
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-6

2004-02-07

Work-Conserving Distributed Schedulers Work-Conserving Distributed Schedulers

Prashanth Pappu, Jonathan S. Turner, and Ken Wong

Buffered multistage interconnection networks offer one of the most scalable and cost-effective

approaches to building high capacity routers and switches. Unfortunately, the performance of

such systems has been difficult to predict in the presence of the extreme traffic conditions that

can arise in Internet routers. Recent work introduced the idea of distributed scheduling, to

regulate the flow of traffic in such systems. This work demonstrated (using simulation and

experimental measurements) that distributed scheduling can en-able robust performance, even

in the presence of adversarial traffic patterns. In this paper, we show that appropriately designed

distributed scheduling algorithms are provably work-conserving... Read complete abstract on Read complete abstract on

page 2. page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Pappu, Prashanth; Turner, Jonathan S.; and Wong, Ken, "Work-Conserving Distributed Schedulers" Report
Number: WUCSE-2004-6 (2004). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1032

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1032?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1032

Work-Conserving Distributed Schedulers Work-Conserving Distributed Schedulers

Prashanth Pappu, Jonathan S. Turner, and Ken Wong

Complete Abstract: Complete Abstract:

Buffered multistage interconnection networks offer one of the most scalable and cost-effective
approaches to building high capacity routers and switches. Unfortunately, the performance of such
systems has been difficult to predict in the presence of the extreme traffic conditions that can arise in
Internet routers. Recent work introduced the idea of distributed scheduling, to regulate the flow of traffic
in such systems. This work demonstrated (using simulation and experimental measurements) that
distributed scheduling can en-able robust performance, even in the presence of adversarial traffic
patterns. In this paper, we show that appropriately designed distributed scheduling algorithms are
provably work-conserving for speedups of 2 or more. Two of the three algorithms presented were inspired
by algorithms previously developed for crossbar scheduling. The third has no direct counterpart in the
crossbar scheduling context. In our analysis, we show that distributed schedulers based on blocking
flows in small-depth acyclic flow graphs can be work-conserving, just as certain crossbar schedulers
based on maximal bipartite matchings have been shown to be work-conserving. We also study the
performance of practical variants of the work-conserving algorithms with speedups less than 2, using
simulation. These studies demonstrate that distributed scheduling ensures excellent performance under
extreme traffic conditions for speedups of less than 1.5.

https://openscholarship.wustl.edu/cse_research/1032?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1032?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1032&utm_medium=PDF&utm_campaign=PDFCoverPages

Work-Conserving Distributed Schedulers
for Terabit Routers

Prashanth Pappu, Jonathan Turner and Ken Wong
{prashant,jst,kenw}@cse.wustl.edu
WUCSE-04-06

February 7, 2004

Department of Computer Science and Engineering
Campus Box 1045
Washington University
One Brookings Drive
St. Louis, MO 63130-4899

Abstract

Buffered multistage interconnection networks offer one of the most scalable and cost-effective approaches
to building high capacity routers and switches. Unfortunately, the performance of such systems has been
difficult to predict in the presence of the extreme traffic conditions that can arise in Internet routers. Recent
work introduced the idea of distributed scheduling, to regulate the flow of traffic in such systems. This
work demonstrated (using simulation and experimental measurements) that distributed scheduling can en-
able robust performance, even in the presence of adversarial traffic patterns. In this paper, we show that
appropriately designed distributed scheduling algorithms are provably work-conserving for speedups of 2 or
more. Two of the three algorithms presented were inspired by algorithms previously developed for crossbar
scheduling. The third has no direct counterpart in the crossbar scheduling context. In our analysis, we show
that distributed schedulers based on blocking flows in small-depth acyclic flow graphs can be work-
conserving, just as certain crossbar schedulers based on maximal bipartite matchings have been shown to be
work-conserving. We also study the performance of practical variants of the work-conserving algorithms
with speedups less than 2, using simulation. These studies demonstrate that distributed scheduling ensures
excellent performance under extreme traffic conditions for speedups of less than 1.5.

This work was supported by the Defense Advanced Research Projects Agency (contract N660001-01-1-8930).

 2

Work-Conserving Distributed Schedulers

for Terabit Routers

Prashanth Pappu, Jonathan Turner and Ken Wong
{prashant,jst,kenw}@cse.wustl.edu

1. Introduction
High performance routers must be scalable to hundreds or
even thousands of ports. The most scalable architectures for
high capacity routers include systems using multistage inter-
connection networks with internal buffers and a small speedup
relative to the external links; that is, the internal data paths
operate at speeds that are faster than the external links by a
small constant factor (typically between 1 and 2). In the pres-
ence of a sustained overload at an output port, such systems
can become congested with traffic attempting to reach the
overloaded output, interfering with the flow of traffic to other
outputs. The unregulated nature of traffic in IP networks
makes such overloads a normal fact of life, which router de-
signers must address, if their systems are to be robust enough
to perform well under the most demanding traffic conditions.

Reference [11] introduced the use of distributed schedul-
ing to manage the flow of traffic through a large router in
order to mitigate the worst effects of the most extreme traffic
conditions. Distributed scheduling borrows ideas developed
for scheduling packet transmissions through crossbar switches
[2,5,7,8]. The core idea is to use Virtual Output Queues (VOQ)
at each input. That is, each input maintains separate queues for
each output. (Queues are implemented as linked lists, so the
only per queue overhead is for the queues’ head and tail point-
ers.) Packets arriving at inputs are placed in queues
corresponding to their outgoing links. In crossbar scheduling,
a centralized scheduler selects packets for transmission
through the crossbar, seeking to emulate, as closely as possi-
ble, the queueing behavior of an ideal output queued switch.
The centralized scheduler used in crossbar scheduling makes
scheduling decisions every packet transmission interval. For
routers with 10 Gb/s links, this typically means making sched-
uling decisions every 40 ns, a demanding requirement, even
for a router with a small number of links. For larger routers it
makes centralized scheduling infeasible.

Distributed scheduling, unlike crossbar scheduling, does
not seek to schedule the transmission of individual packets.
Instead, it regulates the number of packets forwarded during a

period which we call the scheduling interval and denote by T.
The scheduling interval is typically fairly long, on the order of
tens of microseconds. The use of such coarse-grained schedul-
ing means that a distributed scheduler can only approximate
the queueing behavior of an ideal output-queued switch, but
does allow systems to scale up to larger configurations than
are practical with fine-grained scheduling. In a router that im-
plements distributed scheduling, the Port Processors (the
components that terminate the external links, make routing
decisions and queue packets) periodically exchange informa-
tion about the status of their VOQs. This information is then
used to rate control the VOQs, with the objective of moving
packets to the output side of the router as expeditiously as pos-
sible, while avoiding congestion within the interconnection
network. So long as the scheduling interval is kept small rela-
tive to end-to-end delays (which are typically tens to hundreds
of milliseconds in wide area networks) the impact of coarse
scheduling on the delays experienced by packets can be ac-
ceptably small.

While [11] demonstrated, using simulation and experi-
mental measurement, that distributed scheduling could ensure
excellent performance under extreme traffic conditions, it
could provide no analytical bounds on the performance of the
proposed algorithms, nor a rigorous justification for the spe-
cific design choices that were made. This paper corrects that
deficiency, by showing that there are distributed scheduling
algorithms that are provably work-conserving, for speedups of
2 or more. The analysis provides insight that motivates the
design of more practical variants of these algorithms, which
provide excellent performance, significantly improving upon
the performance reported in [11]. Where the algorithms de-
scribed in [11] can fail to be work-conserving, with speedups
of more than 2, the algorithms reported here are demonstrably
work-conserving for extreme traffic, even when speedups are
limited to 1.5. One interesting aspect of the analysis is the role
played by network flows, which parallels the role played by
bipartite matching in crossbar scheduling. Specifically, we
show that distributed schedulers based on finding blocking
flows in small depth acyclic flow graphs and that favor outputs
with short queues are work-conserving, much as crossbar
schedulers based on finding maximal matchings in bipartite

 - 3 -

graphs that favor outputs with short queues are work-
conserving.

While distributed scheduling shares some features of
crossbar scheduling, it differs in two important respects. First,
the distributed nature of these methods rules out the use of the
iterative matching methods that have proved effective in
crossbar scheduling, since each iteration would require an ex-
change of information, causing the overhead of the algorithm
to increase in proportion to the number of iterations. On the
other hand, the shift to coarse scheduling provides some flexi-
bility that is not present in crossbar scheduling. In crossbar
scheduling, it is necessary to match inputs and outputs in a
one-to-one fashion during each scheduling operation. In dis-
tributed scheduling, we allocate the interface bandwidth at
each input and output and are free to subdivide that bandwidth
in whatever proportions will produce the best result.

