again. One method to mitigate this issue would be to generate a dynamic seed.

However, a resource-constrained IoT may not have access to a continuously running system

clock or the GPS signal.

In addition to using a random number as a secure token, for secure communications there

is also a need for synchronization of the tokens between the communicating parties. While

asymmetric key encryption could be used to avoid this challenge, they are computationally too

expensive to be universally implemented on these resource-constrained devices. On the other

hand, a symmetric key encryption scheme can be customized for IoT platforms but requires a

shared secret key [57]. Any static information stored on the IoT, such as a SecureID, used as

the shared secret will be vulnerable to a machine learning type of attack [86]. Therefore, there

is a need for a piece of dynamic information embedded into these IoT devices that can be

synchronized in real-time. One such method for achieving this could be using a combination

of a timing reference extracted from a global-positioning-system (GPS) and a timing reference

generated locally using phased-locked oscillators. Unfortunately, in many IoT applications,

this framework is impractical due to resource constraints together with the fact that many

IoT devices may not have access to a GPS signal.

In this chapter, we describe an architecture of a synchronized-PRNG (SPRNG) that can

be used for generating synchronized pseudo-random binary sequences without the need for

any GPS reference signal. The SPRNG uses a combination of a fast, low-complexity LFSR-

based PRNG and a slow but secure, synchronized seed generator based on our previously

reported self-powered timers [137, 91, 104]. The self-powered timers use quantum-mechanical

tunneling of electrons to operate without any external power and are practically secure

against tampering, snooping, and side-channel attacks (both power and electromagnetic). In
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this work, we explore different protocols to periodically and securely generate synchronized

random bits by seeding the LFSR using an array of self-powered timers. The concept is

illustrated in Fig. 5.1 in the context of IoT communications. The spatially separated IoT

devices, IoTA and IoTB integrate a copy of the SPRNG for generating random tokens. The

self-powered timers in these SPRNG form a clone where their temporal dynamics remain

synchronized for long-period of time. When these synchronized-self-powered timers (SSPT)

are used to dynamically seed the LFSR the random tokens generated by the LFSRs X and Y

are precisely correlated. Therefore, these tokens can then be used as a shared secret key for

facilitating secure communications between the IoTs. Furthermore, between power-ups, cold

reboots, brown-outs, and system black-outs, the random keys generated using the approach

shown in Fig. 5.1 remain unique and aperiodic, which obviates the possibility of replay

attacks.

5.2 Results

5.2.1 Secure Self-powered Timers and Spatial Synchronization

Fig 5.1 (A) shows the micrograph of an array of self-powered timers along with the program-

ming and readout circuit fabricated in a standard silicon process. A simplified equivalent

circuit model for each of the timers on the fabricated prototype is shown in Fig 5.2 (B).

The operating principle of the timers involves injecting charge on an electrically isolated

floating-gate capacitor Cfg. This is achieved by using a combination of hot-electron injection

or quantum mechanical tunneling which are described in the Method Section 5.3.1. After

the initial programming, the charge on Cfg is allowed to leak through the dielectric barrier

and is governed by the physics of Fowler-Nordheim (FN) quantum tunneling. Here the

leakage current is denoted as JFN . Note that the leakage process is thermodynamically and

quantum-mechanically driven and hence does not require any external powering. This self-

powered operation makes the timers immune to any power side-channel attack. Furthermore,

JFN is typically below attoamperes (or 10−18A) which does not produce any measurable

electromagnetic (EM) trace or fingerprint. Thus, the timers are practically immune to EM

side-channel attacks. Furthermore, once the dynamics of the timers reach an equilibrium

condition, any external probing using an EM source or using physical delamination disturbs

the equilibrium and hence destroys the state of the timers. This implies that the self-powered
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Figure 5.2: Measured dynamics and synchronization results using fabricated SSPT array:(A)
Micrograph of an array of self-powered timers along with programming and readout circuit
fabricated in a standard silicon process and (B) shows the micrograph of a single FN-timer
in that array along with the equivalent circuit which is the building block of the SSPT. (C)
The temporal response of the timers with different form factors on two different clones enters
into the synchronized region after an initial settling stage. (D) Timers with the same form
factors in the synchronized region have the same change in the output voltage over a long
period of time across multiple clones.
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timers are not only tamper-resistant but can only be copied through well-defined read-out

mechanisms. Thus, we can assume that an array of FN-timers forms a secure dynamical

system whose internal states could provide a secure mechanism for generating dynamic seeds

for an LFSR.

In addition to its security features, FN-timers exhibit a unique synchronization feature where

a pair of timers can be synchronized with each other, even if the devices are integrated on

two different, spatially separated chipsets. A ‘pair’ of timers is defined as two timers designed

with similar form factors. The synchronization feature is demonstrated by the experimental

results in Fig. 5.2 (C) and (D) where we show the dynamics of two pairs of timers integrated

on different chipsets that are spatially separated. Initially, the timers discharge quickly and

the synchronization between different temporal dynamics is determined by device mismatch.

However, as shown in Fig. 5.2 (C), after a period of 5 days the temporal responses become

“practically” independent of device mismatch and hence become synchronized to each other.

This is shown in Fig 5.2 (D) where after entering the equilibrium region, the dynamics of

timer pairs remain synchronized. In our previous work [138] we have shown that the timer

pairs can maintain synchronization for a duration greater than a year. This implies that if

we can derive the LFSR seed from the temporal response of the timers, then all IoT devices

integrated with the SSPT can securely generate synchronized random numbers.

5.2.2 Secure Seed exchange protocol

In order to use the synchronized random numbers as a cryptographic key for secure commu-

nication, the two IoT devices followed a simple protocol to synchronize their seeds. The seed

generation protocol is described below:

IoTA initiates the exchange protocol and generates a seed based on the digitized output of a

set of timers. Information regarding the set of timers used by IoTA is sent over an insecure

public channel to IoTB. On receiving this information IoTB also generates a seed on its

own. Once both seeds are generated the two IoTs can begin generating random numbers

at higher-speed using an LFSR and start communicating using the synchronized random

numbers as the encryption key.
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SSPT Seed Exchange Protocol Steps that IoTA and IoTB follows to obtain common
encryption key KE

1: IoTA: Selects a set of ’N’ timers to be sampled for generating the seed.
2: IoTA: Measures the output of these timers to generate seed SA = {V i

out}N , where
1 < i < NT is the index of the timer, NT is the total number of timer on the chip and
Vout is the digitized output of the timers.

3: IoTA → IoTB : Sends the indexes of the timer I = {i}N along with the order of sampling.

4: IoTB: Measures the output of all the timers in I in the specified order to generate
SB = {V j

out}N , where j ∈ I and Vout is the digitized output of the timers.
5: IoTA, IoTB: Generate random numbers based on the seed from the timers, KA =

PRNG(SA) and KB = PRNG(SB). Here PRNG() denotes the output of an LFSR
seeded by SA, SB. KA and KB can then be used to encrypt and decrypt further commu-
nication.
Since the same set of timers I, which are synchronized, is used for generating both SA

and SB, therefore IoTA and IoTB have a common encryption key KE = KA = KB.

Only Step 3 in the seed exchange protocol is assumed to be vulnerable as the communication

is performed over a presumably insecure channel where an adversary can eavesdrop and learn

this information. However, note that in order to derive the encryption key KE the adversary

needs to have access to one of the timer clones at the time of communication. However, by

construction, only IotA and IoTB have access to one of the clones and the adversary cannot

clone or copy the timers (one of the security properties of the FN-timers). This means that

the adversary cannot sample the hardware timers to generate a seed. In addition to this, we

have also discussed in the previous section 5.2.1 how the hardware timers are immune to any

side-channel and snooping attacks. Thereby, it is also not possible for an adversary to deduce

any information about the timers’ output and generate the seed without actually sampling a

clone. Note here that the actual output of the timers is also not accessible, only the random

numbers from the LFSR are made attainable. This protects the seed exchange protocol from

any kind of regression or Machine learning attack for predicting the output of the timers. In

our previous work [106] we show that the parameters determining the temporal response of

the timers cannot be determined by an adversary without the knowledge of the initialization

condition. Furthermore, since the seed is derived from a dynamic process, it will change with

time thereby breaking the period of the LFSR. In this regard, the output of the LFSR will

appear to be a ’true’ random number for any adversary.
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5.2.3 Noise Robustness of Seed exchange protocol

(A) (B)

Figure 5.3: Random Seed Generation and Synchronization from fabricated prototypes: (A)
The normalized seed generated from the SSPT at different times are spread evenly across the
domain. (B) The percentage of False-Negative in the synchronization of two valid seeds due
to readout and quantization error.

