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ABSTRACT 

Ongoing and Visually-evoked Cortical Activity Measured Across Multiple Spatial Scales 

by 

Nathaniel C. Wright 

Doctor of Philosophy in Physics 

Washington University in St. Louis, 2016 

Professor Ralf Wessel, Chair 

 

The visual cortex is a densely-interconnected network of neurons, which receives sensory 

input from the early visual pathway, and represents information about the visual world in the 

resulting spatiotemporal activity patterns.  These patterns are mediated by cortical interactions 

that span multiple spatial scales (i.e., neuron-neuron, neuron-population, and population-

population).  Such interactions are a fundamental property of cortical function, and capture the 

contribution of the cortex to sensory coding.  Yet these interactions are only beginning to be 

understood, in part because of the challenge of recording ongoing and visually-evoked activity 

across multiple spatial scales in individual studies.  In this thesis, we present the results of such a 

study.  Using the ex vivo turtle eye-attached whole-brain preparation, we simultaneously 

recorded the membrane potentials from pairs of cortical pyramidal neurons, as well as the nearby 

local field potential (LFP).  In a parallel set of experiments, we recorded the LFP from multiple 

locations using a microelectrode array.  To identify relevant cortical properties, we supplemented 

our experimental approach with network simulations.  Our results quantify cortical interactions 

using a variety of coordination measures, and suggest that ongoing cortical activity, synaptic 

clustering, synaptic adaptation, and emergent network phenomena fundamentally shape the 

distribution and dynamics of coordination levels.  Together, these results contribute to a clearer 

picture of cortical visual processing, and the roles of specific anatomical and emergent cortical 

properties in network function. 
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Chapter 1 

 

Introduction: the study of 

cortical activity across 

multiple spatial scales 

1.1  Neurons and neuronal populations interact across multiple 

spatial scales 

The visual cortex is an enormous population of densely interconnected neurons.  Its role 

in the brain is often described in terms of information and language: it receives information 

about the visual world from the early visual pathway (i.e., the retina, optic nerve, and lateral 
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geniculate nucleus, or LGN) that is written in a relatively low-level language, and combines 

these basic ingredients to represent more complex properties of the visual world in a language 

that can in turn be understood by yet higher-order areas (Fig. 1.1a).  There is actually much more 

to it than this (including complex feedback loops involving LGN, cortex, and these higher-order 

areas, Fig. 1.1b), but this one function alone is incredible and essential to overall brain function. 

 How does a population of neurons accomplish this?  Essentially, through interactions.  

Each of the hundreds of thousands of cortical neurons receives inputs from and sends outputs to 

thousands of other cortical neurons (Fig. 1.1).  The anatomical arrangements of these excitatory 

and inhibitory connections define countless “microcircuits”(Földy, Dyhrfjeld-Johnsen, & 

Soltesz, 2005; Shepherd, 2011).  Through these connections, groups of neurons that receive 

information about disparate aspects of the visual world are able to interact, and complex 

attributes of an organism’s surroundings are represented in complex spatiotemporal cortical 

spiking patterns(Harris & Mrsic-Flogel, 2013).  Thus, the study of cortical function is 

fundamentally a study of neuronal interactions. 

 Which interactions, then, should the neuroscientist study?  It would be reasonable to start 

with those between pairs of neurons.  But which of the hundreds of thousands of cortical neurons 

should the experimenter target?  Given the sheer magnitude of the cortex, perhaps it would make 

sense to create a more tractable problem by first grouping neurons into populations, and 

measuring the interactions between pairs of populations.  This, however, requires defining an 

appropriate population size (hopefully in line with what the cortex actually uses), and again 

choosing an appropriate pair.  Neuroscientists have addressed this confounding issue in a 

reasonable way: by choosing lots of different scales.  Studies spanning several decades have 

investigated cortical activity (and pairwise interactions) at the level of the neuron, the local 



3 

 

 

Figure 1.1  The cortex is dominated by interactions across multiple spatial scales.  (a) An 

extremely simplified view of the early visual pathway (that is, from retina to cortex).  

Information about the visual world travels from retina to lateral geniculate nucleus (LGN) and 

finally to cortex.  Along the way, the increasing complexity of within- and across-layer 

connectivity (not always depicted, for simplicity) results in an increasingly-complex 

representation of the sensory input.  (b) A more realistic (but still relatively simplified) 

approximation of the early visual pathway recognizes that the time-varying statistics of LGN 

neurons, the strong feedback from cortex to LGN, and top-down modulation from higher-order 

areas are likely to influence cortical activity.  
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 population, and much larger regions of cortex.  The answer to the above question is a bit 

surprising: interactions take place at a variety of spatial scales (neuron-neuron, neuron-

population, population-population)(Panzeri, Macke, Gross, & Kayser, 2015).  Moreover, the 

interactions among groups, and even the very identities of groups in terms of component 

members, change dynamically during spontaneous and sensory-evoked activity(Averbeck & Lee, 

2004; Harris, 2005).  In addition, the interactions at one scale (e.g., population-population) are 

constrained by those at other scales (e.g., neuron-neuron).  Indeed, even with relatively simple 

connectivity rules, model networks can exhibit a variety of complex, population-wide emergent 

phenomena(Beggs, 2008; Keane & Gong, 2015).  Finally, large-scale fluctuations (that is, 

activity patterns spanning multiple populations) appear to affect the sensory responses of 

individual neurons(Okun et al., 2015; Petersen, Hahn, Mehta, Grinvald, & Sakmann, 2003; 

Scholvinck, Saleem, Benucci, Harris, & Carandini, 2015).  Simply put, it would appear there is 

no “one scale” at which the brain operates, nor “one most important scale”, nor even a single 

scale that is independent of the others. 

 It has thus become increasingly clear that the study of cortical function (i.e., interactions) 

must be very broad.  To date, most studies have focused on a single spatial scale, and our 

knowledge has grown by comparing results across studies.  With advances in recording 

techniques, it is now becoming possible to simultaneously measure cortical activity across 

multiple scales.  This is a powerful approach; certain questions can only be addressed via such 

simultaneous measurements.  For example, what is the impact of a spontaneous change in 

cortical state (defined by the activity of a large population) on the sensory response of a single 

neuron?  What is the mechanistic (i.e., synaptic) basis for this influence?  How do network-wide 

fluctuations impact subthreshold correlations between pairs of nearby neurons?  What are the 
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small-scale interactions that give rise to large-scale measurables (e.g., ECoG signals)?  This last 

question is extremely relevant to treating neurological disorders.  In humans, recording 

techniques are typically non-invasive, and measure large-scale population activity.  Many 

neurological disorders are associated with irregularities in these signals.  Pharmacology, 

however, typically acts at the level of the synapse.  Treating such disorders requires a detailed 

understanding of the neuron-neuron interactions that give rise to these large-scale phenomena. 

1.2  Experimental approach 

 In this thesis, we present the results of a multi-scale study; we recorded ongoing and 

visually-evoked cortical activity in an intact visual system using single- and multi-whole-cell 

recordings, local field potential (LFP) recordings from single electrodes, and simultaneous LFP 

recordings using microelectrode arrays (MEAs) that spanned large regions of cortex (Fig. 1.2).  

MEA recordings of visual responses are by no means rare; indeed, they are commonly achieved 

in awake, behaving animals.  It is extremely difficult, however, to achieve stable whole-cell 

recordings in vivo.  Multi-scale studies thus tend to be constrained to the larger end of the 

spectrum of recording scales.  Here, we gain access to extremely small-scale interactions via the 

ex vivo turtle eye-attached wholebrain preparation, which is ideally-suited to the full barrage of 

recording techniques listed above, and specifically stable whole-cell recordings. 

 These recording techniques have one distinct advantage in common: they all provide a 

measure of cortical activity that is at least approximately spike-rate independent.  The LFP, for 

example, can be conservatively described as a measure of cortical activity in a small volume near 

the electrode tip(Katzner et al., 2009) (Fig. 1.2a), and there may be some contribution from local 

spikes(Destexhe, 1998).  While a more specific description invites controversy, recent work has 
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Figure 1.2 Individual recording modalities have specific strengths and weaknesses, and our 

experimental approach combines the strengths of each.  (a) The majority of cortical neurons are 

sparse-spiking (low opacity dots), and a minority (high-opacity dots) respond to sensory 

stimulation with high spike rates.  The local field potential (LFP, black circles) provides a 

measure of cortical activity in a nearby population, with a neuron’s contribution to the LFP 

falling off with distance from the electrode.  An individual neuron samples a very specific 

cortical subpopulation (connections indicated by light blue lines), and patch clamp recordings 

allow the experimenter to “tap into” this microcircuitry.  (b) Both the LFP and membrane 

potential (V) provide a continuous measure of cortical activity.  The utility of each signal for 

certain analyses is independent of spike rate.  (c) We use an algorithm to infer the excitatory 

synaptic conductance (g) from V, which disentangles excitatory inputs from inhibitory, and 

provides a more temporally-precise view of synaptic activity (inset). 
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 demonstrated that the LFP can be a reliable predictor of local, synchronous synaptic 

currents(Haider, Schulz, Häusser, & Carandini, 2016; Okun, Naim, Lampl, Nain, & Lampl, 

2010).  This is a useful measure of cortical activity, given that spiking in cortex is sparse, with 

the majority of neurons(Shoham, O’Connor, & Segev, 2006) firing too seldom to provide 

reliable statistics for certain analyses(Cohen & Kohn, 2011) (even in response to strong sensory 

stimulation).  Further, the membrane potential can be thought of as a proxy for a probability to 

spike.  These techniques thus give voice to “dark” neurons by being agnostic to output spike rate 

(Fig. 1.2b). 

Each technique also has specific strengths and limitations.  For instance, despite its utility 

as a spike-rate-independent measure, the LFP suffers from at least three shortcomings.  First, the 

contribution of a given synaptic event to the LFP falls off with distance to the electrode (Fig. 

1.2a), and the exact nature of this distance-dependence is unclear(Riera et al., 2012).  Second, 

the events that take place within the LFP-defined sphere are averaged across time and space, thus 

limiting spatiotemporal resolution.  Finally, the extracellular electrode is what defines the 

sampled population.  There is no reason a priori to assume such a population represents a 

complete or relevant cortical microcircuit.  Thus, while the MEA tracks cortical activity across 

large spatial scales, it’s impossible to use this tool to track the interactions within and across 

cortical microcircuits.  Fortunately, this is a specific benefit of membrane potential recordings.  

Each cortical neuron samples an extremely large and broadly-distributed presynaptic pool, and 

the patch clamp electrode therefore allows the experimenter to “tap into” the cortical 

microcircuitry (Fig. 1.2).  The ability to infer presynaptic spiking is tempered, however, by the 

membrane time constant (which smooths synaptic events), and the fact that near-simultaneous 

excitatory and inhibitory synaptic inputs mask one another at the level of the membrane 
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potential.  In chapter 5, we present and apply a work-around: we use an algorithm(Yaşar, Wright, 

& Wessel, 2016) to infer the excitatory synaptic conductance (g) from the membrane potential 

(Fig. 1.2c).  This provides a more temporally-precise measure of excitatory presynaptic spiking, 

at the expense of information about inhibition. 

 

1.3 Organization of this thesis 

 

 This thesis begins with a chapter detailing relevant background information, followed by 

several chapters describing cortical interactions during ongoing and visually-evoked activity.  

The order of these latter chapters essentially reflects increasing spatial scale.  This work is thus a 

“chain” of studies, linked in the printed order by at least one common recording modality.  The 

final chapter describes phenomena we observed but did not study in-depth, which motivates 

future work. 

 Chapter 2: Turtle dorsal cortex pyramidal neurons comprise two distinct cell types 

with indistinguishable visual responses 

o An analysis of pyramidal neuron subtypes in turtle visual cortex, according to 

passive and active electrophyisiological properties, which describes the 

“machinery” of the preparation we study. 

o Thomas Crockett is the first author, and this chapter also appears in his thesis. 

o This chapter has been published in PLOS ONE(Crockett, Wright, Thornquist, 

Ariel, & Wessel, 2015). 
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 Chapter 3: Network activity influences the subthreshold and spiking visual 

responses of pyramidal neurons in a three-layer cortex 

o An investigation of ongoing and visually-evoked cortical activity, as revealed by 

intracellular recordings of the subthreshold membrane potential and action 

potentials of pyramidal neurons, with an emphasis on the relationship between 

ongoing and evoked activity. 

o This chapter is being prepared for submission to a peer-reviewed journal. 

 Chapter 4: Adaptation modulates correlated response variability in visual cortex 

o This chapter investigates correlated variability (or “noise correlations”) in the fast 

subthreshold fluctuations in pairs of nearby pyramidal neurons, and incorporates a 

model investigation that reveals a close link to network oscillations. 

o Mahmood S. Hoseini is co-author of this chapter, which also appears in his thesis. 

o This chapter is being prepared for submission to a peer-reviewed journal. 

 Chapter 5: The coupling of synaptic inputs to local cortical activity differs among 

pyramidal neurons and adapts following stimulus onset 

o Here, we use an algorithm (developed by Tansel Baran Yasar) to estimate 

ongoing and visually-evoked excitatory synaptic inputs from single-trial 

membrane potential recordings, study the across-trial variability of these inputs 

and coupling with that of the nearby LFP, and use a model network to identify 

relevant network properties. 

o Tansel Baran Yasar and Mahmood S. Hoseini are co-authors of this chapter, and 

versions of this work also appear in their theses. 

o This chapter is being prepared for submission to a peer-reviewed journal. 
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 Chapter 6: Adaptation to sensory input tunes visual cortex to criticality 

o This chapter deals with properties that emerge in networks of neurons subject to 

particular interaction rules, and the results suggest that during vision, the cortical 

network self-organizes to a state that is optimal for sensory encoding, primarily 

by mediating pairwise interactions via synaptic adaptation. 

o Woodrow Shew is first author of this chapter.  Jeff Pobst, Wesley P. Clawson, and 

Yahya Karimipanah are co-authors of this chapter, which also appears in their 

theses. 

o This chapter has been published in Nature Physics(Shew et al., 2015). 

 Chapter 7: Future work in the ex vivo turtle eye-attached whole-brain preparation 

o This chapter describes (i) various experimental observations that we did not 

investigate in-depth, and (ii) ideas for future projects that should expand on the 

work presented here. 
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Chapter 2 

 

Turtle Dorsal Cortex Pyramidal Neurons 

Comprise Two Distinct Cell Types with 

Indistinguishable Visual Responses 

A detailed inventory of the constituent pieces in cerebral cortex is considered essential to 

understand the principles underlying cortical signal processing. Specifically, the search for 

pyramidal neuron subtypes is partly motivated by the hypothesis that a subtype-specific division 

of labor could create a rich substrate for computation. On the other hand, the extreme integration 

of individual neurons into the collective cortical circuit promotes the hypothesis that cellular 

individuality represents a smaller computational role within the context of the larger network. 

These competing hypotheses raise the important question to what extent the computational 

function of a neuron is determined by its individual type or by its circuit connections. We created 

electrophysiological profiles from pyramidal neurons within the sole cellular layer of turtle visual 

cortex by measuring responses to current injection using whole-cell recordings. A blind clustering 

algorithm applied to these data revealed the presence of two principle types of pyramidal neurons. 

Brief diffuse light flashes triggered membrane potential fluctuations in those same cortical 

neurons. The apparently network driven variability of the visual responses concealed the existence 

of subtypes. In conclusion, our results support the notion that the importance of diverse intrinsic 

physiological properties is minimized when neurons are embedded in a synaptic recurrent network. 
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2.1 Introduction 

 

Cortical pyramidal neuron subtype classification has become an area of intense research in 

neuroscience (Molyneaux et al., 2007). Cortical pyramidal neurons display a vast diversity of 

properties in numerous dimensions, including morphology, electrophysiology, gene expression, 

connectivity, and axonal projections (Schubert et al., 2001; Staiger et al., 2004; Arlotta et al., 2005; 

Molyneaux et al., 2009). Many of these properties covary, indicating that the heterogeneity found 

in pyramidal neurons is not due to random events but instead due to their separation into specific 

cellular subtypes (Soltesz, 2006) that is choreographed by transcriptional regulation during 

neuronal development (Molyneaux et al., 2015). Generating a census of pyramidal neuron 

subtypes is thought fundamental to the accurate observation and manipulation of brain activity 

(Lee et al., 2014) and to the development of cell-type and circuit-specific therapies to treat brain 

disorders (Brumback and Sohal, 2014). As a case in point, the laminar organization of pyramidal 

neurons in neocortex (Fig 2.1A) plays a key role in the processing of visual inputs, as indicated by 

layer and cell-type specificity of sensory responses (Gilbert and Wiesel, 1979; Armstrong-James 

et al., 1992; Brecht and Sakmann, 2002; Martinez et al., 2005; de Kock et al., 2007). 
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Figure 2.1 Basic microcircuit of neocortex and turtle dorsal cortex. A, The neocortex consists of 

6 layers with multiple types of pyramidal neurons (color) and thalamic inputs (red) terminating in 

spatially restricted regions. For clarity, interneurons are omitted in this schematic diagram. B, The 

turtle dorsal cortex consists of one cellular layer (#2) of densely packed pyramidal neurons (blue), 

sandwiched between two neuropil layers (#1 and 3) that are densely packed with dendrites and 

axons, and also contain interneurons (grey). Sensory afferents (red) from the lateral geniculate 
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nucleus (LGN) make en-passant synapses in superficial layer 1 on distal segments of pyramidal 

neuron dendrites and on superficial inhibitory interneurons. 

 

 The search for pyramidal neuron subtypes is particularly significant in the trilaminar 

allocortex (Swanson, 2003), which contains a single layer of densely packed somata of pyramidal 

neurons sandwiched between layers filled with dendrites, axons, and a few scattered interneurons 

(Fig 2.1B). In part because of its ancestral position in evolutionary history (Striedter, 2005), 

information about the allocortex is believed to facilitate the investigation of the neocortex 

(Shepherd, 2011; Fournier et al., 2014). Three prominent examples of allocortex are the 

mammalian piriform cortex (Neville and Haberly, 2004) and hippocampus (Johnston and Amaral, 

2004), and the reptilian dorsal cortex (Ulinski, 2007). Based on morphological and intrinsic 

electrophysiological properties, two classes of pyramidal neurons were classified in mouse 

piriform cortex (Suzuki and Bekkers, 2006, 2011) and the CA1 and subiculum regions of rat 

hippocampus (Graves et al., 2012). Less is known about the reptilian dorsal cortex, which holds a 

strategic position among the examples of allocortex. It receives input from lateral geniculate 

nucleus (LGN) (Heller and Ulinski, 1987; Mulligan and Ulinski, 1990) and thus exemplifies a 

trilaminar visual cortex (Reiner, 2000; Ulinski, 2007) that processes information from a well-

defined spatio-temporal-chromatic visual input space. Information about pyramidal neuron 

subtypes in the trilaminar dorsal cortex is limited. Variations of properties among pyramidal 

neurons in the dorsal cortex of turtle (Connors and Kriegstein, 1986) include firing patterns 

(Mancilla et al., 1998), axonal projection targets (Ulinski, 1986), and molecular markers (Dugas-

Ford et al., 2012). It is not known however, whether the variation of properties reflects the 

existence of pyramidal neuron subtypes or the broad distribution of properties in one neuron type. 
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Here, we investigate pyramidal neurons within the single layer of densely packed somata 

of turtle dorsal cortex (Fig 2.2) and uncover the presence of two main electrophysiological types, 

however with highly fluctuating and indistinguishable responses to visual stimulation of the retina.  

 

 

Figure 2.2 Whole-cell recordings from pyramidal neurons in turtle visual cortex. Schematic 

diagram of an isolated piece of turtle dorsal cortex (left panel) with the ventricular side up and 

containing pyramidal neurons (blue) and interneurons (grey). A whole-cell recording of the 

pyramidal neuron membrane potential in response to current injection (right panel) is obtained 

with a patch electrode (grey triangle) that is positioned at the pyramidal neuron soma under visual 

guidance with DIC optics. 

 

2.2 Materials and Methods 

2.2.1 Ex vivo cortex preparation, visual stimulation, and intracellular recording.  

Procedures used in this study were approved by Washington University’s Institutional Animal 

Care and Use Committee and conform to the guidelines of the National Institutes of Health on the 

Care and Use of Laboratory Animals. Red-eared slider turtles (Trachemys scripta elegans, 150 - 

200 g weight, 12-15 cm carapace length, of either sex. Niles Biological Inc, Sacramento, CA, 
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USA) were used in this study. Following anesthesia (intravenous propofol 10 mg/kg) and rapid 

decapitation by a guillotine, we surgically removed the brain, optic nerves, and eyes from the 

cranium as described earlier (Kriegstein, 1987; Mancilla et al., 1998; Senseman, 1996; Saha et al., 

2011). In brief, during surgery we cut the conjunctiva and extraocular muscles to free the eyes 

from their orbits. After removing the brain from the skull, we cut rostro-caudally along the medial 

cortex, starting at the ventricle of the olfactory bulb. This cut preserves the normal afferent input 

of the visual cortical area, because the geniculocortical pathway traverses the lateral cortical wall 

within the lateral forebrain bundle (Mulligan and Ulinski, 1990). Subsequently, two medio-lateral 

cuts to the telencephalon at its anterior and posterior ends prepared for unfolding of the hemisphere 

and exposing the ventricular surface. For the isolated-cortex preparation, a slab of the cortex was 

separated from the rest of the brain by cutting along the dorsal ventricular ridge. For the eye-

attached whole-brain preparation, the anterior half of the contralateral eye was removed and the 

vitreous was drained to expose the retina in an eye-cup; the ipsilateral eye was removed. The 

preparation (cortex slab or eye-attached whole-brain) was transferred to the recording chamber 

(RC-27LD, Warner Instruments) positioned on an air table and under a fixed-stage upright 

fluorescent microscope (BX-51WI, Olympus) equipped with differential interference contrast 

(DIC) optics. The unfolded cortex with the ventricular side up was pinned with short pieces of 

tungsten wires (25 µm diameter) to a Sylgard (Dow Corning) anchor at the periphery of the 

recording chamber. The eye-cup, brain, and/or cortex were continuously perfused (2 mL/min) with 

artificial cerebrospinal fluid (in mM; 85 NaCl, 2 KCl, 2 MgCl2, 45 Na HCO3, 20 D glucose, and 

3 CaCl2 bubbled with 95% O2 and 5% CO2), adjusted to pH 7.4 at room temperature. For diffuse 

whole-field visual stimulation of the retina, a red light emitting diode (LED) was positioned 2 cm 

above the eye cup. Timed brief flashes of 10 ms duration were presented with at least thirty seconds 
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between flashes. Approximately 2-3 hrs passed between induction of anesthesia and the start of 

the experimental recordings. Whole-cell recordings from neurons within the cellular layer of visual 

cortex were obtained with visually guided (DIC optics) patching using pipettes (4-8 MΩ) pulled 

from borosilicate glass and filled with a standard electrode solution (in mM, 124 KMeSO4, 2.3 

CaCl2-2H20, 1.2 MgCl2, 10 HEPES, 5 EGTA) with 0.04% biocytin for intracellular labeling. 

Current clamp recordings were made at room temperature (21-24 °C) using an AxoClamp 2B 

(Axon Instruments) amplifier, digitized with an acquisition board (National Instruments PCI-MIO-

16E-4) and controlled using custom LabVIEW software.  In turtle visual cortex, spike train 

differences between pyramidal neurons and interneurons have been reported (Connors and 

Kriegstein, 1986; Colombe, et al. 2004).  In addition, we are confident that the vast majority of our 

neurons are indeed pyramidal, for the following three reasons. First, neurons were selected from 

within the densely packed cellular layer, which is clearly distinguishable using DIC optics due to 

the striking increase in the density of neurons versus the less populous layers 1 and 3. Second, 

pyramidal neurons account for approximately 80-90% of neurons in the dorsal cortex and are by 

far the most numerous neurons in layer 2 (Ulinski, 2007). Third, histological spot checks of a third 

of the neurons in our data set revealed no morphological evidence for interneurons. Therefore, we 

assume that any contribution of interneurons to the dataset is negligible and we refer to the dataset 

of recorded neurons as pyramidal neurons. A recorded neuron was accepted in the database when 

the membrane potential was more negative than -40 mV and the action potential amplitude was 

larger than 25 mV. 

2.2.2 Electrophysiological analysis.  

Following five minutes of recording spontaneous membrane potential fluctuations, 14 

electrophysiological parameters were obtained for subsequent pyramidal neuron type analysis: (1) 
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Resting membrane potential (Vrest) was measured and current was injected through the recording 

electrode for 1 second duration with at least 2 seconds of wait time between trials, starting at -70 

pA and increasing by 10 pA each trial until a spike was elicited (Shen and Kriegstein, 1986; 

Christophe et al., 2005; Sosulina et al., 2006). Although the pyramidal neurons were studied within 

their endogenous cortical circuits, there was no evidence from these recordings that synaptic 

activity was being modulated by the injected current pulses. We presume, therefore, that the 14 

electrophysiological parameters only reflect the intrinsic nature of the recorded neuron. (2) 

Rheobase current (Ir) was defined as the lowest current for which an action potential was elicited 

in three consecutive trials (Calvin and Sypert, 1976; Baranyi et al., 1993). Single-spike parameters 

(3-8) were determined by averaging at least three trials of rheobase current injection. (3) Action 

potential voltage threshold (Vth) was determined as the point of maximum inflection where the 

third derivative of the voltage is maximized (Baranyi et al., 1993; Sekerli et al., 2004; Christophe 

et al., 2005). (4) Action potential amplitude (AP Height) was measured from voltage threshold to 

the peak of the action potential (Takahashi, 1964; Cauli et al., 2000; Gallopin et al., 2005; Andjelic 

et al., 2009). Action potential duration was measured both (5) halfway between threshold and peak 

(WAP) (Nowak et al., 2003; Sosulina et al., 2006; Andjelic et al., 2009) and (6) at threshold 

(WAP,thresh) (Calvin and Sypert, 1976; McCormick et al., 1985; Christophe et al., 2005).  It should 

be noted that this definition of “action potential width at threshold (WAP,thresh)” can lead to spurious 

results when applied to neurons with complex and long-lasting depolarization above threshold 

following the first action potential (Larkum et al., 2008). (7) The action potential fall rate 

(Min(dV/dt)) was measured as the maximum downslope in the falling phase of the spike 

(McCormick et al., 1985; Baranyi et al., 1993; Nowak et al., 2003). (8) The time to peak of the 

afterhyperpolarization (LAHP) was measured as the time elapsed between crossing the threshold 
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voltage in the falling phase of the action potential to the peak of the afterhyperpolarization 

(Takahashi, 1965; Calvin and Sypert, 1976). This peak was defined as the post-spike voltage 

trough. (9) Input resistance (IR) was determined by examining the membrane voltage drop in 

response to 1-s hyperpolarizing current pulses (Cauli et al., 2000; Gallopin et al., 2005; Sosulina 

et al., 2006; Andjelic et al., 2009). (10) The membrane time constant (tm) was determined by fitting 

an exponential function (Kaleidagraph, Synergy Software, Reading, PA) to voltage traces in 

response to hyperpolarizing current injection (McCormick et al., 1985; Shen and Kriegstein, 1986; 

Baranyi et al., 1993). Spike train parameters (11-14) were measured and averaged for several trials 

where multiple spikes were elicited in response to depolarizing 1-s current pulses. (11) Action 

potential duration increase (WAP Inc.) is (𝐷2 − 𝐷1)/𝐷2 where 𝐷1 and 𝐷2 are the durations at half-

max (5) of the first and second spikes, respectively, after beginning depolarizing current injection 

(Cauli et al., 1997, 2000; Andjelic et al., 2009). (12) Action potential amplitude decrement (Vpeak 

Dec.) is (𝐴1 − 𝐴2)/𝐴1 where 𝐴1 and 𝐴2 are the amplitudes (4) of those spikes (Cauli et al., 2000; 

Andjelic et al., 2009). (13) Action potential frequency adaptation ratio (AP FAR) is the ratio of 

the first interspike interval (ISI) to the average of the last three interspike intervals (Porter et al., 

2001; Christophe et al., 2005; Wang et al., 2006). (14) Interspike interval variability (ISI Var) 

during rhythmic firing is the variance of the interspike intervals over the current injection interval 

(Calvin and Sypert, 1976). Neurons that never elicited more than one spike were assigned an AP 

duration increase of 200, an AP amplitude reduction of 100, an adaptation ratio of 0, and an ISI 

variability of 0.  

2.2.3 Unsupervised clustering 

To classify neurons, unsupervised clustering using Ward’s linkage method was utilized 

(Ward, 1963). In this algorithm, neurons begin as individual points in a 14-dimensional parameter 
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space and are grouped in a bottom-up fashion. To ensure that equal weight be given to each of 

them, parameters were standardized with a mean of 0 and a standard deviation of 1 (Sosulina et 

al., 2006) prior to analysis. At each step, the neurons or clusters of neurons with minimum 

between-cluster distance (least Euclidean distance) are merged into a larger cluster. Operationally 

this is equivalent to finding the pair of clusters that leads to minimum increase in total within-

cluster variance after merging. The result of this recursive algorithm is visualized on a dendrogram 

(tree diagram) as a horizontal bar joining the neurons drawn at a height corresponding to the 

linkage distance – the Euclidean distance between the two merged neurons/clusters in parameter 

space. In the next step, two more neurons/clusters are merged. Eventually, neurons are closer to 

neuron pairs or higher clusters than to other individuals and merge with those pairs into even 

greater population subclusters, or clusters merge with one another. These collections continue 

merging step by step until all neurons are contained within one supercluster.  

Ward’s linkage method generates a dendrogram, but does not provide a rationale at what 

height to cut the dendrogram into groups and thus cannot inform about an absolute number of 

clusters. We determined the number of putative pyramidal neuron subtypes among the dataset by 

dividing the clustering tree into higher-order clusters as suggested by the Thorndike procedure 

(Thorndike, 1953; Cauli et al., 2000; Andjelic et al., 2009) and validated by silhouette analysis 

(Rousseeuw, 1987; Karagiannis et al., 2009).  

Silhouette analysis quantifies the likelihood that a neuron should be a member of the cluster 

it was placed in by comparing the mean distance in parameter space between the neuron and its 

intracluster companions, 𝑎𝑖 and the mean distance between it and those neurons in the next closest 

cluster 𝑏𝑖 (Rousseeuw, 1987; Karagiannis et al., 2009) This comparison is normalized by the 
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maximum of the two averages, giving a neuron silhouette value of 𝑆𝑖 =
(𝑏𝑖 − 𝑎𝑖)

max (𝑎𝑖;𝑏𝑖)
, where 𝑆𝑖 is 

strictly bound by −1 <  𝑆𝑖 < 1. A negative value suggests a potential misclassification, since the 

neuron in question is then closer in parameter space to the members of a different cluster of neurons 

than to those of the cluster to which it is assigned. The average silhouette value for the clustering 

is then given by averaging over all of the neurons 𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  〈𝑆𝑖〉 and thus 𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is also strictly 

bound, −1 <  𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒 < 1. 

Complementary to Ward’s clustering, k-means clustering generates clusters in a top-down 

manner using a predetermined number of k clusters (Hartigan and Wong, 1979). Starting from a 

random cluster centroid position, positions are iteratively optimized. Thus suboptimal assignment 

of neurons to specific clusters is dynamically corrected across iterations. The process is repeated 

different random initial positions of the k-cluster centroids. In k-means clustering, the number of 

k clusters must be predetermined and, in this study, was chosen to equal the number of clusters 

inferred from the Ward’s method. Additional analysis (not shown) was done with higher numbers 

of clusters. 

2.2.4 Model simulation.  

The model network consisted of three clusters of neurons separated by type, including two 

distinct excitatory groups (A and B, 1000 neurons each) and one inhibitory (200 neurons), with 

reciprocal connectivity. Intracluster (Pin) and intercluster (Pout) connection probabilities controlled 

the likelihood of synaptic connections between neurons. Model neurons were implemented as 

described earlier (Izhikevich, 2003). Inhibitory neurons and the excitatory neurons of type A and 

B differed by their defining parameter values (inhibitory: a = 0.1, b = 2, c = -50, d = 2, Cm = 20 

µF, R = 100 MΩ; excitatory type A: a = 0.02, b = 0.25, c = -65, d = 0.05, Cm = 20 µF, R = 400 
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MΩ; excitatory type B: a = 0.02, b = 0.2, c = -65, d = 8, Cm = 30 µF, R = 250 MΩ). Synaptic 

currents were simulated as described earlier (Brunel and Wang, 2003). Parameters for excitatory 

currents were Vsyn = 0 mV, τl = 0.5 ms, τr = 0.2 ms, τd = 1 ms and for inhibitory current were Vsyn 

= -70 mV, τl = 0.5 ms, τr = 0.5 ms, τd = 5 ms. Synaptic strength between the possible combinations 

of external inputs (E), pyramidal neurons (P) and interneurons (I) was parameterized by gsyn as 

follows (in nS): P-to-P, 0.29; P-to-I, 0.3; I-to-P, 3.8; I-to-I, 4.0; E-to-P, 3; E-to-I, 5.2. All neurons 

received excitatory input in the form uncorrelated Poisson pulse trains at low rate thus generating 

a baseline level of network activity. The brief external stimulus (mimicking the LGN input caused 

by a diffuse whole-field flash) to the model network consisted of a 4.5 times increase in the Poisson 

pulse rate for the duration of 100 ms and exclusively to type A neurons. 
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2.3 Results 

We obtained whole-cell recordings from 225 pyramidal neurons selected under visual 

guidance with DIC optics from the cellular layer of the turtle visual (dorsal) cortex (Fig 2.2). The 

densely packed pyramidal neuron somata within the cellular layer appear indistinguishable by 

visual inspection. Neurons were selected from a region located central between rostral and caudal 

dorsal cortex. From the recorded membrane potential responses to somatic current injections (1 s 

duration; 2 s wait time between trials), we obtained the neurons’ electrophysiological properties, 

which we quantified with a selected set of 14 parameters (Fig 2.3A). The parameter set was chosen 

on the basis of (i) providing distinct, as opposed to redundant, features (Nowak et al., 2003) and 

(ii) showing variability over the collection of neurons (Cauli et al., 1997, 2000). The resulting 

distributions of the 14 parameters from the 225 recorded pyramidal neurons were neither 

multimodal nor Gaussian (Fig 2.3B), thus indicating the possibility for multiple types of pyramidal 

neurons within the cellular layer of turtle visual cortex. 
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Figure 2.3. Distribution of electrophysiological properties. A, Illustration of how a subset of the 

parameters were measured from the action potential shape of the first action potential in response 

to somatic current injection: threshold voltage (Vth), width at threshold (WAP,thresh), width at half-
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max (WAP), height, maximum fall rate (Min(dV/dt)), and afterhyperpolarization latency (LAHP). B, 

Distribution of the measured values for the 14 electrophysiological parameters from membrane 

potential recordings in response to somatic current injection from 225 pyramidal neurons: rheobase 

current (Ir), membrane time constant (tm), action potential voltage threshold (Vth), action potential 

frequency adaptation ratio (AP FAR), action potential amplitude (AP Height), action potential 

duration at threshold (WAP,thresh), action potential fall rate (Min(dV/dt)), time to peak of the 

afterhyperpolarization (LAHP), action potential duration halfway between threshold and peak 

(WAP), action potential duration increase (WAP Inc.), resting membrane potential (Vrest), action 

potential amplitude decrement (Vpeak Dec.), input resistance (IR), interspike interval variability (ISI 

Var). The apparent deviations from normal distributions suggest that there are discrete groups of 

pyramidal neurons within this population. 

 

2.3.1 Two main types of pyramidal neurons 

To evaluate the number of pyramidal neuron types within the cellular layer (Fig 2.1B, layer 

2), we analyzed the data set consisting of 225 neurons in a 14-dimensional parameter space using 

Ward’s linkage method (Ward, 1963). This bottom-up hierarchical clustering algorithm (Method) 

generates a linkage plot (a tree diagram called a dendrogram) (Fig 2.4). The choice of a threshold 

in this linkage plot then determines the number of distinct clusters (pyramidal neuron types). No 

rigorous algorithm exists to choose the threshold. One widely used criterion (Cauli et al., 1997, 

2000; Andjelic et al., 2009) is the Thorndike procedure (Thorndike, 1953), which holds that the 

threshold should be drawn at the merge that provides the largest increase in mean intracluster 

variance. According to this rationale, the unsupervised clustering algorithm identifies two main 

classes of pyramidal neurons in layer 2 of turtle visual cortex (Fig 2.4).  
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Figure 2.4 Two main types of pyramidal neurons in turtle dorsal cortex. (TOP) Ward’s 

unsupervised clustering applied to a sample of 225 pyramidal neurons from turtle dorsal cortex, 

with each neuron characterized by 14 electrophysiological parameters. The x-axis in each plot 

represents the individual neurons. The y-axis represents the Euclidean distance between the two 

merged neurons/clusters in parameter space. Dashed lines in the four identical dendrograms 

indicate possible threshold choices. The dashed line in the colored dendrogram marks the threshold 

as suggested by the Thorndike procedure, which indicates two types of pyramidal neurons. 

(BOTTOM) The number of types increases with decreasing threshold in units of the linkage 

distance. The most robust choice of the threshold value is suggested by the widest range of 

threshold values in normalized parameter space for which the number of pyramidal neuron types 

is constant. This choice also indicates two main types of pyramidal neurons in turtle dorsal cortex.  

 

To evaluate the quality of Ward’s clustering, we computed the silhouette values for all 

neurons (Rousseeuw, 1987; Karagiannis et al., 2009). A positive silhouette value indicates that a 

data point resides closest to its cluster’s centroid, whereas a negative silhouette value indicates that 

the data point lies closer to the centroid of a different cluster (see Methods), suggesting a possible 



30 

 

misclassification. We found that Ward’s clustering of the data set into two clusters results in mostly 

positive silhouette values (average silhouette <Sward> = 0.184), suggesting two cell types within 

the data (Fig 2.5A). In contrast, assuming a larger number of clusters (lower threshold) for Ward’s 

clustering resulted in lower average silhouettes (n = 3: <S> = 0.109) and a greater number of 

negative individual neuron silhouettes (data not shown). 

To evaluate the robustness of the classification into two types, we compared the silhouette 

values of the bottom-up based Ward’s clustering with those from k-means clustering (Hartigan 

and Wong, 1979). The k-means algorithm differs from the Ward’s linkage method in three 

important ways; it is top-down, contains operational randomness, and predetermines the number 

of clusters. Applying k-means clustering with k = 2 resulted in mostly positive silhouette values 

(average silhouette <S> = 0.180) (Fig 2.5B), thus validating the number of types determined from 

Ward’s clustering. In contrast, silhouette analysis for k-means clustering when assuming a larger 

number of types resulted in lower average silhouettes (n = 3: <S> = 0.145) and a greater number 

of negative individual neuron silhouettes (data not shown). 

To evaluate the statistical significance of the k-means clustering of control data, we 

compared its silhouette values with those from clustering of randomized databases (new database 

randomization for each k-mean run). Parameter values were shuffled across neurons, destroying 

the correlations between parameter values while maintaining the same mean, median, and standard 

deviation of each parameter. We found that the silhouette values for the control data set were 

consistently higher than the silhouette values for the scrambled dataset (Fig 2.5C). The analysis, 

seen in Figure 5, was averaged over 1000 K-means and scrambled K-means classifications and 

their silhouette values. For quantitative comparison, the average silhouette width was used as a 

global measure of quality of clustering. We found that both Ward’s clustering (2 types) and k- 
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Figure 2.5 Comparison of clustering algorithms. A, Silhouette plot of Ward’s clustering. Within 

each cluster (green/A and magenta/B), cells are ranked (vertical axis) in decreasing order of their 

silhouette values (horizontal axis). Large positive silhouette values indicate that the data point is 

close to its cluster’s centroid, whereas negative silhouette values indicate that the data point is 

closer to the centroid of the other cluster. Right panel: The dendrogram from Ward’s clustering is 

shown for comparison. B, Silhouette plot for one rendition of k-means clustering (k = 2). Right 

panel: The plot of clustered data points (black and gray) within the plane spanned by the input 

resistance (IR) and the action potential frequency adaptation ratio (AP FAR) illustrates the partial 

separation of data points from different clusters in this plane alone. C, Silhouette plot for one 



32 

 

rendition of k-means clustering (k = 2) on the scrambled data set. Right panel: The plot of clustered 

data points (scrambled data set) within the same plane of parameters as in C, reveals the lack of 

separation caused by scrambling. D, Comparison between the average silhouette for the Ward’s 

and k-means (k = 2) clustering of the original dataset and the average silhouette of randomized 

databases. Scrambling of the data set causes a consistent loss of quality in the clustering. Error bar 

of the average silhouette for k-means clustering is evaluated by the SD over 1000 renditions of the 

original data set and by independent randomization for each rendition of the scrambled data sets. 

means clustering (k = 2) of the original data generated significantly larger average silhouette 

width than k-means clustering (k = 2) on randomized data sets (Fig 2.5D). This reduction in 

clustering quality by randomization suggests that the clustering quality of the original database is 

not generated by accidental random correlations between measurements. Rather, the covariation 

of properties in the original database indicates the existence of two main types of pyramidal 

neurons, to which we refer to as type A (green) and B (magenta) in the text and figures.  

Plotting the occurrence of parameter values for their respective type assignments generated 

distributions that resemble Gaussian distributions (Fig 2.6). This further supports the notion of two 

types.  

Of the 14 parameters considered, the two resulting types of pyramidal neurons differed 

most in three parameters (and their physically related counterpart): resting membrane potential 

(rheobase current), input resistance (membrane time constant), and action potential frequency 

adaptation ratio (ISI variability) (Table 1 and Fig 2.6, 7). For these three parameters, neither mean 

was within three standard deviations of the other. 
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Figure 2.6. Physiological differences between the two main types of pyramidal neurons based on 

Ward’s clustering. Histograms of the distribution of the 14 electrophysiological properties shown 

in Fig. 3B and corresponding Gaussian fits for the two main types (green/A and magenta/B). 

