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ABSTRACT OF THE DISSERTATION

Consequences and Incentives of Fair Learning

by

Andrew Estornell

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2023

Professor Chien-Ju Ho, Chair

As algorithmic decision-making systems become increasingly entrenched in human-centric

domains such as hiring and lending, it is crucial that these systems do not perpetuate histor-

ical bias or unfairly discriminate against sensitive demographics. However, in these domains,

considering group fairness as the sole factor often leads to two significant consequences: 1) in-

centivizing individuals to strategically alter their behavior to obtain desired outcomes (e.g.,

hiding debt to qualify for a loan), and 2) achieving fairness at the expense of individual

welfare (e.g., equalizing lending rates between groups by offering fewer total loans). We

explore these consequences from both theoretical and empirical perspectives with the goal

of characterizing when and why such phenomena occur, as well as developing solutions to

mitigate their negative side effects. Our findings suggest that traditional group-fair learning,

i.e., optimizing solely for group fairness and predictive performance, can frequently result in

both of the aforementioned consequences, implying that an isolated focus on group fairness

can lead to increased manipulative behavior and widespread decreases in individual welfare.

Notably, the former has the potential to decrease model fairness, suggesting that optimizing

for group fairness can be counterproductive (i.e., resulting in less fair models) when the

model creates incentives for strategic behavior. In light of the pitfalls of group-fair learning,

we propose several approaches to mitigate their adverse effects. From the perspective of

xiii



strategic behavior, we propose an auditing mechanism that discourages manipulative behav-

ior and promotes true feature changes (i.e., promotes recourse). From the perspective of

individual welfare, we develop two learning schemes that preserve individual welfare while

achieving high levels of performance and group fairness. In addition to providing theoretical

guarantees for both these welfare-aware learning schemes and the auditing mechanism, we

also demonstrate their practical efficacy through experiments on a multitude of datasets from

several different domains. Our results indicate that by adopting a more nuanced approach

to group-fair learning, it is possible to build models that avoid these negative side effects

without compromising performance or group fairness.
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Chapter 1

Introduction

The ever-increasing role of algorithmic decision-making systems in human-centered domains

has sparked deep investigation into the efficacy of these systems. A common lens through

which such investigations are conducted is that of group-fairness, which aims to ensure

that when machine learning models are deployed in high-stakes domains, such as social

service assistance or employment, the decisions of these models adhere to notions of fairness

between demographics defined by protected features, e.g., equalizing false positive rates

between males and females in recidivism prediction. There is a large body of work focusing

on both defining what it means for a model to be fair, as well as developing techniques

for building fair models [2, 62, 95, 33, 34, 68, 42, 38]. While this line of work has seen

great success in developing models that achieve group fairness, these models can often have

subtle but consequential side-effects, such as decreasing individual welfare or incentivizing

individuals to engage in manipulations. The work presented in this thesis aims to characterize

these side-effects, provide tools for model designers to identify when they can occur, and to

develop algorithms that mitigate the severity of these side-effects. Our investigations into

these topics will fall under three primary lines of inquiry. First, we will examine the ways

in which strategic incentives arise in group-fair learning, as well as the impacts that the

resulting strategic behavior has on model fairness and performance. Second, we explore

the individual-level harms that arise as a result of imposing group-fairness constraints on

predictive models, e.g., decreases to individual welfare or loss of desired opportunities among

already ”disadvantaged” individuals. We will see that there is a fundamental connection

between the individual harms caused by the imposition of group-fairness and the impacts of

strategic behavior on model fairness and performance. Third, we develop several algorithmic

techniques for mitigating both the impacts of strategic behavior on group-fair models and

the individual-level harms caused by group-fairness constraints.
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We begin by examining the impacts of strategic behavior on model fairness. In particular,

we compare the fairness of a group-fair model to a fairness-agnostic model (also called a

conventional model). The deployment of fair models involves replacing a preexisting con-

ventional model that is currently in use. The fair learning literature primarily focuses on

fair models in isolation and pays little attention to conventional predecessors, except to the

extent that the predecessor is unfair, while the fair model is not. However, a deep under-

standing of the relationship between fair and conventional learning schemes is vital to the

efficacy of these fair schemes. For example, if a model designer deploys a group-fair model

in lieu of a conventional model, but strategic agent behavior causes the group-fair model to

become less fair than the conventional model, the change in model was ultimately counter-

productive to the model designer’s intention. As most group-fair learning schemes presume

faithful behavior from agents, there is a need to better understand the relationship between

strategic behavior and group-fair learning. To this end, we define the notion of fairness re-

versals, which capture the event where strategic agent behavior causes the group-fair model

to become less fair than its conventional counterpart. Fairness reversals can be interpreted

as a counterfactual analysis of model choice, in which the system would have been more

fair if the model designer had elected not to add fairness constraints. Our key finding is

that fair models that are more selective (i.e., those that negatively classify more individuals)

than their conventional counterpart are precisely the models that result in fairness reversals.

We also characterize conditions under which the fair model will indeed be more selective.

Further details are discussed in Part II.

Next, we investigate the complementary problem of how group-fairness impacts individual

agents. We again take the perspective of counterfactual comparisons between a fair model

and ”reasonable” choices of conventional models. From an individual-centered view, we

investigate the ways in which each individual’s treatment differs as a result of the model

designer’s choice to impose group fairness. In particular, we aim to answer two primary

questions about the relationship between the use of group-fair and fairness-agnostic models:

1) at an individual level, are there agents who are reliably made worse off by the use of fair

learning schemes over conventional learning schemes, and if so, are there any meaningful

similarities between such agents; and 2) are these negative impacts distributed unequally

between groups, i.e., do individuals in one group, compared to other groups, bear more of

the impact associated with imposing fairness.

3



To answer the first question, we look at both classification and scarce resource allocation.

In the context of classification, we investigate whether an individual’s probability of being

positively classified is decreased under a fair learning scheme. We find that common fair

learning schemes frequently result in models where roughly 25%-50% of individuals have

their chance of positive classification decreased. In the scarce resource allocation setting, a

score function is used to rank agents in a population, and the top-k scoring agents receive

a desired resource. We investigate whether individuals reliably lose their resource when

using a fair score function in place of a conventional score function. Unlike classification,

individual decisions can no longer be made in isolation since allocations are dependent on the

distribution of scores across the population. As such, we propose a more nuanced manner of

examining whether an individual loses their resource due to the inclusion of group-fairness

or due to the innate randomness in both the choice of score functions and the population.

More specifically, we define perceived-impact, which captures an individual’s perception of

whether or not they lost allocation simply when changing score functions without accounting

for innate randomness, and realized-impact, which captures whether the individual would

have lost their resource when switching to a fair score function while accounting for both

randomness in the choice of score function and population. We find that across a multitude of

datasets and score function choices, both perceived- and realized-impact are frequently high.

Further, we observe that perceived-impact is often a significant overestimate of realized-

impact, implying that individuals may believe themselves to be more harmed than they

actually are.

To answer the second question, we look at both individual welfare in classification (chance of

being positively classified), as well as perceived- and realized-impact across groups. We find

that in cases of classification, it is typically the advantaged group whose individual welfare is

decreased. Similarly, in the case of scarce resource allocation, both perceived- and realized-

impact fall predominantly on individuals in the advantaged group. However, when resources

are abundant (more than one resource for every two individuals), the disadvantaged group

frequently suffers a larger impact than the advantaged group. Further details are provided

in Part II.

Lastly, we investigate techniques to mitigate the aforementioned side-effects: both the neg-

ative impacts on individuals as well as the negative impacts of strategic behavior on model

fairness. In particular, to mitigate harm at the individual level, we propose a general post-

processing approach for learning models that are both fair and maintain a specified level of
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individual welfare. This postprocessing framework can be used in both classification and

scarce resource allocation settings and works for a broad class of additive fairness metrics

(e.g., FPR, PR, TPR, ERR, etc.). We find that this framework is capable of producing

models that have high levels of individual welfare while also maintaining high group fairness

and predictive efficacy. Furthermore, we demonstrate that these postprocessing techniques

can also be used to prevent the selectivity of the fair classifier, which is ultimately the root

cause of fairness reversals.

While this postprocessing technique can reduce fairness reversals, it does not directly address

strategic manipulations by agents. Thus, we also propose an auditing framework that can

be used to directly reduce strategic agent behavior. An audit constitutes a verification that

features submitted by an agent were not the result of manipulation (e.g., the IRS verifying

information on tax returns); as such verifications may be costly, the auditor has a limited

budget with which to audit. Agents found to be manipulating may be subject to rejection and

an additional fine. Within our auditing framework, we characterize optimal auditing policies

for three primary objectives: 1) minimizing the incentive to manipulate, 2) maximizing

the number of agents making true feature improvements rather than manipulations, and 3)

maximizing system utility. The first objective corresponds to finding an audit policy that

makes truthful reporting an ε-equilibrium for the minimum value of ε, meaning that no

agent can gain more than ε utility by choosing to manipulate when all other agents are

truthful. When ε = 0, truthful reporting is an equilibrium strategy, and model designers

can recover both the fairness and performance of their model using the truthful data. The

second objective can be seen as a form of social good in that the auditor aims to maximize

the number of agents obtaining a desired outcome via feature improvement, which, unlike

manipulations, can improve the agent’s true qualification (e.g., paying off debt improves an

individual’s creditworthiness while hiding debt does not). The third objective captures a

self-interested auditor who aims only to improve their own utility (e.g., a bank aiming to

maximize profits made on loans). We characterize necessary and sufficient conditions for the

latter two objectives to align, meaning that an auditor aiming to maximize their own utility

will also maximize the fraction of agents electing to perform feature improvements.

Furthermore, we outline several advantages of auditing compared to traditional methods for

achieving robustness. In particular, auditing will never result in agents being required to

manipulate in order to maintain positive classification, as is the case with almost all other

traditional approaches (e.g., adversarial retraining). We also investigate the role of subsidies
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in auditing, where subsidies correspond to the auditor electing to perform fewer audits and

instead use a portion of their audit budget to decrease the cost (e.g., allotting a fraction

of the audit budget to produce and distribute educational material on financial literacy,

thus decreasing the cost for agents to improve their creditworthiness). We provide necessary

and sufficient conditions under which the auditor will allot a nonzero fraction of their audit

budget to subsidies, thus decreasing the cost of feature improvements.
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Chapter 2

Related Work

Here, we provide an overview of works that are relevant to the scope of this thesis. In some

chapters, we also offer a more in-depth discussion of works that are of particular relevance

to the topic of that chapter. The work presented in this thesis primarily falls under three

fields: fair learning, strategic classification, and mechanism design.

2.1 Fair Learning

The field of fair learning is focused around both defining what it means for machine learning

model to be fair (e.g., equal error rate between different demographics), as well as opper-

ationalizing those definitions in order to develop learning schemes which yield fair models.

While fairness can be can be defined in many different ways, the definitions found in the

fair-learning literature can be broken into two categories: individual fairness which captures

the idea that similar individuals should be treated similarly [33, 118, 89, 93, 103, 69, 74],

and group fairness which captures the idea that groups or subpopulations should be treated

similarly [43, 95, 62, 38, 53, 22, 52, 50, 48, 68, 51]. We will focus primarily on the lat-

ter, but the former will be relevant for several components of later chapters. Works in fair

learning can be also be broken into three categories based on the way in fair fairness is op-

perationalized: preprocessing which modifies data such that models trained on that modified

data are fair [38, 121, 53, 30, 83, 81, 75, 117, 19], inprocessing which modifies the learning

procedure in order to obtain a fair model [23, 62, 2, 68, 95, 52, 91, 51, 112, 25], and post-

processing which modifies the decisions of a pretrained model such that the model becomes

fair [43, 50, 93, 77, 98, 7]. In the context of group-fair learning, each of these works aims

to ensure that predictions (almost always binary predictions) made between groups, sub-

groups, or subpopulations, defined by sensitive features (e.g., race, age, gender, etc.) have

roughly equal value under some type of metric (typically an error metric). For example
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[43, 62, 95, 2, 25] can produce classifiers which have roughly equal false positive rate, or

true positive rate, between different demographics. Some works have also investigated fair

learning in the context of regression [12, 3, 66]. We will focus on group-fairness in the con-

text of binary classification, which trivially extended to multi-class classification in nearly all

settings. Most of the aforementioned group-fair learning schemes allow the model designer

to specify a set of desired fairness metrics as well as threshold for “unfairness”, e.g., the

model designer can specify that the false positive rate between any two group cannot exceed

0.2. Of particular relevance to the scope of this thesis is the assumption, made by each of

these works, that data is reported truthfully to the model (both at test- and decision-time)

and that any alterations are the result of “natural” noise.

2.2 Strategic Classification

The field of strategic classification aims to capture settings in which strategic agents manip-

ulate a decision making system in order to gain more favorable outcomes, e.g., an applicant

under-reporting debt in order to be approved for a loan. Agents are modeled as being selfish,

and manipulate as a means of increasing their own utility [41], which is in contrast to the

malevolent objectives of agents (attackers) found in adversarial machine learning [47]. As

such, the objectives of the model designer and the strategic agents are not necessarily at

odds, and can sometimes even be aligned [71]. When deciding the optimal best response

to a given model, agents weigh both their valuation of a desired outcome along with the

associated cost of obtaining that outcome, and select the action (manipulation) which yields

the highest value (possibly in expectation). Manipulation costs capture Works in strategic

classification have development of classifiers robust to strategic manipulation [41, 87, 70, 31],

to measuring the ways in which robustness and strategic behavior leads to negative outcomes

for the population [87, 46, 4].

While there are some works which aim to merge the ideas of group fairness and strategic

agents [87, 46, 23, 91, 116, 118], these works either study the effects of strategic behavior of

relatively specialized definitions of fairness (such as the cost to remain positively classified)

[46, 87, 104], frame strategic agents from the perspective of adversarial machine learning (i.e.,

agents wish too degrade model performance, not increase their own likelihood of positive

outcomes) [116, 120, 91, 23], or fair classification which is robust to non-strategic noise
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[51, 112]. That is to say that the intersection of group fairness and strategic classification is

still widely unexplored.

A generalization of strategic behavior, refereed to as performative prediction and first pro-

posed in [92], captures the ways in which predictions made by machine learning models

can influence individuals and populations, one such type of influence being the incentive to

strategically manipulate. Followup works in the area have further generalized this concept

to notions of populations adapting to model decisions through strategic, or non-strategic,

means [97, 86, 16, 40]. These works typically take a model-centered approach by examin-

ing algorithms which can cope with population shifts caused by model influence, such as

repeated risk minimization [16, 92] (similar to the technique of adversarial training).

A particularly relevant type of agent adaption is actionable recourse [109], in which agents

seek to obtain a desired outcome through earnest means; rather than manipulating or mis-

reporting their features, agent make actual feature improvements such as paying off debt

instead of imply hiding debt. Within the actionable recourse literature the objective of

model designers is to develop models which enable large fractions of a population to achieve

positive classification [109, 100, 100, 58, 56, 24]. From a mathematical perspective, objectives

of this form can be viewed an inverse form of the model designer’s objective in strategic clas-

sification; the former aims to maximize the number of agents capable of achieving positive

classification, while latter aims to minimize the number of such agents.

2.3 Mechanism Design

Lastly the field of mechanism design aims to develop systems which elicit a particular type

of behavior from agents such as truthful reporting [15]. In the scope of our work, we will

be interested in using mechanism as a means of shaping agent behavior such that either

they do not act strategically, i.e. the classifier incentive compatible [90], or such that such

that impacts of strategic behavior on model performance is minimized, i.e. increase model

robustness. One type mechanism of particular relevance to our work is auditing. Auditing

constitutes a verification that the information submitted by an agent (e.g., a loan application)

is truthful. First formalized in game theoretic context by [14], auditing has seen use in a wide

array of domains, particular in the context of scare recourse allocation [79, 10, 36, 13]. While

these works make use of auditing in a somewhat similar context to ours, they presume the
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agents’ ability to directly modify their score or requested resource, rather than accounting

for the necessary feature changes or feature manipulations required to obtain a particular

score or resource. As such the auditing schemes proposed in these works do not apply to the

case of strategic classification where agents must modify their features in order to obtain a

desired outcome.
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Chapter 3

Preliminaries

In this section, we outline general notation a definitions used throughout the thesis. When

necessary, a set of more comprehensive preliminaries is provided in each chapter.

f model, typically a classifier
X ,Y , G features, labels, and groups respectively

D distribution over (X ,Y , G)
L(f,X ,Y) loss of model f w.r.t. features X and labels Y
c(x,x′) cost of changing feature x to x′

B manipulation budget, i.e., c(x,x′) ≤ B
M(f |g) efficacy metric of model f on group g
U(f ;M) unfairness of model f w.r.t. metric M

β, α
hard and soft fairness constraints respectively

i.e. U(f ;M) ≤ β or L(f,X ,Y) += αU(f,M)

f (c,B) classifier resulting from agents best responding to f
with budget B and manipulation cost function c

Table 3.1: Notation

Throughout we presume a population of agents given as (X ,Y , G), where agent (x, y, g) is

characterized by a feature vector x ∈ X , a group g ∈ G to which they belong, and a binary

(true) label y ∈ Y ≡ {0, 1}. For ease of analysis we presume binary groups, i.e., G ≡ {0, 1},
however all results (unless otherwise stated) extend to the case of three or more groups. Let

D be the joint distribution over G×X × Y .

Classification and Fairness We denote fairness-agnostic classifiers, also called conven-

tional classifiers, as fC , and group-fair classifiers as fF . Both classifiers map from the domain

of features X to the set of binary labels Y , i.e. fC , fF : X → Y . Note that either classifier

can be group-aware or group-agnostic, i.e. the classifier makes use of, or does not make

use of, the sensitive features G at decision time (X could simply contain a copy of G).
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When relevant we will make whether the models are group-aware or group-agnostic. Let

M(f ; g) be a measure of efficacy (e.g., positive rate) of f restricted to a group g, and define

U(f ;M) =
∣∣M(f |g = 1)−M(f |g = 0)

∣∣. We shorten this notation to U(f) where M is

clear from context. We assume that the conventional classifier aims to minimize loss,

fC = argmin
f

L(f,X ,Y) (3.1)

while fF aims minimize loss subject to a fairness constraint,

fF = argmin
f

L(f,X ,Y) (3.2)

U(f ;M) ≤ β

where β ∈ [0, 1] specifies allowed “unfairness”. Again for ease of analysis we presume a single

fairness constraint, but all results extend to multiple fairness constraints unless otherwise

stated.

For the majority of this paper we will focus on four common group-fairness metrics defined

next. In subsequent chapters, we will explicitly state when results extend to other fairness.

Definition 3.0.1. Common fairness metrics:

Positive rate (PR): U(f,PR) =
∣∣P(f(x) = 1|g = 1

)
− P

(
f(x) = 1|g = 0

)∣∣
True positive rate (TPR): U(f,TPR) =

∣∣P(f(x) = 1|g = 1, y = 1
)

− P
(
f(x) = 1|g = 0, y = 1

)∣∣
False positive rate (FPR): U(f,FPR) =

∣∣P(f(x) = 1|g = 1, y = 0
)

− P
(
f(x) = 1|g = 0, y = 0

)∣∣
Error rate (ERR): U(f,ERR) =

∣∣P(f(x) ̸= y|g = 1,
)
− P

(
f(x) ̸= 1|g = 0

)∣∣
In all cases, we refer to the “advantaged” group (e.g. the group with higher PR for PR based

fairness) as group 1, or G1, while the disadvantaged group is referred to as 0 or G0.
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Strategic Behavior We consider the agents strategically responding to classifier f (con-

ventional or group-fair). Specifically, we suppose that each agent with features x can ma-

nipulate these features to produce features x′ that are then reported to the classifier. Ma-

nipulations do not alter the agents true label y. When manipulating, the agent incurs a

cost, captured by a manipulation cost function c(x,x′) ≥ 0 [41, 87, 46]. For example, if

c(x,x′) = ∥x− x′∥, then “larger” manipulations are more expensive.

The utility of an agent is then,

u(x,x′) = f(x′)− f(x)− 1/B · c(x,x′),

where B is a parameter trading off costs and benefits of manipulation. Following the standard

setting in strategic classification or adversarial machine learning, we assume any misreporting

behavior would not change the true label y associated with x. We assume that all agents

are rational utility maximizers. Thus, since f(x′) − f(x) ≤ 1, the agent will misreport its

features only when c(x,x′) ≤ B. Additionally, the agent will not misreport if f(x) = 1 (they

are selected even when truthfully reporting x). Consequently, we can equivalently view B

as an upper bound on the costs that agents are willing to incur from misreporting their

features, that is, the manipulation budget.
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Chapter 4

Datasets, Models, and Algorithms for

Experiments

Here we outline datasets and learning schemes. For consistency, the same datasets and

learning schemes are used throughout each chapter. Deviations, when necessary, are stated

explicitly.

Datasets For our empirical study, we use five datasets commonly used as benchmarks

for group-fair classification: Adult: Dataset of working professionals where the goal is

to predict high or low income (protected feature: gender) [67, 32]. Crime: Dataset of

communities where the objective is to predict if the community has high crime (protected

feature: race) [99, 32]. Law: Dataset of law students where the objective is to predict

bar-exam passage (protected feature: race) [114]. Student: Dataset of students where

the objective is to predict a student receiving high math grades (protected feature: race)

[28, 32]. Credit: Dataset of people applying for credit where the objective is to predict

creditworthiness (protected feature: age) [32]. All five datasets have binary outcomes, and

we label the more desirable outcome for the individuals by y = 1 (e.g., having a high income

in the Adult dataset), with the less desirable outcome labeled by y = 0. Sensitive features

are also considered as binary, for example, the age feature is an indicator that the individual

is Young or Old.

Learning Schemes In our experimentation we use the following models: logistic regression

(LGR), support vector machines with an RBF kernel (SVM), neural networks (NN), and

gradient boosting trees (GB). For fair models we use four common learning paradigms:

Reductions [2] an inprocessing technique which works via cost-sensitive learning and is suited

to PR, TPR, FPR, ERR fairness, GerryFair [62] an inprocessing technique which works via

14



name sensitive features binary label size

Adult [67] age, race, gender, nationality earns ≥ 50k per-year 5,200
Crime [99] race has “high” crime rate 2,000
Law [114] age, race gender ) pass bar on first attempt 1,700

Student: [28] age, gender pass AP exams 395
Credit: [32] gender, age is creditworthy 1,000

Table 4.1: Dataset Description

minmax fictitious play and is suited for TPR and FPR fairness, EqOdds [95] a postprocessing

technique which works via randomized group-wise thresholds and is suited for TPR and FPR

fairness, and KDE [25], an inprocessing technique which works via kernel density estimation

and is suited for TPR, FPR, PR, and ERR fairness.

Strategic Manipulations Agents best responding to a classifier f will be a function of

the classifier itself, feature types (discrete or continuous), and the cost function c. In the

majority of experiments we study cost functions which are lp-norms, i.e., c(x,x′) = ∥x−x′∥p.
When c is an lp-norm and the classifier is differentiable (LGR, SVM, and NN) we use a mix

of projected gradient descent (PGD) for continuous features [82] use a mix of local search

for categorical features [106, 72]. When the classifier is non-differentiable (GB), we make

use local search methods for ensemble-based classifiers [122]. Several chapters make use of

cost functions different from lp-norms, in those chapters the methods for computing optimal

manipulations is discussed in detail. In cases where the feature space is small, more effective

attacks can be found by approximating the decision boundary of the classifier as a set of

discrete points and binary searching for the lowest cost point.
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Part II

Impacts of Group-Fair Learning
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Chapter 5

Group-Fairness and Strategic

Behavior

We being our investigation by examining the relationship between strategic manipulation

and group fair classification. When model decisions are consequential to individuals’ util-

ity, the deployment of machine learning models inevitably creates a environments in which

individuals are incentivized to behave strategically. Such strategic behavior can potentially

undermine the model efficacy. This phenomenon has been studied extensively in the context

of fairness agnostic learning [41], remains relatively under-studied in the context of fairness-

aware learning. Most analysis of fair algorithms proceeds from the assumption that the

people affected by algorithmic decisions will not modify their features (manipulate) in-order

to improve their outcome. However, this assumption is impractical in many real world set-

tings as the manipulation of automated decision making systems in fairness-critical domains

such as welfare assistance and lending [20, 70] has been well documented. We investigate the

role of strategic manipulation in the context of fair learning and find a plethora of settings

in which strategic behavior decreases model fairness. In particular we find that strategic

behavior frequently leads to fairness reversal, with a conventional classifier, in which the fair

model exhibited higher unfairness than a classifier trained with no consideration of fairness.

We further contextualize the fairness reversal phenomenon by providing conditions under

which fairness reversals occur; in particular, we show that fairness reversal occurs as a result

of a group-fair classifier becoming more selective, achieving fairness largely by excluding indi-

viduals from the advantaged group. In contrast, if group fairness is achieved by the classifier

becoming more inclusive, fairness reversal does not occur.

We investigate the effects of such strategic manipulation of a binary group-fair classifier. In

the social services example, the classifier may decide whether an applicant receives assistance,

and the fairness criterion could be approximate equality of selection rate between male and
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female applicants. First, we observe that the ability of individuals to manipulate the features

a classifier uses can lead to fairness reversal, with the conventional (accuracy-maximizing)

classifier exhibiting greater fairness than a group-fair classifier. We demonstrate this phe-

nomenon on several standard benchmark datasets commonly used in evaluating group-fair

classifiers. Next, we theoretically investigate conditions under which fairness reversal oc-

curs. We prove that the key characteristic that leads to fairness reversal is that the group

fair classifier becomes more selective, excluding some of the individuals in the advantaged

group from being selected. Moreover, we show that this condition is sufficient for fairness

reversal for several classes of functions measuring feature misreporting costs. In contrast, we

experimentally demonstrate that when a group-fair classifier exhibits inclusiveness instead

by selecting additional individuals from the disadvantaged group, fairness reversal does not

occur.

5.1 Summary of Results

We begin by observing empirically the phenomenon of fairness reversal, exhibited on a num-

ber of datasets commonly used in bench-marking group-fair classification efficacy. We demon-

strate that the key factor resulting in fairness reversals is the extent to which group fairness is

achieved through increased selectivity (the fair classifier fF positively classifies fewer inputs

than the conventional classifier fC) as opposed to increased inclusiveness (fF positively clas-

sifies more inputs than fC). In particular, classifiers skewed towards the former frequently

exhibit fairness reversals as where those skewed towards the latter do not.

Next, we examine this issue theoretically, and prove that selectivity is indeed a sufficient

condition for fairness reversal. Further, we show that under some additional conditions,

selectivity is also a necessary condition. These theoretical results hold for two common

classes of manipulation cost functions (features- and outcome-monotonic costs). Lastly we

investigate why some fair classifiers are selective, while others are not, and provide a set of

sufficient conditions on both the distribution of labels and features as well as the fair learning

scheme. These conditions helps explain our empirical observations as they hold frequently

for each of the dataset and classifier combinations used in our experiments.
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5.2 Preliminaries

We begin by extending the model found in Chapter 3 with additional details relevant the

effects of strategic behavior on group-fair classifiers. For results in Part II we focus on the

three most common types of fairness metrics found in the literature: false positive rate

(FPR), true positive rate (TPR) and positive rate (PR), [43, 38, 62, 121, 2]. Additionally

we focus on conventional and fair models which are optimized for expected accuracy, i.e. the

conventional and fair objectives given for a general loss function L in Equations 3.1 and 3.2

now become

fC = argmin
f

P(f(x) ̸= y) (5.1)

and

fF = argmin
f

P(f(x) ̸= y) (5.2)

s.t.U(f ;M) ≤ β

For ease of analysis we will consider fairness in terms of so called soft constrained fairness

rather than the hard constrained fairness found in 3.2. That is, for a given fairness impor-

tance weight α ∈ [0, 1],

fF = argmin
f

(1− α)P(f(x) ̸= y) + αU(f ;M) (5.3)

For the fairness metrics of interest, FPR, TPR, and PR, the objectives in Equations 5.2

and 5.3 are equivalent. We formally state this next as a theorem, but first remark that

this equivalence implies that our theoretical and experimental results hold for both soft

constrained and hard constrained fairness.

Theorem 5.2.1. Let M be defined by PR, FPR, or TPR. For any α ∈ [0, 1] there exists

a β ∈ [0, 1] such that the optimal classifier for Equation 5.2 is also an optimal solution to

Equation 5.3. Conversely for any β ∈ [0, 1] there exists an α ∈ [0, 1] such that the optimal

classifier for Equation 5.3 is also an optimal solution to Equation 5.2.