In the next set of experiments, we quantified the noise robustness of the protocol using a

fabricated FN-timer array. We generated seeds from two fabricated prototypes of SSPT using

the same set of timers. The details of the experiment are provided in the Method Section 5.3.2.

Fig 5.3(A) shows the normalized seeds generated from both clones sampled at different time

instances. We can observe that the seeds derived from the temporal response of the timers are

uniformly distributed across the whole dynamic range with time. This implies that the seeds

are unpredictable without knowledge of the underlying principle, timers’ output. However,

we do observe that there are a few mismatches among the seeds from the two clones. This

is due to the readout and quantization noise of the analog-to-digital converter (ADC). To

mitigate this issue a lower-resolution ADC can be used. In order to find out the expected

number of mismatches at different resolutions of ADC we performed a Monte Carlo study

where we generated seeds at random time instances with 5, 6, 7, and 8 bits ADC (details in

Method Section 5.3.2). Fig 5.3 (B) shows that as we decrease the resolution of the ADC, the

percentage of mismatches between valid seeds i.e. False-Negatives, also decreases. However,

this comes at a cost to the security of the protocol. This is because using lower-resolution

ADC would result in less frequent changes in the value of the seed and might not be enough

to break the period of the LFSR. Therefore, a tradeoff exists between the security and
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robustness of the protocol. Another method that could be used to reduce the possibility of

False-negatives is by using error correcting code such as Cyclic-Redundancy-Check (CRC).

Even with a simple CRC code of size 3 bits detecting at least 2 bits hamming distance

between the two seeds the percentage of False-Negatives can be reduced at all resolutions of

ADC as shown in Fig 5.3 (B). The details of this experiment are provided in the Method

Section 5.3.2. Note that, this improvement in accuracy comes at a cost of more computational

resources required for the protocol. Thereby the usage of such methods would depend on

the application and resource availability of the IoT device in question and the demand for

accuracy.

5.2.4 Statistical Test for SPRNG

In order to evaluate the randomness of the numbers generated by SPRNG we performed

benchmark tests using the Statistical Randomness Test Suite (SP800-22 Rev 1a) made

available by the National Institute of Standards and Technology (NIST) [13]. The suite

consists of 15 statistical tests the results of which are represented in the form of P-values

in the range [0, 1]. A binary string is tested to be random if the P-value exceeds a certain

threshold value in all 15 tests. This threshold value was chosen to be 0.01, as recommended

by the NIST specification, which suggests that the string is random with a probability of

99%. The details of the experiment are provided in the Method Section 5.3.3 and the results

of all 15 tests are tabulated in Table 1.

The first experiment was done with a single LFSR as the random number generator seeded with

the digitized output of the timers. We observe that the minimum pass rate is approximately

91 for a sample of 100 binary strings, in the case of the Linear Complexity Test and Random

Excursion Test. These results could be further improved by using two independent LFSRs

of different sizes, randomly seeded by the SSPT, and then XORing the output of them to

generate the random binary strings. In this case, the minimum pass rate is 96 out of a

sample of 100 binary strings. Note here that this technique not only improves the quality

of random numbers generated but also increases the periodicity of the overall sequences.

This would ultimately increase the lifetime of the SSPT as discussed in the following section.

However, this comes at a cost of the efficiency of the SPRNG as more measurements and

computations are needed to be done. Therefore, a tradeoff exists between efficiency and

lifetime and security. Depending on the application (how long the IoT will be in use) and
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NIST TESTs
Single LFSR XORed LFSRs

Average P-value Pass Ratio Average P-value Pass Ratio

Monobit Test 0.46 100⁄100 0.56 100⁄100

Frequency within block Test 0.41 98⁄100 0.52 98⁄100

Runs Test 0.45 100⁄100 0.54 100⁄100

Longest run ones in a block Test 0.55 100⁄100 0.37 100⁄100

Binary Matrix Rank Test 0.54 100⁄100 0.48 100⁄100

DFT Test 0.51 100⁄100 0.49 100⁄100

Non-overlapping Template Matching Test 1 100⁄100 1 100⁄100

Overlapping Template Matching Test 0.53 100⁄100 0.49 100⁄100

Maurers Universal Test 0.49 100⁄100 0.55 100⁄100

Linear Complexity Test 0.28 91⁄100 0.47 100⁄100

Serial Test 0.35 97⁄100 0.44 100⁄100

Approximate Entropy Test 0.42 100⁄100 0.56 100⁄100

Cumulative Sums Test 0.39 100⁄100 0.4 100⁄100

Random Excursion Test 0.1 91⁄100 0.16 96⁄100

Random Excursion Variant Test 0.13 93⁄100 0.13 96⁄100

Table 5.1: Results showing the randomness of the numbers generated by SPRNG when tested
with NIST test suites for both cases, a single LFSR and when two LFSR are XORed.

specification (how secure the communication needs to be) of the IoT device either single-LFSR

or double-LFSR implementation of SPRNG can be used. Nevertheless, from the results in

Table 1, we can definitely conclude that the bit strings generated by the SPRNG, both with

single and double LFSRs implementation, are statistically random in nature.
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Figure 5.4: Correlation between the outputs of LFSR for shifted seed: (A) Accurate repre-
sentation of the fabricated timers by its analytical modeled counterpart. (B) The state of the
LSB for the digitized output of the fabricated (i) Timer-1 in (A) and (ii) Timer-1, 2, and 3
in (A) XORed. m(C) Autocorrelation for the output of LFSR for a particular seed along
with the cross-correlation with another output generated at the same time instance with the
order of seed generation changed. (D) The results when the procedure in (C) is repeated
across multiple different time instances.
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5.2.5 SSPT Lifetime Analysis

In our previous work [137, 138] we have shown that the temporal response of the fabricated

timers can be modeled as

Vout(t) =
k2

log(k1t+ k0)
(5.1)

where k1, k2 are device specific and fabrication specific parameters, k0 = exp
(

k2
V0

)
, V0 refers

to the initial voltage at the floating-gate, and t refers to the time elapsed after initialization.

The detailed derivation is excluded here for the sake of brevity and can be found in [137, 138].

In Fig 5.4 (A) we can observe that this analytical model can accurately track the output of

the fabricated timers once the parameters are regressed from the measured data. The details

of the regression process are provided in the Method Section 5.3.4. We use the analytical

model to determine the lifetime of the SSPT. Note that since the timers are initialized with

a fixed amount of charge, the dynamics of timers will slow down to single-electron tunneling

events. The question being analyzed here is whether an ensemble of FN-timers can still

exhibit state-change that is faster than the period of the LFSR. Fig 5.4 (B) (i) shows the

state of the LSB of the digitized output for a single timer. Note here that in order for the

dynamic seed to change only a single-bit flip of the digitized output would suffice. Therefore,

the change in the LSB state represents the change in the dynamic seed. Since the dynamical

system slows down non-linearly as time passes the rate of change of the dynamic seed will

also decrease over time, as evident from Fig 5.4 (B) (i). However, to break the periodicity of

the LFSR the dynamic seed needs to change before we generate the maximum length of a

random number. For example, let an LFSR generate random numbers with a clock speed of

1 GHz. Then the LFSR with seed length of 49 bits will generate the maximum length of a

random number in 249

109
s, which is ≈ 6.5 days. Now, if a single timer was used to generate the

seed in this case, then from Fig 5.4 (B) (i) we can derive that after a period of ≈ 60 days,

the dynamic seed no longer breaks the periodicity of the LFSR. We denote this period as

the ’lifetime’ of the SPRNG, as after this period the random sequence will start to repeat

itself. The lifetime of the SPRNG can be increased by increasing the resolution of the ADC

used for digitizing the output since this would change the seed more frequently. However, as

shown previously, this would come at the cost of the seed exchange accuracy of the protocol.

