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Abstract 

Bidimensional regression analysis is used for comparing the similarity between two 

plane figures (Tobler,1994). The basic bidimensional regression can be written as a 

linear regression model after re-parameterization and has been traditionally estimated 

by the ordinary least squares. In this dissertation, we propose a Bayesian approach to 

bidimensional regression and further consider its extension to a cognitive study that 

studies the relationship between a real map and memorized maps from many subjects. 

A hierarchical model is further proposed to incorporate random effects that describe 

the difference among subjects. Also, we develop a Gibbs sampler for estimating this 

hierarchical model. The proposed method is then applied to a real cognitive study. 
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1 Introduction 

 Lots of times, there are situations where the degree of resemblance between 

two plane figures, e.g.maps, needs to be measured, such as computing the degree of 

similarity of two people’s faces based on their pictures. This matter can be approached 

by using regression analysis. Tobler(1994) specifically used bidimensional regression 

as a tool for this type of tasks. 

 Bidimensional regression models the transformation between the coordinates 

of a set of objects(landmarks) on the two maps. For example, Kendra, David and 

Ashok (2009) described three different bidimensional regression models which are 

Euclidean, affine and projective models, in an order of increasing complexity. For 

psychological data, Llyod(1989) and Nakaya(1997) stated that only the Euclidean and 

affine models have provided practically useful descriptions. In this dissertation, we 

focus on the basic bidimensional regression model for Euclidean transformation, 

which assumes that the original coordinates are scaled, rotated and translated by the 

same values so the overall configuration remains in the same shape in the other map. 

The principle developed in this dissertation can be generalized to affine and projective 

transformations.     

Unlike the common linear regressions, bidimensional regression assesses the 

relation between independent and dependent variables which are each two 

dimensional. Suppose that we have two maps with n objects marked on them. Let 

        denote the  th point of the target plane, the dependent variable, and         

the matching point on the explanatory plane (the independent variable). Nakaya(1997) 

defined the basic bidimensional regression model for ‘Euclidean transformation’ as  
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where   is a scaling parameter and   is an angle of rotation. Also,    and  
 
are 

random errors assumed to be independent. Then, by re-parameterization, we get 
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where,                             
    

   

and                                  
  

   
 .                        (2) 

According to Friedman and Kohler (2003), the two parameters        indicate the 

magnitude of the horizontal and vertical translation, respectively and the remaining 

parameters          are to derive the scale and angle values. Hence,        

represents a translation relative to the original location: up or down; and          

indicates by how much the points have been rotated and expanded or contracted. 

  In the literature, the classical way of fitting a bidimensional regression 

model is in the frequentist way using the ordinary least squares (OLS). The goal of 

this dissertation is to derive statistical inference for bidimensional regression in the 

Bayesian way. The Bayesian approach is more appropriate for the situation where, the 

data are supported with additional prior information. This prior information is 

combined with the likelihood function of the data to yield the posterior belief about 

the coefficients and variance. Bayesian inference treats the unknown parameters as 

random variables when the observed data are treated as fixed and known. In the same 

context, the unobservable parameters are treated probabilistically, while the observed 

data are treated deterministically (Martin, 2005). The goal is to obtain the distribution 

of the parameters given the information in the data. To carry out Bayesian inference, 

prior information for unknown parameters has to be added. After the priors are chosen, 

multiplying the likelihood function and the prior results in a posterior distribution for 

the parameters.  
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 Although the Bayesian principle seems simple, analyzing the posterior 

distribution is complicated because deriving posterior distributions often requires the 

integration of high-dimensional functions (Walsh 2004). Consequently, Monte Carlo 

(MC) methods are usually used as a tool of summarizing the posterior distribution. 

MC methods state that information about the target distribution can be learned by 

repeatedly drawing from it. Then, there has to be an algorithm that suits to produce 

draws from the target distribution. There are two popular algorithms, Gibbs sampling 

and the Metropolis-Hastings algorithm, used widely in Bayesian inference. In this 

thesis, we will use the Gibbs sampler. 