Proof. The full proof is provided in Section A of the Appendix. The intuition for this result

follows similarly to that of strong-duality results found in optimization theory.
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Further, we focus our analysis on the two most common families of cost functions in strategic

classification literature, namely feature-monotonic costs [41] and outcome-monotonic cost

function [87].

Definition 5.2.2. (Feature-Monotonic Costs): A cost function c is said to be feature-

monotonic if c(x,x′) is monotonic in ||x− x′||, i.e., larger manipulations are more costly.

Definition 5.2.3. (Outcome-monotonic costs): A cost function c is said to be outcome-

monotonic if c(x,x′) is monotonic in P(y = 1|x′)− P(y = 1|x) where c(x,x′) = 0 for any x′

such that P(y = 1|x) > P(y = 1|x′), i.e., manipulations leading to better outcomes are more

costly.

5.3 Fairness Reversals

To capture the effects of strategic behavior on group-fair classifiers, we contrast these classi-

fiers against fairness-agnostic (or conventional) classifiers, i.e. those corresponding to Equa-

tion 5.1. In particular we will be interested in the ways in which strategic behavior impacts

the relative fairness of each model. In particular, we propose the notion of a fairness reversal

in the presence of strategic agents, i.e., strategic agent behavior to leads to the fair model

fF becoming less fair than conventional model fC .

Definition 5.3.1. (Fairness Reversal) Let M be a measure of efficacy, fF be a classifier

which is group-fair with respect to U(f ;M) and fC be a conventional accuracy-maximizing

classifier. Suppose that U(fF ;M) < U(fC ;M). Let f
(c,B)
C , f

(c,B)
F be the induced classi-

fiers when agents best respond to fC and fF respectively with manipulation cost c(x,x′)

and budget B. We say that a budget B leads to fairness reversal between fC and fF if

U(f
(c,B)
F ;M) ≥ U(f

(c,B)
C ;M).

We will then say that fairness reversal between fF and fC occurs if there is some strategic

manipulation budget B which leads to fairness reversal, that is, for this budget, fC becomes

more fair than fF after manipulation. Note that if the budget B is 0, fF will be more fair than

fC by construction, whereas if the budget is infinite, as long as any input is classified as the

positive class, all individuals can misreport their features to be this class, and consequently

both classifiers are fair in the sense that every input is predicted as 1. As a result, our

analysis is focused solely on the intermediate cases between these extremes.
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Selectivity We find that it is classifier selectivity which leads to fairness reversals. More

specifically, examining FPR, TPR, and PR fairness in binary classification, there are two

ways in which the fair classifier fF can “correct” the unfairness of the conventional classifier

fC . The fair classifier can either increase TPR, FPR, or PR on the disadvantaged group

(the group with lower TPR, FPR, or PR), or decrease TPR, FPR, or PR on the advantaged

group (the group with the higher TPR, FPR, or PR). The relative frequency at which these

two actions occur will ultimately determine whether a fairness reversal occurs.

Definition 5.3.2. Let XfC = {x ∈ X : fC(x) = 1} and XfF = {x ∈ X : fF (x) = 1}. We

say that fF is more selective than fC if XfF ⊂ XfC .

That is, fF is more selective than fC if the set of positively classified examples under fF

is a subset of those positively classified under fC . While this definition of selectivity is

slightly more restrictive than the type of selectivity found in our empirical results, the subset

propriety is a driving force behind the fairness reversals observed in practice. Selectivity can

be interpreted as the fair model fF , achieving fairness by “excluding” additional agents from

positive classification, compared to fC . As an example, under PR-based fairness let G0 be

the group with lower PR and G1 be the group with higher PR under fC (TPR and FPR

hold similarly). A model designer could improve the fairness of fC by positively classifying

more agents in G0 or negatively classifying more agents in G1 (or a combination of both). In

the latter case, members of G0 are “excluded” from positive classification, and the resulting

model is considered to be more selective. Note that this type of exclusion is precisely the

means through which fairness is achieved in Figure 5.2 (center).

In the context of our empirical results, we look at a more general notion of selectivity which

we refer to as soft-selectivity defined as,

S(fC , fF ) = P
(
fC(x) = 1 ̸= fF (x)

)︸ ︷︷ ︸
x losses positive classification when switching to fF

− P
(
fC(x) = 0 ̸= fF (x)

)︸ ︷︷ ︸
x gains positive classification when switching to fF

Note that if Definition 5.3.2 holds, then S(fC , fF ) ≤ 0. In the context of our theoretical

results we find that selectivity of fF leads to fairness reversals; empirically we observe that

high values of S(fC , fF ) leads to fairness-reversals, while low values of S(fC , fF ) do not.
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Figure 5.1: Difference in unfairness between groups on several datasets as a function of
the manipulation budget B when manipulation cost is c(x,x′) = ∥x − x′∥2. Dashed black
lines correspond to fC and colored lines correspond to fF . A fairness reversal occurs when
one of the colored lines is above the black line. The top row displays results when fF is
learned via the Reductions algorithm, with fairness defined in terms of PR, TPR, or FPR,
for several different values of α. The bottom row displays results when fF is learned via the
EqOdds algorithm, with fairness defined in terms of generalized false positive rate GFPR
(i.e. expected FPR). Reductions is group-agnostic, and EqOdds is group-aware.

5.4 Experimntal Results

In this section, we study phenomenon of fairness-reversals empirically, demonstrating that

they are commonly observed for several benchmark datasets described in Chapter 4. Our

central goal is to understand the conditions under which fairness-reversals occur as the result

of strategic behavior, that is, when a fair classifier fF becomes less fair than its conventional

counterpart fC when agents act strategically.
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Fairness Reversals Under Strategic Behavior

In Figure 5.1 we investigate fairness reversals on three datasets with both Reductions and

EqOdds fairness methods. Consider first Figure 5.1 (top), which examines settings where

predictions do not take the sensitive features as an input (we call these group-agnostic clas-

sifiers). In these three plots, the dashed line corresponds to fC , and the rest are group-fair

classifiers fF for different values of α (recall that higher α entails greater importance of group

fairness). What we observe is that in many cases, particularly when α is not very high, there

is a range of budget values B for which fF becomes less fair than fC . Moreover, in many

cases, this range is considerable. In Figure 5.1 (bottom plots), where group-fair classifiers are

group-aware, including the sensitive feature as an input, the fairness reversal phenomenon

is even more dramatic (note that EqOdds attempts to achieve 0 unfairness between groups,

and thus we do not show multiple values of α in these plots). In this experiment, when

best responding agents are capable of misreporting their group as if it where a feature in

x (fairness is still computed with true group membership). Due to the particular nature of

EqOdds, specifically its handling of agents from different groups, we observe a sharp change

in fairness at B = 1, the precise budget for which misreporting group membership is feasible.

Figure 5.1 exhibits several additional phenomena. Note, in particular, that in many cases

the unfairness (i.e., FPR difference between the groups) initially increases as the budget

increases, but in all cases as budgets B keep increasing, eventually unfairness vanishes as a

result of strategic behavior by agents. Furthermore, much as we observe this initial unfairness

increase for both fC and fF , it appears amplified for some of the group fair classifiers fF .

What Causes Fairness Reversals?

As we formally prove below, the essential condition is selectivity of fair classifier fF compared

to fC . Specifically, in binary classification, there are, roughly, two ways one can improve

fairness on a given dataset (that is, without any consideration of strategic behavior); either

through inclusiveness (positively classifying additional agents from the disadvantaged group

by changing their predicted class to 1), or through selectivity (negative classifying some of

the members of the advantaged group by changing their predicted class 1 to 0).
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Figure 5.2: Fairness reversals and selectivity of classifiers on two ordinal features. The top
row shows regions with positive predictions (blue for fC and orange for fF ) using two features
(corresponding to the axes), and dot colors correspond to the sensitive demographics. The
bottom row shows the relative unfairness between demographic groups (for the classifiers
shown in the top row) as a function of strategic manipulation budget B (lower means more
fair).

Our key observation is that selectivity leads to fairness reversals, while inclusive-

ness does not. Specifically, we observe that as the number of agents positively classified

under fC , but negatively under fF , is larger than the number of agents negatively classified

by fC , but positively under fF , fairness reversals are more commons.

We illustrate this in Figure 5.2, which shows the decision boundaries of fF and fC (top row),

as well as associated fairness as a function of budget (bottom row) for several combinations

of dataset, classifier, and fairness definition. On the Adult and Crime datasets (first two

columns), fairness is achieved predominantly through selectivity, as the orange region (fC)

includes few additional green points (disadvantaged group) compared to the blue region

(fC), but excludes many blue points (advantaged group). This is given more precisely in

terms of the respective group-wise positive rates for fC and fF ; in the first two examples the

positive rates on both groups drops when switching from fC to fF , while in the third case the

positive rate for both groups increases. This, in turn, leads to instances of fairness reversal

(bottom row first column). Qualitatively similar behavior is also observed on the Crime

dataset (second column). In the Law School dataset (third column), in contrast, fairness is
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achieved primarily through inclusiveness, and fF remains more fair than fC over a broad

range of strategic manipulation budgets B.

The reason that selectivity leads to fairness reversal is that those from the advantaged

group who are excluded tend as a result to be closer to the decision boundary than those

from the disadvantaged group. In Section A of the Appendix we provide further results

linking selectivity of the fair classifier to fairness reversals. In this section we also observe

that when strategic agent behavior (for some manipulation budget) results in a fairness

reversal between fF and fC , the relative accuracy of the classifiers is also reversed (for some

potentially different manipulation budget), implying a fundamental relationship between

fairness and accuracy when agents are strategic.

Unfairness of fF in Isolation

Lastly we remark on the relationship of the between the manipulation budge B and the

unfairness of the fair classifier fF . As seen in Figures 5.2 and 5.1, the unfairness of fF is fre-

quently increasing in B (for small values of B). To provide insight into this phenomenon we

look to the case of single variable prediction as showing in Figure 5.3. This figure shows the

error and unfairness of a single variable classifier (i.e., a threshold classifier with threshold

θ) when using a student’s LSAT score to predict whether they will pass the bar exam. Since

manipulations change model decisions only in a single direction (negative predictions become

positive), predicting on strategically altered data amounts to predicting on unaltered data

with a lower threshold . As the manipulation budget B grows, the corresponding threshold

becomes increasingly smaller. Thus, when fF is more selective than fC , i.e. θF > θC = 0.57,

the unfairness of fF will initially increase as B increases. In the case of multivariate predic-

tion, the increased unfairness of fF stems from a similar

Next, we study fairness and accuracy reversals in strategic classification settings theoretically,

demonstrating that selectivity is indeed a sufficient (and, under some additional qualifica-

tions, necessary) condition for fairness reversal.
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5.5 Theoretical Analysis

Here we provide theoretical characterizations of the results observed in Section 5.4. In

particular, we provide provide three primary types of results: 1.) selectivity of the fair

classifier is a sufficient condition — and under some mild assumptions also a necessary — for

fairness-reversals to occur, 2.) instances in which fairness-reversals occur are also instances in

which accuracy-reversals occur, and 3.) outlining conditions on both the fairness-importance

weight α and data distribution which cause the fair classifier to be more selective.

We begin with single-variable classifiers and then proceed to generalize our observations to

multi-feature classifiers. Analysis of single-variable classifiers is valuable not only in build-

ing intuition, but also in that many of the results in the single-variable setting have direct

extensions to the general classifiers with outcome-monotonic costs. Throughout, our key

finding is that selectivity is in fact a sufficient condition for fairness reversal, providing a

theoretical underpinning for the empirical observations above. Additionally, we investigate

the underlying causes of fair classifiers becoming more selective, and provide conditions on

the underlying distribution for this to be the case. In the cases of single variable classifiers

with feature-monotonic costs and multivariable classifiers with outcome-monotonic costs,

we further demonstrate that selectivity also leads to accuracy reversals (strategic behavior

causes the fair classifier to become more accurate than the conventional model), and outline

conditions on the underlying distribution such that selectivity is not just sufficient, but also

necessary for both of these phenomena. When strategic agent behavior results in both a fair-

ness and accuracy reversal, the functionality of both classifiers has fundamentally swapped;

the accuracy driven (conventional) model fC is no longer the most accurate model and the

fairness driven (fair) model fF is no longer the most model.

5.5.1 Single Variable Classifiers

We begin our theoretical exploration of fairness reversals with an exemplar case: a single

variable threshold classifier. In this setting agents possess a single ordinal feature x. For

simplicity we demonstrate our results for a continuous feature x ∈ [0, 1], but the results hold

for any ordinal feature (discrete or continuous) . Both the conventional classifier (selected

for maximal accuracy) and fair classifier (selected for a weighted combination of accuracy
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and fairness with respect to a fairness metric M) can be expressed as a single parameter

θC , θF ∈ [0, 1] respectively where f(x) = I[x ≥ θ].

Prior to our main theoretical results, we first provide a helping lemma which demonstrates

that threshold classifiers making predictions on manipulated distributions, can be expressed

as threshold classifiers on the original unmanipulated distribution.

Lemma 5.5.1. Suppose f is a threshold classifier with threshold θ, (i.e.,f(x) = I[x ≥ θ]).

Suppose further that the cost of manipulation, c(x, x′) is feature monotonic (i.e., monotonic

in |x−x′|) with budget B, and an agent with true feature x can misreport any x′ s.t. c(x, x′) ≤
B. Then there exists a classifier f (c,B)(x) = I[x ≥ θ(c,B)] which makes identical predictions on

the true distribution D as f makes on the manipulated distribution D(c,B)
f , i.e. when agents

behave strategically f(x′) = f (c,B)(x) for all x ∈ X . Moreover, the manipulated threshold

θ(c,B) acting on the true distribution D is given by,

θ(c,B) = argmin
x

x

s.t. c(x, θ) ≤ B.

Lemma 5.5.1 implies that strategic agent behavior can be examined through both the per-

spective of the original classifier f making predictions on the modified distribution D(c,B)
f or

a modified classifier f (c,B) on the original distribution D. Since our investigation involves

comparing the error and unfairness of two classifiers, fC and fF , the latter perspective is par-

ticularly useful given that the distribution D remains invariant between the two manipulated

classifiers.

Proof: (Lemma 5.5.1). When all agents prefer positive predictions to negative predictions,

their manipulations will change the classifier in only a single direction, namely manipulations

cause negatively predicted examples to become positively predicted. Thus, only agents with

feature x, where f(x) = 0 need be considered.
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Suppose f is a threshold classifier with threshold θ, then the best response of an agent with

true feature x is,

x∗ = argmax
x

I[x′ ≥ θ]− I[x ≥ θ]

s.t. c(x, x′) ≤ B

Since the cost function c(x, x′) is monotone w.r.t. |x′ − x| the above best response has

solution

x∗ =

 θ if c(x, θ) ≤ B and x < θ

x otherwise

Moreover, the monotonicity of c(x, x′) also implies that if an agent with feature x has best

response x∗ = θ, then any other agent with true feature x1 where x ≤ x1 < θ, also has best

response x∗
1 = θ.

Thus, the distribution shift of D caused by strategic behavior, can be quantified in terms of

the agent with the smallest feature which is able to misreport a value of θ as their feature,

i.e.,

xmin = argmin
x

x

s.t. c(x, θ) ≤ B

Thus when agents are strategic, any agent with feature x ≥ xmin will be positively clas-

sified by f . Therefore, the threshold θ(c,B) = xmin makes the same classifications on the

unmanipulated distribution D as θ makes on the manipulated distribution D(c,B)
θ .

Our first result is that in single-feature classification, higher selectivity of the group-fair

classifier (i.e. θC < θF ) is sufficient for fairness reversal.

Theorem 5.5.2. Suppose fairness is defined by PR, TPR, or FPR, c(x, x′) is monotone in

|x′−x|, θC is the most accurate, and θF the optimal α-fair, threshold. If θC < θF , then there

exists a budget B that leads to fairness reversal between fF and fC.
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Proof. The unfairness of threshold θ w.r.t. to the distribution D and fairness metric M ∈
{PR,TPR,FPR} is expressed as,

UD(θ) =
∣∣MD(θ|g = 1)−MD(θ|g = 0)

∣∣,
For a given threshold θ and manipulation budget B the best response of an agent with true

feature x is

x
(B)
θ = argmaxx′

(
I[x′ ≥ θ]− I[x ≥ θ]

)
s.t. c(x, x′) ≤ B,

When agents from D play this optimal response, let the resulting distribution be D(c,B)
θ . The

difference in unfairness between classifiers when agents are strategic is UD(c,B)
θC

(θC)− UD(c,B)
θF

(θF ).

Since both fC and fF are thresholds, and c is feature-monotonic, the decisions of θC , θF on the

modified distribution D(c,B)
θ can be expressed as decisions of modified thresholds θ

(c,B)
C , θ

(c,B)
F

on the original distribution D, i.e.,

UD(c,B)
θC

(θC)− UD(c,B)
θF

(θF ) = UD(θ
(c,B)
C )− UD(θ

(c,B)
F )

where

θ
(c,B)
C = argmin

x
s.t. c(x, θC) ≤ B and θ

(c,B)
F = argmin

x
s.t. c(x, θF ) ≤ B

Given these modified threshold, we see that strategic agent behavior results in a lowering

of each threshold as more agents are now able to achieve positive classification; this is due

to the fact that only negatively classified agents will behavior strategically, their goal being

to achieve positive classification. Moreover, when considering θ
(c,B)
C , θ

(c,B)
F as functions of B,

both are monotonically decreasing in B (due to the the monotonicity of c), and θ
(c,B)
C ≤ θ

(c,B)
F

for all B (due to θC < θF ).

Since fairness is defined in terms of PR, FPR, or TPR the constant function f(x) = 1 has

unfairness 0 for any distribution. Thus, θ
(c,B)
C = 0 implies UD(θ

(c,B)
C ) = 0. Let

B′ = sup{B ∈ R+ : UD(θ
(c,B)
C ) > 0},
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then since UD ≥ 0 and c is continuous, there must exist some ε > 0 over the interval

B ∈ [B′ − ε, B′] the unfairness UD(θ
(c,B)
C ) is strictly decreasing in B. If

UD(θ
(c,B′−ε)
F ) ≥ UD(θ

(c,B′−ε)
C ) > 0,

then a fairness reversal has already occurred for budget B′ − ε, so assume otherwise. Com-

bining the difference in relative fairness for budget B′ − ε with the fact that θ
(c,B)
C ≤ θ

(c,B)
F

for all B, we get θ
(c,B′−ε)
C < θ

(c,B′−ε)
F . Since c is monotonic and continuous there must exist

some budget BF > B′ − ε such that θ
(c,B′−ε)
C = θ

(c,BF )
F . Since BF ≥ B′ − ε, and UD(θ

(c,B)
C ) is

decreasing for B ≥ B′ − ε, it must be the case that

UD(θ
(c,BF )
C ) = UD(θ

(c,B′−ε)
F ) ≤ UD(θ

(c,BF )
F ),

and a fairness reversal occurs for budget BF .

We now turn our attention to a complementary observation: fairness reversal is accompanied

by accuracy reversal, that is, strategic behavior leads to fF having higher accuracy than fC .

This is primarily due to the fact that fF becomes more selective and therefore more resilient

to manipulation. Note that the fairness reversal and accuracy reversal need not occur for

the same budget B.

Theorem 5.5.3. Suppose fairness is defined by PR, TPR, or FPR, c(x, x′) is monotone in

|x′ − x|, θC is the most accurate threshold, and θF the optimal α-fair threshold. If θC < θF ,

then there exists a budget B s.t. fF is more accurate than fC.

Proof Sketch. The error of threshold θ on distribution D is given by

LD(θ) = P
(
I[x ≥ θ] = y

)
By definition the definition of θC , we have LD(θC) ≤ LD(θ) for all θ ∈ [0, 1], i.e. LD(θC) ≤
LD(θF ). Similar to the proof of Theorem 5.5.2, agents strategically responding to threshold

classifiers θC , θF can be viewed as modified thresholds θ
(c,B)
C , θ

(c,B)
F operating on the true

distribution D. Both θ
(c,B)
C , θ

(c,B)
F are monotonically decreasing in B. Moreover, θ

(c,B)
C = 0

implies LD(θ) = P(y = 0), since the threshold classifies all agents positively.
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Let

B′ = sup{B : LD(θ
(c,B)
C ) < P(y = 0)},

i.e. B′ is the “largest” manipulation budget such that the conventional threshold is not

a trivial classifier (i.e., not making constant predictions) in the presence of strategic agent

behavior. In a similar line of reasoning to the case of fairness reversals, there must exist

some interval [B′− ε, B′] over which LD(θ
(c,B)) is strictly increasing. Again, by the fact that

θC < θF , there must exist some BF > B′ − ε such that θ
(B′−ε)
C = θ

(c,BF )
F . Thus,

LD(θ
(c,BF )
F ) = LD(θ

(c,B′−ε)
C ) ≥ LD(θ

(c,BF )
C ),

implying that an accuracy reversal occurs for budget BF .

Unimodality and Necessary Conditions for Fairness Reversals

We have showed thus far that selectivity is sufficient for fairness and accuracy reversals, but

under what conditions is it also necessary? Loosely speaking, when a feature x is a good

predictor of both y and g, the error and unfairness of fC and fF are unimodal (defined next)

with respect to the manipulation budget B.

Definition 5.5.4. (Unimodal): A function g : [a, b] → R is negatively unimodal (positively

unimodal) on the interval [a, b] if there exists an inflection point r ∈ [a, b] such that f is

monotone decreasing (increasing) on [a, r] and monotone increasing (decreasing) on [r, b].

(All convex functions are negatively unimodal and all concave functions are positively uni-

modal).

Unimodality is relevant to fairness and accuracy reversals as we will see that when error is

negatively unimodal and unfairness is positively unimodal, both fairness and accuracy rever-

sals occur. We empirically demonstrate that unimodality of both functions holds frequently

on real data. The condition of unimodality of error and unfairness can be interpreted as

both functions possessing a “sweet spot” which yields best case accuracy (or worst case

unfairness). In the former, x is good predictor of true label y and in the latter x is a good

predictor of g.

As an example, in Figure 5.3 we see this phenomenon occur on the Law School dataset when

using a student’s LSAT score as the predictive feature x. Both error and unfairness (in terms
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Figure 5.3: Error (blue) and PR-based unfairness between White and Non-White individuals
(red) of a single variable classifier on the Law School dataset when using the student’s LSAT
score as a single predictive feature. All individuals with an LSAT score above the threshold
θ are predicted positively. The thresholds θC and θU are the most accurate and least fair
thresholds respectively.

of positive rate difference between groups) are unimodal in the threshold θ. That is, LSAT

score is a “good” predictor of both the target variable (bar passage) and the sensitive feature

(race); this is a well documented source of bias within the Law School dataset.

We further document this relationship in Section A of the Appendix, most ordinal features

produce threshold classifiers which have (approximately) unimodal error and unfairness.

In Section A, we also theoretically outline the precise conditions under which error and

unfairness would be unimodal; these conditions essentially boil down to the feature x being

a good predictor of both group and label (which we observe to be the case for most ordinal

features across the datasets we study). When this occurs, the selectivity of fF is not only

sufficient for fairness and accuracy reversals, but also necessary. We next formalize this in

the following theorem; further details on the necessary and sufficient conditions required for

fairness and accuracy reversals are provided in Section A.

Theorem 5.5.5. Let θC and θF be the most accurate and optimal fair classifiers respectively.

Suppose fairness is defined by PR, FPR, or TPR, and c(x,x′) is outcome monotonic, and

that error (and unfairness) are negatively (positively) unimodal in θ. Then there exists a

budget B such that strategic agent behavior leads to a fairness reversal if an only if fF is

more selective than FC.
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Proof. When error LD(θ) and unfairness UD(θ) are both unimodal in θ, the optimal conven-

tional threshold θC and optimal α-fair threshold θF can be expressed in terms of the inflection

points xL and xU of error and unfairness respectively. The most accurate threshold is then

θC = xL, and the most unfair threshold is then θu = xU . The forward direction, i.e. when

θC < θF , follows a similar of reasoning to the proof of Theorem 5.5.2, let θ
(c,B)
C and θ

(c,B)
F

be the modified thresholds induced by agents best responding to either threshold with cost

function c and budget B. Then, since θ
(c,B)
C , θ

(c,B)
F are monotonically decreasing in B and

θC < θF , there must exist a B′ such that θ
(c,B′)
C ≤ θ

(c,B′)
F = θC . Thus

UD(θ
(c,B′)
C ) ≤ UD(θC) = UD(θ

(c,B′)
F ) and LD(θ

(c,B′)
F ) = LD(θC) ≤ LD(θ

(c,B′)
C ),

implying that a fairness and accuracy reversal occurs for budget B′.

The reverse direction, follows from the relationship between θF and the two inflection points

θC , θU . Given the assumption that θF < θC , there are only three possible cases for the

relationship between these points

(1) θF < θC ≤ θU , (2) θF < θU ≤ θC , (3) θU < θF < θC

the strict inequalities being due to the fact that θF ̸= θC and θF ̸= θU by definition. In cases

(1) and (2), no fairness or accuracy reversal will occur. Only in case (3) can a fairness or

accuracy reversal occur, however we will show that such a case is impossible.

Beginning with case (1), both error and unfairness are unimodal in θ
(c,B)
F , θ

(cB)
C , each of

which is monotonically increasing in B. Thus if θF < θC , then no accuracy reversal can

occur. Similarly if θF < θC ≤ θU , no fairness reversal can occur, i.e. in case (1), neither

reversal can occur.

In case (2) since UD(θF ) < UD(θC), and UD(θ
(c,B)
C ) is monotonically increasing until θ

(c,B)
C =

θU , no fairness reversal will occur. Similar to case (1), θF < θC , implies that no accuracy

reversal occurs either.

Thus it remains only to show that case (3) can never occur. To see this, not for any

0 < ε < θC − θF , it must be the case that both

UD(θF + ε) ≤ UD(θF ) and LD(θF + ε) ≤ LD(θF )
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implying that θF is not the optimal fair threshold. Thus case (3) is not possible, and in cases

(1) and (2), i.e., the only possible cases, fairness and accuracy reversals can never occur.

Now that we have established the critical role of selectivity in fairness reversal, we next an-

alyze why that is. As mentioned previously, there are roughly two ways to achieve fairness:

inclusiveness (classifying more examples as positive) or selectivity (classifying fewer exam-

ples as positive). Which of these will be the predominant outcome of training fF depends

intimately on the data distribution. We outline these conditions, as well as conditions for

error and unfairness to be unimodal, via Lemmas A.1.2, A.1.3, A.1.1. These lemmas can be

succinctly, stated as follows.

Remark 5.5.6. (Summary of Lemmas A.1.2, A.1.3, A.1.1) Suppose that for the true con-

ditional distributions P(y = 1|x) and P(g = 1|x) there exists some xy, xg such that any

threshold θ ≥ xy has accuracy at least .5 on P(y = 1|x) and any θ ≤ xy has accuracy no

more than .5 on P(y = 1|x) (similarly for xg). Then error and unfairness are unimodal in

the threshold θ. That is, x is a reasonably good predictor of both true label y and group g.

This can be equivalently stated that P(y = 1|x) and P(g = 1|x) both have a single crossing

with .5 as functions of x. This condition frequently holds on real data.

Next, Theorem 5.5.7 provides conditions on the underlying distribution such that the optimal

fair classifier will achieve fairness via selectivity.

Theorem 5.5.7. Suppose fairness is defined by PR, TPR, or FPR. Suppose further that

P
(
y = 1|x

)
has a single crossing with P(y = 1), and that P

(
g = 1|x

)
has a single crossing

with the respective value given in Lemmas A.1.2 and A.1.3, call this value pg. Let xy and xg

be defined by

P
(
y = 1|xy

)
= P(y = 1) and P

(
g = 1|xg

)
= pg

If xg < xy, then there exists a nonempty interval [α0, α1] s.t. for any α ∈ [α0, α1] the optimal

α-fair classifier fF , has the propriety that θC < θF (implying that strategic agent behavior

leads to fF becoming less fair than fC as outlined by Theorem 5.5.2).
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Proof. Given α ∈ (0, 1), fairness metric M ∈ {PR,TPR,FPR}, and data distribution D,

the objective of the fair learning scheme is to find θF such that

θF = argminθ(1− α)P
(
I[x ≥ θ] ̸= y

)
+ αUD(θ) (5.4)

where

UD(θ) =
∣∣M(θ|g = 1)−M(θ|g = 0)

∣∣
By Lemma A.1.1 the error term P

(
I[x ≤ θ] = y

)
is negatively unimodal in θ and achieves

a minimum at θC where P
(
y = 1|x = θC

)
= P(y = 1). Similarly, by Lemmas A.1.2, A.1.3

the unfairness term UD(θ) is positively unimodal in θ and achieves a maximum at θU where

P
(
g = 1|x = θU

)
= P

(
g = 1

)
. Thus for any α the fair learning objective (Equation 5.4)

is monotonically increasing, implying θF /∈ [θU , θC ]. So either θF ∈ [0, θU) or θF ∈ (θC , 1].