Another method to increase the lifetime would be to use multiple timers for generating the

dynamic seed. This is because as the number of timers used for generating the seed increases,

the probability that at least one of the timer’s digitized output changes also increases. This
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can be observed from Fig 5.4 (B) (ii) where three timers were used to generate the dynamic

seed which subsequently increases the lifetime of SPRNG. Furthermore, while using multiple

timers, the order in which the digitized output of the timers is sequenced can also be changed

to break the periodicity of the LFSR. This can be observed in Fig 5.4 (C) which shows the

correlation between two random numbers generated with the same set of timers sampled

at the same instance, but only the order of sequencing their digitized output to generate

the seed is changed. In order to obtain a reference for the noise floor we also calculated

the autocorrelation of one of the random numbers. Fig 5.4 (C) shows that when the lag in

the case of autocorrelation is zero, the correlation is at maximum. For any other lag, the

autocorrelation is 5 times less than that of the maximum magnitude meaning that there is

hardly any similarity or periodicity in the random number itself. This is trivial for a random

number as there should not be any correlation between two blocks of sequences within the

same number. Next, we observe that the magnitude of the cross-correlation between the two

random numbers is also within this range. Therefore, we can conclude that changing the

order of the timers’ sequence while generating the dynamic seed will also break the periodicity

of the LFSR. Fig 5.4 (D) shows that this is true across all time instances.

5.3 Methods

5.3.1 Programming The SSPT

The programming of the SSPT requires injecting charges on the electrically isolated floating

gates such that the floating-gate potential (Vfg in Fig 5.2 (B)) can be set to a level at which

FN-tunneling is measurable. This is accomplished by setting Vprog to a high-potential of 22V

using an internal (on-chip) charge-pump. After the initial programming, the floating-gate is

allowed to discharge while the potential Vout is measured periodically. The measurement is

performed using a capacitive voltage divider formed by C1 and C2 such that the attenuated

voltage can be measured using standard readout buffers. Furthermore, since the tunneling

nodes are electrically isolated we use a readout MOSFET Mr configured as a source-follower

using a constant current-source Ir to read the voltage Vfg at C1. The voltage of the source

follower is buffered using A to avoid any coupling to the tunneling junction. The readout

voltage was programmed to around 3V during the initialization of the tunneling node. For

the results shown in Fig 5.2 (C) and (D), each individual timer cell, shown in Fig 5.2 (A),
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on two separate timer pairs having the same configuration was initialized independently to

a high FN-tunneling region. After the one-time programming, Vprog was set to 0V and the

timers discharged naturally. In this mode of operation, no external power is required. The

readout voltages of each timer cell on both the clones were measured every 180s for a duration

of over 40 days.

5.3.2 Seed Generation

The measured outputs from the two hardware clones were used to generate the seed at each

time instance. The analog readout voltages Vout for each timer cell were quantized using an

ADC to generate a binary string. These binary strings of multiple timers were concatenated

to generate seeds of variable length depending on the size of the LFSR used. For the results

shown in Fig 5.3 (A) 7 timers were used from each clone to generate the seed with their

outputs quantized to 7 bits precision. This resulted in a seed of length 49 bits. The measured

outputs were sampled randomly at 100 different time instances and the generated seeds were

normalized for visual comparison.

For results shown in Fig 5.3 (B) we generated 1000 seeds at random time instances using

the same procedure as discussed above where measured outputs were quantized with 5, 6, 7,

and 8 bits precision. Each instance of sampling where the seeds from both hardware clones

did not match perfectly was counted as a False-negative. The experiment was repeated

1000 times, each time the sampling and seed generation was performed on a different set of

random time instances. This represented the case where no error detection was used. In the

case of error detection, the digitized seeds are represented as the coefficients of a message

polynomial which is then divided by a pre-determined generator polynomial to calculate the

CRC bits i.e. the coefficient of the remainder polynomial. In the seed exchange protocol

at Step-3, IoTA sends the CRC bits along with the other information. IoTB can use these

CRC bits to check whether the seed that it generated, SB, matches with that of IoTA. For a

generator polynomial of size 3-bits, IoTB can detect at least 2-bits of error [71]. Therefore in

Fig 5.3 (B), seeds from two clones with a hamming distance of 2 or less were not counted as

False-negative. The mean and variance of the percentage of False-negative were calculated

across all experiments.
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5.3.3 Randomness Test

The seeds for the LFSR were generated using the measured output from the hardware clones

as described in the previous sections. These seeds were then fed into an LFSR which was

simulated in MATLAB. In the case of the Single LFSR, shown in Table 5.1, the length of

the LFSR chosen was 49 bits, which means 7 timers’ output was used each quantized with

an ADC of 7 bit precision. The seeds were generated across 100 random time instances

and corresponding to each seed 1 MiB (220bits) were simulated from the LFSR. These bit

strings were then tested with the NIST SP800-22 Rev 1a PRNG test suite using the Python

implementation by David Johnston [64]. This process was repeated for the XORed LFSR,

however this time two sets of seeds were generated at each time instance. The length of one

of the LFSRs used in this case was 49 bits, the same as before, and the other one was 42 bits.

To generate the seeds 7 and 6 timers’ outputs were used respectively with a 7 bit precision

ADC. The individual outputs of the LFSRs, 1 MiB, were then XORed with each other for

producing the random bits which were then tested in a similar manner as before.

5.3.4 Extending SSPT lifetime through shifted seed generation

The measured output shown in Fig 5.2 (C) was used to regress the parameters k0, k1 and

k2 as shown in equation 5.1 for each timer in the fabricated prototype. Even though each

timer’s output was measured for a period of ≈ 40 days, only the data for the first 5 days were

used to regress the parameter. In this manner, we could verify that the regressed parameters,

when used to represent the measured results, accurately predicted the temporal response of

each timer against the measured result for the rest of the 35 days. This is validated in Fig 5.4

(A).

Each of the timer cells in the fabricated prototype can be selected for reading out the output

values using a serial shift-register. However, depending on the order of read-out of these

timer cells the seed that is generated from the quantization of their output is different for

every permutation. This means that with the same set of timers multiple seeds can be

generated. For the results shown in Fig 5.4 (C), two sets of seeds were generated at the

same time instance using the same set of 7 timers with only the order of the timers shifted

by one in a cyclic manner. For example, if one of the seeds was generated using the order

[19, 45, 54, 61, 89, 119, 120], then the order for the other seed was [120, 19, 45, 54, 61, 89, 119].
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These seeds were then used by the same LFSR (length 49 bits) and 1 KiB of random binary

strings were generated. The auto-correlation of one of the binary strings was calculated along

with the cross-correlation with the other binary strings. Note here that for these calculations

the binary states were represented as [−1, 1] instead of [0, 1]. This process was repeated

across 1000 random time instances, the result for which is shown in Fig 5.4 (D).

Discussion

In this chapter, we described an architecture of a lightweight synchronized pseudo-random-

number generator (SPRNG) that can be used for securing wireless communications in IoTs.

The solution does not require access to GPS and therefore could be used in many resource-

constrained and adversarial environments. Some of the applications include personal IoTs

used in health-care [12], key-fobs [40] to military-grade IoTs that need to operate in RF-

jamming environments [114]. The combination of ultra-secure slow-dynamics exhibited by

the FN-timers and fast-dynamics exhibited by standard LFSR provides an ultra-fast and yet

secure mechanism to generate secure tokens that could potentially be used for high-speed

transactions [135]. However, note that for this application, clock-frequency and clock-phase

synchronization between the communicating devices are required and have not been addressed

in the work. The inherent security of the proposed approach lies in the no-cloning property of

the FN-timers, therefore, only the communicating IoTs will have access to the secure random

tokens. During each communication session, and even after a cold reboot the tokens are

randomly generated and hence an adversary cannot initiate a replay attack.