Abbreviations as in Fig. 3B. 
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Parameter 

Type A  

(n = 80) 

Type B  

(n = 145) 

Rheobase Current (pA): 33.9 ± 13.0 72.6 ± 19.3 

AP Voltage Threshold (mV): -38.9 ± 2.3 -40.2 ± 3.7 

AP Height (mV): 64.7 ± 4.8 59.4 ± 5.2 

Maximum AP Downslope (mV/ms): -34.4 ± 8.6 -23.2 ± 5.0 

AP half-width (ms): 2.2 ± 0.3 3.1 ± 0.6 

Resting Membrane Potential (mV): -53.2 ± 2.8 -65.8 ± 3.7 

Input Resistance (MΩ): 423 ± 80 271 ± 56 

AP Frequency Adaptation Ratio: 0.874 ± 0.104 0.499 ± 0.084 

AP Duration at Threshold (ms): 59.9 ± 18.0 82.9 ± 47.5 

AHP Time to Peak (ms): 56.2 ± 20.5 32.9 ± 15.5 

AP Duration Increase (%): 14.6 ± 6.7 23.1 ± 7.7 

AP Amplitude Decrement (%): 4.3 ± 3.4 1.0 ± 3.9 

ISI Variability: 15.1 ± 5.4 39.8 ± 10.0 

Membrane Time Constant (ms): 198 ± 42 121 ± 27 

 

Table 2.1. Properties of the two main types of pyramidal neurons in turtle visual cortex. Mean and 

standard deviation for all values.  
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Figure 2.7 Three physiological parameters produce good separation of the two main pyramidal 

neuron subtypes. A, Representative membrane potential responses to somatic current injections 

for three pyramidal neurons from each subtype (green/A and magenta/B). Input currents ranged 

from 50 to 70 pA. B, Partial separation between the two main pyramidal neuron subtypes is 

observed in a plot of clustered data points (green/A and magenta/B) within the space spanned by 

the resting membrane potential (Vrest), the input resistance (IR), and the action potential frequency 

adaptation ratio (AP FAR).  
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2.3.2 The impact of network incorporation on cellular individuality 

Turtle dorsal cortex consists of approximately 80,000 pyramidal neurons and 20,000 

interneurons (Ulinski, 2007). A single pyramidal neuron receives some 300 thalamic fiber 

synapses on the distal portion of its spiny apical dendrites (Smith et al., 1980), whereas other 

cortical pyramidal neurons and interneurons contact the thousands of spines along the spatial 

extent of the apical and basal dendrites (Desan, 1984). This extensive incorporation of a pyramidal 

neuron into the cortical circuitry raises the question to what extent the cellular individuality 

(probed with somatic current injection during ongoing network activity) endures when sensory 

input pushes the network into a state of high activity (Shew et al., 2015). 

To address this question experimentally, we obtained visually guided whole-cell 

recordings from pyramidal neurons within the cellular layer of visual cortex using the turtle ex 

vivo eye-attached whole-brain preparation (Method, Fig 2.8A). Subsequent to somatic current 

injection for offline neuron type classification (as described above), we flashed light (640 nm 

wavelength, LED, 10 ms duration, 30 s wait between trials) onto the spatial extent of the intact 

retina within the eye cup and recorded the membrane potential visual responses of the cortical 

pyramidal neuron (Fig 2.8B). For all pyramidal neurons recorded, visual responses started 

approximately 100 ms after the brief flash of light and typically lasted for more than 1000 ms. 

Trial-to-trial variability was extensive, comparable in amplitude to the mean response. The 

persistent activity and the trial-to-trial variability indicate a significant contribution of the network 

activity to the cellular visual response of both pyramidal neuron types. Specifically, visual 

responses consisted of broad depolarization, mediated by a superposition of numerous excitatory 
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and inhibitory postsynaptic potentials. Responses for the two neuron types appeared largely 

indistinguishable (Fig 2.8C).  

The observed similarity of the visual responses for type A and B neurons raises the question 

to what extent the integration of a cell within a network overrides the contribution of cellular 

properties to its response. To address this question, we investigated the impact of connectivity on 

the time course of the response to a brief external input in a model network (Fig 2.9A). The model 

network consisted of excitatory model neurons type A and B and of inhibitory model neurons. The 

three groups of neurons differed in the cellular properties (Table 2). A given neuron from a group 

projects to neurons within its group and to neurons in the other two groups. The level of 

connectivity was parameterized by the intracluster (𝑃𝑖𝑛) and intercluster (𝑃𝑜𝑢𝑡) connection 

probabilities. To increase the model challenge of reproducing similar responses with different 

neuron types, we connected external inputs exclusively to model neurons type A. This differential 

external input was further motivated by experimental evidence for afferent inputs to one type only 

from (i) earlier molecularbiological investigations in turtle (Dugas-Ford et al., 2012), and (ii) 

studies of piriform cortex (Suzuki and Bekkers, 2011). 
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Figure 2.8 Visual response properties of the two physiologically defined pyramidal neuron types. 

A, Schematic of the turtle ex vivo eye-attached whole-brain preparation. A diffuse flash of light 

from the LED (red) is projected onto the intact retina within the eye-cup (gray bowl), while the 

membrane potential from a pyramidal neuron is recorded with a patch electrode (gray triangle) 
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inserted into the unfolded visual cortex. B, Pyramidal neuron membrane potential responses to 

brief flashes of light (10 ms, 640 nm; red arrow) persist long beyond the duration of the flash, are 

variable from trial-to-trial, and display sparse spiking. Trial averages are shown in black. 

Representative membrane potential visual responses to flashes are shown for three pyramidal 

neurons from each physiologically defined type (green/A and magenta/B). The responses are  

fluctuating and similar for both types. C, The time courses of trial-averaged membrane potential 

(after spike clipping) of all pyramidal neurons recorded in response to flashes (8 type A (green), 

16 type B (magenta)). Averages across pyramidal neuron visual responses of the same 

physiological type are plotted in bold (green/A and magenta/B).  
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 (Table 2) 

Parameter Excitatory A 

(visual input) 

Excitatory B  

(no visual input) 

Inhibitory 

a 0.02 0.02 0.1 

b 0.25 0.2 2 

c -65 -65 -50 

d 0.05 8 2 

C_m (μF) 20 30 20 

R (MΩ) 400 250 100 

N 500 500 150 

Table 1.2. Parameters used to define the model neurons.  
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Figure 2.9 A model network with pulsed external inputs reproduces the similarity of the responses 

for two types of excitatory neurons. A, Conceptual cartoon illustrating key model features, 
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including inhibitory neurons (blue) and two types of excitatory neurons (green/A and magenta/B), 

with excitatory external inputs (“LGN”, orange) limited to one excitatory type (green/A). 

Intracluster and intercluster connection probabilities are parameterized by 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡, 

respectively. B, Simulated membrane potential responses for the two types of excitatory model 

neurons (green/A and magenta/B) in response to a brief (100 ms, black horizontal bar) increase in 

the external input (increased rate of the Poisson pulse trains) for multiple combinations of 

intracluster and intercluster connection probabilities, each ranging between 0.0 and 0.5. For clarity, 

simulation results for 200 of the 1000 neurons of each excitatory type are plotted. C, The 

connection probability combination of 𝑃𝑖𝑛 = 0.1 and 𝑃𝑜𝑢𝑡 = 0.25 best reproduces the 

experimentally observed persistent activity and the similarity of the type A (green) and the type B 

(magenta) response to brief external inputs. 

 

We investigated the membrane potential of excitatory model neurons type A and B in 

response to a brief increase in the spike rate of the external inputs for varying levels of connectivity. 

For vanishing intercluster connectivity, the response was limited to type A, as expected (Fig 2.9B). 

With increasing intercluster connectivity, the response in type A started to activate the type B and 

inhibitory neurons, resulting in complex network activity. Importantly, at an intermediate level of 

connectivity (𝑃𝑖𝑛 = 0.1; 𝑃𝑜𝑢𝑡 = 0.25), the simulated model responses (Fig 2.9C) resembled 

qualitatively the time course and similarity of the recorded visual responses of the two types of 

pyramidal neurons in turtle visual cortex (Fig 2.8B). 
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2.4 Discussion 

The dichotomy between cellular individuality and network integration raises a profound 

question in neuroscience. To what extent does subtype identity of a pyramidal neuron impact the 

neuron’s dynamic and signal processing when it is incorporated in an extensively interconnected 

network, such as microcircuits of cerebral cortex? To address this question, we examined the 

classification of turtle visual cortex pyramidal neurons based on intrinsic electrophysiological 

properties (Fig 2.6). We then probed the neuron’s responses to visual stimulation (Fig 2.8), which 

concurrently pushed the network into a state of intense emergent activity. We discovered two main 

electrophysiological types of pyramidal neurons (Fig 2.4) and found that their visual responses 

were indistinguishable and apparently dominated by emergent network activity (Fig 2.8B, C). 

Given the limitation in our study of visual stimulation to diffuse flashes, we cannot exclude the 

possibility that exploration of more complex stimuli would reveal cell-type specific visual 

responses. A model network, when tuned to a suitable level of connectivity, reproduced the 

similarity of the responses of the two cell types (Fig 2.9).  In future model investigations it will be 

fruitful to investigate in an extensive parameter search under what conditions of intrinsic 

physiology and connectivity cell-type specific differences in the responses to external inputs can 

arise. 

2.4.1 Parameter selection 

In this investigation of pyramidal neuron types, parameter selection was guided by 

minimizing redundant information and by evidence from previous studies that parameter values 

varied significantly among subpopulations of pyramidal neurons. For instance, the following 

parameters have previously been shown to vary between subgroups of pyramidal neurons in 
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neocortex: input resistance (Takahashi, 1965; Baranyi et al., 1993; Christophe et al., 2005; 

Sosulina et al., 2006); resting membrane potential (Sosulina et al., 2006); membrane time constant 

(Calvin and Sypert, 1976); action potential amplitude (Christophe et al., 2005, McCormick et al., 

1985), voltage threshold (Chistophe et al., 2005), duration at half-maximum amplitude (Sosulina 

et al., 2006, Baranyi et al., 1993), duration at threshold (Calvin and Sypert, 1976, Takahashi, 1965), 

maximum rate of decay (Baranyi et al., 1993), rheobase current (Baranyi et al., 1993), the time to 

the peak of the afterhyperpolarization (Calvin and Sypert, 1976, Takahashi, 1965); action potential 

frequency adaptation ratio (Porter et al., 2001; Christophe et al., 2005); action potential duration 

increase and action potential amplitude reduction (Cauli et al., 1997, 2000). In addition, resting 

membrane potential, input resistance, action potential frequency adaptation ratio, and rheobase 

current have all also been shown to vary with genetically defined subtypes among pyramidal 

neurons in mouse visual cortex and somatosensory cortex (Groh et al., 2010). 

2.4.2 Classification algorithms 

After feeding measured parameters into the Ward’s linkage method clustering algorithm, 

the choice of the threshold intergroup linkage distance determines the number of inferred clusters 

(Fig 2.4). The subjectivity of this choice has been addressed using different strategies. One strategy 

is to reduce the subjectivity inherent to the choice of threshold by adding cells of different types 

(e.g. pyramidal neurons in an interneuronal classification study) to the data base (Cauli et al., 1997, 

2000; Karagiannis et al., 2009; Helmstaedter et al., 2009) or by overlaying morphology on purely 

electrophysiological clusters (Nowak et al., 2003; Krimer et al., 2005; Andjelic et al., 2009). 

Another strategy is to elevate the confidence levels behind clustering by analyzing the clustering 

results for different threshold levels and comparing relative “accuracy” measurements across those 

schemes. Strategies to this end include silhouette analysis (Rousseeuw, 1987; Karagiannis et al., 
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2009) and the Mann-Whitney Test (Mann and Whitney, 1947; Sosulina et al., 2006). A third family 

of strategies uses inherent properties of the clustering itself to determine the threshold. With each 

intercluster merge the number of clusters decreases but the mean intracluster variance increases. 

The Thorndike procedure (Thorndike, 1953) suggests that the threshold should be drawn at the 

merge that provides the largest increase in mean intracluster variance and has been used in several 

neuronal classification studies (Cauli et al., 1997, 2000; Andjelic et al., 2009). The application of 

fuzzy clustering algorithms to the classification of fusiform neocortical neurons suggested a final 

test (Battaglia et al., 2013). For each number of subtypes from N = 1 (all cells are indistinct and 

members of one superpopulation) to N = the number of cells recorded (all cells are unique and no 

meaningful crossover exists among them) there is some finite range of threshold linkage distances 

for which N subtypes appear from the data. The correct N, and from that the correct threshold, 

should be chosen from the largest range of thresholds which gives the same number of subtypes 

(Fig 2.4). For the study presented here, the number of subtypes was determined by applying the 

Thorndike and Battaglia criteria and was corroborated through k-means (Hartigan and Wong, 

1979) and silhouette (Rousseeuw, 1987) analysis. 

2.4.3 Two pyramidal neuron types in allocortex 

The allocortex is a phylogenetically ancient trilaminar cortical structure (Swanson, 2003). 

Well-studied contemporary model systems of allocortex are the mammalian piriform cortex 

(Neville and Haberly, 2004; Suzuki and Bekkers, 2013) and hippocampus (Johnston and Amaral, 

2004) and the reptilian dorsal cortex (Ulinski, 2007). All three model systems are largely congruent 

in their microcircuit structure (Shepherd, 2011; Fournier et al., 2014). Layer 2 contains densely 

packed somata of pyramidal neurons. Pyramidal neuron dendrites and axons project into the 

adjacent layers 1 and 3. Afferents make en-passant synapses in superficial layer 1 on interneurons 
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and on distal segments of dendrites from layer 2 pyramidal neurons. Scattered interneurons in layer 

1 and 3 mediate feed-forward and feed-back inhibition (Fig 2.1B).  

The laminar specificity of pyramidal neuron types in the six-layered neocortex raises the 

question whether the sole layer of pyramidal neuron somata in allocortex consists of discrete types 

of pyramidal neurons. Based on morphological and intrinsic electrophysiological properties, two 

types of pyramidal neurons have been identified in mouse piriform cortex (Suzuki and Bekkers, 

2006, 2011) and rat hippocampus (Graves et al., 2012).  

In this study, we have extended the question to a third model system of allocortex, namely 

the dorsal cortex of turtle. Earlier investigations of pyramidal neurons in this system revealed a 

variation of input resistance (Larkum et al., 2008), firing patterns (Mancilla et al., 1998), axonal 

projection targets (Ulinski, 1986), and molecular markers (Dugas-Ford et al., 2012). However, 

these valuable studies did not quantify to what extent the variation of those properties reflects the 

existence of pyramidal neuron subtypes or the broad distribution of properties in one neuron type. 

Here, based on the parameterization of intrinsic electrophysiological properties and unsupervised 

clustering, we have identified two types of pyramidal neurons in turtle dorsal cortex. Broadly 

speaking, type A neurons tend to be more excitable and tend to show less spike adaptation than 

type B neurons (Fig 2.6, 7). 

2.4.4 Type-specific connectivity 

The apparent congruence of microcircuit structure and the coincidence of two types of 

pyramidal neurons in the three model systems of allocortex raises the question to what extent 

neuronal type correlates with connectivity in the three systems. In mouse hippocampus, the two 

distinct principal neuron types in layer 2 are inversely modulated by glutamate and acetylcholine 



47 

 

acting on metabotropic receptors, which advances the notion that the two types support two parallel 

signal pathways (Graves et al., 2012). In mouse piriform cortex, the semilunar principal neurons 

in layer 2 receive stronger afferent inputs, whereas the superficial pyramidal neurons of the same 

layer receive stronger associational (intracortical) inputs (Suzuki and Bekkers, 2011). Our visual 

response data from the two types of pyramidal neurons in turtle dorsal cortex, combined with the 

model investigation, suggest that strong associational (intracortical) inputs are common to both 

types.  

2.4.5 Comparative analysis of allocortex and neocortex 

Given the ancestral position of allocortex in evolutionary history (Striedter, 2005), it is 

instructive to highlight our results from turtle dorsal cortex within the context of related studies of 

pyramidal neuron subtypes in neocortex. First, of the 14 parameters considered for the cluster 

analysis, the two resulting types of pyramidal neurons differed most in their excitability (resting 

membrane potential, rheobase current) and spike adaptation (spike frequency adaptation ratio, ISI 

variability). Interestingly, those parameters have previously been shown to vary across genetically 

defined subtypes of layer 5 pyramidal neurons in mammalian somatosensory and visual cortex 

(Groh et al., 2010). Second, the separation of early and late sensory responses, visible in some 

neurons, is not unique to turtle visual cortex, rather they have previously been observed in mouse 

barrel cortex (Sachidhanandam et al., 2013). Third, the similarity of the fluctuating responses for 

the two types of pyramidal neurons in turtle visual cortex resembles the previously observed 

similarity of receptive field properties for morphological and electrophysiological pyramidal 

neuron subtypes within the same layer of cat visual cortex (Nowak et al., 2003). Fourth, the 

inference of two pyramidal neuron subtypes in turtle visual cortex is consistent with the molecular 

evidence for cortical L4/input and L5/output cell-type homologies across amniotes (Dugas-Ford 
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et al., 2012). It is thus tempting to speculate that the classified type A and B pyramidal neurons of 

turtle visual cortex express two selective mRNA profiles that match the mammalian cortical 

L4/input and L5/output neurons, respectively. However, tests of this tantalizing speculation must 

await future studies. 

2.4.6 The dichotomy of cellular individuality and associational circuits 

A subtype-specific division of labor is believed to create a rich substrate for computation 

(Klausberger and Somogyi, 2008; Moore et al. 2010). On the other hand, profuse associational 

connections are thought to implement complex sensory processing (Johnson et al., 2000). Here we 

showed that pyramidal neuron membrane potential responses to a diffuse brief flash of light were 

characterized by persistent activity of high trial-to-trial variability. The response was not type-

specific (Fig 2.8). This observation, combined with the model investigation (Fig 2.9), suggests that 

the answer to the signal-processing role of neurons vs network appears to depend on the 

question/perspective at hand. This neuron-network duality of circuit dynamics and computation 

addresses the inability of the classical concepts “neuron” or “network” to describe the dynamics 

and computation of microcircuit-scale cortical tissue during the visual processing of 

spatiotemporal complex scenes. 
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Chapter 3 

 

Network activity influences the subthreshold 

and spiking visual responses of pyramidal 

neurons in a three-layer cortex 

 A primary goal of systems neuroscience is to understand cortical function, which typically 

involves studying spontaneous and sensory-evoked cortical activity.  Most such studies focus on 

spiking in populations of neurons.  While advantageous in many respects, this approach is limited 

in scope; it records the activities of a minority of neurons, and gives no direct indication of the 

underlying subthreshold dynamics.  Membrane potential recordings can fill these gaps in our 

understanding, but are difficult to obtain in vivo.  Here, we record subthreshold cortical visual 

responses in the ex vivo turtle eye-attached whole-brain preparation, which is ideally-suited to such 

a study.  In the absence of visual stimulation, the network is “synchronous”; neurons display 

network-mediated transitions between low- and high-conductance membrane potential states.  The 

prevalence of these slow-wave transitions varies across turtles and recording sessions.  Visual 

stimulation evokes similar high-conductance states, which are on average larger and less reliable 

when the ongoing state is more synchronous.  Responses are muted when immediately preceded 

by large, spontaneous high-conductance events.  Evoked spiking is sparse, highly variable across 

trials, and mediated by concerted synaptic inputs that are in general only very weakly correlated 

with inputs to nearby neurons.  Together, these results highlight the multiplexed influence of the 

cortical network on the spontaneous and sensory-evoked activity of individual cortical neurons. 
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3.1 Introduction 

Spikes are fundamental to cortical function; they are the means by which individual 

neurons receive and transmit information, and are the unit of language for cortical ensembles that 

encode sensory information.  Understandably, then, most studies of cortical sensory responses 

have focused on the spiking activities of (increasingly large) populations of neurons.  Yet this 

approach yields an incomplete picture of sensory cortex, for three reasons.  First, it reveals the 

activity of a minority of neurons; most cells spike very rarely, if at all(Shoham, O’Connor, & 

Segev, 2006), and of those that do, few have spike rates sufficient for certain analyses(Cohen & 

Kohn, 2011) (Figure 3.1a).  Second, neuronal populations defined by the recording device’s field 

of view are unlikely to represent complete cortical microcircuits (Figure 3.1b).  (While the local 

field potential (LFP) is both easily obtained and less susceptible to the first issue, this signal too is 

ultimately defined by the device (Figure 3.1b).)  Third, the purely suprathreshold view of cortex 

leaves certain important questions unanswered.  For example, some competing hypotheses of 

cortical function are not easily distinguishable by the spiking statistics of small populations, but 

predict very different subthreshold dynamics for individual neurons(DeWeese & Zador, 2006; M. 

Rudolph & Destexhe, 2003; Stevens & Zador, 1998; Tan, Chen, Scholl, Seidemann, & Priebe, 

2014).  This third point motivates recording the membrane potential, which in fact neatly addresses 

the first two issues as well.  First, each neuron samples an enormous and biologically-relevant 

presynaptic pool (Figure 3.1b), and thus the subthreshold membrane potential communicates  
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Figure 3.1  Whole-cell recordings supplement our understanding of cortical activity.  (a) Ongoing 

and sensory evoked cortical spiking is sparse; a minority of neurons (high opacity rasters) spike 

often enough to give sufficient spike counts for some analyses.  (b) Devices used to record 

population spiking activity define sets of neurons which are primarily sparse-spiking (low-opacity 

dots).  These populations do not in general represent cortical microcircuits.  The local field 

potential (LFP, red region) is useful for estimating synaptic activity, but only in a small electrode-

defined region.  A given neuron (e.g., blue dot) is a useful network sub-sampler; it receives inputs 

from a biologically relevant presynaptic pool spanning large regions of cortex.  (c) The membrane 

potential of a cortical neuron (blue trace) provides (i) a spike-rate independent measure of neuronal 

activity, and (ii) estimates the spiking activity of the presynaptic pool.  The simultaneously-

recorded nearby LFP (red trace) is useful for interpreting this subthreshold activity in the context 

of local synaptic activity.  (d) We simultaneously record the membrane potentials from groups of 

cortical neurons (as well as the nearby LFP) in the turtle eye-attached whole-brain ex vivo 

preparation, during ongoing and visually-evoked activity. 
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information about spiking in that pool (Figure 3.1c).  Second, the membrane potential is a spike-

rate independent measure of activity in the recorded neuron, and therefore gives voice to sparse-

spiking neurons (Figure 3.1c).  For these reasons, it is vital to supplement the vast literature on 

cortical spiking with studies of subthreshold sensory responses.   

This is easier said than done; while stable patch clamp recordings are readily achievable in 

slice and cell culture, they are extremely difficult to obtain in vivo.  Consequently, studies of 

subthreshold visual responses are relatively rare.  Accordingly, we have recorded ongoing and 

visually-evoked subthreshold and spiking activity from cortical pyramidal neurons in the ex vivo 

turtle eye-attached wholebrain preparation (Figure 3.1d), which is ideally-suited to such an 

investigation(Crockett, Wright, Thornquist, Ariel, & Wessel, 2015; Saha, Morton, Ariel, & 

Wessel, 2011).  Specifically, it allows for stable patch clamp recordings (lasting up to two hours) 

from neurons in a three-layer visual cortex (analogous to mammalian piriform cortex and 

hippocampus(Fournier, Müller, & Laurent, 2015; Naumann et al., 2015; Shepherd, 2011)) subject 

to inputs from an intact visual pathway.  In some cases, we simultaneously record the nearby LFP 

to interpret the subthreshold events in the context of local synaptic activity (Figure 3.1d). 

Here, we present four key observations.  First, we find that the ongoing network state is 

“synchronous”; subthreshold activity reveals a relatively quiescent “low-conductance” state that 

is frequently interrupted by “high-conductance” events.  The increase in synaptic conductance 

results in slow-wave activity (or broad membrane potential depolarizations) with fast nested 

subthreshold fluctuations.  High-conductance event onsets are correlated across pairs of nearby 

neurons, and coincide with oscillations in the nearby local field potential (suggesting they are 

network-generated).  Second, brief and extended visual stimulation evoke persistent high-

conductance states that are qualitatively similar to larger spontaneous synaptic events, and less 
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synchronous than pre-stimulus activity.  Spiking in this state is sparse and highly-variable across 

trials (in terms of both precise timing and spike counts).  Third, visual stimulation that interrupts 

or follows soon after large, spontaneous events evokes responses that are muted relative to the 

average.  Finally, while the evoked state is asynchronous at long time scales, spikes are preceded 

by concerted excitatory synaptic inputs that are not in general coordinated across neighboring 

neurons.  These brief, pre-spike depolarizations are more pronounced for neurons exhibiting 

stronger slow-wave fluctuations during ongoing activity. 

Taken together, these results provide a rare view into the subthreshold dynamics of cortical 

visual responses.  They highlight the effects of network-mediated synaptic activity on the spiking 

of individual neurons, and demonstrate the utility of the membrane potential as a tool for sampling 

the state of a presynaptic population. Ultimately, this diagnostic tool suggests strong network 

influences on single-neuron activity across multiple spatiotemporal scales. 

3.2 Results 

 In order to investigate the nature of spontaneous and evoked subthreshold cortical activity, 

we obtained whole-cell recordings from neurons in the ex vivo turtle eye-attached whole-brain 

preparation (Figure 3.1), both in the absence of visual stimulation (Figure 3.2a), and in response 

to brief and extended visual stimulation (Figure 3.3a, see Methods).   
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Figure 3.2 During spontaneous activity, the low-conductance membrane potential state is 

interrupted by broadly-correlated high-conductance events.  (a) Subthreshold membrane potentials 

from three simultaneously-recorded neurons (black, blue, and green traces) and the nearby LFP 

(red trace) in the absence of visual stimulation.  Left (right) inset: 1 s of “low-conductance” (“high-

conductance”) activity.  (b) Top: spontaneous membrane potential recording, with high 

conductance events filled in red.  Bottom: enlarged view of an individual spontaneous high-

conductance event.  D is event duration, and S (area under curve) is event size.  (c) Distributions 

of high-conductance event durations (left) and sizes (middle), for 1389 events from 40 cells in 16 

turtles.  Right: natural log of size vs. natural log of duration, for all events.  Red line indicates 

significant linear regression fit (r = 0.95, slope = 1.43, P < 1 x 10-300).  (d) Spontaneous 

subthreshold membrane potentials from two simultaneously-recorded neurons.  (e) Left and center: 

distributions of mean-subtracted membrane potentials for the two neurons in (e), with distribution 
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skew (ζ).  Right:  distribution of skews for spontaneous activity for 40 neurons from 16 turtles.  

Red line indicates across-cell mean skew.  

 

3.2.1 Spontaneous activity is characterized by transitions between low- and high-conductance 

states 

 To help identify the effects of visual stimulation on subthreshold activity, we first sought 

to characterize spontaneous activity.  To this end, we recorded from 40 neurons while maintaining 

the preparation in complete darkness.  For 25 of these cells, we simultaneously recorded the nearby  

 

LFP. In the absence of visual stimulation, membrane potentials were typically far from action 

potential threshold, displaying small, but frequent postsynaptic potentials (PSPs, Figure 3.2a, 

left inset).  Occasionally, coordinated barrages of PSPs interrupted these periods of relative 

quiescence (Figure 3.2a).  For most cells, the longer-duration barrages resulted in broad 

membrane potential depolarizations, with nested higher-frequency fluctuations (Figure 3.2a, 

right inset).  The onset of large “high-conductance events” was correlated across pairs of nearby 

neurons, and coincided with the onset of oscillations in the nearby LFP (Figure 3.2a).  

We used an algorithm to detect these spontaneous events (see Methods) and quantified the 

duration (D) and size (S) of each (considering only those between 100 ms and 5 s in duration, 

Figure 3.2b).  Both S and D varied considerably across events (Figure 3.2c), and had a strong 

log-log relationship (r = 0.94, slope = 1.43, P < 1 x 10-300, linear regression fit, for 1362 high-

conductance events from 40 cells in 16 turtles, Figure 3.2c, right). 
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We next sought to understand these subthreshold dynamics in the context of network 

activity.  To do this, we made use of the fact that membrane potential distributions carry statistical 

signatures of the presynaptic network state.  In the so-called “asynchronous” state, for example, 

random synaptic inputs result in subthreshold membrane potentials that evolve according to a 

“random walk”, and membrane potential distributions are thus approximately Gaussian (with small 

or negative skew(DeWeese & Zador, 2006; Tan et al., 2014)).  In contrast to this scenario, we 

found that the largest of the spontaneous high-conductance events observed here had greater 

amplitudes and durations than those predicted for an asynchronous network with the same mean 

activity level, as captured by the long, depolarized tails of membrane potential distributions 

(Figure 3.2e, left and center).  These tails yielded positive distribution skews (ζ) for all cells 

(population-average skew < ζ > = 4.74 +/- 2.08, mean +/- s.e.m., Figure 3.2e, right).  As such, 

ongoing activity in this preparation was consistent with the well-characterized “synchronous 

network state” observed across a variety of mammalian cortical areas(Bennett, Arroyo, & Hestrin, 

2013; Crochet & Petersen, 2006; DeWeese & Zador, 2006; Gentet, Avermann, Matyas, Staiger, & 

Petersen, 2010; Petersen, Hahn, Mehta, Grinvald, & Sakmann, 2003; J. F. a Poulet & Petersen, 

2008; Tan et al., 2014).  In this state, the subthreshold activities of individual neurons, which 

provide a measure of presynaptic network activity, indicate brief periods of elevated activity that 

are broadly coordinated across time and cortical space. 

3.2.2 Visual stimulation evokes high-conductance states with large across-trial variability and 

sparse spiking 

 Next, we characterized cortical responses to visual stimulation.  For 23 cells from nine 

turtles, we recorded ongoing activity and responses to either whole-field or sub-field flashes (and 

obtained at least 12 valid trials, see Methods). In response to flashes, neurons received persistent 
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barrages of synaptic inputs that were coincident with nearby LFP oscillations (Figure 3.3a).  This 

activity was qualitatively similar to longer-duration spontaneous high-conductance events 

(compare to Figure 3.2a).  For individual neurons, the response time course was highly variable 

across trials (Figure 3.3a).  Across all neurons and trials, this was also true for response latency 

(Figure 3.3b), size (Figure 3.3c), and duration (Figure 3.3d).  For this type of stimulus, evoked 

activity in retinal ganglion cells was unlikely to continue beyond a few hundred milliseconds after 

stimulus onset(Marchiafava, 1983).  Thus, the late response phase was likely due to persistent 

intracortical and/or thalamocortical activity. 

We next investigated the effects of persistent sensory input by recording from 48 cells from 

15 turtles while presenting extended visual stimulation (with at least 12 valid trials, see Methods).  

These stimuli evoked subthreshold responses that were qualitatively similar to flash responses in 

the early response phase, but displayed clear temporal structure hundreds of milliseconds later 

(Figure 3.3e).  Thus, although intracortical inputs were likely extremely strong in the late response 

phase (as suggested by the persistent responses to brief flashes), the modulatory effects of sensory 

input were also evident.   
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Figure 3.3  Subthreshold visually-evoked activity is highly variable across cells and trials.  (a) 

Membrane potentials from two simultaneously-recorded neurons (black and green traces) and the 

nearby LFP (red traces), with individual trials in low opacity, and across-trial averages in high 

opacity.  Stimulus is whole-field red flash (flash onset at arrow, see Methods).  (b) Left: 

distribution of subthreshold response latencies (see Methods) for 559 trials from 23 cells in 9 

turtles.  Stimulus is either red whole-field or sub-field flash (see Methods)  Right: distribution of 

across-trial median response latencies for these cells.  Red line indicates across-cell average.  (c) 

Same as in (a), but for response size (see Methods).  (d) Same as in (a), but for response duration 

(see Methods).  (e) Same as in (a), but stimulus is naturalistic movie (see Methods), for a different 

pair of simultaneously-recorded neurons.  (f, g) Same as in (b, c), but for extended visual stimuli 

(1087 trials from 48 cells in 15 turtles, see Methods).  
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 Finally, we characterized evoked spiking activity.  Spikes were sparse in general, and 

highly variable across trials in terms of precise spike timing and total spike counts (Figure 3.4a).  

The population-average rate was 0.37 +/- 0.74 Hz (mean +/- s.e.m.) in the two seconds after 

stimulus onset (for all stimuli, N = 79 cells, Figure 3.4a, inset).  Of the 79 recorded cells (with at 

least 12 valid trials, see Methods), 24 (or 30%) did not spike at all in this window.  Of those that 

did, the average rate was 0.53 +/- 0.83 Hz. 

We inspected the time course of evoked spiking by constructing peri-stimulus time 

histograms (PSTHs) for all cells with at least one evoked spike in the 7 s after stimulus onset, 

across all trials.  In response to brief flashes, most spikes occurred in the 2 s after stimulus onset 

(Figure 3.4b).  Between 4 s and 7 s after stimulus onset, spike rates fell below pre-stimulus levels.  

That is, the strong bouts of evoked activity in the 4 s after the onset of brief flashes appeared to 

suppress spontaneous spiking. The early (0 to 2 s) spiking responses to movies were similar to 

those for flashes, but rates were elevated above those for brief flashes in the later response (Figure 

3.4c). 

3.2.3 Evoked high-conductance states are broadly asynchronous 

 We next sought to more carefully characterize the effects of visual stimulation on the 

network state, as communicated by single-neuron subthreshold membrane potentials.  As shown 

above, at broad time scales (on the order of seconds), the network was in a synchronous state 

during spontaneous activity; rather than hovering near action potential threshold, neurons were 

driven near threshold by barrages of synaptic inputs (Figure 3.2a).  On shorter times scales 

(hundreds of milliseconds), evoked activity appeared closer to the description of asynchrony 
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Figure 3.4 Visually-evoked spiking is sparse, and highly variable across cells and trials.  (a) 

Membrane potentials of two simultaneously-recorded neurons (black and green traces) and nearby 

multi-unit activity (red rasters) during ongoing and visually-evoked activity, across multiple 

stimulus presentations.  Rasters are stacked in ascending trial order.  Inset: distribution of across-

trial average evoked spike rates for 27 cells in 8 turtles, for all stimuli (see methods).  (b) 

Peristimulus time histogram of intracellularly-recorded spikes for responses to flashes (1196 

spikes from 27 cells in 8 turtles, see Methods).  (c) Same as in (b), but for responses to extended 

stimuli (1185 spikes from 33 cells in 14 turtles, see Methods). 
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(Figure 3.3a, e).  Was this, in fact, the case?  That is, did visual stimulation cause a shift from 

synchrony to asynchrony in the network?   

We addressed this question by calculating skews for residual membrane potentials 

(membrane potential time series with across-trial average time series subtracted) during ongoing 

and visually-evoked activity, for responses to all stimuli (see Methods).  For each cell, we 

considered an “ongoing” window of pre-stimulus activity (2 s to 0 s before stimulus onset), and an 

“evoked” window of activity (starting at response onset, and lasting 2 s, Figure 3.5a, see Methods).  

Consistent with our observations of long spontaneous recordings (Figure 3.2e), ongoing skew 

values (Figure 3.5b, top) were typically large and positive (population-average ongoing skew <ζ> 

= 1.82 +/- 1.43, Figure 3.5c).  For most cells, skew decreased from the ongoing to evoked window 

(Figure 3.5b, bottom), an effect that was significant for the population as a whole (evoked <ζ> = 

1.14 +/- 0.67, P = 3.2 x 10-4 for ongoing-evoked comparison, Wilcoxon signed-rank test, Figure 

3.5c).  Thus, evoked activity was less synchronous than ongoing, on time scales of hundreds of 

milliseconds to seconds. 

3.2.4 In the broadly-asynchronous evoked state, action potentials are preceded by concerted 

synaptic inputs 

 Having established the relatively asynchronous nature of the evoked state (at long time 

scales), we next asked whether the same was true at short time scales.  Specifically, we asked 

whether synaptic inputs preceding visually-evoked spikes were consistent with an asynchronous 

network, in which neurons hovering just below threshold “randomly walk” the remaining distance 

to threshold.  For each cell, we considered all spikes in a 4 s window of activity beginning 75 ms 

after stimulus onset (see Methods).  We isolated a 50 ms (“pre-spike”) window of activity (ending 
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Figure 3.5  Visual stimulation affects coordination at multiple spatiotemporal scales.  (a) Residual 

membrane potentials (see Methods) for ongoing (yellow) and evoked (blue) activity, for repeated 

presentations of motion-enhanced movie (see Methods).  (b) Distributions of residual membrane 

potentials and distribution skews (ζ) for ongoing (top) and evoked (bottom) epochs, for traces in 

(a).  (c) Ongoing and evoked skews for all 81 cells from 25 turtles.  Each pair of connected dots 

indicates ongoing and evoked skews for one cell.  Line above plot indicates significant change in 

skew from ongoing to evoked windows (P = 3.2 x 10-4, Wilcoxon signed-rank test).  (d) Example 

visually-evoked high-conductance event.  Red box indicates 50 ms (“pre-spike”) window ending 

5 ms before spike threshold crossing (see Methods).  Black box indicates 50 ms (“random”) 
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window randomly-selected from the same high-conductance event (see Methods).  (e) Pre-spike 

(left, top) and corresponding random (left, bottom) traces for all visually-evoked spikes for 

example neuron in (d).  Scale bars indicate 5 mV.  Each trace is fitted with a straight line via linear 

regression, and the slope is defined to be dV/dt.  The slopes are averaged across traces for each 

window type, yielding <dV/dt> for pre-spike and random windows for each neuron.  Right: 

<dV/dt> for pre-spike (red dots) and random (white dots) windows for 30 cells from 15 turtles.  

Asterisks above plot indicate significant difference in the populations of values (P = 1.73 x 10-6, 

Wilcoxon signed-rank test).  (f) Visually-evoked spike-triggered membrane potentials for “trigger” 

cell (black traces) and simultaneously-recorded “paired” cell (green traces, with across-trial 

average in high opacity, see Methods).  Short spikes are due to downsampling (see Methods).  (g) 

Left: <dV/dt> for trigger cells (black dots) and paired cells (green dots), for 23 triggered-paired 

cell pairs (from 19 pairs of simultaneously-recorded cells) in 11 turtles.  Note that under certain 

conditions, a single pair of simultaneously recorded cells can yield two trigger-paired cell pairs.  

Asterisks above plot indicate significant difference in the two populations of values (P = 2.70 x 

10-5, Wilcoxon signed-rank test).  Right: same as in (e, right), but for 23 paired cells from 11 turtles 

(P = 0.007, Wilcoxon signed-rank test). 

 

 5 ms before each threshold crossing), as well as a corresponding 50 ms window of activity 

randomly-selected from the same 4 s window (Figure 3.5d).  For this analysis, we required that 

the “random” window contain no spikes (see Methods), and that a neuron have at least six evoked 

spikes across all trials. In the brief pre-spike window, neurons tended to be depolarized by several 

millivolts (Figure 3.5e, top), in contrast to the relatively flat traces in randomly-selected windows 

(Figure 3.5e, bottom).  Across the population, the average pre-spike depolarization far exceeded 

that during random windows (population grand average rate of change < 𝑑𝑉 𝑑𝑡⁄ >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.093 +/- 

0.039 mV/ms pre-spike window, 0.002 +/- 0.014 mV/ms random window, P = 1.73 x 10-6  for pre-

spike – random comparison, Wilcoxon signed-rank test, Figure 3.5e, right, see Methods).  In other 

words, at short time scales (on the order of tens of milliseconds), neurons in the evoked high-

conductance state were subject to coordinated excitatory synaptic inputs.  This result is 

inconsistent with the picture of a purely asynchronous network. 
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3.2.5 Pre-spike synaptic inputs are not strongly-correlated across nearby neurons 

 These pre-spike trajectories suggested coordinated spiking in presynaptic pools of neurons 

at short time scales.  How widespread was this coordinated activity?  To answer this question, we 

considered 19 pairs of simultaneously-recorded neurons, and inspected the subthreshold 

trajectories of the non-spiking (“paired”) neuron in windows preceding spikes in the “trigger” 

neuron (Figure 3.5f).  In general, when one cell was driven to spike, the nearby paired neuron was 

subject to significantly smaller depolarization (< 𝑑𝑉 𝑑𝑡⁄ >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.09 +/- 0.043 mV/ms for trigger 

cells, 0.01 +/- 0.02 mV/ms for paired cells, P = 2.7 x 10-5 for comparison, Wilcoxon signed-rank 

test, Figure 3.5f, 3.5g, left).  While small, this drive to paired cells was slightly (and significantly) 

stronger than that during randomly-selected windows of evoked activity (< 𝑑𝑉 𝑑𝑡⁄ >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 6.3 x 10-4 

+/- 0.01 mV/ms for random windows, P = 0.007 for pre-spike – random comparison, Wilcoxon 

signed-rank test, Figure 3.5g, right).  Thus, the synchronous, pre-spike drive to a given neuron 

was very nearly private to that neuron. 

 Taken together, these results suggest that in the evoked high-conductance state, neurons 

are raised toward threshold by a baseline level of synaptic input that is relatively asynchronous 

and non-specific across neurons at long time scales.  Within this evoked state, neurons receive a 

final “push” to threshold by coordinated spiking in the presynaptic population.  These brief 

windows of strong, coordinated activity are not in general common across neurons, but are instead 

isolated to specific microcircuits. 

3.2.6 Spontaneous and evoked subthreshold activity are related 

 We have so far considered ongoing and evoked activity separately.  While all neurons were 

subject to large spontaneous events, the prevalence of slow-wave activity was remarkably variable 
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across neurons (representing variability across turtles, as well as across recording sessions in a 

given turtle, Figure 3.2e; 3.6a, b).  As this likely reflected a variability in the network state, we 

asked whether this attribute of spontaneous activity had any apparent impact on the visual 

response. 

 First, we quantified the prevalence of the slow-wave fluctuations in ongoing activity by 

calculating the fast Fourier transform (FFT) of the 9.5 s of pre-stimulus activity, and integrating 

over low frequencies (1 – 5 Hz), resulting in the quantity FFTδ (see Methods)(Sachidhanandam, 

Sreenivasan, Kyriakatos, Kremer, & Petersen, 2013).  In agreement with qualitative inspection of 

voltage traces (Figure 3.6a, left; 3.6b, left), this metric was highly variable across trials (Figure 

3.6a, right; b, right) and the across-trial average value (<FFTδ>) varied across cells (Figure 3.6c).   

We next inspected for a relationship between the prevalence of slow-wave fluctuations 

(i.e.,  <FFTδ>) and various response properties.  First, we asked whether <FFTδ> was related to 

the average subthreshold response size (<S>, as in Figure 3.3c, g).  These quantities were, in fact, 

positively correlated (Figure 3.6d).  Further, these larger responses were also less reliable than 

smaller responses (as quantified by <R2>, the average variance of single-trial responses explained 

by the across-trial average response, Figure 3.6e, and see Methods).  Finally, we asked whether 

<FFTδ> (indicating ongoing coordination strength at one temporal scale) could predict evoked 

coordination strength at shorter temporal scales (that is, the average evoked pre-spike 

depolarization <dV/dt>, as in Figure 3.6d, e).  These two quantities were anti-correlated (though 

the coefficient was only significant when two extreme data points were removed, Figure 3.6f).  

That is, when the ongoing state was more synchronous, neurons were also closer to threshold in 

the evoked state, and thus required less additional depolarization to reach threshold. 
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Figure 3.6 Ongoing and evoked cortical activity are related.  (a – c) The prevalence of spontaneous 

slow-wave fluctuations varied across recording sessions and turtles.  (a) Left: ongoing and evoked 

activity recorded from a single neuron in response to multiple presentations of a naturalistic movie 

(see Methods).  Right: distribution of FFTδ (the integrated low-frequency (1 – 5 Hz) FFT for 

ongoing activity) for all trials (see Methods), for cell in (a).  Red vertical line indicates <FFTδ>, 

the across-trial mean.  (b)  Same as in (a), but for a different neuron (from the same turtle, but an 

earlier recording session).  (c) Distribution of <FFTδ> values for 66 cells from 22 turtles.  (d – f) 

The prevalence of slow-wave fluctuations in ongoing activity was related to properties of evoked 

activity.  (d) Across-trial average subthreshold response size (<S>) vs. <FFTδ> for 72 cells from 

23 turtles (i.e., all data points from Fig 3c, g).  Ranks are significantly related (r = 0.39, P = 6.7 x 

10-4, Spearman rank correlation).  (e) Across-trial median evoked R2 (a proxy for response 

reliability, see Methods) vs. <FFTδ> for 79 cells from 25 turtles.  Ranks are significantly related 

(r = -0.34, P = 1.9 x 10-3, Spearman rank correlation).  (f) Mean evoked pre-spike depolarization 

(<dV/dt>) vs. <FFTδ> for 30 cells from 15 turtles (i.e., data points in Figure 3.5e, right).  Ranks 

are not significantly related (r = -0.36, P = 0.049, Spearman rank correlation).  Note: quantities are 

significantly linearly related when the data points corresponding to the two largest <FFTδ> values 

(i.e., the outliers in (c)) are excluded (r = -0.54, P = 0.003, linear regression).  Cells used in (d – f) 

vary across subFigure 3.s, due to differences in requirements for calculating values on y-axis.  