 In a Gibbs sampler, the sequences of draws are dependent and each draw 

depends on the previous draw thus they form a Markov chain. Before running a Gibbs 

sampling algorithm, full conditional distributions of each parameter has to be derived. 

Gibbs sampling draws from full conditional distributions instead of the joint 

distribution as simulating from the joint distribution is typically much more 

complicated.    

 A second purpose of this dissertation is to investigate the usage of Bayesian 

bidimensional regression for spatial cognition. It is based on an ongoing research on 

cognitive mapping conducted by Department of Psychology, Washington University. 

The spatial transformation will be examined when objects’ positions are reconstructed 

from memory. Participants were shown a video with a set of objects in a scene and 

after watching the video, they were given a map for the same scene shown in the 

video and asked to indicate the locations of the objects. By comparing the actual 

locations of the objects and those the participants put on the map, it helps to 

understand how people’s memory works in spatial mapping. A straightforward 

application of bidimensional regression is to assess the relationship between the real 
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map and each participant’s memorized map. However, such an individual-by-

individual analysis does not model the commonality among all participants, which is 

the key in understanding the mechanism of human spatial cognition. In addition, it is 

statistically more efficient to combine data from all subjects. Therefore, we extend the 

basic bidimensional regression by allowing random effects on the transformation 

coefficients of each participant and establish a hierarchical model. We then further 

construct a Gibbs sampler for this hierarchical model.  

 In the next chapter, we will develop Bayesian inference for the basic 

bidimensional regression. Then in Chapter 3, we describe the hierarchical 

bidimensional regression model and the associated Gibbs sampler. A real data analysis 

is then presented in Chapter 4. And we conclude the thesis in Chapter 5. 
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2 Bayesian bidimensional regression 

 Suppose we have a study involving two maps with n objects. Let         be 

the actual location and         be the memorized location of the  th object. We can 

rewrite model (1) as a multiple linear regression, that is,  
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Here,    and    are independent and identically distributed (i.i.d.) random errors. 

These two terms can either be assumed having a common variance in basic 

bidimensional regression or with different variances in weighted bidimensional 

regression (Schmid et al 2011). In this study, we assume    and    have different 

variances where          
   and          

   respectively. Then we may write the 

above model in matrix notations as       
    

           where the response 

                    
  and                

 . The coefficients   measure 

the scaling and rotation transformations. We further denote      
    

     where 

  and    are the upper and lower half of the design matrix. Under this model, the 

covariance matrix W of the random errors, is the following diagonal matrix,  
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2.1 Gibbs Sampler 

Next, we derive the full conditional distributions needed for the Gibbs 

sampler. The joint posterior distribution is obtained by multiplying the likelihood 

function and the prior and full conditional distributions can then be derived from the 

joint posterior distribution. Here, we assume prior independence among all parameters, 

which leads to the fact that the full conditional distribution of any parameter can be 

obtained by multiplying the likelihood function and its prior. The log-likelihood 

function for the basic bidimensional regression model is given by 

         
 

 
                                

To derive the full conditional distribution of     
    

    the prior information has to 

be specified. Here, we set a flat prior,       . Then, the full conditional 

distribution of     
    

    is given as  

                            
 

 
                              

       
 

 
                               

       
 

 
                                                    

Hence, we have 

    
    

                                     (5) 

where                      and              . 

Next, we derive the full conditional distributions of   
  and   

 . Different 

from   , where a flat prior was assumed, for two variances, conjugate prior is chosen 

for both. Conjugate prior makes updating the parameters more straightforward as both 

prior and posterior have the same distributional form and the posterior’s parameters 

have a simple functional form. For normal data, inverse-gamma distribution is usually 

used as conjugate prior of unknown variance parameters. Hence, we assume 
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             and     

            , whose density functions are proportional 

to   
                    

      and   
                    

     . As the prior 

follows the inverse-gamma distribution, we expect the full conditional distribution 

also follows the inverse-gamma distribution with different parameters. Note that 

vector            
           

   and               
           

  , 

where     and     denote the  th row of    and   , respectively. 