A potential limitation of SPRNG proposed in this work in cryptographic applications arises

due to the usage of an LFSR as the PRNG. If an adversary manages to extract 2L bits of the

LFSR output, where L is the length of the dynamic seed, then by using Berlekamp–Massey

algorithm [88] they can represent the LFSR in an analytic form. This significantly reduces the

lifetime of SPRNG since the LFSR are now needed to be seeded much more frequently. One

method to achieve this would be to use a different set of timers to dynamically seed the LFSR

every 2L bits. Another method to mitigate this issue would be to use an Alternating Step

Generator (ASG) proposed by C. G. Günther [53] where three LFSRs are used in conjunction

to produce the random sequences. Note that in this implementation all three LFSRs would

be dynamically seeded by three different sets of timers and the synchronization between the
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two random tokens on spatially separated devices can still be achieved. The best possible

attack in this scenario that can be mounted will require O(2
2L
3 ) bits [67]. This practically

ensures that the lifetime analysis in the Results Section 5.2.5 remains valid.

One consideration that has not been discussed before in the chapter is the effect of envi-

ronmental variations (for example temperature) on the synchronization of the FN-timers.

In [138] we reported that the dynamics of FN-timers exhibit a temperature dependence,

however, when the temperature remains static, the dynamics of the FN-timer still remain

synchronized with respect to each other. Therefore, one of the key requirements for the

proposed SPRNG-based secure communication is to ensure proper temperature controls.

However, this feature could also be used to further enhance security where the operating

temperature could be treated as private information that is only known to the communicating

parties.

Future work in this area would require developing a complete system-on-chip solution where

the SPRNG acts as a core trusted-platform-module (TPM) that like the commercial AES

core in secure processors can generate tokens for use by the rest of the SoC modules.
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Chapter 6

Conclusion

6.1 Concluding Remarks

In my thesis, I designed and fabricated synaptic memory element, FN-synapse, that exploits

the desynchronization between two dynamical systems to implement an analog memory. I

showed that when the dynamical system is based on FN quantum-tunneling the synaptic

device can exhibit near-optimal memory consolidation that has been previously demonstrated

using only algorithmic models. However, unlike its algorithmic counterparts like the cascade

or EWC models, the FN-Synapse doesn’t require any additional computational or storage

resources. FN-synapse exploits the physics of the device itself for synaptic intelligence and

for continual learning. I have also shown that the physical dynamics of FN-synapse can be

matched to the dynamics of weight updates used in ML or neural network training. The

plasticity of FN-DAM during the training phase can be traded off with the energy-required

to update the weights. By exploiting these characteristics I have shown that energy efficiency

during the training phase of a neural network can be increased by orders of magnitude.

In addition to my work in the AI domain, I have also explored the application of a dynamical

information storage device in the cryptographic security domain in my thesis. Here, I

exploited the synchronizing capability of the FN-dynamical system to design a symmetric

key exchange protocol. I have shown that the protocol is secure even with the advent of a

quantum computer since the security of the protocol lies in the hardware and using time itself

as a one-way function. Furthermore, using the self-powered nature of the dynamical system I

show that the hardware is practically secure against any side-channel adversarial attack. I

have also designed a synchronized PRNG with the FN-dynamical system at the heart of it.
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6.2 Future Direction

The FN-dynamical system-based memory elements provide a number of interesting avenues

that can be explored in the future:

• The memory retention time for FN-synapse varies with both the initial memory imprinted

on it and also the stage at which it is biased. Therefore, the information written on it can be

erased in a controlled manner based on the initialization condition of the memory. This can

be exploited to design self-erasing memory for sensitive information such as medical data.

• The FN-dynamical system is affected by surrounding environmental conditions such as

temperature and RF-signal. This means that the information stored in the FN-synapse also

gets destroyed due to variations in the surrounding. This feature can be used to design a

geofencing framework that does not require the use of GPS signals.

• The weight update process of FN-synapse is determined by the number of electrons

tunneling in a certain period of time and is quantized. As a result, the weight update process

is stochastic in nature which can be used to mimic the stochastic nature of biological synapses.

• Another aspect to focus on would be to prototype a self-powered timer system-on-chip

with all the basic hardware security primitives and validate the SPoTKD protocol under

real-world conditions and over different distribution channels. This will open the possibility

of applying SPoTKD in areas such as quantum secure blockchains (based on symmetric-key)

and electronic voting.
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Appendix A

Supplementary Information for

Chapter 2

A.1 Equivalent Circuit Model of FN-Synapse

vin

W+ W-

J(W+) J(W-)

Wd

W+
read-out W-

read-out

Vmod

Cmod

C1 C1

C2C2
Cfg Cfg

Cc Cc

A A

Cprog Cprog
Vprog Vprog

Figure A.1: Equivalent circuit model of an FN-synapse

The equivalent circuit model of a single FN-synapse is shown in Fig. A.1. The synaptic

weight Wd is stored as a difference between the voltages (W+ and W−) on the floating-gates.

The FN tunneling current is modeled using voltage dependent current sources J(W+), J(W−)
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that discharge the floating-gate capacitances Cfg. Both Wd and the common-mode voltage

Wc are estimated by measuring W+ and W− using a capacitive divider formed by C1 and

C2 and respective source-followers A. This configuration has been previously demonstrated

to avoid read-disturbances when measuring the floating-gate voltages [90, 137]. External

input vin is differentially coupled to the FN-synapse through the capacitances Cc and Cmod is

used to couple the signal m(t) = dvmod(t)
dt

common to all synapses. m(t) is used to adjust the

plasticity of the entire synaptic array. The initial charge on the floating-gates are programmed

using a combination of FN quantum-tunneling and hot-electron injection, details of which

can be found in [90].

A.2 Modeling Results

A.2.1 Behavioral Model of the FN-Synapse

The fabricated prototype of the FN-synapse array comprises of 64 FN-synaptic elements.

Thus, for large-scale memory consolidation experiments and for large-scale continual learning

experiments, we require a behavioral model that can accurately capture the response of

each FN-synapse in the array. In our previous works [138, 137] we have validated that

equation 25 in the main manuscript can accurately (accuracy greater than 99%) model the

dynamic response of a single FN tunneling junction and a corresponding integrator. For

this work we instantiated two tunneling junctions corresponding to the floating-gates W+

and W− and the model parameters k0, k1 and k2 were estimated using measured results. A

non-linear regression was specifically used to estimate k1 and k2 [90, 137], whereas k0 was

determined from the voltage to which each of the floating-gates were initialized. To validate

the behavioral model of the FN-synapse, we carried out a set of experiments and compared

the outputs against the analytical results shown in equations 33, 36 − 38 in the Methods

Section of the main manuscript. Note that these analytical expressions were derived for a

constant modulation input, therefore Vmod(t) was kept constant at 0V in all the simulated

experiments. Fig A.2 and A.3 summarizes all the results obtained from the behavioral model.

In the first experiment, we measured the weight evolution of an FN-synapse using the

fabricated prototype for a series of potentiation/depression pulses. The same input was

provided to the software model and the weight evolution was simulated. Fig A.2 (a) shows
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(a)

(b)

Figure A.2: (a) of equivalent plasticity and initial conditions when exposed to the same input
pattern and (b) the corresponding deviation.

[128]



that the stored weight of the software model accurately matches with that of the hardware

FN-synapse with a small deviation as shown in Fig A.2 (b). This verifies that both hardware

FN-synapse and software model behaves similarly when subjected to same stimuli. Next,

we ran a Monte-Carlo simulation where we updated a network of N = 10000 FN-synapses

with random binary pattern. Each tunneling junction of FN-synapses were initialized at

Wc0 = 4.5V . The updates were provided as a differential input voltage pulses of magnitude

4V and duration ∆t = 100ms to each synapses. The experiment was repeated for 1000

Monte-Carlo simulations. Fig A.3 (a), (b), and (c) shows the SNR, memory retrieval signal

S(n) and the noise ν(n) respectively obtained from the software model of FN-synapse network.