Recently, there has been considerable interest in a switch
architecture called the load balanced switch described in [4]
and used in [6]. This architecture consists of a single stage of
buffers sandwiched between two identical stages of switching,
each of which walks through a fixed sequence of configura-
tions. The fixed sequence of switch configurations makes the
switching components very simple and the system is capable
of achieving 100% throughput for random traffic. Unfortu-
nately, this architecture also has a significant drawback. To
avoid resequencing errors, each output requires a resequencing
buffer capable of holding about n2 packets. These buffers im-
pose a delay that grows as the square of the switch size. For
the 600 port switch described in [6], operated with a switching
period of 100 ns, this translates to a delay of about 36 milli-
seconds, a penalty which applies to all packets, not just to an
occasional packet.

The paper is organized as follows. Section II introduces
two scheduling methods, proves that schedulers based on these
methods are work-conserving when the speedup is at least 2
and shows how they can be implemented using the concept of
blocking flows. Section III shows how one can implement a
practical distributed scheduler, based on one of the scheduling
methods developed in Section II and evaluates its performance
for speedups less than 2, using simulation. Section IV intro-
duces a more sophisticated, scheduling method, shows that it
too is work-conserving when the speedup is at least 2 and
shows how it can be implemented using minimum cost block-
ing flows, in networks with convex cost functions. Section V
describes a practical scheduler based on this method and
evaluates it using simulation, showing that it can out-perform
the simpler scheduler studied in section III. Section VI dis-
cusses a number of practical considerations for distributed
scheduling and Section VII concludes the paper.

2. Work-Conserving Algorithms
In this section we describe a general scheduling strategy that
can be used to obtain work-conserving scheduling algorithms
for speedups of 2 or more. While these algorithms are not

practical for real systems, they provide a conceptual founda-
tion for other algorithms, that are practical.

For the purposes of analysis, we adopt a somewhat ideal-
ized view of the system operation (in Section VI, we discuss
the implications of these assumptions for real systems). Spe-
cifically, we assume that the system operates in three discrete
phases: an arrival phase, a transfer phase and a departure
phase. During the arrival phase, each input receives up to T
cells.1 During the transfer phase, cells are moved from inputs
to outputs, with each input constrained to send at most ST cells
(S being the speedup of the system) and each output con-
strained to receive at most ST. During the output phase, each
output sends up to T cells on its outgoing link. The scheduling
algorithm determines which cells are transferred during each
transfer cycle.

The scheduling strategy that we study in this section
maintains an ordering of the non-empty VOQs at each input.
The ordering of the VOQs can be extended to all the cells at an
input. Two cells in the same VOQ are ordered according to
their position in the VOQ. Cells in different VOQs are ordered
according to the ordering of the VOQs. We say that a cell b
precedes a cell c at the same input, if b comes before c in this
cell ordering. For any cell c at an input, we let p(c) be the
number of cells at the same input as c that precede c and we let
q(c) be the number of cells at the output that c is going to.

We refer to a cell c as an ij-cell if it is at input i and is des-
tined for output j. We say that a scheduling algorithm is
maximal if during any transfer phase in which there is an ij-
cell c that remains at input i, either input i transfers ST cells or
output j receives ST cells. Given a method for ordering the
cells at each input, we say that a scheduling algorithm is or-
dered, if in any transfer phase in which an ij-cell c remains at
input i, either input i transfers ST cells that precede c or output
j receives ST cells. Our scheduling strategy produces sched-
ules that are maximal and ordered. We can vary the strategy
by using different ordering methods. We describe two order-
ing methods that each lead to work-conserving scheduling
algorithms. In fact, because there are many different maximal,
ordered scheduling algorithms for any specific ordering
method, we obtain two families of work-conserving schedul-
ing algorithms.

For any cell c waiting at an input, we define the quantity
slack(c) = q(c) − p(c). For each of the methods studied, we’ll
show that slack(c) ≥ T at the start of each departure phase if S
≥ 2. This implies that for any output with fewer than T cells in
its outgoing queue, there can be no cells waiting in any input-
side VOQs. This implies that the system is work-conserving.

1. We assume throughout, that variable-length packets are segmented

into fixed-length units for transmission through the interconnection
network. We refer to these units as cells.

 - 4 -

2.1. Batch CCF

The method we describe first is based on ideas first developed
in the Critical Cells First method of [5]. Hence, we refer to it
as the Batch Critical Cells First (BCCF) method. In the BCCF
method, the relative ordering of two VOQs remains the same
so long as they remain non-empty, but when a new VOQ be-
comes non-empty, it must be ordered relative to the others.
When a cell c arrives and the VOQ for c’s output is empty, we
insert the VOQ into the existing ordering based on the magni-
tude of q(c). In particular, if the ordered list of VOQs is v1, v2, .
. . , we place the VOQ immediately after the queue vj deter-
mined by the largest integer j for which the number of cells in
v1, . . . ,vj is no larger than q(c). Notice that this ensures that
slack(c) is non-negative right after c arrives. A specific sched-
uling algorithm is an instance of the BCCF method if it
produces schedules that are maximal and ordered with respect
to this VOQ ordering method. To show that slack(c) ≥ T at the
start of each departure phase, we need two lemmas.

Lemma 1. For a system using the BCCF method, if c is any cell
that remains at its input during a transfer phase, then slack(c)
increases by at least ST during the transfer phase.

proof. Since the VOQ ordering does not change during a trans-
fer phase (more precisely, VOQs that remain non-empty during
the transfer phase have the same relative order), any maximal,
ordered scheduling algorithm either causes q(c) to increase by
ST or causes p(c) to decrease by ST. In either case, slack(c)
increases by ST.

Note that as long as a cell c remains at an input, each arrival
phase and departure phase cause slack(c) to decrease by at
most T. So, if S ≥2, slack(c) cannot go down over the course of
a complete time step, comprising an arrival phase, a transfer
phase and a departure phase.

Lemma 2. For a system using the BCCF method with S ≥2, if c
is any cell at an input just before the start of the departure
phase, then slack(c) ≥ T.

proof. We show that for any cell c present at the end of an
arrival phase, slack(c) ≥ −T. The result then follows from
Lemma 1 and the fact that S ≥2. The proof is by induction on
the time step.

For any cell c that arrives during the first time step, p(c) ≤
T at the end of the arrival phase, so slack(c) ≥ −T at the end of
the arrival phase. Since S ≥2, there can be no net decrease in
slack(c) from one time step to the next, so slack(c) remains
≥−T at the end of each subsequent arrival phase, so long as c
remains at the input.

If a cell c arrives during step t and its VOQ is empty when
it arrives, then the rule used to order the VOQ relative to the
others ensures that slack(c) ≥ 0 right after it arrives. Hence,
slack(c) ≥ −T at the end of the arrival phase and this remains
true at the end of each subsequent arrival phase, so long as c
remains at the input.

If a cell c arrives during step t and its VOQ is not empty,
but was empty at the start of the arrival phase, then let b be the
first arriving cell to be placed in c’s VOQ during this arrival
phase. Then, slack(b) was at least 0 at the time it arrived and at
most T−1 cells can have arrived after b did in this arrival
phase. If exactly r of these precede b, then at the end of the
arrival phase,

T
rTr

rTbslackcslack

−≥
−−−−≥

−−−≥
))1(()(

))1(()()(

If a cell c arrives during step t and its VOQ was not empty
at the start of the arrival phase, then let b be the last cell in c’s
VOQ at the start of the arrival phase. By the induction hy-
pothesis, slack(b) ≥ −T at the end of the previous arrival phase.
Since the subsequent transfer phase increases slack(b) by at
least 2T and the departure phase decreases it by at most T,
slack(b) ≥ 0 at the start of the arrival phase in step t. During
this arrival phase, at most T new cells arrive at c’s input. Let r
be the number of these arriving cells that precede b. Then at
the end of the arrival phase

T
rTr

rTbslackcslack

−≥
−−−−≥

−−−≥
))1(()(

))1(()()(

Hence, slack(c) ≥ −T at the end of the arrival phase in all cases
and this remains true at the end of each subsequent arrival
phase, so long as c remains at the input.

Lemma 2 leads immediately to a work-conservation theo-
rem for BCCF.

Theorem 1. For S ≥2, any scheduler using the BCCF method is
work-conserving.