Threshold p-value for significance has been Bonferroni-adjusted for three comparisons.   



76 

 

Together, these results demonstrate a strong relationship between properties of the 

ongoing network state and those of evoked activity.  Specifically, a greater prevalence of 

spontaneous transitions between low- and high-conductance states predicted larger and less 

reliable subthreshold visual responses, and smaller depolarizations immediately preceding 

evoked spikes.  

3.2.7 Visual response size depends on spontaneous activity immediately preceding the stimulus 

One possible explanation for the above observations is that ongoing depolarizations add to 

evoked, and the random appearance of these events contributes to response variability.  

Alternatively, strong slow-wave activity may be consistent with a network that is more “activated” 

for large visual responses, yet a given spontaneous event preceding the stimulus inhibits the 

response. 

To distinguish between these competing hypotheses, we first segregated visual stimulation trials 

for each cell into two categories: “low” trials, in which the stimulus was preceded by at least 2 s 

of quiescent ongoing activity (Figure 3.7a, top), and “high” trials, in which the stimulus either 

interrupted or followed soon after a large spontaneous high-conductance event (Figure 3.7b, 

bottom, see Methods).  To be included in this analysis, we required a cell to have at least three 

“high” trials.  This effectively restricted the set of included cells to those displaying relatively 

prominent slow-wave ongoing activity.  We then calculated the subthreshold response size 

scaled by the maximum across-trial response size (S’/S’max) in a 2 s post-stimulus window, and 

averaged across trials (see Methods).  We found that “high” responses were significantly smaller 

than “low” responses (population grand average response amplitude < 𝑆′ 𝑆′𝑚𝑎𝑥⁄ >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   = 0.78 +/-  
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Figure 3.7  Large, spontaneous pre-stimulus events correspond to smaller visual responses. (a) 

Two example responses from one cell to presentation of naturalistic movie (see Methods).  Top: 

“low trial”, in which stimulus presentation is preceded by low-conductance state.  Bottom: “high 

trial”, in which stimulus is preceded by or interrupts a large, spontaneous high-conductance event.  

S’ is the area under the curve for the 2 s after stimulus onset.  (b) Average scaled S’ (see Methods) 

for low (black dots) and high (red dots) trials for 27 cells from 15 turtles.  Asterisks above plot 

indicate significant difference between the two populations of values (<S’/S’max> = 0.73 +/- 0.14 

for low trials, 0.58 +/- 0.15 for high trials, P = 6.01 x 10-5 for low-high comparison, Wilcoxon 

signed-rank test. 

 

0.10 for “low” responses, 0.68 +/- 0.14 for “high” responses, P = 4.52 x 10-4 for comparison, 

Wilcoxon signed-rank test, Figure 3.7b).  Evidently, while a cortex with more frequent 

spontaneous high-conductance events yielded larger average responses (Figure 3.6d), a given 

visual response was, in fact, inhibited by excessive activity in the window immediately 

preceding the stimulus. 
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3.3 Discussion 

 In order to investigate ongoing and visually-evoked subthreshold and spiking cortical 

activity, we obtained whole-cell recordings from neurons in the three-layer visual cortex of the ex 

vivo turtle eye-attached whole-brain preparation.  To infer properties of the corresponding network 

activity, we investigated the statistics of subthreshold activity at two distinct time scales for 

individual neurons, and for pairs of simultaneously-recorded neurons, and compared to results 

predicted by theory.  Finally, we investigated the relationship between ongoing and evoked 

network activity by comparing properties of the two network states (as communicated by 

subthreshold activity). 

 In the absence of visual stimulation, neurons were usually in a relatively quiescent “low-

conductance” state, with random transitions into depolarized “high-conductance” states (Figure 

3.2a).  These are often referred to as “Down” and “Up” states, respectively, but the conductance-

based labels underscore the synaptic origin of these events, which signal changes in the activity 

level of a neuron’s presynaptic pool.  While drastic Up-Down transitions can be brought on by 

anesthesia(Destexhe, Rudolph, & Paré, 2003), many studies have demonstrated similar non-

Gaussian spontaneous fluctuations in a variety of areas in awake preparations, including 

mouse(Bennett et al., 2013) and primate(Tan et al., 2014) visual cortex, rat auditory 

cortex(DeWeese & Zador, 2006), rodent somatosensory cortex(Crochet & Petersen, 2006; Gentet 

et al., 2010; Petersen et al., 2003; J. F. a Poulet & Petersen, 2008), and even in reduced 

preparations, including thalamocortical slice(Cossart, Aronov, & Yuste, 2003; Graupner & Reyes, 

2013; MacLean, Watson, Aaron, & Yuste, 2005; Sanchez-Vives & McCormick, 2000).  Previous 

work has shown that the transient increases in presynaptic firing are due to waves of activity 
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propagating across the cortex(Petersen et al., 2003).  These waves (also observed in turtle 

cortex(Senseman & Robbins, 1999)) are thought to be generated intracortically(Sanchez-Vives & 

McCormick, 2000; Steriade, Contreras, Curró Dossi, & Nuñez, 1993), though they can be triggered 

and shaped by external inputs(Hirata & Castro-Alamancos, 2011; MacLean et al., 2005; J. F. A. 

Poulet, Fernandez, Crochet, & Petersen, 2012; Rigas & Castro-Alamancos, 2007).  Recent 

computational work suggests that the cortical excitation/inhibition balance is crucial to this 

phenomenon(Keane & Gong, 2015).  Thus, the spontaneous membrane potential dynamics we 

observe here likely reflect the complex spatiotemporal population activity patterns that emerge in 

balanced cortical networks. 

 Visual stimulation evoked high-conductance states (Figure 3.3a, e) that were qualitatively 

similar to longer-duration spontaneous high-conductance events (Figure 3.2a, b, d).  It is possible 

there is more than a passing resemblance between these two types of activity.  Previous work has 

uncovered striking similarities between ongoing and evoked activity in cortex(Kenet, Bibitchkov, 

Tsodyks, Grinvald, & Arieli, 2003; Luczak, Barthó, & Harris, 2009; Sakata & Harris, 2009), and 

specifically in the subthreshold activity of individual cortical neurons(MacLean et al., 2005).  

Because a neuron’s subthreshold time series communicates a spatiotemporal sequence of cortical 

firing, this indicates similar spontaneous and evoked firing patterns.  Such observations are 

consistent with the view that spontaneous cortical events broadly sample the set of all possible 

spatiotemporal patterns in the cortical “response manifold”(Ringach, 2009).  While we did not 

perform an in-depth investigation of this topic, this preparation has great potential for such a study.  

First, it represents an important advance beyond the slice preparation; intracortical connectivity is 

preserved, and cortical activity is evoked by visual (rather than electrical) stimulation.  Second, 

multi-whole-cell recordings allow for a “higher-dimensional” view of cortical firing than that 
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afforded by individual whole-cell recordings.  Future work can therefore enhance our 

understanding of the relationship between ongoing and evoked cortical activity. 

 Previous studies have described a stimulus-induced transition from cortical synchrony to 

asynchrony(Tan et al., 2014).  In other words, pre-stimulus subthreshold activity includes frequent 

periods of broadly-correlated depolarization, and evoked activity more closely follows the 

“random walk” dynamics consistent with Poisson process inputs.  Yet in other studies, sensory-

evoked spikes are preceded by strong depolarizations, indicating concerted presynaptic 

firing(Gentet et al., 2010; J. F. a Poulet & Petersen, 2008).  We observed both of these seemingly-

contradictory phenomena (Figure 3.5a-e).  This paradox is actually predicted for neurons in the 

high-conductance state; while the inputs to a neuron may be relatively random, the reduced 

membrane time constant make the neuron a better coincidence detector(Destexhe et al., 2003; 

Michael Rudolph & Destexhe, 2003).  Thus, evoked spikes in a given neuron are more likely to 

result from nearly-coincident synaptic inputs, and to be more tightly phase-locked to those of the 

presynaptic population.  This mechanism for spike synchronization is most effective when a 

neuron’s reduced time constant (promoting coincidence detection) outweighs its reduced distance 

from spike threshold (which makes the depolarized cell more likely to spike in response to even 

small additional inputs).  We found that the balance between these two biophysical influences 

depended on cortical state; pre-spike depolarization was smaller when the ongoing cortical state 

was consistent with larger depolarizations (Figure 3.6d, f), suggesting the coincidence-detection 

mechanism was more easily “saturated”.  Our observations thus provide a rare, intracellular view 

of the relationship between long-time-scale coordination during ongoing activity and short-time-

scale coordination (leading to spikes) during visual processing. 
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Pairwise recordings revealed a spatial dimension to coordination as well; at a fixed 

temporal scale (tens of milliseconds), activity could become strongly coordinated in a given 

microcircuit (Figure 3.5d), but was not, in general, coordinated across cortical space (Figure 3.5f, 

g).  This is likely due at least in part to the nature of cortical connectivity; dense interconnectivity 

supports broadly-distributed states of enhanced excitability (that is, broadly-coordinated 

transitions to high-conductance states), while the “constellation-like” specificity of this 

connectivity (with a minority of extremely strong connections, and a majority of weak 

ones(Cossell et al., 2015)) diversifies the coupling strengths among neurons in a local 

population(Hofer et al., 2011; Okun et al., 2015).  This may create preferred pathways for the 

propagation of spikes within the high-conductance state.  Combined with the observed temporal 

dependence, this result demonstrates just two of the possibly many spatiotemporal scales at work 

in the likely “multiplexed” cortical code(Panzeri, Brunel, Logothetis, & Kayser, 2010). 

 While anatomical connectivity is extremely influential to evoked activity, the ongoing 

network state is also thought to play an important role.  For instance, some set of conditions hidden 

from the experimenter modulates the degree of ongoing cortical slow-wave activity (or 

synchrony).  How do the variables controlling these properties of ongoing activity affect sensory 

responses?  Previous studies have reported a rich dependence of cortical response properties on 

the spontaneous cortical state(Ecker et al., 2014; Haider, Schulz, Häusser, & Carandini, 2016; 

Sachidhanandam et al., 2013; Scholvinck, Saleem, Benucci, Harris, & Carandini, 2015).  

Accordingly, we found that stronger slow-wave fluctuations predicted visual responses that were 

on average larger (Figure 3.6d) and less reliable (Figure 3.6e) than those corresponding to more 

quiescent ongoing states.  While we did not directly investigate the deeper implications, two results 

suggest a nonlinear relationship between the ongoing state and cortical function; the enhanced 
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variability at the high end of the synchrony “spectrum” seems disadvantageous for sensory 

encoding, while the smaller responses at the other end may be as well.  The optimal state may be 

an intermediate level of synchrony, balancing these two phenomena.  In support of this idea, recent 

work has suggested that maximum dynamic range occurs in a cortex tuned to the critical state(W. 

L. Shew, Yang, Petermann, Roy, & Plenz, 2009), which also coincides with intermediate levels of 

network synchrony(Gautam, Hoang, McClanahan, Grady, & Shew, 2015; Yang, Shew, Roy, & 

Plenz, 2012).  Where the cortex sits on this spectrum is likely governed by top-down control, most 

generally tracked by level of arousal.  Indeed, intermediate levels of arousal correspond to 

intermediate spontaneous membrane potential levels and enhanced perception(Mcginley, David, 

& McCormick, 2015).  It will be important for future work to identify such general principles of 

cortical function (e.g., criticality) that govern phenomena commonly observed in experiment (e.g., 

synchrony, as observed in the statistics of population spiking or subthreshold membrane potential 

fluctuations), as well as the synaptic basis of top-down interactions. 

Finally, there is the question of how the condition of the cortex at or immediately preceding 

stimulus onset influences the response.  This question becomes increasingly relevant as the 

ongoing network state becomes more synchronous, as large, spontaneous events become more 

common.  Many studies have observed that the probabilistic nature of ongoing activity contributes 

to across-trial response variability(Arieli, Sterkin, Grinvald, & Aertsen, 1996; Destexhe et al., 

2003; Hirata & Castro-Alamancos, 2011; Scholvinck et al., 2015).  The exact nature of the 

interaction is an item of debate(M. A. Castro-Alamancos, 2009).  On the one hand, spontaneous 

depolarization brings neurons closer to threshold prior to the arrival of excitatory sensory input.  

Accordingly, some studies show that enhanced levels of pre-stimulus activity correspond to larger 

responses(Arieli et al., 1996; Azouz & Gray, 1999; Gutnisky, Beaman, Lew, & Dragoi, 2016; 
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Haider, Duque, Hasenstaub, Yu, & McCormick, 2007).  On the other hand, spontaneous synaptic 

barrages reduce input resistance(Cowan & Wilson, 1994; Destexhe et al., 2003; Paré, Shink, 

Gaudreau, Destexhe, & Lang, 1998) and depress synapses(M A Castro-Alamancos & Connors, 

1997; M. A. Castro-Alamancos, 2009; Markram, Wang, & Tsodyks, 1998).  In addition, 

spontaneous depolarization increases the driving force for inhibition(M. A. Castro-Alamancos, 

2009), and thus the IPSP amplitudes associated with short-latency, disynaptic feedforward 

inhibiton(Mancilla & Ulinski, 2001).  Consistent with this view, some studies have reported that 

large spontaneous events suppress evoked activity(Petersen et al., 2003; Sachdev, Ebner, & 

Wilson, 2004).  Our results are in agreement with these latter studies; when the visual stimulus 

interrupted or followed soon after a large spontaneous event, the subthreshold response was muted 

(Figure 3.7).  Evidently, suppressing mechanisms (likely including those described above) more 

than counterbalanced the reduced distance to threshold in the presynaptic population.   

What are the implications of this dependency on the pre-stimulus condition?  Previous 

work provides conflicting answers.  In some cases, a high-conductance pre-stimulus state 

corresponds to muted responses that are less reliable across trials(Crochet & Petersen, 2006), thus 

compromising response fidelity.  Still, in barrel cortex, this muted responses (resulting from either 

spontaneous pre-stimulus events(Civillico & Contreras, 2012; Petersen et al., 2003), or the 

presentation of a background stimulus(Ollerenshaw, Zheng, Millard, Wang, & Stanley, 2014; 

Zheng, Wang, & Stanley, 2015)) are more confined to the column corresponding to the stimulated 

whisker, which promotes stimulus-response mutual information.  Elsewhere, a more active pre-

stimulus condition yields larger responses, that are less effective at transmitting 

information(Gutnisky et al., 2016).  Finally, at least one study shows no measurable relationship 

between the pre-stimulus state and the size or reliability of the early cortical 
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response(Sachidhanandam et al., 2013).  Of course, another possibility is that the “adapted” state 

resulting from prominent pre-stimulus activity is optimized for some functions (e.g., 

discrimination) at the expense of others (e.g., detection)(Ollerenshaw et al., 2014; Zheng et al., 

2015).  Evidently, it will be important for future studies to address the impact of the pre-stimulus 

state on sensory responses using carefully-designed stimuli and information-theoretic measures of 

both detection and discrimination.  As in the discussion of long-time-scale ongoing “state”, it will 

be important to incorporate behavior; a recent study has shown that diminished “late” responses 

(corresponding to stimuli delivered in the Up state) causally impair perception(Sachidhanandam 

et al., 2013).  This combined approach can be extremely challenging to implement (especially 

when involving patch clamp recording), but is becoming increasingly feasible.  While such 

techniques are being developed, it will be important to continue to document the effects of the pre-

stimulus cortical state on sensory responses to the extent possible; this will reveal which aspects 

of the interaction generalize across areas and species.  

 In conclusion, these results contribute to a clearer picture of the subthreshold dynamics of 

cortical visual responses.  They highlight the importance of the relationship between the ongoing 

network state and subthreshold evoked activity.  Further, they show that evoked spiking is shaped 

by presynaptic activity that is coordinated at multiple spatiotemporal scales.  As such, this study 

is in agreement with previous work suggesting that anatomical and emergent cortical network 

properties play vital roles in cortical sensory processing, and provides a rare view of this influence 

at the level of the membrane potential. 

 

3.4 Methods 
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3.4.1 Surgery 

All procedures were approved by Washington University’s Institutional Animal Care and 

Use Committees and conform to the guidelines of the National Institutes of Health on the Care and 

Use of Laboratory Animals.  Fourteen adult red-eared sliders (Trachemys scripta elegans, 150-

1000 g) were used for this study. Turtles were anesthetized with Propofol (2mg Propofol/kg), then 

decapitated.  Dissection proceeded as described previously(Crockett et al., 2015; Saha et al., 2011; 

W. L. W. L. Shew et al., 2015).  In brief, immediately after decapitation, the brain was excised 

from the skull, with right eye intact, and bathed in cold extracellular saline (in mM, 85 NaCl, 2 

KCl, 2 MgCl2*6H2O, 20 Dextrose, 3 CaCl2-2H2O, 45 NaHCO3).  The dura was removed from the 

left cortex and right optic nerve, and the right eye hemisected to expose the retina.  The rostral tip 

of the olfactory bulb was removed, exposing the ventricle that spans the olfactory bulb and cortex. 

A cut was made along the midline from the rostral end of the remaining olfactory bulb to the caudal 

end of the cortex.  The preparation was then transferred to a perfusing chamber (Warner RC-27LD 

recording chamber mounted to PM-7D platform), and placed directly on a glass coverslip 

surrounded by Sylgard.  A final cut was made to the cortex (orthogonal to the previous and 

stopping short of the border between medial and lateral cortex) allowing the cortex to be pinned 

flat, with ventricular surface exposed. Multiple perfusion lines delivered extracellular saline, 

adjusted to pH 7.4 at room temperature, to the brain and retina in the recording chamber. 

3.4.2 Intracellular Recordings 

We performed whole-cell current clamp recordings from 39 cells in 14 preparations.  Patch 

pipettes (4-8 MΩ) were pulled from borosilicate glass and filled with a standard electrode solution 

(in mM; 124 KMeSO4, 2.3 CaCl2-2H2O, 1.2 MgCl2, 10 HEPES, 5 EGTA) adjusted to pH 7.4 at 
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room temperature.  Cells were targeted for patching using a dual interference contrast microscope 

(Olympus).  All cells were located within 300 microns of an extracellular recording electrode.  

Intracellular activity was collected using an Axoclamp 900A amplifier, digitized by a data 

acquisition panel (National Instruments PCIe-6321), and recorded using a custom Labview 

program (National Instruments), sampling at 10 kHz.  The visual cortex was targeted as described 

previously(W. L. W. L. Shew et al., 2015).   

3.4.3 Extracellular Recordings 

We performed extracellular recordings at 12 recording sites in seven preparations.  We 

used tungsten microelectrodes (MicroProbes heat treated tapered tip), with approximately 0.5 MΩ 

impedance.  Electrodes were slowly advanced through tissue under visual guidance using a 

manipulator (Narishige), while monitoring for spiking activity using custom acquisition software 

(National Instruments).  Extracellular activity was collected using an A-M Systems Model 1800 

amplifier, band-pass filtered between 1 Hz and 20,000 Hz, digitized (NI PCIe-6231), and recorded 

using custom software (National Instruments), sampling at 10 kHz. 

3.4.4 Visual Stimulation 

Whole-field flashes were presented using either a red LED (Kingbright, 640nm), mounted 

to a manipulator and positioned 1 – 5 cm above the retina, or a projector-lens system (described 

below).  The mean LED light intensity (irradiance) at the retina was 60 W/m2.  For one turtle, we 

used these same LEDs in conjunction with 200 micron optical fibers (Edmund Optics) to project 

sub-field flashes (1 ms – 200 ms) onto the visual streak.  Other stimuli were presented using using 

a projector (Aaxa Technologies, P4X Pico Projector), combined with a system of lenses (Edmund 

Optics) to project images generated by a custom software package directly onto the retina.  The 
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mean irradiance at the retina was 1 W/m2.  This system was used to present brief (100 ms – 250 

ms) whole-field and sub-field flashes (red or white), sustained (10 s) gray screen, a naturalistic 

movie (“catcam”) a motion-enhanced movie (courtesy Jack Gallant), and a phase-shuffled version 

of the same movie (courtesy Jack Gallant and Woodrow Shew).   In all cases, the stimulus was 

triggered using a custom Labview program (National Instruments).  

For each cell and extracellular recording site, we selected one of the five stimuli listed 

above to present across all trials.  The preparation was in complete darkness before and after each 

stimulus presentation.  Extended stimuli lasted either 10 s or 20 s, and flashes lasted between 1 ms 

and 250 ms, with at least 30 s between the end of one presentation and the beginning of the next.  

In all cases, visual stimulation trials were repeated at least 12 times. 

3.4.5 Data included in analysis 

For each extracellular recording site, we used visual inspection to determine the quality of 

the recordings.  In general, we excluded recording sites from consideration if voltage traces 

displayed excessive 60 Hz line noise, low-frequency noise (likely reflecting a damaged electrode), 

or on average small response amplitudes relative to baseline. 

For the analysis of intracellular recordings, we required at least twelve visual stimulation 

trials (unless stated otherwise, see below). 

3.4.6 Processing of intracellular and extracellular voltage recordings 

Raw data traces were down-sampled to 1000 Hz.  We used an algorithm to detect spikes in 

the membrane potential, and the values in a 20 ms window centered on the maximum of each spike 

were replaced via interpolation.  Finally, we applied a 100 Hz lowpass Butterworth filter.  We did 
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not perform these last two steps for “trigger cells” used to calculate spike-triggered averages 

(Figure 3.5d-g, and see below) 

In addition, we detrended spontaneous recordings.  To do this, for each time step, we 

subtracted a value obtained from a 10 s window beginning at that time step.  The value we used 

depended on the median membrane potential (MMP) of the cell in each full recording; if the MMP 

was above -60 mV, we used the median value of the 10 s window for detrending.  If MMP was 

below -60 mV, we used the fifth percentile of the window.  The reasoning for this was as follows: 

in the detrending process, we seek to subtract from the membrane potential at a given point in time 

a good estimate of the “true” resting membrane potential (RMP) near that point in time.  When 

MMP is low, high-conductance events usually result in large depolarizations.  Even when using 

large sliding windows in the detrending process, these depolarizations can lead to spurious changes 

in the detrended membrane potential before and after each event.  We therefore use the fifth 

percentile of the window for low-MMP cells, as it is less susceptible than the median to outlier 

membrane potential values above MMP, and is therefore a better estimate of RMP in the 

neighborhood of the event.  For neurons with high MMP, on the other hand, IPSPs can be quite 

large during high-conductance events (due to the increased distance from the inhibitory reversal 

potential).  In fact, the membrane potential often drops below MMP during these events, meaning 

the fifth percentile does as well.  In this case, the median of the window is a better estimate of 

RMP in the neighborhood of the event. 

3.4.7 Detecting and quantifying spontaneous high-conductance events 

 We used an algorithm to detect spontaneous high-conductance events in each detrended 

spontaneous voltage trace (Figure 3.5b, top).  First, we detected all “bumps” (i.e., windows of 
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activity in which the membrane potential exceeded the standard deviation of the full trace by at 

least a factor of 1.5).  Then, we detected “high bumps” (using instead a threshold factor of 4).  

Finally, given these “bumps” and “high bumps”, we identified “high-conductance events”.  First, 

we combined “bumps” separated by less than 500 ms of silence.  Any “bump” in this refined set 

that also included a “high bump” was defined to be a “high-conductance event”.  For each event 

(of duration D in ms), we defined the size (S in mV*s) to be the area under the curve (Figure 3.5b, 

bottom). 

3.4.8 Subthreshold response latencies 

 For each presentation of a stimulus (flashes and extended stimuli), we calculated response 

latency (Figure 3.3b, f) by first considering the membrane potential in a window of activity 

beginning 9 s before and ending 9 s after stimulus onset.  We then calculated the slope (dV/dt) as 

a function of time for this sub-trace.  We excluded the trial from consideration if 1) visual 

stimulation clearly interrupted a large spontaneous Up state, or 2) large PSPs were present 

immediately before stimulus onset (indicating the possible onset of a spontaneous high-

conductance event).  We considered condition 1 (2) to be satisfied if any value of the slope trace 

in the 500 ms (200 ms) preceding stimulus onset exceeded six (four) times the standard deviation 

of the entire slope trace.  If neither of these conditions were met, we defined the response latency 

to be the time after stimulus onset at which the slope trace exceeded three times the standard 

deviation of the entire slope trace.  Finally, “latencies” smaller than 50 ms were excluded. 

3.4.9 Subthreshold response duration 

 To calculate the duration (D) of a subthreshold flash response (Figure 3.3c), we first 

applied the high-conductance event detection algorithm (described above for spontaneous events) 
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to a window (18 s centered on the stimulus onset) extracted from the full voltage trace.  With the 

resulting set of event times (i.e., event onset, offset pairs), we considered the response onset to be 

the first event onset time in the window between 50 ms and 1 s after stimulus onset.  The response 

offset was the last event offset time in a window between response onset and 7 s after stimulus 

onset.  Only trials with valid onset and offset times were included. 

3.4.10 Subthreshold response size 

 To calculate subthreshold response size (S) for flashes (Figure 3.3d) and extended stimuli 

(Figure 3.3g), we first detected the response duration (as described above).  Then, for each 

response window, we subtracted the fifth percentile of the membrane potential (calculated from 

the full trial).  We defined the response size to be the area under the curve for the response window.  

Note that for extended stimuli, activity typically persisted beyond the window used to calculate 

response size.  For this type of stimulus, then, S is a measure of evoked activity in at most the first 

7 s of the response (and is still a useful measure for comparisons across events (Figure 3.3g, left) 

and cells (Figure 3.3g, right) for extended stimuli only). 

3.4.11 Evoked action potential rates 

 To identify spike times in intracellular recordings of visual responses (Figure 3.4a), we 

first estimated the first derivative of the voltage trace (V’) by calculating the change in membrane 

potential for each (1 ms) time step.  We then defined spike times to be those at which the value of 

V’ was at least 20 times the standard deviation of V’.  Finally, we calculated the average spike rate 

for each cell in a two-second window after stimulus onset (Figure 3.4a, inset), which was a 

window that contained most of the evoked spikes in a typical trial (Figure 3.4b, c). 
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3.4.12 Multi-unit activity 

 We determined multi-unit spiking activity for one recording session, to provide an example 

of spiking patterns in a population nearby two intracellularly-recorded neurons (Figure 3.4a, 

bottom).  Multi-unit spike times for each trial were defined to be those at which the value of the 

high-pass-filtered (250 Hz Butterworth) extracellular trace was at least six times the standard 

deviation of the full trace.  

3.4.13 Peristimulus time histograms 

  We constructed peristimulus time histrograms (PSTHs) for responses to brief (Figure 

3.4b) and extended (Figure 3.4c) stimuli.  For each stimulus, we pooled the responses from all 

intracellular recordings.  For each trial, spike times were detected as described above.  We included 

all trials that contained at least one spike in the 7 s after stimulus onset. 

3.4.14 Residual membrane potentials and residual skew 

 For each recorded cell, we calculated the residual time series (single-trial time series with 

across-trial average time series subtracted, Figure 3.5a).  We then considered two windows of 

activity: the ongoing (2 s to 0 s before stimulus onset), and evoked (0 s to 2s after response onset) 

windows.  Response onset was determined as described above (for response latency calculations).  

For each trial and epoch, we subtracted the average value for that epoch, and concatenated the 

resulting trace to a single time series.  We then calculated the skew of the concatenated time series 

(Figure 3.5b).  We compared the results for all cells (Figure 3.5c) using the Wilcoxon signed-

rank test. 

3.4.15 Spike-triggered membrane potentials 



92 

 

 For each cell and visual stimulation trial, we determined evoked action potential times, as 

described above.  An action potential was included in this analysis if it occurred between 75 ms 

and 4 s after stimulus onset.  We included a cell in this analysis if it spiked at least six times in this 

response window across all trials.  For each spike, the threshold crossing time was defined to be 

the first zero-crossing of the second time derivative of V in the 5 ms preceding the spike time.  

This represents the maximum change in membrane potential slope immediately before the spike.  

We estimated the second derivative (V’’) at each time step k using Taylor series expansion(Sekerli, 

Del Negro, Lee, & Butera, 2004): 

𝑉′′ ≈
−𝑉𝑘−2 + 16𝑉𝑘−1 − 30𝑉𝑘 + 16𝑉𝑘+1 − 𝑉𝑘+2

12(∆𝑡)2
 

where ∆𝑡 is the size of the time step (1 ms). 

We then considered a 50 ms “pre-spike” window of activity ending 5 ms before threshold crossing.  

For each spike, we also considered a 50 ms “random” window of activity that (i) was taken from 

the same 4 s response window; and (ii) did not contain an action potential (Figure 3.5d).  We 

found the slope of the trace in each window via linear regression, and then averaged across trials 

(yielding <dV/dt> for pre-spike and random windows, Figure 3.5e).  We compared <dV/dt> for 

the two window types using the Wilcoxon signed-rank test. 

 We performed a similar analysis for pairs of simultaneously-recorded neurons.  For each 

pair, if either of the cells had at least six evoked spikes across all trials, it was treated as the 

“trigger” cell, and the other as the “paired” cell (Figure 3.6f).  Average “pre-spike” and “random” 

depolarizations (<dV/dt>) were calculated as described above, using the spike times from the 

trigger cell.  We compared <dV/dt> values for trigger and paired cells (Figure 3.6g, left), and for 
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pre-spike and random windows for paired cells (Figure 3.6g, right) using the Wilcoxon signed-

rank test. 

3.4.16 Low-frequency FFT of ongoing activity 

 For each cell, we considered the ongoing activity in the 9.5 s before stimulus onset (Figure 

3.6a, b), and calculated the fast Fourier transform (implemented using the numpy.fft routine, with 

documentation available at 

https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html).  We averaged the sum 

of the 1 – 5 Hz Fourier coefficients across all trials, yielding <FFTδ>, Figure 3.6c), which, for a 

given cell, was a reliable proxy for the prevalence of large, spontaneous high-conductance events 

in the pre-stimulus window (Figure 3.6a, b). 

3.4.17 Response reliability 

 For each cell, we considered a 2 s window of evoked activity beginning at stimulus onset.  

For this window, we regressed each single-trial response onto the average response, yielding R2 

(the explained variability).  For each cell, we took the across-trial median R2 value (Figure 3.6e) 

to be the “response reliability”. 

3.4.18 “Low” and “high” visual response trials and scaled response size 

 We segregated the visual responses for each cell into two categories defined by ongoing 

activity: “low” and “high” trials.  For each recording, we used an algorithm to identify all high-

conductance events (as described above).  The trial was designated a “high” trial if a spontaneous 

high-conductance event (i) ended within 2 s of stimulus onset; or (ii) was interrupted by stimulus 

onset (Figure 3.7a).  A cell was required to have at least three high and three low trials to be 

https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html
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included in this analysis.  We forced the two trial sets to contain the same number of trials by 

randomly excluding trials from the longer of the two sets.  Of these remaining trials, we considered 

a 2s window of activity beginning at stimulus onset.  From this evoked window, we subtracted a 

baseline value (the fifth percentile, calculated from the full, original voltage trace).  We defined 

the response size (S’) to be the area under the resulting curve (Figure 3.7a).  We scaled each 

response size by the maximum response size (S’max) in the retained trials, and averaged across 

trials (yielding <S’/S’max>.  We then compared the populations of average scaled responses using 

the Wilcoxon signed-rank test (Figure 3.7b).  Because the process of excluding trials was random, 

we ensured the significant difference indicated in Figure 3.7b was robust to iterations of the 

calculation (data not shown). 

3.4.19 Statistical analysis 

 All statistical tests were performed using Python 2.7.  

Before applying any significance test that assumed normality, we performed an omnibus 

test for normality on the associated dataset(s).  This test compares the skew and kurtosis of the 

population from which the dataset was drawn to that of a normal distribution, returning a p-value 

for a two-sided chi-squared test of the null hypothesis that the data is drawn from a normal 

distribution.  This test is valid for sample sizes of 20 or larger, and was implemented using 

scipy.stats.mstats.normaltest (documentation and references available at 

http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.mstats.normaltest.html).  

We report these p-values as the result of a “two-sided omnibus chi-shared test for normality”. 

 When asking whether a parameter of interest changed significantly across two sets of 

conditions for a population, we applied the Wilcoxon signed-rank test, which returns a p-value for 
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the two-sided test that the two related paired samples are drawn from the same distribution.  This 

test assumes normality, and was implemented using scipy.stats.wilcoxon (documentation and 

references available at 

http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html). 
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Chapter 4 

 

Adaptation modulates correlated response 

variability in visual cortex 

 

Cortical sensory responses are highly variable across stimulus presentations.  This variability can 

be correlated across neurons (due to some combination of dense intracortical connectivity, cortical 

activity level, and cortical state), with fundamental implications for population coding.  Yet the 

interpretation of correlated response variability (or “noise correlation”) has remained fraught with 

difficulty, in part because of the restriction to extracellular neuronal spike recordings.  Here, we 

measured response variability and its correlation at the most microscopic level of electrical neural 

activity, the membrane potential, by obtaining dual whole-cell recordings from pairs of cortical 

pyramidal neurons during visual processing.  We found that during visual stimulation, correlated 

variability adapts towards an intermediate level and that this correlation dynamic is mediated by 

intracortical mechanisms.  A model network with external inputs, synaptic depression, and 

structure reproduced the observed dynamics of correlated variability.  These results establish that 

intracortical adaptation self-organizes cortical circuits towards a balanced regime at which network 

coordination maintains an intermediate level.  
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4.1 Introduction 

Sensory cortex is not simply one layer in a feedforward network (Fig. 4.1a); it receives 

strong inputs from thalamus, but intracortical feedback dominates cortical circuitry (Fig. 4.1b).   

This tangle of cortical connections causes neural activity to be coordinated across multiple spatial 

and temporal scales(Ohiorhenuan et al., 2010; Panzeri, Brunel, Logothetis, & Kayser, 2010).  

Moreover, in a given cortical network, the strength of this coordination can vary with activity level 

and network state(Doiron, Litwin-Kumar, Rosenbaum, Ocker, & Josić, 2016; Haider, Schulz, & 

Carandini, 2016; Okun et al., 2015; Poulet & Petersen, 2008; Renart et al., 2010; Scholvinck, 

Saleem, Benucci, Harris, & Carandini, 2015), which is considered to have implications for cortical 

function(Averbeck, Latham, & Pouget, 2006; Averbeck & Lee, 2004; Moreno-Bote et al., 2014; 

Zohary, 1994).  For example, weak coordination corresponds to a larger “library” of words 

available to the spatiotemporal code, while stronger coordination supports signal propagation (Fig. 

4.1c). The realized level of coordination in active cortical circuits is expected to represent a balance 

between such competing system needs.  Two unanswered questions concerning coordination 

continue to block our path to understanding sensory processing in cerebral cortex.  First, what are 

the levels of cortical coordination during sensory processing, and to what extent do these levels 

change with varying stimulus conditions (Fig. 4.1c)?  Second, what mechanisms are responsible 

for the realized level of cortical coordination and its changes?  

Recording the spike trains from pairs of neurons for repeated presentations of an identical 

stimulus and evaluating the level of correlated response variability (or “noise correlation”) has 

remained the work horse of investigating cortical coordination (see Cohen, Kohn 2011, and 

Doiron, Kumar 2016 for reviews).  This spike-based approach is popular in part because of the 
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Figure 4.1  Investigating the dynamics of correlated variability in recurrent circuits of visual 

cortex.  (a) Feedforward thalamocortical network subject to sensory inputs (magenta).  

Coordination between pairs of cortical neurons (black) is determined by convergence patterns in 

thalamic inputs (green).  (b) A more realistic, interaction-dominated thalamocortical network, in 

which the inputs to any one cortical neuron arise primarily from other cortical neurons.  

Coordination is thus a function of both feedforward and recurrent inputs.  (c) The level of cortical 

coordination affects cortical function, and it is unknown if and how this changes with sensory 

stimulation.  (d) We simultaneously recorded the membrane potentials from pairs of cells, as well 

as the nearby LFP, during ongoing and visually-evoked activity in a densely-interconnected 

thalamocortical network.  (e)  Pairwise membrane potential recordings provided a measure of 

cortical coordination across stimulus conditions that avoids the pitfalls of spike data. 
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 relative ease of obtaining spiking responses from pairs of neurons in intact brains.  

Reported values of spike-based noise correlation tend to be significantly nonzero, but results have 

varied across studies(Cohen & Kohn, 2011; Doiron et al., 2016; Hansen, Chelaru, & Dragoi, 2012; 

Scholvinck et al., 2015; Tan, Chen, Scholl, Seidemann, & Priebe, 2014).  Furthermore, the 

interpretation of cortical coordination from spike data is littered with complications, including a 

spike-rate dependence of noise correlation values(Cohen & Kohn, 2011; de la Rocha, Doiron, 

Shea-Brown, Josić, & Reyes, 2007), the underrepresentation of sparse-spiking neurons, and 

possible biases introduced by the spike-sorting process(Cohen & Kohn, 2011; Schulz, Sahani, & 

Carandini, 2015).  In conclusion, the important study of cortical coordination, including its relation 

to mechanisms and function, has been restricted by its focus on spike recordings, and continues to 

represent an unmet challenge in systems neuroscience. 

In response to this need, we investigated the dynamics of correlated response variability at 

the level of the membrane potential by obtaining dual whole-cell recordings from pairs of cortical 

pyramidal neurons during visual processing (Fig. 4.1d, e).  We found a high level of trial-to-trial 

membrane potential response variability. Further, correlated variability in the gamma band range 

of membrane potential fluctuations increased at stimulus onset, but returned to pre-stimulus values 

during continued visual stimulation.  A brief visual stimulus, triggering persistent cortical activity, 

elicited a similar dynamic of correlated variability, thus implicating an intracortical mechanism.  

A model network with small-world connectivity, external inputs, and synaptic depression 

reproduced the observed dynamics of correlated variability, and further indicated that network 

oscillations play a crucial role.  Taken together, these results establish adaptation towards an 

intermediate level of coordination as a fundamental principle of cortical organization during visual 

processing. 
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4.2 Results 

To quantify response variability and its correlation across neurons, we recorded the 

membrane potential (V) from 35 pairs of pyramidal neurons in visual cortex of the turtle ex vivo 

eye-attached whole-brain preparation during visual stimulation of the retina (Fig. 4.1d).  Ongoing 

activity in turtle visual cortex was largely quiet.  In contrast, visual stimuli evoked barrages of 

postsynaptic potentials in cortical pyramidal neurons that were accompanied by extensive 

fluctuations in the nearby local field potential recording (Fig.1e), indicating strong concurrent 

network activity.   

 

4.2.1 Pyramidal neuron membrane potential visual responses are highly variable 

We recorded from 19 pairs of pyramidal neurons while presenting continuous visual 

stimulation, and from 16 pairs while presenting brief flashes (see Methods).  Single-neuron 

membrane potential responses to repeated presentations of extended stimuli varied from trial to 

trial, with a response variability magnitude that exceeded the trial-averaged mean response (Fig. 

4.2a).  Importantly, the magnitude of the response variability was qualitatively unchanged when 

the visual stimulus consisted of brief flashes, which evoked long-lasting responses in visual cortex 

(Fig. 4.2b).  This stimulus invariance of the trial-to-trial response variability indicates an intra-

thalamocortical origin of the network activity and the resulting membrane potential fluctuations.   
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Figure 4.2 Dynamics and complexity of trial-to-trial response variability. (a) Single-trial responses 

(low opacity) and across-trial average responses (high opacity) for two simultaneously-recorded 

neurons.  Stimulus is naturalistic movie (see Methods).  Single trials artificially aligned for clarity.  

(b) Same as in (a), but for a different pair of cells, and stimulus is 150 ms red (640 nm) whole-

field flash, with onset at magenta arrow, (see Methods).  (c) Single-trial response from cell in (a).  

Inset: high-frequency activity nested within the broader depolarization.  (d)  Average relative 

power spectrum (evoked power divided by ongoing) of residuals for red traces in (a) for the 

transient (blue) and steady-state (green) epochs.  Shaded regions indicate +/- 95% confidence 

intervals by bootstrapping method.  (e)  Trial-averaged gamma (20 – 100 Hz) power for 79 cells, 

for brief and extended visual stimulation.  Each dot represents the across-trial average gamma 

power for one cell for that epoch.  Dark (light) lines connecting dots represent (in)significant 

changes in gamma power for that cell across epochs.  Across-epoch significance for each cell 

determined by comparing bootstrap intervals.  Asterisks above line connecting two epochs 

indicates results of Wilcoxon signed-rank significance test for difference in populations of values 

for those epochs (**: 0.001 < P < 0.01; ***: P < 0.001; no asterisk and gray line: P > 0.05).  Two 

outliers truncated for clarity. 
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For any given trial of visual stimulation, the evoked membrane potential fluctuations were 

large and consisted of high-frequency fluctuations nested within broader deflections (Fig. 4.2c).  

To quantify the frequency content of the single-trial fluctuations from the mean response, we first 

calculated the membrane potential residual (Vr), which is the single-trial membrane potential 

recording from which the trial-averaged membrane potential time series has been subtracted.  We 

then divided the evoked residuals into two analysis windows: the transient (200 to 600 ms after 

stimulus onset) and steady-state (800 to 2800 ms after stimulus onset) windows (Supplementary 

Information 1).  Finally, we calculated the relative power spectral density (rP), which is the power 

spectral density of the membrane potential residual for the transient or 

steady-state window divided by its trial-averaged counterpart from the ongoing window (2 s prior 

to stimulus onset). 

This analysis revealed four important features concerning the spectral content of the 

residual membrane potential fluctuations and of the trial-to-trial response variability. First, evoked 

power of residual membrane potential fluctuations in the 0.1 to 100 Hz range typically increased 

by two orders of magnitude compared to ongoing activity (Fig. 4.2d, Supplementary Fig. 4.2).  

Second, the frequency content of the membrane potential residual varied across trials (as indicated 

by the broad confidence bands in Fig. 4.2d).  Third, the relative power spectral density typically 

consisted of a prominent peak located approximately in the 4 to 10 Hz theta range and a broader, 

but distinct, distribution in the 20 to 100 Hz gamma range.  Fourth, for both movies and flashes, 

gamma power increased from the ongoing to the transient window, and significantly decreased 

from transient to steady-state (Fig. 4.2e).  Gamma power of the transient activity varied drastically 

across cells.   
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Together, these data establish that cortical pyramidal neuron membrane potential visual 

responses (i) have complex temporal dynamics, (ii) are highly variable from trial to trial, and (iii) 

differ from neuron to neuron (Fig. 4.2). 