In Fig A.3 (a) we observe that the SNR from the software model matches accurately with the

analytical expression. Both S(n) and ν(n) described in equation 4 in the main manuscript

have two different regimes depending on the value of γ. When n << γ, S(n) is approximately

constant and ν(n) increases at a rate of
√
n. On the other hand, when n >> γ, S(n) and

ν(n) falls off at a rate of 1
n
and 1√

n
respectively. Fig A.3 (b) and (c) shows that the response

from the software model follows theses trends and captures both the regimes accurately. In

the next set of numerical experiments, we verified whether the FN-synapse network shows

similar trends as the analytic expression in response to changing the value of γ in equation 5

in the main manuscript. Note that the parameter γ is defined as

γ =
k0

k1∆t
(A.1)

where k0 = exp( k2
Wc0

). Therefore, γ for the same set of FN-synapses increases when ∆t or

Wc0 decreases and vice versa. According to equation 4, the value of n at which the regimes

in these responses changes also shifts. Moreover, the initial values for both S(n) and ν(n)

depends on the value of γ while SNR is agnostic to changes in γ. Fig A.3 (d)-(i) show the

FN-synapse responses in relation to changing the pulse width and the initialization condition

for a network size of N = 1000. From the figures we can observe that the software model

is in very good agreement with the analytic expressions. Finally, we verify the behavioral

model in relation to change in the size N of the FN-synapse network. From the analytic

expressions in equation 4 in the main manuscript, SNR ∝
√
N and ν(n) ∝ 1√

N
while S(n)

remains constant with respect to N . Fig A.3 (j)-(l) shows that the FN-synapse network

exhibits these attributes accurately. Note that the regime switching point in S(n) and ν(n)

remains constant, since γ does not depend on the size of the network.

[129]



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A.3: in terms of (a) SNR, (b) signal and (c) noise. The effect on the SNR, signal
and noise of the software model when (d)-(f) the pulse-width of the input pulse is varied
and when (g)-(i) the magnitude of the input pulse is varied. (j)-(l) The impact of change in
network size on SNR, signal and noise .
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(a) (b)

(c) (d)

Figure A.4: on (a) overall average accuracy of the split-MNIST incremental domain learning
tasks as a result of the degree of change in plasticity of their corresponding weights for (b)
Wc0 = 5.0V, (c) Wc0 = 4.5V and (d) Wc0 = 4.0V.

A.3 Plasticity and Consolidation

The ability of a network to learn new tasks is contingent on the availability of adequate

range of plasticity of the synapses so that the weights learned from previous tasks can adapt

sufficiently to reflect the requirements for the new tasks. Traditional volatile memories

have practically infinite range of plasticity and can therefore change the weights stored to

any extent that is required. However, this feature might not be beneficial for continual

learning where the network needs to learn new tasks without forgetting the previous ones.

This rigidity-plasticity dilemma is at the core underpinning of memory consolidation where

more frequently used synapses become more rigid in comparison to the less frequently used

synapses. Thus, a balance between the range of plasticity required to learn successive tasks

and the consolidation of the weights learned in the process is key to continual learning. In

the case of FN-synapse based neural networks, the range of plasticity is determined by the

initial tunneling region of the device. A high tunneling region, denoted by a larger value of

Wc0, ensures that the synapses are plastic enough to learn several successive tasks and slowly

become rigid over time. This is seen in the case of Wc0 = 5V and Wc0 = 4.5V, which exhibit

significantly better overall average accuracy over five tasks as shown in SI Fig. A.4 (a) as the

weights stored in their synapses (shown in SI Fig. A.4 (b) and A.4 (c) respectively) slowly
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spread from a highly plastic to a rigid region over the course of the five tasks. In contrast,

a relatively low initial tunneling region, such as in the case of Wc0 = 4V, does not learn

new tasks as well as the previous couple of cases as shown in SI Fig. A.4 (a) since in this

case the weights stored in the synapse are already relatively rigid at the point of initiation

and barely undergo any change as illustrated in SI Fig. A.4 (d). Therefore by choosing the

initial plasticity level appropriately, we can achieve an optimal balance between the range of

plasticity and consolidation suitable for continual learning. It is worth mentioning here that

while choosing an appropriate temporal profile of m(t) can be used to re-adjust the plasticity

of the synapses after each update, it does not however change the range of plasticity afforded

to the network since that is determined by the initial Wc0.

A.4 Neural Network Architecture

The architecture of the 4-layer fully-connected MLP is shown in SI Fig. A.5 (a). Comprising

an input layer of 1024 neurons corresponding to images of 32x32 pixels, two hidden layers of

80 and 60 neurons each and an output layer of 2 neurons that differentiates between (0,1) in

t1, (2,3) in t2, (4,5) in t3, (6,7) in t4 and (8,9) in t5 the network was constructed in MATLAB

and trained with SGD and ADAM with learning rate of 0.001 for 4 epochs with a mini-batch

size of 128. For comparisons with EWC and Online EWC, the network was replicated in

python and trained with exactly the same parameters.

The evolution of the plasticity/usage of weights of the different layers of the FN-synapse

based neural network are shown in SI Fig. A.5 (b)-(d). Given the relatively large number of

weights between layer 1-2 and layer 2-3, the amount of change in plasticity that they undergo

(as shown in Fig A.5 (b) and A.5(c) respectively) is much lesser in comparison with those

between layer 3-4 (as shown in Fig A.5 (d)) as the presence of much fewer weights ensures

that they are modified considerably frequently due to lack of any redundancy.

Fig. 6 of the main manuscript and SI Fig. A.6 already depict the advantages of the FN-

synapse based neural networks using either SGD or ADAM as the optimizer when employed

within the aforementioned architecture. In addition, if the size of the neural network is

increased by increasing the number of neurons in the hidden layers from 80/60 in layer 2/3

to 400/400, it can be observed from SI Fig. A.7 (a)-(b) that the average overall accuracy of

the FN-synapse based network still outperforms the ones without it as the memory element.
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Figure A.5: (a) used in the report and the evolution of corresponding weights in between (b)
layer 1 and 2, (c) layer 2 and 3, and (d) layer 3 and 4 over five successive tasks.
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ADAM with FN-synapse

SGD with FN-synapse EWC

Online EWC

SGD

ADAM

(a) (b) (c)

(d) (e)

Figure A.6: (a)-(e) of SGD and ADAM with FN-synapse, ADAM with EWC and Online
EWC, SGD and ADAM with conventional memory.

Interestingly, the accuracy of the larger network with FN-synapse is slightly lower than that

of the smaller network with FN-synapse for task 3 and beyond. This dip is actually an

indication of higher plasticity, and therefore slower consolidation, of the larger network due

to presence of many more synapses which are still highly plastic after several tasks, which

makes FN-synapse based large neural networks equipped with the capability of learning

more complicated tasks than split-MNIST and yet exhibit far better consolidation than

conventional memory.
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(a) (b)

Figure A.7: when trained with (a) SGD and (b) ADAM.

A.5 Effects of Mismatch

The FN-synapse comprises of two differential FN tunneling junctions and the operation of the

synapse assumes that the junctions are well matched. This will ensure that the weights stored

in the synapse are equally plastic/rigid, when increasing or decreasing the magnitude of the

weight. A key requirement is that the tunneling rates of the two junctions corresponding to

W+ and W− are synchronized with each other. Previously, we have shown in [91, 90] that

two such FN-dynamical systems can be synchronized to a very high degree of accuracy even

in the presence of temperature variations or device mismatch. On the other hand, a mismatch

in device characteristics across one or more FN synapses, specifically the parameters k1 and

k2, must be taken into consideration. This is because a neural network could comprise of

billions of synapses and mismatch in synaptic behavior could pose a problem. SI Fig. A.8

(a) shows the effect of a 5% mismatch in device characteristics across synapses on the SNR

of an FN-synapse network comprising of 10,000 synapses. In this experiment, the network

was subjected to 10,000 randomized balanced updates, similar to the previous consolidation

experiments. It can be observed that the network with mismatch shows a small degradation

in SNR or memory retention compared to the one without any mismatch. However, the SNR

still follows the power-law curve. On the contrary a mismatch of 5% does not lead to any

deterioration whatsoever of the average overall accuracy of the network when trained with

SGD over the split-MNIST dataset with the incremental domain learning tasks as depicted
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(a) (b)

Figure A.8: across FN synapses on (a) memory retention and (b) learning ability on the
split-MNIST based incremental domain learning tasks.

in Fig A.8 (b). This shows the robustness of the FN-synapse based network and the ability

of learning to compensate for device mismatch.

