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1.  Introduction 
High performance routers must be scalable to hundreds or 
even thousands of ports. The most scalable architectures for 
high capacity routers include systems using multistage inter-
connection networks with internal buffers and a small speedup 
relative to the external links; that is, the internal data paths 
operate at speeds that are faster than the external links by a 
small constant factor (typically between 1 and 2). In the pres-
ence of a sustained overload at an output port, such systems 
can become congested with traffic attempting to reach the 
overloaded output, interfering with the flow of traffic to other 
outputs. The unregulated nature of traffic in IP networks 
makes such overloads a normal fact of life, which router de-
signers must address, if their systems are to be robust enough 
to perform well under the most demanding traffic conditions. 

Reference [11] introduced the use of distributed schedul-
ing to manage the flow of traffic through a large router in 
order to mitigate the worst effects of the most extreme traffic 
conditions. Distributed scheduling borrows ideas developed 
for scheduling packet transmissions through crossbar switches 
[2,5,7,8]. The core idea is to use Virtual Output Queues (VOQ) 
at each input. That is, each input maintains separate queues for 
each output. (Queues are implemented as linked lists, so the 
only per queue overhead is for the queues’ head and tail point-
ers.) Packets arriving at inputs are placed in queues 
corresponding to their outgoing links. In crossbar scheduling, 
a centralized scheduler selects packets for transmission 
through the crossbar, seeking to emulate, as closely as possi-
ble, the queueing behavior of an ideal output queued switch. 
The centralized scheduler used in crossbar scheduling makes 
scheduling decisions every packet transmission interval. For 
routers with 10 Gb/s links, this typically means making sched-
uling decisions every 40 ns, a demanding requirement, even 
for a router with a small number of links. For larger routers it 
makes centralized scheduling infeasible. 

Distributed scheduling, unlike crossbar scheduling, does 
not seek to schedule the transmission of individual packets. 
Instead, it regulates the number of packets forwarded during a 

period which we call the scheduling interval and denote by T. 
The scheduling interval is typically fairly long, on the order of 
tens of microseconds. The use of such coarse-grained schedul-
ing means that a distributed scheduler can only approximate 
the queueing behavior of an ideal output-queued switch, but 
does allow systems to scale up to larger configurations than 
are practical with fine-grained scheduling. In a router that im-
plements distributed scheduling, the Port Processors (the 
components that terminate the external links, make routing 
decisions and queue packets) periodically exchange informa-
tion about the status of their VOQs. This information is then 
used to rate control the VOQs, with the objective of moving 
packets to the output side of the router as expeditiously as pos-
sible, while avoiding congestion within the interconnection 
network. So long as the scheduling interval is kept small rela-
tive to end-to-end delays (which are typically tens to hundreds 
of milliseconds in wide area networks) the impact of coarse 
scheduling on the delays experienced by packets can be ac-
ceptably small. 

While [11] demonstrated, using simulation and experi-
mental measurement, that distributed scheduling could ensure 
excellent performance under extreme traffic conditions, it 
could provide no analytical bounds on the performance of the 
proposed algorithms, nor a rigorous justification for the spe-
cific design choices that were made. This paper corrects that 
deficiency, by showing that there are distributed scheduling 
algorithms that are provably work-conserving, for speedups of 
2 or more. The analysis provides insight that motivates the 
design of more practical variants of these algorithms, which 
provide excellent performance, significantly improving upon 
the performance reported in [11]. Where the algorithms de-
scribed in [11] can fail to be work-conserving, with speedups 
of more than 2, the algorithms reported here are demonstrably 
work-conserving for extreme traffic, even when speedups are 
limited to 1.5. One interesting aspect of the analysis is the role 
played by network flows, which parallels the role played by 
bipartite matching in crossbar scheduling. Specifically, we 
show that distributed schedulers based on finding blocking 
flows in small depth acyclic flow graphs and that favor outputs 
with short queues are work-conserving, much as crossbar 
schedulers based on finding maximal matchings in bipartite 
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graphs that favor outputs with short queues are work-
conserving. 

While distributed scheduling shares some features of 
crossbar scheduling, it differs in two important respects. First, 
the distributed nature of these methods rules out the use of the 
iterative matching methods that have proved effective in 
crossbar scheduling, since each iteration would require an ex-
change of information, causing the overhead of the algorithm 
to increase in proportion to the number of iterations. On the 
other hand, the shift to coarse scheduling provides some flexi-
bility that is not present in crossbar scheduling. In crossbar 
scheduling, it is necessary to match inputs and outputs in a 
one-to-one fashion during each scheduling operation. In dis-
tributed scheduling, we allocate the interface bandwidth at 
each input and output and are free to subdivide that bandwidth 
in whatever proportions will produce the best result. 

Recently, there has been considerable interest in a switch 
architecture called the load balanced switch described in [4] 
and used in [6]. This architecture consists of a single stage of 
buffers sandwiched between two identical stages of switching, 
each of which walks through a fixed sequence of configura-
tions. The fixed sequence of switch configurations makes the 
switching components very simple and the system is capable 
of achieving 100% throughput for random traffic. Unfortu-
nately, this architecture also has a significant drawback. To 
avoid resequencing errors, each output requires a resequencing 
buffer capable of holding about n2 packets. These buffers im-
pose a delay that grows as the square of the switch size. For 
the 600 port switch described in [6], operated with a switching 
period of 100 ns, this translates to a delay of about 36 milli-
seconds, a penalty which applies to all packets, not just to an 
occasional packet. 

The paper is organized as follows. Section II introduces 
two scheduling methods, proves that schedulers based on these 
methods are work-conserving when the speedup is at least 2 
and shows how they can be implemented using the concept of 
blocking flows. Section III shows how one can implement a 
practical distributed scheduler, based on one of the scheduling 
methods developed in Section II and evaluates its performance 
for speedups less than 2, using simulation. Section IV intro-
duces a more sophisticated, scheduling method, shows that it 
too is work-conserving when the speedup is at least 2 and 
shows how it can be implemented using minimum cost block-
ing flows, in networks with convex cost functions. Section V 
describes a practical scheduler based on this method and 
evaluates it using simulation, showing that it can out-perform 
the simpler scheduler studied in section III. Section VI dis-
cusses a number of practical considerations for distributed 
scheduling and Section VII concludes the paper. 

2. Work-Conserving Algorithms 
In this section we describe a general scheduling strategy that 
can be used to obtain work-conserving scheduling algorithms 
for speedups of 2 or more. While these algorithms are not 

practical for real systems, they provide a conceptual founda-
tion for other algorithms, that are practical.  

For the purposes of analysis, we adopt a somewhat ideal-
ized view of the system operation (in Section VI, we discuss 
the implications of these assumptions for real systems). Spe-
cifically, we assume that the system operates in three discrete 
phases: an arrival phase, a transfer phase and a departure 
phase. During the arrival phase, each input receives up to T 
cells.1 During the transfer phase, cells are moved from inputs 
to outputs, with each input constrained to send at most ST cells 
(S being the speedup of the system) and each output con-
strained to receive at most ST. During the output phase, each 
output sends up to T cells on its outgoing link. The scheduling 
algorithm determines which cells are transferred during each 
transfer cycle. 