Derivation of the full conditional distribution of   
      

    and   
      

    is 

given below.  
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Note when deriving the full conditional distribution of    
      

   , terms in the log-

likelihood function involving   
  can be considered as constant thus eliminated and 
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vice versa. The full conditional distribution of each variance parameter is given as  
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3 Bayesian hierarchical bidimensional regression 

Now we consider extending the basic bidimensional regression to a situation 

motivated by a spatial cognition study conducted by Department of Psychology, 

Washington University. In this study, each of 225 participants was shown a video with 

nine objects in a scene. And after watching the video, they were given a map for the 

same scene shown in the video and asked to indicate the locations of the nine objects. 

By comparing the actual locations of the objects and those the participants put on the 

map, it helps to understand how people’s memory works in spatial mapping. The 

basic bidimensional regression is not suitable for this situation as it is only able to 

analyze the relationship between two maps whereas this study produces many 

memorized maps out of one real map. 

 The basic bidimensional regression model in the previous chapter can be used 

to estimate the transformation of a single participant (subject). Suppose we have k 

subjects and each provides memorized locations of n objects after viewing the video. 

We can then write the bidimensional regression model for the  th subject in the 

multiple linear regression form as 

 

 
 
 
 
 
 
 

   

 
 
 

   

   
 
 
 

    

 
 
 
 
 
 
 

   

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  

   
   
   
   
   
   
   
   
   
   

 

      
   
   
   

     
    
   
   
   
    

 

   
 
 
 

   
  
 
 
 
   

 
 
 
 
 
 
 

 

   

   

   
   

  

 

 
 
 
 
 
 
 

   
 
 
 

   
   
 
 
 

    

 
 
 
 
 
 
 

                 

where   denotes the  th object and   denotes the  th subject, and the errors are still 

assumed as           
   and           

   i.i.d.. We allow the transformation 

coefficient for each individual ,  , to be different across   and consider them as 

random effects that vary around a common population parameter  . Coefficients for 
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each individual,   ’s,        are i.i.d. as 

            .                           (9) 

Next, we need to assign hyper-priors on   and   . They are given as 

           and   
                    .            (10) 

The hyper-prior implies that      
        and         . 

 

3.1 Gibbs Sampler 

Now we need to derive the full conditional distribution of each parameter. 

First, consider the full conditional distribution of               
   where    is the 

transformation coefficient for each subject. Given the prior and hyper-prior 

information, it follows that  
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Therefore, we have 

              
               ,                  (11) 

where            
      

     and        
     

       
  . 

Note that    is the design matrix of  th subject and                      
  for 

each subject.  

  Next, we derive the full conditional distribution of the population mean 

parameter,            
  . 
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Then we have 

           
              ,                    (12) 

where                  
      

 
    and        

         . 

 Then, the full conditional distribution of each variance parameter,   
  and 

  
 , is derived. We are still using conjugate priors for each variance parameter, 

    
             and      

            . Hence, we expect the full conditional 

distribution of each variance parameter is also an inverse-gamma distribution. Full 

conditional distributions of   
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given as  
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where     
 and     

 denote the  th row of    and    for the  th subject, 

respectively. Therefore,    
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4 Real data analysis 

 The data set is provided by Department of Psychology, Washington 

University. There are 231 subjects enrolled by December 12, 2011. Each subject 

provided memorized x and y coordinates of nine objects, whose actual coordinates are 

also recorded from the real map. Six individuals who have missing values in any of 

their coordinates have been eliminated from the sample, so the actual number of 

subjects is 225.  