By the continuity of Equation 5.4 w.r.t. to θ. For some ε > 0, any ε′ < ε yields P
(
I[x ≥

θC + ε′] ̸= y
)
≤ P

(
I[x ≥ θU ] ̸= y

)
and UD(θC) ≤ UD(θU − ε′). Thus implying that for small

enough since both |θC − θF | and |θU − θF | are monotonic w.r.t. to α, it must be the case

that that for α small enough θF = θC + ε′ is the optimal α-fair classifier, thus implying the

existence of of fairness coefficients [α1, α2] such that α ∈ [α1, α2] implies θF > θC .

The condition in this theorem can be intuitively interpreted as follows. Suppose that S is the

set of individuals selected (i.e., classified as 1) by fC , who are also near the decision boundary

of fC . If the advantaged group (i.e., group with better average outcomes) is overrepresented

in S, there is a range of parameters α such that the optimal α-fair classifier is more selective

than fC (recall that higher α places greater importance on group-fairness in learning).

5.5.2 General Classifiers

Next we discuss general multi-variate classifiers, generalizing several of the results from

Section 5.5.1. First we show that when fF is more selective than fC , fairness reversal

occurs for both feature-monotonic and outcome-monotonic cost functions. Second, we give

conditions which lead to fF being more selective than fC . For outcome-monotonic costs, we

provide two additional results: 1) greater selectivity of fF also leads to accuracy reversal, and
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2) unimodality of each classifier’s error and unfairness causes selectivity to be both necessary

and sufficient for fairness and accuracy reversal.

Outcome-Monotonic Costs

We begin with the case of outcome-monotonic costs. As shown by [88], outcome-monotonic

manipulation costs result in the following best response for classifier f . Let

x∗ = argminx P(y = 1|x) s.t. f(x) = 1.

If c(x,x∗) ≤ B then the best response is x′ = x∗ otherwise x′ = x. With this best response

in hand we show that fF having greater selectivity than fC leads to fairness reversal.

Theorem 5.5.8. Let fC and fF be the most accurate and optimal fair classifiers respectively.

Suppose fairness is defined by PR, FPR, or TPR, and c(x,x′) is outcome monotonic. Then

if fF is more selective than fC, there exists a budget B such that strategic agent behavior

leads to a fairness reversal.

Proof. Intuitively, the case of outcome-monotonic costs with general classifiers follows via a

similar line of reasoning to that of feature-monotonic costs with single variable classifier.

For a given classifier f , let

pmin = min
x:f(x)=1

P(y = 1|x)

and let xmin be the feature associated with pmin; xmin,C , pmin,C and xmin,F , pmin,F correspond

to fC and fF respectively. When agents best respond to f the resulting manipulated classifier

can be expressed as a threshold on the underlying probabilities P(y = 1|x). More specifically,

let

x∗ = argminxP(y = 1|x) s.t. c(x,xmin) ≤ B.

Then when agents best resound to f (inducing classifier f (c,B)) any agent x with P(y = 1|x) ≥
P(y = 1|x∗) will be positively classified under f (c,B), i.e.

f (c,B)(x) =

 1 if P(y = 1|x) ≥ P(y = 1|x∗)

0 otherwise
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Thus f (c,B) can expressed as the threshold P(y = 1|x∗) operating on the conditional distri-

bution P(y = 1|x).

Since fF is more selective than fC , (i.e. fF (x) = 1 =⇒ fC(x) = 1), it must be the case

that

fF (xmin,F ) = 1 = fC(xmin,F ) implying that pmin,C ≤ pmin,F

Therefore the induced conventional and fair thresholds P(y = 1|x∗
C),P(y = 1|x∗

F ) acting

on P(y = 1|x) have the relationship that P(y = 1|x∗
C) ≤ P(y = 1|x∗

C). Thus, we see that

selectivity of the fair classifier in the case outcome-monotonic costs yields a fair threshold (on

a modified distribution) which is larger than the induced conventional threshold (operating

on the same distribution as the fair threshold). While this setting is not entirely equivalent

to the single variable case, the remainder of the proof follows in similar fashion to that of

Theorem 5.5.2. In particular, the monotonicity of P(y = 1|x∗), as a function of B, implies

P(y = 1|x∗
C) ≤ P(y = 1|x∗

F ) for any B, which in turn implies the existence of a budget

interval over which the unfairness of f
(c,B)
C decreases below f

(c,B)
F , thus resulting in a fairness

reversal.

Similar to the single-variable case, selectivity also result in accuracy reversal.

Theorem 5.5.9. Let fC and fF be the most accurate and optimal fair classifiers respectively.

Suppose fairness is defined by PR, FPR, or TPR, and c(x,x′) is outcome-monotonic. Then

if fF is more selective than fC, then there exists a budget B under which fF becomes more

accurate than fC.

Proof. This proof follows via a combination of Theorem 5.5.8 and Theorem 5.5.2. In par-

ticular using the approach presented in 5.5.8, both fC and fF can again be expressed as

threshold classifiers on the underlying conditional distribution P
(
y = 1|x

)
. From here, ac-

curacy reversals for single variable classifiers in Theorem 5.5.8 imply accuracy reversals of

these induced threshold classifiers acting on the conditional distribution.

Before outlining settings in which selectivity is not only sufficient but also necessary for fair-

ness and accuracy reversals to occur, we first remark on the connection between selectivity,

accuracy, and fairness. As previously noted, errors caused by strategic agent behavior are

single-directional in the sense that manipulation can only induce false positive errors. As
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such, classifiers which are more selective are thus more robust to manipulation than their less

selective counterparts. Generally speaking, this implies that for some range of manipulation

budgets, a model that is more selective than the accuracy-maximizing model fC will increase

in its performative ability compared to fC . As the performative ability of most classifiers

on biased datasets is naturally tied with unfairness, the unfairness of the more robust model

(more selective model) will likewise increase. Thus, we see a fundamental, albeit not nec-

essarily universal, connection between selectivity (which in turn increases robustness) and

model unfairness (which is increasing in model performance).

We next discuss unimodality in the context of outcome-monotonic costs. Empirically we

observe that when costs are outcome-monotonic, the majority of classifiers tend to have

error and unfairness which is (approximately) unimodal with respect to the manipulation

budget B. When this occurs, selectivity of fF becomes both necessary and sufficient, as

outlined in the next theorem.

Theorem 5.5.10. Let fC and fF the optimal conventional and fair classifiers respectively.

Suppose fairness is defined in terms of PR, TPR, or FPR fairness, and c(x, x′) is outcome-

monotonic. When error (and unfairness) are negatively (positively) unimodal with respect to

the manipulation budget B, a fairness and accuracy reversal will occur between fF and fC if

and only if fF is more selective than fC (each reversal may occur at different budgets B) .

Proof. Similar to previous results involving outcome-monotonic costs, we can use results from

single-variable classifiers to do much of the heavy-lifting. The intuition for this proof follows

from the single variable case of Theorem 5.5.5. As shown in the proof of Theorem 5.5.8 when

agents best respond to classifier f , the decisions of f can be expressed as threshold classifier

acting on the conditional probability P(y = 1|x) of the original distribution D, namely

f (c,B)(x) =

 1 if P(y = 1|x) ≥ P(y = 1|x∗)

0 otherwise

where x∗ is determined by the cost function c and budget B. Since P(y = 1|x∗) is monoton-

ically decreasing in B, we recover a setting similar to 5.5.5, in which the forward direction

of the claim holds from the fact that P(y = 1|x∗
C) ≤ P(y = 1|x∗

F ). The reverse direction

holds due to the fact that when x∗
F ≤ x∗

C , unfairness is monotonically decreasing for both

classifiers.
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Remark 5.5.11. To better contextualize unimodality of error and unfairness with respect

to the manipulation budget B, we can view this condition in terms of the calibration of the

score function h of the classifier f . As is typical, classifiers are defined via thresholds on

their underlying score functions, i.e. f(x) = I[h(x) ≥ θ]. Suppose that h is reasonably well

calibrated, then for every p ∈ [0, 1], P(y = 1|h(x) = p) ≈ p, i.e. h(x) is a good approximation

of the conditional distribution given by P(y = 1|x). When h is reasonably well calibrated,

the condition that error and unfairness are unimodal w.r.t. to the manipulation budget B is

equivalent to the error and unfairness of f being unimodal w.r.t. to the choice of threshold θ.

Through this lens, one can see that the assumption of unimodality is likely to hold (at least

approximately so) in practice as it is typically the case there is one “good” choice of threshold

θ and any deviation (increasing or decreasing θ) results in strictly worse performance of f .

Feature-Monotonic Costs

Laslty, we demonstrate that selectivity remains sufficient for fairness reversal in general when

costs are feature-monotonic.

Theorem 5.5.12. Let fC and fF be the most accurate and the optimal α-fair classifier,

respectively. Suppose fairness is defined by PR, FPR, or TPR and c(x,x′) is feature-

monotonic. If fF is more selective than fC, then there exists a budget B that leads to

fairness reversal between fF and fC.

Proof Sketch. The full proof is deferred to Section A of the Appendix and follows similar

to the cases of outcome-monotonic costs. The intuition behind this results is that trivial

classifiers (i.e., those that predict f(x) = 1 for all x) have 0 unfairness for PR, FPR, and

TPR based fairness. As B increases, both f
(c,B)
C and f

(c,B)
F (the classifiers resulting from

agents best responding to either classifier with budget B and cost function c) will approach

0 unfairness, not necessarily monotonically, as they become more like trivial classifiers. At

some point prior to reaching trivial classification, the conventional classifier fC will be at

least as fair as fF . This can be seen through a combination of the fact that fF is more

selective than fC and the way in which manipulations alter the positively predicted region

of a classifier when costs are feature-monotonic. In particular, fF being more selective than

fC implies that,

{x ∈ X : fF (x) = 1} ⊂ {x ∈ X : fC(x) = 1}.
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Feature-monotonic cost functions preserve this subset propriety under manipulation, i.e., for

any B,

{x ∈ X : f
(c,B)
F (x) = 1} ⊂ {x ∈ X : f

(c,B)
C (x) = 1}.

Thus fF is always more selective than fC , regardless of the manipulation budget B. As

such, the positive rate of fF will never exceed the positive rate of fC , implying that f
(c,B)
F

approaches a trivial classifier more “slowly” than f
(c,B)
C , with respect to B. Moreover, prior

to approaching triviality f
(c,B)
F will effectively approach fC , thus partially absorbing some of

the original unfairness of fC , resulting in a fairness reversal.

Next, we provide a condition which leads fF to be more selective than fC . Here, we provide

this condition for the PR fairness metric; analogous results for TPR and FPR are given in

Section A of the Appendix. For this result, we define the following notation

PGz = P(g = z), g(x) = P (g = 1|x)

and

X0 = {x ∈ X : g(x) < PG1 and P(y = 1|x) < 1/2}.

The set X0 represents the set of features which are less likely than chance to correspond to

g = 0 and y = 0.

Theorem 5.5.13. Let fC and fF be the most accurate and optimal α-fair classifiers re-

spectively, and fairness defined by PR. Then fF is more selective than fC if and only if

0 < α ≤ α∗, where

α∗ = min
x∈X0

PG0PG1(2P(y = 1|x)− 1)

g(x) + PG1

(
PG1 − 2g(x)− 2PG1P(y = 1|x)

) .
Proof. Both the conventional and fair objectives can be written as follows:

fC =argminfP(f(x) ̸= y)

fF =argminf (1− α)P(f(x) ̸= y) + α
∣∣P(f(x) = 1|g = 1)− P(f(x) = 1|g = 0)

∣∣
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Assuming the optimal fF has higher positive rate for group 1 (the group 0 holds symmetri-

cally), the fair objective function can be simplified to,

(1− α)
∑
x∈X

(
(1− f(x))P(y = 1|x) + f(x)P(y = 0|x)

)
P(x)

+ α
∑
x∈X

f(x)

(
P(g = 1|x)
P(g = 1)

− P(g = 0|x)
P(g = 0)

)
P(x)

Thus fF (x) = 1 is optimal if

α
(P(g = 1|x) + (P(g = 1)− 2)P(g = 1))

(1− P(g = 1))P(g = 1)
− (1− α)2P(y = 1|x) + 1 ≥ 0 (5.5)

and fC(x) = 1 is optimal if P(y = 1|x) ≥ P(y = 1). Thus, the only case in which fF positively

classifies an example x, which is negatively classified by fC (i.e., ff (x) = 1 ̸= fC(X ) = 0),

is when the left-hand side of Inequality 5.5 is nonnegative and P(y = 1|x) ≥ P(y = 1).

Simplifying the condition in Equation 5.5 yields α∗.

The key observation from Theorem 5.5.13 is that fairness reversal is a small-α phenomenon.

This may seem surprising, since fF is likely to be most similar to fC for smaller values

of α (in particular, the two are identical when α = 0). However, when α is high, the

fairness term is sufficiently dominant that reversals are unlikely. Consequently, it is precisely

the intermediate values of α, where we aspire to preserve high accuracy while improving

group-fairness that are most susceptible to fairness reversal. This is indeed consistent with

our empirical observations in Section 5.4, which indicate that for intermediate values of α

fairness reversals are not only more common, but occur with greater magnitude. Lastly,

note that for some distributions, α∗ ≤ 0, which means that fairness reversals are luckily not

guaranteed.

5.6 Discussion

We demonstrate a fairness-reversal phenomenon, where a trained-to-be fair classifier ex-

hibits more unfairness than a conventional accuracy-maximizing classifier if human agents

can strategically respond to a classifier. We show that a sufficient condition for observing
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fairness reversal is “selectivity”, that is, a group-fair classifier making fewer positive predic-

tions than its conventional counterpart. Additionally, we demonstrated that this condition

of “selectivity” also results in an accuracy reversal. The aggregate of these results indicates

that when fairness is achieved through an overall decrease in positive rate (compared to the

conventional classifier), strategic agent behavior can lead to a reversal of the core function-

ality of both models (i.e., the performance based model becomes less accurate than the fair

model, and the fair model becomes less fair than the fairness-agnostic model).

Further, fairness reversals are accompanied by accuracy reversals in most cases, as demon-

strated by both our empirical and theoretical results. In cases where the fair classifier is

more selective than its conventional counterpart, accuracy reversals can be viewed as an

indication that the fair classifier is more robust to manipulation. As such, these findings also

indicate a fundamental trade-off between fairness and robustness to strategic manipulation.

Classifiers which are more selective are in turn more robustness under manipulation, but are

likewise less fair under that same manipulation.

These results are not as a critique of fair-learning, but rather as a caution towards the

expectation of fairness guarantees when a fair classifier sees real-world deployment. The

successful deployment of fair-learning models requires the consideration of many nuanced

factors, strategic agent response to model choice being on such consideration. While we

have outlined several necessary and sufficient conditions regarding both classifier selectivity

as well as fairness reversals, a more nuanced understanding of when fair classifiers may suffer

from such problems in cases where the classifier s designed to anticipate strategic behavior.

Mitigating fairness and accuracy reversals is an important direction for future work.
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Chapter 6

Group Fairness and Individual

Welfare

As discussed in Chapter 5 we observed that strategic agent behavior can negatively impact

both the fairness and performance of group-fair models. In this chapter we will investigate

the complementary problem of the ways in which group-fair learning can negatively impact

individuals. In particular we will examine the ways in which the imposition of group-fairness

can result in decreases to individual welfare in both the case of classification and scarce

resource allocation. Individual welfare is measured with respect to agents gaining a desired

outcome, i.e., positive classification or allocation of a resource. Similar to the case of fairness-

reversals discussed in Part II, we focus on the way in which individual welfare changes which

switching from a conventional (fairness agnostic) model, to a fairness-aware model.

To capture these changes in individual welfare we propose two definitions: popularity which

measures the fraction of a population which does not suffer a decrease to likelihood of receiv-

ing a desired outcome when switching from a conventional to a fair model, and impact which

measures the likelihood that a given individuals losses a desired outcome when switching

from a conventional to a fair model while accounting for the possibility that any change in

model choice may result in different decisions among the population (i.e., impacts captures

whether the loss of a desired outcome was due to the addition of fairness rather than simply

due to classifier change). These two definitions can be though of as complementary to one

another in the sense that popularity captures the degree to which a population is made worse

off by the addition of fairness constraints, while impact captures the level of certainty that

fairness is indeed the driving force behind individuals being made worse off.
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6.1 Summary of Results

We begin by analyzing the popularity of current state-of-the-art fair learning schemes and

demonstrate that fair models are frequently unpopular across several different domains and

model types; i.e., roughly half of the population experiences a decrease in their individual

welfare when switching from a conventional model to a fair model. Further, we demonstrate

that popularity is not uniformly distributed among groups; members of the disadvantaged

group prefer fair models at rates much higher than those of the advantaged group. Disadvan-

taged groups often comprise a significantly smaller fraction of the total population compared

to advantaged groups. As such, even a model that is unanimously popular among the disad-

vantaged group can have low popularity across the entire population. This observation can

be thought of as an example of the tyranny of the majority.

We then move on to examine the impact in the case of scarce resource allocation and demon-

strate that nontrivial fractions of the population experience impact, even when accounting

for loss in individual welfare that could result from any change in classifier. This suggests

that it is indeed the imposition of group fairness that leads to decreases in individual wel-

fare. As was the case with popularity, impact is also distributed disparately among groups.

While we observe that impact most commonly falls on the advantaged group, we outline

several cases in which the disadvantaged group suffers the majority of impact. Lastly, we

examine the relationship between resource availability and impact. Surprisingly, we find that

disadvantaged groups suffer higher rates of impact when resources are more abundant.

6.2 Additional Related Work

Several recent papers look at the potential negative consequences of applying group fairness

[76, 123, 27, 61, 9]. In particular [76, 9] demonstrate that specific types of group equity

can be decreased by the use of fair algorithms. Others have merged notions of welfare and

fairness [45, 29, 115]. Both the notion of popularity, as well as our proposed techniques for

satisfying popularity and fairness (introduced in Chapter 8), differ from these lines of work

in that popularity casts welfare in terms of the fraction of a population which prefers a fair

model compared with a fairness-agnostic model. While the idea of agent preference over

models has received some recent attention [108] (which aims to classify a population using
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multiple models such that each agent prefers their assigned model over all others), popularity

in the context of group fair learning has remained unexplored thus far.

Additional we note the difference between individual-fairness [35, 33, 93, 89] which captures

the idea that similar individuals should receive similar treatment from a given classifier

(e.g., classifiers which are Lipschitz continuous are often considered individually fair). Our

notions of individual welfare differ in that they capture the idea that a given individual

(or population) should be treated at least as well under a fair model as compared to a

conventional model. In this, individual-fairness compares similar individuals under a fixed

classifier, while individual-welfare compares similar classifiers acting on a fixed individual.

6.3 Preliminaries

Similar to the case of fairness reversals discussed previously, we are interested in how a

change from a conventional learning scheme, to a fair learning scheme, affects individuals.

In particular, we consider the situation in which a conventional learning scheme C is initially

in place, and a principal considers a switch from C to a group-fair scheme F , and wishes

to ensure that F is γ-popular in the sense that it is preferred to C by at least a fraction γ

of the target population. We formalize preference over learning schemes by assuming that

an individual prefers schemes which yield higher expected outcomes for them, that is, they

prefer being selected to not being selected, as in [42]. Thus, an individual i with features xi

prefers F over C if

fC(xi) ≤ fF (xi) or IC,i(X , h, k) ≤ IF,i(X , h, k) (6.1)

when decisions are deterministic and

E
[
fC(xi)

]
≤ E

[
fF (xi)

]
or E

[
IC,i(X , h, k)

]
≤ E

[
IF,i(X , h, k)

]
(6.2)

when decisions are stochastic.

Note that our analysis is in the space of outcomes, rather than scores. Consequently, if

decisions are deterministic, either in classification or allocation settings, agents only have

a definitive preference over scores produced by h if this is consequential to outcomes (e.g.,
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pushing them above or below θ). In the stochastic case, on the other hand, agents prefer

the classifier or allocation scheme which yields the higher expected outcome (that is, higher

probability of being selected). Armed with this model of individual preference, we now define

what it means for F to be popular.

Definition 6.3.1. (γ-popularity): A learning scheme F is said to be γ-popular with respect

to a population (X , Y,G) and conventional scheme C, if Condition (6.1) (for deterministic

models), or Condition (6.2) (for randomized models), holds for at least γ|X | individuals.

Popularity thus captures the fraction γ of a population which is weakly better off (or, equiv-

alently, not made worse) from the use of F over C. Similar to the concept of β-fairness, in

which a model designer can specify the desired level of fairness β, the definition of popularity,

as well as our postprocessing techniques described later, allow the model designer to directly

specify, and control, the desired level of popularity. Note that we do not capture the degree

to which individuals are made better or worse off as a result of switching from C to F , but

only whether they are.

Example 6.3.2. To illustrate the relationship between fairness, accuracy, and popularity,

consider the following example. Let G1 and G0 have four and two members respectively,

with true labels ⟨1, 1, 1, 1⟩ and ⟨0, 0⟩. A randomized conventional classifier fC, predicts each

member of G1 to be positive with probability 0.75 and each member of G0 to be positive with

probability 0.25. Under demographic parity fairness, G1 is advantaged as this group has a

positive rate 0.5 greater than that of G0. Consider two choices for a fair model. fF1 predicts

members of G1 to be positive with probability 0.75 and members of G0 to be positive with

probability 0.55. fF2 predicts one member of G1 to be positive with probability 1, and the

others with probability 2
3
; it predicts one member of G0 to be positive with probability 1 and

the other with probability 0.1. Note that both models have identical accuracy and unfairness,

namely .65 and .2 respectively. However, fF1 has not decreased the score of any agent in

the population; all six prefer fF1 at least as much as the original fC. In contrast, fF2 has

decreased the scores of three agents from G1 and one agent from G0; only two agents prefer

fF2 at least as much as fC. This example illustrates that popularity should be viewed as a

different axis than either accuracy or fairness, and there may be space to innovate by enabling

popularity comparisons among fair(er) models.

As mentioned earlier, our setting is one of a concrete choice by a principal between a particu-

lar conventional approach C and a particular group-fair approach F . This reflects a decision
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by the principal to switch from C—which is currently deployed—to F in order to reduce im-

pact to a disadvantaged group (or groups). Of course, different pairs of C and F (e.g., using

different loss functions, different learning algorithms, etc) would yield different judgments

about popularity of F , which is, by construction, relative to C. Consequently, these will also

yield different decisions about improving popularity of F based on algorithms we discuss

below. Nevertheless, our framework generalizes immediately to a setting in which neither

C nor F are fixed, and there is uncertain about either, or both. In such a case, we treat

uncertainty about either C or F as a distribution over approaches and, consequently, over

outcomes induced. This can then be immediately captured within our framework dealing

with randomized schemes, and all definitions above, and technical results below, go through

unchanged.

In addition to classifier popularity, we also examine individual impact Both types of impact

are presented concisely in the following definition.

Definition 6.3.3. (Individual Impact): Let fC and fF be a conventional and fair classifier

respectively, let Ii(f) be a binary indicator of agent i receiving a resource under f , let θ ∈
[0, 1], and let pi = Pf ′

C

(
Ii(f

′
C) = 1

)
be the probability that agent i receives a resource under

fF , then perceived and realized impact are defined as,

• Perceived Impact: I
[
Ii(fC) and not Ii(fF )],

• Realized Impact: I
[
Ii(fC) and not Ii(fF ) and pi ≥ θ

]
.

As noted previously, impact and popularity can be thought of as measuring a similar quan-

tity, namely individual-level harms, from two alternate perspectives. Popularity examines

individual-level harms from a model-centric perspective, and measures the fraction of the

population which will not be negatively impacted by a change in model (in our case, chang-

ing from fC to fF ). On the other-hand, impact (particularly realized impact) examines

individual-level harms from an individual-centric perspective, and can be thought of as

capturing the confidence that an decrease to a given individual’s utility was the result of

switching to a fair classifier, rather than simply switching to any other type of classifier.

In realized impact, the parameter θ captures this confidence, namely in that an individual

must have probability at least θ to receive to the resource under any reasonable alternative

of conventional classifier.
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We further contextualize impact and popularity in relationship to individual fairness [35];

both metrics can be viewed as complimentary to individual fairness. Individual fairness

asks “are similar individuals treated similarly under the same model?”, whereas impact and

popularity both ask “is the same individual treated differently under different models?” That

is, individual fairness considers different individuals interacting with the same model, while

impact and popularity consider the same individual interacting with different models. As

alluded to previously, the parameter θ provides those wishing to measure impact a means

of tuning the sensitivity to background variation. Specifically, when a practitioner sets the

value of θ, they are imposing that an individual must receive a resource under θ-fraction of

alternate baseline classifiers (the possible f ′
C) in order to be impacted. For example setting

θ = 0.75 implies that an individual must receive a resource 75% of the time under baseline

classifiers in order to be impacted.

To better understand the components of impact, we present a simple example of how this

definition is opperationalized in practice.

Example 6.3.4. Imagine that a company is selecting among applicants to fill a position.

The company, which previously used conventional models to make hiring decisions, decides

to switch to a fair model, fF . Suppose that candidate i is not selected to receive the position

under fF , but would have received it under one possible conventional model fC. That can-

didate might perceive the impact of moving to a fair model as changing the outcome from a

1 (the candidate receives the position) to a 0 (the candidate is rejected), and therefore claim

to be negatively impacted by the company’s decision to use fF rather than fC.

However, this perception of harm fails to accurately capture the effect of moving from a con-

ventional to a fair model, because it fails to account for alternative outcomes under other

conventional classifiers. Suppose, for example, that fC is only one of number of reasonable

choices of conventional models, say f
(1)
C , f

(2)
C , f

(3)
C . If under each of these alternative con-

ventional classifiers candidate i would also not be hired, then the negative effect caused by

switching from fC to fF is in a sense independent of the fact that fF is a fair classifier, since

switching to any other classifier appears to result in candidate i not being hired. To account

for this, our realized impact measure takes into account the probability that candidate i ac-

tually receives the position under alternative conventional classifiers, given in this example
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by pi = 1/4. Thus the realized impact for candidate i is I[1 and not 0 and 1/4 ≥ θ]. Thus,

if θ ≤ 1/4 the realized impact for candidate 1 is 1; otherwise it is 0.

6.4 Popularity of Existing Fair-Learning Schemes

Figure 6.1: Fraction of each population or group preferring fF over fC for randomized
classifiers (top) and deterministic classifiers (bottom), when fF is learned via the Reductions
algorithm.

We begin by empirically investigating the relationship between popularity and fairness, and

evaluate the efficacy of the proposed postprocessing algorithms. Each experiment is con-

ducted on four data sets outlined in Chapter 4. Group membership is defined by race for

Community Crime and Law School, and by gender for Recidivism and Income; either fea-

ture is assumed to be binary. All other sensitive features, such as age, are removed from the

dataset. We consider three baselines of fair learning schemes: Reductions, CalEqOdds, and

KDE. Results for the latter two are qualitatively similar and provided in Section B of the

Appendix.

The fractions of the overall population, and subgroup population, which prefer the fair

classifier are shown in Figure 6.1, where fairness is achieved using the Reductions method.
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Not surprisingly, we see that in all instances the disadvantaged group G0 prefers the fair

classifier fF at far higher rates than G1. With the exception of the CalEqOdds algorithm

(which achieves fairness via group specific score shifts, resulting in far stronger group-level

preference over classifiers), results for other methods are qualitatively similar; these are

provided in the Appendix. Overall, randomized fair classifiers frequently have popularity of

less than 50%. On the other hand, fair deterministic classifiers are relatively popular in most

cases.