The scheduling strategy that we study in this section 
maintains an ordering of the non-empty VOQs at each input. 
The ordering of the VOQs can be extended to all the cells at an 
input. Two cells in the same VOQ are ordered according to 
their position in the VOQ. Cells in different VOQs are ordered 
according to the ordering of the VOQs. We say that a cell b 
precedes a cell c at the same input, if b comes before c in this 
cell ordering. For any cell c at an input, we let p(c) be the 
number of cells at the same input as c that precede c and we let 
q(c) be the number of cells at the output that c is going to. 

We refer to a cell c as an ij-cell if it is at input i and is des-
tined for output j. We say that a scheduling algorithm is 
maximal if during any transfer phase in which there is an ij-
cell c that remains at input i, either input i transfers ST cells or 
output j receives ST cells. Given a method for ordering the 
cells at each input, we say that a scheduling algorithm is or-
dered, if in any transfer phase in which an ij-cell c remains at 
input i, either input i transfers ST cells that precede c or output 
j receives ST cells. Our scheduling strategy produces sched-
ules that are maximal and ordered. We can vary the strategy 
by using different ordering methods. We describe two order-
ing methods that each lead to work-conserving scheduling 
algorithms. In fact, because there are many different maximal, 
ordered scheduling algorithms for any specific ordering 
method, we obtain two families of work-conserving schedul-
ing algorithms. 

For any cell c waiting at an input, we define the quantity 
slack(c) = q(c) − p(c). For each of the methods studied, we’ll 
show that slack(c) ≥ T at the start of each departure phase if S 
≥ 2. This implies that for any output with fewer than T cells in 
its outgoing queue, there can be no cells waiting in any input-
side VOQs. This implies that the system is work-conserving. 

                                                           
1. We assume throughout, that variable-length packets are segmented 

into fixed-length units for transmission through the interconnection 
network. We refer to these units as cells. 
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2.1. Batch CCF 

The method we describe first is based on ideas first developed 
in the Critical Cells First method of [5]. Hence, we refer to it 
as the Batch Critical Cells First (BCCF) method. In the BCCF 
method, the relative ordering of two VOQs remains the same 
so long as they remain non-empty, but when a new VOQ be-
comes non-empty, it must be ordered relative to the others.  
When a cell c arrives and the VOQ for c’s output is empty, we 
insert the VOQ into the existing ordering based on the magni-
tude of q(c). In particular, if the ordered list of VOQs is v1, v2, . 
. . , we place the VOQ immediately after the queue vj deter-
mined by the largest integer j for which the number of cells in 
v1, . . . ,vj is no larger than q(c). Notice that this ensures that 
slack(c) is non-negative right after c arrives. A specific sched-
uling algorithm is an instance of the BCCF method if it 
produces schedules that are maximal and ordered with respect 
to this VOQ ordering method. To show that slack(c) ≥ T at the 
start of each departure phase, we need two lemmas. 

Lemma 1. For a system using the BCCF method, if c is any cell 
that remains at its input during a transfer phase, then slack(c) 
increases by at least ST during the transfer phase. 

proof. Since the VOQ ordering does not change during a trans-
fer phase (more precisely, VOQs that remain non-empty during 
the transfer phase have the same relative order), any maximal, 
ordered scheduling algorithm either causes q(c) to increase by 
ST or causes p(c) to decrease by ST. In either case, slack(c) 
increases by ST.  

Note that as long as a cell c remains at an input, each arrival 
phase and departure phase cause slack(c) to decrease by at 
most T. So, if S  ≥2, slack(c) cannot go down over the course of 
a complete time step, comprising an arrival phase, a transfer 
phase and a departure phase. 

Lemma 2. For a system using the BCCF method with S ≥2, if c 
is any cell at an input just before the start of the departure 
phase, then slack(c) ≥ T. 

proof. We show that for any cell c present at the end of an 
arrival phase, slack(c) ≥ −T. The result then follows from 
Lemma 1 and the fact that S ≥2. The proof is by induction on 
the time step.  

For any cell c that arrives during the first time step, p(c) ≤ 
T at the end of the arrival phase, so slack(c) ≥ −T at the end of 
the arrival phase. Since S ≥2, there can be no net decrease in 
slack(c) from one time step to the next, so slack(c) remains 
≥−T at the end of each subsequent arrival phase, so long as c 
remains at the input.  

If a cell c arrives during step t and its VOQ is empty when 
it arrives, then the rule used to order the VOQ relative to the 
others ensures that slack(c) ≥ 0 right after it arrives. Hence, 
slack(c) ≥ −T at the end of the arrival phase and this remains 
true at the end of each subsequent arrival phase, so long as c 
remains at the input. 

If a cell c arrives during step t and its VOQ is not empty, 
but was empty at the start of the arrival phase, then let b be the 
first arriving cell to be placed in c’s VOQ during this arrival 
phase. Then, slack(b) was at least 0 at the time it arrived and at 
most T−1 cells can have arrived after b did in this arrival 
phase. If exactly r of these precede b, then at the end of the 
arrival phase, 

T
rTr

rTbslackcslack

−≥
−−−−≥

−−−≥
))1(()(

))1(()()(
 

If a cell c arrives during step t and its VOQ was not empty 
at the start of the arrival phase, then let b be the last cell in c’s 
VOQ at the start of the arrival phase. By the induction hy-
pothesis, slack(b) ≥ −T at the end of the previous arrival phase. 
Since the subsequent transfer phase increases slack(b) by at 
least 2T and the departure phase decreases it by at most T, 
slack(b) ≥ 0 at the start of the arrival phase in step t. During 
this arrival phase, at most T new cells arrive at c’s input. Let r 
be the number of these arriving cells that precede b. Then at 
the end of the arrival phase 

T
rTr

rTbslackcslack

−≥
−−−−≥

−−−≥
))1(()(

))1(()()(
 

Hence, slack(c) ≥ −T at the end of the arrival phase in all cases 
and this remains true at the end of each subsequent arrival 
phase, so long as c remains at the input.  

Lemma 2 leads immediately to a work-conservation theo-
rem for BCCF. 

Theorem 1. For S ≥2, any scheduler using the BCCF method is 
work-conserving. 

2.2. Batch LOOFA 

Our second algorithm is based on ideas first developed in the 
Least Occupied Output First algorithm of [7], so we refer to it 
as the Batch Least Occupied Output First (BLOOFA) algo-
rithm. In the BLOOFA algorithm, the VOQs are ordered 
according to the number of cells in the output-side queues. 
VOQs going to outputs with fewer cells precede VOQs going to 
outputs with more cells. Outputs with equal numbers of cells 
are ordered by the numbering of the outputs. We define the 
BLOOFA algorithm to be the combination of this VOQ order-
ing method with any maximal, ordered scheduling algorithm. 
We show that slack(c) ≥ T at the start of each departure phase, 
using the same overall strategy used for BCCF. As before, we 
need two lemmas. The arguments are similar, but complicated 
by the fact that the relative ordering of VOQs can change dur-
ing a transfer phase. 