2.2. Batch LOOFA

Our second algorithm is based on ideas first developed in the
Least Occupied Output First algorithm of [7], so we refer to it
as the Batch Least Occupied Output First (BLOOFA) algo-
rithm. In the BLOOFA algorithm, the VOQs are ordered
according to the number of cells in the output-side queues.
VOQs going to outputs with fewer cells precede VOQs going to
outputs with more cells. Outputs with equal numbers of cells
are ordered by the numbering of the outputs. We define the
BLOOFA algorithm to be the combination of this VOQ order-
ing method with any maximal, ordered scheduling algorithm.
We show that slack(c) ≥ T at the start of each departure phase,
using the same overall strategy used for BCCF. As before, we
need two lemmas. The arguments are similar, but complicated
by the fact that the relative ordering of VOQs can change dur-
ing a transfer phase.

Lemma 3. For a system using the BLOOFA method, during a
transfer phase, the minimum slack at any input that does not

 - 5 -

transfer all of its cells during the transfer phase, increases by at
least ST.

proof. Let c be any cell at input i, and let j be the output that c
is going to. Let minSlack be the smallest value of the slack at
input i just before the transfer phase, and let slack(c) =

minSlack + σ. We will show that slack(c) increases by at least
ST − σ during the transfer phase. The lemma then follows di-
rectly. (Note that it is not sufficient to prove that the slack of a
cell c that has minimum slack at the start of the transfer phase
increases by ST, since c may not be a cell of minimum slack at
the end of the transfer phase.)

 We say that a cell b at input i passes c, if before the trans-
fer phase, c precedes b and after the transfer phase b precedes
c. If no cells pass c during the transfer phase, then by the defi-
nition of maximal, ordered scheduling algorithms, either q(c)
increases by ST or p(c) decreases by ST. In either case,
slack(c) increases by at least ST ≥ ST − σ.

Assume then, that there are r >0 cells that pass c and let b
be the cell in the set of cells that pass c that comes latest in the
cell ordering (before the transfer phase). For clarity, let q0(x)
denote the value of q(x) before the transfer phase and let qF(x)
denote the value of q(x) after the transfer phase. Similarly for
the functions p and slack.

Let m be the number of cells received by output j during
the transfer and let k be the number of cells that precede b be-
fore the transfer, but do not precede c. Then,

)()()()(00 bqbqcqmcq FF ≥≥=+

and p0(b) = p0(c) + k. Now,

σ
σ

σ

++−+≤
+−≤

+=−

))(())((
)()(

)()(

00

00

00

kcpmcq
bpbq

minSlackcpcq

So (m− k) ≥ − σ. Since b passes c, its output must receive fewer
than m cells during the transfer phase, so ST cells that precede
it at the start of the transfer phase must be forwarded. Of these
at least ST− (k−r) must also precede c at the start of the phase.
So,

kSTcprkSTrcpcpF +−≤−−−+≤)())(()()(00

Combining this, with qF(c) = q0(c) + m gives,

σ−+≥
−++≥

+−−+≥
−=

STcslack
kmSTcslack

kSTcpmcq
cpcqcslack FFF

)(
)()(

))(())((
)()()(

0

0

00

That is, slack(c) increases by at least ST − σ.

Note that each arrival phase causes slack(c) to decrease by at
most T. However, it is not so easy to bound the decrease in
slack(c) during the departure phase. The source of the diffi-
culty is that other cells at c’s input can pass it during the
departure phase, making it hard to bound the overall change in
slack(c). However, if slack(c) is at least T before the departure
phase begins, then q(c) must also be at least T. This means that
T cells will depart from c’s output, making it impossible for
other cells at c’s input to pass c. Thus, if slack(c) is at least T
before the departure phase, then slack(c) is at least 0 after the
departure phase. It turns out that this is sufficient to establish
that BLOOFA is work-conserving when S ≥ 2.

Lemma 4. For a system using the BLOOFA method with S ≥ 2,
if c is any cell at an input just before the start of the departure
phase, then slack(c) ≥ T.

proof. We show that for any cell c present at the end of the
arrival phase, slack(c) ≥ −T. The result then follows from
Lemma 3 and the fact that S ≥2. The proof is by induction on
the time step.

For any cell c that arrives during the first time step, p(c) ≤

T at the end of the arrival phase, so slack(c) ≥ −T at the end of
the arrival phase. Since S ≥2, Lemma 3 implies that slack(c) ≥

T at the end of the transfer phase, if it is still present at the
input. By the discussion just before the statement of Lemma 4,
this means that slack(c) ≥ 0 following the departure phase,
which in turn means that slack(c) ≥ −T at the end of the next
arrival phase. This remains true at the end of every subsequent
arrival phase until c is transferred to the output.

Suppose then, that c arrives during step t. If, at the end of
the arrival phase, the only cells that precede c also arrived dur-
ing step t, then slack(c) ≥ −T at the end of the arrival phase. By
the argument at the end of the last paragraph, this remains true
at the end of every subsequent arrival phase until c is trans-
ferred to the output.

If at the end of the arrival phase in step t, there are cells
that precede c that were present at the start of the arrival
phase, then let b be the cell in this set of cells that does not
precede any of the others in the set. Because b arrived before
step t, slack(b) ≥ −T at the end of the previous arrival phase, by
the induction hypothesis. This implies that slack(b) ≥ 0 at the
start of the arrival phase in step t. Let k be the number of cells
that arrive during the arrival phase that precede b at the end of
the arrival phase. Let m be the number of cells that arrive dur-
ing the arrival phase that precede c but not b at the end of the
arrival phase. Since k + m ≤ T and slack(b) ≥ −k,

Tkmmbslack
mbpbqcpcqcslack

−≥+−≥−=
+−≥−=

)()(
))(()()()()(

This remains true at the end of each subsequent arrival phase,
so long as c remains at the input.

 - 6 -

Lemma 4 leads immediately to the work-conservation
theorem for BLOOFA.

Theorem 2. For S ≥2, any scheduler using the BLOOFA method
is work-conserving.

2.3. Implemention of Maximal, Ordered Schedulers

We have shown that the combination of two different VOQ
ordering strategies with a maximal, ordered scheduling algo-
rithm ensures work-conserving operation when the speedup is
at least 2. We now need to show how to realize a maximal,
ordered scheduling algorithm. We start with a centralized al-
gorithm and then show how it can be converted into an
iterative, distributed algorithm. While the overhead of such
iterative algorithms makes them impractical, they provide the
basis for non-iterative algorithms that are practical.

The key observation is that the scheduling problem is
equivalent to finding a blocking flow in an acyclic flow net-
work [13]. A flow network is a directed graph with a
distinguished source vertex s, a distinguished sink vertex t and
a non-negative capacity for each edge. A flow, in such a net-
work, is a non-negative function defined on the edges. The
flow on an edge must not exceed its capacity and for every
vertex but s and t, the sum of the flow values on the incoming
edges must equal the sum of the flow values on the outgoing
edges. An edge in the network is called saturated, if the flow
on the edge is equal to its capacity. A blocking flow is one for
which every path from s to t contains at least one saturated
edge. (Note that a blocking flow is not necessarily a maximum
flow.)

To convert the scheduling problem to the problem of find-
ing a blocking flow, we first need to construct a flow network.
Our network has a source s, a sink t, n vertices referred to as
inputs and another n vertices referred to as outputs. There is an
edge with capacity ST from s to each input. Similarly, there is
an edge with capacity ST from each output to t. For each non-
empty VOQ at input i of the router with cells for output j, there
is an edge in the flow network from input i to output j with
capacity equal to the number of cells in the VOQ. (An exam-

ple of a flow network constructed to solve a particular
scheduling problem together with the corresponding solution
is shown in Figure 1.)

For any integer flow, we can construct a schedule that
transfers cells from input i to output j based on the flow on the
edge from input i to output j. Note that such a schedule does
not violate any of the constraints on the number of cells that
can be sent from any input or to any output. Also note that any
blocking flow corresponds to a maximal schedule, since any
blocking flow corresponding to a schedule which fails to
transfer a cell c from input i to output j cannot saturate the
edge from input i to output j, hence it must saturate the edge
from s to i or the edge from j to t. Such a flow corresponds to a
schedule in which either input i sends ST cells or output j re-
ceives ST.

Dinic’s algorithm [13] for the maximum flow problem
constructs blocking flows in acyclic flow networks as one step
in its overall execution. There are several different variants of
Dinic’s algorithm, that use different methods of constructing
blocking flows. The most straightforward method is to repeat-
edly search for st-paths with no saturated edges and add as
much flow as possible along such paths. We can obtain a
maximal, ordered scheduler by modifying Dinic’s algorithm
so that it preferentially selects edges between input vertices
and output vertices, according to the VOQ ordering at the in-
put. The blocking flow shown in Figure 1 was constructed in
this way, based on the BLOOFA ordering.