To understand why the discrepancy in group preferences, consider the case of equalizing

PR-based fairness in which fC has a high positive rate on G1(e.g. 70%) and a low positive

rate on G0 (e.g. 30%). For sake of example, suppose that fC is accuracy maximizing. In

this case the unfairness of fC is .7 − .3 = .4. Suppose that a fair model fF is learned with

the constraint that the positive rate between groups be no greater than .2. Then, there

are two ways that fF can improve the unfairness of fC : 1) reduce the positive rate on G1,

and 2) increase the positive rate on G0. Since fC is accuracy maximizing, it is unlikely

that fF would correctly classify an example when deviating from the prediction of fC . As

such, disparate decisions between the two models are likely to occur only as the result of fF

attempting to achieving a specified level of fairness. Therefore, we would expect that the

only score differences between the two models would be increases to G0 and decreases to

G1. It is precisely this dynamic that gives rise to the disparate model preferences between

groups.

These results indicate that for each type of fairness (PR, TPR, and FPR), fF is achieving

fairness, at least in part, by decrease the positive rate on some agents from G1 and increasing

the positive rate on some agents from G0. Due to the fact that in each dataset G1 is not only

advantaged, but also the majority group, the population-level popularity is skewed towards

that of G1. In later chapters we will see that despite this imbalance, achieving high levels

of population-level popularity can be achieved with minimal degradation to fairness and

performance, indicating that it need not be the case that fairness is attained at the cost

harming the advantaged group.
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6.4.1 Individual preferences over fairness

In order to better understand the relationship between varying levels of fairness and indi-

vidual welfare we also examine the aggregate group-preference for fairness. In particular we

look at what level of fairness each individual in the population would prefer, i.e., if each

individual wished to maximize their probability of being positively classified, but could only

choose the level of fairness of the classifier.

Figure 6.2: Average preferred λ of the population, or each group, for three choices of fairness
metrics, all using Logistic Regression. For each dataset and fairness metric β is selected to
1
4
the unfairness of an accuracy maximizing classifier. For “G0”, “G1” and “population”, λ

is the average preferred Lagrangian. For “principal” λ is the Lagrangian for which model
accuracy is maximized while being β-fair (i.e., the optimal Lagrangian penalty).

A common method for learning β-fair classifiers is the so called Lagrangian penalty method

associated penalty λ ∈ R, i.e.,

fFλ
= argmin

f∈H
L(f,X, Y ) + λ

(
U(f,X , Y,G)− β

)
Here λ gives the relative “importance” of fairness. When λ = 0 the objective of the con-

ventional classifier is recovered. As such, an agent’s most preferred λ, i.e. the λ which

maximizes their likelihood of being positively classified can be interpreted as a measurement

of much that agent prefers a conventional model. To understand the preference of agents

over fair and conventional models, we can also look at the the relative preference for fairness

among each group. In particular, suppose that each agent prefers the value of λ yielding the

highest expected outcome, i.e. an agent with features x prefers λ∗ = argmaxλ fFλ
(x). Then

the average of these preferred λ∗ across each group gives the groups relative preference for

fairness: higher values of λ corresponds to a stronger preference for fairness.
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In Figure 6.2 we see the average preferred λ of each group and as well as the total population.

In each combination of hypothesis class and dataset, the advantaged group G1 in aggregate

prefers smaller λ while the disadvantaged group G0 prefers larger λ (larger than the principals

choice in-fact). While somewhat unsurprising on its own, this relationship between aggregate

group utility (probability of positive classification) and levels of fairness is precisely what

leads to fair classifiers being “unpopular”. When the advantaged group is also the majority

group (as is often the case), the relative size of G1 implies that the total population on

average also prefers smaller values of λ, i.e., less fair models. As such, there is a trade-off

between aggregate individual utility and model fairness, later in Chapter 8 we will aim to

balance this trade-off by developing models which are both fair and preserve high levels of

individual welfare.
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6.5 Individual Impact

Next we investigate the individual-level impacts which arise when imposing group fairness

in the case of scarce resource allocation. The experimental setup for this chapter is the

same as that of the previous chapter with the exception of switching from classification to

scarce resource allocation. In scarce resource allocation, a set of k homogeneous resource

are allocated to the population of n individuals using a score function f(x) (which produces

real-valued outputs), the top-k scoring agents receive a resource. Recall that perceived and

realized impact are binary measures (either an agent is impacted or they are not) given in

Definition 6.3.3. Our experiments examine how likely an agent is to be impacted (or in how

many different worlds it is impacted) under perceived or realized impact. To simulate these

different worlds, we use the use the following pipeline to generate fC , fF and their associated

allocation decisions:

1. Split the dataset into two portions: 80% for training and 20% for testing.

2. Subsample 80% of the training set 50 times with replacement, generating 50 random

training subsets, which we refer to as subsamples.

3. On each of the 50 subsamples, train one of each conventional and fair model, after a

5-fold hyper-parameter search.

4. On each subsample t, assign to each agent i in the test dataset, with a corresponding

feature vector xi, a score f (t)(xi), used to compute the resource allocation decision as

well as impact measures.

All results are reported as a 5-fold average of the above pipeline. That is, we partition the

dataset into 5 disjoint sets (each containing 20% of the data) and run the above pipeline 5

times, across each of the 5 partitions, (reporting the average impact on the 20% of agents

designated in the testing set).

When computing realized impact, the randomness of pi = Pf ′
C

(
Ii(f

′
C) = 1

)
may come in two

forms: 1) uncertainty about the training data, and 2) (additional) uncertainty about the

model type. Experimentally, we account for randomness in the training data by randomly

subsampling an initial training dataset, and training a model on each of the subsamples.
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6.5.1 Perceived and Realized Impact

Figure 6.3: Impact measured on Homelessness dataset. Comparison between perceived im-
pact (solid lines) and realized impact (dotted lines) when background variation only accounts
for randomness in training data (captured by subsampling). Plots compare Logistic Regres-
sion to both GerryFair(γ = 0.001) and DI-Remove. Each graph shows the fraction of the
times (y-axis) that at least a certain percentage of individuals (x-axis) suffer perceived or
realized impact. This can also be interpreted as the probability that the individual at the xth

percentile (on the x-axis) is impacted. Note that perceived impact (dotted) is not completely
independent of θ due to occasional ties in scores. The shaded region indicates the degree to
which perceived impact overestimates realized impact.

Our definition of impact above was in the context of a particular individual challenging a

“group fair” approach for obtaining a scoring function used to allocate scarce resources. We

now step back and consider how perceived and realized impact measures differ on average,

over a population of individuals if we view them from a policy perspective, that is, over a

large collection of such hypothetical cases. Specifically, we investigate the extent to which

natural variation in learned models affects how much smaller realized impact is, on average,

compared to perceived impact—that is, to what extent perceived impact may simply be due

to natural variation rather than the choice of group-fair strategy.

Our definition of impact above was in the context of a particular individual challenging a

“group fair” approach for obtaining a scoring function used to allocate scarce resources. We

now step back and consider how perceived and realized impact measures differ on average,
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over a population of individuals if we view them from a policy perspective, that is, over a

large collection of such hypothetical cases. Specifically, we investigate the extent to which

natural variation in learned models affects how much smaller realized impact is, on average,

compared to perceived impact—that is, to what extent perceived impact may simply be due

to natural variation rather than the choice of group-fair strategy.

We consider first the natural variation that occurs simply as a result of sampling the training

data. As mentioned above, we first randomly select 20% of each dataset as the test set. We

consider these the individuals among whom the resources will be allocated. The remaining

80% (the training universe) are then subsampled multiple times (again, as described above,

we sample 80% of the training universe with replacement 50 different times), each subsample

creating a resource allocation scenario, as it determines the model f used for resource allo-

cation. Throughout, we quantify scarcity as a percentage k of individuals (in the test set)

who can be allocated a resource. Taking into account only the variation caused by sampling

the data, we have the following main observations:

Observation O1: Realized impact is, in most settings, much lower than perceived impact.

Observation O2: The gap between realized and perceived impact increases as scarcity in-

creases (i.e. as k decreases).

Observation O3: Realized impact is relatively rare. This is particularly true when either

k is small (high scarcity) or when θ is high (i.e., individuals must receive the resource with

high probability when using the conventional classifier to be considered impacted).

Figure 6.3 provides a representative illustration of the observations above using homelessness

data; in Appendix A we provide additional results for the remaining datasets, as well as for

different conventional and fair classifiers. Each plot shows the percentage of individuals

who experienced at least a certain level of impact according to our definitions. The x-axis

shows the percentile label, while the y-axis is the fraction of subsamples in which the given

measure of impact is observed. The solid lines represent realized impact and the dotted lines

perceived impact. In this figure, we compare conventional logistic regression with either

GerryFair (green lines) or DI-Remove (red lines), and natural variation occurs solely due to

the repeated subsampling of the training data.
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For example, take the upper right plot in Figure 6.3, which corresponds to k = 10% and

θ = 0.5, and consider the GerryFair group-fair approach, which corresponds to the green

lines. At x = 0.08, the perceived impact (dotted green line) is approximately 0.4, which

means that 8% of individuals appear to be impacted in over 40% of resource allocation

scenarios. In contrast, the 8th percentile value of realized impact (solid green line) is 0—we

do not observe it in any allocation scenarios, which means that fewer than 8 percent of

individuals are impacted at this level. The gap between the perceived and realized impact

in this case is the green shaded area (the area between the dotted and solid green lines).

While the perceived impact (dotted lines in Figure 6.3) will always be above realized impact

(solid lines) by construction, the gap is often substantial (Observation O1), demonstrating

the importance of accounting for natural variation in the learned model in measuring indi-

vidual impact. The starkest illustration is the plot on the lower-right (θ = 0.9 and k = 10%),

where perceived impact is considerable for at least 10% of individuals, but almost entirely

due to natural variation (realized impact is essentially zero for all individuals).

To illustrate Observation O2, note from Figure 6.3 that the gap between perceived and

realized impact (shaded areas) is considerably larger in the right pair of plots (for k = 10%,

high scarcity) than in the left pair (k = 75%, low scarcity); thus, greater scarcity leads

to a greater gap between perceived and realized impact. Furthermore, both decreasing the

percentage of available resources (smaller k) or being more conservative about what we

consider to be realized impact (higher θ) tends to make realized impact considerably less

common (Observation O3), as we see in Figure 6.3 when comparing different values of θ

(top and bottom) as well as the availability of resources (left and right). For example, when

k = 10%, fewer than 8% of individuals see any realized impact, and if we conservatively

choose θ = 0.9, once we account for natural variation, impact is exceedingly rare for all

individuals. However, in several cases the fraction of individuals with realized impact is not

negligible. For example, when θ = 0.5 and k = 75%, we see substantial realized impact for

as many as 20% of the individuals. However, it is worth noting that θ = 0.5 is a very weak

threshold indeed – the individual’s chance of getting the resource is a coin flip. We present

it as an upper bound on what fraction might possibly be considered impacted.
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Figure 6.4: Average percentage of individuals from each group who are impacted (realized
impact, with parameter θ) when switching from Logistic Regression to Gerryfair. Results
are shown on the Law School (top row) and homelessness (bottom row) data sets.

6.5.2 Individual Impacts on Disadvantaged Groups

Recall that we defined the disadvantaged group as the group with lower positive rate (PR)

and/or true positive rate (TPR) when conventional learning is used; we refer to the group

with higher PR and/or TPR under conventional learning as the advantaged group.

Remark 6.5.1. Realized impact can disproportionately negatively affect members of the dis-

advantaged group.

This observation can be seen in Figures 6.4 and 6.5, in which we examine for two racial groups

the average (over the 50 data subsamples) percentage of individuals (y-axis) suffering realized

impact for various impact thresholds θ (x-axis). Results for other models are provided in

Section B of the Appendix. In Figure 6.4, this is done for the GerryFair approach to group-

fair learning, while 6.5 shows analogous results for DI-Remove. Yet again, we observe that fair

learning approaches, much as they may aspire towards similar goals, can yield qualitatively

different results from each other. First, consider GerryFair. On the law school dataset
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Figure 6.5: Average percentage of individuals from each group who are impacted (realized
impact, with parameter θ) when switching from Logistic Regression to DI-Remove. Results
are shown on the Law School (top row) and homelessness (bottom row) data sets.

(top row), as the plots range from low scarcity (left) to high scarcity (right), we observe a

startling phenomenon: when scarcity is low, it is the Non-White individuals who exhibit a

disproportionate share of the negative impact, but this changes with greater scarcity, where

negative impact becomes more concentrated among White individuals. On the homelessness

data (bottom row), the impact is roughly equal between groups with a slight shift towards

the Black individuals as resources becomes more scarce.

On the Law School dataset, the negatively impacted individuals are almost entirely from

the White demographic in the case of DI-Remove. However, the negative impact of DI-

Remove falls disproportionately on the Black group in the Homelessness dataset when the

resources are more abundant. Nevertheless, as we have already observed above, with suffi-

cient scarcity we see very few individuals from either group who are meaningfully impacted.

These examples serve to illustrate that group fairness, a concept mostly considered in terms

of averages and expected values, may at times have unintended effects on individual members

of subpopulations which are obscured by the nature of averages.
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Figure 6.6: Change in individuals’ median score percentile when changing from Logistic
Regression to GerryFair. Arrows represent the change in median rank (base of each arrow
is the rank using the conventional classification score and tip is using the fair classification
score). Black (purple) gives the average and standard deviation of an individual’s rank under
the conventional (fair) model. For ease of display we have uniformly selected 100 individuals
from the Non-White group.

6.5.3 Causes of Disparities in Individual Impact

As shown previously, to a considerable extent the (negative) impact may devolve on the indi-

viduals in the disadvantaged group may. Similar to our investigation into popularity (Section

6.4), we are interested in why adverse effects to individual welfare may fall disproportion-

ately on one group. In particular we are interested in why members of the disadvantaged

group can share the majority of impact, especially when resources are abundant. Central in

our investigation is the consideration of the relative ranks of individuals (in terms of what

percentile their scores fall), and how these shift when switching from a conventional classifier

to a fair classifier.

Consider Figures 6.6 and 6.7 for the Law School dataset; in the former, fF is GerryFair, while

in the latter fF is DI-Remove. In these figures, each arrow corresponds to an individual from

the disadvantaged group. The base of an arrow is the individual’s average percentile rank

in terms of the conventional classification score, while the tip is this individual’s average

percentile in terms of the fair classification score. Thus, if the fair classifier improves the
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Figure 6.7: Change in individuals’ median score percentile when changing from Logistic
Regression to DI-Remove. Arrows represent the change in median rank (base of each arrow
is the rank using the conventional classification score and tip is using the fair classification
score).

individual’s average rank, the arrow points up, whereas it points down if the average rank

drops as we switch from conventional to fair. In both figures, conventional classifier is the

logistic regression, and for legibility we present 100 randomly chosen individuals from the

Law School dataset.

Remark 6.5.2. The disadvantaged group is unlikely to have scores from the conventional

model, which fall with in the top 2% and 10% of scores. As such, there are few members

of the disadvantaged group capable of losing allocation when resources are more scarce (i.e.

k = 2%, 10%).

The first key observation is that we observe many arrows that point down—that is, there

are many cases in which the fair classifier actually reduces the average percentile rank of an

individual from the disadvantaged group. This is particularly common in Figure 6.6, where

fF is GerryFair, but can also be observed, albeit far less frequently, in Figure 6.7, where

fF is DI-Remove. This difference between the effects of two different fair classifiers tracks

with our observations of the extent of impact on the members of disadvantaged groups in

Figures 6.4 and 6.5 above for the Law School dataset.
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Moreover, Figure 6.6 offers an additional insight into our observations above. Note that this

this figure, the positive effects from fair classification on the disadvantaged group (arrows

pointing up) are far more prevalent for individuals who are ranked particularly low by the

conventional classifier. However, much as fair classification helps increase relative classifica-

tion scores for these individuals, this is of little consequence if resources are scarce, since even

with the percentile boost, they can only receive the resource if it’s quite abundant. On the

other hand, as we make the resource more abundant, we also accumulate many individuals

from this group whose ranking drops due to fair classification, as especially many of them

are in the intermediate k ∈ [0.5, 0.75] range.

Considering, in contrast, DI-Remove (Figure 6.7), the distribution of percentile changes is

fundamentally different from GerryFair. For example, in this case the vast majority of benefit

(arrows facing up) among individuals whose conventional classification score percentile is

relatively high, and the boost in this score from DI-Remove is often substantial. In this

random sample of individuals, we see no instances of reduced ranking (arrows facing down)

for individuals in the disadvantaged group ranked in the top 50th percentile, and relatively

few in the k ∈ [0.5, 0.75] interval.

6.6 Discussion

Algorithms for fair learning have emerged as a response to a number of demonstrations

that conventional machine learning algorithms can lead to inequalities in prediction between

historically advantaged and disadvantaged groups. The concern is serious: as algorithms

are increasingly used to support decisions that have a direct impact on people, such as

lending and employment decisions, such algorithmic inequalities can perpetuate historical

injustices. However, to the extent that fair learning approaches involve explicitly taking into

account race and other protected characteristics, they may themselves raise ethical and legal

concerns. In particular, group-fair learning approaches necessarily shift how resources are

distributed, but does that cause unjustifiable harm to some individuals? Answering that

question entails normative and policy judgments, but making those decisions requires an

accurate understanding of who is actually impacted and how. Our study focuses on properly

characterizing those individual impacts by systematically examining which individuals are
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impacted, and to what degree, when a decision-maker chooses to implement group-fairness

learning approaches.

Our results challenge the assumption that group-fair classification inherently harms individ-

uals who are not members of the protected group. To the contrary, we find that once we

properly account for the fact that machine learning-based decisions will naturally vary due

to a host of factors, typically only a small fraction of individuals (from both advantaged and

disadvantaged groups) is impacted in a meaningful way.

The claim that many individuals are harmed by group-fairness rests on what we call perceived

impact—the view that an individual denied a resource under a group-fair model has been

harmed because that person could have received the resource under one possible version

of a conventional model. Defining individual harms in this way ignores the uncertainty

of outcomes under conventional models and misconceives the extent to which a negative

outcome is attributable to the fairness constraints. By ignoring the natural variation that

arises under even conventional machine learning, perceived impact will often overestimate,

sometimes vastly so, as our results show, the extent to which a particular individual has

actually been negatively impacted by the choice of a group fairness model. Indeed, in

many contexts where group-fair machine learning might be used, few individuals would be

guaranteed to receive a positive outcome across plausible baseline (non-fairness constrained)

models. We show that even random draws of the training dataset produce a certain amount

of “natural” variation in outcome for each individual that must be taken into account.

The choice of learning algorithm among plausible conventional models introduces additional

variation.

62



Part III

Mitigating Impacts of Group-Fair

Learning
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Chapter 7

Auditing to Mitigate Strategic

Manipulation

In Part II we saw that strategic agent behavior can undermine the fairness and performance of

group-fair models, so much so that they becomes less fair than fairness-agnostic models, i.e.,

the phenomenon of fairness reversals. We saw that the root cause of these fairness reversals

was classifier selectivity, i.e. the fair model negatively classifies numerous individuals who

would otherwise received positive classified if a fairness-agnostic model were used. In Chapter

6 the notion of selectivity was further expanded into the concept of individual impact, both

in terms of real- and perceived-impact as well as individual welfare (captured by popularity).

Lastly we discussed several postprocessing techniques which achieve high levels of popularity

as well as group-fairness. While these techniques can be used to to prevent fairness reversals,

as discussed in Section 8.4, they do not directly mitigate strategic behavior. To this end,

we discuss auditing as a means of disincentivizing strategic behavior. Recall that auditing

constitutes a verification that an agent’s reported data (e.g., the information supplied on a

lending application). Agents found to be misreporting their data are subject to denial (e.g.,

no longer granted a loan) and may be subject to a fine. As audits are often costly, we study

cases in which the principal can only audit a limited number of agents in a population.

Our goal is to design audit policies which either prevent strategic behavior from impacting

proprieties of the model, such as performance, or reduce the incentivizes for agents to behave

strategically. More specifically, we study three types of objectives: incentivize-minimization

in which the principal aims to develop a policy which minimizes the maximum incentive that

any agent has to manipulate, recourse-maximization in which the principal aims to develop

a policy which results in the largest number of agents electing to perform recourse (true

feature changes), and utility-maximization in which the principal aims to develop a policy

which maximizes their own utility (e.g., total profit for re-payed loans).
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Additionally, we investigate the use of subsidies as a deterrent to manipulation. In particular,

agents are frequently capable of both manipulations and true feature changes (such as those

studied in the field of algorithmic recourse). When agents are posses both abilities, it may

no longer be optimal to use punitive measures (audits) in isolation. We study the case when

the principal is capable of allotting a portion of their audit budget to help agents make true

feature changes. We find that in a large number of cases, it is optimal for the principal to

allot a nonzero fraction of their audit budget to subsidies.

7.1 Summary of Results

We first introduce a framework that unifies manipulation and recourse (true feature changes),

and obtain several consequential results in this model. We show that computing an optimal

audit policy is tractable for both a utility-maximizing principal and a principal who simply

wishes to maximize the number of agents choosing recourse (recourse-maximizing). This is

true both when the costs of failing an audit are exogeneously specified and when the costs are

chosen by the principal. We prove that when fines are exogeneously specified, the objectives

of a recourse- and utility-maximizing principal are aligned for any distribution of agents,

features, and cost of recourse.

We then turn our attention to studying a model of subsidies, where the principal can choose

to devote allot part of their audit budget to instead subsidize agents to choose recourse. We

derive necessary and sufficient conditions for the principal to use a nonzero portion of their

audit budget on subsidies. We show that even with subsidies, the objectives of a recourse-

and utility-maximizing principal are again aligned when agents value positive classifications

equally. We then characterize the relationship between auditing/subsidies, the total amount

of fines or cost of recourse imposed on a population, and the fraction of the population

preferring recourse to manipulation.

7.2 Related Work

Here we provide further discussion on works which pertain specifically to auditing and re-

course.
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Auditing Theory examines problems in which a system (e.g., a bank) possesses the ability

to verify (audit) information reported by an individual (e.g., a loan applicant). Auditing

carries a negative consequence, such as a fine, when the reported information is found to be

inauthentic. The work of [14] formulates auditing as a game between a defender attempting

disincentivize manipulations, and an attacker attempting to avoid detection while obtaining

a desired outcome (similar to a Stackelberg security game). Other works have studied audit-

ing in the context of multiple individuals attempt to manipulate a classification or allocation

system in order to gain a desired resource [80, 37]. Auditing in the context of Strategic Clas-

sification remains relatively underexplored with the primary work being [37] which examines

auditing as a means of inducing incentive compatibility (i.e. all agents truthfully report),

but does not examine model robustness outside of this narrow lens. Works in this domain do

not consider the ability for agents to perform recourse and are typically agnostic to system

utility.

Recourse focuses on providing agents receiving undesirable outcomes from a machine learning

model, with the ability to contest or improve their outcome via a modification to their

attributes in a genuine manner (paying off debt to increase creditworthiness) [110, 55, 57,

107, 39, 111]. The concept of recourse in machine learning was first introduced in [110]

where an integer programming solution was developed to offer actionable recourse to agents

who are rejected by a linear classifier. Our work in this chapter makes use of the general

formulation of recourse proposed in [110], which frames recourse as an optimization problem

of finding minimum cost feature modifications which an agent can feasibly make in order

to obtain a desired outcome. Within this framework, we explore the role of auditing as a

means of incentivizing recourse over manipulation.

7.3 Preliminaries

We begin with a motivating example. A bank aims to maximize their expected profit by

issuing fixed-rate credit cards (with set spending limits and interest rates). Because of the

high volume compared with, say, corporate loans, credit cards are a major area where banks

use algorithmic decision-making [17]. Each applicant (with application x) is approved for a

fixed-rate card if the bank’s model predicts that an applicant will offer a positive profit. While

the profitability comes from different channels, e.g. building a relationship with a client who
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will then use the bank for other services versus actual interest payments, the main risk in

issuing a card is that the customer will default after running up a balance [65], so banks

want to filter out those applicants. IF the bank denies an application, the bank’s utility

is 0 as no money is exchanged. The bank may offer denied applicants access to recourse,

i.e., a plan for making the applicant more creditworthy, such as paying off outstanding debt

or increasing income. However, when applicants have knowledge of recourse actions, they

may report that they have taken such actions in order to get approved, without actually

taking the actions (e.g. hiding debt or inflating income). The bank could audit applicants

by verifying information in their applications. However, since this is costly, the audit budget

is limited.

We now present our formal model of auditing and recourse. Let D be a distribution over

features X ⊂ Rd with probability measure p. Consider a principal who aims to make a

binary decision ŷ(x) ∈ {0, 1} for each input feature vector x, for example, to approve or

deny a loan. We refer to the decision ŷ(x) = 1 as selection, with ŷ(x) = 0 corresponding

to x not being selected. For any actual feature vector x (to distinguish from manipulated

features we discuss below), the principal receives a utility of up(x) whenever ŷ(x) = 1 (e.g.,

expected profit from a loan) and utility of 0 otherwise; in other words, the principal’s utility

is up(x)ŷ(x).

Prediction function We assume that the principal’s utility from selecting x is based on

an objective measure, such as loan repayment rate, that is not known directly, but can be

estimated from data. Thus, let f : X → R be a model learned from data that predicts up(x).

For example, f can predict the probability that a loan is repaid, multiplied by expected profits

conditional on repayment. Importantly, we assume that f is fixed and common-knowledge,

and is applied to the reported features. The application of f is thus mechanistic and not an

action under the control of the principal in the game-theoretic sense. This is consistent with

our use cases – bank regulators, for example typically require that a model is demonstrably

a valid predictor and that it should be used consistently across the entire population of

applicants for a period of time. Thus, f is simply used to select all x that yield a predicted

utility above a given threshold θ:

ŷ(x) = I
[
f(x) ≥ θ

]
.
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If we set θ = 0, this has the natural interpretation in the context of loans that all applications

with positive expected utility (based on the reported features) are approved.

Principal’s Actions: Auditing Agents can misreport their feature vectors. The prin-

cipal’s main tool to disincentivize such misrepresentation is the use of audits. When the

principal audits an agent reporting features x′, the agent’s true features x are revealed to

the principal. Failing an audit, i.e., being audited when x′ ̸= x will result in the agent paying

a fine; we follow the models of auditing in [14, 37] and assume agents pay a constant fine C

when they are caught manipulating, in addition to not being selected. Before agents report

their features, the principal publicly declares its audit policy.

Definition 7.3.1. (Audit Policy) Given a set of n agents with true features X and reported

features X′, an audit policy is a mapping α : X n+1 → [0, 1] where α(x′;X′) corresponds to

the probability that an agent reporting features x′ is audited, given the set of reports X′ for

the n agents. The principal is limited B audits on average, i.e., E
[ ∑
x′∈X′

α(x′;X′)
]
≤ B.

An audit of a particular agent is a check whether I[x′ ̸= x], which we assume to be reliable.

Agents caught misreporting their features are subject to a fine C ∈ R≥0.

Agents An agent with true features x gains utility ua(x) when approved by the principal,

and 0 otherwise. When reporting features x′, and not being caught by an audit, the agent

then obtains utility ua(x)ŷ(x
′). In addition to the general case, we also consider a special case

where the utility of being selected is a constant, i.e., ua(x) = ūa for all x. This special case

has received most attention in prior literature, particularly in the context of recourse [110].

Agents’ Actions: Recourse and Manipulation Formally, n agents arrive i.i.d. with

features x ∼ D; we assume that D is common knowledge. We use X ∼ D to indicate a

collection of n feature vectors thereby generated. Each agent has an action space comprised

of two qualitatively distinct types of actions: recourse and manipulation. We allow arbitrary

composition of these, although prove below that such compositions are dominated by a

choice of manipulation, recourse, or neither (reporting true initial features x). Let z denote

a recourse choice, which we restrict to be in the set A(x) that defines what is actionable

[110]. The agent always has the option to do nothing, i.e. x ∈ A(x), and if the agent elects
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this do-nothing action (which carries no cost), then z = x. The cost of a recourse action

z for an agent with initial features x is denoted by cR(x, z). We use z′ to denote reported

(potentially manipulated) features.