4.1 Basic bidimensional regression 

 After full conditional distributions of all parameters have been derived, we 

can run the Gibbs sampler. The algorithm was run for each individual separately with 

3,000 iterations for the iteration to converge. The first 20 were discarded as burn-in. 

The initial values for   and hyper-parameters of each variance need to be pre-

specified. Initial value for   is set as    = (-18.244, 53.087, 0.902,-0.084), which is 

the regression coefficient estimate from non-Bayesian bidimensional regression, 

i.e.OLS. The hyper-parameters in the inverse-gamma distribution,          and   , 

are chosen to make the prior non-informative. The typical non-informative prior for a 

variance parameter is π(  )∝
 

  
 which corresponds to the case both hyper-parameters 

are close to zero. Hence, hyper-parameter values are defined as             

equal to 0.001.  

 The Gibbs sampler then iteratively samples from the full conditional of  

 ,   
  and   

 . We implement the Gibbs sampler in R and use the R package coda 

to summarize the MCMC output and monitor the convergence. 

 Table 1 summarizes bidimensional regression analysis of one individual, 

Subject 80002, including posterior mean, standard error and quantiles.  
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Table 1: Summary of individual-by-individual bidimensional regression analysis for 

Subject 80002 

Mean        SD      Naive SE  Time-series   SE 

alpha1  -1.183e+01  4.0395188  3.343e-01  2.711e-01 

alpha2   3.503e+01  1.0460379  8.657e-02  8.410e-02 

beta1    9.449e-01  0.0103824  8.593e-04  6.951e-04 

beta2   -3.390e-02  0.0134462  1.113e-03  9.192e-04 

sigmau   8.851e-04  0.0004979  4.121e-05  3.710e-05 

sigmav   1.146e-03  0.0005436  4.499e-05  3.939e-05 

 

          2.5%        25%        50%       75%      97.5% 

alpha1 -2.039e+01 -1.482e+01 -1.121e+01 -8.693141 -5.459371 

alpha2  3.400e+01  3.420e+01  3.476e+01 35.494349 37.510156 

beta1   9.228e-01  9.377e-01  9.466e-01  0.954051  0.958092 

beta2  -6.659e-02 -4.249e-02 -2.998e-02 -0.023335 -0.017007 

sigmau  2.990e-04  5.649e-04  7.586e-04  0.001030  0.002253 

sigmav  4.219e-04  7.381e-04  1.066e-03  0.001366  0.002445 
 

Using Equation (2), these regression coefficients can be converted into scaling and 

rotation transformation parameters. In this case,  =                

and         
     

    
 . Hence, one can state that the map for this individual is scaled 

by  =0.951 and rotated by 2.05 degree of angle.   

Also, to help understanding the result, we also present more detailed output of a 

randomly selected subject (id=80002). Two plots were given which are traceplot 

(Figure 1) and autocorrelation function (ACF) plot (Figure 2). The traceplot is useful 

in assessing convergence because the trace helps to see if the chain has not yet 

converged to its stationary distribution or whether the chain has mixed well. For a 

well-mixed Markov chain, the chain traverses the posterior space rapidly in the 

traceplot. ACF plot gives correlations between the series and lagged values of the 

series for lags. In the ACF plot, a low autocorrelation is expected for chains with good 

mixing. 
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Figure 1: Traceplot for each parameter of Subject 80002.  

 

Figure 2: Autocorrelation function plot for Subject 80002.  
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Lastly, to check the convergence numerically, Geweke’s convergence 

diagnostic is performed. Geweke’s diagnostic is based on the tests for equality of the 

means of the first and last part of a Markov chain. If the samples are drawn from the 

stationary distribution of the chain, the two means are equal and Geweke's statistic 

has an asymptotically standard normal distribution (Bernado et al,1992). Table 2 is the 

output from Geweke’s convergence diagnostic test for the same individual.  