4.2.2 Correlated variability adapts during visual stimulation 

The complex and extensive variability of membrane potential visual responses (Fig. 4.2) 

and the interconnected nature of cortical circuits (Fig. 4.1b) raised the question to what extent the 

response variability is correlated across pyramidal neurons.  To address this question, we 

calculated the Pearson correlation coefficient between residual membrane potential fluctuations 

for each trial and window of interest, i.e., the ongoing, transient, and steady-state windows. We 

focused on gamma-band (20 – 100 Hz) activity, which captures the fast, nested membrane 

potential fluctuations (Fig. 4.2c, inset, Fig. 4.3a, and see Supplementary Information 2).  This 

band of activity is thought to be associated with narrow “windows of opportunity” for spiking, 

determining the precise timing of spikes within a broader depolarization (see Haider, McCormick, 

2009 for a review).  Trial-averaged correlation coefficients (CC) for ongoing activity were broadly 

distributed across pairs of pyramidal neurons (Fig. 4.3b), and the population average (<CC>) was 

significantly nonzero (<CC> = 0.03, P = 0.006, one-sided t-test).  In response to continuous visual 

stimulation, trial-averaged correlation coefficients increased significantly compared to ongoing 

values (Fig. 4.3b), to an elevated population average of <CC> = 0.11 (P = 2.9 x 10-4 for ongoing 

– transient comparison, Wilcoxon signed-rank test).  In the steady-state period, i.e., during 

continued stimulus presentation, trial-averaged correlation coefficients returned to near-ongoing 

values (<CC> = 0.041, P = 1.6 x 10-4 for transient – steady-state comparison, P > 0.05 for ongoing 

– steady-state comparison).   
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Figure 4.3  Evoked gamma 

band correlated variability 

appeared to be modulated 

by internal mechanisms.  (a)  

Examples of gamma band 

(20 – 100 Hz) residual 

membrane potential pairs 

for several trials (same pair 

as in 2a).  (b)  Trial-

averaged CC values for each 

of 19 pairs, 20 – 100 Hz, 

continuous visual 

stimulation (see Methods).  

Each dot represents the 

across-trial average CC 

value for one pair for that 

epoch.  Colored (white) dots 

represent values (not) 

significantly different from 

zero (one-sided t-test).  

Otherwise, same as in 2e.  

(c)  Same as in (b), but for 

16 pairs, and brief visual 

stimulation (see Methods).  

(d) Across-trial average 

transient CC vs. average 

ongoing CC for each pair, 

for all stimuli.  Error bars 

indicate 95% confidence 

intervals by bootstrapping 

method.  Red line indicates 

significant linear regression 

fit (r2 = 0.14, P = 0.026).   (e) 

Same as (d), but for steady-

state epoch (r2 = 0.15, P = 0.02). 

 

  



114 

 

 

These results were largely robust with respect to choices of window sizes and gaps between 

windows (see Supplementary Information 1 and Supplementary Fig. 4.1).  These changes in 

correlated variability primarily reflected changes in phase synchrony in the gamma band residual 

activity of simultaneously-recorded neurons (see Supplementary Information 3 and 

Supplementary Fig. 4.4).  In contrast, low-frequency (0.1 – 20 Hz) CC values followed a different 

dynamic (Supplementary Fig. 4.3a, b) and were not significantly related to gamma-band CC (see 

Supplementary Information 2 and Supplementary Fig. 4.3c - e).   

The observed dynamics of gamma band correlated variability in response to continuous 

visual stimulation could be imposed by the spatiotemporal structure of the stimulus, or 

alternatively, could be intrinsic to the thalamocortical system.  To distinguish between these two 

hypotheses, we recorded from 16 pyramidal neuron pairs while presenting brief flashes (1 ms –                      

200 ms) of light, which evoked responses lasting several seconds in the visual cortex (Fig. 4.2b).  

We found that across the population of all pairs, CC values for responses to brief stimuli were 

not significantly different from those for continuous stimuli (p > 0.05, Wilcoxon rank-sum test, 

for all epochs, see Supplementary Information 4, and Supplementary Fig. 4.5).  Importantly, 

the same dynamics of correlated variability were observed for brief stimuli (<CC> = 0.03, P = 

0.003 ongoing, <CC> = 0.11, P = 3.0 x 10-5 transient, <CC> = 0.041, P = 0.006 steady-state, 

one-sided t-test; P = 6.4 x 10-4 for ongoing – transient comparison, P = 0.020 transient – steady-

state comparison, P > 0.05 ongoing – steady-state comparison, Wilcoxon signed-rank test, Fig. 

4.3c).  The similarity of the dynamics of correlated variability for brief and continuous stimuli 

implicates a mechanism that is stimulus-invariant and likely to be intracortical in origin.   
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The evidence of an intracortical origin of correlated variability suggested to us that the 

correlated variability of ongoing activity for a given pair should be predictive of its correlated 

variability in response to visual stimulation.  Indeed, we found that CC values during the ongoing 

epoch were significantly related to CC values for both evoked epochs (r = 0.38, P = 0.03, transient 

vs. ongoing, Fig. 4.3d; r = 0.39, P = 0.02, steady-state vs. ongoing, Fig. 4.3e, Pearson correlation). 

This observation suggests a close link between the underlying mechanisms that determine ongoing 

and evoked correlated variability, with connectivity being one candidate mechanism(Luczak, 

Barthó, & Harris, 2009; MacLean, Watson, Aaron, & Yuste, 2005). 

 

4.2.3 Correlated variability is related to the network state 

Recent experimental and computational work suggests that the level of coordination 

between pairs of neurons might be shaped not only by anatomical connectivity, but also by network 

activity level and network state(Doiron et al., 2016; Haider et al., 2016; Okun et al., 2015; Poulet 

& Petersen, 2008; Renart et al., 2010; Scholvinck et al., 2015).  We therefore asked how well 

network activity level and/or network state could explain the observed dynamics of correlated 

variability. 

As a proxy for network activity level, we inferred the level of presynaptic spiking activity 

using the average gamma power in residual membrane potentials.  As a population, the gamma 

power dynamic (Fig. 4.2e) was qualitatively similar to that of CC (Fig. 4.3b, c). In contrast, for a 

given pair of cells, the geometric mean of the absolute change in power (√|∆𝑃1∆𝑃2|) was not 

related to the magnitude of the change in CC amplitude for the ongoing – to – transient transition 

(r = 0.28, P = 0.10, Pearson correlation).  The two quantities were however related for the transient 

– to – steady-state transition (r = 0.40, P = 0.017, Pearson correlation) (Fig. 4.4b).  In conclusion, 
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changes in network activity levels alone did not fully explain the changes in gamma band 

correlated variability. 

Next, we sought a measure of the network state. Specifically, we focused on the degree of 

action potential synchrony as an indicator of network state. Computational work has shown that 

synchronous network spiking can generate prominent subthreshold membrane potential 

fluctuations in a narrow frequency band (Brunel & Wang, 2003). Here, we used a measure of 

power spectrum “peakiness” in the 20 to 100 Hz range as a proxy for synchronous network spiking.  

The residual relative power spectra (rP) of some cells tended to contain peaks in the gamma band 

during the transient epoch, which were often smaller or absent in the steady-state (Fig. 4.2d, 

Supplementary Fig. 4.2).  To quantify this aspect of the power spectrum for each cell and epoch, 

we defined the quantity M as the ratio of the maximum relative power in the gamma range (rPmax) 

to the average relative gamma power (rPavg) (Fig. 4.4b, top).  Across the population of cells, M 

varied continuously, and the population average (<M>) decreased significantly from transient to 

steady-state (<M> = 1.65 transient, <M> = 1.54 steady-state, P = 2.2 x 10-4 for transient – steady-

state comparison) (Fig. 4.4b, bottom).  For the population of pairs, we found that the geometric 

mean of the absolute change in M (√|∆𝑀1∆𝑀2|) was significantly related to the amplitude of the 

change in CC (r = 0.40, P = 0.02 ongoing – to – transient; r = 0.41, P = 0.01 transient – to – steady-

state, Pearson correlation, where ∆𝑀 =  𝑀𝑡𝑟𝑎𝑛𝑠 − 1 for the ongoing – transient transition) (Fig. 

4.4c).  In conclusion, for a given pair of cells, the change in network state, measured as a change 

in gamma spectrum “peakiness”, was an indicator of the change in correlated variability. 
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Figure 4.4  Changes in CC are related to changes in the shape of relative power spectra.  (a) 

Absolute value of change in CC (evoked minus ongoing) vs. absolute value of geometric mean of 

change in gamma power, for each pair, for transient (top), and steady-state (bottom) epochs.  (b) 

Top: same as in 2(d), but confidence bands omitted for clarity.  For each cell, the peak power index 

(M), is defined as the maximum relative power value in the gamma range (rPmax), divided by the 

average over the gamma range (rPavg).  Bottom: M for all recorded cells (brief and continuous 

stimulation), for transient (blue) and steady-state (green) epochs.  (c) Same as in (a), but for 

absolute value of geometric mean of change in M, for all cells.  If present, red lines indicate 

significant linear regression fit (P < 0.05).   
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4.2.4 Synaptic time constants, synaptic depression, and synaptic clustering together mediate the 

dynamics of correlated variability 

What biophysical mechanisms could mediate the experimentally-observed response 

properties (i.e., across-trial variability (Fig. 4.2a, b), subthreshold gamma oscillations (Fig. 4.2c, 

3a), the dynamics of correlated variability (Fig. 4.3) and its network state dependence (Fig. 4.4))?  

To address this question, we investigated a model network (Methods) of 800 excitatory and 200 

inhibitory leaky integrate-and-fire neurons, with Poisson process external inputs to all excitatory 

neurons (Fig. 4.5a).  Excitatory-to-excitatory and excitatory-to-inhibitory connections had small-

world connectivity, with 5% connection probability.  Inhibitory-to-inhibitory and inhibitory-to-

excitatory synapses were random, with 20% connection probability.  An increase in the external 

input rate mimicked the stimulus.  We selected a set of synaptic rise and decay times(Brunel & 

Wang, 2003; X.-J. J. Wang, 2010) that were consistent with gamma oscillations in the 

instantaneous network firing rate when the network was subject to strong external drive.  

Motivated by previous experiments(Chung, Li, & Nelson, 2002) and models(Levina, Herrmann, 

& Geisel, 2007), we implemented adaptation via short-term synaptic depression with recovery 

(Methods).  Armed with this battery of mechanisms and structural complexity, we simulated the 

network spiking in response to repeated stimulus presentations (20 trials).  

The model network reproduced the experimentally-observed response variability and 

gamma oscillations. The simulated membrane potentials from randomly-selected excitatory model 

neurons revealed fluctuations and across-trial response variability (Fig. 4.5b) that were 

qualitatively similar to what we observed from recorded membrane potentials of pyramidal 

neurons (Fig. 4.2a, b).  Furthermore, the gamma band residuals of simulated membrane potentials 
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Figure 4.5 A model network strengthens the “internal mechanism” hypothesis, suggesting crucial 

roles for network oscillations.  (a) The model network was composed of 800 excitatory LIF 

neurons with small-world connectivity, and 200 randomly-connected inhibitory LIF neurons (not 

depicted).  All excitatory neurons received Poisson external inputs, and the stimulus was modeled 

as a gradual increase in the external input rate (see Methods).  (b – c) Same as in Fig. 4.3b, c, but 

two excitatory model neurons randomly-selected from the network (see Methods).  (d) Same as in 

Fig. 4.3d, but for forty pairs of excitatory neurons, generated from twenty neurons randomly-

selected from the network. 
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(Fig. 4.5c) largely resembled the experimentally-observed residual subthreshold gamma 

oscillations (Fig. 4.3a).  Residual power spectra were peaked in the gamma range (Supplementary 

Fig. 4.6a, top), at frequencies that coincided with peaks in the spectra of the instantaneous network 

firing rate (Supplementary Fig. 4.6a, bottom). Due to synaptic depression with slow recovery, 

the model also reproduced the eventual decrease in the total gamma power in membrane potential 

residuals (Supplementary Fig. 4.6b), and in the amplitudes of gamma-band peaks in the residual 

membrane potential and population spike rate spectra (Supplementary Fig. 4.6a). 

In addition, the model network reproduced the experimentally-observed dynamics of 

correlated variability.  The simulated correlated variability increased significantly from ongoing 

to transient (<CC> = 0.003 ongoing, 0.146 transient, P = 3.6 x 10-8 for ongoing – transient 

comparison) (Fig. 4.5d), a trend that was consistent with our experimental results (Fig. 4.3b, c).  

Mediated by synaptic depression, correlated variability decreased significantly from transient to 

steady state (<CC> = 0.10 steady-state, P = 1.49 x 10-6 for transient – steady-state comparison, P 

= 3.6 x 10-8 for ongoing – steady-state comparison) (Fig. 4.5d).  In contrast, when synaptic 

depression was absent, correlated variability increased from transient to steady state 

(Supplementary Fig. 4.7a). 

As observed in experiment, this dynamic of correlated variability depended crucially on 

network activity oscillations. When synaptic time constants for excitation and inhibition were 

chosen to be identical (see Methods and Supplementary Information 5), the stimulus instead 

pushed the network into a regime of asynchronous activity, as evidenced by the population spike-

rate and residual membrane potential power spectra (Supplementary Fig. 4.6c).  This had little 

effect on the overall network activity level and gamma power dynamics (Supplementary Fig. 

4.6d).  Correlated variability, however, was very weakly modulated by the stimulus 
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(Supplementary Fig. 4.7b), in contrast with our experimental results (Fig. 4.3b, c).  This 

dependence on network oscillations had a synaptic basis: in the synchronous model network, not 

only were correlations between synaptic conductances stronger than those in the asynchronous 

network, the lag between excitation and inhibition was larger, allowing for a longer temporal 

window in which synaptic input correlations could be manifested in pairs of membrane 

potentials(Doiron et al., 2016; Renart et al., 2010) (Supplementary Fig. 4.8).  In conclusion, 

changes in network oscillations, rather than network activity levels alone, determine the changes 

in correlated variability.  

The network oscillation dynamic described here is not the only one capable of reproducing 

the experimentally-observed dynamic of correlated variability.  For example, a similar randomly-

connected network generates oscillations that either invade the entire network or are absent, and 

the CC dynamic can be reproduced by abolishing the oscillation early in the transient window via 

strong synaptic depression (data not shown).  This oscillation dynamic is inconsistent with the 

experimental results, in which gamma oscillations were strongest during the transient epoch, but 

persisted in the steady-state (Fig. 4.3a, 4a, Supplementary Fig. 4.4a).  In contrast, the small-

world network reproduces the correct network oscillation temporal dynamics (Fig. 4.5c, 

Supplementary Fig. 4.6a, bottom, 9a).  Furthermore, the spatial arrangement of connections 

introduced by the small-world architecture adds a spatial dimension to the dynamics of network 

activity (see Supplementary Information 5, Supplementary Fig. 4.9a).  Soon after stimulus 

onset, when synaptic connections are near their default strength, oscillatory spiking is largely 

coherent across the network of excitatory neurons.  However, because of synaptic depression and 

the distance-dependence of connections, the network dynamically subdivides, and coherent 

oscillations proceed among spatially separate groups of neurons in the steady-state.  This 
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spatiotemporal dynamic predicts a dependence of CC temporal dynamics on distance between 

neurons (Supplementary Fig. 4.9b, c).  

Taken together, these results strengthen the hypothesis that the experimentally-observed 

dynamics of correlated variability are primarily driven by the dynamics of thalamocortical network 

oscillations.  As such, synaptic time constants and synaptic depression are two intrinsic parameters 

relevant to correlated variability.  Constraining the model to also produce a realistic network 

oscillation temporal dynamic reveals an additional role for synaptic clustering. 

 

 

4.3 Discussion 

 To study how cortical coordination evolves during visual processing, we measured 

correlated variability between the membrane potentials of pyramidal neuron pairs in turtle visual 

cortex during ongoing and visually-evoked activity.  This approach provides an exceedingly rare 

and much-needed view into the subthreshold events underlying coordinated spiking 

activity(Doiron et al., 2016), and importantly, is uncorrupted by issues associated with spike-based 

investigations.  For example, the process for targeting cells for recording is agnostic to the cells’ 

spike rates, and this study thus gives voice to the “dark” neurons that overwhelmingly populate 

the cortex(Shoham, O’Connor, & Segev, 2006), but are rarely represented in the vast literature on 

correlated variability.  By supplementing our experimental approach with a model network 

investigation, we further addressed the relative contribution of the thalamocortical network to the 

dynamics of correlated variability, and identified relevant network variables. 

 We found that both continuous and brief visual stimulation evoked large, low-frequency 

membrane potential fluctuations (Fig. 4.1e), with nested gamma-band (20 – 100 Hz) oscillations 
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(Fig. 4.2c, 3a), both of which varied significantly from trial to trial (Fig. 4.2a, b, 3a).  This gamma-

band variability was significantly correlated across the population of pairs in a given window of 

activity (Fig. 4.2b, c).  It is reasonable to ask whether this is at all relevant to sensory processing, 

given that cortical neurons transmit spikes, and not subthreshold fluctuations.  Previous work 

suggests it is.  First, the fluctuations themselves are important for interpreting spiking activity in 

networks of sparse-spiking neurons; subthreshold gamma oscillations define narrow windows in 

which a given neuron is most likely to fire, and thus determine precise spike timing(Haider & 

McCormick, 2009; Yu & Ferster, 2010).  Second, the across-trial variability of these fluctuations 

constrains that of the spiking activity(Carandini, 2004); spiking responses can be no more reliable 

than the corresponding subthreshold activity. Finally, if and when neurons do spike in this visually-

evoked “high conductance” state, the spike correlations will be shaped by state-induced changes 

in response gain, distance from threshold, and subthreshold correlations(Doiron et al., 2016).  In 

fact, this last relationship may be supralinear(Lyamzin et al., 2015), meaning that small changes 

in subthreshold correlated variability can have major repercussions for supra-threshold 

coordination.  

 What determines the strength of correlations in these single-trial deviations for a given pair 

of neurons?  Anatomical connectivity is one obvious candidate, but what are the relative 

contributions from feedforward and recurrent connections (Fig. 4.1b)?  Recent work has shown 

that the coupling of the spiking activity of a neuron with that of the population is stimulus-

invariant(Okun et al., 2015; Scholvinck et al., 2015), suggesting a crucial role for intracortical 

connectivity.  In agreement with this, we found that gamma band correlated variability for ongoing 

and evoked activity was significantly related, for both the non-adapted (transient, Fig. 4.2e) and 

adapted (steady-state, Fig. 4.2f) conditions.  In addition, although all pairs of neurons were 
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separated by less than 300 microns, and therefore likely received similar sensory inputs(Mulligan 

& Ulinski, 1990), correlated variability was broadly-distributed across the population during a 

given window of activity (Fig. 4.3b, c).  This variability suggests that the sparse connectivity of 

the cortex dramatically affects the distribution of pairwise correlations(Renart et al., 2010).  

Indeed, alternate network models with higher connectivity were unable to reproduce this 

variability (data not shown). 

 Connectivity was not the only relevant parameter; for most pairs of neurons, and for the 

population as a whole, gamma band correlated variability increased with visual stimulation, but 

then relaxed to near ongoing values, despite persistent activity (Fig. 4.2).  That is, for a given 

network (i.e., an anatomical arrangement of feedforward and recurrent connections), the level of 

coordination was not static.  This was true for responses to both continuous and brief stimulation 

(Fig. 4.3b, c) suggesting the dynamic did not simply reflect a change in the statistics of the sensory 

inputs.  Previous experimental work implicates the cortical state: coordination in spiking 

activity(Okun et al., 2015; Scholvinck et al., 2015), synaptic inputs(Atallah & Scanziani, 2009; 

Haider et al., 2016), and membrane potentials(Yu & Ferster, 2010) appear to be related to network 

synchrony.  Accordingly, we found ample experimental and computational evidence implicating 

an evolving network state.  Specifically, changes in correlated variability across epochs were 

related to changes in properties of membrane potential power spectra (Fig. 4.4b, c), and reflected 

a phase synchrony dynamic (Supplementary Fig. 4.4) consistent with a network adapting from a 

“disinhibited” to a “balanced” state(Yang, Shew, Roy, & Plenz, 2012).  In addition, the model 

revealed a strong relationship between network spike-rate oscillations and gamma-band correlated 

variability (Supplementary Information 5), and also demonstrated the synaptic basis: synaptic 

current correlations and the lag between excitation and inhibition are larger for pairs of neurons in 
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a synchronous network than for those in an asynchronous network (Supplementary Information 

5, Supplementary Fig. 4.8).  As such, our experimental results relating correlated variability to 

network state are in simultaneous agreement with multiple experimental studies of cortical activity 

across a variety of preparations and spatial scales, and importantly, demonstrate this principle in 

action at the level of the membrane potential during sensory processing.  Moreover, our model 

results confirm computational predictions relating synaptic current dynamics to membrane 

potential correlations(Doiron et al., 2016; Renart et al., 2010), and extend previous work by 

demonstrating the effects of synaptic clustering and adaptation. 

Gamma band correlated variability decreased from transient to steady-state, yet remained 

significantly nonzero (Fig. 4.2d, 3c).  While vanishingly-small values would theoretically support 

greater response fidelity(Zohary, 1994), this realized steady-state value may reflect the level of 

neuronal interaction necessary for cortical function (e.g., feature binding(Finger & König, 2014), 

effective signal propagation(Litwin-Kumar, Oswald, Urban, & Doiron, 2011), and general 

cognitive function(Womelsdorf et al., 2007)).  In other words, cortical coordination during sensory 

processing is maintained at an intermediate level (i.e., less than that during the initial response 

phase, but larger than zero) that represents the ideal balance between competing cortical needs 

(Fig. 4.1c).  This balanced state can be maintained across stimulus conditions by intrinsic 

adaptation mechanisms. 

Previous studies have described a stimulus-induced abolition of low-frequency correlated 

variability in membrane potential(Yu & Ferster, 2010) and membrane potential – LFP(Tan et al., 

2014) pairs in visual cortex.  We observed no such decrease (Supplementary Fig. 4.3a, b).  This 

discrepancy may be partially explained by the nature of ongoing activity.  In these previous studies, 

visual stimulation interrupted large-amplitude, low-frequency events that were coherent across 
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electrodes and had random phase relative to stimulus onset.  These fluctuations largely remained 

in residual traces, likely influencing pre-stimulus correlated variability.  In contrast, these 

spontaneous “bursts” of activity occurred relatively infrequently in our experiments (Fig. 4.1e, 2a, 

b).  To reproduce this quiescent – to – active sensory-evoked dynamic, we limited the inputs to 

our model neurons to those from external stimulation, and stimulus-triggered, yet internally-

generated events.  Our model could likely be modified to reproduce the results of these other works 

by adding a shared background fluctuation(Doiron et al., 2016).  This brute-force implementation 

would not be very illuminating, however; spontaneous events can be strikingly similar to 

evoked(Luczak et al., 2009; MacLean et al., 2005; Ringach, 2009), and may therefore represent 

activity in the same microcircuits, triggered by events usually hidden from the experimenter.  

Reproducing spontaneous events in a manner that is consistent with their possible sources is 

beyond the scope of this study.   

Here, we have focused on fundamental properties of the cortex (anatomical and emergent) 

that are likely to strongly influence correlated variability.  Future work can more definitively assess 

the relative contributions to cortical coordination from various intracortical and extracortical 

sources not addressed here, such as strong inhibitory feedback(Bernacchia & Wang, 2013; 

Tetzlaff, Helias, Einevoll, & Diesmann, 2012), thalamic adaptation(Ollerenshaw, Zheng, Millard, 

Wang, & Stanley, 2014; Q. Wang, Webber, & Stanley, 2010), unequal adaptation of excitatory 

and inhibitory cortical synapses(Heiss, Katz, Ganmor, & Lampl, 2008), and the (time-varying) 

statistics of neuronal activity in the early visual pathway (e.g., correlations across thalamic 

inputs(Bujan, Aertsen, & Kumar, 2015; Whitmire, Waiblinger, Schwarz, & Stanley, 2016)), to 

name a few.  Of particular interest are top-down influences (e.g., attention), which have been 

shown to impact spike-count correlations in awake, behaving preparations(Cohen & Maunsell, 
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2009; Ruff & Cohen, 2014).  Our results predict that such higher-order inputs may impact 

correlated variability by influencing the network state.  It will be interesting to test this hypothesis, 

and to determine the synaptic basis of the interaction if confirmed.  Further, it is crucial to test for 

a relationship between subthreshold correlated variability and psychophysical performance, which 

will require a behavioral assay.  As dual whole-cell recordings in awake, behaving preparations 

(possibly combined with other recording modalities across multiple areas) become increasingly 

common, future experiments can be designed to address these exciting questions. 

4.4 Methods 

4.4.1 Surgery 

All procedures were approved by Washington University’s Institutional Animal Care and 

Use Committees and conform to the guidelines of the National Institutes of Health on the Care and 

Use of Laboratory Animals.  Sixteen adult red-eared sliders (Trachemys scripta elegans, 150-1000 

g) were used for this study. Turtles were anesthetized with Propofol (2mg Propofol/kg), then 

decapitated.  Dissection proceeded as described before(Crockett, Wright, Thornquist, Ariel, & 

Wessel, 2015; Saha, Morton, Ariel, & Wessel, 2011). In brief, immediately after decapitation, the 

brain was excised from the skull, with right eye intact, and bathed in cold extracellular saline (in 

mM, 85 NaCl, 2 KCl, 2 MgCl2*6H2O, 20 Dextrose, 3 CaCl2-2H2O, 45 NaHCO3).  The dura was 

removed from the left cortex and right optic nerve, and the right eye hemisected to expose the 

retina.  The rostral tip of the olfactory bulb was removed, exposing the ventricle that spans the 

olfactory bulb and cortex. A cut was made along the midline from the rostral end of the remaining 

olfactory bulb to the caudal end of the cortex.  The preparation was then transferred to a perfusing 

chamber (Warner RC-27LD recording chamber mounted to PM-7D platform), and placed directly 
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on a glass coverslip surrounded by Sylgard.  A final cut was made to the cortex (orthogonal to the 

previous and stopping short of the border between medial and lateral cortex) allowing the cortex 

to be pinned flat, with ventricular surface exposed. Multiple perfusion lines delivered extracellular 

saline, adjusted to pH 7.4 at room temperature, to the brain and retina in the recording chamber. 

4.4.2 Intracellular Recordings 

For whole-cell current clamp recordings, patch pipettes (4-8 MΩ) were pulled from 

borosilicate glass and filled with a standard electrode solution (in mM; 124 KMeSO4, 2.3 CaCl2-

2H2O, 1.2 MgCl2, 10 HEPES, 5 EGTA) adjusted to pH 7.4 at room temperature.  Cells were 

targeted for patching using a dual interference contrast microscope (Olympus).  Simultaneously 

recorded cells were located less than 300 microns apart, and all cells were located within 300 

microns of an extracellular recording electrode.  Intracellular activity was collected using an 

Axoclamp 900A amplifier, digitized by a data acquisition panel (National Instruments PCIe-6321), 

and recorded using a custom Labview program (National Instruments), sampling at 10 kHz.  We 

excluded cells that did not display stable resting membrane potentials.  The visual cortex was 

targeted as described below.   

4.4.3 Extracellular Recordings 

Extracellular recordings were achieved with tungsten microelectrodes (MicroProbes heat 

treated tapered tip), with approximately 0.5 MΩ impedance.  Electrodes were slowly advanced 

through tissue under visual guidance using a manipulator (Narishige), while monitoring for activity 

using custom acquisition software (National Instruments).  Extracellular activity was collected 

using an A-M Systems Model 1800 amplifier, band-pass filtered between 1 Hz and 20,000 Hz, 
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digitized (NI PCIe-6231), and recorded using custom software (National Instruments), sampling 

at 10 kHz. 

4.4.4 Identification of Visual Cortex 

We used a phenomenological approach to identify the visual cortex, described 

previously(Shew et al., 2015).  In general, this region was centered on the anterior lateral cortex, 

in agreement with voltage-sensitive dye studies(D M Senseman & Robbins, 1999; David M 

Senseman & Robbins, 2002).  Anatomical studies identify this as a region of cortex receiving 

projections from lateral geniculate nucleus(Mulligan & Ulinski, 1990).  

4.4.5 Visual Stimulation 

Whole-field flashes were presented using either a red LED (Kingbright, 640nm), mounted 

to a manipulator and positioned 1 – 5 cm above the retina, or a projector-lens system (described 

below).  The mean LED light intensity (irradiance) at the retina was 60 W/m2.  For one turtle, we 

used these same LEDs in conjunction with 200 micron optical fibers (Edmund Optics) to project 

sub-field flashes (1 ms – 200 ms) onto the visual streak.  Other stimuli were presented using a 

projector (Aaxa Technologies, P4X Pico Projector), combined with a system of lenses (Edmund 

Optics) to project images generated by a custom software package directly onto the retina.  The 

mean irradiance at the retina was 1 W/m2.  This system was used to present brief (100 ms – 250 

ms) whole-field and sub-field flashes (red or white), sustained (10 s) gray screen, a naturalistic 

movie (“catcam”), a motion-enhanced movie (courtesy Jack Gallant), and a phase-shuffled version 

of the same movie (courtesy Jack Gallant and Woodrow Shew).   In all cases, the stimulus was 

triggered using a custom Labview program (National Instruments).  
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The preparation was in complete darkness before and after each stimulus presentation.  

Flashes lasted between 1 ms and 150 ms, with at least 20 s between flashes.  Movies lasted either 

10 s or 20 s, and were shown at least 12 times, with at least 30 s between the end of one presentation 

and the beginning of the next. 

We presented continuous visual stimuli (movies) while recording from 19 pairs, and brief 

stimuli (diffuse flashes) while recording from 16 pairs.  

 

4.4.6 Signal Processing 

In all analyses, only cells with 12 or more visual stimulation trials were included.  Raw 

data traces were down-sampled to 1000 Hz.  Because action potentials in turtle cortical pyramidal 

neurons are relatively wide, spike waveforms still contributed to the band-pass filtered intracellular 

recordings.  To remove these, an algorithm was used to detect spikes, and the membrane potential 

values in a 20 ms window centered on the maximum of each spike were replaced via interpolation.  

Finally, the traces were filtered (20 Hz lowpass or 20 – 100 Hz bandpass Butterworth filter).   

4.4.7 Cross-correlation Analysis 

For each single-trial voltage trace, the residual (Vr or deviation from the average activity) 

was found by subtracting the across-trial average time series from the single-trial time series: 

𝑉𝑟 = 𝑉 − 〈𝑉〉𝑡𝑟𝑖𝑎𝑙𝑠 

Residuals were then separated into three epochs: the ongoing epoch (defined to be the two seconds 

prior to the onset of visual stimulation), the transient epoch (200 to 600 ms after stimulus onset), 



131 

 

and the steady-state epoch (800 to 2800 ms after stimulus onset; Fig. 4.2a).  For each pair of 

simultaneously-recorded cells, the Pearson correlation between residual pairs was then calculated 

for each epoch and trial.  The results were averaged across all trials, resulting in the trial-averaged 

correlated variability (CC) for each pair and epoch: 

𝐶𝐶𝑒𝑝𝑜𝑐ℎ = 〈𝑐𝑜𝑣(𝑉𝑟,1
𝑒𝑝𝑜𝑐ℎ, 𝑉𝑟,2

𝑒𝑝𝑜𝑐ℎ) [𝑣𝑎𝑟(𝑉𝑟,1
𝑒𝑝𝑜𝑐ℎ)𝑣𝑎𝑟( 𝑉𝑟,2

𝑒𝑝𝑜𝑐ℎ)]1/2⁄ 〉𝑡𝑟𝑖𝑎𝑙𝑠 

Because the correlated variability of spike counts been shown to depend on the size of the window 

used for calculations(Schulz et al., 2015), we repeated the above process for three other sets of 

choices for epoch window sizes and gaps between epochs (see Supplementary Information 1).   

The significance of CC for a given pair and epoch was determined by bootstrapping; CC 

was considered to be significantly nonzero if the average value +/- the 95% confidence level from 

bootstrapping did not include zero.  Similarly, CC for two epochs were considered to be 

significantly different from one another if the bootstrapping intervals did not overlap. 

For the population of pairs, we determined the significance of the population-average CC 

for a given epoch using the one-sample t-test (that is, by comparing to a zero-mean normal 

distribution with the same standard deviation).  We tested for a significant change in population 

CC values across two epochs by applying the Wilcoxon signed-rank test to the two sets of CC 

values. 

We also compared CC for responses to brief and continuous visual stimulation.  First, pairs 

were segregated according to the stimulus presented, resulting in 16 brief and 19 extended-

stimulus pairs.  The two resulting sets of trial-averaged CC values were then compared using the 

Wilcoxon rank-sum test.     
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4.4.8 Power Analysis 

For each trial and cell, we extracted a 5.8 s window of activity (with epoch windows and 

gaps between epochs as described above, plus 500 ms windows on each end to avoid filtering 

artifacts in the ongoing and steady-state epochs), and calculated the residual time series as 

described above.  For each residual trace, we performed wavelet analysis in Matlab using software 

provided by C. Torrence and G. Compo (available at URL: 

http://paos.colorado.edu/research/wavelets/, ref).  This resulted in a power time series for each cell, 

for multiple frequencies.  For each frequency below 100 Hz, we averaged the time series across 

each epoch to obtain the average power at each frequency for each epoch.  We then averaged 

across trials.  For each pair, we also averaged across all frequencies in the gamma range (20 – 100 

Hz), and plotted the resulting trial-averaged gamma power (P) in each epoch to inspect for trends 

across the population (Fig. 4.2e).  We tested for significant changes in a given pair and across the 

population using the same methods as those described for CC values. 

We next inspected for a relationship between changes in CC and changes in gamma power 

for a given pair.  For the ongoing – to – transient and transient – to – steady-state transitions, we 

calculated the change in trial-averaged gamma power for each neuron  

∆𝑃𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ1→ 𝑒𝑝𝑜𝑐ℎ2 = 𝑃𝑛𝑒𝑢𝑟𝑜𝑛

𝑒𝑝𝑜𝑐ℎ2 − 𝑃𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ1

, 

and took the geometric mean of the absolute values: 

√|∆𝑃1∆𝑃2|
𝑒𝑝𝑜𝑐ℎ1→𝑒𝑝𝑜𝑐ℎ2

= [|∆𝑃1
𝑒𝑝𝑜𝑐ℎ1→𝑒𝑝𝑜𝑐ℎ2∆𝑃2

𝑒𝑝𝑜𝑐ℎ1→𝑒𝑝𝑜𝑐ℎ2|]
1/2

 

For each pair, we plotted the absolute value of the average change in CC vs. the result, and 

performed linear regression analysis (Fig. 4.4a).   

http://paos.colorado.edu/research/wavelets/
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 For each cell, we also obtained the relative power spectrum (rP) for the transient and 

steady-state epochs, defined to be the trial-averaged evoked spectrum divided by the trial-averaged 

ongoing spectrum (Fig. 4.2d, Supplementary Fig. 4.6a, c): 

𝑟𝑃𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ = 𝑃𝑛𝑒𝑢𝑟𝑜𝑛

𝑒𝑝𝑜𝑐ℎ /𝑃𝑛𝑒𝑢𝑟𝑜𝑛
𝑜𝑛𝑔𝑜𝑖𝑛𝑔

 

Second, to obtain the “peakiness” of the relative power spectrum within the gamma range for each 

cell, we divided the maximum value of rP in the gamma range by the average value in the gamma 

range to obtain the “peak ratio” (𝑀𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ

) (Fig. 4.4b, similar to Yu, Ferster 2010): 

𝑀𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ =

[max (𝑟𝑃𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ )]

𝑔𝑎𝑚𝑚𝑎

[avg (𝑟𝑃𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ )]

𝑔𝑎𝑚𝑚𝑎

 

 (where 𝑀𝑛𝑒𝑢𝑟𝑜𝑛
𝑜𝑛𝑔𝑜𝑖𝑛𝑔

= 1).  We then calculated the change in peak ratios across epochs: 

∆𝑀𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ1→𝑒𝑝𝑜𝑐ℎ2

=  𝑀𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ2

− 𝑀𝑛𝑒𝑢𝑟𝑜𝑛
𝑒𝑝𝑜𝑐ℎ1

 

and then the geometric mean of the absolute values for each simultaneously-recorded pair 

(√|∆𝑀1∆𝑀2|).  Finally, we inspected for a relationship between √|∆𝑀1∆𝑀2| and changes in CC 

for a given pair (Fig. 4.4c) as described above for changes in power. 

4.4.9 Phase Concentration Analysis 

 For each residual trace in a given trial, we used wavelet analysis (described above) to 

calculate the phase of each signal as a function of time and frequency.  We then averaged over all 

frequencies in the gamma range (20 – 100 Hz) to obtain the gamma phase time series for each 

trace (φi(t)).  For each pair of residuals, we calculated the cosine of the phase difference, and 

averaged over each epoch to obtain the “phase concentration” (R) for each epoch and trial: 
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𝑅𝑒𝑝𝑜𝑐ℎ
𝑡𝑟𝑖𝑎𝑙 = 〈𝑐𝑜𝑠[𝜑1(𝑡) −  𝜑2(𝑡)]〉𝑒𝑝𝑜𝑐ℎ

𝑡𝑟𝑖𝑎𝑙  

We then averaged over all trials and analyzed the results for pairwise and population trends using 

the same methods as those described for CC values (Supplementary Fig. 4.4b).  We also inspected 

for a relationship between changes in CC and changes in R for a given pair (Supplementary Fig. 

4.4c) as described above for changes in power.  

4.4.10 Network Models 

 To investigate the roles of network properties in our experimental results, we implemented 

a model network of 800 excitatory and 200 inhibitory leaky-integrate-and-fire neurons.  

Excitatory-excitatory connections had small-world connectivity(Bujan et al., 2015; Watts & 

Strogatz, 1998) (with 5% connection probability), and all other connections were random (with 

5% excitatory-inhibitory, and 10% inhibitory-excitatory and inhibitory-inhibitory connection 

probability).  Each nonzero entry in the connection weight matrix (𝑊𝑖𝑗
0) was drawn from a uniform 

distribution over the interval [0.0, 1.0). 

The dynamics of the membrane potential (V) of each neuron evolved according to 

𝜏𝑚

𝑑𝑉

𝑑𝑡
= −𝑔𝐿[𝑉(𝑡) − 𝐸𝐿] + 𝐼𝑠𝑦𝑛(𝑡) 

where the membrane time constant τM = 50 ms (excitatory neurons), 25 ms (inhibitory), and the 

leak conductance gL = 10 nS (excitatory), 5 (inhibitory).  The leak reversal potential EL for each 

neuron was a random value between -70 and -60 mV, drawn from a Gaussian distribution (to 

model the variability in resting membrane potentials observed across neurons in the experimental 
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data).  The reversal potentials for the synaptic current Isyn(t) were EGABA = -68 mV, and EAMPA = 

50 mV.  

The synaptic current for each synapse type (between presynaptic neurons of type X and 

postsynaptic neurons of type Y) had three relevant time course parameters: delay (τLX, that is, the 

lag between presynaptic spike time and beginning of conductance waveform), rise time (τRYX), 

and decay time (τDYX).  Synaptic conductances were modeled as products of time-varying gating 

variables (SYX) and maximum conductances (gYX).  Following a presynaptic spike at time 0, the 

gating variable dynamics were described by 

𝑆𝑌𝑋(𝑡) =
𝜏𝑚

𝜏𝐷𝑌𝑋 − 𝜏𝑅𝑌𝑋
[𝑒𝑥𝑝 (−

𝑡 − 𝜏𝐿𝑋

𝜏𝐷𝑌𝑋
) − 𝑒𝑥𝑝 (−

𝑡 − 𝜏𝐿𝑋

𝜏𝑅𝑌𝑋
)] 

with time constants (in ms) τLE = 1.5, τREE = 0.2, τDEE = 1.0, τRIE = 0.2, τDIE = 1.0, τLI = 1.5, τRII = 

1.5, τDII = 6.0, τREI = 1.5, τDEI = 6.0.  Maximum conductance values (in nS) were gEE = 1.0, gIE = 

6.0, gEI = 30, gII = 30.  In response to a presynaptic spike in neuron j at time 𝑡𝑗
𝑠𝑝𝑘

, the weight (Wij) 

of a synapse connecting neurons j and i depressed and recovered according to 

𝑑𝑊𝑖𝑗

𝑑𝑡
= −

𝑊𝑖𝑗(𝑡)

𝜏𝑑𝑒𝑝𝑟𝑒𝑠𝑠
𝛿(𝑡 − 𝑡𝑗

𝑠𝑝𝑘) +
𝑊𝑖𝑗

0 − 𝑊𝑖𝑗(𝑡)

𝜏𝑟𝑒𝑐𝑜𝑣𝑒𝑟
 

 

with depression time constant τdepress = 30 ms and recovery time constant τrecover = 1500 ms.  

Depression and recovery time constants were chosen to give reasonable activity time courses for 

low-frequency (0 - 20 Hz) membrane potentials. 
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 The spike threshold for each neuron was -40 mV.  A neuron reset to -59 mV after spiking, 

and was refractory for 2 ms (excitatory) and 1 ms (inhibitory). 

All excitatory neurons received Poisson external inputs.  During “ongoing” activity, the 

external input rate to each neuron was 25 Hz.  The stimulus was modeled as a gradual increase to 

500 Hz; the input rate was increased by 95 Hz at stimulus onset, and by an additional 95 Hz every 

50 ms for 200 ms.  This gradual increase provided more realistic low-frequency membrane 

potentials than did a single step function stimulus, but did not qualitatively impact the results.   The 

gating variables for external inputs had the same parameters as for excitatory-excitatory 

connections, and maximum conductances were gE  = 4 nS. 

 Each trial was 5.8 s in duration, with stimulus onset at 2.7 s, and the time step was 0.05 

ms.  The ongoing epoch was defined to be 2200 ms to 200 ms before stimulus onset, the transient 

epoch 0 ms to 400 ms after stimulus onset, and the steady-state epoch 600 ms to 2600 ms after 

stimulus onset.  The additional 500 ms at the beginning and end of each trial ensured there were 

no wavelet filtering artifacts in the ongoing and steady-state epochs. 

We then randomly selected 20 excitatory neurons from the entire population of 800 

excitatory neurons, and generated 40 V-V pairs from these twenty nodes.  Because action potential 

rates were higher in this model network than in experiment, and because action potentials can 

affect V-V correlated variability, we substituted “test” neurons for these network neurons before 

doing the calculation (see Supplementary Information 6).  Test neurons were identical to 

network neurons, but all synaptic conductances were multiplied by a factor of 0.5, and spike 

threshold was raised to -30 mV, which was sufficient to eliminate all action potentials.  Thus, a 

test neuron membrane potential acted as a network sub-sampler, representing the response to re-



137 

 

scaled versions of inputs to the corresponding network neuron.  For each pair of test neurons, we 

then calculated the same parameters as for experimental neuron pairs (CC, R, etc.).  We also 

calculated cross correlations as a function of lag for residual synaptic conductance traces 

(Supplementary Figure 8).  This process was identical to that described for the (zero lag) Pearson 

correlation coefficient described above, but was performed for all lags in +/- 50 ms.  