While selection decisions ŷ are implemented independently for each reported feature vector

z′, the audit policy α(z′;Z′) depends on the full collection of n reported feature vectors of all

agents, namely Z′. Let g(x) be the strategy of an agent with true features x in the choice

of both recourse z and reported (and possibly untruthful) features z′. We restrict attention

to symmetric pure strategies, so that g deterministically returns a pair (z, z′). Given a

symmetric strategy profile g and an agent who reports a feature vector z′, the probability of

this agent being audited is E
[
α(z′; g(X))

]
, where the expectation is with respect to X ∼ D

(here, it is only the final reports induced by g that matter). We define the expected cost of

manipulation for an agent with true features z (possibly after recourse) and reported features

z′, when all other agents jointly follow strategy g as

cA(z, z
′; g) = E

[
α(z′; g(X))

]
I
[
z′ ̸= z

](
ua(z)ŷ(z

′) + C
)
.

Putting everything together, the expected utility of an agent with initial features x, recourse

z, and reported features z′, given a symmetric strategy profile g followed by all others, is

Ua(z, z
′, g;x) = ua(z)ŷ(z

′)− cR(x, z)− cA(z, z
′; g). (7.1)

When all agents follow g, we simply write Ua(g;x), as (z, z
′) = g(x). Our solution concept

for agent strategies is a (pure-strategy symmetric) Bayes-Nash equilibrium.

Definition 7.3.2. A symmetric pure-strategy strategy profile g is a Bayes-Nash equilibrium

(BNE) if for all agents i with initial features xi, the action g(xi) is a best response, i.e.,

Ua(g;xi) ≥ Ua(z̄i, z̄
′
i, g;xi) for all z̄i ∈ A(xi) and z̄′i. We denote the BNE profile with the

maximum number of manipulations as gmax.

7.4 Auditing and the Principal’s Objective

In this section we investigate the audit polices of both a recourse-maximizing principal and a

utility-maximizing principal. We begin by characterizing some key facts about agents’ best

responses given the principal’s audit policy.
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Lemma 7.4.1. It is never a best response for an agent to perform both recourse and manip-

ulation i.e. either z = x or z = z′.

Proof. This result follows from the fact that agent utility is independent of the report z′

whenever ŷ(z′) = 1

Next we examine the best response of each agent x, with recourse action z (z = x if no

recourse occurs), given prediction function f , decision making scheme ŷ, audit policy α, and

fine C. For any strategy g by other agents, the optimal manipulation and recourse are given

respectively by,

xM =argmax
z′ ̸=x

ua(x)− cA(x, z
′; g) s.t. ŷ(z′) = 1 (7.2)

xR =arg max
z∈A(x)

ua(z)− cR(x, z) s.t. ŷ(z) = 1. (7.3)

For an agent x, let Ua,R(x) = ua(xR)−cR(x,xR) and Ua,M(x) = ua(x)−cA(x,xM ; g), i.e. the

agent’s respective utility gain from recourse or manipulation. The next lemma characterizes

the structure of agent best response actions in terms of their expected utility gain.

Lemma 7.4.2. The best response of an agent with features x has the following form:

z∗ =


x if ŷ(x) = 1 (7.4a)

xR if Ua,R(x) ≥ max (0, Ua,M(x)) (7.4b)

xM if Ua,M(x) ≥ max (0, Ua,R(x)) (7.4c)

x otherwise (7.4d)

where Equations 7.4a, 7.4d correspond to truthful reporting, Equation 7.4b corresponds to

recourse, and Equation 7.4c corresponds to manipulation.

Lemma 7.4.2 follows directly from each action’s definition.

Next we formalize the objective of the principal. We consider three types of principals: risk-

averse principal who aims to minimize the maximum incentive that any agent has to manip-

ulate (dubbed incentive-minimizing), a population-oriented principal who aims to maximize

the proportion of agents that prefer recourse to manipulation (dubbed recourse-maximizing)

and a principal who aims to maximize the total utility gain of the decisions made by ŷ
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(dubbed utility-maximizing). The latter two objectives respectively represent a principal

who is socially-oriented (we treat recourse as a kind of social good, as it benefits partici-

pants), or solely self interested.

Definition 7.4.3. (Incentive-Minimizing Principal): A principal is incentive-minimizing

if their objective is to select an audit policy α which minimizes the maximum incentive for

agents to manipulate, i.e. select α such that truthful reporting is a ε-Bayes-Nash Equilibrium,

for the minimum possible ε. In this case, the model is said to be ε-incentive compatible.

α∗ = argmin
α

max
x∈X

Ua,M(x) (7.5)

s.t. Eα

[ ∑
z′∈Z′

α(z′;Z′)|Z′] ≤ B ∀ Z′

Definition 7.4.4. (Recourse-Maximizing Principal): A principal is recourse-maximizing

if their objective is to select an audit policy α which maximizes the proportion of agents who

prefer recourse over manipulation:

α∗ = argmax
α

PX

(
Ua,R(x) ≥ Ua,M(x)

)
(7.6)

s.t. Eα

[ ∑
z′∈Z′

α(z′;Z′)|Z′] ≤ B ∀ Z′

Definition 7.4.5. (Utility Maximizing Principal): A principal is utility maximizing if

their objective is to select an audit policy α which maximizes the principal’s utility. For an

agent with true features x, let z = xR if the agent performs recourse and z = x otherwise,

and let z′ be the agent’s report. This objective can be framed as,

α∗ = argmax
α

E
[
ŷ(z′)f(z)

(
α(z′;Z′)I [z ̸= z′] + I[z = z′]

)]
(7.7)

s.t. Eα

[ ∑
z′∈Z′

α(z′;Z′)|Z′] ≤ B ∀ Z′

Remark 7.4.6. Note that the objective of incentive minimization (Definition 7.4.3) is in-

dependent of agent’s ability to perform recourse, while the latter two objectives depend on

recourse. Recourse may be infeasible in some domains, which can be captured by setting

cR = ∞, while in other domains the ability of agents to perform recourse, or the associated

cost of such actions may be unknown. In these cases, note that the incentive to manipulate
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ε, can never be increased (but may be decreased) if the principal misspecifies agents ability

to perform recourse.

Prior to characterizing the optimal auditing strategies for each type of principal objective,

we first demonstrate that for recourse- and utility-maximization the principal need only

consider the equilibrium strategy profile of agents in which the maximum number of agents

manipulate. That is, if an audit policy α is recourse- or utility-maximizing when the maxi-

mum number of agents manipulate, then that policy is also recourse- or utility-maximizing

for any other equilibrium strategy profile of agents. Note that this not consequential to the

objective of incentive-minimization.

Theorem 7.4.7. Let gmax be the BNE profile which has the maximum number manipulations.

If an audit policy α is recourse (or utility) maximizing with respect to gmax, it is recourse (or

utility) maximizing for any other BNE profile g.

Henceforth, we leverage this result to only consider the principal’s objective with respect to

gmax.

Proof. This result follows directly from the characterization of optimal policies when the

induced BNE strategy profile of agents is gmax given later in Theorem 7.5.1 and 7.5.2. From

the proofs of these theorems, any policy which does not audit positively classified agents

uniformly in expectation is suboptimal when agents follow gmax. For any strategy profile g

induced by the audit policy α, the condition that an agent prefers recourse to manipulation

if given as

cR(x,xR) + ua(x)− ua(xR)

ua(x) + C
≤ min

x′∈X (1)
α(x′; g(X))

any optimal policy will maximize the fraction of agents for which this condition holds (both

for recourse and utility maximization). By a similar line of reasoning to Theorems 7.5.1 and

7.5.2, maximizing the minimum value of α(z′; g(X)) maximizes recourse and system utility.

Such an audit policy is precisely the uniform audit policy provided in Theorem 7.5.1. Thus

uniform auditing (i.e. the only optimal policy when agent follow gmax) is also an optimal

policy under any other induced g.
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7.5 Optimal Auditing

We begin by examining the computation of optimal audit policies for each of the three

objectives. In particular, we demonstrate that for each objective, the optimal policy can be

computed efficiently.

First we examine the recourse- and utility-maximizing principals, in which recourse actions

are a salient consideration. Once the optimal policy for these objectives is formulated, we will

see that it is straightforward to find a policy which minimizes incentives, even independent

of recourse actions.

Theorem 7.5.1. For any recourse cost function cR(x, z), agent utility function ua(x), feature

distribution D, a recourse maximizing principal with budget B and fine C has optimal policy

α(z′;Z′) = B/|Z′(1)|, ∀ z′ ∈ Z′(1),∀ X

when agent reports Z′ are induced the BNE profile gmax; Z
′(1) is the set of all reports z′ with

ŷ(z′) = 1.

Proof. The objective of a recourse maximizing principal is to maximize the expected number

of agents, over realizations X of agents’ true features, who prefer recourse to manipulation,

i.e.,

α∗ = argmax
α

EX

[
|X(0)

R |
]

s.t. Eα

[ ∑
x′∈g(X)

α(x′ : g(X))
∣∣ g(X)

]
≤ B ∀ g(X)

where

X
(0)
R =

{
x ∈ X(0) : ua(x)− α(xM ; g(X))

(
ua(x) + C) ≤ ua(xR)− cR(x,xR)

}
i.e. X

(0)
R ⊂ X (0) is the set of agents in X with true features which are negatively classified

by ŷ. Recall that g is the strategy profile of agents induced by α, i.e. g = gmax, and g(X) is

the reports given by the agents in X. Since each report is x′, we also refer to g(X) as simply

X′ to avoid overly cumbersome notation.
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To show that the policy of uniform auditing is optimal in the case of recourse maximization,

we examine each possible realization of true features X independently and show that uniform

auditing maximizes the number of agents which perform recourse in each set X. For each

agent x ∈ X, the optimal manipulation is,

xM =arg max
x′∈X (1)

ua(x)
(
1− α(x′; g(X))

)
− Cα(x′)

= arg max
x′∈X (1)

ua(x)− α(x′ : g(X))
(
ua(x) + C

)
The optimal recourse action for x is

xR = arg max
z∈X (1)

ua(z)− cR(x, z)

Since xR is independent of the choice of α, the agent will always choose xR if recourse is the

optimal action.

Agent x will choose recourse over manipulation if

max
x′∈X (1)

ua(x)− α(x′; g(X))
(
ua(x) + C

)
(7.8)

≤ ua(xR)− cR(x,xR)

⇐⇒ ua(x)− α(xM ; g(X))
(
ua(x) + C

)
≤ ua(xR)− cR(x,xR)

Thus, for realization X, the principal’s objective w.r.t to X is, to select α such that

max
α

∑
x∈X

I
[
ua(x)− α(xM ; g(X))(ua(x) + C) (7.9)

≤ ua(xR)− cR(x,xR)

]
s.t. E

[ ∑
x′∈g(X)

α(x′)|g(X)
]
≤ B
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That is, w.r.t. to X, the principal aims to select α such that Inequality 7.8 holds for the

largest fraction of agents in X. In order to select this α, we can rewrite Inequality 7.8 as,

max
x′∈X (1)

ua(x)− α(x′; g(X))
(
ua(x) + C

)
≤ ua(xR)− cR(x,xR)

⇐⇒ ua(x)− min
x′∈X (1)

α(x′; g(X))
(
ua(x) + C

)
≤ ua(xR)− cR(x,xR)

⇐⇒ ua(x)−
(
ua(x) + C

)
min

x′∈X (1)
α(x′; g(X))

≤ ua(xR)− cR(x,xR)

⇐⇒ cR(x,xR) + ua(x)− ua(xR)

ua(x) + C
≤ min

x′∈X (1)
α(x′; g(X))

The principal’s objective of ensuring that this condition holds for the maximum number of

x ∈ X can thus be expressed as,

max
α

min
x′∈X (1)

α(x′; g(X))

s.t. E
[ ∑
x′∈g(X)

α(x′)|g(X)
]
≤ B

Therefore the principal aims to maximize the minimum audit probability α(x′; g(X) over

the entire feature space X (1). Max-min optimization with homogeneous budget constraint is

known to have a uniform solution, namely

α∗(x′; g(X)) =

 B
|X′(1)| if x′ ∈ X (1)

0 otherwise

Therefore, uniform auditing maximizes the number of agents in X which prefer recourse over

manipulation. Since this holds for any such realization X and each realization is independent

of other realizations, it must be the case that uniform auditing maximizes the number of

agents in expectation (expectation over possible realizations X) which prefer recourse over

manipulation.
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Theorem 7.5.2. For any recourse cost function cR(x, z), agent utility function ua(x), feature

distribution D, the policy in Theorem 7.5.1 (uniform auditing) is a utility maximizing policy,

when the induced BNE profile of agents is gmax.

Proof of Theorem 7.5.2. To prove this theorem we will break the principal’s objective into

two components (utility gained by incetivizing recourse, and utility gain from successfully

auditing manipulations), and show that the policy outlined in Theorem 7.5.1 maximizes both

terms. The objective of a utility maximizing principal is given as

α∗ = argmax
α

E
[
ŷ(z′)f(z)

(
1− α(z′; g(X))

)
I [z ̸= z′]

+ ŷ(z′)f(z)I[z = z′]

]
s.t. Eα

[ ∑
z′∈g(X)

α(z′; g(X))|g(X)
]
≤ B ∀ g(X)

For any agent x let z be the agents recourse action (i.e. z = x if no recourse occurs) and

z′ be the agents report (i.e. z′ ̸= z if the agent manipulates). When using audit policy α,

which induces BNE profile g for agents, the principal’s utility w.r.t. to x is

U(x;α, g) = ŷ(z′)f(z)
(
1− α(z′; g(X))

)
I [z ̸= z′]

+ ŷ(z′)f(z)I[z = z′]

=ŷ(z′)f(z)

((
1− α(z′; g(X))

)
I [z ̸= z′] +

(
1− I [z′ ̸= z]

))
=ŷ(z′)f(z)

(
1− α(z′; g(X))I [z ̸= z′]

)
Note that any agent x with x ∈ X (1) (i.e. ŷ(x) = 1) has no incentive to perform any action

other than to truthfully report, i.e. x ∈ X (1) =⇒ x = z = z′ for any α and g. Therefore,

we need only consider the agents x ∈ X (0) (i.e. ŷ(x) = 0) when computing the principal’s

optimal α. Since x ∈ X (0) ⇐⇒ f(x) < 0, we can decompose the principal’s utility into two

cases

U(x;α, g) =

 ŷ(z′)f(z)
(
1− α(z′; g(X))

)
if f(z) < 0

ŷ(z′)f(z) if f(z) ≥ 0
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Given this formulation of the principal’s utility w.r.t. to x ∈ X (0), consider the three possible

actions of x: 1.) x performs recourse to xR, 2.) x misreports x′, and 3.) x truthfully reports

x (i.e. do-nothing). In case (1), the principal gains utility f(xR) ≥ 0, in case (2) the principal

gets utility f(x)
(
1−α(x′; g(X))

)
≤ 0, and in case (3) the principal gets utility 0. There are

two important observations to make with respect to theses cases. First note that only in case

(1) can the actions of x yield the principal positive utility. Second, an agent’s preference

between actions of case (3) and case (1) are independent of the audit policy α. To see this,

note that ua(xR) and cR(x,xR) (the values which determine the costs of (1) and (2)), are

independent of α. Therefore for each x ∈ X (0) there are only two cases that the principal

need consider: either the agent manipulates, i.e. case (2), or the agent selects (1) or (3), the

selection of which is uniquely determined by x.

We need only consider two possible actions for both types of agents in X (0): a) recourse or ma-

nipulation when cR(x,xR) < ua(xR), and b) do-nothing or manipulation when cR(x,xR) ≥
ua(xR). For an agent x with cR(x,xR) < ua(xR), the agent will choose recourse over manip-

ulation if and only if

max
x′∈X (1)

ua(x)− α(x′; g(X))
(
ua(x) + C

)
≤ ua(xR)− cR(x,xR)

⇐⇒ cR(x,xR) + ua(x)− ua(xR)

ua(x) + C
≤ min

x′∈X (1)
α(x′; g(X))

which is precisely the condition of the recourse maximizing principal found in the proof of

Theorem 7.5.1. Similarly, for an agent x with cR(x,xR) ≥ ua(xR), the agent will choose

do-nothing over manipulation if and only if

max
x′∈X (1)

ua(x)− α(x′; g(X))
(
ua(x) + C

)
≤ 0

⇐⇒ ua(x)

ua(x) + C
≤ min

x′∈X (1)
α(x′; g(X))

In both cases, the principal can prevent the agent from manipulation by sufficiently increasing

the minimum value of α. The condition that any agent x will not manipulate can then be
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written succinctly as,

min

(
ua(x)

ua(x) + C
,
cR(x,xR) + ua(x)− ua(xR)

ua(x) + C

)
≤ min

x′∈X (1)
α(x′; g(X))

The principals utility is monotonically increasing in the number of agents x for which the

above condition holds. Thus, momentarily ignoring the principal’s ability to increase their

utility by successfully catching (and subsequently denying) manipulated reports, the prin-

cipal’s objective reduces to maximize the minimum value of α across all features in X (1),

which is precisely the objective of a recourse maximizing principal.

Thus it remains only to show that uniform auditing is also the policy which results in the

largest utility gain from successfully catching manipulated reports. To see this, consider any

agent x ∈ X (0). The optimal manipulation for this agent is

xM = arg max
z′∈X (1)

ua(x)− α(z′; g(X))
(
ua(x) + C

)
= arg min

z′∈X (1)
α(z′; g(X))

(
ua(x) + C

)
= arg min

z′∈X (1)
α(z′; g(X))

That is, any agent choosing manipulation, will select the report z′ corresponding to the

feature in X (1) with the lowest probability of being audited in expectation. Let zmin ∈ X (1)

be the feature with the lowest probability of being audited for an audit policy α. Then

xM = zmin for every x, i.e. it is always optimal to misreport zmin. In the best possible case for

the principal, no agents would preform recourse to zmin, in which case all reports z′ = zmin are

manipulations. Then, for any particular agent reporting zmin, the probability of that agent

being audited is strictly lower than the probability that a truthful report z′ ̸= zmin being

audited (due to the fact that zmin has the lowest probability of being audited and α is not

uniform). Under uniform auditing, every positively classified report has equal probability of

being audited. Hence, the expected number of audit manipulations under this non-uniform

policy α must be strictly less than the expected number of audited manipulations under

uniform auditing. Therefore, uniform auditing is the policy which catches the maximum

amount of manipulations.
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Combining this with the fact that uniform auditing also maximizes the number of agents not

manipulating (i.e. maximizing the number of agents which yield the principal nonnegative

utility), uniform auditing is optimal.

Remark 7.5.3. Theorems 7.5.4, 7.5.1, and 7.5.2 show an equivalence between an incentive-

minimizing, a recourse-maximizing, and a utility-maximizing principal. The equivalence of

the latter two is significant for three primary reasons: (1) the actions of a self-interested

(utility-maximizing) principal are as beneficial to the population as the actions of a recourse-

maximizing principal directly trying to maximize for population benefit, (2) self-interested

auditing decreases the percentage of agents which engage in “risky” and potentially socially

detrimental behavior (manipulation), and (3) optimal auditing does not require any knowl-

edge of dynamics of agents recourse actions (e.g. solving Program 7.3, or even knowing

cR).

Lastly we examine the an incentive-minimizing principal. Note that the objective of the

incentive-minimizing principal is independent of recourse actions.

Theorem 7.5.4. For any agent utility function ua(x), feature distribution D, an incentive-

minimizing principal with budget B and fine C has optimal policy

α(z′;Z′) = B/|Z′(1)|, ∀ z′ ∈ Z′(1),∀ X

when agent reports Z′ are induced the ε-BNE profile of truthful reporting; Z′(1) is the set of

all reports z′ with ŷ(z′) = 1.

Proof. This proof follows from a similar line of reason to the case of recourse- and utility-

maximization. Since agent utility depends only on the agent’s true feature x, all manipula-

tions which result in positive classification are equal to the agent (barring auditing). Thus,

the only difference in expected utility from reporting any z′ ∈ X (1) stems from the principal’s

audit policy. Moreover, the difference in utility is precisely the difference in audit probability,

i.e., reporting z′ yields

ua(x)− α(z′))
(
ua(x− C

)
.

All terms are constant in z′ with the exception of α(z′), and thus the agent’s optimal ma-

nipulation is again

xM = argmin
z′

α(z′)
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indicating that if any feature z′ was audited with a probability lower than other features,

then the optimal strategy for agents is to misreport z′, independent of the other agents

actions. As such, an optimal audit policy must audit all positively classified features with

equal probability.

7.6 Auditing With Subsides

Audits provide a punitive measure for incentivizing recourse over manipulation. Another

natural option is to offer subsidies that make recourse cheaper to implement for agents.

Here we investigate how the principal optimally splits the limited budget between auditing

and subsidies. For example, a bank may choose to allocate a fraction of their budget from

application verification to the development of educational material to help increase financial

literacy. Our key result is that in the important special case of constant utilities, both

recourse-maximizing and (own) utility-maximizing principals choose the same fraction of

budget for subsidies. Moreover, we show that despite the complex interdependencies of the

problem, when agent utilities are constant, the objective of both principals can be formulated

as a single-dimensional optimization problem, depending only on the impact of subsidies on

the cost of recourse and audit budget. We begin by formalizing subsidies in our model.

Definition 7.6.1. A subsidy function s : [0, B] → [0, 1] yields a multiplicative decrease in the

cost of recourse, such that for a subsidy budget b, the cost of recourse becomes s(b)cR(x, z),

and the remaining budget B−b is then used for auditing. Subsidy functions s(b) are decreasing

in b and s(0) = 1 (allocating no subsidies recovers the original recourse cost).

Remark: For any subsidy trade-off b∗ with s(b∗) = 0, the cost of recourse is s(b∗)cR(x, z) =

0 for all x, z. When such a trade-off exists, it is always optimal for the principal to select

b∗ as their subsidy allocation (i.e., their objective reduces to univariate root finding of s(b)).

Consequently, we henceforth assume that s(b) > 0.

Next, we present our key result showing that when agent utilities are constant, optimal

subsidy characterization is identical for either recourse- or utility-maximizing principal, and

amounts to solving a one-dimensional optimization problem.

Theorem 7.6.2. Suppose that agent utilities are constant, i.e., ua(xi) = ūa, and the induced

BNE profile of agents is gmax. Then, for both a recourse-maximizing and utility-maximizing

80



principal, the optimal subsidy is given by

b∗ = arg max
b∈[0,B]

B − b

s(b)
(7.10)

Proof. When the principal chooses a subsidy trade-off of b, their resulting audit budget is

B − b, and the cost of recourse is s(b)cR(x, z). For a given subsidy trade-off b, each agent

with true feature x has optimal recourse action

xR = arg max
z∈X (1)

ua(z)− s(b)cR(x, z)

Let b1, b2 be any two subsidy trade-offs and z1, z2 ∈ X (1) be any two recourse actions for an

agent with true features x. Then,

ua(z1)− s(b1)cR(x, z1) ≤ ua(z2)− s(b1)cR(x, z2)

=⇒ s(b1)cR(x, z1) ≥ s(b1)cR(x, z2)

=⇒ s(b2)cR(x, z1) ≥ s(b2)cR(x, z2)

=⇒ ua(z1)− s(b2)cR(x, z1) ≤ ua(z2)− s(b2)cR(x, z2)

implying that the optimal recourse action xR is invariant w.r.t. to the subsidy trade-off b.

Therefore, for any fixed b, the problem of optimal auditing with either objective reduces

down to exactly the cases studied in Section 7.4 for which uniform auditing is optimal. An

agent with features x will prefer recourse over manipulation when

max
x′∈X (1)

ua(x) - α(x
′) (ua(x)+C)

≤ ua(xR) - s(b)cR(x,xR)

⇐⇒ s(b)cR(x,xR) ≤ E
[
B − b

|X′(1)|

]
(ua(x)+C)

⇐⇒ cR(x,xR)

(ua(x) + C)
≤ E

[
1

|X′(1)|

]
B − b

s(b)
(7.11)

For a recourse maximizing principal it is straightforward to see that maximizing the number

of features for which Inequality 7.11 holds is equivalent to maximizing recourse. In the

case of a utility maximizing principal, the argument is identical to that of the proof of

Theorem 7.5.2, in which maximizing the number of agents performing recourse is shown to

also maximize the principals expected utility.
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For any set of true features X, each of the reports in X′ falls under one of the following

categories: 1.) the reported feature x′ is truthful and positively classified, i.e. x′ = x and

ŷ(x) = 1, 2.) x′ is a manipulation which is positively classified, i.e. x′ ̸= x and ŷ(x′) = 1, 3.)

x′ is the result of recourse and is positively classified, i.e. x′ = xR and ŷ(xR) = 1, and 4.) x′

is truthful and negatively classified, i.e. x′ = x and ŷ(x′) = 0. Note that X′(1) is comprised

entirely of reports of type (1), (2), and (3). Moreover, the value of b will not change reports

of type (1) and occur with probability P
(
ŷ(x) = 1

)
.

For reports of type (4) the agent is negatively classified and does not perform recourse or

manipulation, implying that both are too costly, i.e. the following holds for feature x,

ua(x) ≤ α(x′)(ua(x) + C) and ua(xR) ≤ s(b)cR(x,xR)

The value of s(b)cR(x,xR) is monotonically decreasing in b, therefore increasing b could not

push a report of type (3) to type (4). Similarly the value of α(z′; g(X)) is monotonically

decreasing in b (since B − b is monotonically decreasing in b), and therefore increasing b

could not push a report of type of (2) to type (4). Thus the number of reports of type (4)

is monotonically decreasing in b.

Given a realization of agent features X, let X
′(1)
0 be the set of positively classified reports

when b = 0, i.e. when the principal audits without subsides. Then for any b > 0, let X
′(1)
b

be the set of reports which are positively classified when the principal uses subsidies. Then

X
′(1)
0 ⊂ X

′(1)
b , implying that

E

[
1

|X′(1)
b |

]
≤ E

[
1

|X′(1)
0 |

]
,

and

E

[
1

|X′(1)
b |

]
B − b

s(b)
≤ E

[
1

|X′(1)
0 |

]
B − b

s(b)

thus, for any b > 0 Inequality 7.11 is also satisfied when

cR(x,xR)

(ua(x)+C)
≤ E

[
1

|X′(1)
b |

]
B − b

s(b)
≤ E

[
1

|X′(1)
0 |

]
B − b

s(b)
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Therefore the principal’s objective can be framed as maximizing E
[

1

|X′(1)
0 |

]
B−b
s(b)

. Since

E
[

1

|X′(1)
0 |

]
is independent of b, the principal’s objective is thus

max
b∈[0,B]

B − b

s(b)

Therefore the subsidy trade given in the in Theorem 7.6.2 is both recourse maximizing and

utility maximizing.

Illustration: To gain some intuition into the result of Theorem 7.6.2, consider s(b) = 1
b+1

,

where the impact of subsidies on recourse costs exhibits diminishing returns in the subsidy

allocation. In this case, the objective can be solved analytically, obtaining the optimal subsidy

b∗ = B−1
2

. Thus, the principal, whether maximizing overall welfare or their own utility, would

allocate nearly half of the audit budget to subsidies. The reason is that even a self-interested

principal actually benefits from providing subsidies and thereby incentivizing recourse, as such

actions also increase the principal’s profits, whereas manipulation results in an expected loss.

Corollary 7.6.3. When agent utility is constant, both a recourse-maximizing and utility-

maximizing principal will allot a nonzero portion of their budget to subsides if and only if

there exists some b s.t. s(b) ≤ 1− b/B, i.e. s has better than linear scaling for at least one

value of b.

In contrast to the case of constant agent utilities, however, optimal subsidy becomes non-

trivial for general agent utilities. Moreover, the alignment between recourse- and utility-

maximizing principal no longer obtains.

Theorem 7.6.4. For general agent utilities, recourse maximization and utility maximization

are no longer aligned.

Proof. We present a counter-example showing a case (or more broadly a family of cases)

in which the two objectives are not aligned. Let B = 3 be the principal’s total budget for

auditing and subsidies, let the manipulation fine be C = 2, and we will specify the subsidy

function 0 < s(b) ≤ 1 for each case below.

Consider the case when both agent’s utility ua and the principal’s utility up are heterogeneous,

namely ua(x) ̸= ua(x
′), up(x) ̸= up(x

′) for x ̸= x′. Suppose there are 5 different features:
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x0, x1, x2, x3, x4, where x0, x1, x2 are negatively classified and x3, x4 are positively classified.