A.6 Detailed Derivations

In this section, few additional steps were added to the modelling derivations in the main

manuscript for the reader’s interest. However, for the sake of brevity and to avoid repetition,

unnecessary descriptions have been avoided.

A.6.1 Weight Update For Differential Synaptic Model

The state equations of two dynamical systems (corresponding to state variables W+ and W−

with J(.) defining their rate of change), when subjected to differential input ±1
2
X(t) and

common-mode modulation input m(t) is given by:

[136]



dW+

dt
= −J(W+) +

1

2
X(t) +

1

2
m(t) (A.2)

dW−

dt
= −J(W−)− 1

2
X(t) +

1

2
m(t) (A.3)

Since, Wd =
W+−W−

2
and Wc =

W++W−

2
, A.2 and A.3 can be written as:

d(Wc +Wd)

dt
= −J(Wc +Wd) +

1

2
X(t) +

1

2
m(t) (A.4)

d(Wc −Wd)

dt
= −J(Wc −Wd)−

1

2
X(t) +

1

2
m(t) (A.5)

Then, by adding and subtracting A.4 and A.5, the following is obtained:

dWc

dt
= −

(
J(Wc +Wd) + J(Wc −Wd)

2

)
+m(t) (A.6)

dWd

dt
= −

(
J(Wc +Wd)− J(Wc −Wd)

2

)
+X(t) (A.7)

Upon applying Taylor series expansion on A.6 and A.7, with the assumption that Wc >> Wd,

we get:

dWc

dt
= −J (Wc) +m(t) (A.8)

dWd

dt
= −J ′ (Wc)Wd +X(t) (A.9)

Therefore to obtain an expression of weight update (dWd

dt
) with respect to the common-mode

usage (Wc), we need to obtain an expression for J ′(Wc). Thus, by differentiating A.8 w.r.t t,

we obtain:
d2Wc

dt2
= −J ′ (Wc)

dWc

dt
+m′(t) (A.10)

J ′ (Wc) = −

(
d2Wc

dt2
−m′(t)

)
dWc

dt

(A.11)
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Inserting A.11 into A.9, we get:

dWd

dt
= −

[
d2Wc

dt2
−m′(t)
dWc

dt

]
Wd +X(t) (A.12)

Now, for the trivial case where m(t) = c, where c is an arbitrary constant, m′(t) = 0 and

thus A.12 becomes:
dWd

dt
= −

[
d2Wc

dt2

(
dWc

dt

)−1
]
Wd +X(t) (A.13)

A.6.2 Optimal Usage Profile

The decay rate (r(t)) obtained from the weight update rule in A.13 is given by:

r(t) = −

[
d2Wc

dt2

(
dWc

dt

)−1
]

(A.14)

To avoid catastrophic forgetting, the decay rate associated with the EWC model’s weight

update rule, for the case of balanced inputs, is r(t) = O
(
1
t

)
. Therefore, by choosing

Wc =
1

f(log t)
, where f(.) ≥ 0 is a monotonic function we obtain

r(t) =
1

t

(
1 +

2f ′(log t)

log t
− f ′′(log t)

f ′(log t)

)
(A.15)

which is of the order O
(
1
t

)
. The simplest form of f(.) such that Wc satisfies both monotonicity

and the order of decay, is given by:

Wc =
β

log(t)
(A.16)

where β is an arbitrary constant. Consequently, to obtain the non-linear function J(.) which

enforces the above constraint, we substitute A.16 into A.8 to get:
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d
(

β
log(t)

)
dt

= −J(Wc) +m(t) (A.17)

−β

t(log(t))2
= −J(Wc) +m(t) (A.18)

For the case of m(t) = 0, A.18 becomes:

J(Wc) =
β

t(log(t))2
(A.19)

Now, from A.16, we can obtain an expression for log(t) as

log(t) =
β

Wc

(A.20)

and an expression for t as follows:

exp(log(t)) = exp

(
β

Wc

)
(A.21)

t = exp

(
β

Wc

)
(A.22)

Then, by substituting A.20 and A.22 in A.19, we obtain:

J (Wc) =
1

β
W 2

c exp

(
− β

Wc

)
. (A.23)

A.6.3 Signal-to-noise Ratio Estimation for Random Pattern Ex-

periment

The weight update equation for an FN-synapse (similar to A.13) is given by:
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CT
dWd

dt
= −

[
d2Wc

dt2

(
dWc

dt

)−1
]
Wd + Cc

dvin
dt

(A.24)

where CT = f(C1, C2, Cfg) is the cumulative capacitance and Cc is the coupling capacitance

of the FN-synapse equivalent circuit as shown in Fig. A.1. Since, the physics of FN-tunneling

leads to a common-mode voltage Wc profile such that

Wc(t) =
k2

log(k1t+ k0)
(A.25)

where k0 = exp
(

k2
Wc0

)
and Wc0 refers to the initial voltage at the floating-gate, by substituting

A.25 in A.24, we get:

CT
dWd

dt
= −


(

k21k2
(k1t+k0)2log2(k1t+k0)

)
(

k1k2
(k1t+k0)log2(k1t+k0)

) (1 + 2

log(k1t+ k0)

)Wd + Cc
dvin
dt

(A.26)

CT
dWd

dt
= −

[(
k1

(k1t+ k0)

)(
1 +

2

log(k1t+ k0)

)]
Wd + Cc

dvin
dt

(A.27)

In the scenario where CT = Cc, we get:

dWd

dt
= −

[(
k1

(k1t+ k0)

)(
1 +

2

log(k1t+ k0)

)]
Wd +

dvin
dt

(A.28)

Then, we can formulate a discrete-time weight update as:

△Wd(n)

△t
= −k1

(
1 +

2

log (k1△tn+ k0)

)(
1

k1△tn+ k0

)
Wd(n− 1)

+
△vin(n)

△t

(A.29)

Wd(n) =

[
1−

(
1 +

2

log (k1△tn+ k0)

)(
1

n+ k0
k1△t

)]
Wd(n− 1)

+ (vin(n)− vin(n− 1))

(A.30)
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where n represents the number of patterns observed and ∆t is the duration of the input pulse.

Let us denote the weight decay term as

α(n) =

[
1−

(
1 +

2

log (k1△tn+ k0)

)(
1

n+ k0
k1△t

)]
(A.31)

Thus, we obtain the weight update equation with respect to number of patterns observed as

Wd(n) = α(n)Wd(n− 1) + (vin(n)− vin(n− 1)) (A.32)

Then the equation can be unfolded as follows:

Wd(n) = α(n)Wd(n− 1) + (vin(n)− vin(n− 1)) (A.33)

Wd(n− 1) = α(n− 1)Wd(n− 2) + (vin(n− 1)− vin(n− 2)) (A.34)

and so on, till ...

Wd(2) = α(2)Wd(1) + (vin(2)− vin(1)) (A.35)

Wd(1) = α(1)Wd(0) + (vin(1)− vin(0)) (A.36)

Assuming the initial condition that Wd(0) = 0 and x(0) = 0, if we multiply each Wd(i) with

the product of all α(i)s succeeding it and sum them up, we get:

Wd(n) = (vin(n)− vin(n− 1)) + α(n)(vin(n− 1)− vin(n− 2))

+ α(n)α(n− 1)(vin(n− 2)− vin(n− 3)) + ...