If paths are found using depth-first search and edges lead-
ing to dead-ends are removed as they are discovered, Dinic’s
algorithm finds a blocking flow in O(mn) time where m is the
number of edges and n is the number of vertices in the flow
graph. Because the flow graphs corresponding to schedules
have bounded depth and because the number of inputs, outputs
and edges are all bounded by the number of non-empty VOQs,
the algorithm finds a blocking flow in these graphs in O(v)
time where v is the number of non-empty VOQs. This yields an
optimal centralized scheduling algorithm. However, since v
can be as large as n2 (where n is the number of inputs of the
interconnection network), this is not altogether practical.

6 0 12 0
4 5 0 6
0 6 14 5
5 0 0 4

3 52 0

0

1

2

3

outputs
0 1 2 3

in
pu

ts

VOQ
levels

output
queue
levels

S = 1.5
T = 8

6 0 6 0
4 5 0 3
0 6 6 0
2 0 0 4

0

1

2

3

outputs
0 1 2 3

in
pu

ts

Scheduling Problem Blocking Flow Problem with Solution Scheduling Solution

s

a0

a1

a2

a3

b0

b1

b2

b3

t

12,12

12,12

12,12

12,6

12,12

12,11

12,12

12,7

6,6

12,6 4,4

6,3

5,5

5,0

14,6
6,6

4,4

5,2

capacity,flow

6 0 12 0
4 5 0 6
0 6 14 5
5 0 0 4

3 52 0

0

1

2

3

outputs
0 1 2 3

in
pu

ts

VOQ
levels

output
queue
levels

S = 1.5
T = 8

6 0 12 0
4 5 0 6
0 6 14 5
5 0 0 4

3 52 0

0

1

2

3

outputs
0 1 2 3

in
pu

ts

VOQ
levels

output
queue
levels

S = 1.5
T = 8

6 0 6 0
4 5 0 3
0 6 6 0
2 0 0 4

0

1

2

3

outputs
0 1 2 3

in
pu

ts

6 0 6 0
4 5 0 3
0 6 6 0
2 0 0 4

0

1

2

3

outputs
0 1 2 3

in
pu

ts

Scheduling Problem Blocking Flow Problem with Solution Scheduling Solution

s

a0

a1

a2

a3

b0

b1

b2

b3

t

12,12

12,12

12,12

12,6

12,12

12,11

12,12

12,7

6,6

12,6 4,4

6,3

5,5

5,0

14,6
6,6

4,4

5,2

capacity,flow

s

a0

a1

a2

a3

b0

b1

b2

b3

t

12,12

12,12

12,12

12,6

12,12

12,11

12,12

12,7

6,6

12,6 4,4

6,3

5,5

5,0

14,6
6,6

4,4

5,2

capacity,flow

Figure 1. Example showing a maximal ordered schedule constructed from a blocking flow.

 - 7 -

We can obtain a distributed, iterative scheduling algo-
rithm based on similar ideas. Rather than state this in the
language of blocking flows, we describe it directly as a sched-
uling algorithm. In the distributed scheduler, we first have an
exchange of messages in which each output announces the
number of cells in its outgoing queue. The inputs use this in-
formation to maintain their VOQ order. Note that this requires
that each output send n messages and each input receive n
messages. Next, the inputs and outputs proceed through a se-
ries of rounds.

In each round, the inputs that have uncommitted cells to
send and have not yet committed to sending ST cells, send bid
messages to those outputs that are still prepared to accept more
cells. The inputs construct their bids in accordance with the
VOQ ordering. In particular, an input commits all the cells it
has for the first output in the ordering and makes similar
maximal bids for subsequent outputs until it has placed as
many bids as it can. Inputs may not overbid, as they are
obliged to send cells to any output that accepts a bid. Note that
at most one of the bid messages an input sends during a round
does not commit all the cells that it has for the target output.

During each round, outputs receive bids from inputs and
accept as many as possible. If an output does not receive bids
for at least ST cells, it does nothing during this round. In par-
ticular, it sends no message back to the inputs. Such a
“response” is treated by the bidding inputs as an implicit ac-
cept and is taken into account in subsequent bids. Once an
output has received bids for a total ST cells, it sends an accept
message to all the inputs (not just those that sent it bids). The
accept message contains a pair of values (i,x) and it means that
the output accepts all bids received from inputs whose index is
less than i, rejects all bids from inputs whose index is greater
than i and accepts exactly x cells from input i. Once an output
sends an accept message, its role in the scheduling is com-
plete.

This procedure has some attractive properties. First, note
that each output sends n messages in the bidding process, so
each input receives only n messages from outputs. Also, an
input sends at most two bids to any particular output, so an
input sends at most 2n bids and an output receives at most 2n
bids. Thus, the number of cells that must be handled at any
input or output during the scheduling is O(n). Unfortunately,
this does not imply that the algorithm runs in O(n) time, since
it can require up to n rounds and some outputs may have to
handle close to n messages during most rounds.

It’s possible to reduce the time for each round by having
the switch elements that make up the interconnection network
participate in the handling of bids and responses. However, in
the next section we turn our attention instead, to algorithms
that are simpler to implement and which, while not provably
work-conserving, are able to match the performance of the
work-conserving algorithms, even under extreme traffic condi-
tions.

3. Distributed BLOOFA
The work-conserving algorithms discussed in the previous
section can be implemented using iterative algorithms that
require a potentially large number of message exchanges. In
this section, we formulate a distributed algorithm that ap-
proximates the behavior of the BLOOFA algorithm while
requiring just one exchange of messages. Our Distributed
BLOOFA (DBL) algorithm avoids the need for many message
exchanges by having the inputs structure their bids to avoid
the situation where some outputs are swamped with more bids
than they can accept, while others are left with no bids. Spe-
cifically, the inputs use a technique introduced in [11] called
backlog-proportional allocation to limit the number of bids
that are made for any output.

DBL starts with each input i sending a message to each
output j, telling it how many cells B(i,j) it has in its VOQ for
output j. Each output j then sends a message to all inputs con-
taining the number of cells in its output queue (B(j)) and the
total number of cells that inputs have to send it (B(+, j)2). Note
that each input and output sends and receives n messages.
Once this exchange of messages has been made, each input
independently decides how many cells to send to each output.
To prevent too many cells from being sent to any output, input
i is allowed to send at most ST ×B(i, j)/B(+, j) cells to output j.
Each input then orders the outputs according to the length of
their output queues and goes through this list, assigning as
many cells as it is permitted for each output, before going to
the next output in the list. The scheduling is complete when
the input has assigned a total of ST cells or has assigned all the
cells permitted by the bound.

We studied the performance of DBL using simulation for
speedups between 1 and 2. We start with an adversarial traffic
pattern, we call a stress test, that is designed to probe the lim-
its of the algorithm’s performance. The stress test consists of a
series of phases, as illustrated in Fig. 3. In the first phase, the
arriving traffic at each of several inputs is directed to a single
output. This causes each of the inputs to build up a backlog for
the target output. The arriving traffic at all the inputs is then
re-directed to a second output, causing the accumulation of a
backlog for the second output. Successive phases proceed
similarly, creating backlogs at each input for each of several
outputs. During the last phase, the arriving traffic at all inputs

2. We use the addition symbol (‘+’) as a function argument to denote

the summation of the function over all values of that argument.

phase 1 phase 2 phase 3 phase 4phase 1 phase 2 phase 3 phase 4

Figure 2. Typical stress test

 - 8 -

is re-directed to a distinct new output for each input. Since
each of the target outputs of the last phase has only a single
input directing traffic to it, that input must send cells to it as
quickly as they come in, while simultaneously clearing the
accumulated backlogs for the other outputs, in time to prevent
underflow at those other outputs. This creates an extreme con-
dition that can lead to underflow. The timing of the transitions
between phases is chosen so that the total number of cells in
the system directed to each output is approximately the same
at the time the transition takes place. The stress test can be
varied by changing the number of participating inputs and the
number of phases.

Figure 3 shows results from a sample stress test. The top
chart shows the buffer levels in the VOQs at input 0 and the
buffer levels at outputs 0 to 4 (by symmetry, the VOQ lengths
at other inputs will be approximately the same as those at in-
put 0). The time unit is the update interval, T. The unit of
storage is the number of cells that can be sent on an external
link during the update interval. Notice that during the last
phase of the stress test B(0,4) rises, indicating that input 0 is
unable to transfer cells to output 4 as quickly as they come in.
This results in loss of link capacity at output 4. The second
chart shows the miss fraction at output 4 during this last phase.
The term “miss” refers to a missed opportunity to send a cell.
The miss fraction measures the fraction of the link capacity

that is effectively lost during the last phase due to such misses
and is a measure of how far the system deviates from being
work-conserving. The curve labeled simply, “miss fraction”
measures the average miss fraction during successive meas-
urement intervals (the measurement intervals are 25 time units
long). The curve labeled “average miss fraction” is the frac-
tion of the link capacity lost from the start of the last phase to
the time plotted. We observe that almost 30% of the link’s
capacity is effectively lost between the start of the last phase
and the end of the period shown.