Assume four agents, each with feature x0, x1, x2, x3 accordingly. Thus the first three agents

get denied by the classifier, while the last agent gets approved. All the agent’s utility and

the principal’s utility are specified as follows:

ua(x0) = 0.5, ua(x1) = 1, ua(x2) = 1,

ua(x3) =
91

128
, ua(x4) =

75

64

up(x0) = up(x1) = up(x2) = 0,

up(x3) = 0.1, up(x4) = 10

The costs of recourse for each negatively classified feature are specified as follows:

cR(x0, x3) =
1

2
, cR(x0, x4) = 1

cR(x1, x3) =
1

4
, cR(x1, x4) = 1

cR(x2, x3) =
1

2
, cR(x2, x4) = 1

Consider the optimal policies for the two principals.

For a recourse maximizing principal, the optimal subsidy trade-off is to set b∗r = 0, which

implies that s(b∗r) = 1, namely they will spend all budget B = 3 on auditing and none on

subsidies is optimal. The corresponding audit audit policy is αr = B−b∗r
|X′(1)| = 3

4
. With the

above specification, the optimal actions for all three agents are to perform recourse to feature

x3. To see this, we provide one example using the agent with feature x0:

(cost of manipulation): ua(x0)− αr(ua(x0) + C) < 0

(cost of recourse to x3): ua(x3)− s(b∗r)cR(x0, x3) =
27

128

(cost of recourse to x4): ua(x4)− s(b∗r)cR(x0, x4) =
11

64

In this case, the recourse maximizing principal successfully incentivizes all three negatively

classified agents to perform recourse, achieving recourse maximization. Meanwhile, the total

principal utility is U r
p =

∑4
i=1 up(xi) = 0.4.
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In contrast to the recourse maximizing principal, a utility maximizing principal has subsidy

trade-off b∗u = 2 and thus the subsidy function is s(b∗u = 2) = 27
32
. We can compute the

optimal audit policy as αu = B−b∗u
|X′(1)| = 3−2

4
= 1

4
. In this case, the agent with feature x0’s

optimal action is to perform recourse to x4, while agents with feature x1 and x2 will perform

manipulation. To see this, we provide the calculation for the agent with feature x0:

(cost of manipulation): ua(x0)− αu(ua(x0) + C) < 0

(cost of recourse to x3): ua(x3)− s(b∗u)cR(x0, x3) =
37

128

(cost of recourse to x4): ua(x4)− s(b∗u)cR(x0, x4) =
11

64

For the agent with feature x1:

(cost of manipulation): ua(x1)− αu(ua(x1) + C) =
11

16

(cost of recourse to x3): ua(x3)− s(b∗u)cR(x1, x3) =
1

2

(cost of recourse to x4): ua(x4)− s(b∗u)cR(x1, x4) =
21

64

In this case, the principal’s total utility is
∑4

i=1 up(xi) = 10.1, which is larger than the utility

from the recourse maximizing principle’s utility even though the total number of agents who

performs recourse is only 1.

The above example shows that the two principals’ objectives are not aligned when agent

utility is non-constant.

7.7 Costs of Auditing to the Population

In domains where recourse is a salient consideration, it is natural to examine the average cost

suffered by a population when performing recourse [110]. With the introduction of auditing

and subsides into such domains, it becomes imperative to consider costs/fines imposed on

the population as both a function of auditing and subsides.
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We first describe the differences between the impact on the utility of the principal and that of

the agents. In particular, as the auditing budget B and fine C increase, the principal’s utility

gain is monotonically increasing, while the agents’ utility gain is monotonically decreasing.

Theorem 7.7.1. Average agent utility is monotonically decreasing in B and C. In contrast,

the principal’s expected utility is monotonically increasing in B and C.

Proof. The expected utility of and agent x misreporting z′ can be expressed as

ua(x)− E
[
B/|Z′(1)|

]
(ua(x) + C)

which is monotonically decreasing in both B and C. The utility of recourse is invariant w.r.t.

B and C. Agents only perform recourse if manipulation yields lower utility gain, thus agent

utility gain is monotone decreasing in B and C. A symmetric argument can be made for the

principal’s utility.

Theorem 7.7.2. When agent utility is constant, the expected number of agents who either

choose to perform recourse or truthfully report is nFR

(
min

(
ūa,

B(C+ūa)
n

))
.

Proof. This follows directly from Theorem 7.5.1.

Lastly, we bound the fines paid by agents when the principal has budget B and the fine is

C.

Theorem 7.7.3. Let FR(k) = P
(
cR(x,xR) ≤ k

)
(CDF of cR). Suppose agent utility is

constant, define C ′ ≡ C + ūa, and let AM be the expected fines paid by agents. Then,

BC
(
1− FR(2BC ′/n)

)
≤ AM ≤ BC2

(
1− FR(BC ′/n)

)
Theorem 7.7.3 can be interpreted as quantifying the fines paid by the population in terms of

how costly recourse is (i.e., the growth rate of FR). If the principal audits B manipulating

agents, the population pays C ·B. The terms 1−FR(2BC ′/n) and 2(1−FR(BC ′/n)), in turn,

approximate the probability that a given audit was conducted on a manipulating agent.

These bounds also express the parabolic nature of the fines paid by agents. For small B and

C, the fines paid by agents are small (even if all agents manipulate). For large B and C, the
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cost of manipulation is sufficiently high that few agents will manipulate, and thus, average

fines are small. It is the intermediate range of values of B and C for which both BC (fines

paid when all audits are successful) and 1 − FR(BC ′/n) (probability of a successful audit)

are large.

Proof. Given a set of n reports X′, let nM be the number of reports which are manipulations

and |X′(1)| be the number of reports which are approved prior to auditing. Each report in

X′(1) has an equal probability of being audited, namely B
|X′(1)| . For any set of reports X′ the

expected number of caught manipulations is,

∑
z′∈X′(1)

E
[
I[z′ ̸= zi]α(z

′; g(X))
]
=

BnM

|X′(1)|

Since B is constants it remains only to bound the value of nM

|X′(1)| , which can be done by

examining its expectation with respect to agent reports,

E
[
nM

n

]
≤ E

[
nM

|X′(1)|

]
≤ E

[
nm

|X(1)|+ 1

]
(7.12)

Where the left-hand side is due to the fact that the number of approved reports |X′(1)| cannot
exceed the number of agents n, i.e. |X′(1)| ≤ n. The right-hand side of the inequality is due

to the fact that the number approved reports |X′(1)| must be greater than the number of

agents whose true features would be approved |X(1)|, and if |X′(1)| = |X′(1)|, then no agents

manipulated and nM = 0, in such a case the fines paid by agents is 0 and thus if any fines

are paid, it must be the case that |X(1)|+ 1 ≤ |X′(1)|.

Defining C ′ ≡ C + ūa, we can examine the left-hand side of Inequality 7.12 as,

E
[

nM

|X′(1)|

]
≥ E

[
nM

n

]
≥

n Px

(
cR(x,xR) ≥ α(xM ; g(X))C ′)

n

≥
n Px

(
cR(x,xR) ≥ α(xM ; g(X))C ′)

n

≥
n Px

(
cR(x,xR) ≥ 2BC ′/n

)
n

= 1− FR

(
2BC ′/n

)
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Examining the right-hand Inequality 7.12 yields,

E
[

nM

|X′(1)|

]
≤ E

[
nm

|X(1)|+ 1

]
≤ n Px

(
cR(x,xR) ≥ α(xM ; g(X))C ′)(1−

(
1− P(x ∈ X (1))

)(n+1)

(n+ 1)P(x ∈ X (1))

)

≤ n Px

(
cR(x,xR) ≥ BC ′/n

)(1−
(
1− 1/2

)(n+1)

(n+ 1)1/2

)
≤ n Px

(
cR(x,xR) ≥ BC ′/n

) 1

n/2

= 2
(
1− FR(BC ′/n)

)
Therefore, we can rewrite Inequality 7.12 as,

1− FR

(
2BC ′/n

)
≤ E

[
nM

|X′(1)|

]
≤ 2
(
1− FR(BC ′/n)

)
Thus, the fines paid by agents can be bounded by

BC
(
1− FR

(
2BC/n

))
≤ AM ≤ BC 2

(
1− FR(BC/n)

)

7.8 Social Burden and Auditing

Next, we discuss the relationship between auditing and traditional methods for achieving

robustness, focusing on their impact on populations. As discussed in the previous section,

auditing imposes a non-trivial amount of fines on the population. However, these fines are

imposed only on agents that choose to manipulate. Approaches to designing models robust

to strategic behavior typically involve modifications to the classifier itself [41, 31, 87]. These

methods are similar to adversary simulation approaches found in adversarial machine learning

[122, 102, 113]. They attempt to find a pseudo-equilibrium between a model designer and an

attacker (or a population of strategic agents in our case). However, these types of retraining

methods can have undesirable consequences in the context of strategic classification.
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Auditing offers several unique advantages over traditional robustness approaches in strategic

classification, such as retraining [73] and boundary smoothing [41]. As pointed out by [87], the

aforementioned methods almost exclusively result in classifiers with lower qualification rates.

This, in turn, necessitates that agents engage in strategic behavior to maintain approval.

The cost incurred by such agents is defined as social burden, which has been shown to

disproportionately affect disadvantaged groups [87]. In the case of our auditing schemes, we

demonstrate that optimal audit policies impose fines equitably between groups. Specifically,

among all agents who elect to manipulate, each group faces an equal expected average

fine. Since our auditing schemes are model-agnostic, they can be applied in both group-fair

learning and group-agnostic learning scenarios.

Note that in the case of strategic agents and binary classification, manipulations are unidirec-

tional; agents will only manipulate to achieve positive classification. Thus if f is to be robust

to an agent with features x, cost function c, and budget B, then it must be the case that

c(x,x′) > B for all x′ with f(x′) = 1. In such a case, if any agent z ∈ {x′ ∈ X : c(x,x′) ≤ B}
was positively classified prior to robust training, they would lose positive classification after

robust training.

This outcome can be undesirable for several reasons, as discussed previously. These include

issues related to selectivity and fairness reversals as well as those concerning individual wel-

fare. Moreover, this type of retraining necessitates that agents engage in strategic behavior

to maintain positive classification. For example, the aforementioned agent with features z

would need to engage in strategic behavior to maintain a positive classification. This con-

cept is best captured through the term social burden, as first discussed in [87]. This term

measures the average cost that agents must pay to maintain their positive classification. We

formalize this observation with the following self-evident theorem.

Theorem 7.8.1. For any fine C, cost of recourse cR, audit budget B, auditing imposes no

social-burden. That is, the cost that any agent must pay to maintain positive classification

when auditing is deployed, compared to truthfully reporting when auditing is not deployed, is

always 0.
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7.9 Tractability of Auditing

Prior to presenting experimental results for auditing we first note an interesting relationship

between the tractability of executing an optimal audit policy and computing the efficacy

of that policy. For each of the three possible objectives (incentive-minimization, recourse-

maximization, and utility-maximization), we saw that uniformly auditing all positively clas-

sified agents was optimal, implying that computing optimal audit policies is linear in the

number of agents. However, despite the ease at which such policies can be computed and

executed, it is intractable for the principal to verify their success. More specifically, in the

case of incentivize-minimization, computing the minimum value of ε for which the the model

is ε-IC is NP-hard. Similarly, in the cases of recourse-maximization and utility-maximization

it is intractable for the principal to compute their expected objective value when deploying

the optimal audit policy (fraction of agents choosing recourse and average system utility

respectively).

Theorem 7.9.1. For each type of principal (incentive-minimization, recourse-maximization,

and utility-maximization) it is NP-hard to compute the optimal value of the principal’s ob-

jective, i.e., Equations 7.5, 7.6, and 7.7.

Since the optimal audit policy uniformly audits all positively classified agents, the probability

of any specific positively classified agent being audited is monotonically decreasing in the

expected number of positively classified individuals. Thus, determining the expected number

of positively classified individuals is key in being able to compute the value of each objective

(as these objectives depend on the number of agents electing to manipulate). However, in

general computing the expected positive rate of a classifier is NP-hard; a trivial example

being the case of binary features and a classifier corresponding to a Boolean formula. A full

proof is provided in Section B of the Appendix.

7.10 Experiments

We conduct experiments using the datasets outlined in Chapter 4. Our experimental setup

remains the same as previous sections, with the exception of needing to define agent and

system utility. In the Adult Income and Law School datasets, agents have constant utility
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Figure 7.1: Fraction of agents choosing recourse or manipulation (green and red), average
cost paid for each action (orange and blue), and system utility (black), for a fixed fine of
C = 1 (left) or designed fines with audit budget B = n/10 (right). ’ To estimate utility the
principal uses Logistic Regression (top row) and 2-layer Neural Networks (bottom row).

over approved features, i.e., the conventional recourse setting where ua(x) = 1 for all x; the

principal (system) has utility up(x) = 1 when y = 1 and up(x) = −1 when y = 0. In the

German Credit and Lending Club datasets, agents have utility which is inversely proportional

to their income and savings (credit is more valuable to those with lower existing capital); the

principal’s utility is equal to the total repayment of approved agents. The cost of recourse

is cR(x, z) = ∥x− z∥2.

We measure the fraction of the population performing recourse or manipulation, as well

as the average cost incurred by agents for either action (Figure 7.1). In this figure three

interesting phenomena occur. First, the average fines paid by agents is roughly parabolic

in the audit budget B (Figure 7.1 left), and in the penalty γ which controls the size of the

fine C∗ (Figure 7.1 right). Thus, it is the intermediate values of B and C for which agents

are most heavily fined. In these cases, B and C are not large enough to effectively dissuade

manipulations, but are large enough to frequently catch and fine agents manipulating. This

parabolic relationship is anticipated by Theorem 7.7.3. Second, the maximum cost spent

on recourse exceeds the maximum fines paid. This is due to the fact that agents will only

select recourse once the cost of manipulation is sufficiently high. Third, as the number

of agents choosing recourse increases, so to does system utility. When an agent performs

recourse, their true qualification improves (e.g., greater loan repayment), thus increasing the

principal’s utility when approving that agent.
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Figure 7.2: For subsidy trade-off function s(b) =
(
B−b+1
B+1

)p
with B = 20, the optimal subsidy

trade-off b∗ as a function of p (left), and s(b) for different values of p (left). The value of p
can be interpreted as how rapidly the cost of recourse decreases with greater allotments of
b.

Additionally, in Figure 7.2, we measure the fraction of the audit budget which the principal

allocates to subsides for varying subsidy functions. As predicted by Theorem 7.6.2, we

observe that when the subsidy function more effectively decrease recourse costs, both the

allocation of subsides and the principal’s utility increases. Thus, settings in which the cost of

recourse is more easily offset give rise to a mutual benefit for both the system and individuals.

7.11 Discussion

We investigated the relationship between manipulation and recourse when the principal

possesses the ability to audit agent reports. We demonstrated that auditing can be used

as an effective tool in preventing agent manipulation while still allowing the principal to

offer recourse and maintain their desired classifier ŷ. For both a recourse-maximizing and

utility-maximizing principal, the optimal audit policy is straightforward to execute, despite

the seemingly complex nature of the problem. In particular, given a set of report X′ the

principal’s best strategy is to uniformly audit all positively classified reports.

Additionally we studied subsides, which allow the principal to allot a portion of their audit

budget in order to decrease the cost of recourse. In this case, we find that when agent

utility is constant, both objectives of recourse maximization and utility maximization are

aligned; however, this is not the case for general agent utilities. Moreover, when agent utility
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is constant, the principal is guaranteed to spend a nonzero fraction of their audit budget

on subsides, so long as the subsidy function s(b) has better than linear scaling in b. We

examined this problem from an empirical perspective and found that auditing can successful

induce recourse as well as maximize system utility in practice.
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Chapter 8

Popularizing Fairness: Group Fairness

and Individual Welfare

Previously in Chapter 6 we examined settings in which a principal is considering a change

from a conventional, and potentially biased, prediction model to a group-fair approach. We

saw that these changes in the prediction model frequently result in widespread decreases to

the individual welfare among the population. To capture these individual level harms we

proposed the notion of popularity which measures the fraction of a population which is made

worse off (in terms of utility) when switching from the conventional model to the fair model.

While an extensive array of previous works has focused the development of models which have

both high performative efficacy and fairness [63, 1, 96, 42, 26, 85, 8, 6, 35], our observations of

the individual-level impacts caused by such models necessitates an investigation into whether

it is feasible to limit the amount of individual impacts, while maintaining high performance

and fairness. To this end, we seek to develop fair-learning schemes which are popular, and

have competitive fairness and performance with other stat-of-the-art approaches.

We model the principal’s problem as a comparison between a conventional model fC and a

group-fair model fF , with the principal considering a switch from the former to the latter.

Both models select a subset of individuals from a target population to obtain a particular

desirable outcome (e.g., a resource, such as admission to a college). We examine popularity

in this context through the lens of preferences of individuals in a target population over

selection outcomes (which we can encode as positive outcomes of binary classification): an

individual weakly prefers fF to fC if the probability of being selected is not lower under

the former than under the latter. Popularity of a group-fair approach fF then amounts to

ensuring that a given fraction (e.g., majority) of a target population prefers fF to fC .

Given that group-fair approaches have significant motivation and momentum behind them,

instead of designing an entirely new approach to finding popular and fair classifiers, we ask
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whether it is possible to minimally postprocess the output of a group-fair classifier in order

to achieve some target popularity while maintaining a high level of fairness. We answer

this question in the affirmative. Specifically, we describe two approaches to efficiently post-

process the outputs from a given group-fair classifier in order to boost its popularity. The

first approach, called Direct Outcome Shift (DOS), formalizes the problem as a minimal

change of outcome probabilities over the target population to guarantee a target level of

fairness and popularity. This postprocessing scheme runs in polynomial time. Our second

approach, called k-Quantile Lottery Shift (k-QLS), involves a form of regularized empirical

risk minimization with fairness and popularity constraints. This approach relies on parti-

tioning prediction scores into a set of quantiles, and we show that, in general, the problem

is strongly NP-Hard. However, we also show that if the number of quantiles k is constant,

this problem can be solved in polynomial time. Our methods are applicable in both the

classification and scarce resource allocation settings, and allow a model designer to directly

control the level of popularity and fairness. Moreover, these approaches can be used to

postprocesses both deterministic as well as stochastic models.

8.1 Summary of Chapter Results

We introduce two postprocessing algorithms which allow a principal to directly control the

popularity of a given fair model, while maintaining good fairness properties. The first post-

processing technique, dubbed Direct Outcome Shift (DOS), is polynomial time solvable

for both deterministic and randomized classifiers, and can also be applied to the scarce

resource allocation setting. The second technique, k-Quantile Lottery Shift (k-QLS), works

by grouping agents into k quantiles (where k is chosen by the model designer), and running

lotteries on each quantile. k-QLS is polynomial time solvable for deterministic classifiers.

While we show that k-QLS is NP-hard in the randomized case, it becomes tractable for

constant k, as would be standard in practice. We empirically demonstrate that the proposed

postprocessing techniques can achieve high levels of popularity and fairness with minimal

impact on prediction accuracy.
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8.2 Additional Related Work

As noted previously, fair learning schemes can be partitioned into three families: preprocess-

ing, inprocessing, and postprocessing. Our proposed algorithms work through postprocess-

ing, and operate in a capacity similar to that of [96, 42, 54, 21, 78, 49]. In these works, the

scores or decisions of a conventional classifier are modified in order to achieve fairness. Most

post processing techniques for fairness work through “inclusion/exclusion” systems where a

potentially randomized procedure is uniformly applied across groups, e.g. random selection

of group-specific thresholds [42, 49], or randomly selecting agents from one group to receive

positive classification with constant probability [96]. Our postprocessing techniques, while

concerned not exclusively with fairness, follow a similar inclusion/exclusion principal.

Our postprocessing approaches also apply to randomized prediction methods which are are

common in prior literature. In some cases, randomization is inherently desirable, for example,

to explore or correct existing bias in domains such as hiring [11, 105, 44] or lending [59, 60].

In other settings, the aim is to increase model robustness [94, 101], or to achieve better trade-

offs between model performance and fairness, as is common in many group-fair classification

approaches [1, 63, 96]. Our model also allows randomness in model decisions to stem from

uncertainty as to the exact nature of the model. This uncertainty can stem proprietary

or unpublished data [18, 119, 5] or frequent retraining as new data is collected overtime

[124, 84, 123].

8.3 Preliminaries

In this chapter we focus the broad family of additive fairness metrics, which covers most

metrics commonly found across the fair learning literature.

Definition 8.3.1. (Additive Efficacy Metric): An efficacy metric M is additive if for

any population (X , Y,G),

M
(
f(X ), Y ; g

)
=
∑

y∈{0,1}

∑
i∈Gg :
yi=y

f(xi)c
(g)
y,1 + (1-f(xi))c

(g)
y,0
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for some c
(g)
y,0, c

(g)
y,1 ∈ [0, 1]. In the case of scarce resources f(xi) is interchangeable with

Ii(X , h, k). In the case of randomized models, f(xi) is replaced with E[f(xi)] or E[Ii(X , h, k)].

In an additive efficacy metric, the coefficients c
(g)
y,0, c

(g)
y,1 give the respective “costs” of classifying

an example from group Gg, with true label y, as negative or positive, respectively. Thus,

unfairness U is given as the difference in the total efficacy cost between groups. Additive

metrics are widely studied in the literature and include metrics such as error rate (ER),

positive (or selection) rate (PR), false positive rate (FPR), and true positive rate (TPR). As

an example, in the case of PR fairness c
(g)
y,1 = 1/|Gg | and c

(g)
y,0 = 0 for each y, g ∈ {0, 1}.

In this chapter, we also increase the scope of the conventional classifier, in that it is no

longer required to be an accuracy maximizing classifier (as was the case when investigating

fairness reversals). Instead, the conventional model fC can be an arbitrary model resulting

from the minimizing of a given loss function LC , that is

fC ∈ arg min
f∈HC

LC

(
f,X , Y

)

8.4 Popularity and Fairness Reversals

Prior to our main results, we first outline the connections between individual welfare and

classifier selectivity (recall that classifier selectivity was the driving force behind the fairness-

reversal phenomenon investigated in Part II). In particular we demonstrate a correspondence

between popularity and classifier selectivity, namely that classifiers with higher high popu-

larity are guaranteed to be less selective. Thus, the postprcessing techniques (discussed in

detail later) have the added benefit of reducing both the likelihood and severity of fairness

reversals.

We begin with the hard-selectivity, and then extend our observations to soft-selectivity.

Recall that for hard-selectivity, a classifier fF is said to be more selective than its conventional

counterpart fC if {
x ∈ X : fF (x) = 1

}
⊂
{
x ∈ X : fC(x) = 1

}
,

that is, all examples x which are positively classified by fF are also positive classified by fC ,

and there exists at least one example which positively classified by fC , but not by fF .
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Theorem 8.4.1. For deterministic classifiers fC and fF , postprocessing with γ = 1 ensures

that fF is not more selective than fC.

Proof. In the case of deterministic classification, γ-popularity of fF is defined as

1

|X|
∑
x∈X

I
[
fC(x) ≤ fF (x)

]
≥ γ.

Setting γ = 1, implies that fC(x) ≤ fF (x) for all x ∈ X. Thus, any x with fC(x) = 1 will

also have fF (x) = 1, implying that
{
x ∈ X : fC(x) = 1

}
⊆
{
x ∈ X : fF (x) = 1

}
and fF is

not more selective than fC .

Recall that in the less restrictive case selectivity is defined as

S(fC , fF ) = P
(
fC(x) = 1 ̸= fF (x)

)
− P

(
fC(x) = 0 ̸= fF (x)

)
The selectivity of fF can be bounded in terms of the popularity of fF .

Theorem 8.4.2. For deterministic classifiers fC and fF , if fF is γ-popular, then fF is no

more than (1− γ) selective, i.e. S(fC , fF ) ≤ 1− γ.

Proof. If fF is γ-popular, then P
(
fC(x) < fF (x)

)
≤ 1− γ. Thus

S(fC , fF ) ≤ 1− γ − P
(
fC(x) = 0 ̸= fF (x)

)
In the worst case, P

(
fC(x) = 0 ̸= fF (x)

)
can be 0 which yields S(fC , fF ) ≤ 1− γ.

In addition to demonstrating the use of our postprocessing methods to prevent fairness re-

versals, Theorems 8.4.1 and 8.4.2 imply a fundamental connection between fairness reversals

and individual welfare. Classifiers which result in a decrease to individual welfare are self-

evidently undesirable, especially when they can be easily avoided, however, the fact that such

classifiers will also result in fairness reversals when agents are strategic is equally undesirable,

but less obvious a-priori.
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Deterministic
Models

Randomized
Models

Requires
Labels

Scarce Resource
Allocation

DOS ✓ ✓ – ✓
k-QLS ✓ ✓ ✓ –

Table 8.1: Applicability of each method. Checkmarks indicate situations in which the method
is applicable.

8.5 Improving Popularity through Postprocessing

We consider two approaches to minimally postprocess a β-fair scheme fF such that the

resulting decisions also become γ-popular, for exogenously specified β and γ: 1) direct out-

come shift (DOS) and 2) k-quantile lottery shift (k-QLS). Postprocessing is performed in a

transductive setting, in which the populations’ features (X , G) (and possibly also labels Y )

are known in advance. Throughout, we use fP to refer to either approach we propose that

combines both popularity and group fairness. Prior to discussing both approaches in detail,

we first outline the settings in which each technique is applicable.

Direct Outcome Shift (DOS) DOS-based postprocessing arises from solving the problem

of finding a minimal perturbation to the agents’ outcomes that achieves both fairness and

popularity, e.g. Program 8.15 for randomized classification. For a target population with

feature vectors X , we shift individuals’ outcomes fF (X ) or expected outcomes E[fF (X )] by

a perturbation vector p. For deterministic decisions, p ∈ {−1, 0, 1}n, while for stochastic

decisions p ∈ [−1, 1]n. The optimization goal in either case is to minimize ∥p∥q for some ℓq-

norm (q ∈ {1, 2,∞}) such that the final decisions, whether they involve predictions (fF (X )+

p, or E[fF (X )] + p) or allocations (I(X , h, k) + p, or E
[
I(X , h, k)

]
+ p) are both β-fair and

γ-popular. Since DOS does not use knowledge of true labels Y , it can be applied directly

at prediction time to a population of individuals. However, this also means that it can only

be applied when the measure of fairness is independent of the true labels Y (for example,

ensuring equality of positive rates).

k-Quantile Lottery Shift (k-QLS) Another option for creating popular and fair classifiers

is to directly minimize a loss function regularized by the distance of the fair-and-popular

classifier from the fair classifier (distance is measured on predictions at training time), e.g.

Program 8.23 for randomized classifiers. k-QLS-based postprocessing achieves this goal by

partitioning scores hF (X ) for a population X into k bins (based on quantiles). The goal is

99



then to compute probabilities p
(g)
ℓ for each bin ℓ and group g, which minimize empirical risk

and change to each agent’s outcome, while achieving γ-popularity and β-fairness. This is

done at training time. Then at prediction time, we take all agents in group g with scores

in bin ℓ and run a lottery, where each agent is classified as 1 with probability p
(g)
ℓ , and 0

otherwise. Since k-QLS is applied on the training dataset, it also allows us to use fairness

metrics that depend on labels Y ; for this reason k-QLS is not used in allocation, where Y is

typically unknown.

k-QLS is motivated by works such as [42, 96, 54, 21, 78] which aim to postprocess a con-

ventional model to achieve β-fairness by running an “inclusion/exclusion” lottery on groups

of agents. However, k-QLS differs from these approaches: shifting all outcomes of a group,

even in a randomized manner, is too granular to achieve γ-popularity, and thus we shift

outcomes within k quantiles.

Remark 8.5.1. Achieving γ-popularity and β-fairness may be infeasible in general. How-

ever, for common efficacy metrics (e.g., PR, FPR, and TPR), doing so is always possible.

Both DOS and k-QLS have a feasible solution for any level of γ-popularity and β-fairness,

for both randomized and deterministic models.

8.6 Postprocessing for Popularity and Fairness

When the conventional model fC , and β-fair model fF are deterministic, the optimization

problems defined for both the DOS approach and the k-QLS approach can be efficiently

solved for any U defined by an additive efficacy metric M. In both cases, since model deci-

sions are binary, post processing amounts to finding some set of agents negatively classified by

fC , which minimally impact loss while not violating fairness, when positively classified. We

first investigate this in the case of DOS and then later in case of k-QLS; both postprocessing

paradigms can be solved in polynomial time.