Lemma 3. For a system using the BLOOFA method, during a 
transfer phase, the minimum slack at any input that does not 
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transfer all of its cells during the transfer phase, increases by at 
least ST. 

proof. Let c be any cell at input i, and let j be the output that c 
is going to. Let minSlack be the smallest value of the slack at 
input i just before the transfer phase, and let slack(c) = 

minSlack + σ. We will show that slack(c) increases by at least 
ST − σ during the transfer phase. The lemma then follows di-
rectly. (Note that it is not sufficient to prove that the slack of a 
cell c that has minimum slack at the start of the transfer phase 
increases by ST, since c may not be a cell of minimum slack at 
the end of the transfer phase.) 

 We say that a cell b at input i passes c, if before the trans-
fer phase, c precedes b and after the transfer phase b precedes 
c. If no cells pass c during the transfer phase, then by the defi-
nition of maximal, ordered scheduling algorithms, either q(c) 
increases by ST or p(c) decreases by ST. In either case, 
slack(c) increases by at least ST  ≥  ST − σ. 

Assume then, that there are r >0 cells that pass c and let b 
be the cell in the set of cells that pass c that comes latest in the 
cell ordering (before the transfer phase). For clarity, let q0(x) 
denote the value of q(x) before the transfer phase and let qF(x) 
denote the value of q(x) after the transfer phase. Similarly for 
the functions p and slack.   

Let m be the number of cells received by output j during 
the transfer and let k be the number of cells that precede b be-
fore the transfer, but do not precede c. Then, 

)()()()( 00 bqbqcqmcq FF ≥≥=+  

and p0(b) = p0(c) + k. Now, 

σ
σ

σ

++−+≤
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+=−
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00

00

00
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bpbq

minSlackcpcq
 

So (m− k) ≥ − σ. Since b passes c, its output must receive fewer 
than m cells during the transfer phase, so ST cells that precede 
it at the start of the transfer phase must be forwarded. Of these 
at least ST− (k−r) must also precede c at the start of the phase. 
So, 

kSTcprkSTrcpcpF +−≤−−−+≤ )())(()()( 00  

Combining this, with qF(c) = q0(c) + m gives, 

σ−+≥
−++≥

+−−+≥
−=

STcslack
kmSTcslack

kSTcpmcq
cpcqcslack FFF
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0

0

00  

That is, slack(c) increases by at least ST − σ.  

Note that each arrival phase causes slack(c) to decrease by at 
most T. However, it is not so easy to bound the decrease in 
slack(c) during the departure phase. The source of the diffi-
culty is that other cells at c’s input can pass it during the 
departure phase, making it hard to bound the overall change in 
slack(c). However, if slack(c) is at least T before the departure 
phase begins, then q(c) must also be at least T. This means that 
T cells will depart from c’s output, making it impossible for 
other cells at c’s input to pass c. Thus, if slack(c) is at least T 
before the departure phase, then slack(c) is at least 0 after the 
departure phase. It turns out that this is sufficient to establish 
that BLOOFA is work-conserving when S  ≥ 2. 

Lemma 4. For a system using the BLOOFA method with S  ≥ 2, 
if c is any cell at an input just before the start of the departure 
phase, then slack(c) ≥ T. 

proof. We show that for any cell c present at the end of the 
arrival phase, slack(c) ≥ −T. The result then follows from 
Lemma 3 and the fact that S ≥2. The proof is by induction on 
the time step.  

For any cell c that arrives during the first time step, p(c) ≤ 

T at the end of the arrival phase, so slack(c) ≥ −T at the end of 
the arrival phase. Since S ≥2, Lemma 3 implies that slack(c) ≥ 

T at the end of the transfer phase, if it is still present at the 
input. By the discussion just before the statement of Lemma 4, 
this means that slack(c) ≥ 0 following the departure phase, 
which in turn means that slack(c) ≥ −T at the end of the next 
arrival phase. This remains true at the end of every subsequent 
arrival phase until c is transferred to the output. 

Suppose then, that c arrives during step t. If, at the end of 
the arrival phase, the only cells that precede c also arrived dur-
ing step t, then slack(c) ≥ −T at the end of the arrival phase. By 
the argument at the end of the last paragraph, this remains true 
at the end of every subsequent arrival phase until c is trans-
ferred to the output. 

If at the end of the arrival phase in step t, there are cells 
that precede c that were present at the start of the arrival 
phase, then let b be the cell in this set of cells that does not 
precede any of the others in the set. Because b arrived before 
step t, slack(b) ≥ −T at the end of the previous arrival phase, by 
the induction hypothesis. This implies that slack(b) ≥ 0 at the 
start of the arrival phase in step t. Let k be the number of cells 
that arrive during the arrival phase that precede b at the end of 
the arrival phase. Let m be the number of cells that arrive dur-
ing the arrival phase that precede c but not b at the end of the 
arrival phase. Since k + m ≤ T and slack(b) ≥ −k, 

Tkmmbslack
mbpbqcpcqcslack

−≥+−≥−=
+−≥−=

)()(
))(()()()()(

 

This remains true at the end of each subsequent arrival phase, 
so long as c remains at the input.  



 - 6 -

Lemma 4 leads immediately to the work-conservation 
theorem for BLOOFA. 

Theorem 2. For S ≥2, any scheduler using the BLOOFA method 
is work-conserving. 

2.3. Implemention of Maximal, Ordered Schedulers 

We have shown that the combination of two different VOQ 
ordering strategies with a maximal, ordered scheduling algo-
rithm ensures work-conserving operation when the speedup is 
at least 2. We now need to show how to realize a maximal, 
ordered scheduling algorithm. We start with a centralized al-
gorithm and then show how it can be converted into an 
iterative, distributed algorithm. While the overhead of such 
iterative algorithms makes them impractical, they provide the 
basis for non-iterative algorithms that are practical. 

The key observation is that the scheduling problem is 
equivalent to finding a blocking flow in an acyclic flow net-
work [13]. A flow network is a directed graph with a 
distinguished source vertex s, a distinguished sink vertex t and 
a non-negative capacity for each edge. A flow, in such a net-
work, is a non-negative function defined on the edges. The 
flow on an edge must not exceed its capacity and for every 
vertex but s and t, the sum of the flow values on the incoming 
edges must equal the sum of the flow values on the outgoing 
edges. An edge in the network is called saturated, if the flow 
on the edge is equal to its capacity. A blocking flow is one for 
which every path from s to t contains at least one saturated 
edge. (Note that a blocking flow is not necessarily a maximum 
flow.) 

To convert the scheduling problem to the problem of find-
ing a blocking flow, we first need to construct a flow network. 
Our network has a source s, a sink t, n vertices referred to as 
inputs and another n vertices referred to as outputs. There is an 
edge with capacity ST from s to each input. Similarly, there is 
an edge with capacity ST from each output to t. For each non-
empty VOQ at input i of the router with cells for output j, there 
is an edge in the flow network from input i to output j with 
capacity equal to the number of cells in the VOQ. (An exam-

ple of a flow network constructed to solve a particular 
scheduling problem together with the corresponding solution 
is shown in Figure 1.)  