For each trial, we calculated the instantaneous spike rate of all excitatory neurons in the 

network.  We then calculated the power spectra of the transient and steady state spike rates using 

wavelet filtering, and averaged over all trials (Supplementary Figure 6), as described above.  

To investigate the dependence on distance between neurons, we repeated the above 

analysis for this model using two alternate sets of randomly-selected neurons.  First, we randomly 

selected 20 neurons from a group of 100 neighboring neurons.  Second, we used a smaller group 

of 20 neighboring neurons (see Supplementary Information 5, and Supplementary Figure 9). 

In addition, we implemented two alternate model versions (see Supplementary 

Information 5, and Supplementary Figures 6, 7, 8).  In one, we eliminated synaptic adaptation.  

In the other, we maintained synaptic adaptation, but tuned synaptic time courses to give an 

asynchronous transient epoch (τLX = 1.5 ms, τRYX = 0.2 ms, τDYX = 1.0 ms for all X and Y).  (In 

the absence of adaptation, this version was also asynchronous in the steady-state.)  
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4.5 Supplementary Information 

4.5.1 Supplementary Information 1: windows of activity chosen for 

analysis 

 When relating two measures of cortical coordination (e.g., correlated variability and 

network state), the ideal approach would be to determine both measures for the same dataset.  

Unfortunately, some experimental methods for recording large-scale population activity (e.g., 

microelectrode array, or MEA, recordings) and those for recording pairs of membrane potentials 

(pairwise whole-cell recordings) are not easily implemented in the same region of cortex 

simultaneously.  Furthermore, inferring the network state (as in Shew, et al. 2015) requires a large 

number of neuronal avalanches, and therefore recording times that often surpass the amount of 

time a typical whole-cell patch remains stable.  As such, we motivated our choice of windows for 

this study based on the results of a previous study of population activity in the same 

preparation(Shew et al., 2015). 

 In this previous work, the “transient” epoch for a given preparation was defined by the total 

network activity over all trials.  Briefly, the activity at each electrode was band-pass filtered to 

give the local field potential (LFP), the absolute value of the resulting trace was divided by its 

standard deviation, and all such traces from responsive electrodes were summed to give the 

network activity for a single trial.  All trials were overlaid, the 90th percentile envelope was 

calculated, and the transient epoch was defined to be the full-width at half-max of this envelope.  

The “visually-driven steady-state” began at the end of the transient epoch, and ended with the 

stimulus.  The transient epoch was calculated on a prep-by-prep basis, and across all preparations, 

lasted 423 ± 202 ms (mean ± SD).  For nine preparations and four different stimuli, the transient 
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epoch was shown to be supercritical, and the visually-driven steady-state critical.  There were not 

enough ongoing avalanches to determine the pre-stimulus state. 

 Translating this result into window choices for this study involved two additional 

considerations.  First, the resting membrane potential of a neuron affects the amplitude of 

depolarization for a given level of synaptic input.  As such, taking the absolute value and 

overlaying trials to calculate the 90th percentile envelope, as above, for a pair of neurons may not 

be a viable approach.  Second, correlated variability distributions (for spike data) can depend on 

window size, and so the three epochs should be of comparable duration.  That is, a transient epoch 

of around 400 ms, and a steady-state epoch of nearly 10 s would not be appropriate.  With this in 

mind, we chose the same epochs for all recorded pairs: the ongoing and steady-state epochs were 

chosen to be 2 s in duration, and the transient epoch 400 ms.  Due to the observed variability in 

the previous study, epochs were separated by 200 ms (with the end of the ongoing epoch coinciding 

with stimulus onset, Fig. 4.2a). 

 These choices have implications for our assumptions about the network state during each 

epoch.  Specifically, the transient epoch as defined in this study is presumed to be in general 

supercritical, but this has not been shown explicitly for this window choice.  Furthermore, the label 

of “critical” is only valid for the full visually-driven steady-state from the previous study (see 

above), and the steady-state epoch as defined in this study is a subset of that activity.  As such, we 

work under the somewhat weaker assumption that the cortex is supercritical during the transient 

epoch, and is adapting toward criticality during the steady-state (although it may not yet be 

critical). 
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 To test the robustness of our results, we repeated the analysis for three other sets of epoch 

windows and gaps: the windows described above, but with a 300 ms gap between stimulus onset 

and beginning of transient epoch (Supplementary Fig. 4.1a, b), 1 s windows for all epochs with 

no gaps (Supplementary Fig. 4.1c, d), and 400 ms windows for all epochs, with 1 s gaps 

(Supplementary Fig. 4.1e, f).  For all choices, the population trends were approximately the same, 

suggesting that the observed correlated variability values generally reflect those of “pre-stimulus” 

activity, the “early” response, and the “late” response.  For a given epoch, however, across-

population variability did decrease somewhat with increasing window size (e.g., compare 

Supplementary Fig. 4.1d and f), and so the increase in variability from ongoing to transient 

epochs in the original set of choices may be partially due to this effect. 
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Supplementary Figure 4.1  Results for various choices of epoch windows and gaps between 

epochs.  Vertical scales are the same for a, c, e, and for b, d, f.  Bars and asterisks linking epochs 

indicate results of tests for significance of changes in values across epochs (Wilcoxon signed-rank 

test): light bars correspond to insignificant changes (P > 0.05), * to 0.01 < P < 0.05, ** to 0.001 < 

P < 0.01, *** to P < 0.001.  (a) Correlated variability (as in Fig. 4.2d) for epoch windows (in ms) 

ongoing = 2000, transient = 400, steady-state = 2000, with 0 ms between then end of the ongoing 

epoch and stimulus onset, 300 ms between stimulus onset and the start of the transient epoch, and 

200 ms between the end of the transient epoch and the start of the steady-state epoch, for extended 

(left) and brief (right) stimuli, 0.1 – 20 Hz.  Hereafter, these choices are indicated by, e.g. epochs 

= (2000, 400, 2000), gaps = (0, 300, 200).  (b) Same as in (a), but for 20 – 100 Hz.  (c, d) Same as 

in (a, b), but for epochs = (1000, 1000, 1000), gaps = (0, 0, 0).  (e, f) Same as in (a, b), but for 

epochs = (400, 400, 400), gaps = (800, 200, 1000). 
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4.5.2 Supplementary Information 2: spectral content of residual 

traces, frequency bands chosen for analysis, and low-frequency 

results 

For each cell, we calculated the across-trial average power for the ongoing, transient, and 

steady-state epochs using the wavelet transform (see Methods).  Across cells, visual stimulation 

(either brief or continuous) evoked a broad-band increase in residual power in the transient epoch 

(Supplementary Fig. 4.2a).  Residual power generally decreased in the steady-state, but was still 

elevated above ongoing levels (Supplementary Fig. 4.2b).  The height and location of peaks in 

residual relative power (rP) spectra varied across cells; for most cells (and for both response 

epochs), the peak frequency was in the 0.1 – 20 Hz range (Supplementary Fig. 4.2c).  The size 

of the peaks (quantified by M100 = rPmax/rPavg, calculated by considering all frequencies below 100 

Hz) were generally large in the transient epoch, and varied continuously across cells 

(Supplementary Fig. 4.2d).  Note that this definition for M100 is slightly different from that for M 

(used in Results and Fig. 4.4b, c), which is calculated using only frequencies in the 20 – 100 Hz 

range. 

For the remainder of our analysis, we treated high- and low-frequency activity separately.  

There were three primary motivations for doing so.  First, a recent study of V-LFP correlated 

variability (CC) in primate V1 found that low-frequency CC was stimulus-modulated, and high-

frequency CC was not(Tan, Chen, Scholl, Seidemann, & Priebe, 2014).  Second, it is a long-

standing hypothesis that different frequency bands in cortical activity represent distinct 

functionalities(Buzsáki, 2006; Mazzoni, Brunel, & Panzeri, 2008; Wang, 2010), suggesting it is 

more reasonable to separate low and high frequencies than to analyze broad-band activity.  Finally, 
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after separately calculating CC for low (0.1 – 20 Hz) and high (20 – 100 Hz) frequencies, we 

observed that the two sets of CC values were not significantly correlated (Supplementary Fig. 

4.3c), suggesting correlated variability of the two bands was independently modulated by visual 

stimulation.  We refer to the high-frequency component as “gamma activity”, although the bounds 

of gamma activity vary across studies.   

Population-averaged correlated variability (<CC>) for low frequencies gradually increased 

from ongoing to transient to steady-state for continous (<CC> = 0.176 ongoing, 0.212 transient, 

0.303 steady-state, P > 0.05 for ongoing – to – transient, P = 0.01 for transient – to – steady-state, 

P = 0.014 for ongoing – to – steady-state transition, Wilcoxon signed-rank test, Supplementary 

Fig. 4.3a) and brief (<CC> = 0.120 ongoing, 0.19 transient, 0.18 steady-state, P > 0.05 for all 

across-epoch comparisons, Wilcoxon signed-rank test, Supplementary Fig. 4.3b) stimulation, 

although the modulation was stronger for extended. 
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Supplementary Figure 4.2 Spectral properties of residual evoked activity vary across cells.  (a) 

Across-trial average relative power (rP, evoked divided by ongoing) for individual cells (blue 

lines), and across-cell average (black) for the transient epoch.  (b) Same as in (a), but for steady-

state epoch.  (c) Distribution of peak frequencies in the 0.1 – 100 Hz range for all cells for the 

transient (blue) and steady-state (green) epochs.  (d) Same as in (c), but for M100, the ratio of of 

rPmax to rPavg for each cell. 
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Supplementary Figure 4.3  Low - (0.1 – 20 Hz) and high - (20 – 100 Hz) frequency correlated 

variability were independent, and were modulated differently by visual stimulation.  (a) Correlated 

variability (CC) trajectories for 0.1 – 20 Hz bandpass-filtered data, for continuous visual 

stimulation (compare with Fig. 4.3b). (b) Same as in (a), but for brief flashes (compare with Fig. 

4.3c).  (c - e) Across-trial average gamma band (20 – 100 Hz) CC vs. low-frequency (0.1 – 20 Hz) 

CC for each recorded pair (for both brief and continuous stimulation), for the ongoing (c), transient 

(d), and steady-state (e) epochs.  All linear regression fits insignificant (p > 0.05). 

 

 

 

 

 



153 

 

 

 

4.5.3 Supplementary Information 3: Modulation of phase 

relationship by visual stimulation 

 In this study, we use the correlated variability of gamma band residual traces as a measure 

of coordination between neurons.  For pairs of analog signals, another popular measure is the phase 

difference(Yang, Shew, Roy, & Plenz, 2012).  This alternative measure is (non-trivially) related 

to correlation, and indeed, we did observe that some residual pairs tended to be more phase-locked 

during the transient than during the steady-state epoch (Supplementary Fig. 4.4a).  To relate the 

results of our study to previous work, then, we also calculated the phase concentration of residual 

gamma band pairs (R), defined to be the cosine of the difference in phase angles for two residual 

traces, averaged over a window of interest, and then averaged over all trials (see Methods).  The 

phase concentration takes a value of +1 for a pair of perfectly in-phase signals, -1 for perfectly 

out-of-phase signals, and 0 for two signals with random phase.  Phase concentration does not take 

into account the amplitudes of the signals. 

 We found that across the population of all pairs (including both brief and continuous 

stimuli), the average phase concentration (<R>) followed the same dynamics as <CC> (<R> = 

0.027 ongoing, 0.057 transient, 0.028 steady-state; P = 4.22 x 10-5 for ongoing – transient 

comparison, P = 4.51 x 10-6 for transient – steady-state comparison, P = 0.90 for ongoing – 

transient comparison, Wilcoxon signed-rank test, Supplementary Fig. 4.4b).  Moreover, changes 

in CC were significantly related to changes in R (r = 0.643, P = 3.05 x 10-5 for ongoing – to – 

transient transition, r = 0.624, P = 6.23 x 10-5 for transient – to – steady-state transition, Pearson 

correlation, Supplementary Fig. 4.4c).   
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Supplementary Figure 4.4  Changes in correlated variability reflect changes in phase relationship 

between residual traces.  (a) Top: single-trial residual trace pair (same cell pair as in Fig. 4.3a).  

Bottom: close-up of transient and steady-state activity.  (b) Same as in Fig. 4.3b, but for phase 

concentration (R) of gamma band residual pairs, for all recorded pairs.  (c) Change in CC vs. 

change in R across epochs for gamma band residual pairs for ongoing – to – transient transition 

(top) and transient – to – steady-state transition (bottom).  Red lines indicate significant linear 

regression fit (r2 = 0.413, P = 3.05 x 10-5 for ongoing – to – transient transition, r2 = 0.388, P = 

6.23 x 10-5 for transient – to – steady-state transition). 
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4.5.4 Supplementary Information 4: comparison of responses to brief 

and continuous visual stimulation 

 To investigate the dependence of correlated variability on the nature of the stimulus, we 

utilized both brief and continuous visual stimulation (see Methods and Results).  Briefly, we 

recorded from 19 pairs while presenting continuous stimuli (lasting 10 s or longer), and 16 pairs 

while presenting brief (lasting 10 ms – 150 ms) subfield or whole-field flashes. 

 We compared the results in two ways.  First, for each response epoch, we compared the 

sets of CC values for the extended and brief stimuli using the Wilcoxon rank-sum test (the 

distributions are visualized using histograms in Supplementary Fig. 4.5).  For both epochs and 

frequency bands, the two sets of values were not significantly different (P > 0.05, Wilcoxon rank-

sum test), suggesting feedforward sensory input plays at best a small role in determining noise 

correlation strength across the population.  Low-frequency values were larger for continuous 

stimuli (see Supplementary Information 2), but not significantly so.  Second, we qualitatively 

compared the across-epoch CC dynamics for the two stimulus types (see Results).  In general, 

stimulus modulation of low-frequency CCs was weaker for brief stimuli (see Supplementary 

Information 2, Supplementary Fig. 4.3a, b), but for gamma band CCs, the dynamics were 

essentially the same (Fig. 4.3b, c). 

 It is important to note that in response to brief flashes, input to the cortex from the lateral 

geniculate nucleus (LGN) can continue beyond the duration of the stimulus.  Specifically, previous 

work in turtle retina indicates that brief (220 ms) sub-field flashes of 646 nm light can evoked 

depolarization and spiking in retinal ganglion cells up to 200 ms after stimulus offset(Marchiafava, 
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1983).  Thus, for a typical brief flash used in this study (e.g., 150 ms) it is possible that some 

sensory inputs to cortex persist during the steady-state epoch.  There is no evidence, however, that 

persistent retinal responses to brief flashes last on the order of seconds.  Furthermore, previous 

work has concluded that the AMPA- and NMDA-mediated EPSPs and GABA-mediated IPSPs 

that dominate persistent responses (to electrical stimulation of either cortex or LGN fibers) in turtle 

cortex are intracortical in origin, and distinct from excitatory LGN inputs(Larson-Prior, Ulinski, 

& Slater, 1991).  As such, we assume that the vast majority of steady-state activity in response to 

brief visual stimulation can be attributed to intracortical feedback.  

 

 

 

 

Supplementary Figure 4.5  Correlated variability is similar for responses to brief flashes and 

continuous visual stimuli.  (a-f) Distributions of CC values for continuous stimuli (black) and brief 

flashes (red), for the ongoing (a, d), transient (b, e), and steady-state (c, f) epochs, for 0.1 – 20 Hz 

(top row) and 20 – 100 Hz (bottom row) activity.  P > 0.05 for all pairs of distributions (Wilcoxon 

rank-sum test). 
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4.5.5 Supplementary Information 5: additional model results 

 In order to better understand our model results, we implemented three versions of the small-

world network: the model described in Results, in which adaptation was tuned to closely reproduce 

the experimental results (hereafter referred to as the “synchronous” model, Fig. 4.6); a model 

identical to the synchronous model, but with synaptic adaptation removed (“synchronous, no 

adaptation”); and a model that was identical to the synchronous model, but with excitatory and 

inhibitory time constants tuned to result in an asynchronous post-stimulus state (“asynchronous” 

model, see Methods). 

Residual membrane potential relative power spectrum peaks reflect network spike rate oscillations 

 In the experimental data, the relative power spectra of many cells had clear peaks in the 

gamma (20 – 100 Hz) spectrum (Fig. 4.2d, Supplementary Fig. 4.2a, b).  This was also true of 

cells in the synchronous model (Supplementary Fig. 4.6a, top).  Moreover, the location of the 

peak in the simulated data coincided with the frequency of the network spike-rate oscillation 

(Supplementary Fig. 4.6a, bottom).  In the asynchronous network, the network spike rate power 

spectrum did not contain prominent peaks (Supplementary Fig. 4.6c, bottom), and peaks in the 

membrane potential spectra were smaller than those in the synchronous network (Supplementary 

Fig. 4.6c, top).  In both networks, total gamma power in residual membrane potential traces 

followed trajectories similar to that observed in experiment (Supplementary Fig. 4.6b, d, 

compare to Fig. 4.2e), and generally reflected the average network spike rate in the two evoked 

epochs (Supplementary Fig. 4.9a). 
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 Together, these results suggest the across-epoch changes in gamma power observed in 

experimental membrane potential residuals reflect changes in the level of network spiking activity, 

and that peaks in the gamma spectrum reflected oscillations in the network spike rate.  

 

Network spike rate oscillations increase correlated variability, and synaptic adaptation reduces 

correlated variability by abolishing these oscillations 

 We used the synchronous, no adaptation and asynchronous models to further test the 

relationship between network oscillations and membrane potential correlated variability.  In the 

synchronous, no adaptation model, the population-averaged correlated variability (<CC>) 

increased from ongoing to transient (as with the synchronous model), and continued to increase 

from transient to steady-state (<CC> = 0.163 transient, 0.314 steady-state, P = 3.57 x 10-8 for 

transient – steady-state comparison, Wilcoxon signed-rank test, Supplementary Fig. 4.7a), as 

network oscillations became increasingly coherent.  In the asynchronous model, <CC> 

significantly increased from ongoing to transient (<CC> = 0.002 ongoing, 0.033 transient, P = 1.5 

x 10-4 ongoing-transient comparison, Wilcoxon signed-rank test, Supplementary Fig. 4.7b), 

although the change was much smaller than in the synchronous model (Fig. 4.5d).  And in sharp 

contrast to the synchronous model, synaptic adaptation did not have a significant impact on <CC> 

(<CC> = 0.028 steady-state, P = 0.48, Wilcoxon signed-rank test).  Thus, gamma-band membrane 

potential correlated variability in the model network is inextricably linked to network spike rate 

oscillations. 

Network oscillations determine synaptic input correlations 
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 As described in the Results and Discussion sections, membrane potential correlations are 

strongly influenced by correlations in synaptic inputs.  As such, we investigated correlated 

variability between excitatory (ge-ge CC), and inhibitory (gi-gi CC) synaptic conductances for pairs 

of excitatory neurons in the model network, as well as correlations between excitatory and 

inhibitory conductances (ge-gi CC).  Because CC can be shaped by the lag between excitation and 

inhibition, we calculated g-g CC as a function of lag.  To better understand how these are shaped 

by network oscillations, we did this for the synchronous and asynchronous models (described 

above), using 40 pairs generated from 20 neurons randomly-selected from the entire network.  For 

the synchronous model, we used the same neurons and trials as in the Results section. 

 For both models, ge-ge <CC> was relatively small during both the transient and steady-

state epochs (and larger for the synchronous than asynchronous model, Supplementary Fig. 4.8a).  

In contrast, gi-gi CC was large for both models (and larger for the synchronous model), and only 

decreased slightly from transient to steady-state (Supplementary Fig. 4.8b).  The disparity 

between correlations for these two conductance types likely reflects the stronger, more densely 

interconnected, and spatially-independent inhibitory synapses (see Methods), and is consistent 

with earlier experimental recordings of excitatory and inhibitory conductances during gamma 

oscillations(Hasenstaub et al., 2005; Oren, Mann, Paulsen, Ha, & Hájos, 2006).   

Strong gi-gi (and/or ge-ge) correlations alone are not sufficient to guarantee large membrane 

potential correlations; if excitation and inhibition are perfectly phase-locked, they will cancel at 

the level of the membrane potential, resulting in small membrane potential correlations.  In the 

synchronous model, ge-gi CC was large, and peaked at -6 ms (Supplementary Fig. 4.8c, d, left), 

indicating a lag between the two conductances.  In the asynchronous model, ge-gi CC was smaller, 

and peaked instead at -2 ms (Supplementary Fig. 4.8c, d, right). 
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The dynamics of correlated variability in the synchronous model can thus be understood in 

the context of synaptic inputs.  During the transient epoch, excitatory inputs to pairs of neurons 

are weakly, but significantly correlated.  Inhibitory inputs are much more strongly correlated with 

one another, and also with the excitatory inputs.  Crucially, the lag between excitation and 

inhibition allows for a “window of opportunity” during each cycle of the oscillation in which ge-

ge and gi-gi correlations are independently manifested in pairs of membrane potentials.  During the 

steady-state, correlations between inhibitory inputs and between inhibitory and excitatory inputs 

are only moderately reduced.  However, correlations between excitatory inputs have decreased to 

near zero for many pairs, and thus V-V correlations across the population decrease significantly. 

The distance-dependence of correlated variability reflects the spatiotemporal dynamics of network 

spiking 

 The results in the main text were calculated for forty pairs generated from 20 neurons 

randomly-selected from the entire network of 800 excitatory neurons.  We tested the dependence 

of CC dynamics on average distance between neurons by repeating the analysis for 20 neurons 

randomly-selected from a group of 100 neighboring neurons (Supplementary Fig. 4.9b, top), and 

also for 20 neighboring neurons (Supplementary Fig. 4.9c, top). 

 For pairs from the group of 100 neurons, evoked <CC> was larger than when neurons were 

selected from the entire excitatory network (<CC> = 0.192 transient, 0.144 steady-state, 

Supplementary Fig. 4.9b, bottom).  Values were larger still for pairs generated from 20 

neighboring neurons (<CC> = 0.294 transient, 0.237 steady-state, Supplementary Fig. 4.9c, 

bottom).  In addition, across-population CC variability for a given evoked epoch decreased with 

pool size.  Interestingly, the modulation of <CC> by adaptation (that is, the proportional decrease 
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in <CC> from transient to steady-state) also decreased: <CC> decreased by 31.5% for neurons 

selected from the entire excitatory network, by 25% for those selected from the group of 100, and 

by 19% for the group of 20.  This reflected the spatiotemporal dynamics of network spiking 

activity.  During the transient epoch, spiking activity tended to be correlated across the network 

(thus increasing CC even for pairs of neurons separated by large distances).  While adaptation 

reduced network spiking levels and correlated spiking generally, brief episodes of coherent spiking 

activity often appeared during the steady-state, during which spiking was far more correlated 

among nearby neurons than across the population (Supplementary Fig. 4.9a).  Thus, correlated 

variability decreased from transient to steady-state for most pairs, but was more strongly 

diminished for distant pairs. 

 

 

 

 

 

 



162 

 

 

 

 

Supplementary Figure 4.6  Residual membrane potential relative power spectrum peaks reflect 

network spike rate oscillations. (a – b) Synchronous model.  (c-d) Asynchronous model.  (a) Top: 

relative power (evoked divided by ongoing) in residual membrane potential traces for one 

randomly-selected model neuron for the transient (blue) and steady-state (green) epochs.  Bottom: 

power in network spike rate for the transient (blue) and steady-state (green) epochs.  Dark lines 

indicate across-trial averages, bands indicate 95% confidence intervals (via bootstrapping, see 

Methods).  (b) Same as in Fig. 4.5a, but for 20 randomly-selected pairs from SWA model.  (c - d) 

Same as (a – b), but for AWA model. 
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Supplementary Figure 4.7  Network spike rate oscillations increase gamma-band membrane 

potential correlated variability, and synaptic adaptation reduces correlated variability by abolishing 

these oscillations.  (a) Same as in Fig. 4.5d, but for synchronous model without synaptic 

adaptation.  Removing synaptic depression causes oscillations to become increasingly coherent, 

and correlated variability increases further from transient to steady-state.   (b)  Same as in (a), but 

for asynchronous model with synaptic adaptation.  In the absence of network oscillations, the 

initial increase in correlated variability is much smaller, and CC does not decrease significantly 

from transient to steady-state, despite synaptic depression. 
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Supplementary Figure 4.8 Network oscillations shape synaptic input correlated variability.  (a – 

c) Correlated variability of synaptic conductances as a function of lag for the transient (blue) and 

steady-state (green) epochs, for the synchronous (left) and asynchronous (right) models (average 

+/- standard deviation, with average taken over trials and pairs, and standard deviation taken over 

pairs).  Results calculated for inputs to forty pairs generated from twenty neurons randomly-

selected from 800 excitatory neurons.  Correlated variability is calculated for pairs of excitatory 

(a) and inhibitory (b) synaptic conductances, and for excitatory-inhibitory synaptic conductance 

pairs (c).  (d) Close-up view of (c).  Red lines indicate maximum transient CC values, and lag at 

which the maxima occur.  In general, synaptic conductance correlations are stronger (have larger 

maximum amplitude) in the synchronous model.  Crucial to membrane potential correlations is the 

larger excitatory lag in the synchronous model (6 ms vs. 2 ms, (d)). 
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Supplementary Figure 4.9 The distance-dependence of V-V CC reflects the spatiotemporal 

dynamics of network spiking.  (a) Evoked spiking activity for all 800 excitatory neurons (arranged 

in order of neuron number, or location in network) for one trial.  Blue and green regions indicate 

transient and steady-state epochs, respectively.  Scale bar indicates 200 ms.  (b) Top: twenty 

neurons were randomly-selected from 100 neighboring neurons in the network.  Bottom: Same as 

in Fig. 4.5d, but for neurons selected from cluster of 100.  (c) Top: twenty neighboring neurons 

were selected from the network.  Bottom: Same as in Fig. 4.5d, but pairs generated from 20 

neighboring neurons.   
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4.5.6 Supplementary Information 6: Use of “test neurons” to calculate 

correlated variability in a model network 

Individual neurons in our model network had much higher post-stimulus spike rates than 

those recorded in experiment.  Because of the limited network size, this higher spike rate was 

necessary to generate large avalanches of activity.  That is, a large number of synaptic inputs were 

required to bring a neuron to spike threshold, and in this small network, those inputs necessarily 

came from a larger percentage of the total network than in a more realistic sparse-spiking network.  

This is a common issue with small LIF networks(Abbott & Dayan, 2001).  Importantly, this higher 

spike rate has implications for calculating V-V correlated variability: replacing spikes requires 

interpolation, which tends to mask synaptic inputs. 

 We sought to avoid this issue while maintaining reasonable simulation times.  Therefore, 

to calculate CC for a pair of neurons in this network, we fed re-scaled versions of the synaptic 

conductances to “test” LIF pairs.  Specifically, all conductances were multiplied by 0.75.  In 

addition, the spike threshold of test neurons was -30 mV (vs. -40 mV in network neurons), thus 

reducing the probability to spike.  Test neurons were identical to network neurons in all other 

respects.  Thus, test neurons subsampled network spiking activity without reaching action potential 

threshold.  All reported CC values for the model were calculated using such test pairs.  In this way, 

each neuron in the model network can be thought to represent the net spiking output of a small 

cluster of neurons in a large, more sparse-spiking network.  This implicitly assumes that individual 

cortical neurons fire sparsely and variably across trials, but clusters of such neurons are more 

reliable.  We have (unpublished) MEA data that loosely supports this assumption.  Specifically, a 

given stimulus presentation tends to evoke a rhythmic LFP oscillation at a given electrode 
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(suggesting synchronous activity near the electrode tip), yet spikes recorded from the same 

electrode (corresponding only to neurons very near the electrode) are sparse when present.  In 

addition, the receptive field defined by spiking activity tends to be correlated with that defined by 

the LFP, suggesting that each sparse-spiking unit in the cluster follows a similar dynamic when 

spiking.  This is consistent with a picture of a relatively reliable cluster of neurons composed of 

sparse-spiking and less reliable individual units.  This is a common experimental observation, and 

is captured by LIF network models such as the ones used in this study(Brunel & Wang, 2003). 
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Chapter 5 

 

The coupling of synaptic inputs to local 

cortical activity differs among pyramidal 

neurons and adapts following stimulus onset 

 

Cortical activity contributes significantly to the high variability of sensory responses of 

interconnected pyramidal neurons, which has crucial implications for sensory coding.  Yet, 

largely because of technical limitations of in vivo intracellular recordings, the coupling of a 

pyramidal neuron’s synaptic inputs to the local cortical activity has evaded full 

understanding.  Here, we obtained excitatory synaptic conductance (g) measurements from 

pyramidal neurons and local field potential (LFP) recordings from adjacent cortical circuits 

during visual processing.  We found a range of g-LFP coupling across pyramidal neurons. 

Importantly, for a given neuron, g-LFP coupling increased at stimulus onset, and then relaxed 

towards intermediate values during continued visual stimulation with naturalistic movies. A 

model network with connectivity structure and synaptic depression reproduced both the diversity 

and the dynamics of g-LFP coupling.  In conclusion, these results establish a rich dependence of 

single-neuron responses on anatomical, synaptic, and emergent network properties.  

 

5.1 Introduction 
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Cortical neuron sensory responses are remarkably variable across trials(Britten, Shadlen, 

Newsome, & Movshon, 1993; Carandini, 2004; Scholvinck, Saleem, Benucci, Harris, & 

Carandini, 2015).  Because this variability tends to be correlated between pairs of nearby neurons 

(see Kohen, Cohn 2011 and Doiron, et al. 2016 for reviews), it likely influences population coding 

of sensory information(Abbott & Dayan, 1999; Averbeck, Latham, & Pouget, 2006; Shadlen & 

Newsome, 1998).  With advances in recording techniques, it has become increasingly obvious that 

single-neuron variability reflects fluctuations that are shared across large regions of cortex(Lin, 

Okun, Carandini, & Harris, 2015; Okun et al., 2015; Scholvinck et al., 2015).  That is, sensory 

input interacts with intrinsic cortical activity, with global cortical fluctuations influencing single-

neuron responses.  Appropriately, a recent study has introduced the term “population coupling” to 

describe this relationship(Okun et al., 2015).  This and other studies have shown that the coupling 

of spiking activity is remarkably diverse across neurons (likely reflecting connectivity(Okun et al., 

2015; Pernice, Staude, Cardanobile, & Rotter, 2011)), yet can also change with sensory 

stimulation(Haider, Schulz, & Carandini, 2016; Tan, Chen, Scholl, Seidemann, & Priebe, 2014) 

and network state(Haider, Schulz, & Carandini, 2016; Okun et al., 2015; Scholvinck et al., 2015).  

Moreover, the effects of this globally-derived input (i.e., additive vs. multiplicative response gain) 

may reflect specific mechanisms by which feedback exerts its influence on the response(Larkum, 

2013; Reynolds & Heeger, 2009).  This rich dependence of single-neuron responses on anatomical 

and emergent network properties appears to represent a fundamental principle of cortical function, 

and is only beginning to be explored.  Here, we investigate three questions vital to a better 

understanding of cortical variability and its effects on sensory coding.  (1) What is the nature of 

response variability in cortical microcircuits?  (2) How strongly are single-neuron synaptic input 

fluctuations coupled with those of the local population? (3) To what degree are the dynamics of 
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response variability and population coupling determined by the cortical network, and what are the 

relevant network parameters?   

While spike-based studies have yielded many important insights, this approach has two 

inherent shortcomings.  First, it excludes the vast majority neurons, which are sparse-

spiking(Henze et al., 2015; O’Connor, Peron, Huber, & Svoboda, 2010; Shoham, O’Connor, & 

Segev, 2006; Thompson & Best, 1989) and therefore yield unreliable statistics for the analysis of 

correlated variability(Cohen & Kohn, 2011) (Figure 5.1a, b).  Second, it involves sampling 

populations of neurons that are visible to the experimentalist, but which may not represent relevant 

or complete cortical microcircuits.  Patch clamp recordings of synaptic inputs represent one 

solution to these two problems(Shoham et al., 2006).  First, when the recorded neuron is viewed 

as a component member of the network, the subthreshold inputs provide a measure of activity that 

is agnostic to output spike rate.  A second perspective, motivated by anatomical connectivity, 

recognizes the neuron as a “device” that samples an enormous and extremely relevant pool of 

presynaptic neurons.  Thus, subthreshold recordings allow the experimenter to “tap into” the 

cortical circuitry itself, and infer response properties (e.g., variability) of these large 

populations(Ikegaya, Aaron, Cossart, Aronov, & Lampl, 2004; MacLean, Watson, Aaron, & 

Yuste, 2005; Mokeichev et al., 2007) (Figure 5.1a, b).  Despite the potential of this technique, it 

is rarely implemented in vivo; it is difficult to obtain stable patch clamp recordings of cortical 

sensory responses, and spatially-extended cortical pyramidal neurons confound the interpretation 

of voltage clamp data(Armstrong & Gilly, 1992; Koch, 2004; Spruston, Jaffe, Williams, & 

Johnston, 1993).  Here, we overcome these challenges to address the first two questions above.  

First, we recorded subthreshold membrane potential visual responses from cortical pyramidal 
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Figure 5.1.  Individual neurons subsample the cortex, and provide a spike-rate-independent 

measure of cortical sensory responses.  (a) Cortical neurons are primarily sparse-spiking units 

(low opacity circles), and each neuron subsamples the cortex by receiving synaptic inputs from a 

large, biologically relevant subpopulation.  (b) While high-spike-rate neurons (high opacity 

rasters) alone provide reliable statistics for analysis of spiking responses, the subthreshold 

activity of a randomly-selected neuron (e.g., red voltage trace corresponding to red rasters) 

communicates information about the time course of presynaptic spiking activity.  (c) Left: We 

recorded the subthreshold membrane potentials of cortical pyramidal neurons, as well as the 

nearby local field potential (LFP) while presenting movies to the retina in the turtle eye-attached 

wholebrain ex vivo preparation.  Right: We used an algorithm (see Methods) to infer the 

excitatory synaptic conductance (g) from V, which gave a more detailed view of synaptic 

activity (inset).  We investigated the nature of the variability in g, and its coupling with that of 

the simultaneously-recorded LFP. 
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neurons in the turtle eye-attached wholebrain ex vivo preparation (Figure 5.1c).  We then applied 

a recently-developed algorithm(Yaşar et al., 2016) to infer the excitatory synaptic conductance (g) 

from V (Figure 5.1c), and analyzed the response variability in g.  Finally, we calculated the 

correlated variability for g and the nearby local field potential (LFP).  We found that visual 

stimulation evoked significant increases in g and LFP variability.  The variability was typically 

large relative to the average response, and was a mix of multiplicative and additive noise.  Across 

the population of cells, g-LFP correlated variability (CC) was highly variable, and transiently 

increased with visual stimulation.  

We addressed the third question by implementing a small-world network of leaky 

integrate-and-fire neurons, subject to Poisson process external inputs and synaptic depression with 

recovery.  This model reproduces three experimentally-observed aspects of evoked activity: large 

across-trial response variability, diverse g-LFP coupling across populations of nearby neurons, and 

the evoked coupling dynamic.  These response properties are largely determined by the distribution 

of synaptic weights and the network state, which is highly sensitive to such network parameters as 

spatial clustering, synaptic time constants, and adaptation.  

Together, our results provide a clearer picture of the subthreshold coordination dynamics 

corresponding to suprathreshold response variability and population coupling in cortex.  Moreover, 

they implicate specific anatomical and emergent network properties that shape cortical variability 

and coordination during sensory processing. 

5.2 Results 

5.2.1 Visual stimulation increases synaptic and local population activity 
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To quantify the response variability of synaptic inputs and its coupling with that of the 

local population, we recorded the membrane potential (V) from 39 pyramidal neurons in visual 

cortex of the turtle ex vivo eye-attached whole-brain preparation during visual stimulation of the 

retina (Figure 5.1c).  For 21 of these neurons, we also recorded the nearby LFP, which has been 

shown to be a reliable estimator of local synaptic activity(Haider, Schulz, Häusser, & Carandini, 

2016).  We then used a recently-developed algorithm(Yaşar et al., 2016) to estimate the excitatory 

synaptic conductance (g) from V (Figure 5.1d, and see Methods).   

Ongoing activity in turtle visual cortex was relatively quiescent, typically with infrequent 

postsynaptic potentials at the level of the membrane potential, and little to no baseline LFP activity 

(Figure 5.1d, 2a).  On a minority of trials, this quiescent activity was interrupted by spontaneous 

“bursts” of activity lasting up to hundreds of milliseconds that were qualitatively similar to visual 

responses (Figure 5.2a, d).  Visual stimulation evoked barrages of postsynaptic potentials, and 

large fluctuations in the nearby LFP (Figure 5.1d, 2a), with orders-of-magnitude increases in 

average power for both g and LFP (population-averaged relative power <rP> = 3632.7 ± 3538.0, 

mean ± s.e.m., Figure 5.2b, c, <rPLFP> = 1902.9 ± 1350.7, data not shown, transient).  Response 

amplitudes (Figure 5.2a) and power (Figure 5.2b, c) decreased from transient to steady-state, 

despite persistent visual stimulation (<rP> = 1251.9 ± 962.5, steady-state; P = 6.06 x 10-8  for 

transient – steady-state comparison, Wilcoxon signed-rank test; <rPLFP> = 557.9 ± 449.1, steady-

state; P = 1.2 x 10-3  for transient – steady-state comparison, Wilcoxon signed-rank test).   
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Figure 5.2.  Visual stimulation evokes increases in synaptic activity, and responses are highly 

variable across trials.  (a) Inferred excitatory synaptic conductance (g, red) and measured LFP 

(black) for three trials (low opacity), and average across 32 trials (high opacity).  Colors indicate 

ongoing (yellow), transient (blue), and steady-state (green) epochs (see Results and Methods).  

(b) Relative power spectra (mean ± bootstrap intervals, see Methods) for g (top) and LFP 

(bottom) for transient (blue) and steady-state (green) epochs, for example pair in (a).  (c) Total 

relative power (1 – 100 Hz) for 39 cells.  Each blue (green) dot represents the across-trial mean 

relative power for one cell during the transient (steady-state) epoch.  High opacity lines 

connecting dots indicate significant change across epochs (P < 0.05, bootstrap comparison test, 

see Methods).  Asterisks above line connecting epochs indicate P < 1 x 10-3 (Wilcoxon signed-

rank test).  (d) Close-up view of ongoing (left) and evoked (right) synaptic activity.  (e) 

Coefficient of variation (CV) as a function of time for 39 cells (mean ± s.e.m.).  Dashed line 

indicates CV = 1.0. 
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5.2.2 Visual responses are highly variable across trials 

 For a given cell and nearby LFP, the across-trial average responses to a given stimulus 

displayed clear temporal structure (Figure 5.2a).  Still, responses were highly variable across 

stimulus presentations; single-trial fluctuations were large relative to the mean response, with the 

across-trial variability increasing along with the across-trial average activity (Figure 5.2a, d).  To 

determine the relationship between the variability and the average response, we calculated the 

scaled variability, or coefficient of variation (CV), as a function of time, for the population of all 

cells (see Methods).  While variability of evoked activity was larger than that of ongoing activity 

(Figure 5.2d), the population-averaged CV (<CV>) decreased after stimulus onset, and slowly 

recovered (Figure 5.2e).  Using the windows of activity defined above, we found that this initial 

decrease was significant (<CV> = 1.83 ± 0.13 ongoing, 0.22 ± 0.04 transient, P = 1.74 x 10-16 for 

ongoing – transient comparison, Wilcoxon signed-rank test), and that <CV> increased 

significantly from transient to steady-state (<CV> =, 0.36 ± 0.06 steady-state, P = 1.74 x 10-16 for 

transient – steady-state comparison, Wilcoxon signed-rank test), but remained significantly 

smaller than during ongoing activity (P = 1.74 x 10-16 for ongoing – steady-state comparison, 

Wilcoxon signed-rank test). 

5.2.3 Additive and multiplicative noise contribute to response variability 

 We next investigated the nature of this single-trial variability.  Even when a single-trial 

response deviates significantly from the mean response, it may follow a very similar (or in the 

extreme case, an identical) time course.  This would indicate a high degree of “multiplicative 

noise”: a uniform modulation of the presynaptic population’s sensory response.  Alternatively, in 
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the case of purely “additive noise”, the single-trial time series fluctuates randomly about the 

average, consistent with noise amplitudes that vary across members of the presynaptic population. 

 To address this question, we first binned each single-trial inferred conductance (summing 

over 100 ms bins, resulting in 𝑔̃), and then calculated the across-trial average binned conductance 

(〈𝑔̃〉𝑡𝑟𝑖𝑎𝑙𝑠, Figure 5.3a, and see Methods).  By visual inspection, it was evident that individual 

responses contained both additive and multiplicative noise (Figure 5.3a).  For example, a typical 

response that was somewhat “enveloped” by the average time course (indicating multiplicative 

noise) also tended to possess small, random fluctuations about the mean, or in some instances 

larger deviations away from the mean (Figure 5.3a, trial 3, steady-state epoch), examples of 

additive noise.  To quantify the contributions of each component, we regressed 𝑔̃ onto 〈𝑔̃〉𝑡𝑟𝑖𝑎𝑙𝑠 

for each trial, and took the across-trial median R2 value for each cell and epoch.  For a given cell, 

the across-trial average was a relatively poor predictor of the single-trial response (see example 

cell in Fig 3b); across the population, the average response explained only 28.1 ± 13.9% of the 

variance in individual trials for the transient epoch (across-cell average explained variance <R2> 

= 0.28 ± 0.14, Figure 5.3c).  The explained variance was even lower during the steady-state (<R2> 

= 0.17 ± 0.15, Figure 5.3c), decreasing significantly from that of the transient epoch (P = 1.5 x 

10-3 for transient – steady-state comparison, Wilcoxon signed-rank test).  Evidently, single-trial 

responses contained substantial amounts of both multiplicative and additive noise, with additive 

noise dominating.  In addition, the reliability of a single-trial response (as measured by its 

relationship to the across-trial average) diminished over the duration of the response. 
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Figure 5.3.  Single-trial variability is a mix of additive and multiplicative noise.  (a) Inferred 

excitatory synaptic conductance, integrated over a 50 ms sliding window (with no overlap) for 

individual trials (high opacity), and across-trial average (low opacity, see Methods).  (b) Across-

trial distribution of R2 values resulting from linear regression of single-trial response onto 

average response for ongoing (left), transient (center), and steady-state (right) epochs.  Red 

vertical lines indicate medians.  (c)  Across-trial median R2 values for 39 cells, for each epoch.  

Dot colors, connecting line opacities, and asterisks as in 2(b), with ** indicating 0.001 ≤ 𝑃 <
0.01, Wilcoxon signed-rank test. 
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5.2.4 Correlated variability amplitude transiently increases following visual stimulation 

 Single-neuron response variability of this magnitude has the potential to profoundly 

influence sensory coding, provided it is significantly coupled across a population of 

neurons(Abbott & Dayan, 1999; Averbeck et al., 2006; Shadlen & Newsome, 1998).  We 

quantified this “population coupling” for 21 cells by calculating the single-trial residual responses 

for the estimated conductance (gr, the single-trial time series with the across-trial average time 

series subtracted) and the nearby LFP (Figure 5.4a) and calculating the Pearson correlation 

coefficient for residual pairs for each trial and epoch (see Methods).   