+ α(n)α(n− 1)...α(4)α(3)(vin(2)− vin(1))

+ α(n)α(n− 1)...α(3)α(2)vin(1)

(A.37)

This can be generalized as

Wd(n) = {vin(n) + (α(n)− 1)vin(n− 1)

+ (α(n− 1)− 1)α(n)vin(n− 2)

+ ...

+ α(n)α(n− 1)...α(3)(α(2)− 1)vin(1)}

(A.38)
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Wd(n) =
n−2∑
i=1

{
(α(i+ 1)− 1)

(
n∏

j=i+2

α(j)

)
vin(i)

}
+ (α(n)− 1)vin(n− 1) + vin(n)

(A.39)

Therefore, each weight Wd(n) at time instance n can be represented as a summation of the

product of synaptic modifications or patterns vin(n− 1), vin(n− 2)...vin(1) and cumulative

decay rate rc(n, n− 1), rc(n, n− 2), ...rc(n, 1) for instances preceeding n as:

Wd(n) =
n−1∑
i=1

vin(i)rc(n, i) + vin(n) (A.40)

where

rc(n, i) = (α(i+ 1)− 1)

(
n∏

j=i+2,j≤n

α(j)

)
(A.41)

Then, for a network of N synapses, each indexed as Wd(a, n) (where a = 1, ..., N), with the

input applied to the ath synapse after n patterns represented by vin(a, n), the signal strength

for the pth update (where p < n) tracked after n patterns is given by:

S(n, p) =
1

N

〈
N∑
a=1

Wd(a, n)vin(a, p)

〉
(A.42)

where angle brackets denote averaging over the ensemble of all of the random uncorrelated

patterns seen by the network. Since, the signal corresponding to a certain update is essentially

determined by the overlap of the associated history of synaptic modifications with the present

synaptic weights, by substituting A.40 into A.42, we get the signal strength of the pth update

as:

S(n, p) =
1

N

〈
N∑
a=1

Wd(a, n)vin(a, p)

〉
= rc(n, p) = (α(p+ 1)− 1)

n∏
j=p+2

α(j) (A.43)
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Given that in A.31, k0 = O(1019) and k1 = O(1016), the term
(
1 + 2

ln (k1△tn+k0)

)
≈ 1, the

above equation can be simplified as follows:

S(n, p) =
−1

p+ 1 + γ

(
1− 1

p+ 2 + γ

)(
1− 1

p+ 3 + γ

)
...

(
1− 1

n− 1 + γ

)(
1− 1

n+ γ

)
S(n, p) =

−1

n+ γ

(A.44)

where γ = k0
k1△t

.This leads to the following expression for signal power:

S2(n, p) =
1

(n+ γ)2
(A.45)

By assuming that the weight Wd(n) is uncorrelated from the input pattern vin(n) and that

the inputs vin(1), vin(2)...vin(n) are all uncorrelated from each other, we can obtain the noise

power associated with the retrieved signal (which is essentially the variance of the retrieved

signal). It is measured as the summation of the power of all signals tracked at n except for

the retrieval signal of the pth pattern and is expressed as:

ν2(n, p) =
1

N

n∑
i=1,i ̸=p

S2(n, i) (A.46)

By incorporating the retrieval signal into the summation in A.46 we can obtain a more

tractable analytical expression for noise power despite the marginal error it introduces. The

resulting expression is given by

ν2(n, p) =
1

N

n∑
i=1

S2(n, i) =
n

N(n+ γ)2
(A.47)

Based on the value of n in comparison to γ, we obtain two trends for the noise profile. When

γ >> n,
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ν(n, p) =
1√
N

(√
n

γ

)
(A.48)

which implies that noise increases with increase in updates initially. On the other hand, when

γ << n,

ν(n, p) =

√
n√
Nn

=
1√
N

(
1√
n

)
(A.49)

which implies that noise falls with increase in updates in the later stages. The signal-to-noise

ratio (SNR) of a network of size N can then be obtained as:

SNR(n, p) =

√
S2(n, p)

ν2(n, p)
=

√
N

n
(A.50)
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Figure A.9: Comparison of noise of FN-synapse networks composed of 1000 synapses following
different synaptic models when exposed to 2000 patterns.
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Figure A.10: Comparison of SNR of an empty network of 1000 synapses with different
modulation profiles m(t) when exposed to 2000 patterns.
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Figure A.11: (a) with different magnitude of γ where γ3 > γ2 > γ1 under modulation profile
of m2(t). The magnitude of γ was varied by using three different input modulation pulse
width ∆t.(b) Tracking the steady-state SNR of various updates (p) for FN-synapse networks
of different sizes (N) with modulation profile m2(t) when exposed to subsequent updates and
(c) their corresponding memory lifetime which scales linearly according to y = mx+ c, where
m = 0.2264 and c = −10.46.
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Appendix B

Supplementary Information for

Chapter 3

B.1 Circuit implementation and programming of FN-

DAM

Each FN-DAM cell comprises two dynamical systems labeled as SET and RESET as shown

in Fig. 3.1(e) and reproduced in Figure B.1. Each of these dynamical systems comprises two

floating-nodes: a tunneling node (W) that stores the dynamical state; and a readout-node

(Wread) that is used to read the dynamical state through a decoupling capacitor Cread and a

read-out PMOS transistor Mread, as shown in Figure B.1. Each of these cells can be selected

for READ and PROGRAMMING using the switch Sj. For this work, the selection of Sj is

performed using a serial shift-register but a row-column decoder configuration could also

have been used for faster access. When a cell is selected for READ using the terminal Wout,

the read-out transistor Mread is configured as a source-follower using a current-source Iread

(located in the periphery of the FN-DAM array) and the voltage of the source follower is

buffered using B. The initial charge on each of the floating-nodes (SET or RESET) can be

programmed individually using a combination of tunneling (to increase charge, coarse tuning)

and hot-electron injection (to decrease charge, fine tuning). Details of such programming have

been described in the main text and here we describe some of the programming parameters.

The tunneling gate W, which stores the dynamic analog memory, is first biased in the

FN-tunneling regime. By setting Vprog to a high-potential of 22 V (using an internal or

external charge-pump), the tunneling node is pushed to ≈ 8 V which is sufficient to initiate

observable FN-tunneling across the gate-oxide (approximately 13 nm for work). Note that

Wread is capacitively decoupled from the tunneling node to avert readout disturbances. The

readout node is also biased at a lower voltage to prevent injection into the readout node
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Figure B.1: Circuit implementation of the FN-DAM cell with read-out and programming
circuitry

during operation. The potential of the readout node is lowered through hot-electron injection.

Hot-electron injection is initiated by setting VDD = 7V and the input pin to a value such that

the drain-to-source voltage across Mread is above 4.2 V. The switch Sj allows for individual

control of each FN-DAM block for reading and programming.

B.2 Read-disturbance characterization

To reduce the effect of read disturbance, in our implementation, we have capacitively decoupled

the readout circuit from the memory as shown in Figure B.1. We conducted read-disturbance

experiments, where twelve FN-DAM memory elements were randomly accessed every minute

for 1000 cycles and the relative change in weight was measured after every read. The measured
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Figure B.2: Read disturbance reflected as a change in weight parameters measured from 12
FN-DAM devices over 1000 read cycles. Each color in the figure represents one FN-DAM
device.

result shown in Figure. B.2 verifies that read-disturbance in our implementation of FN-DAM

is random and the magnitude is less than the precision of the update and measurement.

B.3 Write Energy Dissipation Estimation

The magnitude of input pulse required, Vtrain(t) (Fig. B.3a) so that the floating gate node at

current potential VFG(t) shifts to a target voltage VT is given by:

Vtrain(t) =
VT − VFG(t)

CR

(B.1)
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Figure B.3: Target voltage, floating gate voltage, and training voltage as a function of time.
B) Energy required to charge unit capacitance as a function of time.