For any integer flow, we can construct a schedule that 
transfers cells from input i to output j based on the flow on the 
edge from input i to output j. Note that such a schedule does 
not violate any of the constraints on the number of cells that 
can be sent from any input or to any output. Also note that any 
blocking flow corresponds to a maximal schedule, since any 
blocking flow corresponding to a schedule which fails to 
transfer a cell c from input i to output j cannot saturate the 
edge from input i to output j, hence it must saturate the edge 
from s to i or the edge from j to t. Such a flow corresponds to a 
schedule in which either input i sends ST cells or output j re-
ceives ST. 

Dinic’s algorithm [13] for the maximum flow problem 
constructs blocking flows in acyclic flow networks as one step 
in its overall execution. There are several different variants of 
Dinic’s algorithm, that use different methods of constructing 
blocking flows. The most straightforward method is to repeat-
edly search for st-paths with no saturated edges and add as 
much flow as possible along such paths. We can obtain a 
maximal, ordered scheduler by modifying Dinic’s algorithm 
so that it preferentially selects edges between input vertices 
and output vertices, according to the VOQ ordering at the in-
put. The blocking flow shown in Figure 1 was constructed in 
this way, based on the BLOOFA ordering. 

If paths are found using depth-first search and edges lead-
ing to dead-ends are removed as they are discovered, Dinic’s 
algorithm finds a blocking flow in O(mn) time where m is the 
number of edges and n is the number of vertices in the flow 
graph. Because the flow graphs corresponding to schedules 
have bounded depth and because the number of inputs, outputs 
and edges are all bounded by the number of non-empty VOQs, 
the algorithm finds a blocking flow in these graphs in O(v) 
time where v is the number of non-empty VOQs. This yields an 
optimal centralized scheduling algorithm. However, since v 
can be as large as n2 (where n is the number of inputs of the 
interconnection network), this is not altogether practical. 
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Figure 1. Example showing a maximal ordered schedule constructed from a blocking flow. 
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We can obtain a distributed, iterative scheduling algo-
rithm based on similar ideas. Rather than state this in the 
language of blocking flows, we describe it directly as a sched-
uling algorithm. In the distributed scheduler, we first have an 
exchange of messages in which each output announces the 
number of cells in its outgoing queue. The inputs use this in-
formation to maintain their VOQ order. Note that this requires 
that each output send n messages and each input receive n 
messages. Next, the inputs and outputs proceed through a se-
ries of rounds.  

In each round, the inputs that have uncommitted cells to 
send and have not yet committed to sending ST cells, send bid 
messages to those outputs that are still prepared to accept more 
cells. The inputs construct their bids in accordance with the 
VOQ ordering. In particular, an input commits all the cells it 
has for the first output in the ordering and makes similar 
maximal bids for subsequent outputs until it has placed as 
many bids as it can. Inputs may not overbid, as they are 
obliged to send cells to any output that accepts a bid. Note that 
at most one of the bid messages an input sends during a round 
does not commit all the cells that it has for the target output. 

During each round, outputs receive bids from inputs and 
accept as many as possible. If an output does not receive bids 
for at least ST cells, it does nothing during this round. In par-
ticular, it sends no message back to the inputs. Such a 
“response” is treated by the bidding inputs as an implicit ac-
cept and is taken into account in subsequent bids. Once an 
output has received bids for a total ST cells, it sends an accept 
message to all the inputs (not just those that sent it bids). The 
accept message contains a pair of values (i,x) and it means that 
the output accepts all bids received from inputs whose index is 
less than i, rejects all bids from inputs whose index is greater 
than i and accepts exactly x cells from input i. Once an output 
sends an accept message, its role in the scheduling is com-
plete. 

This procedure has some attractive properties. First, note 
that each output sends n messages in the bidding process, so 
each input receives only n messages from outputs. Also, an 
input sends at most two bids to any particular output, so an 
input sends at most 2n bids and an output receives at most 2n 
bids. Thus, the number of cells that must be handled at any 
input or output during the scheduling is O(n). Unfortunately, 
this does not imply that the algorithm runs in O(n) time, since 
it can require up to n rounds and some outputs may have to 
handle close to n messages during most rounds.  

It’s possible to reduce the time for each round by having 
the switch elements that make up the interconnection network 
participate in the handling of bids and responses. However, in 
the next section we turn our attention instead, to algorithms 
that are simpler to implement and which, while not provably 
work-conserving, are able to match the performance of the 
work-conserving algorithms, even under extreme traffic condi-
tions.  

3. Distributed BLOOFA 
The work-conserving algorithms discussed in the previous 
section can be implemented using iterative algorithms that 
require a potentially large number of message exchanges. In 
this section, we formulate a distributed algorithm that ap-
proximates the behavior of the BLOOFA algorithm while 
requiring just one exchange of messages. Our Distributed 
BLOOFA (DBL) algorithm avoids the need for many message 
exchanges by having the inputs structure their bids to avoid 
the situation where some outputs are swamped with more bids 
than they can accept, while others are left with no bids. Spe-
cifically, the inputs use a technique introduced in [11] called 
backlog-proportional allocation to limit the number of bids 
that are made for any output. 

DBL starts with each input i sending a message to each 
output j, telling it how many cells B(i,j) it has in its VOQ for 
output j. Each output j then sends a message to all inputs con-
taining the number of cells in its output queue (B(j)) and the 
total number of cells that inputs have to send it (B(+, j)2). Note 
that each input and output sends and receives n messages. 
Once this exchange of messages has been made, each input 
independently decides how many cells to send to each output. 
To prevent too many cells from being sent to any output, input 
i is allowed to send at most ST ×B(i, j)/B(+, j) cells to output j. 
Each input then orders the outputs according to the length of 
their output queues and goes through this list, assigning as 
many cells as it is permitted for each output, before going to 
the next output in the list. The scheduling is complete when 
the input has assigned a total of ST cells or has assigned all the 
cells permitted by the bound. 

We studied the performance of DBL using simulation for 
speedups between 1 and 2. We start with an adversarial traffic 
pattern, we call a stress test, that is designed to probe the lim-
its of the algorithm’s performance. The stress test consists of a 
series of phases, as illustrated in Fig. 3. In the first phase, the 
arriving traffic at each of several inputs is directed to a single 
output. This causes each of the inputs to build up a backlog for 
the target output. The arriving traffic at all the inputs is then 
re-directed to a second output, causing the accumulation of a 
backlog for the second output. Successive phases proceed 
similarly, creating backlogs at each input for each of several 
outputs. During the last phase, the arriving traffic at all inputs 

                                                           
2. We use the addition symbol (‘+’) as a function argument to denote 

the summation of the function over all values of that argument. 

phase 1 phase 2 phase 3 phase 4phase 1 phase 2 phase 3 phase 4

Figure 2. Typical stress test 
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is re-directed to a distinct new output for each input. Since 
each of the target outputs of the last phase has only a single 
input directing traffic to it, that input must send cells to it as 
quickly as they come in, while simultaneously clearing the 
accumulated backlogs for the other outputs, in time to prevent 
underflow at those other outputs. This creates an extreme con-
dition that can lead to underflow. The timing of the transitions 
between phases is chosen so that the total number of cells in 
the system directed to each output is approximately the same 
at the time the transition takes place. The stress test can be 
varied by changing the number of participating inputs and the 
number of phases. 