For a given stimulus condition, the trial-averaged correlation coefficient (CC) was broadly 

distributed across the population (Figure 5.4b).  During ongoing activity, CC was significantly 

nonzero for seven of 21 pairs (P < 0.05, comparison to shuffled data using Wilcoxon signed-rank 

test, see Methods).  With visual stimulation, the population of pairs became more anti-correlated 

(Figure 5.4b); CC amplitudes increased significantly for 10 pairs (P < 0.05, across-epoch 

bootstrap comparison) and the population average decreased significantly (such that the amplitude 

increased; <CC> = 0.009 ± 0.04 ongoing, P = 0.50 for comparison to shuffled data; <CC> =  -

0.07 ± 0.04 transient, P = 1.1 x 10-4 for comparison to shuffled data; P = 1.9 x 10-4 for ongoing – 

transient comparison, Wilcoxon signed-rank test, Figure 5.4b, 4c, top).  During this transient 

epoch, CC was significantly nonzero for 14 pairs (P < 0.05, comparison to shuffled data). This 

elevated level of coordination soon relaxed: from transient to steady-state, CC amplitudes 

significantly decreased for 5 pairs (P < 0.05, across-epoch bootstrap comparison), such that CC 

was significantly nonzero for 7 pairs (P < 0.05, comparison to shuffled data), and the population 

average increased significantly toward zero (<CC> = -0.02 ± 0.05 steady-state, P = 0.005 for 
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Figure 5.4.  Synaptic input correlated variability transiently increases with visual stimulation.  

(a) Residual traces for g (red) and LFP (black) for multiple trials.  (b) Across-trial average 

Pearson correlation coefficient for g and LFP residual traces, for 21 g-LFP pairs.  Each dot 

indicates the across-trial average CC value for a given g-LFP pair.  Filled dots indicate 

significant average values (P < 0.05, bootstrap comparison to shuffled data, see Methods).  

Connecting lines and asterisks as in 3(c), with * indicating 0.01 ≤ 𝑃 < 0.05, Wilcoxon signed-

rank test.  (c) Top: Distribution of change in across-trial average CC values (multipled by -1) 

from ongoing to transient, for 21 g-LFP pairs (with results for shuffled data shown in gray).  

Bottom: same, but for transient to steady-state.  (d) Absolute value of across-trial average CC for 

V and LFP vs. that for g and LFP for 21 cell-LFP pairs, for the ongoing (left), transient (center), 

and steady-state (right) epochs.  Dashed line is unity line, and red line indicates significant linear 

regression fit.  V-LFP |CC| values were significantly larger than g-LFP |CC| values for all epochs 

(P = 8.86 x 10-5 ongoing, P = 2.2 x 10-3 transient, P = 8.9 x 10-5 steady-state, Wilcoxon signed-

rank test).  Values were significantly related for the ongoing (r2 = 0.31, P = 0.01 linear 

regression) and transient (r2 = 0.40, P = 0.0029) epochs, but not the steady-state (r2 = 0.18, P = 

0.06). 
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transient – steady-state comparison, Wilcoxon signed-rank test) to values that were not significant 

across the population (P = 0.11 for comparison to shuffled data, Figure 5.4b, 4c, bottom). 

These results suggest that the across-trial variability in evoked synaptic inputs to an 

individual neuron is, on average, coupled to that of other neurons in a nearby population in the 

early response phase.  Moreover, the strength of this coupling is highly variable across cells.  

Coupling is not static, however; while response reliability decreases from the early to the late phase 

of the visual response (Figure 5.3), the coupling strength does as well (Figure 5.4b, c), suggesting 

that large single-trial fluctuations in the late response are more effectively “averaged out” across 

a large population. 

5.2.5 The dynamics of g-LFP correlated variability are consistent with known excitation-inhibition 

dynamics 

 When combined with what is known of the recorded signals and excitatory-inhibitory 

dynamics, these g-LFP CC results provide a means for testing the validity of the inferred excitatory 

synaptic conductance.  First, V and LFP are both a mix of excitation and inhibition (while our 

inferred conductance excludes inhibition), so for a given cell, V-LFP CC should be larger than g-

LFP CC in a given window of activity.  Second, because excitatory currents make a large 

contribution to V and LFP, and because inhibitory currents generally tend to track excitatory 

currents(Atallah & Scanziani, 2009; Isaacson & Scanziani, 2011; Wehr & Zador, 2003), g-LFP 

CC and V-LFP CC should be related. 

Our results largely satisfied these predictions.  First, for each epoch of activity, across the 

population of cells, CC amplitudes were larger for V-LFP than for g-LFP (Figure 5.4d).  This was 

also true when V and LFP were filtered in the gamma band (thus removing the shared, slow 
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fluctuation to isolate the fast activity resulting from high-frequency synaptic inputs(Hasenstaub et 

al., 2005; Nowak, Sanchez-Vives, & McCormick, 1997; Poulet & Petersen, 2008), data not 

shown).  Second, g-LFP and V-LFP CC amplitudes were significantly related for the ongoing and 

transient epochs for both 100 Hz low-pass (Figure 5.4d) and gamma band (data not shown) 

activity.  There was also a positive relationship in the steady-state, but the trend was not significant 

(P = 0.059, Figure 5.4d, right).  As such, these results provide further evidence for the reliability 

of the estimation algorithm. 

5.2.6 Network properties shape response variability and g-LFP correlated variability 

 We next sought to infer the relative contributions to the observed response properties from 

the stimulus and the thalamocortical network.  Specifically, we asked which aspects of the 

experimentally-observed phenomena could be reproduced by a model network subject to random 

external inputs (mimicking the stimulus), and what network parameters were relevant to these 

results.   

We implemented a model network similar to that described previously (N. C. Wright, M. 

Hoseini, R. Wessel, unpublished observations, Figure 5.5a).  The network consisted of 800 

excitatory and 200 inhibitory leaky integrate-and-fire neurons.  Excitatory – to – excitatory 

connections had small-world connectivity (3%), and all other connections were random (3% 

excitatory – to – inhibitory, 20% inhibitory – to – excitatory and inhibitory – to – inhibitory).  

Nonzero synaptic weights were drawn from a beta distribution with mean value 1.0, which 

approximated the “constellation-like” connectivity in cortex(Cossell et al., 2015).  All neurons 

received Poisson process external inputs, and the stimulus was modeled as an increase in  
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Figure 5.5.  Model overview.  (a) We implemented a model network of 800 excitatory and 200 

inhibitory leaky integrate-and-fire neurons, all subject to Poisson process external inputs.  

Excitatory-excitatory connections had small-world connectivity, and all other connections were 

random.  (b) Network parameters were tuned to give spike rate oscillations in the inhibitory 

(blue) and excitatory (black) populations in response to strong external drive.  The LFP was 

modeled as the sum of synaptic currents to a subset of 100 neighboring neurons (gray region, and 

single trial in black below).  The excitatory synaptic conductance was selected for neurons near 

the geometric center of this subset (single trial in red below, corresponding to neuron indicated 

by red arrow). 
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external input rate.  The external drive was unique across neurons and trials during the ongoing 

epoch.  After stimulus onset, the external drive was a mix of two components: one that was unique 

across neurons, but identical across trials (with proportionality constant 0.75) and one that was 

unique across both neurons and trials (with proportionality constant 0.25).  Because visual 

stimulation reliably evoked strong LFP oscillations (Figure 5.2a, and see Shew, et al. 2015), we 

selected a set of synaptic rise and decay times that were consistent with network spike rate 

oscillations in response to strong external drive (Figure 5.5b).  Each synapse depressed and slowly 

recovered in response to a presynaptic spike.  We modeled the LFP as the sum of all synaptic 

currents(Atallah & Scanziani, 2009; Destexhe, 1998) to a subpopulation of 100 neighboring 

excitatory neurons.  We selected 40 neurons from the geometric center of this population for 

analysis of excitatory conductances (Figure 5.5b, and see Methods). 

As in experiment, g and LFP varied considerably across trials (Figure 5.6a), despite the 

stimulus being primarily the same across trials (see Methods).  As with our experimental data, we 

quantified the dynamics of this variability by calculating the scaled variability (CV) over time.  

The CV dynamics were determined by both the statistics of the external drive and by network 

properties.  When external drive during the ongoing epoch was sufficiently strong to cause sparse 

network spiking, CV for the total excitatory synaptic conductance to network neurons hovered 

near 1.0 (<CV> = 0.95 ± 0.25, Figure 5.6b).  This value greatly exceeded that of the external 

inputs alone (<CV> = 0.15 ± 0.09, Figure 5.6b), which was due to the highly variable distribution 

of nonzero synaptic weights (Figure 5.6c, top).  With stimulus onset, CV for external inputs 

decreased by design (to <CV> = 0.004 ± 0.01), and CV for total excitatory conductance initially 

did as well (<CV> = 0.40 ± 0.16 for transient epoch, P = 4.27 x 10-18 for ongoing – transient 

comparison, Wilcoxon signed-rank test).  This decrease in CV was due inpart to the concerted  
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Figure 5.6.  A model network qualitatively reproduces the experimental results.  (a) excitatory 

synaptic conductance for one model neuron (g, red) and nearby LFP (black) for three trials (low 

opacity), and average across 20 trials (high opacity).  Colors indicate ongoing (yellow), transient 

(blue), and steady-state (green) epochs.  Example cell is located at the geometric center of the 

pool defining the LFP (see Results and Methods).  (b-c) A qualitative reproduction of 

experimental CV(t) depended on the synaptic weight distribution, the nature of the stimulus, and 

synaptic depression. (b) Coefficient of variation (CV) as a function of time (mean ± s.e.m.) for 

40 cells randomly-selected from the network, for total excitatory synaptic conductance (black), 

and for external excitatory conductance (green). Dashed line indicates CV = 1.0.  (c) CV for 

alternate model versions.  Top: network with binary synaptic weights.  Middle: network subject 

to unique stimulus on each trial.  Bottom: network without synaptic adaptation.  Scale bar and 

dashed line same as in (b).  (d) Excitatory synaptic conductance for one model neuron, integrated 

over a 50 ms sliding window (with no overlap) for individual trials (high opacity), and across-

trial average (low opacity, see Methods).  (e) Across-trial median R2 values for 40 cells 

randomly-selected from network, for each epoch.  Dot colors, connecting line opacities, and 

asterisks as in 3(c).  (f) Residual traces for g (red) for one model neuron and nearby LFP (black) 

for multiple trials.  (g-h) A qualitative reproduction of the experimental g-LFP dynamic 

depended on the synaptic weight distribution, synaptic depression, and network oscillations. (g) 

Across-trial average Pearson correlation coefficient for g and LFP residual traces, for 40 g-LFP 

pairs (where 40 cells are selected from geometric center of pool defining LFP).  Each dot 

indicates the across-trial average CC value for a given g-LFP pair.  Filled dots indicate 

significant average values (P ≤ 0.05, bootstrap comparison to shuffled data, see Methods).  

Connecting lines and asterisks as in 5(f).  (h) Same as in (g), for alternate model versions.  Left: 

network with binary synapses (i.e., synaptic weights either 1 or 0).  Middle: network without 

synaptic depression.  Right: Asynchronous network. 
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increase in external drive, and in part to the stimulus possessing a component that was identical 

across trials (Figure 5.6c, middle).  Over the course of hundreds of milliseconds, CV for total 

excitatory conductance recovered to nearly that of the ongoing epoch (<CV> = 0.81 ± 0.17 for 

steady-state epoch, P = 1.80 x 10-16 for transient – steady-state comparison, P = 1.1 x 10-4 for 

ongoing – steady-state comparison, Wilcoxon signed-rank test), which was an exaggeration of the 

experimental scaled variability dynamic observed here (Figure 5.2e) and elsewhere(Churchland 

et al., 2010).  Synaptic depression mediated this recovery (Figure 5.6c, bottom).  Thus, CV values 

and dynamics depended on the distribution of synaptic weights, the across-trial reliability of 

external inputs, and synaptic adaptation. 

The model qualitatively reproduced the contribution of additive and multiplicative noise to 

the total response variability.  As in experiment, single-trial variability was a mix of both noise 

types (Figure 5.6d, compare to Figure 5.3a), and the relative contribution from additive noise 

increased from transient to steady-state (<R2> = 0.50 ± 0.13 ongoing, <R2> = 0.37± 0.13 steady-

state, P = 7.6 x 10-6 for transient – steady-state comparison, Wilcoxon signed-rank test, Figure 

5.6e, compare to Figure 5.3c).  This decrease in response reliability was not related to synaptic 

depression (data not shown), suggesting single trial “errors” compounded over the duration of the 

response.  Notably, the percent of single-trial variance explained by the average response in either 

epoch was smaller than the 75% predicted by the stimulus.  This surplus variability is therefore 

due to the only other source of randomness in the model: the state of the intracortical synapses at 

stimulus onset (due to the variable external drive and intracortical synaptic depression during the 

ongoing epoch, see Methods). 

As in experiment, we calculated correlated variability (CC) for g-LFP pairs (Figure 5.6f).  

The synaptic weight distribution strongly influenced g-LFP CC distributions.  For each epoch, CC 
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was broadly distributed across the population (Figure 5.6g).  While some variability is to be 

expected from such a sparsely-connected network, CC distributions were far less variable in a 

network with binary synapses (but the same average synaptic weight, Figure 5.6h, left). 

The dynamics of g-LFP CC depended on a variety of network parameters. We recently 

used a similar network to demonstrate the effects of coordinated spiking on gamma band 

membrane potential correlated variability (N. C. Wright, M. Hoseini, R. Wessel, unpublished 

observations).  Briefly, when the external drive triggers network spike rate oscillations, excitatory 

synaptic inputs to a given neuron become strongly correlated with both excitatory and inhibitory 

inputs to other neurons (with a small lag between excitation and inhibition).  This leads to strong 

membrane potential oscillations that are correlated across neurons, an effect that is not observed 

in an asynchronous driven network.  This coordination dynamic is also manifested as an increase 

in g-LFP correlated variability from the ongoing to transient epoch (<CC> = -0.12 ± 0.03 ongoing; 

<CC> = -0.27 ± 0.05 transient; P = 3.57 x 10-8 for ongoing – transient comparison, Wilcoxon 

signed-rank test Figure 5.6f).  Synaptic depression with slow recovery (see Methods) diminished 

network activity levels, and crucially, abolished large-scale coordinated spiking (Figure 5.5b).  

This had the effect of drastically reducing g-LFP CC amplitudes from transient to steady-state 

(<CC> = -0.22 ± 0.03 steady-state; P = 1.1 x 10-7 for transient – steady-state comparison, 

Wilcoxon signed-rank test, Figure 5.6g), despite persistent network activity (Figure 5.5b, 6f).  

When either synaptic depression was removed (Figure 5.6h, middle) or the network was tuned to 

remain asynchronous (Figure 5.6h, right, see Methods), changes in <CC> were much smaller 

across epochs, and did not qualitatively match the experimental results.  As such, these results 

implicate emergent network oscillations – and the corresponding relevant anatomical network 
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properties (i.e., synaptic time constants and synaptic depression) – in the determination of g-LFP 

CC dynamics. 

Taken together, the model investigation points to the cortical network as the primary 

determiner of the experimentally-observed response variability and population coupling dynamics 

of synaptic inputs.  Specifically, the model identifies synaptic clustering, time constants, and 

depression as extremely relevant anatomical properties. 

5.3 Discussion 

 To obtain a spike-rate-independent measure of single-neuron variability, and to measure 

its coupling with local population activity, we simultaneously recorded the membrane potential 

from pyramidal neurons and the nearby LFP in the turtle visual cortex during ongoing and visually-

evoked activity (Figure 5.1).  We estimated the excitatory synaptic conductance (g) from the 

membrane potential, and quantified the across-trial variability in g and correlated variability with 

the LFP.  To identify relevant cortical network mechanisms, we implemented a small-world 

network of leaky integrate-and-fire neurons subject to external drive (Figure 5.5). 

 Studies spanning several decades have described the remarkable degree of variability in 

the sensory-evoked spiking responses of cortical neurons(Britten et al., 1993; Carandini, 2004; 

Scholvinck et al., 2015).  Certain aspects of this variability suggest it is shaped by the cortex itself.  

First, cortical variability surpasses that of the inputs from LGN(Scholvinck et al., 2015).  Second, 

evoked variability, when scaled by the overall activity level, tends to be smaller than that of 

spontaneous activity across a variety of cortical areas and behavioral states, suggesting it is a 

property of large, recurrent networks(Churchland et al., 2010).  Third, single-neuron spiking 
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variability can be modeled as a mix of multiplicative and additive noise due to global cortical 

activity(Goris, Movshon, & Simoncelli, 2014; Lin et al., 2015).  Our experimental results agree 

with this “cortico-centric” view of response variability.  We observed that individual neurons 

subsampling the cortex receive excitatory synaptic inputs that are extremely variable across 

stimulus presentations (Figure 5.2a, d, Figure 5.3), with scaled variability (CV) decreasing soon 

after stimulus onset (Figure 5.2e).  The time course of the visual response revealed the presence 

of both additive and multiplicative noise in the spatiotemporal sequence of presynaptic firing 

(Figure 5.3).  Finally, across a variety of stimuli, scaled variability (Figure 5.2e) and the 

contribution from additive noise (Figure 5.3) increased from transient to steady-state.  That is, 

response reliability and the nature of the variability changed in a stimulus-independent manner.  

Each of these results was qualitatively reproduced by a model network subject to an extremely 

simple external drive (Figure 5.5, 6). 

 Partitioning synaptic input variability into additive and multiplicative noise essentially 

assigns a measure of influence to two types of network fluctuations: a uniform scaling of the entire 

presynaptic pool (i.e., multiplicative noise), and scaling that is independent across subpopulations 

within the presynaptic pool (i.e., additive noise).  Our experimental results suggest both types of 

modulation are present in visual responses, with the latter dominating at the time scale considered 

(Figure 5.3).  Moreover, the variability in the early response contains almost twice as much 

multiplicative noise as that in the late response (Figure 5.3c).  While it is possible that this dynamic 

is due to hidden, temporally variable, extracortical influences, our simple model network gave a 

similar result (Figure 5.6d, e), and points to an alternative explanation: a sensitivity to conditions 

at stimulus onset, with small deviations leading to increasingly random fluctuations about the mean 

over the duration of the response. Such chaotic dynamics are a hallmark of balanced 
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networks(Shadlen & Newsome, 1998; Vreeswijk & Sompolinsky, 1996).  While at first glance 

this seems extremely disadvantageous to sensory coding, the balanced regime has other 

advantages, including fast responses to changes in external stimuli(Vreeswijk & Sompolinsky, 

1996), effective signal propagation(Vogels & Abbott, 2005), and maximized information 

capacity(W. L. Shew, Yang, Yu, Roy, & Plenz, 2011). 

 Previous work has shown that population coupling based on spiking activity is broadly-

distributed across cells, which may reflect the degree to which a given neuron samples the local 

population(Okun et al., 2015), and the structure of that connectivity(Pernice et al., 2011).  In 

agreement with this, we found that g-LFP correlated variability was broadly-distributed across 

cells for a given stimulus condition (Figure 5.4b).  Our model results further reinforce the 

hypothesis that connectivity underlies this variability: CC distributions were broadly-distributed 

for relatively realistic, “constellation-like” synaptic weight distributions (Figure 5.6g), but 

narrowly-distributed for binary synapses (Figure 5.6h, left).  These distributions also shaped the 

dynamics of scaled variability (Figure 5.6b, c, top).  Evidently, cortical connectivity patterns are 

manifested in the response variability and coordinated variability of synaptic activity, which likely 

reflect the response properties of population spiking observed elsewhere. 

 Despite this apparent dependence on anatomical connectivity, previous work has shown 

that g-LFP coupling can increase with visual stimulation(Haider, Duque, Hasenstaub, & 

McCormick, 2006).  In agreement with this, we found that g-LFP correlated variability amplitudes 

significantly increased when we presented movies to the retina (Figure 5.4b, 4c, top).  This effect 

was short-lived, however; g-LFP CC amplitudes decreased significantly after the early response 

phase (Figure 5.4b, 4c, bottom), despite persistent synaptic and local population activity (Figure 

5.2a-c, 4a).  Was this a case of external stimuli imposing a particular coordination dynamic on the 
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cortical circuitry, or was the thalamocortical system itself capable of exhibiting multiple 

coordination “states”?  Our model results support the latter hypothesis: sufficiently strong external 

drive that is uncorrelated across neurons can trigger intrinsic network oscillations, which are 

characterized by elevated coupling of synaptic inputs, and the elevated coupling is abolished along 

with the oscillation (Figure 5.5, 6).  These results are consistent with the observation that 

spontaneous fluctuations in cortical state can influence g-LFP(Haider, Schulz, Häusser, et al., 

2016) and spike-spike(Okun et al., 2015; Scholvinck et al., 2015) population coupling.  In addition, 

this decrease in g-LFP coupling is consistent with the observed decrease in multiplicative noise 

(Figure 5.3); single-trial fluctuations become increasingly independent across neuronal 

subpopulations, which should be reflected in the nearby LFP(Deweese & Zador, 2004).  Moreover, 

our results build on this previous work by identifying specific anatomical features of cortex (e.g., 

synaptic time constants and synaptic adaptation) capable of influencing population coupling 

dynamics via emergent network phenomena. 

 According to one view of population coding, the decrease in g-LFP coupling in the late 

response may benefit cortical function: while steady-state activity is less reliable than that in the 

early response (Figure 5.2e, 3), these later fluctuations are more private, and therefore tend to 

average out across a neural ensemble(Zohary, 1994).  Our model results suggest this does not 

simply reflect a decrease in overall activity level, but rather the abolition of large-scale spike rate 

oscillations by synaptic depression (Figure 5.5b, 6).  This is consistent with the emerging view 

that adaptation (in cortex and elsewhere) serves as much more than a modulator of activity levels, 

but is in addition a “knob” for fine-tuning a variety of functionalities(Gutnisky & Dragoi, 2008; 

Ollerenshaw, Zheng, Millard, Wang, & Stanley, 2014; Woodrow L Shew, Clawson, Pobst, 

Karimipanah, & Wright, 2015; Zheng, Wang, & Stanley, 2015). 
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 One major limitation of our experimental work is the lack of direct measurements of 

inhibitory synaptic conductances, which are a key component of single-neuron and network-wide 

response properties.  Inhibition represents a significant proportion of the total synaptic input to a 

given neuron(Haider, Häusser, & Carandini, 2012), tends to be correlated across pairs of 

neurons(Hasenstaub et al., 2005), and the relative timing of excitatory and inhibitory currents may 

determine precise spike timing(Haider & McCormick, 2009; Hasenstaub et al., 2005; Nowak et 

al., 1997) and feature selectivity(Wilent & Contreras, 2005).  Furthermore, the inhibitory 

population is known to play a vital role in such emergent network phenomena as spike rate 

oscillations(Brunel & Wang, 2003), and the excitation-inhibition balance may represent a 

fundamental aspect of the cortical code(Denève & Machens, 2016).  Our experimental approach 

can be modified to investigate inhibition.  For example, excitatory conductances can be 

pharmacologically blocked, and/or the resting membrane potential of a patched neuron can be 

shifted to the excitatory reversal potential.  In this case, the algorithm would provide a temporally-

precise view of the inhibitory conductances responsible for the observed (relatively slow and 

convoluted) membrane potential deflections.  More importantly, this approach can be combined 

with multi-whole-cell recording to simultaneously infer excitatory conductances in one cell, and 

inhibitory in another, similar to studies of evoked activity in rat somatosensory cortex(Okun & 

Lampl, 2008), and spontaneous activity in rat hippocampus(Atallah & Scanziani, 2009) and mouse 

thalamocortical slice(Graupner & Reyes, 2013).  This would be particularly useful in areas such 

as visual cortex, where responses can be complex and highly variable (thus limiting the utility of 

recording excitation and inhibition from one cell on alternating trials). 

 Here, we have treated each recorded neuron as a network sub-sampler, viewing the synaptic 

inputs as a record of presynaptic spiking activity.  Of course, each neuron is also a contributing 
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member of the network. And although the relationship is complex(Carandini, 2004), the nature of 

the synaptic inputs is likely extremely relevant to that of output spiking activity(Doiron, Litwin-

Kumar, Rosenbaum, Ocker, & Josić, 2016; Litwin-Kumar, Oswald, Urban, & Doiron, 2011; 

Lyamzin et al., 2015).  We therefore hypothesize that the broad g-LFP coupling distribution 

observed here corresponds to the diverse spike-spike population coupling observed elsewhere.  A 

carefully-designed experiment can directly test this hypothesis.  For instance, the resting 

membrane potential of a recorded neuron can be systematically manipulated to support spiking in 

some trials (which can be compared to local or global spiking activity), and limit it in others (which 

would be used to calculate g-LFP coupling).  It is this ability to study both suprathreshold and 

subthreshold activity that makes whole-cell recordings so valuable in our quest to understand 

coordinated network activity(Doiron et al., 2016). 

 Taken together, our results demonstrate the highly variable nature of visually-evoked 

spatiotemporal spike patterns in cortical microcircuits.  Further, they suggest that several 

properties of this variability are largely determined intracortically, and identify specific, highly 

relevant cortical parameters.  Importantly, these cortical properties together lead to an adapted 

network state that is in many ways ideal for sensory processing.  As such, these results contribute 

to a clearer picture of the effects of anatomical and emergent network properties on single-neuron 

sensory responses and network-wide function.  

5.4 Methods 

5.4.1 Surgery 
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All procedures were approved by Washington University’s Institutional Animal Care and 

Use Committees and conform to the guidelines of the National Institutes of Health on the Care and 

Use of Laboratory Animals.  Fourteen adult red-eared sliders (Trachemys scripta elegans, 150-

1000 g) were used for this study. Turtles were anesthetized with Propofol (2mg Propofol/kg), then 

decapitated.  Dissection proceeded as described previously(Crockett, Wright, Thornquist, Ariel, & 

Wessel, 2015; Saha, Morton, Ariel, & Wessel, 2011; W. L. W. L. Shew et al., 2015).  In brief, 

immediately after decapitation, the brain was excised from the skull, with right eye intact, and 

bathed in cold extracellular saline (in mM, 85 NaCl, 2 KCl, 2 MgCl2*6H2O, 20 Dextrose, 3 CaCl2-

2H2O, 45 NaHCO3).  The dura was removed from the left cortex and right optic nerve, and the 

right eye hemisected to expose the retina.  The rostral tip of the olfactory bulb was removed, 

exposing the ventricle that spans the olfactory bulb and cortex. A cut was made along the midline 

from the rostral end of the remaining olfactory bulb to the caudal end of the cortex.  The preparation 

was then transferred to a perfusing chamber (Warner RC-27LD recording chamber mounted to 

PM-7D platform), and placed directly on a glass coverslip surrounded by Sylgard.  A final cut was 

made to the cortex (orthogonal to the previous and stopping short of the border between medial 

and lateral cortex) allowing the cortex to be pinned flat, with ventricular surface exposed. Multiple 

perfusion lines delivered extracellular saline, adjusted to pH 7.4 at room temperature, to the brain 

and retina in the recording chamber. 

5.4.2 Intracellular Recordings 

We performed whole-cell current clamp recordings from 39 cells in 14 preparations.  Patch 

pipettes (4-8 MΩ) were pulled from borosilicate glass and filled with a standard electrode solution 

(in mM; 124 KMeSO4, 2.3 CaCl2-2H2O, 1.2 MgCl2, 10 HEPES, 5 EGTA) adjusted to pH 7.4 at 

room temperature.  Cells were targeted for patching using a dual interference contrast microscope 
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(Olympus).  All cells were located within 300 microns of an extracellular recording electrode.  

Intracellular activity was collected using an Axoclamp 900A amplifier, digitized by a data 

acquisition panel (National Instruments PCIe-6321), and recorded using a custom Labview 

program (National Instruments), sampling at 10 kHz.  The visual cortex was targeted as described 

previously(W. L. W. L. Shew et al., 2015)].   

5.4.3 Extracellular Recordings 

We performed extracellular recordings at 12 recording sites in seven preparations.  We 

used tungsten microelectrodes (MicroProbes heat treated tapered tip), with approximately 0.5 MΩ 

impedance.  Electrodes were slowly advanced through tissue under visual guidance using a 

manipulator (Narishige), while monitoring for spiking activity using custom acquisition software 

(National Instruments).  Extracellular activity was collected using an A-M Systems Model 1800 

amplifier, band-pass filtered between 1 Hz and 20,000 Hz, digitized (NI PCIe-6231), and recorded 

using custom software (National Instruments), sampling at 10 kHz. 

5.4.4 Visual Stimulation 

The visual stimulation protocol has been described previously (N. C. Wright, M. Hoseini, 

R. Wessel, unpublished observations).  Briefly, visual stimuli were presented using a projector 

(Aaxa Technologies, P4X Pico Projector), combined with a system of lenses (Edmund Optics) to 

project images generated by a custom software package directly onto the retina.  The stimulus was 

either a sustained gray screen, a naturalistic movie (“catcam”), a motion-enhanced movie (courtesy 

Jack Gallant), or a phase-shuffled version of the same movie (courtesy Jack Gallant and Woodrow 

Shew).   In all cases, the stimulus was triggered using a custom Labview program (National 

Instruments).  



199 

 

For each cell and extracellular recording site, we selected one of the four stimuli listed 

above to present across all trials.  The preparation was in complete darkness before and after each 

stimulus presentation.  Stimuli lasted either 10 s or 20 s, and were shown at least 12 times, with at 

least 30 s between the end of one presentation and the beginning of the next. 

5.4.5 Processing of intracellular and extracellular voltage recordings 

Raw data traces were down-sampled to 1000 Hz.  We used an algorithm to detect spikes in 

the membrane potential, and the values in a 20 ms window centered on the maximum of each spike 

were replaced via interpolation.  Finally, we applied a 100 Hz lowpass Butterworth filter.  For 

extracellular recordings, we used a sine-wave removal algorithm to minimize 60 Hz line noise. 

5.4.6 Data included in analysis 

For each extracellular recording site, we used visual inspection to determine the quality of 

the recordings.  In general, we excluded recording sites from consideration if voltage traces 

displayed excessive 60 Hz line noise, low-frequency noise (likely reflecting a damaged electrode), 

or on average small response amplitudes relative to baseline. 

 For intracellular recordings, we also excluded some trials and cells.  To include a given 

trial, we required the membrane potential to remain at or above the calculated inhibitory reversal 

potential from the beginning of the ongoing epoch to the end of the steady-state epoch.  The 

inhibitory reversal potential was calculated using the Chloride concentrations in the intracellular 

and extracellular solutions, but because of partial transfer of intracellular solution to the cell 

interior, it was possible for the recorded membrane potential to drop below this value.  This causes 

the conductance estimation algorithm to return a singularity.  Rather than reset the inhibitory 
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reversal potential to the minimum membrane potential value for such a trial, we took the more 

conservative approach of excluding the trial from consideration.  We also excluded trials with 

excessive low-frequency artifacts or membrane potential drift.  Finally, we considered only cells 

with twelve or more retained trials for analysis. 

In some cases, an extracellular electrode remained at a single recording site while we 

performed whole-cell recordings either simultaneously or sequentially from multiple nearby cells.  

To calculate CC for a given g-LFP pair, we included only the trials in which both the intracellular 

and extracellular voltage were recorded and retained.  

5.4.7 Inferred excitatory conductance 

 The algorithm for obtaining an estimated excitatory synaptic conductance (g) from V for 

single trials has been described previously(Yaşar et al., 2016).  Briefly, our algorithm approximates 

a solution to the underdetermined equation 

0 = 𝐶
𝑑𝑉(𝑡)

𝑑𝑡
+ 𝑔𝑙(𝑉(𝑡) − 𝐸𝑙) + 𝑔𝑒(𝑡)(𝑉(𝑡) −  𝐸𝑒) +  𝑔𝑖(𝑡)(𝑉(𝑡) − 𝐸𝑖) 

where C is the known membrane capacitance, 𝑉(𝑡) is the measured membrane potential as a 

function of time, 𝐸𝑒 (𝐸𝑖) is the known excitatory (inhibitory) reversal potential, 𝐸𝑙 is the known 

leak reversal potential, 𝑔𝑙 is the known leak conductance, and 𝑔𝑒(𝑡) (𝑔𝑖(𝑡)) is the unknown 

excitatory (inhibitory) synaptic conductance.  To estimate 𝑔𝑒(𝑡), we first introduce a mathematical 

construct 𝜂(𝑡), which is defined according to 

0 = 𝐶
𝑑𝑉(𝑡)

𝑑𝑡
+ 𝑔𝑙(𝑉(𝑡) − 𝐸𝑙) +  𝜂(𝑡)(𝑉(𝑡) − 𝐸𝑖). 
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For each recording, we solve this equation for 𝜂(𝑡).  This attributes all membrane potential 

fluctuations to a single (unrealistic) inhibitory conductance.  As such, 𝜂(𝑡) contains negative 

values and rapid downward fluctuations that are due to the influence of excitatory currents on the 

membrane potential.  Because conductance cannot have negative values, we then set the negative 

values in 𝜂(𝑡) equal to zero, resulting in 𝜂̃(𝑡) (previously called “non-negative 𝜂(𝑡))”.  Next, we 

use linear interpolation to smooth out the rapid fluctuations in 𝜂̃(𝑡).  The output of this smoothing 

process is 𝜉(𝑡), a smoother and therefore more realistic estimation of the inhibitory synaptic 

conductance.  Finally, we substitute 𝜉(𝑡) into the equation 

0 = 𝐶
𝑑𝑉(𝑡)

𝑑𝑡
+ 𝑔𝑙(𝑉(𝑡) − 𝐸𝑙) + 𝑔(𝑡)(𝑉(𝑡) −  𝐸𝑒) +  𝜉(𝑡)(𝑉(𝑡) − 𝐸𝑖) 

to obtain an estimation of the excitatory synaptic conductance (g).  In general, this algorithm 

sacrifices knowledge about the inhibitory conductance to gain a better estimation of the excitatory 

conductance.  Further, it capitalizes on the fact that excitatory currents are faster than – and 

therefore tend to interrupt – inhibitory currents. 

 We have made several improvements to the algorithm since introducing it.  The original 

algorithm worked remarkably well on simulated membrane potentials.  A recorded membrane 

potential, however, will contain high-frequency noise, which is removed by filtering (with, e.g., a 

100 Hz Butterworth low-pass filter).  This filtering process also leads to a smoother 𝜂̃(𝑡).  As 

mentioned above, detecting fast fluctuations in this signal is a critical step in the estimation 

process, and the algorithm’s performance was thus compromised by the filter (as evidenced by its 

application to filtered, noisy simulated membrane potentials).  We therefore revised the criteria for 

detecting and replacing rapid fluctuations in 𝜂̃(𝑡) (see Yasar, et al. 2016 for previous criteria).  

First, after calculating 𝜂̃(𝑡), we obtained the time series 𝑑(𝜂̃(𝑡))/𝑑𝑡.  We then determined each 
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time t’ at which 𝑑(𝜂̃(𝑡))/𝑑𝑡 crossed a threshold of one negative standard deviation.  This threshold 

optimized the algorithm’s performance when applied to noisy simulated data.  Finally, we linearly 

connected the local maxima of 𝜂̃(𝑡) immediately prior and posterior to t’. 

When applying the algorithm to a membrane potential recording, the experimenter must 

estimate the resting membrane potential for that trial.  An unrealistic choice will lead to spurious 

waveforms in the estimated conductance.  We estimated the resting membrane potential for each 

trial by calculating the median membrane potential value during the quiescent activity in that trial.  

To isolate this quiescent activity, we first removed a window of activity starting at stimulus onset, 

and ending 6 s after stimulus offset.  This resulted in either a 14 s or 24 s trace of “spontaneous” 

activity that was on average quiescent relative to that in the removed window.  We then used an 

algorithm to detect spontaneous “bursts” of activity lasting at least 1 s in duration within the 

remaining trace, and removed these bursts.  Finally, we took the median value (which is more 

robust to outliers than the mean) of the resulting trace to be the resting membrane potential for the 

corresponding visual stimulation trial. 

5.4.8 Coefficient of variation 

 The coefficient of variation (CV) is a scaled measure of variability: the standard deviation 

divided by the mean.  For the set of all cells (N = 39), we calculated CV as a function of time 

(CV(t), Fig 2e) for the inferred excitatory conductance.  First, we applied a 100 ms “box filter” to 

each g trace: for each time step, we replaced the value of the trace with the average value in a 100 

ms window starting at that time step.  We then advanced the window ten milliseconds, and repeated 

the process for the full length of the trace.  Then, for each cell, we calculated the across-trial 

standard deviation and mean of the filtered traces as a function of time.  This was done for the 
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entire population, resulting in 39 (mean, standard deviation) ordered pairs for each time step.  For 

each time step, we fit the set of means to the set of standard deviations using linear regression.  

The slope (standard error) of this fit was the coefficient of variation (s.e.m.) for the time step.  To 

determine the significance of a change in CV across epochs, we compared the set of all CV values 

for one epoch with that from the other (e.g., the 100 values from the ongoing epoch and the 100 

values from the transient) using the Wilcoxon signed-rank test. 

5.4.9 Correlated variability 

For each single-trial time series X, the residual (Xr or deviation from the average activity) 

was found by subtracting the across-trial average time series from the single-trial time series: 

𝑋𝑟 = 𝑋 − 〈𝑋〉𝑡𝑟𝑖𝑎𝑙𝑠 

Residuals were then separated into three epochs: the ongoing epoch (defined to be the one second 

prior to the onset of visual stimulation), the transient epoch (200 to 1200 ms after stimulus onset), 

and the steady-state epoch (1400 to 2400 ms after stimulus onset; Figure 5.4a).  For each g-LFP 

pair, the Pearson correlation between residuals was then calculated for each epoch and trial.  The 

results were averaged across all trials, resulting in the trial-averaged correlated variability (CC) for 

each pair and epoch: 

𝐶𝐶𝑒𝑝𝑜𝑐ℎ = 〈𝑐𝑜𝑣(𝑔𝑟
𝑒𝑝𝑜𝑐ℎ, 𝐿𝐹𝑃𝑟

𝑒𝑝𝑜𝑐ℎ) [𝑣𝑎𝑟(𝑔𝑟
𝑒𝑝𝑜𝑐ℎ)𝑣𝑎𝑟( 𝐿𝐹𝑃𝑟

𝑒𝑝𝑜𝑐ℎ)]1/2⁄ 〉𝑡𝑟𝑖𝑎𝑙𝑠 

 Significance tests for each pair and the population of pairs were applied as described below 

in “statistical analysis”. 

5.4.10 Power 
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For each trial and signal, we extracted a 4.4 s window of activity (with epoch windows and 

gaps between epochs as described above, plus 500 ms windows on each end to avoid filtering 

artifacts in the ongoing and steady-state epochs), and calculated the residual time series as 

described above.  For each residual trace, we performed wavelet analysis in Matlab using software 

provided by C. Torrence and G. Compo(Torrence & Compo, 1998) (available at URL: 

http://paos.colorado.edu/research/wavelets/).  This resulted in a power time series for each cell, for 

multiple frequencies.  For each frequency below 100 Hz, we averaged the time series across each 

epoch to obtain the average power at each frequency for each epoch.  We then averaged across 

trials to obtain Pepoch.  For each cell, we also obtained the relative power spectrum (rPepoch) for the 

transient and steady-state epochs, defined to be the trial-averaged evoked spectrum divided by the 

trial-averaged ongoing spectrum (Figure 5.3b): 

𝑟𝑃𝑒𝑝𝑜𝑐ℎ = 𝑃𝑒𝑝𝑜𝑐ℎ/𝑃𝑜𝑛𝑔𝑜𝑖𝑛𝑔 

For each frequency, we calculated the bootstrap interval for the relative power as described 

below in “statistical analysis”.     

5.4.11 Network Models 

 To investigate the roles of network properties in our experimental results, we 

implemented a model network of 800 excitatory and 200 inhibitory leaky-integrate-and-fire 

neurons (Figure 5.5a).  Excitatory-excitatory connections had small-world connectivity(Watts & 

Strogatz, 1998) (with 3% connection probability), and all other connections were random (with 

3% excitatory-inhibitory, and 20% inhibitory-excitatory and inhibitory-inhibitory connection 

probability).  To generate each nonzero entry in the connection weight matrix (𝑊𝑖𝑗
0) we drew a 

http://paos.colorado.edu/research/wavelets/
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value from a beta distribution (over the interval [0.0, 1.0), with average value 0.1), and 

multiplied by 10. 

The dynamics of the membrane potential (V) of each neuron evolved according to 

𝜏𝑚

𝑑𝑉

𝑑𝑡
= −𝑔𝐿[𝑉(𝑡) − 𝐸𝐿] + 𝐼𝑠𝑦𝑛(𝑡) 

where the membrane time constant τM = 50 ms (excitatory neurons), 25 ms (inhibitory), and the 

leak conductance gL = 10 nS (excitatory), 5 (inhibitory).  The leak reversal potential EL for each 

neuron was a random value between -70 and -60 mV, drawn from a Gaussian distribution (to 

model the variability in resting membrane potentials observed across neurons in the experimental 

data).  The reversal potentials for the synaptic current Isyn(t) were EGABA = -68 mV, and EAMPA = 

50 mV.  

The synaptic current for each synapse type (between presynaptic neurons of type X and 

postsynaptic neurons of type Y) had three relevant time course parameters: delay (τLX, that is, the 

lag between presynaptic spike time and beginning of conductance waveform), rise time (τRYX), 

and decay time (τDYX).  Synaptic conductances were modeled as products of time-varying gating 

variables (SYX) and maximum conductances (gYX).  Following a presynaptic spike at time 0, the 

gating variable dynamics were described by 

𝑆𝑌𝑋(𝑡) =
𝜏𝑚

𝜏𝐷𝑌𝑋 − 𝜏𝑅𝑌𝑋
[𝑒𝑥𝑝 (−

𝑡 − 𝜏𝐿𝑋

𝜏𝐷𝑌𝑋
) − 𝑒𝑥𝑝 (−

𝑡 − 𝜏𝐿𝑋

𝜏𝑅𝑌𝑋
)] 

with time constants (in ms) τLE = 1.5, τREE = 0.2, τDEE = 1.0, τRIE = 0.2, τDIE = 1.0, τLI = 1.5, τRII = 

1.5, τDII = 6.0, τREI = 1.5, τDEI = 6.0.  Maximum conductance values (in nS) were gEE = 3.0, gIE = 
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6.0, gEI = 30.0, gII = 30.0.  In response to a presynaptic spike in neuron j at time 𝑡𝑗
𝑠𝑝𝑘

, the weight 

(Wij) of a synapse connecting neurons j and i depressed and recovered according to 

𝑑𝑊𝑖𝑗

𝑑𝑡
= −

𝑊𝑖𝑗(𝑡)

𝜏𝑑𝑒𝑝𝑟𝑒𝑠𝑠
𝛿(𝑡 − 𝑡𝑗

𝑠𝑝𝑘) +
𝑊𝑖𝑗

0 − 𝑊𝑖𝑗(𝑡)

𝜏𝑟𝑒𝑐𝑜𝑣𝑒𝑟
 

 

with depression time constant τdepress = 300 ms and recovery time constant τrecover = 2500 ms.  