The left-hand chart in Figure 4 shows how DBL performs
on a series of stress tests with speedups varying between 1 and
1.5. (In these tests, the length of the stress test was set to 1.2
times the length of time that would be required to forward all
the cells received during the first phase in an ideal output-
queued switch. We see here that the average miss fraction (for
the output targeted by input 0 in the last phase) drops steadily
with increasing speedup, dropping to zero before the speedup
reaches 1.5. We performed 90 sets of stress tests, using differ-
ent numbers of inputs and phases (up to 15 inputs and 15
phases). The results plotted in the figure are the worst-cases
for 2, 3, 4 and 5 inputs. In all cases, the average miss fraction
for the last phase target output dropped to zero for speedups
greater than 1.5.

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000 5000 6000

Time

B (+,0)

B (+,3)

B (+,2)

B (+,1)

B (+,4)
B (0) B (1) B (4)

speedup =1.2, 3 inputs, 5 phasesDBL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4000 4250 4500 4750 5000 5250 5500 5750 6000 6250 6500

Time

miss fraction

average miss fraction

speedup =1.2, 3 inputs, 5 phasesDBL

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000 5000 6000

Time

B (+,0)

B (+,3)

B (+,2)

B (+,1)

B (+,4)
B (0) B (1) B (4)

speedup =1.2, 3 inputs, 5 phasesDBL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4000 4250 4500 4750 5000 5250 5500 5750 6000 6250 6500

Time

miss fraction

average miss fraction

speedup =1.2, 3 inputs, 5 phasesDBL

Figure 3. Results from sample stress test for distributed BLOOFA - buffer levels (top) and miss fraction (bottom).

 - 9 -

To compare DBL to BLOOFA, we performed the same se-
ries of 90 stress tests on BLOOFA. For speedups below 2, the
method used to select which inputs send traffic to a given out-
put can have a significant effect on the performance of
BLOOFA. For the results given here, we went through the out-
puts in order (from smallest output-side backlog to largest)
and for each output j, we assigned traffic from the different
inputs to output j in proportion to the fraction that each could
supply of the total that all inputs could send to j in this update
interval. The right-hand chart in Figure 4 shows the results of
these stress tests on BLOOFA. Although a close examination of
the results reveal small differences between the distributed and
centralized versions of BLOOFA, the results are virtually indis-
tinguishable. We find that the approximation introduced by
using the backlog-proportional allocation method to enable
efficient distributed scheduling, has a negligible effect on the
quality of the scheduling results, even though the distributed
version is not known to be provably work-conserving for any
speedup.

We have also studied the performance of DBL for less ad-
versarial (although, still very demanding) traffic conditions. In
particular, we have studied bursty traffic situations in which
there is one output (referred to as the subject output), for
which traffic is arriving continuously at a specified fraction of
the link rate. The input at which the subject’s traffic arrives
changes randomly as the simulation progresses (it remains
with a given input for an exponentially distributed time inter-
val). Each of the inputs that is not currently providing traffic
for the subject has its own target output (not equal to the sub-
ject) to which it sends traffic, changing targets randomly and
independently of all other inputs (an input retains its current
target for an exponentially distributed time interval). With this
traffic pattern, roughly one fourth of the outputs that are not
the subject are overloaded at any one time (they are targets of
two or more inputs). An ideal scheduler will forward cells to
the subject output as fast as they come in, preventing any in-
put-side queueing of cells for the subject. However, the other
outputs can build up significant input side backlogs (due to the
transient overloads they experience), leading to contention that
can affect the subject output. Figure 5 shows an example of
what can happen in a system subjected to this type of traffic.

The top chart shows the amount of data buffered for the sub-
ject output (which is output 0) at all inputs (B(+,0)), the
amount of data buffered at the input, which is currently receiv-
ing traffic for the subject (B(i,0)) and the amount of data
buffered at the subject (B(0)). The unit of storage is the
amount of data received on an external link during an update
interval and the time unit is the update interval. The disconti-
nuities in the curve for B(i,0) occur when the input that is
currently receiving traffic for the subject changes (i.e., the
value of i changes). The bottom chart shows the instantaneous
value of the miss fraction.

Figure 6 shows the average miss fraction from a large
number of bursty traffic simulations with varying input load
and speedup. It’s interesting to note that the miss fraction
reaches its peak when the input load is between 0.8 and 0.9.
Larger input loads lead to a sharp drop in the miss fraction.
The explanation for this behavior is that when the input load
approaches 1, output-side backlogs tend to persist for a long
period of time and it’s only when the output-side backlogs are
close to zero that misses can occur. As one would expect, the
miss fraction drops quickly as the speedup increases. Note that
for speedup 1.15 the miss fraction never exceeds 2%, meaning
that only a small fraction of the link capacity is lost.

 It should be noted that the bursty traffic model used in
these studies represents a very extreme situation. A more real-
istic bursty traffic model would have a large number of bursty
sources (at least a few tens) with more limited peak rates shar-
ing each input link (at least a few tens of sources per link).
Such a model is significantly less bursty than the one used
here.

4. The Output Leveling Algorithm
The intuition behind the BLOOFA algorithm is that by favoring
outputs with smaller queues, we can delay the possibility of
underflow and potentially avoid that possibility altogether.
Theorem 2 tells us that for a speedup of 2 or more, we can
avoid underflow, but it does not say anything about what hap-
pens with smaller speedups. When there are several output
queues of nearly the same length, BLOOFA transfers as many

0

0.2

0.4

0.6

0.8

1

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

speedup

av
g.

 m
iss

 fr
ac

tio
n

2 inputs , 5 phases 3,7

4,9

5,11

distributed BLOOFA

0

0.2

0.4

0.6

0.8

1

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

speedup

av
g.

 m
iss

 fr
ac

tio
n

2 inputs , 5 phases 3,7

4,9

5,11

BLOOFA

Figure 4. Miss fraction for DBL and BLOOFA on a variety of stress tests

 - 10 -

cells as possible to the shortest queues, potentially preventing
any cells from reaching slightly longer queues. It seems likely
that we could get better performance by balancing the trans-
fers so that the resulting output queue lengths are as close to
equal as possible. This is the intuition behind the Output Lev-
eling Algorithm (OLA), which we consider next. In this section
we show that OLA, like BCCF and BLOOFA is work-
conserving for speedups of 2 or more. Subsequently, we study
the performance of OLA and a practical variant of OLA and
show that these algorithms can out-perform BLOOFA and
DBL.

OLA orders cells at an input in the same way that
BLOOFA does. Let B(i,j) and B(j) be the lengths of the VOQs
and output queues respectively, immediately before a transfer
phase and let x(i,j) be the number of cells transferred from
input i to output j during the transfer. We say that the transfer
is level if for any pair of outputs j1 and j2,

B(j1) + x(+, j1) < B(j2) + x(+, j2) − 1

implies that x(+, j1) = min{ST, B(+, j1)}. We now define OLA
as any scheduling algorithm that produces schedules that are
maximal and level.

4.1. Work Conservation

We will use essentially the same strategy as before to
show that OLA is work-conserving when the speedup is at
least 2. However, to show that the minimum slack increases by
ST at each input during a transfer phase, we first need to show
how a transfer phase scheduled by OLA can be decomposed
into a sequence of sub-phases. Let B(i,j) and B(j) be the
lengths of the VOQs and output queues respectively, immedi-
ately before a transfer phase and let x(i,j) be the number of
cells transferred from input i to output j during the transfer.
Each of the sub-phases corresponds to the transfer of up to one
cell from each input and up to one cell to each output. We let
xk(i,j) denote the number of cells transferred from input i to
output j by the first k sub-phases. At the end of sub-phase k,
the outputs are ordered in increasing order of B(j) + xk(+, j)
with ties broken according to the output numbers. The order-

0

1

2

3

4

5

6

1000 1020 1040 1060 1080 1100

Time

Q
ue

ue
 L

ev
el

B (0)

B (i ,0)

B (+,0)

DBL , speedup =1.1, bursty traffic, load=0.9, mean dwell time=10

0

0.2

0.4

0.6

0.8

1000 1020 1040 1060 1080 1100

Time

M
is

s
Fr

ac
tio

n DBL , speedup =1.1, bursty traffic, load=0.9, mean dwell time=10

0

1

2

3

4

5

6

1000 1020 1040 1060 1080 1100

Time

Q
ue

ue
 L

ev
el

B (0)