Figure 3 shows results from a sample stress test. The top 
chart shows the buffer levels in the VOQs at input 0 and the 
buffer levels at outputs 0 to 4 (by symmetry, the VOQ lengths 
at other inputs will be approximately the same as those at in-
put 0). The time unit is the update interval, T. The unit of 
storage is the number of cells that can be sent on an external 
link during the update interval. Notice that during the last 
phase of the stress test B(0,4) rises, indicating that input 0 is 
unable to transfer cells to output 4 as quickly as they come in. 
This results in loss of link capacity at output 4. The second 
chart shows the miss fraction at output 4 during this last phase. 
The term “miss” refers to a missed opportunity to send a cell. 
The miss fraction measures the fraction of the link capacity 

that is effectively lost during the last phase due to such misses 
and is a measure of how far the system deviates from being 
work-conserving. The curve labeled simply, “miss fraction” 
measures the average miss fraction during successive meas-
urement intervals (the measurement intervals are 25 time units 
long). The curve labeled “average miss fraction” is the frac-
tion of the link capacity lost from the start of the last phase to 
the time plotted. We observe that almost 30% of the link’s 
capacity is effectively lost between the start of the last phase 
and the end of the period shown. 

The left-hand chart in Figure 4 shows how DBL performs 
on a series of stress tests with speedups varying between 1 and 
1.5. (In these tests, the length of the stress test was set to 1.2 
times the length of time that would be required to forward all 
the cells received during the first phase in an ideal output-
queued switch. We see here that the average miss fraction (for 
the output targeted by input 0 in the last phase) drops steadily 
with increasing speedup, dropping to zero before the speedup 
reaches 1.5. We performed 90 sets of stress tests, using differ-
ent numbers of inputs and phases (up to 15 inputs and 15 
phases). The results plotted in the figure are the worst-cases 
for 2, 3, 4 and 5 inputs. In all cases, the average miss fraction 
for the last phase target output dropped to zero for speedups 
greater than 1.5.  
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Figure 3. Results from sample stress test for distributed BLOOFA - buffer levels (top) and miss fraction (bottom). 
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To compare DBL to BLOOFA, we performed the same se-
ries of 90 stress tests on BLOOFA. For speedups below 2, the 
method used to select which inputs send traffic to a given out-
put can have a significant effect on the performance of 
BLOOFA. For the results given here, we went through the out-
puts in order (from smallest output-side backlog to largest) 
and for each output j, we assigned traffic from the different 
inputs to output j in proportion to the fraction that each could 
supply of the total that all inputs could send to j in this update 
interval. The right-hand chart in Figure 4 shows the results of 
these stress tests on BLOOFA. Although a close examination of 
the results reveal small differences between the distributed and 
centralized versions of BLOOFA, the results are virtually indis-
tinguishable. We find that the approximation introduced by 
using the backlog-proportional allocation method to enable 
efficient distributed scheduling, has a negligible effect on the 
quality of the scheduling results, even though the distributed 
version is not known to be provably work-conserving for any 
speedup.  

We have also studied the performance of DBL for less ad-
versarial (although, still very demanding) traffic conditions. In 
particular, we have studied bursty traffic situations in which 
there is one output (referred to as the subject output), for 
which traffic is arriving continuously at a specified fraction of 
the link rate. The input at which the subject’s traffic arrives 
changes randomly as the simulation progresses (it remains 
with a given input for an exponentially distributed time inter-
val). Each of the inputs that is not currently providing traffic 
for the subject has its own target output (not equal to the sub-
ject) to which it sends traffic, changing targets randomly and 
independently of all other inputs (an input retains its current 
target for an exponentially distributed time interval). With this 
traffic pattern, roughly one fourth of the outputs that are not 
the subject are overloaded at any one time (they are targets of 
two or more inputs). An ideal scheduler will forward cells to 
the subject output as fast as they come in, preventing any in-
put-side queueing of cells for the subject. However, the other 
outputs can build up significant input side backlogs (due to the 
transient overloads they experience), leading to contention that 
can affect the subject output. Figure 5 shows an example of 
what can happen in a system subjected to this type of traffic. 

The top chart shows the amount of data buffered for the sub-
ject output (which is output 0) at all inputs (B(+,0)), the 
amount of data buffered at the input, which is currently receiv-
ing traffic for the subject (B(i,0)) and the amount of data 
buffered at the subject (B(0)). The unit of storage is the 
amount of data received on an external link during an update 
interval and the time unit is the update interval. The disconti-
nuities in the curve for B(i,0) occur when the input that is 
currently receiving traffic for the subject changes (i.e., the 
value of i changes). The bottom chart shows the instantaneous 
value of the miss fraction. 

Figure 6 shows the average miss fraction from a large 
number of bursty traffic simulations with varying input load 
and speedup. It’s interesting to note that the miss fraction 
reaches its peak when the input load is between 0.8 and 0.9. 
Larger input loads lead to a sharp drop in the miss fraction. 
The explanation for this behavior is that when the input load 
approaches 1, output-side backlogs tend to persist for a long 
period of time and it’s only when the output-side backlogs are 
close to zero that misses can occur. As one would expect, the 
miss fraction drops quickly as the speedup increases. Note that 
for speedup 1.15 the miss fraction never exceeds 2%, meaning 
that only a small fraction of the link capacity is lost. 

 It should be noted that the bursty traffic model used in 
these studies represents a very extreme situation. A more real-
istic bursty traffic model would have a large number of bursty 
sources (at least a few tens) with more limited peak rates shar-
ing each input link (at least a few tens of sources per link). 
Such a model is significantly less bursty than the one used 
here. 

4. The Output Leveling Algorithm 
The intuition behind the BLOOFA algorithm is that by favoring 
outputs with smaller queues, we can delay the possibility of 
underflow and potentially avoid that possibility altogether. 
Theorem 2 tells us that for a speedup of 2 or more, we can 
avoid underflow, but it does not say anything about what hap-
pens with smaller speedups. When there are several output 
queues of nearly the same length, BLOOFA transfers as many 
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Figure 4.  Miss fraction for DBL and BLOOFA on a variety of stress tests 
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cells as possible to the shortest queues, potentially preventing 
any cells from reaching slightly longer queues. It seems likely 
that we could get better performance by balancing the trans-
fers so that the resulting output queue lengths are as close to 
equal as possible. This is the intuition behind the Output Lev-
eling Algorithm (OLA), which we consider next. In this section 
we show that OLA, like BCCF and BLOOFA is work-
conserving for speedups of 2 or more. Subsequently, we study 
the performance of OLA and a practical variant of OLA and 
show that these algorithms can out-perform BLOOFA and  
DBL.  