Intracortical synapses were subject to depression for the entire simulation. 

 The spike threshold for each neuron was -40 mV.  A neuron reset to -59 mV after 

spiking, and was refractory for 10 ms (excitatory) and 5 ms (inhibitory). 

All excitatory and inhibitory neurons received Poisson external inputs.  During “ongoing” 

activity, the external input rate to each neuron was 65 Hz, which was sufficiently high to cause 

intracortical spiking (Figure 5.5b).  The ongoing external input was unique across cells and 

trials.  The stimulus was modeled as a gradual increase to 375 Hz; the input rate was increased 

by 77.5 Hz at stimulus onset, and by an additional 77.5 Hz every 50 ms for 200 ms.  This gradual 

increase provided more realistic excitatory conductances than did a single step function stimulus, 

but did not qualitatively impact the results.  The post-stimulus external drive was composed of 

two components: one that was unique across cells and trials, and one that was unique across 

cells, but identical across trials, multiplied by proportionality constants 0.25 and 0.75, 

respectively.  Thus, for the post-stimulus external drive to each neuron, 25% of the variance was 

explained by an input that was unique to each trial, and 75% was explained by an input that was 

identical across trials.   The gating variables for external inputs had the same parameters as for 

excitatory-excitatory connections, and maximum conductances were gE  = 6.0 nS.  There was no 
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thalamocortical synaptic depression during the ongoing epoch; the external drive during this 

window was simply used to generate stimulus-independent intracortical spiking, and thus treated 

as the “hidden” source triggering intrinsic events, as observed in experiment (Figure 5.2a, d). 

 Each trial was 4.4 s in duration, with stimulus onset at 1.7 s, and the time step was 0.05 

ms.  The ongoing epoch was defined to be 1200 ms to 200 ms before stimulus onset, the transient 

epoch 0 ms to 1000 ms after stimulus onset, and the steady-state epoch 1200 ms to 2400 ms after 

stimulus onset.  The additional 500 ms at the beginning and end of each trial ensured there were 

no wavelet filtering artifacts in the ongoing and steady-state epochs. 

We modeled the LFP as the sum of all synaptic currents(Atallah & Scanziani, 2009; 

Destexhe, 1998) to 100 neighboring neurons (Figure 5.5b, d), multiplied by a factor of -1 (to 

mimic the change in polarity between voltages measured intracellularly and extracellularly).  The 

contribution of each neuron to the LFP was not distance-dependent.  We then randomly selected 

40 neurons from this subpopulation of 100 neurons, and used the excitatory synaptic 

conductances (Figure 5.5c) to generate 40 g-LFP pairs for g-LFP CC analysis (Figure 5.6f-h).  

For CV and R2 analysis (Figure 5.6b-e), we used 40 neurons randomly selected from the full 

population of 800 excitatory neurons. 

5.4.12 Statistical analysis 

 All statistical tests were performed using Python 2.7.  

Before applying any significance test that assumed normality, we performed an omnibus 

test for normality on the associated dataset(s).  This test compares the skew and kurtosis of the 

population from which the dataset was drawn to that of a normal distribution, returning a p-value 
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for a two-sided chi-squared test of the null hypothesis that the data is drawn from a normal 

distribution.  This test is valid for sample sizes of 20 or larger, and was implemented using 

scipy.stats.mstats.normaltest (documentation and references available at 

http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.mstats.normaltest.html).  

We report these p-values as the result of a “two-sided omnibus chi-shared test for normality”. 

 When asking whether a parameter of interest changed significantly across epochs for a 

population (e.g., whether the population-averaged CC for 21 g-LFP pairs changed significantly 

from the ongoing to transient epoch, see Fig 4b), we applied the Wilcoxon signed-rank test, 
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Chapter 6 

 

Adaptation to sensory input 

tunes visual cortex to 

criticality  

 

A long-standing hypothesis at the interface of physics and neuroscience is that neural networks 

self-organize to the critical point of a phase transition, thereby optimizing aspects of sensory 

information processing1–3.  This idea is partially supported by strong evidence for critical 

dynamics observed in the cerebral cortex4–10, but the impact of sensory input on these dynamics 

is largely unknown.  Thus, the foundations of this hypothesis – the self-organization process and 

how it manifests during strong sensory input – remain unstudied experimentally.  Here we show 

in visual cortex and in a computational model that strong sensory input initially elicits cortical 

network dynamics that are not critical, but adaptive changes in the network rapidly tune the 

system to criticality.  This conclusion is based on observations of multifaceted scaling laws 

predicted to occur at criticality4,11.  Our findings establish sensory adaptation as a self-organizing 

mechanism which maintains criticality in visual cortex during sensory information processing.  
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6.1 Introduction 

Sensory nervous systems adapt, dynamically tuning interactions among large networks of 

neurons, to cope with a changing environment12,13.  The principles governing such adaptation at 

the macroscopic level of neuronal network dynamics are not well understood.  Computational 

models and theory suggest that such adaptation can maintain critical network dynamics14–16, but 

these previous studies did not consider the strongly driven regime that is expected during intense 

sensory input.  Indeed, sufficiently strong input may increase the overall excitability of a network 

by bringing neurons closer to their firing thresholds and potentially tipping the network into a 

high firing rate regime that is inconsistent with critical dynamics (Supplementary Information 1). 

Thus, the question remains: does strong sensory input drive cortical network dynamics away 

from criticality or can adaptation counteract this tendency and maintain the critical regime?   

6.2 Results 

Here we addressed this question in turtle visual cortex and in a companion computational 

model.  In our experiments, we obtained long-duration recordings of population neural activity 

(local field potential, LFP) using a microelectrode array inserted into the geniculo-recipient dorsal 

cortex (visual cortex) of the turtle eye-attached whole-brain ex vivo preparation17 (Fig. 1a and 

Supplementary Information 2).  We measured multi-scale spatiotemporal patterns of neural 

activity while visually stimulating the retina.  Similarly, in our model we studied changes in neural 

network activity in response to changes in external input.  Experimentally and in the model, we 

assessed whether the measured dynamics were near or far from criticality.  For this, we examined 

statistics and spatiotemporal scaling laws of “neuronal avalanches”, which are bouts of elevated 

population activity with correlations in space and time5 (Fig. 1b).  In brief, a neuronal avalanche  
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Figure 6.1. Visually driven network dynamics are power law distributed after non-power law 

transient.  (a) Ex vivo whole brain with eyes attached. Visual stimuli are projected onto the intact 

retina while activity is recorded with a 96-channel microelectrode array (MEA) inserted into the 

unfolded visual cortex. (b) Avalanches are defined as spatiotemporal clusters of large amplitude 

LFP peaks (black dots).  Five example avalanches are displayed with one dot per LFP peak.  

Avalanche size = number of LFP peaks; duration = time between the first and last peaks. (c) 

Natural movie visual stimulus (subset of 1 frame per 200 ms shown). (d) At movie start (green 

dashed line), there is a transient increase in stimulus-triggered average LFP peak rate. Average is 

over 315 movie presentations.  Gray region delineates quartiles. (e) Stimulus-triggered avalanche 
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size time series reveals tendency for very large avalanches during the transient response (red).  

Later, during the visually-driven steady state, less extreme avalanches occur (blue).  Each point 

represents one avalanche.  The line following each point indicates avalanche duration.  

Responses to 315 repeats of movie stimulation are overlaid. (f,g) Probability density functions 

for sizes and durations of avalanches during the transient response (red line) and during the 

visually-driven steady-state (blue dots).  Large avalanches (arrow) occur during the transient 

response, yielding bimodal distributions of avalanche sizes and durations.  Avalanches during the 

visually-driven steady state are power law distributed over the range indicated with dark blue 

dots.  Gray shading indicates the range (0.05-0.95) of expected probabilities for a perfect power 

law with the same number of samples as the experiment. Jittering the times of LFP peaks 

destroys the power-law (dashed line) by abolishing large sized avalanches.  Panels d-g are from 

one experiment with one turtle. 

 

is defined as a group of LFP peaks, occurring on any electrode, irrespective of location, and 

separated by inter-peak intervals less than a specified time (Methods).  For experiments in which 

spikes (i.e. multiunit activity) were also measureable, we confirmed that the rate of LFP peaks 

increases with the rate of spikes (Supplementary Information 3).  Thus, a period of time with many 

LFP peaks, e.g. a neuronal avalanche, reflects an increase in population spike rate in the cortex. 

At the onset of stimulation, we observed that LFP amplitude, LFP peak rate, and avalanches 

were typically large scale – not consistent with critical dynamics – during a transient period (Figs. 

1c-e and Supplementary Information 4).   More specifically, avalanche sizes S and durations D 

were often bimodally distributed during the transient (Fig. 1f,g and Supplementary Information 5).  

Following this large-scale transient response, LFP amplitude decreased and avalanches became 

more diverse in spatiotemporal scale (Fig. 1e), resulting in power-law distributions, 
SSP ~)(  

(Fig. 1f) and 
DDP ~)(  (Fig. 1g) over a wide range of sizes and durations.  This fact is supported 

by rigorous maximum likelihood fitting methods10,18 and strict statistical criteria for fit quality 

( 1.0q , Methods).   
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  These conclusions held for nine turtles and four types of visual stimuli (n = 13 data sets; 

complex movies, static gray screen, diffuse flashes, moving dots) with power law quality values 

13.031.0 q (mean ± SD).  Importantly, the different visual stimuli had very different 

spatiotemporal structure, yet all resulted in power law avalanche distributions. This indicates that 

the power laws were due to inherent neuronal network dynamics rather than externally imposed 

statistics of the stimulus.  Notably, randomizing the recorded LFP peak times abolished the power 

law distributions of avalanche size and duration, thus demonstrating the importance of 

correlations, (Fig. 1f,g).  Moreover, activity recorded outside visual cortex was not power law 

distributed (Supplementary Information 6).  

What biophysical mechanisms could mediate self-organization towards scale-free 

population activity during visual processing?  To address this question, we investigated a 

parsimonious model network of probabilistic integrate-and-fire neurons with all-to-all 

connectivity (Fig. 2a)6,19,20.  A subset of neurons (20%) was inhibitory.  Motivated by previous 

experiments21 and models14, we modeled adaptation as short-term synaptic depression with 

recovery (Methods).  However, our model differed from previously studied models as detailed in 

Supplementary Information 7.  We studied how the model dynamics and avalanche statistics 

change due to increasing the input rate.  During a transient period after increasing the input rate, 

the population spike rate increased and synapses depressed (Fig. 2b,c).  During the transient, 

avalanches also increased dramatically in size and duration (Fig. 2d), qualitatively similar to the 

experimental observations (Fig. 1e).  Avalanche size and duration distributions during the transient 

period displayed a distinct bimodal character consisting of small and large avalanches (Fig. 2e,f), 

qualitatively similar to what we found experimentally (Fig. 1f,g) and inconsistent with a power 

law.  Following the transient jump in population activity, the network dynamically reached a new 
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Figure 6.2. Depressing synapses tune model dynamics to critical regime after noncritical transient. 

(a) Conceptual cartoon illustrating model features, including recurrent synapses (black) and input 

synapses (green) which change strength according short-term depression.  (b)  A step increase in 

input (green, input spikes per timestep for whole network) causes a transient increase in the 

population spike rate of the network (black, median).  Time series is averaged over 40 trials.  Gray 

region delineates quartiles.  (c) Following the input rate increase, there is a relatively slow decrease 

in median synaptic strength for both recurrent (black) and input (green) synapses (average over 40 

trials).  Gray region delineates quartiles.  Dashed line marks stimulus onset.  (d) Stimulus-triggered 

avalanche time series. During a transient period after increase in input rate, avalanches of very 

large size occur (red).  (e) Distributions of avalanche size during the transient period (red) reveal 

a ‘bump’ in the avalanche size distribution at large size (arrow).  Avalanche sizes are power law 

distributed after synapses have adapted (blue).  Gray shading indicates the range (0.05-0.95) of 

expected probabilities for a perfect power law with the same number of samples. (f)  Avalanche 

durations follow a similar trend.  Model parameters: low input R=0.05, high input R=100, default 

synapses Λ0=1.1, 30% subsampling, 5000 timesteps computed after increase in R. 
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 steady-state of population activity and average synaptic strength (Fig. 2b,c).  In this driven 

steady state, during continued high external input rate, the simulated neuronal avalanche size and 

duration distributions were power laws ( 1.0q ) (Fig. 2e,f, Supplementary Information 7).      

In the model, a sufficiently strong increase in input rate transiently tips the system into a 

regime without critical dynamics (Supplementary Information 1).  Adaptation then tunes the 

system to a critical regime.  Given the similarity between our model results and our experiment, it 

is tempting to conclude that the experimentally observed power law avalanche distributions 

occurred because adaptation tunes the visual cortex to criticality.  However, caution is called for, 

because power laws provide necessary, but insufficient evidence for the critical regime22–24.  

Therefore, additional tests are needed to determine whether criticality underlies the experimentally 

observed power laws.  

  Two such tests arise from a particular relationship between the size and duration of 

avalanches, which is predicted to occur at criticality4,11 and confirmed by our model (Fig. 3d-f, 

Supplementary Information 1 and 7).  First, the average avalanche size increases with duration 

according to a specific function DS ~ .  Second, the exponent β is predicted to depend on the 

exponents τ and α as    1/1   .  (A third additional test is confirmed in Supplementary 

Information 8.) 

 Our experiments confirmed both these predictions (Fig. 3a-c).  First, we showed that 

avalanche size scales with duration according to a power law (Fig. 3a).  Second, we determined 

the “best-fit β” from the size versus duration data for each experiment (Fig. 3a).  Next we computed 

the “predicted β” using the observed exponents τ and α.  For different turtles and different visual 

stimuli, we obtained a range of exponents; 1.7 < τ < 2.6 and 1.8 < α < 2.8 (Fig. 3b).  Importantly,  
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Figure 6.3. Steady state visually-driven avalanches follow predictions for critical regime.  (a) 

Each point displays the size and duration of one avalanche (from one experiment, one turtle, 

same as Fig. 1).  Avalanches from the visually-driven steady state are shown.  The linear 

relationship on logarithmic axes reveals a power law relationship between avalanche size and 

duration as predicted by criticality theory: DS ~ .  The slope of the best-fit line (red) matches 

with the predicted    1/1    (yellow).  (b) In different experiments, different values 

were found for duration exponents α and size exponents τ.  (c) Different best-fit β were found for 

different turtles.  Predicted β matched the best-fit β in the visually-driven steady state.  Line 

indicates identical match.  (d-f) Computational model displays the same relationship among 

power law exponents as found experimentally.  Different size and duration exponents (e) were 

obtained by varying the input rate R, the degree of subsampling, and default synapse strengths Λ0 

(see inset legend).   
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the observed values of τ and α provided a good prediction,    1/1   , of the best-fit β for 

all experiments (Fig. 3c, Supplementary Information 5).    

  The experimentally observed range of the values for the exponents τ and α (Fig. 3b) raises 

an important question as to the origin of this variability.  In the model, we demonstrated that τ and 

α depended on three factors (Fig. 3e): 1) the subsample fraction, 2) the external input rate, and 3) 

the default synaptic strength (parameterized by the largest eigenvalue Λ0 of the default synaptic 

weight matrix25, see Supplementary Information 7).  Subsampling, i.e. creating avalanche 

distributions based on spikes from a subset of all model neurons, tended to increase τ and α, 

consistent with previous studies26,27.  The effects of input rate and default synapse strengths 

depended on the level of subsampling.  Importantly, the various combinations of τ and α observed 

in the model preserve the size versus duration scaling relationship (Fig. 3f), similar to what we 

found experimentally (Fig. 3c).  We note that the near linear relationship between τ and α (Fig. 

3b,e) has not, to our knowledge, been predicted theoretically.   

6.3 Discussion 

 The close match between our experimental observations and our model results, suggest 

that adaptation plays a crucial role in tuning cortical circuits towards the critical regime during 

vision.  Why should adaptation in sensory cortex tune the network to operate near a critical regime?  

Previous computational studies and cortex slice experiments suggest that the critical regime 

optimizes several aspects of information processing (reviewed in ref. 3) including dynamic 

range20,25,28 and information transmission5,6.  Our observation that transient response to stimulus 

onset is not critical suggests that sensory cortex dynamically adapts to gain the functional benefits 

of critical dynamics during strong sensory input.    
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 The critical regime has long been hypothesized to be a target of homeostatic processes in 

neural networks.  This could be achieved by some ‘top-down’ mechanism (e.g. neuromodulators 

like dopamine29) that tunes the network or as the result of local self-organization14,16,30,31.  In either 

case, one concern with this hypothesis has been that, theoretically, the critical regime occupies an 

infinitesimal volume in state space (the boundary between two different regimes), which may be 

too small a target to hit for a real biological tuning process contending with noise and 

imperfections.  Recent theoretical findings mitigate this concern, showing that in networks with 

complex structure, the critical regime expands, occupying a substantial region  (Griffiths phase) in 

state space32.  Thus, our experiments, together with previous theory, establish the critical regime 

as a viable target for adaptive self-tuning during cortical sensory information processing.  

 

6.4 Methods 

6.4.1 Ex vivo eye-attached whole-brain preparation.    

All procedures were approved by Washington University’s and University of Arkansas’ 

Institutional Animal Care and Use Committees and conform to the guidelines of the National 

Institutes of Health on the Care and Use of Laboratory Animals.  Adult red-eared turtles (n=9, 

Trachemys scripta elegans, 150 – 200 g weight, 12-15 cm carapace length) were studied.  

Following anesthesia (Propofol 10 mg/kg) and decapitation, we surgically removed the brain, optic 

nerves, and eyes, from the cranium (Supplementary Information 9). One eye was hemisected and 

drained, thus exposing the retina for visual stimulation; the other eye was removed.  Two cuts 

allowed the cortex to be unfolded, exposing the ventricular surface, thus facilitating the subsequent 

insertion of the microelectrode array.  The eye and the brain were continuously perfused with 
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artificial cerebrospinal fluid (in mM; 85 NaCl, 2 KCl, 2 MgCl2, 45 Na HCO3, 20 D glucose, and 

3 CaCl2 bubbled with 95% O2 and 5% CO2), adjusted to pH 7.4 at room temperature.  Recordings 

began 2-3 hrs after induction of anesthesia.   

6.4.2 Microelectrode array measurements.   

We recorded wideband (0.7 Hz – 15 kHz) extracellular voltages relative to a silver chloride 

pellet electrode in the bath at 30 kHz sample rate (Blackrock Microsystems, Cerebus).  With post-

processing filtering (band-pass 5-100 Hz) we extracted local field potential (LFP).  We used two 

different electrode arrays.  The first was a 96-channel microelectrode array (10x10 square grid, 

400 µm inter-electrode spacing, 500 µm electrode length, no corner electrodes, Blackrock 

Microsystems). Using a micromanipulator (Sutter, MP-285), we inserted this array to a depth of 

250-500 µm with the plane of electrodes parallel to the dorsal surface of cortex.  The second array 

was comprised of a three dimensional grid of electrodes (4x4x8 grid, 16 shanks, 8 electrodes per 

shank, 300 µm inter shank spacing, 100 µm interelectrode spacing on each shank, Neuronexus).  

This second array was inserted to a depth such that electrodes spanned the cortex from the 

ventricular to the dorsal surface.  We analyzed data from electrodes that were located with the 

visually responsive region of cortex (Supplementary Information 2).  This included between 13 

and 28 electrodes (19 on average) for 10x10 electrodes and approximately 48 electrodes for the 

3D grid electrodes. 

6.4.3 Visual stimuli   

Visual stimuli (two types of grayscale movie, black dots moving on a white background, 

uniform black to gray transition) were created by a computer and delivered with either a miniature 

video projector (Aaxa Technologies, P4X Pico Projector) or an LCD monitor (Samsung 19”, 
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1440x900 pixels, contrast ratio = 20000:1, response time = 2 ms).  The projector/monitor image 

was focused onto the retina with additional lenses (Fig. 1a).  The mean light intensity (irradiance) 

at the retina was 20 mW/m2.for the monitor and 1 W/m2 for the projector.  In two experiments, we 

also used brief flash from a light emitting diode (LED, 60 W/m2 at retina) placed near the retina to 

stimulate with a 1 s flash.  Additional details about the stimuli including timing are in 

Supplementary Information 10. 

6.4.4 Avalanche analysis   

The first step of avalanche detection was to compute the standard deviation of every LFP 

trace.  Next we defined an ‘LFP peak’ as a period of time during which an LFP trace fluctuates 

beyond 3 to 4 standard deviations, due to either a positive or negative deflection (Fig. 1b).  For 

each LFP peak, we determined the time of its extreme value and the identity of the channel on 

which it was recorded.  The channel information was used to exclude from analysis LFP peaks 

which were not within visual cortex.  An avalanche was defined as a spatiotemporal cluster of 

consecutive LFP peaks with inter-peak intervals not exceeding a temporal threshold ∆T (channel 

information does not play a role in avalanche definition).  ∆T was chosen to be the average inter-

peak interval (<IPI>, inverse of population LFP peak rate), resulting in ∆T=24 ± 18 ms (mean ± 

SD).  Avalanche duration was defined as the difference between the first and last LFP peak time 

within the avalanche.  The size of an avalanche was defined as the number of LFP peaks 

comprising the avalanche.  Avalanches analyzed separately depending on whether they occurred 

during the transient period or visually-driven steady state period. Robustness of results to changes 

in ∆T and definitions of time periods are in Supplementary Information 11. 

6.4.5 Power law fitting and fit quality, q   
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Using maximum likelihood methods18,10, we fit a truncated power law (truncated at both 

the head and tail) to the avalanche distributions during visually-driven steady state (Supplementary 

Information 12).  The fitting function for the avalanche size distribution was 
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 
Mx

xx
xSSf  , where the maximum size 

Mx  was assumed to be the largest observed 

size. The minimum size 0x  and the exponent τ were fitting parameters.  Since avalanche duration 

is a non-integer variable, the fitting function for the duration distribution was
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duration, and 0y  and α were fitting parameters.  Exponents τ and α between -1 and -4 in increments 

of 0.01 were tried. Minimum values 0x  and 0y  were tried increasing from 0, but only up to the 

point when the fitted power law matches the data well enough to have a Kolmogorov-Smirnov 

statistic sampNKS /1 , where sampN  is the number of avalanches comprising the dataset 

(Supplementary Information 12).  For fitting model data size and duration distributions, we used 

the fitting function f(S) above, because both size and duration are discrete variables for the model. 

After finding the best-fit power law, the next step was to assess goodness-of-fit q10,18.  We 

compared the experimental data to 1000 surrogate data sets drawn from the best-fit power law 

distribution with the same number of samples as the experimental data set.  The deviation between 

the surrogate data sets and a perfect power law was quantified with the KS  statistic. The quality 

q of the power law fit was defined as the fraction of these surrogate KS  statistics which were 

greater than the KS  statistic for the experimental data.  We use a very conservative criterion, 

q>0.1, for judging the data to be power law distributed.  This is demonstrated visually in Fig 1f,g 
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and Fig 2e,f by plotting the experimental distribution over a gray band which delineates the 5-95 

percentiles of the surrogate data sets. 

6.4.6 Computational model   

1000N  all-to-all connected binary neurons received input from outside the network.  

The ‘strength’ of the synapse from neuron j onto neuron i at time t is determined by the 

corresponding element of the synaptic weight matrix )(tWij .  20% of neurons are inhibitory, i.e. 

with negative entries in the weight matrix.  )(ti  is the strength of the input synapse onto neuron 

i (all excitatory).  The binary state )1( tsi  of neuron i ( 0s inactive, 1s  spiking) is determined 

probabilistically based on the sum )1( tp  of its inputs  


N

j jijii tstWtttp
1

)()()()()1(  . If 

10  p , then the neuron fires with probability p .  If 1p , then the neuron fires with probability 

1.  If 0p , then the neuron does not fire. Time is discrete and state updates are synchronous.  The 

input )(ti  from the ith input synapse is binary (1 with probability r).  The onset of stimulation is 

modelled as a step increase from r=5x10-5 to either r=0.02 or  r=0.1.  In Figs. 2 and 3, we report 

the population input rate of NrR  .  The update rules for synaptic dynamics are 
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The default weight matrix was constructed such that its largest eigenvalue Λ0 has absolute value 

equal to either 1.0, 1.05, or 1.1 (Supplementary Information 7).  A largest eigenvalue of 1.0 

corresponds approximately to an average synaptic weight of 1/N and is known to result in critical 
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dynamics for models with static synapses25.  Synapses depress with a time constant of 20d  

timesteps following a presynaptic spike and recover exponentially with a time constant of 400r  

timesteps.  

Each avalanche is initiated by external input. Upon reaching a timestep with no active 

cortical neurons, the avalanche is considered to be ended.  We simulated 30 trials of step increase 

in input.  In each trial, we ran the model for 5000 timesteps following the onset of increased input.  

Subsampling (Fig. 3) entailed analyzing the spikes from a randomly chosen 30% or 10% of the 

network.   

6.5 Supplementary Information 

6.5.1  Weakly-driven versus strongly-driven model network dynamics 

Our modelling efforts highlight an important distinction between weakly and strongly 

driven systems.  For simplicity, we first consider a model with static synapses (Supplementary 

Figs. 1,2).  In contrast with our dynamic model, here we fixed synaptic weight matrices W and Ω 

and did not implement the dynamic rules for changing synapse strengths.  Otherwise, the model 

was identical to the dynamic model.  In the weakly driven case, the timescales of driving and 

avalanches are well separated.  In this case, interactions among neurons (e.g. synapse strengths, 

number of connections per neuron, relative strength of excitatory versus inhibitory synapses) 

determine whether or not a system produces critical dynamics (i.e. power law avalanche 

distributions and size vs duration scaling).  More succinctly, in the weakly driven case, a 

synaptic weight matrix with largest eigenvalue Λ=1 defines criticality1.  In contrast, in the 

strongly driven case, non-critical dynamics may occur, even with ‘structurally critical’ synapses, 
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i.e. Λ=1.  In the case of strong drive and depressing synapses (Fig 2), both the intensity of 

external input and Λ are dynamic variables.  If synaptic depression sufficiently decreases 

effective input to the cortex and Λ is near unity after such depression, only then will critical 

dynamics result.  In conclusion, to maintain critical dynamics and associated functional 

advantages, a system must account for both Λ and the level of external drive it receives.   

 

Supplementary Figure 6.1.  Sufficiently strong input results in a noncritical dynamics.  These 

results are from our model with static synapses.  The synaptic weight matrix is fixed. Otherwise 

the model is identical to the model presented in the main text. (a) Population spike rate (gray scale) 

varies with both the strength of synapses (parameterized by Λ, the absolute value of the largest 

eigenvalue of the synaptic weight matrix) and the input rate (total spikes per time step for the 

whole network).  The color scale is logarithmic.  (b) Phase transition from subcritical to 

supercritical dynamics as synapse strength is increased.  Critical dynamics occur at Λ≈1.  Input 

rate is fixed just below R=10 spikes per time step.  Corresponds to the green dashed line in panel 

a. (c) Increasing from low to high input rates causes a transition from critical dynamics (R < ~10 

spikes per time step) to non-critical dynamics for high input rates.  Synapses are fixed at Λ=1.  

Corresponds to the red dashed line in panel a.     
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Supplementary Figure 6.2.  Strong drive and Λ far from 1 preclude critical dynamics.  (upper 

left) A phase diagram like that shown in Supplementary Fig. 1a.  The letters a-i indicate the 

parameters corresponding to the example avalanche distributions and scaling laws shown in panels 

a-i.  The blue box encloses the two examples that match best with our experimental observations.  

(panels a-i)  LEFT: Avalanches size S probability density function.  Heavy black line: range of 

power law scaling. Blue: full range.  MIDDLE:  Avalanche duration D probability density function.  

RIGHT: Avalanche size versus duration.  Red dashed lines: best fit S vs D scaling relationship.  

Yellow lines: predicted S vs D scaling.  Red arrows: Indicate the large avalanches (bimodally 

distributed) that occur for Λ>1(g,h,i) or for intense input with Λ=1 (d).  Note that critical dynamics 
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(large range of power law scaling and well-predicted S vs D scaling) are not found if either Λ is 

far from 1 or if the input rate is too high. 

6.5.2  Visual cortex in turtles 

Turtle visual cortex is defined by the geniculo-recipient area of the dorsal cortex2,3.  We 

accepted a recording channel as part of visual cortex when its average LFP response to visual 

stimulation exceeded a given threshold.  For the 10x10 grid electrodes, we identified visually 

responsive channels based on stimulus-triggered average maps of the absolute value of LFP (for 

an example see Supplementary Fig. 3b).  For the 3D grid electrodes, we placed the entire array in 

visual cortex, but used data from every other electrode along each shank (total of about 48 

electrodes).  Based on this approach, visual cortex included between 13 and 28 electrodes (19 on 

average) for 10x10 electrodes and approximately 48 electrodes for the 3D grid electrodes.  

Importantly, the visually responsive region defined by our approach was always centered on rostral 

dorsal cortex (Supplementary Fig. 3c), which is where previous anatomy studies have identified 

LGN projections to cortex2,4.   

 
Supplementary Figure 6.3.  Delineating visual cortex based on visually responsive channels.  a) 

The whole brain is removed from the turtle with eyes attached. The ventricle beneath the cortex 

allows the unfolding of the cortex without severing afferent/efferent fibers. A 96-channel 

microelectrode array (MEA) is inserted into the unfolded visual cortex and surrounding cortical 

regions.  DVR = Dorsal Ventricular Ridge.  (b, left) Stimulus triggered average |LFP| is shown for 
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every electrode in the 96 channel array.  Each row of the image represents one electrode.  Time 

advances from left to right.  The red line is the time the stimulus was turned on.  Grayscale indicate 

magnitude of |LFP| normalized by SD averaged over 45 trials.  Note that some channels have 

significant LFP amplitude, but little response to stimulus.  These channels are located in the medial 

cortex, outside visual cortex (compare to Supplementary Fig. 8 data).  (b, right)  Percent change 

in |LFP| relative to the pre-stimulus baseline is plotted for every electrode.  The post-stimulus time 

window is 4 s.  We define a channel as visually responsive if the % change in |LFP| exceeds a 

threshold (10% in this example).  (c)  Each pixel in this image represents the % change in |LFP| 

for one electrode (same data as Middle panel).  The pixels are spatially arranged according to 

actual electrode positions.  The visually-responsive (above-threshold) channels are shown outlined 

in red.  In all turtles, the visually-responsive channels were primarily in the rostral-lateral corner 

of the array.  Note that this figure is relevant for experiments with the 10x10 microelectrode arrays.  

In contrast, the three dimensional grid array covered less area was positioned such that all 

electrodes were in the visually responsive area. 

 

6.5.3  LFP-spike relationship 

Our two primary reasons for analyzing LFP peaks rather than spikes were that 1) spikes 

were not always clearly measurable in our experiments and 2) that LFP may better represent a 

large population of neurons.  Here we show that the rate of LFP peaks rises with the rate of multi-

unit spikes for one turtle that did have clearly measurable spikes.  This relationship suggests that 

although we specify avalanche size in terms of number of LFP peaks, the avalanche may be 

interpreted as comprised of a roughly proportional number of spikes.  
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Supplementary Figure 6.4. LFP peak rate increases with multi-unit spike rate.  Each point 

represents the numbers of peaks and spikes counted in one 0.5 s period.  This was done in 

consecutive 0.5 s windows over the entire recording.  The red line is the average of the points.  

Multi-unit activity was detected with a 5 SD threshold after band-pass filtering 300 - 3000 Hz.   

 

6.5.4 Spatiotemporal dynamics of visually-driven population activity (beyond LFP peaks)  

The data we present in our main results are based on LFP peaks and their statistics.  Here we 

present some alternative perspectives showing the spatiotemporal dynamics of continuous LFP 

signals.   
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Supplementary Figure 6.5.  Examples of raw data. Shown are examples of raw LFP traces (from 

all visually responsive electrodes) for the first five turtles.  For turtles 1 and 2, the stimulus (onset 

at green line) was a complex movie.  For turtles 3-5, the stimulus was black dot scanning across a 

white background. 
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Supplementary Figure 6.6.  Spatiotemporal dynamics of visually driven population activity. (a) 

Natural movie visual stimulus (for clarity, a subset of frames is shown).  (b) At movie start, there 

is a transient increase in pairwise covariance of LFP.  Each vertical strip of this plot displays one 

distribution of pairwise covariance computed during a 300 ms sliding time window (10 ms slide 

step).  Data is from 45 repeated movie presentations. Color indicates how often a given covariance 

was observed.  (c)  Spatial patterns of stimulus-triggered average |LFP|. Each image represents the 

average LFP (% change relative to pre-stimulus baseline) at all 96 channels on the array at the time 

indicated by each arrow. (d) Low frequency LFP (1-5 Hz) recorded at one channel during repeated 

presentation (n = 45 trials) of the natural movie. For each trial (row), LFP amplitude is represented 

(color coded) in terms of z-score (difference from mean, normalized by SD). Small variability 

(gray) about the cross-trial average (black) demonstrates reliability of response to repeated stimuli. 

Frame-specific changes in LFP indicate stimulus specificity of response.  The gray shaded region 

delineates quartiles. 

 

6.5.5  Avalanche distributions and scaling relations for all experiments   

The following 13 plots (Supplementary Fig. 7) shows avalanche size and duration distributions 

for all experiments.  Each plot includes probability density functions (PDF) with logarithmic bins 

(top left, top middle) as well as cumulative distribution functions (bottom left, bottom middle) 
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for three data sets: 1) avalanches that occurred during the visually-driven steady state (blue), 2) 

avalanches during the transient (red), and 3) avalanches based on temporally jittered LFP peaks 

(Tj=10 s) from the visually-driven steady state (gray).  In addition, we show the size versus 

duration scaling plot (top right) comparing the predicted scaling (yellow line) with the best fit 

scaling (red dashed line).  In all plots, dark blue points represent the range of avalanches that best 

fits a truncated power law.  The light blue points indicate the range that is outside the fitted 

range.  In the PDF plots, the gray band delineates the range of expected probabilities for N 

avalanches drawn from a perfect power law distribution with the same exponent as the best fit 

power law for the data.  Here, N is the number of experimentally observed avalanches within the 

fitting range.  Finally each plot specifies what values were found for power law exponents τ and 

α, the parameter ∆T used in the avalanche analysis, the deviations δ between the best fit power 

law and the other distributions, the power law quality q, predicted β, best fit β, the total number 

of avalanches Na, and the number of avalanches included in the fitted range for sizes (NfS) and 

durations (NfD).    
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Supplementary Figure 6.7.  Avalanche distributions and scaling laws for all experiments.  A 

general caption for this figure and the following 12 figures is given above in Supplementary 

Information 5.   
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6.5.6  Avalanche statistics outside visual cortex  

 

Supplementary Figure 6.8: Critical dynamics are not a universal feature of cortical circuits: no 

power laws outside visual cortex.  Here we present recordings from outside visual cortex 

(Supplementary Fig. 3) in the cortical region adjacent to visual cortex, known as medial cortex, 

the putative homolog of mammalian hippocampus4.    (a) Stimulus-triggered avalanche size time 

series confirms that, among electrodes outside visual cortex, the cortex is active, but activity is 

independent of visual response.  Each point represents one avalanche.  Avalanche durations are 

represented by the gray line to the right of each point.  The avalanches recorded during 45 repeats 

of movie stimulation are overlaid. (b,c) Outside visual cortex, avalanche size (b) and duration (c) 

distributions are not power laws.  For comparison, the best fit power law is represented by the gray 

shaded region and the power law for avalanches within visual cortex is shown in blue (data from 

same turtle as Fig 1).  Jittering LFP peak times (dashed) leaves avalanche size statistics largely 

unchanged, indicating that cross-channel correlations are weak outside visual cortex.  Inset 

summarizes the deviation from the visual cortex power law for all experiments.  While fitting 

power laws to activity outside of visual cortex (Supplementary Fig. 8), we did not fit the 0y  

parameter, because such fitting resulted in 0y  very close to 
My  excluding the vast majority of the 
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dataset.  This fact is further demonstration that the data are not power law outside visual cortex.  

Likewise 0x  was not a fitting parameter for activity outside visual cortex.  

 

6.5.7 Details and example data from model with adapting synapses. 

Our model with adapting synapses was designed to test the idea that short-term depression may 

account for our primary experimental observation: power law avalanches after a transient period 

of depressive adaptation.  The model consisted of 1000N  all-to-all connected binary neurons 

(mimicking cortex).  In addition, each neuron receives input from outside the network (mimicking 

thalamic drive).  The ‘strength’ of the synapse from cortical neuron j onto neuron i at time t is 

determined by the corresponding element of the synaptic weight matrix )(tWij .  20% of neurons 

are inhibitory.  All the output synapses of inhibitory neurons are modeled with negative entries in 

the weight matrix.  Similarly, )(ti  is the strength of the thalamocortical synapse onto neuron i 

(all excitatory).  The binary state )1( tsi  of neuron i ( 0s inactive, 1s  spiking) is determined 

probabilistically based on the sum )1( tp  of its inputs 
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If 10  p , then the neuron fires with probability p .  If 1p , then the neuron fires with 

probability 1 ( p  is very rarely >1).  If 0p , then the neuron does not fire ( p  is very rarely <0). 

Time is discrete and state updates are synchronous.  The input )(ti  from the ith thalamocortical 

synapse is 1 with probability r and zero with probability 1- r, for all i.  To simulate the onset of 

visual stimulation, we implement a step increase from r=5x10-5 to either r=0.02 or  r=0.1.  In the 
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main text and in figures (Figs. 2, 3, Supplementary Figs. 1,2,9) we report the population input rate 

of NrR  ,which specifies the total number of input spikes per timestep for the whole network. 

Data from both of these situations is summarized in Fig. 3 and Supplementary Fig. 9.   

At time 0t  the corticocortical synapse matrix is equal to the default matrix 
0

ijW .  The 

default matrix is constructed as follows.  Initially all entries are drawn from a uniform distribution 

on ]1,0[ .  Then a randomly chosen subset of 20% of columns are multiplied by -1 (these are the 

inhibitory output synapses.)  Then, the weight matrix is normalized so that its largest eigenvalue 

Λ0 has absolute value equal to either 1.0, 1.05, or 1.1.  Data generated with these different model 

parameters is summarized in Fig. 3 and Supplementary Fig. 9.  A largest eigenvalue of 1.0 

corresponds approximately to an average synaptic weight of 1/N and is known to result in critical 

dynamics for models with static synapses and weak input1 (Supplementary Figs 1, 2).  The initial 

thalamocortical synapses 
0

i  are all equal to N/8 .  Both the corticocortical and thalamocortical 

synapses are dynamic in an activity-dependent manner, similar to previous models5,6.  They 

depress with a time constant of 20d  timesteps following a presynaptic spike.  They also 

recover exponentially with a time constant of 400r  timesteps. These timescales for depression 

and recovery were chosen so that the synapses reach a steady state in less than about 500 timesteps, 

which is consistent the timescales of adaptation we observed experimentally, if we interpret one 

timestep as approximately 1 ms.  The discrete time update rules for synaptic dynamics are 
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In this model, avalanches are initiated by thalamocortical input and sustained by a combination of 

corticocortical interactions plus thalamocortical input.  Upon reaching a timestep with no active 

cortical neurons, the avalanche is considered to be ended.  Model avalanche size and duration 

distributions were treated with the same statistical tests as the experimental data.  One exception 

to this was that, for the model data, the upper cutoff xM was a fitting parameter, but in experiments 

it was fixed. This was done because in the model there was a clear cutoff at large size avalanches 

that needed to be accounted for. 

We used this model to simulate 30 repetitions of step increase in thalamocortical drive.  

The transient period in the model was defined in the same way as the experiments and was typically 

200-300 timesteps.  We ran the model for 5000 timesteps following the onset of increased drive.  

This allowed us to obtain distributions based on thousands of avalanches; a similar number of 

avalanches was found in experiments (Supplementary Table 1).  We also used the model to 

investigate how greater or lesser degrees of subsampling might impact the statistics of avalanche 

distributions during the visually-driven steady state (Fig. 3, Supplementary  Fig. 9).  Our findings 

are consistent with previous studies of subsampling, which found that increasing subsampling in 

densely connected networks steepens the avalanche distributions7,8.   

Comparison to related models. Although the synaptic dynamics in our model was motivated by 

the model studied by Levina et al. (2007), our model differs in important ways from Levina et al’s 

model.  Our neurons are leaky, as in numerous recent studies of criticality in neural systems1,9–11; 

they do not integrate inputs over indefinite time intervals.  We set the timescale of depression to 



252 

 

be somewhat slower 20 timesteps than the ~5 timesteps for Levina et al.  We chose this timescale 

to approximately match the observed duration of the transient response in our experiments.  

Another difference is that we include inhibitory neurons, similar to other recent studies11–13.  

Finally, we consider the strongly driven case, whereas Levina et al. maintained a separation of 

timescales that is typical in models of self-organized criticality.  In contrast, Hartley et al. (2014) 

considered a range of different driving including similar rates of external input to what we studied 

here.  Interestingly, Hartley et al. concluded that strong drive does not preclude critical dynamics.  

We suspect that this apparent discrepancy with our results is due their defining avalanches using a 

very short ∆T for segmenting avalanches and implementing continuous time modeling, but this 

possibility remains to be verified in further studies.    
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Supplementary Figure 6.9. Detailed examples from model with dynamic synapses.  In Fig 3 of 

the main manuscript, we summarize the exponents and scaling relations for nine different sets of 
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model parameters.  Here we show the corresponding avalanche distributions and scaling laws for 

each of these different model data sets.   Each row is for a different level of input R and default 

synapses Λ0.  For a given R and Λ0, we show the effects of subsampling (green – fully sampled, 

blue-30% subsampled, brown-10% subsampled).  Red distributions represent avalanches during 

the transient following the increase in drive.  The best fit power law exponents α and τ as well as 

the scaling exponents β are displayed for each condition.  In the probability distributions the light 

blue portions of each line are outside the range of power law scaling. 
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6.5.8  Empirical branching parameter versus ∆T 

 

Supplementary Figure 6.10. Empirical branching parameter versus ∆T curves support the 

hypothesis that visually-driven steady state activity and our model operate in critical regime.  

Here we study the empirical branching parameter σ* following previously developed methods7.  

In brief, for the experiments (LEFT), we computed the ratio of the number of LFP peaks 

observed in a time bin of duration ΔT to the number observed in the previous time bin.  This 

ratio was averaged over all consecutive pairs of time bins to obtain σ*.  This was then repeated 

for a different sized time bin to determine how σ* depends on ΔT.  As shown in previous work7, 

if this curve reaches a peak significantly above σ*=2 then this may be considered as evidence for 

critical dynamics.  (MIDDLE) Results from the model with adapting synapses.  Different colors 

represent different model parameters (green: Λ0=1.1, R=0.1; purple Λ0=1.0, R=0.1; yellow 

Λ0=1.05, R=0.02).  (RIGHT) Results from the model with two different levels of subsampling 

(top 30%; bottom 10%). 

 

6.5.9 Ex vivo eye-attached whole-brain preparation    

Following anesthesia (Propofol 10 mg/kg) and rapid decapitation with a guillotine, we surgically 

removed the brain, optic nerves, and eyes, from the cranium as described earlier14–16.  In brief, 

during surgery we cut the conjunctiva and extraocular muscles to free the eyes from their orbits. 