Where CR is the input capacitive coupling ratio CR = CC

CC+CFG
. The floating gate voltage

VFG(t) is approximated by the following dynamic:

VFG (t) =
k2

log (k1t+ k0)
(B.2)

The energy required to charge the input capacitor is given as

E(t) =
1

2
Cin (Vin (t))

2 (B.3)

Fig. B.3b shows the instantaneous energy required to charge unit capacitance when VT = 7.6V

and VFG(0) = 7.5V . The input capacitance of our device was 1 pF, and the instantaneous

write energy per update increased from 5 fJ to 2.5pJ over 12 days.

B.4 Memory Retention

Fig. B.4a shows retention times for different T (25°C, 60°C, 100°C) estimated using the

retention model equations 3.22 and 3.23. These models have been verified using experiments

conducted at 100oC. Fig. B.4b shows the measured results where the weights stored in 12 FN-

DAM devices kept at 100oC were measured over a duration of 15 hours. Note that compared
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Figure B.4: a) Simulated retention time as a function of SET/RESET node voltage for
different operating temperatures. b) Measurement and modeling results from 12 FN-DAM
devices desynchronized at 100oC.

to standard reliability testing of non-volatile memories where the chipsets are baked offline and

then the retention measurements could be performed under standard operating temperature,

for testing FN-DAM, the data needs to be measured continuously under high-temperature

condition. This is because FN-DAM is a dynamical memory that stores information in the

degree of temporal desynchronization between two dynamical systems. Therefore, performing

continuous measurements under 250oC operating conditions would have required the use of

temperature-compensated read-out circuits. However, the required reliability information can

also be inferred from continuous measurements at 100oC, shown in Fig. B.4b. The baseline

drift due to the memory read-out circuits was first calibrated during the first 400 min and

used to zero out the dynamical response of each of the FN-DAM devices. Then, at 400 min

time instant a SET pulse (3.3V for 1-second duration) was applied to all the memory devices

which programmed all the devices to a specific memory state. The degree of desynchronization

was continuously measured and is plotted in Fig. B.4b. The resynchronization process is

accurately predicted by the model at 100oC (Fig. B.4b inset)
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Figure B.5: Minimum power required to read floating gate voltage as a function of required
readout speed. Noise floors are shown in the legend.

B.5 Read Energy Dissipation

The readout power is dependent on the readout accuracy required and the speed at which it

operates. For a PMOS in a source follower configuration, the readout noise is given by:

V 2
n =

4kT

gm
∆f =

4kT

q
∗ q

gm
∆f =

4UT q

gm
∆f (B.4)

For subthreshold operation,

gm =
κId
UT

(B.5)

∴ V 2
n =

4U2
T q

κId
∆f =

4U2
T qVDD

κPread

∆f (B.6)
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Above equation is plotted in Figure B.5 for different noise floors and readout frequency for

Vdd = 5V , UT = 26 mV and κ = 0.7

B.6 Programming dynamics

Figure B.6: Programming ratio for different k1 parameters which can be controlled by
changing the size of tunneling junction.

The FN-DAM is programmed by applying a pulse of magnitude Vtrain(t) so that the node

reaches a potential of VT through the input coupling capacitor, as derived in the previous

section. The programming ratio is given by:

Iprog
I ¯prog

=
IFN (VT )

IFN (VFG (t))
(B.7)
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Dynamics of FN tunneling current are given by:

IFN (V (t))

CT

=
d (V (t))

dt
=

(
k1
k2

)
V 2 exp

(
−k2
V

)
(B.8)

Iprog
I ¯prog

=

(
VT

VFG (t)

)2

exp

(
k2

VFG (t)
− k2

VT

)
(B.9)

The above equation is plotted for 3 values of k1 in Fig B.6 which affect the dynamics of

VFG (t). The parameter k1 can be altered during the design phase by changing the area and

capacitance of the floating gate node.

B.7 MLP and CNN architecture and training parame-

ters

Figure B.7: a) Experimentally trained network on Fisher Iris dataset. The thickness of
connections between units indicates magnitudes of learned weights. Blue (red) connection
indicates positive (negative) weight. b) Confusion matrix for Fisher Iris dataset.

The neural network used for experiments with the Fisher-Iris dataset is a three-layer multi-

layer perceptron as shown in Fig. B.7a. which also shows the magnitude of the weights

obtained after training, as indicated by the thickness of the edges between the neurons across
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different layers. The blue edge represents an excitatory weight, and the red edge represents

an inhibitory weight. Fig. B.7b. shows the confusion matrix computed for one training run

and for the entire Fisher-Iris dataset (150 data points).

The convolutional neural network used for the MNIST experiment comprised the following

layers

Layer Name Description Activations Parameters

1 Image Input 28×28×1 images 28 x 28 x 1 0

2 Convolution 20 5×5×1 convolutions with stride 1 24 x 24 x 20 520

3 Batch Normalization Batch normalization with 20 channels 24 x 24 x 20 40

4 ReLU ReLU 24 x 24 x 20 0

5 Convolution 20 3×3×20 convolutions with stride 1 24 x 24 x 20 3620

6 Batch Normalization Batch normalization with 20 channels 24 x 24 x 20 40

7 ReLU ReLU 24 x 24 x 20 0

8 Max Pooling 12 x 12 x 20 0

9 Convolution 40 3×3×20 convolutions with stride 1 12 x 12 x 40 7240

10 preluLayer Parametric ReLU with 40 channels 12 x 12 x 40 40

11 Convolution 20 3×3×40 convolutions with stride 1 12 x 12 x 20 7220

12 Batch Normalization Batch normalization with 20 channels 12 x 12 x 20 40

13 ReLU ReLU 12 x 12 x 20 0

14 Fully Connected 10 fully connected layer 10 28810

15 Softmax softmax 10 0

The network was constructed in MATLAB using the Deep Learning toolbox and was trained

using Stochastic Gradient Descent with Momentum. Only the weights in the Fully Connected
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layer were updated during training. Fig. B.8 shows the confusion matrix with recognition

accuracy obtained for each class of digits.

Figure B.8: Confusion matrix with for simulated CNN implementation of FN-DAM on
MNIST dataset.

B.8 Retention of MLP parameters

The data retention times for FN-DAM cells (or the cells’ volatility) is a smooth function with

respect to the dynamic state of the memory (SET and RESET voltages). This is also shown

in Fig. B.4a. During training the FN-DAMs are biased to operate in the volatile region where

lower data retention is traded-off for lower energy consumption. Once the neural network has

been trained, it is not necessary for the system to reach a non-volatile regime. Because of the

differential architecture of the FN-DAM, both the SET and RESET nodes discharge/decay

down to the slow-tunneling regime and at a discharge-rate that is approximately constant

across all the memory cells. In this case, the performance of the learning algorithm (neural
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network) that normalizes the weights should remain robust with minimal degradation in

recognition accuracy. To verify this, we trained a neural network, shown in Fig. B.7(a) on

the Fisher’s Iris dataset using FN-DAM as storage for network parameters. Post-training,

we transferred our chip into a baking oven which was set to 225oC. Note that this is the

maximum temperature setting for the baking oven (Quincy lab Model 40) set at 225oC. Care

was taken in transporting the chipsets to prevent any electrostatic discharge (ESD) issues.

After 6 hours of baking, the chips were taken out, weights were read-out and the classification

accuracy of the network was measured. SI Fig. B.9a. below compares the weights stored on

the FN-DAM cells, before and after baking. The result in SI Fig. B.9b. shows that even

though all the post-bake weights exhibit a decay with respect to their pre-bake values when

normalized (wnorm = w/||w||1), both the pre-bake and post-bake values remain relatively

invariant.

Figure B.9: (a) Weights stored on FN-DAM memory cells after training a neural network
on the Fisher-Iris dataset, before baking (Pre) and after baking (Post); and (b) normalized
weights before baking and after baking.

SI Fig. B.10. compares the training and test accuracy obtained using weights stored on the

FN-DAM before baking and after baking. The result shows that while the training accuracy

reduces nominally (97.5% to 95%), the test accuracy remains unchanged. Note that after the

bake, the respective SET and RESET voltages (WS and WR) decay such that the FN-DAM

enters the high-retention regime.
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Figure B.10: Training and test accuracy obtained using the pre-bake and post-bake values of
weights stored on the FN-DAM.
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