8.6.1 DOS for Deterministic Models

Recall that DOS post processing, given conventional model fC , β-fair model fF and popula-

tion (X , G), aims to select a vector p ∈ {−1, 0, 1}n such that the classifier fP (xi) = fF (xi)+pi
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is both γ-popular and β-fair, while minimizing ∥p∥q. For deterministic DOS we study q = 1

as each 0 ≤ q < ∞ are equivalent, namely in that each yields the Hamming distance between

fP and fF , and q = ∞ is simply an indicator of fP ̸= fF . For deterministic classifiers DOS

can be formulated as

min
p∈{−1,0,1}n

∥p∥q (8.1)

s.t. U
(
fF + p, D

)
≤ β (8.2)

1

n

n∑
i=1

I
[
fC(xi) ≤ fF (xi) + pi

]
≥ γ (8.3)

0 ≤ fF (xi) + pi ≤ 1 (8.4)

Objective 8.1 can be solved by Algorithm 1.

Since decisions are binary, DOS is effectively selecting some minimum number of decisions

from fF (X ) to flip. In the deterministic case, DOS postprocessing is not technically difficult,

but is illustrative of some key ideas used in other, more complex, cases. Specifically, the

selection of which agents to flip decisions for is made straightforward by two observations.

First, popularity increases only when flipping the decisions of agents with fF (x) = 0 and

fC(x) = 1. Second, agents within a group are exchangeable with respect to fairness in the

sense that for i, j ∈ Gg, either setting of fP (xi) = 1 − fP (xj) results in identical fairness

since U is derived from an additive metric. Combining these observations implies that no

optimal solution can have pi = 1 and pj = −1 for i, j ∈ Gg. Moreover, an optimal solution

will only choose to flip agents to negative classification, i.e. pi = −1, if doing so is required

to rebalance fairness. Thus, with respect to flipping decisions, agents are equivalent up to

group membership, I[fF (x) < fC(x)], and I[fF (x) = 1]; implying DOS reduces to deciding

whether to increase or decrease positive classifications on each Gg.

Using these facts, it is straightforward to alternate between groups and either positively

classify an agent from S1 = {i : fF (xi) < fC(xi)}, or negatively classify an agent from

S2 = {i : fF (xi) = 1}. When positively classifying two agents from different groups has

a cancellation-like affect on unfairness (e.g. PR), DOS will never negatively classify an agent

with fF (x) = 1. In such cases fP is a Pareto-impairment from fF with respect to agent

preference.
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Algorithm 1 (Deterministic DOS) Postprocessing technique, applied directly at predic-
tion time, for converting a deterministic β-fair model fF into γ-popular β-fair model fP .

inputpopulation: (X , G), β-fair model: fF , conventional model: fC , popularity: γ re-
sult:Weight vector p ∈ {0, 1}n s.t. fP = fF + p is γ-popular and β-fair

1: p := 0
2: /* positively classifying agents from different groups has a cancelling effect with respect to unfairness */

3: if sign(c
(1)
1 − c

(1)
0 ) = sign(c

(0)
0 − c

(0)
0 ) then

4: Sg := {i ∈ Gg : fF (xi) < fC(xi)}
5: a := # of agents that prefer fF
6: /* less than γn agent prefer fF or unfairness is violated */

7: while a < γn or U
(
fF (X ) + p, G

)
> β do

8: i0, i1 := S0[0], S1[0]
9: /* positively classify the agents resulting in the lowest increase to unfairness */

10: g := I
[
setting p[i0] := 1 increases unfairness less than p[i1] := 1

]
11: p[ig] := 1
12: Sg.delete(ig)
13: a += 1
14: end while
15: return p
16: /* positively classifying agents from different groups has a monotonic effect on unfairness */

17: else if sign(c
(1)
1 − c

(1)
0 ) = −sign(c

(0)
1 − c

(0)
0 ) then

18: for g′ ∈ {0, 1} do
19: Sg′ := {i ∈ Gg : fF (xi) < fC(xi)}/* all agents from group Gg′ who prefer fC */

20: /* all agents in G(1−g′) positively classified under fF , sorted by fC */

21: A(1−g′) := {i ∈ G(1−g′) : fF (xi) == 1} s.t. fC(xi) > fC(xi+1)
22: a := # of agents preferring fF
23: /* less than γn agents prefer fF or unfairness is violated */

24: while a < γn or U
(
fF (X ) + p, G

)
> β do

25: /* if unfairness is violated, attempt to fix it */

26: if U (fF (X ) + p, G) > β then
27: i, j = Sg′ [0], A(1−g′)[0]
28: if p(g′)[i] := 1 decreases unfairness then p(g′)[i] := 1 else p(1−g′)[j] := −1;
29: else
30: p(g′)[i] := 1 /* if unfairness is not violated, increase the positive rate on Gg′ */

31: end if
32: update a, (+1 or -1)
33: end while
34: end for
35: end ifreturn p
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Theorem 8.6.1. Let fC and fF be a conventional and β-fair classifier respectively, both

of which are deterministic. Let U be derived from an additive efficacy metric M which is

independent of Y (e.g., PR). Then DOS, given by Program 8.1, returns a γ-popular β-fair

model fP and can be solved by Algorithm 1 in time Θ(n).

Proof. Let m = ⌈γn⌉, i.e., m is the number of popularity constraints that must be satisfied.

Each such constraint involves a single variable pi ∈ {−1, 0, 1} and thus is independent from

any other popularity constraint. Moreover since unfairness U is additive, it can be expressed

as

U
(
fF (X ) + p, G

)
=
∣∣M(

fF (X ) + p : g = 1
)
−M

(
fF (X ) + p : g = 0)

∣∣
=
∣∣∑
i∈G1

c
(1)
1

(
fF (xi) + pi

)
+ c

(1)
0

(
1−

(
fF (xi) + pi

))
−
∑
j∈G0

c
(0)
1

(
fF (xj) + pj

)
+ c

(0)
0

(
1−

(
fF (xj) + pj

))∣∣
=

∣∣∣∣(∑
i∈G1

(c
(1)
1 − c

(1)
0 )pi −

∑
j∈G0

(c
(0)
1 − c

(0)
0 )pj

)
+

(∑
i∈G1

c
(1)
1 fF (xi) + c

(1)
0

(
1− f(xi)

)
−
∑
j∈G0

c
(0)
1 fF (xj)− c

(0)
0

(
1− fF (xj)

))∣∣∣∣
for scalars c

(g)
1 , c

(g)
0 which give the respective cost of positively or negatively classifying an

agent from group Gg. Note that

u :=
∑
i∈G1

c
(1)
1 fF (xi) + c

(1)
0

(
1− f(xi)

)
−
∑
j∈G0

c
(0)
1 fF (xj)− c

(0)
0

(
1− fF (xj)

)
is constant for fixed fF and (X , Y,G). Then the fairness constraint can be expressed as

U
(
fF (X ) + p, G

)
≤ β

⇐⇒ −β − u ≤
∑
i∈G1

(c
(1)
1 − c

(1)
0 )pi −

∑
j∈G0

(c
(0)
1 − c

(0)
0 )pj ≤ β − u (8.5)

Due to the additive nature of this fairness term, each member of group g is exchangeable,

meaning that for any two agents i1, i2 ∈ Gg, fairness is invariant under any alteration to

pi1 , pi2 which preserves the value of pi1 + pi2 . More specifically, for any i1, i2 ∈ Gg and any

feasible solution p with pi1 = −1 and pi2 = 1, let p′ be defined by p′k = pk for all k ̸= i1, i2
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and p′i1 = p′i2 = 0. Then p′ is both a feasible solution and has ∥p′∥ ≤ ∥p∥. The latter part of
which is straightforward; to see the former we need only consider the popularity constraints

since fairness is satisfied by the feasibility of p and pi1 +pi2 = p′i1 +p′i2 = 0. Although it may

be the case that fC(xi) > fF (xi) + p′i = fF (xi) + pi − 1, i.e., agent i no longer prefers fF , it

must be the case that fC(xj) ≤ 1 ≤ fF (xi) + pj + 1 = fF (xi) + p′j, i.e., agent j prefers fF .

Since agents from the same group are exchangeable and no optimal solution has both pi1 =

−1 and pi2 = 1 for i1, i2 ∈ Gg, the optimal score shift p can be found by alternating between

groups and greedily assigning either pi = 1 or pi = −1, as outlined by Algorithm 1. To see

the optimality of this greedy selection procedure, let

U(fF (X ) + p, G) = M(fF (X ) + p : g = 1)−M(fF (X ) + p : g = 1),

i.e. the function U is equivalent to U without absolute value. With respect to greedy

selection, only two cases need be considered: 1.) sign(c
(1)
1 − c

(1)
0 ) = sign(c

(0)
1 − c

(0)
0 ) and 2.)

sign(c
(1)
1 − c

(1)
0 ) = −sign(c

(0)
1 − c

(0)
0 ).

In case (1) if choosing to positively classify an agent from group G1 increases (decreases)

the value of U(fF (X ) + p, G) then positively classifying an agent from group G0 decreases

(increases) the value of U(fF (X ) + p, G). Thus if increasing the number of positive classifi-

cations on G0, or on G1, violates unfairness, the only way to resatisfy fairness is to increase

the number of positive classifications on the other group. In case (2) if choosing to posi-

tively classify an agent from group G1 increases (decreases) the value of U(fF (X ) + p, G)

then positively classifying an agent from group G0 also increases (decreases) the value of

U(fF (X ) + p, G). Thus if increasing the number of positive classifications on G0, or on G1,

violates unfairness, the only way to resatisfy fairness is to decrease the number of positive

classifications on the other group.

The selection process examines at most n agents, and each decision on an agent takes constant

time. Thus DOS can be solved in time Θ(n) for deterministic classifiers.

8.6.2 k-QLS for Deterministic Classification

Recall that k-QLS is a postprocessing technique which, given a conventional model fC , a β-

fair model fF , and a training set D = (X , Y,G), postprocesses the predictions of fF such that
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they are γ-popular and β-fair. This is achieved by running a lottery on k quantiles defined

by the scores of fF , namely hF (X ), the resulting model after postprocessing is refereed to as

fP . Specifically, the scores hF (X ) are partitioned into k intervals in the following manner:

let ρℓ be the maximum score associated with quantile ℓ of hF (X ), and let Iℓ = [ρℓ−1, ρℓ] with

the understanding that ρ−1 = 0 and ρk = 1. The resulting classifier fP makes predictions

fP (x) = p
(g′)
ℓ for hF (x) ∈ Iℓ with g = g′. In the case of deterministic models, p

(g′)
ℓ ∈ {0, 1}.

The optimal β-fair γ-popular model can be found by solving:

min
p(0),p(1)∈{0,1}2k

L
(
fP , D

)
+ λ∥fP (X )− fF (X )∥qq (8.6)

s.t. U
(
fP , D

)
≤ β (8.7)

1

n

n∑
i=1

I
[
fC(xi) ≤ fP (xi, gi)

]
≥ γ (8.8)

where L is balanced accuracy. Unlike DOS, k-QLS does not admit a straightforward solu-

tion, but is still polynomial time solvable. The key difference between these two techniques

is that k-QLS makes decisions over sets of agents, rather than individual agents, and each

interval may contain any number of agents with any combination of true labels and predicted

outcomes under both fC and fF . Thus much of the symmetry from the DOS case is lost,

however enough symmetry remains that a dynamic programming solution can produce the

optimal fP in polynomial time.

Theorem 8.6.2. Let fC and fF be a conventional and β-fair classifier respectively, both of

which are deterministic. Let U be derived from an additive efficacy metric M (e.g. FPR).

Then k-QLS, given by Program 8.6, returns a γ-popular and β-fair model fP time Θ
(
γkn6

)
via dynamic programming. Moreover, when M is given by FPR, TPR, PR, or ERR, fP can

be found in time Θ
(
γkn4

)
.

Before proving this theorem we first mention that while k-QLS admits a polynomial time

solution, k-QLS can also be transformed into a MILP and solvers such as CPLEX may be

more efficient in practice since k, the number of variables, will typically be constant (e.g.,

breaking scores into 10 intervals) and the program contains only two constraints (one for

popularity and one for fairness).

Proof of Theorem 8.6.2. When post processing with k-QLS the model designer creates k

intervals based on the quantiles of hF (x) and aims to shift the scores of agents in each

105



Algorithm 2 (Deterministic k-QLS) Postprocessing technique, learned at training time
and later applied at prediction time, for converting a deterministic β-fair model fF into
γ-popular β-fair model fP .

input: population: (X , G), β-fair model: fF , score function of fF : hF , conventional
model: fC , popularity: γ, quantiles k result: Weight p ∈ {0, 1}2k of the γ-popular β-fair
fP

1: ρℓ := maximum score in quantile ℓ of hF (X ) ∀ℓ ∈ [k] /* partition scores hF (X ) in k intervals

based on quantile */

2: Iℓ = [ρℓ−1, ρℓ] ∀ℓ ∈ [k]
3: p(0),p(1) := 0
4: /* parameters indicating the effects of setting p

(g)
ℓ := 1 */

5: N
(g)
ℓ := # of agents in Gg with hf (x) ∈ Iℓ and fC(x) = 1

6: C
(g)
ℓ := increase to unfairness (without absolute value)

7: L
(g)
ℓ := increase to loss

8: /* partition each group and interval according according to effect on fairness */

9: S+ := {(g, ℓ) : 0 ≤ C
(g)
ℓ }

10: S− := {(g, ℓ) : C(g)
ℓ < 0}

11: /* loss independent on each Iℓ, and thus on S+ and S− */

12: build a knapsack-like problem over each S using weights C
(g)
ℓ , N

(g)
ℓ , and values L

(g)
ℓ

13: /* p
(g)
ℓ corresponds to selecting item (g, ℓ) polynomial number of possibilities for each */

14: m+,m− := all possible # of agents preferring fF corresponding to solution from S+, S−

15: u+,u− := all possible values of unfairness corresponding to solution from S+, S−
16: for each m− ∈ m− and each u− ∈ u− do
17: dynamically compute optimal solution from S− using exactly m− agents and u− un-

fairness
18: for each m+ ∈ m+ and u+ ∈ u+ do
19: dynamically compute optimal solution from S+ using exactly m+ agents and u+

unfairness.
20: if solution from S− and S+ is feasible then
21: save the combined solution
22: end if
23: end for
24: end forreturn p corresponding to solution with the lowest loss
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interval such that γ-popularity and β-fairness are achieved. Let ρℓ be the maximum score

associated with quantile ℓ of hF (X ), and let Iℓ = [ρℓ−1, ρℓ] with the understanding that

ρ−1 = 0.

Thus k-QLS aims to find binary vectors p(g) ∈ {0, 1}k for each group Gg, such that the

model fP (x) = p
(g)
ℓ for hF (x) ∈ Iℓ, in group g is γ-popular and β-fair. Since unfairness U

is given in terms of an additive efficacy metric M, the unfairness of fP over population

D = (X , Y,G) can be expressed as

U
(
fP , D

)
=
∣∣M(

fP (X , g), Y : g = 1
)
−M

(
fP (X , g), Y : g = 0

)∣∣
=

∣∣∣∣ k∑
ℓ=1

∑
y∈{0,1}

( ∑
i∈G1

hF (xi)∈Iℓ

c
(1)
y,1p

(1)
ℓ

(
1− |y − yi|

)
+ c

(1)
y,0

(
1− p

(1)
ℓ

)(
1− |y − yi|

)

−
∑
j∈G0

hF (xi)∈Iℓ

c
(0)
y,1p

(0)
ℓ

(
1− |y − yi|

)
+ c

(0)
y,0

(
1− p

(0)
ℓ

)(
1− |y − yi|

))∣∣∣∣

=

∣∣∣∣ k∑
ℓ=1

(
p
(1)
ℓ

∑
y∈{0,1}

(c
(1)
y,1 − c

(1)
y,0)

∑
i∈G1

hF (xi)∈Iℓ

(
1− |y − yi|

)
− p

(0)
ℓ

∑
y∈{0,1}

(c
(0)
y,1 − c

(0)
y,0)

∑
i∈G0

hF (xi)∈Iℓ

(
1− |y − yi|

)

+
∑

y∈{0,1}

∑
i∈G1:

hF (xi)∈Iℓ

c
(1)
y,0

(
1− |y − yi|

)
−
∑

y∈{0,1}

∑
i∈G0:

hF (xi)∈Iℓ

c
(0)
y,0

(
1− |y − yi|

))∣∣∣∣

for scalar costs c
(g)
y,1, c

(g)
y,0. Note that

u :=
k∑

ℓ=1

∑
y∈{0,1}

∑
i∈G1:

hF (xi)∈Iℓ

c
(1)
y,0

(
1− |y − yi|

)
−
∑

y∈{0,1}

∑
i∈G0:

hF (xi)∈Iℓ

c
(0)
y,0

(
1− |y − yi|

)

and each

C
(g)
ℓ := (1− 2g)

∑
y∈{0,1}

(c
(g)
y,1 − c

(g)
y,0)

∑
i∈Gg

hF (xi)∈Iℓ

(
1− |y − yi|

)
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are constants. Thus the fairness constraint on fP can be expressed as

U
(
fP , D) ≤ β

⇐⇒ −β − u ≤
k∑

ℓ=1

(
2(1)− 1

)
p
(1)
ℓ C

(1)
ℓ −

(
2(0)− 1

)
p
(0)
ℓ C

(0)
ℓ ≤ β − u (8.9)

⇐⇒ −β − u ≤
k∑

ℓ=1

p
(1)
ℓ C

(1)
ℓ + p

(0)
ℓ C

(0)
ℓ ≤ β − u (8.10)

Thus, unfairness of fP is given by a linear constraint on the vectors p(1) and p(0).

Similar to the unfairness term, the optimization objective

L(fP ,X , Y,G) + λ∥fF (X )− fP (X )∥qq

=
k∑
ℓ

∑
g∈{0,1}

( ∑
i∈Gg

hF (xi)∈Iℓ

(1− yi)p
(g)
ℓ + yi(1− p

(g)
ℓ )

)
+
∑

g∈{0,1}

∑
i∈Gg

hF (xi)∈Iℓ

λ
∣∣fF (xi)− p

(g)
ℓ

∣∣q

can, by shifting and rescaling, be equivalently expressed as

k∑
ℓ

∑
g∈{0,1}

p
(g)
ℓ

( ∑
i∈Gg

hF (xi)∈Iℓ

(1− yi − λfF (xi))

)
(8.11)

due to the fact that fF , y, and p are binary; each term

L
(g)
ℓ :=

∑
i∈Gg

hF (xi)∈Iℓ

(1− yi − λfF (xi))

is constant. Lastly, let

N
(g)
ℓ =

∣∣{i ∈ Gg : fC(xi) = 0 and hF (xi) ∈ Iℓ
}∣∣
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Thus the optimization of k-QLS can be is equivalently formulated as,

min
p(0),p(1)∈{0,1}k

k∑
ℓ=1

∑
g∈{0,1}

p
(g)
ℓ L

(g)
ℓ (8.12)

s.t. − β − u ≤
k∑

ℓ=1

p
(1)
ℓ C

(1)
ℓ + p

(0)
ℓ C

(0)
ℓ ≤ β − u (8.13)

k∑
ℓ=1

∑
g∈{0,1}

p
(g)
ℓ N

(g)
ℓ ≤

⌊
(1− γ)

(
1− PR(fC)

)
n
⌋

(8.14)

The popularity term
∑k

ℓ=1

∑
g∈{0,1} p

(g)
ℓ N

(g)
ℓ can take on at most ⌈n(1−PR(fC))⌉ different val-

ues. In the fairness constraint, each term
∑k

ℓ=1 p
(g)
ℓ C

(g)
ℓ can take on at most 1/2|Gg|

(
|Gg|+ 1

)
unique values since each can be written as

k∑
ℓ=1

p
(g)
ℓ C

(g)
ℓ =

∑
y∈{0,1}

ay(c
(g)
y,1 − c

(g)
y,0) for some a0, a1 ∈ N with a0 + a1 ≤ |Gg|

Next we create two index sets which keep track of which groups g and intervals ℓ have positive

and negative coefficients C
(g)
ℓ . Let S+ = {(g, ℓ) : C

(g)
ℓ ≥ 0} and S− = {(g, ℓ) : C

(g)
ℓ ≥ 1}.

Thus S+ and S− indicate whether p
(g)
ℓ will increase or decrease the value of Equation 8.13.

Specifically, suppose that for each (g, ℓ) ∈ S−, r
(g)
ℓ is a solution. Let R =

∑
(g,ℓ)∈S−

rℓ(g)p
(g)
ℓ ,

and θ =
⌊
(1− γ)

(
1− PR(fC)

)
n
⌋
−
∑

(g,ℓ)∈S−
r
(g)
ℓ N

(g)
ℓ . Then the problem reduces to solving

min
∑

g,ℓ∈S+

p
(g)
ℓ L

(g)
ℓ

s.t. − β − u−R ≤
∑

g,ℓ∈S+

p
(g)
ℓ C

(g)
ℓ ≤ β − u−R

∑
g,ℓ

p
(g)
ℓ N

(g)
ℓ ≤ θ

which yields a knapsack problem with two constraints, with weights C
(g)
ℓ and N

(g)
ℓ . Since

there are at most k decision variables,
∑

g,ℓ p
(g)
ℓ N

(g)
ℓ can take on at most γn unique feasible

values, and
∑

g,ℓ∈S+
p
(g)
ℓ C

(g)
ℓ can take on at most n2 unique values. This problem is therefore

solvable in Θ(kγn3) time. Moreover, since any solution set generated from S− can produce

at most n2 values of R and n values of θ, any configuration of variables from S− produce γn3

unique subproblems, each of which can be solved in time Θ(kγn3). Thus, Algorithm 2 solves
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k-QLS in time Θ
(
γkn6

)
for general additive metrics. Moreover for PR, TPR, FPR, and

ER, each
∑

g,ℓ∈S+
p
(g)
ℓ C

(g)
ℓ can take on at most n unique values (rather than n2), implying

there are only n2 unique subproblems, each requiring Θ(kγn2) time to solve, thus k-QLS is

solvable in time Θ
(
γkn4

)
.

8.6.3 DOS for Randomized Models

Next we investigate popularity as it relates to randomized classifiers. Recall that in the

case of randomized classifiers DOS aims to minimally shift the expected outcomes of fF on

a population (X , G), with unknown true labels Y , to produce the γ-popular β-fair model,

which we denote by fP , where E
[
fP (xi)

]
= E

[
fF (xi)

]
+ pi, and 0 ≤ E

[
fP (xi)

]
≤ 1. Thus,

DOS aims to solve the following optimization problem:

min
p∈[−1,1]n

∥p∥q (8.15)

s.t. U
(
E
[
fF (X )

]
+ p, G

)
≤ β (8.16)

1

n

n∑
i=1

I
[
E
[
fC(xi)

]
≤ E

[
fF (xi)

]
+ pi

]
≥ γ (8.17)

for q ∈ {1, 2,∞}. A key challenge is that the popularity constraint (8.17) is discrete and non-

convex, amounting to a combinatorial problem of identifying a subset of γ|X | individuals
who prefer the fP to its conventional counterpart fC . Nevertheless, this problem can be

solved in polynomial time.

Theorem 8.6.3. Let fC and fF be respectively a conventional and β-fair randomized clas-

sifier. Let U be derived from an additive efficacy metric M which is independent of Y

(e.g., PR). Then for q ∈ {1, 2,∞} Program 8.15 can be solved in time Θ(γnT ) (where Θ(T )

is the time required to solve a linear program or semi-definite program, as appropriate) by

Algorithm 3, which returns a γ-popular, β-fair model fP .

Proof. To prove this claim, we make use of the fact that fairness is given by an additive

metric. That is, fairness (or rather unfairness) is linear with respect to perturbations in

agents’ scores. Moreover any two agents with the same group and label, are exchangeable,

i.e., swapping the scores of the two agents has no effect on fairness. Using this as our key

intuition prove this theorem in two parts; first, that Algorithm 3 produces an optimal solution
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assuming that each Program Pi in this algorithm can be solved optimally, and second, that

Algorithm 4 does in fact provide an optimal solution to Pi.

(Optimality of Algorithm 3): Recall that E
[
fF (x)

]
= hF (x) and E

[
fC(x)

]
= hC(x), i.e.,

the expected outcome of each classifier is given by is respective score function. For notational

convince we use we use hF and hC throughout this proof. Program 8.15 is non-convex with

respect to p due to the constraint that γ-fraction of the population needs to prefer fF over

fC , namely that m = γn of the constraints

hC(xi) ≤ hF (xi) + pi

need to be satisfied. However, note that if instead of needing to satisfy any m constraints,

we needed to satisfy a specific set of m constraints, say

S =
{
hC(xi1) ≤ hF (xi1) + pi1 , . . . , hC(xim) ≤ hF (xim) + pim

}
,

then the resulting program would be trivial to solve as it amounts to ℓq-norm minimization

subject to linear constraints. Thus, if the optimal set of popularity constraints can be found

efficiently, the problem is polynomial time solvable.

Algorithm 3 (Randomized DOS) Postprocessing technique for converting a β-fair model
fF into a γ-popular β-fair model fP .

Input: population: (X , Y,G), β-fair model: fF , conventional model: fC , popularity: γ
Result: weights p s.t. fP = fF +p is γ-popular and β-fair

1: Gg :=
{
i : gi = g

}
2: /* each group is sorted by their loss in utility when switching to fF */

3: Sort each Gg s.t. E
[
fC(xi)

]
− E

[
fF (xi)

]
≤ E

[
fC(xi+1)

]
− E

[
fF (xi+1)

]
4: m := ⌈γn⌉
5: for i = 1 to m do
6: /* m popularity constraints from each group */

7: Si =
{
E
[
fC(xj)

]
≤ E

[
fF (xj)

]
+ pj : j ∈ G1[: i]

}
∪
{
E
[
fC(xj)

]
≤ E

[
fF (xj)

]
+ pj : j ∈ G0[: m− i]

}
8: /* add popularity constraints Si for the m “easiest” agents between groups */

9: Pi = Program 8.15 with Constraint 8.17 replaced by Si;
10: solve the program via Algorithm 4 or off-the-shelf solvers;
11: pi = solution to the modified program
12: end for

return p∗ = argmini ∥pi∥
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Algorithm 4 Algorithm to solve programs associated with DOS in the randomized classi-
fication setting, when given S, a specific set of γn that must prefer fP to fC .

input:population: (X , Y,G), β-fair model: fF , conventional model: fC , γn : S
result:Weight vector p s.t. fP = fF + p

1: p = 0
2: m := γn
3: δ := hF (X ) /* lower bound on perturbation to agents’ scores */

4: /* min score increase and pi for i to prefer fP */

5: (pi, δi) := max
(
0, hC(xi)− hF (xi)

)
, hC(xi)− hF (xi);

6: /* check “direction” in which fairness is violated */

7: if
∣∣M(

fF (X ) + p, Y ; g = 1
)
−M

(
fF (X ) + p, Y ; g = 0

)
< −β then

8: /* sg=1 (sg=-1) indicates increasing (decreasing) scores on Gg */

9: sg := sign
(
(1− 2g)(c

(g)
1 − c

(g)
0 )
)
for g ∈ {0, 1}

10: else if
∣∣M(

fF (X ) + p, Y ; g = 1
)
−M

(
fF (X ) + p, Y ; g = 0

)
> β then

11: sg := sign
(
(1− 2g)(c

(g)
0 − c

(g)
1 )
)
for g ∈ {0, 1}

12: end if
13: while U

(
fF + p,D

)
> β do

14: /* agents from each group whose scores can still be perturbed */

15: if sg = 1 then
16: Gg := {i ∈ Gg : hF (xi) + pi < 1}
17: /* maximum additional perturbation to Gg which is feasible */

18: εg := min
({

1− hF (xi) : i ∈ Gg

}
∪
{β−U

(
fF+p,D

)
(c

(g)
1 −c

(g)
0 )|Gg |

})
19: else
20: Gg := {i ∈ Gg : δi < hF (xi) + pi}

21: εg := min
({

δi : i ∈ Gg

}
∪
{β−U

(
fF+p,D

)
(c

(g)
0 −c

(g)
1 )|Gg |

})
22: end if
23: /* check if increasing scores by ε0, ε1 would fix fairness */

24: p′ := p
25: p′[Gg]+ = εg for g ∈ {0, 1}
26: if U

(
fF + p′,D

)
< β then

27: /* in the case that fairness is achieved, εg may be too large */

28: decrease εg s.t. U
(
fF + p′,D

)
= β and

∑
i∈G0

∣∣pi + ε0|q =
∑

i∈G1

∣∣pi + ε1|q
29: return p′

30: end if
31: pg := p[Gg] + εg for g ∈ {0, 1}
32: /* ratio of “fairness repair” to increase in loss */

33: g∗ := argming∈{0,1}
( εg |Gg |sg(c(g)1 −c

(g)
0 )

∥pg∥q−∥p∥q

)
/* where a

0 := ∞ for a ̸= 0 and 0
0 := 0 */

34: p := pg∗

35: end while
36: return p
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To find this set of constraints, we make use of the fact that the metric M defining U is

additive, specifically the fact that U can be expressed in terms of scalars c
(g)
1 , c

(g)
0 ∈ [0, 1]

which give the respective cost of positively or negatively classifying an agent from group Gg.