B (i ,0)

B (+,0)

DBL , speedup =1.1, bursty traffic, load=0.9, mean dwell time=10

0

0.2

0.4

0.6

0.8

1000 1020 1040 1060 1080 1100

Time

M
is

s
Fr

ac
tio

n DBL , speedup =1.1, bursty traffic, load=0.9, mean dwell time=10

Figure 5. Time series showing performance of DBL for bursty traffic.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.50 0.60 0.70 0.80 0.90 1.00
Link Load

M
iss

 F
ra

ct
io

n

DBL , bursty traffic, mean dwell time=0.1

speedup =1.25

1.1

1.05

1.2

1.15

Figure 6 Performance of DBL on bursty traffic with varying
speedups and subject, target dwell times

 - 11 -

ing of the outputs is used to order the VOQs at each input and
this ordering is extended to all the cells at each input. We say
that a cell b precedes a cell c following sub-phase k if b comes
before c in this cell ordering. We define qk(c)=B(j) + xk(+, j)
and we define pk(c) to be the number of cells at c’s input that
precede it in the ordering at the end of sub-phase k. We also
define slackk(c) = qk(c) − pk(c). Let slack0(c) be the value of
slack(c) before the transfer phase begins and note that if k is
the last sub-phase, then slackk(c) is equal to the value of
slack(c) following the transfer phase.

Given a schedule constructed by an OLA scheduler, we
construct sub-phases iteratively. To construct sub-phase k, by
repeating the following step until there are no outputs that are
eligible to be selected.

Select an output j that has not yet been selected in this
sub-phase for which xk−1(+, j)<x(+, j) and which, among
all such outputs, has the minimum value of qk−1(c). If
there are multiple outputs that satisfy this condition, se-
lect the output that comes first in the fixed numbering
of the outputs. Then, select some input i that has not yet
been selected in this sub-phase for which xk−1(i, j)<x(i,

j). If there is such an input, include the transfer of a cell
from input i to output j in sub-phase k, making xk(i, j) =
xk−1(i, j) + 1.

We will use this decomposition to show that the minimum
slack at each input increases by at least ST during each transfer
phase.

Lemma 5. For a system using the OLA method, during a trans-
fer phase, the minimum slack at any input that does not
transfer all of its cells during the transfer phase, increases by at
least ST.

proof. Because OLA constructs maximal schedules, any trans-
fer phase that leaves cells at input i must either transfer ST
cells from input i or must transfer ST cells to every output j for
which a cell remains at input i following the transfer phase.
This means that if we decompose the transfer phase into sub-
phases, as described above, there will be at least ST sub-
phases. We show below that every one of these sub-phases
increases the minimum slack at input i. Hence, the minimum
slack increases by ST over the complete transfer phase.

Let k be the index of any sub-phase and let c be any cell at
input i which is not transferred during sub-phase k and for
which slackk−1(c) is minimum among all cells at input i. Let j
be the output that c is going to. If output j receives no cell dur-
ing sub-phase k, then input i must transfer a cell during sub-
phase k. The selection rule used to construct sub-phases en-
sures that the transferred cell precedes c. Hence, pk(c) =
pk−1(c)−1 and thus, slackk(c) = slackk−1(c)+1.

If output j does receive a cell, then qk(c) = qk−1(c) + 1. If no
cell at input i passes c during the sub-phase, then slackk(c) ≥
slackk−1(c)+1. Suppose then, that there is one or more cell that
passes c during the sub-phase and let d be such a cell. Since c

precedes d before the sub-phase qk−1(c) ≤ qk−1(d) and pk−1(c) <

pk−1(d). Since d precedes c after the sub-phase, no cell is re-
ceived by d’s output during the sub-phase and so qk−1(d) ≤
qk−1(c) + 1. Because slackk−1(c) ≤ slackk−1(d), pk−1(d) − pk−1(c) ≤

qk−1(d) − qk−1(c) ≤ 1 which means that there are no cells that fall
between c and d in the cell ordering. This implies that d is the
only cell that passes c during the sub-phase. Because d’s out-
put receives no cell during the sub-phase, there must be some
cell that precedes d that is transferred from input i during the
sub-phase and this cell must also precede c. Thus, pk(c) =
pk−1(c) and so slackk(c) = slackk−1(c) + 1.

As before, we note that each arrival phase causes slack(c) to
decrease by at most T. Also, as before, if slack(c) is at least T
before the start of a departure phase, then slack(c) is at least
zero, after the departure phase. This is sufficient to establish
that OLA is work-conserving when S ≥ 2.

Lemma 6. For a system using the OLA method with S ≥ 2, if c
is any cell at an input just before the start of the departure
phase, then slack(c) ≥ T.

The proof of Lemma 6 is just like the proof of Lemma 4, ex-
cept that it uses Lemma 5, in place of Lemma 3. Lemma 6
leads immediately to the work-conservation theorem for OLA.

Theorem 3. For S ≥2, any scheduling algorithm using the OLA
method is work-conserving.

4.2. Implementating OLA

An OLA scheduler can be implemented exactly either using
linear programming or by solving a minimum cost, maximum
flow problem with a convex cost function. We outline the lat-
ter approach, as it serves to motivate more practical,
approximate variants.

In the classical version of the minimum cost, maximum
flow problem [1,13], each edge has an associated cost coeffi-
cient, which is multiplied by the flow on the edge to get the
edge’s contribution to the overall cost of the flow. There are
several well-known efficient algorithms for solving the mini-
mum cost, maximum flow problem. Interestingly, these
algorithms can be generalized to handle networks in which the
cost is a convex function of the flow on the edge, rather than a
linear function (x2 is an example of a convex function).

The OLA scheduling algorithm can be reduced to solving
a minimum cost, maximum flow problem with a convex edge
cost function. An example of such a reduction is shown in
Figure 7, along with a solution and the corresponding sched-
ule. The flow graph is constructed in the same way as was
discussed in Section 2. The only difference is the introduction
of non-zero costs on the edges from the output vertices to the
sink vertex t. The cost of an edge from output j to t carrying a
flow of magnitude x is defined as C(x) = (x + B(j))2. A mini-
mum cost, maximum flow for this network corresponds
directly to an OLA schedule. The convexity of the cost func-
tion ensures that the flows on different output to sink edges

 - 12 -

result in costs that are as nearly equal as the various edge ca-
pacities allow (if a flow can be shifted from a higher cost edge
to a lower cost edge, there is a net reduction in cost, because
the lower cost edge has lower incremental cost, per unit flow).
The use of the offset B(j) in the edge cost means that the costs
of the flows on two output-to-sink edges are equal whenever
the corresponding schedules yield equal levels at the output
queue. Reference [1] describes an algorithm that finds a mini-
mum cost, maximum flow in O((m log K)(m + n log n)) time
on an arbitrary network with n vertices, m edges and maxi-
mum edge capacity K. While this algorithm is not useful for
distributed scheduling in real systems, it can be used in per-
formance studies to establish a benchmark for more practical
algorithms that seek to approximate the behavior of OLA.

5. Distributed OLA
We start by describing an approximate centralized version

of OLA. We then show how this can be converted to a distrib-
uted scheduler, using an extension of the backlog-proportional
allocation method introduced earlier.

Our approximate centralized algorithm uses an array x(i,j)
which is initialized to zero and which defines the number of
cells to be transferred from input i to output j, when the sched-
uling algorithm completes. It also uses a parameter ∆ ≤ ST,
which determines the accuracy of the approximation. During
its execution, the algorithm maintains a list of the outputs,
sorted in increasing order of x(+, j) + B(j). The algorithm re-
peats the following step so long as there are at least two
outputs on the list.

Let j1 and j2 be the indices of the first two outputs on the
list. Increase x(+, j1), by repeatedly increasing x(i,j) for se-
lected values of i (input selection criteria are discussed
below). Stop when x(+, j1) + B(j1) = x(+, j2) + B(j2) + ∆, or
when x(+, j1) = ST or when x(+, j1) = B(+, j1), whichever
occurs first. If either of the last two conditions occurs,
remove j1 from the list. Otherwise, move it down the list
so as to maintain the ordering criterion.

When the list has been reduced to a single output j, the algo-
rithm increases x(+, j) until x(+, j) = min {ST, B(+, j)} or until
all inputs with cells for output j have scheduled all they can
(ST).