OLA orders cells at an input in the same way that 
BLOOFA does. Let B(i,j) and B(j) be the lengths of the VOQs 
and output queues respectively, immediately before a transfer 
phase and let x(i,j) be the number of cells transferred from 
input i to output j during the transfer. We say that the transfer 
is level if for any pair of outputs  j1 and  j2,  

B( j1) + x(+, j1) < B( j2) + x(+, j2) − 1 

implies that x(+,  j1) = min{ST, B(+, j1)}. We now define OLA 
as any scheduling algorithm that produces schedules that are 
maximal and level.  

4.1. Work Conservation 

We will use essentially the same strategy as before to 
show that OLA is work-conserving when the speedup is at 
least 2. However, to show that the minimum slack increases by 
ST at each input during a transfer phase, we first need to show 
how a transfer phase scheduled by OLA can be decomposed 
into a sequence of sub-phases. Let B(i,j) and B( j) be the 
lengths of the VOQs and output queues respectively, immedi-
ately before a transfer phase and let x(i,j) be the number of 
cells transferred from input i to output j during the transfer. 
Each of the sub-phases corresponds to the transfer of up to one 
cell from each input and up to one cell to each output. We let 
xk(i,j) denote the number of cells transferred from input i to 
output j by the first k sub-phases. At the end of sub-phase k, 
the outputs are ordered in increasing order of B( j) + xk(+, j) 
with ties broken according to the output numbers. The order-
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Figure 5. Time series showing performance of DBL for bursty traffic. 
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ing of the outputs is used to order the VOQs at each input and 
this ordering is extended to all the cells at each input. We say 
that a cell b precedes a cell c following sub-phase k if b comes 
before c in this cell ordering. We define qk(c)=B( j) + xk(+, j) 
and we define pk(c) to be the number of cells at c’s input that 
precede it in the ordering at the end of sub-phase k. We also 
define slackk(c) = qk(c) − pk(c). Let slack0(c) be the value of 
slack(c) before the transfer phase begins and note that if k is 
the last sub-phase, then slackk(c) is equal to the value of 
slack(c) following the transfer phase. 

Given a schedule constructed by an OLA scheduler, we 
construct sub-phases iteratively. To construct sub-phase k, by 
repeating the following step until there are no outputs that are 
eligible to be selected. 

Select an output j that has not yet been selected in this 
sub-phase for which xk−1(+, j)<x(+, j) and which, among 
all such outputs, has the minimum value of qk−1(c). If 
there are multiple outputs that satisfy this condition, se-
lect the output that comes first in the fixed numbering 
of the outputs. Then, select some input i that has not yet 
been selected in this sub-phase for which xk−1(i, j)<x(i, 

j). If there is such an input, include the transfer of a cell 
from input i to output j in sub-phase k, making xk(i, j) = 
xk−1(i, j) + 1.  

We will use this decomposition to show that the minimum 
slack at each input increases by at least ST during each transfer 
phase. 

Lemma 5. For a system using the OLA method, during a trans-
fer phase, the minimum slack at any input that does not 
transfer all of its cells during the transfer phase, increases by at 
least ST. 

proof. Because OLA constructs maximal schedules, any trans-
fer phase that leaves cells at input i must either transfer ST 
cells from input i or must transfer ST cells to every output j for 
which a cell remains at input i following the transfer phase. 
This means that if we decompose the transfer phase into sub-
phases, as described above, there will be at least ST sub-
phases. We show below that every one of these sub-phases 
increases the minimum slack at input i. Hence, the minimum 
slack increases by ST over the complete transfer phase.  

Let k be the index of any sub-phase and let c be any cell at 
input i which is not transferred during sub-phase k and for 
which slackk−1(c) is minimum among all cells at input i. Let j 
be the output that c is going to. If output j receives no cell dur-
ing sub-phase k, then input i must transfer a cell during sub-
phase k. The selection rule used to construct sub-phases en-
sures that the transferred cell precedes c. Hence, pk(c) = 
pk−1(c)−1 and thus, slackk(c) = slackk−1(c)+1. 

If output j does receive a cell, then qk(c) = qk−1(c) + 1. If no 
cell at input i passes c during the sub-phase, then slackk(c) ≥ 
slackk−1(c)+1. Suppose then, that there is one or more cell that 
passes c during the sub-phase and let d be such a cell. Since c 

precedes d before the sub-phase qk−1(c) ≤ qk−1(d) and pk−1(c) < 

pk−1(d). Since d precedes c after the sub-phase, no cell is re-
ceived by d’s output during the sub-phase and so qk−1(d) ≤ 
qk−1(c) + 1. Because slackk−1(c) ≤ slackk−1(d), pk−1(d) − pk−1(c) ≤ 

qk−1(d) − qk−1(c) ≤ 1 which means that there are no cells that fall 
between c and d in the cell ordering. This implies that d is the 
only cell that passes c during the sub-phase. Because d’s out-
put receives no cell during the sub-phase, there must be some 
cell that precedes d that is transferred from input i during the 
sub-phase and this cell must also precede c. Thus, pk(c) = 
pk−1(c) and so slackk(c) = slackk−1(c) + 1.  

As before, we note that each arrival phase causes slack(c) to 
decrease by at most T. Also, as before, if slack(c) is at least T 
before the start of a departure phase, then slack(c) is at least 
zero, after the departure phase. This is sufficient to establish 
that OLA is work-conserving when S  ≥ 2. 

Lemma 6. For a system using the OLA method with S  ≥ 2, if c 
is any cell at an input just before the start of the departure 
phase, then slack(c) ≥ T. 

The proof of Lemma 6 is just like the proof of Lemma 4, ex-
cept that it uses Lemma 5, in place of Lemma 3. Lemma 6 
leads immediately to the work-conservation theorem for OLA. 

Theorem 3. For S ≥2, any scheduling algorithm using the OLA 
method is work-conserving. 

4.2. Implementating OLA 

An OLA scheduler can be implemented exactly either using 
linear programming or by solving a minimum cost, maximum 
flow problem with a convex cost function. We outline the lat-
ter approach, as it serves to motivate more practical, 
approximate variants. 

In the classical version of the minimum cost, maximum 
flow problem [1,13], each edge has an associated cost coeffi-
cient, which is multiplied by the flow on the edge to get the 
edge’s contribution to the overall cost of the flow. There are 
several well-known efficient algorithms for solving the mini-
mum cost, maximum flow problem. Interestingly, these 
algorithms can be generalized to handle networks in which the 
cost is a convex function of the flow on the edge, rather than a 
linear function (x2 is an example of a convex function). 