After removing the brain from the skull, we made a cut rostro-caudally along the medial cortex, 

starting at the ventricle of the olfactory bulb. This cut preserves the normal afferent input of the 

visual cortical area, because the geniculocortical pathway traverses the lateral cortical wall within 
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the lateral forebrain bundle2.  Subsequently, two medio-lateral cuts to the telencephalon at its 

anterior and posterior ends prepared for unfolding of the hemisphere and exposing the ventricular 

surface (Supplementary Fig. 3a).  The contralateral eye was hemisected and drained of its vitreous, 

thus exposing the retina; the ipsilateral eye was removed.  The preparation was transferred to the 

perfusion chamber positioned on an air table with the eye-cup beneath a focusing lens (Fig. 1a).  

The unfolded cortex was pinned with short pieces of tungsten wires (25 µm diameter) to an agar 

block in the recording chamber with the ventricular side up, thus facilitating the subsequent 

insertion of the microelectrode array.   

6.5.10  Details and timing of visual stimuli  

Visual stimuli were created by a computer and delivered with either of two methods.  In the first 

method, an LCD monitor (Samsung 19”, 1440x900 pixels, contrast ratio = 20000:1, response time 

= 2 ms).  The image on the monitor was projected onto the retinal surface of the hemisected eye-

cup with a converging lens system (Fig. 1a).  The mean light intensity (irradiance) at the retina 

was 20 mW/m2.  A monitor pixel corresponded to 7 µm on the retina or ~0.08o of visual angle17,18.  

This first method was used in turtles 1-5.  In the second method, visual stimuli were projected 

directly onto the retina with a miniature video projector (Aaxa Technologies, P4X Pico Projector) 

with additional lenses.  Resolution was similar to method 1, but the mean light intensity was higher, 

1 W/m2.  This method was used for turtles 7-9.  For turtle 6 and one additional experiment with 

turtle 2, we used brief flash from a light emitting diode (LED) placed near the retina to stimulate 

as described further below.  For the LED, the light intensity was 60 W/m2 (flash duration 1 s).  

Stimuli were created using psychopy, an open-source psychophysics module written for the Python 

programming language19. Software tools were written to allow the experimenter to characterize 

the projection of the computer screen onto the retina20.  A computer game controller was used to 



257 

 

position stimulus image and the eye-cup interactively.  The eye-cup parameters, including the 

position and orientation of the visual streak, and the size and position of the optic disk were 

documented.  An image based on these parameters overlaid on the eye cup preparation (in the 

recording chamber) when projected through the focusing system.  The image was not corrected 

for curvature of the retina.  Two of the turtles were presented with gray-scale naturalistic movies 

(“CatCam”21) as used in studies of the mammalian geniculo-cortical system22.  The movie clip was 

10 s in duration and presented in blocks of 45 repetitions at 20 s intervals.  15 min of gray screen 

was presented between blocks.  Three turtles were presented with a previously studied, 5 s duration 

“motion enhanced” movie23.  The screen was black before movie presentation.  These three turtles 

were also presented with a 5 s uniform gray screen, preceded by black screen.  The movies were 

alternated with the gray screen stimuli, presented 80 times at 35 s intervals.  Three turtles were 

presented with black dots (6 deg) moving (6 deg/s) linearly across a white background.  8 

directions of motion were used, each repeated 8 times in pseudorandom order.  For each direction, 

a dot traversed the visual field on 8 to 15 paths during an 86 - 182 s period followed by 5 minutes 

of darkness before starting the next direction. Two turtles were presented with diffuse red LED 

flashes (1 s in duration, 2 min intervals, 200 repetitions). The movies and dots were generated on 

the projection systems described above.  For diffuse flashes, the LED was positioned 2 cm above 

the retina, diffusely illuminating the entire retina. As specified in Supplementary Table 1, some 

turtle were tested with two different types of visual stimuli.   

 

6.5.11 Robustness to changes in ∆T and defining transient, visually-driven steady state, and 

ongoing time periods   
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An avalanche was defined as a spatiotemporal cluster of consecutive LFP peaks with inter-

peak intervals not exceeding a temporal threshold ∆T (Methods).  Consistent with previous 

studies24, ∆T was chosen to be the average inter-peak interval (<IPI>, inverse of population LFP 

peak rate).  This resulted in ∆T in the range 7 to 64 ms (24 ± 18 ms, mean ± SD).  We note that 

avalanche statistics and scaling laws were robust to deviations in ∆T within about ±30% from 

<IPI> (Supplementary Figs. 11, 12).   

The transient time periods T were determined based on the overlaid avalanche time series 

of all trial of visual stimuli (e.g. Figs. 1e, 2d).  T was computed automatically by first calculating 

an envelope curve of the avalanche time series defined as the 90 percentile of the avalanche time 

series in consecutive time bins.  Then T was defined as the full width at half max of this envelope 

curve.  This resulted in T ranging from 108 to 784 ms (423 ± 202 ms, mean ± SD, see also 

Supplementary Table 1).  The visually-driven steady state time periods were defined as any period 

of visual stimulation, excluding the transient period.  Thus, the visually-driven steady state period 

ended when the visual stimulus ended. One exception was for the two experiments with LED flash 

stimuli, for which a sustained neural response continued long after the flash ended.  For these, we 

included the sustained response (10 s) as part of the visually-driven period.  Ongoing time periods 

were defined as all periods when no visual stimulus was presented.   

Avalanches that started within a period were assigned to that period, irrespective of 

whether the avalanche extended into the next period.  One exception was that avalanches in the 

ongoing period that ended during the transient period were excluded from analysis.  We also note 

that we excluded avalanches within periods of time when the LFP peak rate was nonstationary 

over long time scales (Supplementary Fig. 13).   Data from outside visual cortex was not analyzed 

except for the data shown in Supplementary Fig 8.   
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Most previous studies of neuronal avalanches which have focused on ongoing activity 

recorded in mammalian cortex.  Although ongoing activity was not the focus of our work, we note 

that, in some experiments, ongoing avalanches were power law distributed similar to the visually-

driven avalanches steady state (Supplementary Fig. 14 top).  However, in several experiments the 

rate of ongoing LFP peaks was too low to obtain enough avalanches to draw sound statistical 

conclusions about how ongoing avalanches were distributed (Supplementary Fig. 14 bottom).    

Rates of LFP peaks, durations of recording periods, and numbers of avalanches for each of the 

three different periods (transient, steady-state visually-driven, ongoing) are shown in 

Supplementary Table 1. 

 

 

Supplementary Figure 6.11: Dependence of experimental results on choice of ΔT.   The figure 

together with the following 12 plots shows how the form of avalanche size and duration 

distributions as well as scaling between size and duration depends on ∆T.  ∆T values are specified 

in seconds.  In all figures, the black curve represents the actual ∆T=<IPI> used in the manuscript. 

(LEFT, MIDDLE) In each distribution the range that was determined to be well-fit by a truncated 

power law is shown with a heavier line.  (When the range is very small, the distribution is not well 

fit by a power law.)  (RIGHT)  The right panel compares the predicted size versus duration scaling 

(dash dot line) and the best fit scaling (solid line) for each ∆T. Points are omitted for clarity. Notice 

that values of ∆T within about ±30% from the <IPI> still give a reasonable scaling relation, but 

more severe changes in ∆T result in non-power law size and duration distributions and/or poor 

prediction of the scaling relation. 
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Supplementary Figure 6.12. Good prediction of scaling relation occurs if ∆T is chosen nearby 

<IPI>.  This plot summarizes one feature of the series of plots in Supplementary Fig 11.  It 

summarizes how well the predicted scaling relation matches the best fit scaling relation and how 

this depends on ΔT.  Here it is clear that a small difference (good prediction) occurs in a range of 

approximately ±30% around ΔT=<IPI>. 

 

 

Supplementary Figure 6.13: Stationarity of experimental system.  (a) The rate of LFP peaks 

recorded over the course of multiple hours is steady (one representative example experiment 
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shown).  Each rate timeseries was computed by counting LFP peaks in consecutive time windows 

of duration dt and normalizing by dt.  Durations dt=0.1, 1, 10, and 100 s were used (colors indicated 

in legend).  The apparent 10 min cyclic pattern is due the timing of repeated visual stimulus 

presentation.  Note that after about 2.5 hours (epochs labeled H, I and J), non-stationarity sets in.  

In all experiments, we include data in our analysis only during stationary periods. (b) The stimulus-

triggered average response to repeated visual stimulation is also steady (except for epoch H, I, and 

J).  The color code corresponds to the periods labeled alphabetically in panel a. 

 

 

Supplementary Figure 6.14: Ongoing activity exhibited critical dynamics in a subset of 

experiments.  (top)  In some of our experiments, ongoing activity also exhibited strong evidence 

for critical dynamics, similar to the visually-driven steady state avalanches.  These cases are 

consistent with previous studies of neuronal avalanches in mammals, which have primarily been 

based on ongoing activity.  (bottom) In other experiments, we observed that ongoing activity 

occurred at such low rate that statistically sound conclusions were not possible.   
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6.5.12  Power law fitting and the measure δ   

To test whether evoked and ongoing avalanches were distributed according to a power law, we 

carried out a two-step analysis.  First, we identified the best-fit power law using established 

maximum likelihood methods25–27.  As in previous studies, we assumed that there is a lower size 

limit, below which power law statistics are not expected25,26.  The rationale for this assumption 

was that some measurement noise is unavoidable and likely to be uncorrelated across channels, 

thus resulting in some small size ‘noise-corrupted’ avalanches.  In line with this idea, we found 

that avalanches that were shorter than approximately ∆T in duration were distributed quite 

differently than larger duration avalanches (Supplementary Fig 15).  For this reason, in all of our 

figures (except Supplementary Fig 15) we plot avalanches with durations exceeding 0.8∆T.   An 

important difference between our method and the typical approach25 is that we assumed that 

avalanches are also limited in how large they can be.  Such avalanche size and duration limits have 

been recognized in other work as well26,27.  Thus, we identified the maximum likelihood truncated 

power law fit to our data.  This approach obviates the need for comparing to similar distributions 

(e.g. power law with exponential cutoff25,27), because the truncation cuts off such end effects 

already.  Since our definition of avalanche size is a discrete, integer variable, the fitting function 

for the avalanche size distribution was  
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The maximum size 
Mx  was assumed to be the largest size actually observed in the experimental 

data.  We note that, in our experiments, unlike many previous experiments in mammals, we did 

not observe a clear size cutoff at the number of channels used to record.  This reflects the tendency 
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for a single channel to have many LFP peaks during a single avalanche.  The minimum size 0x  

and the power law exponent τ were fitting parameters.  Since avalanche duration is a non-integer 

variable, the fitting function for the avalanche duration distribution was 






  












D

yydyy

D
Dg

M

y

y

M 1

0

1

1
)(

0

 

Again, the maximum duration 
My  was taken as the largest observed duration, while 0y  and α 

were fitting parameters.  The fitting process involved trying all exponents in the range from -1 to 

-4 with increments of 0.01, similar to previous work25.  However, another important difference 

between our approach and previous work25 is that our fitting algorithm tried values of 0y values 

increasing from 0, but only up to the point when the fitted power law matches the data well enough 

to have a Kolmogorov-Smirnov statistic sampNKS /1 , where sampN  is the number of 

avalanches comprising the dataset. This prevents the algorithm from increasing the minimum size 

until most of the data are excluded from fitting.  The threshold of sampN/1  is justified based on 

how KS  variability is expected to vary with sampN  for surrogate datasets drawn from a true power 

law28 (Supplementary Fig. 16).   

For fitting model data size and duration distributions, we used the fitting function f(S) 

above, because both size and duration are discrete variables for the model.  Also, for the model 

data, 
Mx  was used as a fitting parameter because there typically was a clear exponential cutoff in 

the model avalanche distributions. 
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After finding the best-fit power law, the next step was to assess goodness-of-fit q.  For this, 

we again follow established methods25,28.  We compared the experimental data to 1000 surrogate 

data sets drawn from the best-fit power law distribution.  The surrogate data sets had the same 

number of samples as the experimental data set.  In this way, the surrogate data sets are as close 

as possible to a power law, for a given finite sample size.  The deviation between the surrogate 

data sets and a perfect power law was quantified with the KS  statistic. The quality q of the power 

law fit was defined as the fraction of these surrogate KS  statistics which were greater than the 

KS  statistic for the experimental data.  Thus, if the experimental data had a smaller KS  statistic 

than at least 100 of the surrogate values, then q>0.1.  We use a very conservative criterion, q>0.1, 

for judging the data to be power law distributed.  This is demonstrated visually in Fig 1f,g and Fig 

2e,f by plotting the experimental distribution over a gray band which delineates the 5-95 

percentiles of the surrogate data sets.  It should be noted that for a large number of samples, this 

goodness-of-fit test is very strict (i.e. more than about 200 avalanches25).   In our experiments, the 

number of avalanches during visual stimulation was 2467, on average (ranging from 415 to 

13871).  

Deviation between two distributions, δ.  Avalanches occurring during the transient period 

following stimulus onset were not power law distributed.  Large avalanches occurred with high 

probability, often resulting in bimodally distributed sizes and durations.  To quantitatively measure 

how avalanche distributions from the transient periods deviate from the power laws observed 

during the visually-driven steady state periods, we used a measure δ, which is similar to measures 

developed in previous studies29,30.  To compute δ, we first constructed a cumulative distribution 

function (CDFs) for the test distribution (transient) and the reference distribution (visually-driven 

steady state).  Then  δ is the sum of 10 differences between the reference CDF and the test CDF 
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(Supplementary Fig 17).  The points, at which the 10 differences were taken, were equally spaced 

on a logarithmic scale between the minimum and maximum avalanche size.  When δ > 0, which 

typically was the case for avalanche distributions from the transient periods, this indicates that 

large events occurred more frequently than would be expected if they came from the same 

distribution as the visually-driven steady state periods (Supplementary Fig. 17).    

 We also used δ to examine control distributions, in which avalanches were reanalyzed after 

randomly jittering the occurrence times of LFP peaks.  For this, we added to each LFP peak time 

a random number drawn from a uniform distribution on [-Tj,+Tj].  Such jittering decreases 

spatiotemporal correlations and reduces the probability of large avalanches.  In terms of δ, this 

results in δ < 0.  To quantify the effects of jittering, we determined how large the jitter time Tj 

must be to reach δ<-0.1, a significant deviation.  We found Tj=1.4±0.4 (mean±SD) across all 

experiments (Supplementary Table 1).     

  

 

 

Supplementary Figure 6.15.  Very short duration avalanches are distributed differently.  The 

analysis of experimental data presented in the manuscript is based on analyzing only those 

avalanches with durations longer than 0.8∆T.  The reason for this approach was that for very 
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short duration avalanches, with D less than about ∆T, a different regime of avalanches is clear in 

the duration distribution (the flat region in the middle panel).  The low D regime tends to have a 

nearly flat distribution of durations and scales differently with avalanche size (light blue points in 

right panel) This different regime may be due to influence of noise for small, short duration 

avalanches. 

 

Supplementary Figure 6.16. Fitting the lower bound cutoff of power law regime depending on 

sample size.  As discussed in methods, we used the KS statistic for fitting the lower cut off point 

x0 in the power-law fitting process.  We increased x0 until a criterion level of KS was reached.  

The sensible choice for a criterion KS depends on the number of samples N. In this figure we 

describe numerical simulations used to determine the criterion KS. First, we computed the KS 

statistic for a perfect power-law reference CDF with exponent ε, compared to a surrogate data set 

with N samples drawn randomly from a power-law with exponent ε.  We repeated this 1000 

times.  CDFs of these 1000 KS values are shown in the left panel above.  Colors represent 

different exponents ε. Then we defined the criterion KScrit to be the KS value below which 90% 

of the values lie (dashed line).  We carried out this process for six different sample sizes N= 100, 

500, 1000, 2000, 5000, and 10000.  We found that KScrit was very close to sampN/1  as shown 

in the right panel above (blue – data from left panel plot; red – exact sampN/1  function).  This 

approach generalizes existing tabulated values for such fitting criteria28. 
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Supplementary Figure 6.17: Quantifying how avalanche distributions differ between transient 

periods, visually-driven steady state periods.  The deviation δ is computed as the sum of 10 

differences (e.g. yellow lines for transient avalanches) between a reference CDF (green) and the 

measured CDF (red).  Here, the reference CDF is the best-fit power law for the visually-driven 

steady state (blue).  If large avalanches are more or less prevalent in the measured CDF than in the 

reference CDF, then δ > 0 or δ < 0, respectively.  Near zero deviation occurs when the measured 

CDF matches the reference CDF (e.g. blue).  See Supplementary Fig 7 for similar CDF plots and 

δ values for avalanche size and duration distributions for all experiments. 
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Chapter 7 

 

Future work in the ex vivo turtle eye-attached 

whole-brain preparation 

 The ex vivo turtle eye-attached whole-brain preparation is a unique and extremely useful 

experimental tool; with it, the experimentalist can achieve stable multi-whole-cell recordings of 

ongoing and evoked activity in a largely intact visual system.  This experimental approach is 

somewhat rare in experimental systems neuroscience, and will likely remain so for several years.  

Here, we list a few open questions that are of broad interest, explain how this preparation is suited 

to address those questions, and propose initial study designs for doing so.  Where applicable, we 

present preliminary experimental results that suggest certain hypotheses. 
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7.1 Introduction 

 As detailed elsewhere in this thesis, the ex vivo turtle eye-attached whole-brain preparation 

is a powerful experimental tool.  This preparation has three primary advantages, making it uniquely 

well-suited to address several important open questions in systems neuroscience. 

First, the experimenter can achieve stable whole-cell recordings.  Such mechanical stability 

is a key ingredient in certain analyses.  For example, tracking cortical “state” using subthreshold 

fluctuations (see Chapter 3) requires minutes-long recordings.  Some analyses are even more 

demanding; calculating correlated variability, for instance, requires many repetitions of the same 

stimulus (with appropriate inter-trial-intervals) to achieve reliable across-trial average responses.  

This can mean an hour or more of recording from a given cell or pair of cells (see Chapters 4 and 

5), which is not a realistic expectation for in vivo preparations.   

Second, it’s possible to perform simultaneous whole-cell recordings from groups of nearby 

neurons.  While single-whole-cell recordings are becoming increasingly common in vivo (even in 

awake mammals(Crochet & Petersen, 2006; Mcginley et al., 2015; Sachidhanandam, Sreenivasan, 

Kyriakatos, Kremer, & Petersen, 2013; Andrew Y Y Tan, Chen, Scholl, Seidemann, & Priebe, 

2014)), multi-whole-cell recordings remain elusive.  This is because in vivo patching is usually 

(but not always(Margrie et al., 2003)) done without visual guidance.  The higher failure rates of 

“blind patching” make it nearly impossible to record from more than one cell at a time.  In contrast, 

this whole-brain preparation (with unflapped cortex) is, for the purposes of patching, essentially a 

thick slice preparation.  It is therefore relatively easy to achieve multi-whole-cell recordings, which 

may be put to good use studying subthreshold correlated variability (see Chapter 4), as well as 

describing cortical activity in novel and likely relevant ways (discussed later in this chapter).   



280 

 

Third, this can all be done in a largely intact visual system.  Stable whole-cell (and even 

multi-whole-cell) recordings are readily performed in cortical slice or thin cell cultures, but this 

approach at best preserves short-range connectivity, and can’t be used to study responses to 

sensory stimulation.  So while these in vitro preparations are ideal for addressing certain questions, 

the whole-brain prep offers the distinct advantage of a subthreshold view of visual responses in a 

minimally-disrupted cortex. 

Here, we list several open questions that are of broad interest in systems neuroscience.  We 

discuss ways in which whole-cell (and/or extracellular) recordings in the turtle whole-brain 

preparation can provide unique insights in these areas.  Finally, we propose very general 

experimental approaches, intended to be starting points for these future studies.  In places, we 

identify specific technical challenges the future experimentalist will need to overcome.   

As experimental techniques advance, the particular advantages of the turtle whole-brain 

preparation will expire.  Until then, this chapter is intended to be a resource for future students in 

search of a project to make their own. 

 

7.2 The excitation-inhibition balance 

 Mounting experimental evidence suggests that cortical excitation and inhibition are 

balanced.  Specifically, the ratio of excitatory and inhibitory inputs to a given neuron or population 

of neurons may remain approximately constant over time (possibly even across stimulus 

conditions), made possible by the sparse nature of cortical connectivity, and relatively strong 

inhibitory synapses.  This has profound consequences for cortical function.  In particular, it 

promotes a chaotic network dynamic, which is associated with the fast tracking of input 



281 

 

signals(Vreeswijk & Sompolinsky, 1996), effective signal propagation(Vogels & Abbott, 2005), 

and maximized information capacity(Shew, Yang, Yu, Roy, & Plenz, 2011) (see Deneve, Machens 

2016 for a review). This balance may also be a key variable in the dynamics and coherence of 

cortical oscillations(Brunel & Wang, 2003; Yang, Shew, Roy, & Plenz, 2012) and “propagating 

waves”(Keane & Gong, 2015), linking it to the vast literature on these ubiquitous cortical 

phenomena. 

 Still, several questions about this phenomenon have yet to be fully addressed.  The first 

deals with the inherent lag between excitation and inhibition.  Is the balance “tight” (with a very 

short lag between E and I) or “loose” (with I tracking E at longer lags)?  Does this lag change 

across stimulus conditions?  Second, does inhibition balance excitation only generally, or does this 

relationship hold on a single-trial basis?  Finally, what are the implications for cortical function 

when the balance is disrupted? 

 Patch clamp recordings in the ex vivo preparation are particularly well-suited to address 

these questions.  First, the E-I balance is typically discussed in terms of synaptic currents, which 

are not easily inferred from spike data.  Second, with pairwise recordings, it’s possible to estimate 

the lag between E and I (with certain important caveats, as discussed below).  Finally, measuring 

the balance across stimulus conditions, and inferring the ramifications for sensory coding, require 

a responsive sensory system; a reduced preparation just won’t do. 

 From our initial experimental results, we make three key observations regarding the E-I 

balance during visually-evoked activity: (1) populations of excitatory and inhibitory neurons may 

alternate spiking on a relatively long time scale (hundreds of milliseconds) after stimulus onset; 

(2) the nature of fast subthreshold fluctuations suggests very brief (tens of milliseconds) E-I 



282 

 

imbalances, or in other words, small lags between E and I; (3) evoked spikes are preceded by brief 

imbalances that heavily favor excitation.  The second and third observations are discussed at length 

in chapters four and three, respectively.  The first we detail below. 

 In response to visual stimulation, most neurons are initially depolarized by several 

millivolts, and this initial depolarization is followed by a mix of excitatory and inhibitory 

postsynaptic potentials (Figures 3.3, 4.2c).  Is this initial depolarization evidence for strong 

excitatory conductances that are not balanced by inhibitory conductances?  Not necessarily; 

because the resting neuron is near the inhibitory reversal potential, any initial increase in inhibitory 

conductance will have little effect on the membrane potential.  In fact, some inhibitory neurons in 

turtle visual cortex can receive strong inputs from LGN (Fig. 7.1)(Fournier, Müller, & Laurent, 

2015; MANCILLA, FOWLER, & ULINSKI, 1998; Mancilla & Ulinski, 2001).  Thus, pyramidal 

cells do receive short-latency disynaptic feedforward inhibition(Kriegstein, 1987; Mancilla & 

Ulinski, 2001), which appears to be a general principle of cortical function(A. Y Y Tan & Wehr, 

2009; Wehr & Zador, 2003; Wilent & Contreras, 2005).  But because of the discrepancy in driving 

force for the two types of input, the early response phase favors excitatory currents, while the later 

response is a more even mix of (feedforward and feedback) excitation and inhibition.  We have 

one set of recordings for a putative pyramidal-inhibitory pair that supports this hypothesis (Fig. 

7.2).  This slow back-and-forth between excitatory and inhibitory populations (which is initiated 

by favorable conditions for excitatory currents in the quiescent state) persists for the first few 

hundred milliseconds of the response, before giving way to a more even mix of excitation and 

inhibition.  The early dynamic is fairly consistent across trials  
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Figure 7.1 Schematic of the three-layer turtle dorsal (visual) cortex (DCx) and mammalian 

piriform cortex (PCx).  Sensory inputs from LGN project to the apical dendrites of L2 pyramidal 

neurons and L1 inhibitory neurons.  These inhibitory neurons (FF) provide feedforward 

disynaptic inhibition to pyramidals.  Other inhibitory neurons (FB) in L2 and the “subcellular” 

L3 likely do not receive direct LGN inputs, but provide feedback inhibition to pyramidals.  In 

experiment, electrodes pierce the ependymal surface (corresponding to the bottom of this figure), 

and are advanced through L3 toward L2.  Thus, it is possible to target (L3) inhibitory – (L2) 

pyramidal pairs for simultaneous whole-cell recordings.  Reproduced from Fournier, Muller, 

Laurent 2014 with permission from publisher (license # 4012651023358). 
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Figure 7.2  Visual stimulation evokes a slow “back-and-forth” excitation-inhibition dynamic in 

the early response.  (a) Responses to multiple presentations of a 10 ms whole-field red flash, and 

across-trial averages (high opacity) for two simultaneously-recorded neurons (blue and green 

traces) and the nearby LFP (red traces).  Stimulus onset at magenta arrow.  Subthreshold activity, 

spike times, and LFP deflections are more consistent across trials in the early response than in the 

late response.  (b) The spiking responses to tonic current injection suggest this is a pyramidal – 

inhibitory pair.  Current injection amplitude is 100 pA.  (c) Zoomed view of 1200 ms post-stimulus 

window.  Note the alternating periods of spiking in the putative pyramidal (blue) and inhibitory 

(green) neurons, and the slow oscillation in the nearby LFP.  The putative inhibitory neuron was 

located in the subcellular layer (i.e., L3, see Fig. 7.1), and the lack of feedforward LGN input to 

these interneurons is consistent with the delay in depolarization relative to the putative pyramidal 

neuron. 
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(compared with the more variable late response), and this synchronous activity likely contributes 

to the observed strong, early, low-frequency LFP oscillations. 

 This last result highlights one of the two ways pairwise whole-cell recordings can be used 

to study the E-I balance (but likely only at longer times scales, due to the averaging process, as 

described below).  This approach involves targeting pyramidal-inhibitory pairs, and treating the 

membrane potentials as the “outputs” of the two neurons, or proxies for probability to spike.  With 

a large population of pairs, the relative dynamics of the membrane potentials will provide an 

estimate of the dynamics of the E-I balance.  Alternatively, both cells can be maintained at high 

resting membrane potentials (via holding current), to promote spiking.  They will then represent 

“loud” members of the pyramidal and inhibitory populations, indicating when each population is 

prone to spike.  Two things should be noted.  First, this definition of the E-I balance is different 

from that described above; it tracks the activities of the two populations, not the excitatory and 

inhibitory currents.  Second, while inhibitory neurons are relatively sparse in the cell layer, they 

are the dominant neuron in the sparsely-populated subcellular layer (Figure 7.1), making them 

easy to identify and target.  Thus, a large population of pyramidal-inhibitory pairs is a realistic 

experimental goal. 

 The second approach involves measuring (or inferring) a neuron’s synaptic inputs.  Ideally, 

the experimenter would record excitatory and inhibitory synaptic inputs to the same neuron.  This 

is impossible in cortical pyramidal neurons (although there are ways to do this in more spatially 

confined neurons(Cafaro & Rieke, 2010)).  Instead, the experimenter can record excitatory inputs 

to one cell, and inhibitory inputs to a neighbor.  Previous work has shown than in some areas, the 

inputs to one cell are good approximations of those to the neighboring neuron(Graupner & Reyes, 

2013; Okun & Lampl, 2008).  In this case, a pairwise recording approximates the simultaneous 
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recording of excitation and inhibition in one cell.  In contrast, we observe relatively low 

correlations in membrane potentials of neighboring neurons (see Chapter 4).  Therefore, it is not 

safe to make this same approximation, and the interpretation of the E-I ratio and lag for a given 

stimulus condition is unclear.  However, we can still track changes in the balance across stimulus 

conditions with a sufficiently large population of pairs (as we have done for V-V and g-LFP 

correlated variability in Chapters 4 and 5). 

 First, the experimenter can record the membrane potentials from pairs of nearby cells, using 

holding current to set one near the reversal potential for inhibition,  and the other near that of 

excitation (which will require blocking the spiking mechanisms of recorded neurons).  It will be 

important to switch the holding potentials on alternating trials (for reasons discussed below).  Up 

to this point, this approach follows earlier studies.  Next, the conductance estimation algorithm 

(see Chapter 5) can be used to infer the excitatory and inhibitory currents, which have higher 

temporal resolution than the corresponding membrane potential recordings (Fig. 5.1).  While we 

have only used the algorithm to estimate excitatory conductances, the algorithm should provide a 

reliable estimate of inhibition when excitatory inputs are negligible. 

 With this dataset, there are two ways to estimate the dynamics of the E-I ratio, and one to 

estimate the lag.  First, because the holding potential of a given neuron has been switched across 

trials (resulting in “high” and “low” subsets of trials for each cell), it’s possible to calculate the 

total excitatory (by, e.g., integrating the current in “low” trials) and inhibitory (using “high” trials) 

input to a given cell, for a given window of activity.  Repeating this for multiple windows yields 

the dynamics of the E-I ratio (at the temporal resolution defined by the window used to integrate 

the current).  Importantly, this is the ratio of the trial-averaged excitation to the trial-averaged 

inhibition.  The second approach utilizes simultaneous recordings; the approach is the same, but 
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using excitatory inputs to one cell and inhibitory inputs to the other allows the experimenter to 

calculate the dynamics of the E-I ratio for each trial.  This approach has three distinct advantages.  

First, it can be used to test the hypothesis that the E-I balance is maintained on a single-trial basis.  

Second, the E-I lag (corresponding to the peak in the E-I cross-correlogram) can be calculated for 

several windows of activity.  Note that alternating “high” and “low” holding potentials across trials 

results in “high-low” and “low-high” pairwise recordings, and allows the experimenter to 

distinguish the E-I lag from any inherent lag in all synaptic inputs to the two cells (as in Okun, 

Lampl 2008).  Finally, it is more straightforward to test the statistical significance of the resulting 

values (e.g., by bootstrapping).    

 

7.3 Comparison of spontaneous and evoked cortical activity 

 Previous experimental and computational work has suggested that the mature sensory 

cortex possesses an intrinsic set or “manifold” of activity patterns.  Spontaneous and sensory-

evoked events both sample the same manifold (with evoked activity triggered by sensory inputs, 

and spontaneous activity by events hidden from the experimenter)(Luczak, Barthó, & Harris, 

2009).  This hypothesis relating spontaneous and evoked activity predicts that the two activity 

types should be similar in measurable ways.  Furthermore, because circuits can be influenced by 

repetitive stimulation(Carrillo-Reid, Yang, Bando, Peterka, & Yuste, 2016), it’s possible that 

spontaneous and sensory-evoked activity may become more similar through “training”, or 

repetitions of a given visual stimulus. 

 Because the subthreshold membrane potential of a cortical neuron gives a measure of 

cortical spatiotemporal spiking patterns, it is a useful signal for testing these predictions.  Indeed, 
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previous work in thalamocortical slice has revealed repeating temporal “motifs” in membrane 

potential recordings of spontaneous activity(Ikegaya, Aaron, Cossart, Aronov, & Lampl, 2004; 

Mokeichev et al., 2007), which resemble those evoked by electrical stimulation of the 

thalamus(MacLean, Watson, Aaron, & Yuste, 2005).  This work, then, generally supports the 

above hypothesis.   

Still, several open questions remain.  First, it’s impossible to study the influences of long-

range connectivity and naturalistic sensory stimulation in slice.  Do the above results hold when 

these variables are included?  Furthermore, the experimenter can’t “train” the cortical slice by 

providing repetitions of a relevant and complex stimulus (that is, sensory input that engages 

specific populations of cortical neurons in a particular temporal order, similar to what might be 

evoked in the organism’s natural environment).  Can such training influence spontaneous activity 

patterns?  Finally, can we learn anything new by simultaneously recording the membrane 

potentials of multiple neurons? 

The wholebrain preparation is ideal for addressing these questions, and the appropriate 

experimental protocol is a relatively straightforward extension of our existing approach.  After 

patching onto one or more neurons, the experimenter should first collect a set of “baseline” 

recordings in complete darkness, to provide a measure of spontaneous activity before training.  

Second, sets of stimulus trials (incorporating a complex, naturalistic stimulus) should be 

interleaved with sets of spontaneous recordings.  With this data set, it will be possible to both 

compare spontaneous and evoked events, and inspect for training effects.  Finally, multi-whole-

cell recordings can provide a higher-dimensional description of cortical activity.  For example, the 

(z-scored) membrane potentials of simultaneously-recorded neurons can be plotted against one 
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Figure 7.3  A “trajectory” view of multi-whole-cell recordings reveals distinguishable cortical 

responses to movie onset and embedded red dot.  Membrane potentials from three 

simultaneously-recorded neurons are z-scored and plotted vs. one another for each repetition of a 

stimulus, to give a multi-whole-cell “trajectory” view of evoked activity (red traces).  Across-

trial average trajectory in black.  Stimulus is motion-enhanced movie, with “embedded” red dot 

presented 4 s after movie onset (courtesy Jack Gallant and Woodrow Shew).  The red dot is 

centered in and fills approximately half of the visual field.  The “upper” trajectory above 

describes the first 4 s of the movie response, and the “lower” trajectory (indicated by black 

arrow) is the response to the embedded red dot.  Thus, while single-trial variability is large (as 

indicated by the highly-variable nature of the red traces), the movie onset and dot onset evoked 

average cortical responses that are easily distinguishable using the membrane potentials from just 

three simultaneously-recorded neurons.  
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another, forming “response trajectories” (Figure 7.3) that may reveal patterns not readily apparent 

in individual whole-cell recordings. 

7.4 Thalamic and Cortical Contributions to Visually-evoked Activity 

 As discussed in earlier chapters, a relatively simple view of cortex segregates sensory-

evoked cortical inputs into two sources: thalamic and cortical.  What does each of these sources 

contribute to the total cortical response?  Previous work in mouse visual(Y. Li, Ibrahim, Liu, 

Zhang, & Tao, 2013; Lien & Scanziani, 2013) and auditory(L. Li, Li, Zhou, Tao, & Zhang, 2013) 

cortex conclude that thalamic input to cortical neurons is tuned to particular stimulus features 

(either because the thalamic neurons themselves are tuned, or as a result of patterns of convergence 

in thalamic inputs), and that intracortical inputs amplify this tuned signal.  Yet the cortex is 

distinguishable from earlier sensory areas by its complex interconnectivity (including both short- 

and long-range connections) and spatiotemporal activity patterns.  Further, although cortical 

neurons do display subthreshold orientation selectivity in response to scanning bars, they tend to 

respond to a wide variety of stimuli; scanning bars may not be the best stimulus for defining 

cortical neurons.  In short, the cortex likely serves as more than an amplifying relay between 

thalamus and higher-order areas.  Addressing this possibility requires presenting more complex 

stimuli and obtaining measures of evoked activity beyond response amplitude (see below) under 

two conditions: one in which the cortex is active, and one in which the cortex is relatively inactive. 

Our initial results suggest that we may be able to distinguish between thalamic and cortical 

inputs.  It has been shown that electrical stimulation of the lateral forebrain bundle (LFB, which 

projects from thalamus to cortex) evokes short-latency, unitary EPSPs in cortical neurons, 

followed by more complex mixtures of EPSPs and IPSPs (provided the stimulus is strong enough 

to evoke cortical spiking, Figure 7.4a - d).  In contrast, cortical stimulation evokes only the late 
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Figure 7.4  Lateral forebrain bundle (LFB) stimulation evokes short-latency cortical EPSPs, 

which are absent in response to cortical stimulation.  (a) One experimental setup, in which one 

electrode (S) is used to electrically stimulate the LFB, and another (R) is used to record the 

membrane potential of individual pyramidal neurons.  This reduced preparation consists of the 

cortex, LFB, and dorsal ventricular ridge.  (b, c) Intracellular cortical responses to low-amplitude 

(c) and high-amplitude (d) stimulation of the LFB.  Artifacts indicate stimulus onset.  (d) 

Intracellular recordings of responses to various levels of LFB stimulation.  Stimulus amplitudes 

are listed in multiples of the threshold value (T) that evokes cortical PSPs.  (e) Alternate 

experimental setup, in which the cortex is electrically stimulated by an electrode that is either 

near to (S1) or far from (S2) the recording electrode.  (f, g) Intracellular recordings of responses 

of two different neurons to near-electrode stimulation.  (h) Same as in (g), but for far-electrode 

stimulation.  From Larson-Prior, Ulinksi, Slater 1991.  This is an unofficial adaptation or 

translation of an article that appeared in a publication of the American Physiological Society. 

The American Physiological Society has not endorsed the content of this adaptation or 

translation, or the context of its use. 
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inputs(Larson-Prior, Ulinski, & Slater, 1991) (Figure 7.4e - h).  This suggests that it should be 

possible to segregate thalamocortical and corticocortical inputs by latency and waveform.  For 

some cells and stimuli, we observe distinct short- and long-latency inputs in response to visual 

stimulation (Figure 7.6), and two observations suggest they are indeed thalamic and cortical in 

origin, respectively.  First, the short-latency inputs have a more reliable time course across trials 

than the later inputs (Figure 7.6), consistent with a more spontaneously-active cortex (which leads 

to a variable cortical state at stimulus onset, as discussed in Chapter 3).  Second, the amplitude and 

duration of the barrages of late inputs are highly variable across preparations, in contrast to the 

early inputs (Figure 7.5).  This is consistent with the hypothesis that cortical excitability (and 

therefore the size of the cortical response that can be evoked by a given thalamic input) is variable 

across preparations (as indicated by the variable degree of spontaneous “synchrony”, as described 

in Chapter 3). 

 Our results also suggest there is indeed more to the picture than amplification of thalamic 

inputs.  First, thalamic inputs to cortical pyramidal neurons in turtle are thought to correspond to 

narrow “isoazimuths” in the visual field(Mulligan & Ulinski, 1990).  Yet we observe that 

individual neurons receive substantial subthreshold inputs in response to visual stimulation nearly 

anywhere in the visual field (Figure 7.6), which is likely due to extensive lateral intracortical 

connections(Cosans & Ulinski, 1990).  Second, there is no clear relationship between the 

amplitude (or presence) of short-latency inputs and the total response amplitude.  For instance, the 

region of the visual field corresponding to the largest total subthreshold response in a given neuron 

may not elicit a short-latency response (Figure 7.6).  Thus, the late (likely intracortical) inputs to 

a neuron define receptive fields that are complex compared to those predicted by thalamocortical 

architecture, and do not appear to be simple amplifications of thalamic inputs. 
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Figure 7.5  Visually-evoked response amplitude and duration varied continuously across 

experiments.  Subthreshold membrane potential (black traces) and nearby LFP (red traces) 

recordings of responses to brief whole-field flashes (with stimulus onset indicated by black 

arrow).  Each paired recording from a different preparation.  Responses varied from small, short-

latency EPSPs (top left), to long-duration barrages of EPSPs and IPSPs, which often evoked 

spikes (bottom right).  Nearby LFP activity increased along with late intracellular activity. 
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Figure 7.6  Individual cortical neurons have extremely large and complex receptive fields.  

Subthreshold membrane potential (blue traces) and nearby LFP (red traces) responses to multiple 

presentations of 2s white sub-field flash.  Individual responses are in low opacity, and across-

trial averages in high opacity.  Cyan line below traces indicates stimulus duration.  Stimulus is 

white square (randomly-selected from a 3x3 grid) presented on a black background.  Opacity of 

green background on each subplot corresponds to average subthreshold response amplitude.  

Location of each subplot corresponds to the location of the flashed square in the visual field.  

Note that stimulation in some regions resulted in short-latency “bumps” in the LFP and unitary 

EPSPs in the membrane potential, suggesting this and nearby neurons received direct LGN 

inputs in response to flashes in those sub-fields.  These features were absent in response to 

flashes in other regions, but responses could still be quite large.  Indeed, the largest subthreshold 

responses (upper right) did not include short-latency inputs.  
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 In this preparation, then, there appears to be a nontrivial contribution by cortical inputs to 

the sensory response, and these inputs may be distinguishable from thalamic inputs.  How can an 

experiment be designed to disentangle the two types of inputs?  With modern optogenetic tools, it 

is possible to reversibly silence the cortex by exciting cortical inhibitory neurons, or by depressing 

pyramidal neurons.  These tools are not available in the turtle cortex.  Instead, the experimenter 

can either reversibly influence cortical activity via pharmacology, or irreversibly disrupt cortical 

connectivity.  In the first case, a GABA receptor agonist (e.g., muscimol) can be focally applied 

to cortex for a subset of trials.  The enhanced inhibition should silence cortical activity, and ideally 

have no influence on thalamic inputs (provided a minimal amount is applied).  Here, it will be 

important to protect the retina from exposure to muscimol.  With the second approach, the 

experimenter can first collect a set of visual stimulation recordings with cortical connectivity 

intact.  Next, the experimenter disrupts cortical connectivity by making two cuts: one rostral to 

and one caudal to the region of interest, from the medial cortex to the DVR.  Ideally, this leaves 

the majority of thalamic inputs to the region intact.  There are two technical considerations that 

motivate using extracellular recordings for this approach.  First, it may be difficult to stabilize the 

“flap” of interest to the degree required for patching.  Second, it will be important to resume 

recording as quickly as possible after making the cuts to minimize the influence of tissue death on 

the later recordings.  With either approach, it will be impossible to completely silence cortical 

inputs, while leaving thalamic inputs completely unaffected.  However, it will be sufficient to show 

that early and late inputs are differentially influenced by the manipulation. 

Finally, what are appropriate stimuli and response measures for probing the roles of the two 

input types?  First, as already mentioned, the two sources may be distinguishable by the latency 

and waveform of subthreshold PSPs in response to brief visual stimulation.  Thus, the method 
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chosen for disrupting cortical inputs should have a greater impact on the late response than on 

short-latency inputs.  As such, a brief stimulus, combined with one of the approaches described 

above, should be useful for assigning the early and late inputs to a particular source.  Second, it is 

possible to probe the actual computational roles of the two input types.  We propose two 

approaches.  In the first, the experimenter presents a naturalistic movie on some trials, and a 

motion-enhanced (or phase-shuffled naturalistic) movie on other trials, and then calculates 

stimulus-response mutual information.  The results can be compared for the two cortical conditions 

(activated/intact vs. silenced/disrupted) to infer the role of cortex in stimulus discrimination.    This 

approach directly compares the “performance” of the two input types, with the hypothesis being 

that thalamocortical and intracortical inputs together will outperform thalamocortical inputs alone.  

The strength of this approach is that it quantifies the comparison.  Alternatively, the experimenter 

can show a single complex stimulus across all trials, and calculate the reverse correlation between 

the response and the stimulus(Ramirez et al., 2014), which identifies the complex receptive field 

(or pattern of pixels) of the cell/electrode.  This approach allows the experimenter to assess how 

the receptive field of inputs changes when the cortex is silenced, and moves beyond the classical 

probing of receptive fields with simplistic stimuli. 
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