 The number of steps performed by the algorithm is at
most nST/∆. It can be implemented to run in O(m + (ST/∆)n2)
time, where m is the number of non-empty VOQs. This can be
improved to O(m + (ST/∆)n log n), if the list is replaced with a
heap. If ∆=1, the algorithm computes an OLA schedule (re-
gardless of the input selection criterion). For larger values of
∆, it implements a ∆-OLA schedule, which is defined as any
maximal schedule for which

B(j1) + x(+, j1) < B(j2) + x(+, j2) − ∆

implies that x(+, j1) = min{ST, B(+, j1)}. That is, a ∆-OLA
scheduler allows the output queue differences at the end of a
transfer phase to exceed ∆, only if there is no way to transfer
more cells to the outputs with the smaller queues. ∆-OLA
schedulers, like OLA schedulers are work-conserving when the
speedup is at least 2 (a slight variant of the proof used for OLA
can be used to show this). For smaller speedups, we can trade-
off scheduling performance against running time by adjusting
∆.

The criterion used to select the next input to use to effect
an increase in x(+, j1) does not affect the work-conservation
condition. However, different choices can affect performance
when the speedup is less than two. In the performance results
reported below, we distribute the load approximately evenly
among all inputs with traffic for output j1, using a round-robin
technique. We maintain a list of inputs that can still send to j1
(they have both cells for j1 and uncommitted bandwidth) and
use the first input on the list to increase the flow to j1. To ob-
tain an even distribution, we take at most ∆ from an input at a
time and then move that input to the end of the list. This
method can be implemented without increasing the time com-
plexity of the algorithm.

6 0 12 0
4 5 0 6
0 6 14 5
5 0 0 4

3 52 0

0

1

2

3

outputs
0 1 2 3

in
pu

ts
VOQ
levels

output
queue
levels

S = 1.5
T = 8

6 0 6 0
4 5 0 3
0 6 4 2
2 0 0 4

0

1

2

3

outputs
0 1 2 3

in
pu

ts

Scheduling Problem Blocking Flow Problem with Min Cost Solution Scheduling Solution

s

a0

a1

a2

a3

b0

b1

b2

b3

t

12,12

12,12

12,12

12,6

12,12,
196

12,11,
121

12,10,
169

12,9,
196

6,6

12,6 4,4

6,3

5,5

5,2

14,4
6,6

4,4

5,2

capacity,flow,
cost

6 0 12 0
4 5 0 6
0 6 14 5
5 0 0 4

3 52 0

0

1

2

3

outputs
0 1 2 3

in
pu

ts
VOQ
levels

output
queue
levels

S = 1.5
T = 8

6 0 12 0
4 5 0 6
0 6 14 5
5 0 0 4

3 52 0

0

1

2

3

outputs
0 1 2 3

in
pu

ts
VOQ
levels

output
queue
levels

S = 1.5
T = 8

6 0 6 0
4 5 0 3
0 6 4 2
2 0 0 4

0

1

2

3

outputs
0 1 2 3

in
pu

ts

6 0 6 0
4 5 0 3
0 6 4 2
2 0 0 4

0

1

2

3

outputs
0 1 2 3

in
pu

ts

Scheduling Problem Blocking Flow Problem with Min Cost Solution Scheduling Solution

s

a0

a1

a2

a3

b0

b1

b2

b3

t

12,12

12,12

12,12

12,6

12,12,
196

12,11,
121

12,10,
169

12,9,
196

6,6

12,6 4,4

6,3

5,5

5,2

14,4
6,6

4,4

5,2

capacity,flow,
cost

Figure 7. Implementing OLA using minimum-cost blocking flow with convex cost function. Differences from
earlier solution highlighted in bold.

 - 13 -

To convert a ∆-OLA scheduler to a practical distributed
scheduler, we use the backlog proportional allocation tech-
nique introduced earlier to allow inputs to divide the
responsibility for supplying traffic to the different outputs.
This allows each input to operate independently of the others,
once the initial exchange of information takes place. As with
DBL, this initial exchange supplies input i with the values of
B(j) and B(+,j) for every output j. Input i also has the values
B(i,j) for all j and it uses these to compute values σ(i,j) =
B(i,j)/B(j). Given this information, input i makes its scheduling
decisions in a way that is similar to the centralized algorithm.
In particular, input i maintains a list of the outputs for which it
has cells, sorted in increasing order of B(j) + x(i,j)/σ(i,j). It
then repeats the following step so long as the list has at least
two elements.

Let j1 and j2 be the indices of the first two outputs on the
list. Increase x(i, j1) until one of the following conditions
is satisfied.

1. x(i,+) = ST,
2. x(i, j1) = σ(i,j1)ST,
3. x(i, j1) = B(i, j1) or

4. B(j1) + x(i, j1)/σ(i,j1) = B(i, j2)+ ∆ + x(i, j2)/σ(i,j2)

If condition 1 occurs, the algorithm terminates. If either
of conditions 2 or 3 occurs, remove j1 from the list. Oth-
erwise, move j1 down the list so as to maintain the
ordering criterion.

When the list has been reduced to a single output j, the algo-
rithm increases x(i, j) until x(i, j) = min {σ(i,j)ST, B(i, j)} or
until x(i,+) = ST, whichever occurs first.

The number of steps performed by the algorithm is at
most nST/∆. It can be implemented to run in O((ST/∆)n2) time,
using a naive list implementation or O((ST/∆)n log n), if the list
is replaced with a heap. Using a hardware implementation of a
sorted list, this can be improved to O((ST/∆)n) at the cost of n
registers and associated comparison logic.

Figure 8 shows how distributed OLA performs on a sam-
ple stress test. This example uses a value of ∆=0.1. Comparing
this to Figure 3, we see that distributed OLA reduces the miss
fraction during the critical period of the last phase by about
20% relative to DBL. For this situation, distributed OLA deliv-
ers nearly ideal performance, distributing the misses evenly
among the different outputs experiencing misses. Figure 9
shows how distributed OLA performs on a large number of
different stress tests. Comparing these results to Figure 4, we
see that distributed OLA provides the largest improvement for
very small speedups. The speedups needed to reduce the
misses to zero are the same for both DBL and distributed OLA.

6. Practical Considerations
While the main focus of this paper has been on establishing
the theoretical foundation for robust distributed scheduling, we
believe that the results are of direct practical value. First, it’s
important to discuss the significance of the idealized assump-
tions made to facilitate the analysis; specifically, the
assumption that the system operation is structured in discrete
phases (arrival, transfer and departure). While systems could
certainly be built that adhere to this assumption, this would

0

0.2

0.4

0.6

0.8

1

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

speedup

av
g.

 m
iss

 fr
ac

tio
n

2 inputs , 5 phases 3,7

4,9

5,11

distributed OLA
∆=.02 (lines)
∆=.2 (mark)

Figure 9. Miss fraction for distributed OLA on a variety
of stress tests

0

0.1

0.2

0.3

0.4

0.5

0.6

4000 4250 4500 4750 5000 5250 5500 5750 6000 6250 6500

Time

miss fraction

average miss fraction

speedup =1.2, 3 inputs, 5 phases

distributed OLA - ∆=0.1

Figure 8. Example stress test for distributed OLA

 - 14 -

imply a period during which data forwarding was suspended,
while scheduling was being performed. Pipelining can be used
to eliminate this inefficiency. During each update period, a
pipelined implementation would perform the scheduling
needed to handle traffic received up to the start of the current
update period. This traffic would then be allowed to proceed
to the outputs during the next update period. This implies that
all cells would experience a delay of between one and two
update periods. While our analysis can be applied directly to
systems that operate in this way, we need to relax the defini-
tion of work-conservation to reflect this delay. We say that
such a system with an update period of T is T-work-
conserving, if an output link is never allowed to be idle, so
long as there are no cells that arrived at least 2T time units
earlier. (Note that by this definition, crossbar schedulers that
pipeline scheduling with data transfer are 1-work-conserving.)

In practice, it may be preferable not to adhere to a strict
pipelining discipline, but to allow scheduling to proceed on a
more or less continuous basis, with ports periodically sending
their status information and asynchronously updating the for-
warding rates of their VOQs in response to the data received
from other inputs. This eliminates delays that are artificially
imposed by the scheduling algorithm. Delays will still occur
when the rate at which traffic arriving at an input for a given
output increases suddenly, but during periods of relative rate
stability there would be no unnecessary delays. It should be
noted however, that while the results given here provide strong
evidence that such systems can be work-conserving, they do
not specifically apply to them. It would be interesting to see if
one could formalize such asynchronously scheduled systems
so as to enable rigorous statements about work-conservation.

Another important practical issue for distributed schedul-
ing is the overhead of the message exchanges required by the
scheduling algorithms. The practical variants of the distributed
scheduling algorithms described here require that each port
send and receive 2n values, each update period (where n is the
number of ports). Using a compact floating point representa-
tion, these can be encoded with sufficient accuracy in 4n
bytes. If the update period is chosen so that the amount of data
a port can send to or receive from the interconnection network
per update period is much larger than 4n, the overhead re-
quired to communicate these values can be kept acceptably
small. For a system with n=1,000 an update period of 50 µs is
enough to keep the overhead below 5%.