The OLA scheduling algorithm can be reduced to solving 
a minimum cost, maximum flow problem with a convex edge 
cost function. An example of such a reduction is shown in 
Figure 7, along with a solution and the corresponding sched-
ule. The flow graph is constructed in the same way as was 
discussed in Section 2. The only difference is the introduction 
of non-zero costs on the edges from the output vertices to the 
sink vertex t. The cost of an edge from output j to t carrying a 
flow of magnitude x is defined as C(x) = (x + B(j))2. A mini-
mum cost, maximum flow for this network corresponds 
directly to an OLA schedule. The convexity of the cost func-
tion ensures that the flows on different output to sink edges 
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result in costs that are as nearly equal as the various edge ca-
pacities allow (if a flow can be shifted from a higher cost edge 
to a lower cost edge, there is a net reduction in cost, because 
the lower cost edge has lower incremental cost, per unit flow). 
The use of the offset B(j) in the edge cost means that the costs 
of the flows on two output-to-sink edges are equal whenever 
the corresponding schedules yield equal levels at the output 
queue. Reference [1] describes an algorithm that finds a mini-
mum cost, maximum flow in O((m log K )(m + n log n)) time 
on an arbitrary network with n vertices, m edges and maxi-
mum edge capacity K. While this algorithm is not useful for 
distributed scheduling in real systems, it can be used in per-
formance studies to establish a benchmark for more practical 
algorithms that seek to approximate the behavior of OLA.  

5. Distributed OLA 
We start by describing an approximate centralized version 

of OLA. We then show how this can be converted to a distrib-
uted scheduler, using an extension of the backlog-proportional 
allocation method introduced earlier. 

Our approximate centralized algorithm uses an array x(i,j) 
which is initialized to zero and which defines the number of 
cells to be transferred from input i to output j, when the sched-
uling algorithm completes. It also uses a parameter ∆ ≤ ST, 
which determines the accuracy of the approximation. During 
its execution, the algorithm maintains a list of the outputs, 
sorted in increasing order of x(+, j) + B( j). The algorithm re-
peats the following step so long as there are at least two 
outputs on the list. 

Let j1 and j2 be the indices of the first two outputs on the 
list. Increase x(+, j1), by repeatedly increasing x(i,j) for se-
lected values of i (input selection criteria are discussed 
below). Stop when x(+, j1) + B( j1) = x(+, j2) + B( j2) + ∆, or 
when x(+, j1) = ST or when x(+,  j1) = B(+,  j1), whichever 
occurs first. If either of the last two conditions occurs, 
remove j1 from the list. Otherwise, move it down the list 
so as to maintain the ordering criterion. 

When the list has been reduced to a single output j, the algo-
rithm increases x(+, j) until x(+, j) = min {ST, B(+,  j)} or until 
all inputs with cells for output j have scheduled all they can 
(ST ). 

 The number of steps performed by the algorithm is at 
most nST/∆. It can be implemented to run in O(m + (ST/∆)n2) 
time, where m is the number of non-empty VOQs. This can be 
improved to O(m + (ST/∆)n log n), if the list is replaced with a 
heap. If ∆=1, the algorithm computes an OLA schedule (re-
gardless of the input selection criterion). For larger values of 
∆, it implements a ∆-OLA schedule, which is defined as any 
maximal schedule for which 

B( j1) + x(+, j1) < B( j2) + x(+, j2) − ∆ 

implies that x(+,  j1) = min{ST, B(+, j1)}. That is, a ∆-OLA 
scheduler allows the output queue differences at the end of a 
transfer phase to exceed ∆, only if there is no way to transfer 
more cells to the outputs with the smaller queues. ∆-OLA 
schedulers, like OLA schedulers are work-conserving when the 
speedup is at least 2 (a slight variant of the proof used for OLA 
can be used to show this). For smaller speedups, we can trade-
off scheduling performance against running time by adjusting 
∆. 

The criterion used to select the next input to use to effect 
an increase in x(+, j1) does not affect the work-conservation 
condition. However, different choices can affect performance 
when the speedup is less than two. In the performance results 
reported below, we distribute the load approximately evenly 
among all inputs with traffic for output j1, using a round-robin 
technique. We maintain a list of inputs that can still send to j1 
(they have both cells for j1 and uncommitted bandwidth) and 
use the first input on the list to increase the flow to j1. To ob-
tain an even distribution, we take at most ∆ from an input at a 
time and then move that input to the end of the list. This 
method can be implemented without increasing the time com-
plexity of the algorithm. 
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Figure 7.  Implementing OLA using minimum-cost blocking flow with convex cost function. Differences from  
earlier solution highlighted in bold. 
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To convert a ∆-OLA scheduler to a practical distributed 
scheduler, we use the backlog proportional allocation tech-
nique introduced earlier to allow inputs to divide the 
responsibility for supplying traffic to the different outputs. 
This allows each input to operate independently of the others, 
once the initial exchange of information takes place. As with 
DBL, this initial exchange supplies input i with the values of 
B(j) and B(+,j) for every output j. Input i also has the values 
B(i,j) for all j and it uses these to compute values σ(i,j) = 
B(i,j)/B(j). Given this information, input i makes its scheduling 
decisions in a way that is similar to the centralized algorithm. 
In particular, input i maintains a list of the outputs for which it 
has cells, sorted in increasing order of B(j) + x(i,j)/σ(i,j). It 
then repeats the following step so long as the list has at least 
two elements. 

Let j1 and j2 be the indices of the first two outputs on the 
list. Increase x(i, j1) until one of the following conditions 
is satisfied. 

1. x(i,+) = ST, 
2. x(i, j1) = σ(i,j1)ST, 
3. x(i, j1) = B(i, j1) or 

4. B(j1) + x(i,  j1)/σ(i,j1) = B(i, j2)+ ∆  + x(i, j2)/σ(i,j2) 

If condition 1 occurs, the algorithm terminates. If either 
of conditions 2 or 3 occurs, remove j1 from the list. Oth-
erwise, move j1 down the list so as to maintain the 
ordering criterion. 

When the list has been reduced to a single output j, the algo-
rithm increases x(i, j) until x(i, j) = min {σ(i,j)ST, B(i,  j)} or 
until x(i,+) = ST, whichever occurs first. 

The number of steps performed by the algorithm is at 
most nST/∆. It can be implemented to run in O((ST/∆)n2) time, 
using a naive list implementation or O((ST/∆)n log n), if the list 
is replaced with a heap. Using a hardware implementation of a 
sorted list, this can be improved to O((ST/∆)n) at the cost of n 
registers and associated comparison logic. 

Figure 8 shows how distributed OLA performs on a sam-
ple stress test. This example uses a value of ∆=0.1. Comparing 
this to Figure 3, we see that distributed OLA reduces the miss 
fraction during the critical period of the last phase by about 
20% relative to DBL. For this situation, distributed OLA deliv-
ers nearly ideal performance, distributing the misses evenly 
among the different outputs experiencing misses. Figure 9 
shows how distributed OLA performs on a large number of 
different stress tests. Comparing these results to Figure 4, we 
see that distributed OLA provides the largest improvement for 
very small speedups. The speedups needed to reduce the 
misses to zero are the same for both DBL and distributed OLA.  