Table 2: Geweke’s convergence diagnostic test for Subject 80002  

Fraction in 1st window = 0.1 

Fraction in 2nd window = 0.5  

alpha1    alpha2    beta1    beta2    sigmau    sigmav  

0.02251  1.33663  -0.33745  -0.15876  -1.13749  -0.73409  

Geweke’s convergence diagnostic test provides a z-score for each parameter. As a 

Markov chain progresses to infinity, the sampling distribution of Geweke’s z-score 

goes to N(0,1) if the chain has converged (Best and Cowles 1996). Hence, values of z 

–score which fall in the extreme tails of a standard normal distribution suggest that the 

chain is not fully converged. In Table 2, z-scores for most parameters are insignificant 

except for alpha2 and   
 . 

In this individual-by-individual analysis, we ran the Gibbs sampler for each 

individual with 3,000 iterations. And first 100 were discarded as burn-in. Figures 3 

and 4 are the histograms and boxplots for each regression coefficient, (            ), 

across all individuals 
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Figure 3: Histograms of regression coefficient, (            ) 

 

Figure 4: Boxplots of regression coefficient, (            ) 
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From Figures 3 and 4, alpha1 and alpha2 have little heavier tail than normal 

distribution and beta2 has approximately normal distribution. Meanwhile, we also 

notice that the boxplot for all four coefficients show a few outliers which suggests that 

some subjects’ spatial transformation works differently from the majority. And they 

may deserve further scientific investigation.  

Then, the posterior median of the regression coefficients are transformed to 

more interpretable rotation and scaling parameters using Equation (2). Rotation angle 

and scaling constant are collected from all individuals and they were plotted in a two-

dimensional scatterplot (Figure 5).  

Figure 5: Scatter plot of Rotation angle vs. Scaling constant 

 
 

Most number of points is located between 0.8 and 1.2 for scaling constant and around 

0 for rotation angle values. This implies majority of people located objects almost 

correctly rotation-wise but they enlarged the objects by the rate of 0.8 to 1.2.   
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Marginal distributions of the rotation angle( ) and scaling constants (ф  are shown in 

Figures 6 and 7.    

Figure 6: Histogram and Boxplot of Rotation angle parameter of all individuals  

 
Figure 7: Histogram and Boxplot of Scaling constant parameter of all individuals  

  
From Figure 6 and 7, we see that the degree of rotation of most individuals is not that 

large and the frequency around 0 values is the highest; on the other hand, the heavy 

tail of the distribution of the scaling constant indicates a much larger variation in how 

people rescale the locations of the nine objects.  

Also, the histograms show that the rotation and scaling parameters are 

approximately normal. This suggests that it might be more reasonable to assume 

normal random effects on these parameters. However, this makes the computation 
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much more complicated since there is no easy conjugate form is available hence it is 

worth future efforts to explore which way specifying the random effects is more 

reasonable. 
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5 Conclusion  

 In this thesis, we developed Bayesian inference for the basic bidimensional 

regression with Euclidean transformation. Furthermore, we also constructed a 

hierarchical bidimensional regression model motivated by a spatial cognition study 

and presented a Gibbs sampling procedure for estimating the model. Unlike classic 

bidimensional regression, we approach this in the Bayesian way that allows 

incorporating prior information. Since the joint posterior distribution is too 

complicated to directly sample from, we use Gibbs sampling to instead draw from the 

full conditional distributions of each parameter. We first developed a Gibbs sampler 

for the basic bidimensional regression, which can be used to analyze the spatial 

mechanism from one individual’s data. In order to better utilize the information from 

many individuals in the spatial cognition study, we construct a hierarchical 

bidimensional regression model that allows borrow information cross different subject. 

We implemented the proposed methodology in the statistical software, R. We then 

apply the basic Bayesian bidimensional regression to a real data set. Results indicate 

that the normal assumption needs to be placed on the random effects. And in the 

future, we will explore the most reasonable way to specify the random effects and 

apply the hierarchical model the same data set and see whether it provides an 

improvement to the model fit.   
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