A related issue is the computational overhead of distrib-
uted scheduling. Since the update period is necessarily a
constant multiple of the number of ports, there is time to per-
form even moderately complex algorithms. For a system with
n=1000 and a clock frequency of 200 MHz, the DBL algorithm
can be executed at each port in 5 µs, a small fraction of the
required update period. While more complex algorithms such
as the distributed OLA algorithm are more challenging to im-
plement in the required time, even these are within the scope
of practical implementation if ∆ is at least, say ST/10.

In this paper, we have not addressed the interconnection
network itself, and how it might interact with a distributed
scheduler. The performance of multistage interconnection
networks with buffered switch elements has been studied in
great detail, using both analysis and simulation (representative
examples of analytical studies of such systems can be found in
references [3,12]). The general conclusion of these studies is
that these systems can provide excellent performance when
carrying traffic that does not cause sustained overloads on any
output links. The use of distributed scheduling can ensure that
this condition is met, allowing one to consider interconnection
network performance, as a largely independent issue. Most
performance studies of these networks have been done assum-
ing switch elements chips that provide buffering for just a
small number of cells per port (the typical range is 2-16) and
these systems are capable of throughputs exceeding 90% for
switch element buffer sizes of eight or more per port. Modern
ICs allow the construction of switch elements with over four
thousand cells, allowing system throughputs to approach
100%. With current technology, a three stage, multi-plane,
Clos-type network using dynamic routing requires roughly n
switch element ICs to support n OC-192 links (for values of n
ranging from about 100 to several thousand). Such a network
can buffer several thousand cells per external link, allowing it
to effectively smooth out any rate variations that may occur
within an update period. Since rate-controlled VOQs feed traf-
fic to the network in a smooth, rather than a bursty fashion, the
magnitude of such variations can be expected to be quite lim-
ited, allowing the network to deliver cells to the outputs with
only very modest queueing delays.

7. Concluding Remarks
We believe that system architectures that combine distributed
scheduling and buffered, multistage interconnection networks
are among the most scalable and cost-effective architectures
for implementing high performance routers and switches.
These architectures make it feasible today to build systems
with aggregate capacities from 1 to 100 Tb/s. Continued im-
provements in Moore’s Law will allow them to continue to
scale in both line speed and aggregate system capacity. The
one drawback that such systems have suffered from is that
their performance can degenerate when they are subjected to
the extreme traffic situations that can occur in Internet routers.
While various ad-hoc flow control techniques have been used
to address this issue, it has not been possible up to this point,
to make rigorous statements about the performance of such
systems under extreme traffic. The theoretical results devel-
oped here show that the performance of these systems can be
directly comparable to the performance of unbuffered cross-
bars, controlled by centralized schedulers. While in both
system contexts, the scheduling algorithms with the strongest
theoretical guarantees are not practical to implement, these
algorithms provide the insight needed to design practical vari-
ants capable of similar performance.

There are some interesting ways that this work could be
extended. First, it seems entirely possible that algorithms like

 - 15 -

DBL and distributed OLA are work-conserving for small
speedups. However, proving such results seems to require
either extensions to the proof techniques used here (adapted
largely from earlier work on crossbar scheduling), or entirely
new techniques. Establishing such a result would be of great
interest from both a theoretical and a practical perspective.

Reference [11] describes distributed scheduling algo-
rithms that support weighted-fair queueing and algorithms that
seek to guarantee that packets that arrive at the same time for
the same output link are forwarded at approximately the same
time on that output link. The results developed here can likely
be extended to allow rigorous statements about the perform-
ance of these or similar distributed schedulers.

Finally, as noted in the introduction, whereas crossbar
schedulers must match inputs to outputs in a one-to-one fash-
ion, distributed schedulers can divide the bandwidth at inputs
and outputs arbitrarily. It seems likely that this difference may
allow the construction of distributed schedulers with speedups
significantly smaller than 2. Our failure to prove such a result
may be just a consequence of our reliance on proof methods
adapted from crossbar scheduling. Our simulation studies sug-
gest that speedups close to 1.5 may be sufficient for work-
conservation in distributed schedulers and we have some (so
far inconclusive) analytical evidence that suggests work-
conservation could be achievable for speedups of slightly less
than 1.6. The establishment of such a result would be of con-
siderable practical value and would also be interesting from a
purely analytical standpoint, as it would likely require differ-
ent proof techniques than those that have been employed so
far.

REFERENCES
[1] Ahuja, Ravindra, Thomas Magnanti and James Orlin. Network Flows,

Theory, Applications and Algorithms. Prentice-Hall, 1993.
[2] Anderson, T., S. Owicki., J. Saxe and C. Thacker. “High speed switch

scheduling for local area networks,” ACM Trans. on Computer Systems,
11/93.

[3] Bianchi, Giuseppe and Jonathan Turner. “Improved Queueing Analysis
of Shared Buffer Switching Networks,” IEEE/ACM Transactions on
Networking, 8/93.

[4] Chang, C. S., D.S. Lee and Y.S. Jou, “Load balanced Birkhoff-von
Neumann switches, Part I: one-stage buffering”. Computer
Communications Vol. 25. pp. 611-622, 2002.

[5] Chuang, Shang-Tse Ashish Goel, Nick McKeown, Balaji Prabhakar
“Matching output queueing with a combined input output queued
switch,” IEEE Journal on Selected Areas in Communications, Dec.
1999, pp. 1030-1039.

[6] Isaac Keslassy, Shang-Tse Chuang, Kyoungsik Yu, David Miller, Mark
Horowitz, Olav Solgaard, Nick McKeown, “Scaling Internet routers
using optics”. ACM SIGCOMM 2003, Karlsruhe, Germany, Sep. 2003.

[7] Krishna, P., N. Patel, A. Charny and R. Simcoe. “On the speedup
required for work-conserving crossbar switches,” IEEE J. Selected Areas
of Communications, 6/99.

[8] McKeown, N., V. Anantharam and J. Walrand. “Achieving 100%
throughput in an input-queued switch,” Proceedings of Infocom, 1996.

[9] McKeown, N., M. Izzard., A. Mekkittikul, W. Ellersick and M.
Horowitz. “The Tiny Tera: a packet switch core,” Hot Interconnects,
1996.

[10] McKeown , Nick. “iSLIP: a scheduling algorithm for input-queued
switches,” IEEE Transactions on Networking, Vol 7, No.2, April 1999.

[11] Prashanth Pappu, Jonathan Turner and Ken Wong. “Distributed
Queueing in Scalable High Performance Routers,” Proceedings of IEEE
Infocom, 4/03.

[12] Szymanski, Ted and Salman Shaikh. “Markov Chain Analysis of Packet-
Switched Banyans with Arbitrary Switch Sizes, Queue Sizes, Link
multiplicities and Speedups,” Proceedings of Infocom, 4/89.

[13] Tarjan., Robert. Data Structions and Network Algorithms. Society for
Industrial and Applied Mathematics, 1983.

	Work-Conserving Distributed Schedulers
	Recommended Citation
	Work-Conserving Distributed Schedulers

	tmp.1470340445.pdf.wVRgl

	Abstract: Abstract: Buffered multistage interconnection networks offer one of the most scalable and cost-effective approaches to building high capacity routers and switches. Unfortunately, the performance of such systems has been difficult to predict in the presence of the extreme traffic conditions that can arise in Internet routers. Recent work introduced the idea of distributed scheduling, to regulate the flow of traffic in such systems. This work demonstrated (using simulation and experimental measurements) that distributed scheduling can en-able robust performance, even in the presence of adversarial traffic patterns. In this paper, we show that appropriately designed distributed scheduling algorithms are provably work-conserving for speedups of 2 or more. Two of the three algorithms presented were inspired by algorithms previously developed for crossbar scheduling. The third has no direct counterpart in the crossbar scheduling context. In our analysis, we show that distributed schedulers based on blocking flows in small-depth acyclic flow graphs can be work-conserving, just as certain crossbar schedulers based on maximal bipartite matchings have been shown to be work-conserving. We also study the performance of practical variants of the work-conserving algorithms with speedups less than 2, using simulation. These studies demonstrate that distributed scheduling ensures excellent performance under extreme traffic conditions for speedups of less than 1.5.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: February 7, 2004
	Author: Authors: Pappu, Prashanth; Turner, Jonathan; Wong, Ken
	Title: Work-Conserving Distributed Schedulers
	ReportNumber: 2004-6
	DepartmentName: Department of Computer Science & Engineering