6. Practical Considerations 
While the main focus of this paper has been on establishing 
the theoretical foundation for robust distributed scheduling, we 
believe that the results are of direct practical value. First, it’s 
important to discuss the significance of the idealized assump-
tions made to facilitate the analysis; specifically, the 
assumption that the system operation is structured in discrete 
phases (arrival, transfer and departure). While systems could 
certainly be built that adhere to this assumption, this would 
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imply a period during which data forwarding was suspended, 
while scheduling was being performed. Pipelining can be used 
to eliminate this inefficiency. During each update period, a 
pipelined implementation would perform the scheduling 
needed to handle traffic received up to the start of the current 
update period. This traffic would then be allowed to proceed 
to the outputs during the next update period. This implies that 
all cells would experience a delay of between one and two 
update periods. While our analysis can be applied directly to 
systems that operate in this way, we need to relax the defini-
tion of work-conservation to reflect this delay. We say that 
such a system with an update period of T is T-work-
conserving, if an output link is never allowed to be idle, so 
long as there are no cells that arrived at least 2T time units 
earlier. (Note that by this definition, crossbar schedulers that 
pipeline scheduling with data transfer are 1-work-conserving.) 

In practice, it may be preferable not to adhere to a strict 
pipelining discipline, but to allow scheduling to proceed on a 
more or less continuous basis, with ports periodically sending 
their status information and asynchronously updating the for-
warding rates of their VOQs in response to the data received 
from other inputs. This eliminates delays that are artificially 
imposed by the scheduling algorithm. Delays will still occur 
when the rate at which traffic arriving at an input for a given 
output increases suddenly, but during periods of relative rate 
stability there would be no unnecessary delays. It should be 
noted however, that while the results given here provide strong 
evidence that such systems can be work-conserving, they do 
not specifically apply to them. It would be interesting to see if 
one could formalize such asynchronously scheduled systems 
so as to enable rigorous statements about work-conservation. 

Another important practical issue for distributed schedul-
ing is the overhead of the message exchanges required by the 
scheduling algorithms. The practical variants of the distributed 
scheduling algorithms described here require that each port 
send and receive 2n values, each update period (where n is the 
number of ports). Using a compact floating point representa-
tion, these can be encoded with sufficient accuracy in 4n 
bytes. If the update period is chosen so that the amount of data 
a port can send to or receive from the interconnection network 
per update period is much larger than 4n, the overhead re-
quired to communicate these values can be kept acceptably 
small. For a system with n=1,000 an update period of 50 µs is 
enough to keep the overhead below 5%. 

A related issue is the computational overhead of distrib-
uted scheduling. Since the update period is necessarily a 
constant multiple of the number of ports, there is time to per-
form even moderately complex algorithms. For a system with 
n=1000 and a clock frequency of 200 MHz, the DBL algorithm 
can be executed at each port in 5 µs, a small fraction of the 
required update period. While more complex algorithms such 
as the distributed OLA algorithm are more challenging to im-
plement in the required time, even these are within the scope 
of practical implementation if ∆ is at least, say ST/10. 

In this paper, we have not addressed the interconnection 
network itself, and how it might interact with a distributed 
scheduler. The performance of multistage interconnection 
networks with buffered switch elements has been studied in 
great detail, using both analysis and simulation (representative 
examples of analytical studies of such systems can be found in 
references [3,12]). The general conclusion of these studies is 
that these systems can provide excellent performance when 
carrying traffic that does not cause sustained overloads on any 
output links. The use of distributed scheduling can ensure that 
this condition is met, allowing one to consider interconnection 
network performance, as a largely independent issue. Most 
performance studies of these networks have been done assum-
ing switch elements chips that provide buffering for just a 
small number of cells per port (the typical range is 2-16) and 
these systems are capable of throughputs exceeding 90% for 
switch element buffer sizes of eight or more per port. Modern 
ICs allow the construction of switch elements with over four 
thousand cells, allowing system throughputs to approach 
100%. With current technology, a three stage, multi-plane, 
Clos-type network using dynamic routing requires roughly n 
switch element ICs to support n OC-192 links (for values of n 
ranging from about 100 to several thousand). Such a network 
can buffer several thousand cells per external link, allowing it 
to effectively smooth out any rate variations that may occur 
within an update period. Since rate-controlled VOQs feed traf-
fic to the network in a smooth, rather than a bursty fashion, the 
magnitude of such variations can be expected to be quite lim-
ited, allowing the network to deliver cells to the outputs with 
only very modest queueing delays.  

7. Concluding Remarks 
We believe that system architectures that combine distributed 
scheduling and buffered, multistage interconnection networks 
are among the most scalable and cost-effective architectures 
for implementing high performance routers and switches. 
These architectures make it feasible today to build systems 
with aggregate capacities from 1 to 100 Tb/s. Continued im-
provements in Moore’s Law will allow them to continue to 
scale in both line speed and aggregate system capacity. The 
one drawback that such systems have suffered from is that 
their performance can degenerate when they are subjected to 
the extreme traffic situations that can occur in Internet routers. 
While various ad-hoc flow control techniques have been used 
to address this issue, it has not been possible up to this point, 
to make rigorous statements about the performance of such 
systems under extreme traffic. The theoretical results devel-
oped here show that the performance of these systems can be 
directly comparable to the performance of unbuffered cross-
bars, controlled by centralized schedulers. While in both 
system contexts, the scheduling algorithms with the strongest 
theoretical guarantees are not practical to implement, these 
algorithms provide the insight needed to design practical vari-
ants capable of similar performance. 

There are some interesting ways that this work could be 
extended. First, it seems entirely possible that algorithms like 
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DBL and distributed OLA are work-conserving for small 
speedups. However, proving such results seems to require 
either extensions to the proof techniques used here (adapted 
largely from earlier work on crossbar scheduling), or entirely 
new techniques. Establishing such a result would be of great 
interest from both a theoretical and a practical perspective.  

Reference [11] describes distributed scheduling algo-
rithms that support weighted-fair queueing and algorithms that 
seek to guarantee that packets that arrive at the same time for 
the same output link are forwarded at approximately the same 
time on that output link. The results developed here can likely 
be extended to allow rigorous statements about the perform-
ance of these or similar distributed schedulers.  

Finally, as noted in the introduction, whereas crossbar 
schedulers must match inputs to outputs in a one-to-one fash-
ion, distributed schedulers can divide the bandwidth at inputs 
and outputs arbitrarily. It seems likely that this difference may 
allow the construction of distributed schedulers with speedups 
significantly smaller than 2. Our failure to prove such a result 
may be just a consequence of our reliance on proof methods 
adapted from crossbar scheduling. Our simulation studies sug-
gest that speedups close to 1.5 may be sufficient for work-
conservation in distributed schedulers and we have some (so 
far inconclusive) analytical evidence that suggests work-
conservation could be achievable for speedups of slightly less 
than 1.6. The establishment of such a result would be of con-
siderable practical value and would also be interesting from a 
purely analytical standpoint, as it would likely require differ-
ent proof techniques than those that have been employed so 
far. 
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