That is, given a perturbation p ∈ [−1, 1]n and fair model fF , unfairness can be written as,

U
(
hF (X ) + p, G

)
=
∣∣M(

hF (X ) + p : g = 1
)
−M

(
hF (X ) + p : g = 0)

∣∣
=

∣∣∣∣∑
i∈G1

c
(1)
1

(
hF (xi) + pi

)
+ c

(1)
0

(
1−

(
hF (xi) + pi

))
−
∑
j∈G0

c
(0)
1

(
hF (xj) + pj

)
+ c

(0)
0

(
1−

(
hF (xj) + pj

))∣∣∣∣
=

∣∣∣∣(∑
i∈G1

(c
(1)
1 − c

(1)
0 )pi −

∑
j∈G0

(c
(0)
1 − c

(0)
0 )pj

)
+

(∑
i∈G1

c
(1)
1 hF (xi) + c

(1)
0

(
1− hF (xi)

)
−
∑
j∈G0

c
(0)
1 hF (xj)− c

(0)
0

(
1− hF (xj)

))∣∣∣∣
Since c

(g)
0 , c

(g)
1 , and hF (X ) are constant

u :=
∑
i∈G1

c
(1)
1 hF (xi) + c

(1)
0

(
1− hF (xi)

)
−
∑
j∈G0

c
(0)
1 hF (xj)− c

(0)
0

(
1− hF (xj)

)
is also constant. Thus the fairness constraint can be expressed as

U
(
hF (X ) + p, G

)
≤ β

⇐⇒ −β − u ≤
∑
i∈G1

(c
(1)
1 − c

(1)
0 )pi −

∑
j∈G0

(c
(0)
1 − c

(0)
0 )pj ≤ β − u. (8.18)

This formulation of unfairness is similar to the case of deterministic DOS with the key

difference being the domain of the optimization variables p. From this inequality, we see

that for any two agents i1, i2 from the same group, increasing or decreasing the score of

i1 has the same effect on unfairness as equivalently increasing or decreasing the score of

i2. More specifically, let i1, i2 ∈ Gg, then for any potential solution p, let p′ be any other

potential solution with p′j = p′j if j ̸= i1, i2, and pi1 + pi2 = p′i1 + p′i2 . Both p and p′ have

equivalent fairness. This observation can be used to order both groups in terms of increase

in pi required for agent i to prefer fP over fC .
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To induce this ordering, consider any two agents i1, i2 ∈ Gg with

hC(xi1)− hF (xi1) ≤ hC(xi2)− hF (xi2),

that is, i1 requires at least as large a score shift as i2 to prefer fF over fC . Let S1 be any

set of m popularity constraints which include hC(xi1) ≤ hF (xi1) + pi1 , but not hC(xi2) ≤
hF (xi2) + pi2 , and let

S2 =

(
S1 \ {hC(xi1) ≤ hF (xi1) + pi1}

)
∪ {hC(xi2) ≤ hF (xi2) + pi2}.

Let p1 and p2 be the solutions corresponding to Program 8.15 with constraint set S1 and

S2 respectively. Then ∥p2∥q ≤ ∥p1∥q. That is, choosing to enforce that i2 prefers fF over

fC is at least as good as choosing to enforce the preference of i1 for fF over fC . To see

this, consider the the scores of agents i1 and i2 under solution p1, i.e. fF (xi1) + p1,i1 and

fF (xi2) + p1,i2 . Suppose that scores p1,i1 and p1,i2 are permuted creating p′
1, i.e. p

′
1,i1

= p1,i2

and p′1,i2 = p1,i1 . Then p1 and p′
1, have equal unfairness. Moreover, by the construction of

S1 and S2 it must be the case that

p1,i1 ≥ fC(xi1)− fF (xi1) ≥ fC(xi2)− fF (xi2),

implying that p′
1 constitutes to a feasible solution to the program corresponding to popularity

constraints S2, i.e. ∥p′
1∥q ≥ ∥p2∥q. Since permuting elements of p1 does not affect the value

of any ℓq-norm, it must be the case that ∥p1∥q = ∥p′
1∥q ≥ ∥p2∥q. Thus if groups are ordered

such that for i ∈ Gg we have

hC(xi)− hF (xi) < hC(xi+1)− hF (xi+1)

, and then one need only consider adding the constraint hC(xi+1) ≤ hF (xi+1) + pi+1 if the

constraint hC(xi) ≤ hF (xi) + pi has already been selected.

Suppose G1 and G0 are ordered in such a manner. Then, to decide which constraints to

include, it suffices to determine the intergroup decisions since the intragroup decisions are

then determined by the agent order. Since there are at most m = γn unique sets of con-

straints which preserve orderings within groups, and each set of constraints corresponds to

a polynomial time solvable program, Program 8.15 is solvable in time Θ(γnT ) where Θ(T )
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is the time required to solve a single program (either a linear program or a semidefinite pro-

gram). Moreover, each corresponding program (namely Program 8.15 with Constraint 8.17

replaced by S) can be solved by Algorithm 4. At high level this algorithm takes the agents

in S (i.e., the set of agents which should prefer fP ) and sets each pi to the minimum value,

in terms of magnitude, such that i ∈ S prefers fP . If fairness is not violated by this change

to pi is optimal. In the case when fairness is violated, the algorithm iteratively increases (or

decreases) elements of p such that unfairness is strictly decreasing while minimally increasing

∥p∥q.

To see the optimality and running time of Algorithm 4, consider the first step, namely

pi = min
(
0, hC(xi)− hF (xi)

)
for all i ∈ S. This setting of p causes all agents in S to prefer

fP and is clearly the minimum perturbation to do so. Therefore, if fairness is not violated,

then p is optimal, and the running time is Θ(γn).

In the case that fairness is violated, the scores on groups G0 and G1 need to be further

altered. In particular, let

U(fp,X , G) = M(fP (X ); g = 1)−M(fP (X ); g = 0)

i.e., U is U without absolute value. The rate of change in U with respect to increasing pi is

given by c
(gi)
1 − c

(gi)
0 for each i ∈ [n]. Therefore, if U(fp,X , G) < −β, unfairness can only be

fixed by increasing scores on each group Gg with c
(g)
1 −c

(g)
0 > 0 and decreasing scores on each

group GG with c
(g)
1 − c

(g)
0 < 0. On the other hand, if U(fp,X , G) > β, then unfairness can

only be fixed by increasing scores on each group Gg with c
(g)
1 − c

(g)
0 < 0 and decreasing scores

on each group GG with c
(g)
1 − c

(g)
0 > 0. When increasing scores on Gg the only constraint is

that hF (xi)+pi ≤ 1 for all i ∈ [n], but when decreasing scores the constraint 0 ≤ hF (xi)+pi

for all i ∈ [n] needs to be considered as well as hC(xj) ≤ hF (xj) + pj for all j ∈ S.

With respect to fairness agents from the same group are exchangeable in the sense that

increasing (or decreasing) the score of any agent in Gg has the same effect on unfairness

as increasing (or decreasing) the score of any other agent in Gg. Specifically, for i, j ∈ Gg

unfairness is invariant to any change in pi, pj which preservers pi + pj. Therefore, ignoring

popularity, no optimal solution will set pi < 0 and pj > 0. Moreover, when pi + pj must

be preserved, the terms |pi| + |pj|, p2i + p2j and max
(
|pi|, |pj|

)
are all minimized when pi =

pj =
pi+pj

2
. Therefore for q ∈ {1, 2,∞}, if one where to increase |pi|, say by value ε, then
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pi + sign(pi)ε is no better than pj +
sign(pi)ε
|Ggi |

for each j ∈ Ggi . That is, ignoring popularity, it

is optimal to uniformly distribute the weight of p over each group.

When considering both popularity constraints, as well as the need for perturbations to

constitute valid probabilities, it then optimal to uniformly increase the weight on all agents

i ∈ Gg such that neither of these constraints is violated. This value is given as εg at each

iteration. Let p be the solution produced by Algorithm 4 and let p∗ be any optimal solution.

Since both are solutions hF (X ) + p and hF (X ) + p∗ are both β-fair, and for each j ∈ S

hF (xj) + pj ≥ hC(xj) and hF (xj) + p∗j ≥ hC(xj). If ∥p∥q ≤ ∥p∗∥q, then p is also an optimal

solution. Assume, by way of contradiction, that ∥p∥q > ∥p∗∥q, and consider two cases:

1.) U (hF (X ) + p∗, G) < β and 2.) U (hF (X ) + p∗, G) = β.

In case (1), if q = 1, 2 then i /∈ S implies p∗i = 0, and if q = ∞ then i /∈ S implies

|p∗i | ≤ maxj∈S
(
|p∗j |
)
. To see this, let q = 1, 2 and j /∈ S. Suppose that |p∗i | > 0 and

u = β − U (hF (X ) + p∗, G). Then |p∗i | can be decreased by at least u

|c(gi)1 −c
(gi)
0 |

without

violating fairness. Doing so results in a strict decrease to ∥p∗∥q. When q = ∞ and identical

argument holds for |p∗i | > maxj∈S
(
|p∗j |
)
.

In case (2), we order each group according to the maximum feasible perturbation to each

agent, w.l.o.g. we show this for G0 when c
(0)
1 − c

(0)
0 > 0 (a symmetric argument holds in

other cases). For i ∈ G0 let δi = −hF (xi) if i /∈ S and δj = hC(xi)− hF (xi) if i ∈ S. Order

G0 such that for i, j ∈ G0, i < j implies δi ≥ δj. Suppose that δj ≤ p∗i ≤ p∗j ≤ 0. Then any

solution which has pi =
p∗i+p∗j

2
(such as p′) is both feasible and at least as optimal as p∗.

At each iteration the sets Gg represent the set of agents whose scores can feasibly still be

perturbed, i.e. further perturbing will not push the score below 0, above 1, or violate a

constraint in S. The entries of p corresponding to either G0 or G1 are updated by ε0 or ε1

respectively. By the definition of εg, at least one agent is removed from either G0 or G1.

There are at most n agents between the two sets, and thus at most n iterations are run.

Each iteration takes at most time time Θ(n), since εg is computed as the minimum over at

most n choices and at most n entries of p are updated. Therefore Algorithm 4 runs in time

Θ(n2).
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Thus, since Algorithm 4 may be used to solve the instances of Program 8.15 arising in

Algorithm 3 in time Θ(n2), DOS can be solved by Algorithm 3 in time Θ(γn3).

8.6.4 DOS for Randomized Resource Allocation

Next we turn our attention to resource allocation, in which k < n equally desirable resources

are allocated to a population of size n. Recall that the randomized allocation scheme given

by I(X , G) assigns resources to agents where E
[
Ii(X , G)

]
∈ [0, 1] gives the probability that

agent i receives a resource with allocation performed over population (X , G). For notational

convenience, we use I(i) = E
[
Ii(X , G)

]
to represent the probability that agent i receives the

resources and suppress the expectation and implicit dependence on the population (X , G).

Scarce resource allocation is particularly well suited for DOS as true labels (with respect to

the allocation decision) are typically unknown. In this case, DOS postprocessing is given by,

min
p∈[−1,1]n

∥p∥q (8.19)

s.t.
n∑

i=1

IF (i) + pi ≤ k (8.20)

U
(
IF + p, G

)
≤ β (8.21)

1

n

n∑
i=1

I
[
IC(i) ≤ IF (i) + pi

]
≥ γ (8.22)

We now show that DOS in resource allocation settings remains tractable.

Theorem 8.6.4. Let IC and IF be a conventional and β-fair allocation scheme, respectively,

and U be derived from an additive efficacy metric M which is independent of Y (e.g., PR).

Then for q ∈ {1, 2,∞} Program 8.19 can be solved in time Θ(γnT ) by Algorithm 3 which

returns a γ-popular, β-fair allocation if one exists.

Proof Sketch. In the case of scarce resources, agents can again be ordered in an identical

fashion to the classification setting (Theorem 8.6.3). Note that for any solution p and any

i, j ∈ Gg, the resource constraint
∑n

i=1 IF (i) + pi ≤ k is invariant to any change in pi, pj,

which preserves pi + pj. Thus a similar argument to Theorem 8.6.3, with a few caveats
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relating to infeasible solutions, holds. Specifically, this yields γn programs (either LPs or

SDPs), each of which is solvable in time Θ(T ). Thus DOS post processing for resource

allocation can be computed in time Θ(γnT ).

8.6.5 k-QLS for Randomized Classification

Finally, we explore k-QLS postprocessing for randomized classifiers. k-QLS creates k inter-

vals by the quantiles of hF (X ), where k is chosen by the model designer. Specifically, let

ρℓ be the maximum score associated with quantile ℓ of hF (X ). Each interval is given as

Iℓ = [ρℓ−1, ρℓ], with the understanding that ρ0 = 0 and ρk = 1. On each interval Iℓ, and for

each group g, a parameter p
(g)
ℓ is learned. At prediction time, E

[
fP
(
xi

)]
= p

(gi)
ℓ for i s.t.

hF (xi) ∈ Iℓ, .

Finding the optimal lottery probabilities can formulated as the following optimization prob-

lem:

min
p∈[0,1]2k

L
(
fP ,X , Y

)
+ λ∥fF (X )− fP (X )∥qq (8.23)

s.t. U
(
fP , D

)
≤ β (8.24)

1

n

n∑
i=1

I
[
fC(xi) ≤ fP (xi, gi)

]
≥ γ, (8.25)

where L is expected training error. As was the case for DOS postprocessing with randomized

classifiers, the constraint that γ fraction of the population prefers fP over fC is discrete and

non-convex. Indeed, unlike DOS, the k-QLS problem becomes strongly NP-hard.

Theorem 8.6.5. Postprocessing to achieve γ-popularity and β-fairness with k-QLS (i.e.,

solving Program 8.23) is strongly NP-hard when models are randomized, and U is derived

from an additive efficacy metric.

Proof. We reduce from exact m knapsack (E-mKP) [64] (which is strongly NP-hard when

coefficients are rational), in which a set of n items, each with weight and value wi, vi ∈ Q≥0

and a capacityW are given. The objective is to select exactlym items s.t. value is maximized

and capacity is not violated. For each item, an interval can be created which contains exactly

one agent i where yi = 0, hC(xi) is determined by wi and hF (xi) is determined by vi. Ignoring
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popularity, and for FNR-fairness, it is optimal to negatively classify all such agents. However

when m of these agents needs to prefer fP , an optimal solution will set hP (xi) = hC(xi) for

exactly m agents. By the construction of hC(xi) and hF (xi), each agent with hp(xi) > 0

increases FNR and loss by a term proportional to wi and −vi respectively. Thus selecting m

agents to prefer fP s.t. loss is minimized while not violating fairness corresponds to selecting

m items which maximize value while not violating the capacity constraint.

Remark 8.6.6. The intractability stems entirely from the model designer’s ability to choose

the number of quantiles k: if k is fixed, the problem can be solved in polynomial time as shown

in the following theorem. In practice, we can fix k to be small, thus obtaining a tractable

algorithm.

Theorem 8.6.7. Let fC and fF be a conventional and a β-fair randomized classifier respec-

tively. Let U be derived from an additive efficacy metric M. Then for a fixed number of

quantiles k, Program 8.23 for q = {1, 2,∞} can be solved in polynomial time, thus obtaining

γ-popular β-fair decisions.

Proof. As was the case for DOS applied to randomized classifiers, k-QLS applied to ran-

domized classifiers is tractable if a specific set of m = γn agents is required to prefer fP ,

rather than any m agents. When the number of intervals is constant it is straightforward to

induce an ordering on agents which explores only a polynomial number of constraint sets.

Specifically, let

G(g,ℓ) = {i ∈ [n] : gi = g and hF (xi) ∈ Iℓ},

then agents in each Gg can be ordered by the magnitude of p
(g)
ℓ required such that they

prefer fP to fC . Order Gg such that for i, j ∈ Gg if i < j then hC(xj) ≤ hC(xi), then if

agent i ∈ Gg prefers fP to fC , so does every j ≤ i. There are 2k such sets, each containing

at most n/k agents. Since the popularity over each Gg can be parameterized by the identity

of the agent with the largest value of hC(x) who prefers fP , there are no more than (γn)k

unique values under this parameterization, and thus no more than (γn)k sets of constraints

need be examined; each examination requires only polynomial time.
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Figure 8.1: Model performance and unfairness on test data (3-fold average) for deterministic
models with γ = 0.95 (top) and randomized models with γ = 0.8 (bottom). The conventional
classifier fC , fair classifier fF (learned via reductions), and the fair popular classifier fP
(learned via our postprocessing technique), each using Logistic Regression.

8.7 Experiments

We next empirically investigate the relationship between popularity and fairness, and eval-

uate the efficacy of the proposed postprocessing algorithms. The experimental setup is

identical to that of previous chapters and follows from Chapter 4.

We begin by examining the efficacy of our proposed postprocessing techniques DOS and

k-QLS (k=10). When classifiers are deterministic, performance is measured using balanced

accuracy (balanced w.r.t. Y ). When classifiers are randomized, performance is measured

using ROC-AUC, calculated over model scores (i.e., expected outcomes).

Remark 8.7.1. Both k-QLS and DOS may require solving a large number of LPs or SDPs,

which may be expensive. However, both methods can be efficiently implemented in prac-

tice by either solving the programs in parallel, trimming down the number of programs with

heuristics, or replacing all programs with a single integer program. The latter being the most

efficient, typically finishing in under 60 seconds. Further details on these methods, and exact

running times, are provided in
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Figure 8.2: Expected False Positive Rate (FPR) of k-QLS, on randomized classifiers, as a
function of γ.

Recidivism Income Crime Law School

Deterministic DOS 0.001 0.001 0.001 0.001
Deterministic k-QLS 0.021 0.092 0.033 0.026

Randomized DOS 0.351 1.645 0.931 0.619
Randomized k-QLS 44.121 67.121 54.379 52.947

Table 8.2: Running time in seconds (rounded to three digits), of DOS and k-QLS for ran-
domized models with γ = 0.8 and deterministic models with γ = 0.95. For deterministic
models, the polynomial time algorithms are run, for randomized model a single integer pro-
gram is run. Reported times are averaged across PR, TPR, and FPR fairness as well as all
base model types (Logistic Regression, Gradient Boosted Trees, Support Vector Machine,
and Neural Networks). Since DOS and k-QLS are postprocessing methods, reported running
times do not include running time of the base models.

By casting popularity as an integer-valued constraint the corresponding integer program can

be solved directly by modern solvers. In our experiments we solve those programs with

CPLEX, and present the average running time for each approach in table 8.2.

Figure 8.1 shows that both k-QLS and DOS are able to achieve high levels of γ-popularity and

β-fairness with little degradation in performance. In particular, deterministic classifiers (due

to their higher natural popularity) are able to achieve greater levels of popularity compared

to randomized models, with similar levels of degradation to performance. We observe similar

results for other combinations of dataset, efficacy metric, and classifier type (Section B of

the Appendix).
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Finally, we consider the extent to which popularity may skew model efficacy. In particular,

as the popularity coefficient γ increases, a larger fraction of the population is guaranteed to

have scores from fP , which are at least as large as those from fC . Since popularity constraints

ensure that agents scores do not decrease, achieving higher levels of popularity (i.e., higher

γ) also incentivize the resulting fP to maintain false positive errors made by fC . Thus one

would expect FPR to increase with γ.

This phenomenon is shown in Figure 8.2, which demonstrates that as γ increases, so does

expected FPR. Although the expected FPRs vary between datasets and fairness definitions,

the rate of increase is relatively similar across instances.

8.8 Discussion

As shown in Chapter 6 the deployment of group-fair classifiers, in place of conventional clas-

sifiers, may result large fractions of a population perceiving that they are made worse off by

the change. To capture these effects we introduce the notion of popularity, which measures

the fraction of agents preferring one classifier over another, and propose two postprocessing

techniques (DOS and k-QLS) for achieving popularity while retaining good fairness proper-

ties. Both techniques provide efficient solutions for deterministic and randomized classifiers,

as well as scarce resource allocation. We note that while in practice postprocessing can

achieve popularity and fairness with minimal degradation to model performance, requiring

higher levels of popularity can actually entrench any false positive errors made by the con-

ventional model. Consequently, application of the proposed techniques need to carefully

analyze the trade-offs not merely between popularity, group fairness, and overall accuracy,

but also with specific measures of error, particularly the false positive rate.
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Appendix A

A.1 Fairness Reversals

Equivalence of α- and β-fairness

Lemma 5.2.1: Suppose M is defined by PR, FPR, or TPR, and the hypothesis class is

expressive enough to produce either the constant function f(x) = 1 or the constant function

f(x) = 0 for all x ∈ X . Then for any α ∈ [0, 1] there exists a β ≥ 0 such that the resulting

optimal β-fair classifier fβ is also an optimal α-fair classifiers. Conversely for any β ≥ 0

there exists an α ∈ [0, 1] such that the resulting optimal α-fair classifier fα is also an optimal

β-fair classifier.

Proof. To prove this claim we first outline the general structure of the relationship between

α and β fairness. For any α ∈ [0, 1], setting β = Uα where Uα is the unfairness of the optimal

α-fair model will cause the optimal β fair model to also be an optimal α-fair model. For any

β ≥ 0, the constant function f(x) = 1 or f(x) = 0 is always feasible for PR, TPR, or FPR

fairness. For any Pareto front of model (induced by loss and unfairness) there will always

be an optimal β-fair model in that front, and because the objective of α-fairness is linear in

α, all classifiers in the front can be achieved by a some value of α. First note that solutions

to Programs 5.2, 5.3 are determined uniquely by the outcomes of f , namely f(X ). Thus H
can be considered as consisting only of models which produce distinct values of f(X ).

To explicitly show this, we first prove the forward direction of our claim. Let α ∈ [0, 1], fα

be an optimal α-fair classifier and β = U(fα,X , Y,G). For this setting of β, the model fα is

a feasible solution to Program 5.2, so

L(fβ,X , Y ) ≤ L(fα,X , Y ) and U(fβ,X , Y,G) ≤ U(fα,X , Y,G),
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implying that,

(1− α)L(fβ,X , Y ) + αU(fβ,X , Y,G) ≤ (1− α)L(fα,X , Y ) + αU(fα,X , Y,G)

Thus for any α ∈ [0, 1], setting β = U(fα,X , Y,G) will yield a model fβ which is also an

optimal α-fair classifier.

To prove the converse direction we will show the following three facts, 1.) only models in a

Pareto front(with respect to loss and unfairness) need be considered, 2.) an optimal β-fair

model always exists in this Pareto front, and 3.) any model within this Pareto front can

be found by some choice of α. Before showing these facts, we need two additional pieces of

setup. First, when M is defined by PP, TPR, or FPR, either constant function f(x) = 1 for

all x ∈ X or f(x) = 0 for all x ∈ X will result in U(f,X , Y,G) = 0. Thus, for any choice of

β ≥ 0 there always exists a feasible solution to Program 5.2. Second, for any two models f

and f ′, we say f ≻ f ′ if L(f,X , Y ) ≤ L(f ′,X , Y ) and U(f,X , Y,G) ≤ U(f ′,X , Y,G), and

at least one inequality is strict. Define the Pareto front of hypothesis class H with respect

to loss and unfairness as,

P = {f ∈ H : ∄f ′ ∈ H s.t. f ′ ≻ f}.

Now, let β ≥ 0, then there exists some f ∈ P which is an optimal β-fair classifier by identical

reasoning as the forward direction. Thus, we need only show that for any f ∈ P there exists

a corresponding α such that solving Program 5.3 will yield a classifier fα which is equivalent

to f in the sense that both classifier have equal loss and unfairness. To do this, we first show

that for any α ∈ [0, 1] the classifier fα is equivalent to some f ∈ P . Let f ′ be the optimal

α-fair classifier the hypothesis class is restricted to P . Then by the definition of fα,

L(fα,X , Y ) ≤ L(f ′,X , Y ) and U(fα,X , Y,G) ≤ U(f ′,X , Y,G),

and by definition of P , neither inequality can be strict. Hence both the loss and unfairness

of f ′ and fα are equal. This equivalence allows us to only focus on optimal α-fair classifiers

from P , rather than from H.

To show that any f in P can be obtained by the choice of some α when the space of

possible models is reduced to P , we induce an ordering on the classifiers in P via the value
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U(f,X , Y,G). Note that

(1− α)L(f,X , Y ) + αU(f,X , Y,G)

is linear in α, and for α = 0 or α = 1 Program 5.3, restricted to P , will return respectively

the model with the lowest loss and lowest unfairness. Thus both models at either extreme

of our ordering on P can be obtained by some α, namely 0 or 1.

Next consider any model f ′ ∈ P which is not at either extreme and let fl and fu be any two

models in P such that

U(fℓ,X , Y,G) < U(f ′,X , Y,G) < U(fu,X , Y,G)

and such that there exists values αu ≤ αl where fu and fl are the respective optimal α-fair

classifiers in P (such classifiers must exist, namely those with the lowest loss and lowest

unfairness). Moreover, not that if the above inequalities are not strict, then then the defi-

nition of P implies that the two corresponding classifiers are equivalent in terms of loss and

unfairness.

Now let,

αsup = sup
{
α : U(f ′,X , Y,G) < U(fα,X , Y,G)

}
αinf = inf

{
α : U(fα,X , Y,G) < U(f ′,X , Y,G)

}
.

Then αinf ≤ αsup, and if the two are not equal, then any α ∈ (αinf , αsup) with result in f ′

being the optimal α-fair classifier by the definition of P .

Now, suppose that αinf = αsup. Then since,

U(fαinf
,X , Y,G) ≤ U(f ′,X , Y,G) ≤ U(fαsup ,X , Y,G)

it must be the case that

U(fαinf
,X , Y,G) = U(f ′,X , Y,G) and L(fαinf

,X , Y,G) ≤ L(f ′,X , Y,G)

But since f ′ ∈ P , it must also be the case that L(fαinf
,X , Y,G) = L(f ′,X , Y,G). Thus fαinf

and f ′ are equivalent, and for any f ′ ∈ P there exists an α such that the optimal α-fair
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classifier is equivalent to f ′. Combining this with the fact that for any β there exists an

optimal β-fair classifier in P , implies that for any choice of β there exists an α such

Lemma A.1.1. Suppose that P
(
y = 1|x) has a single crossing with P(y = 1). Then error is

negatively unimodal w.r.t. θ and the optimal base threshold is θC s.t. P
(
y = 1|θC

)
= P

(
y = 1

)
.

Proof: (Lemma A.1.1). The error of a classifier f(x) = I[x ≥ θ] is given by,

1− P
(
I[x ≥ θ] = y

)
= 1− P

(
x ≥ θ, y = 1

)
− P

(
x ≤ θ, y = 0

)
= P

(
y = 0

)
+ P

(
x ≤ θ, y = 1

)
− P

(
x ≤ θ, y = 0

)
Since x is a continuous random variable and the terms involving θ are joint CDFs with well

defined conditional PDFs, the derivative of the above expression w.r.t. to θ, exists and is

equal to

py,x(y = 1, x = θ)− py,x(y = 0, x = θ)

= px(x = θ)
(
P(y = 1|x = θ)− P(y = 0|x = θ)

)
= px(x = θ)

(
2P(y = 1|x = θ)− 1

)
Since P

(
y = 1|x = θ

)
has a single crossing with P(y = 1), the above derivative is split by

the value 0, thus error is negatively unimodal with global minima at any θC s.t. P
(
y = 1|x =

θC
)
= P(y = 1).

Lemma A.1.2. Suppose that fairness is defined in terms of Positive Rate (PR) and that

P
(
g = 1|x

)
has a single crossing with P

(
g = 1

)
, then

1. PRD(θ|g = 1) ≥ PRD(θ|g = 0) for any θ ∈ [0, 1], (i.e. group 1 is advantaged under

any threshold classifier), and

2. the unfairness term
∣∣PRD(θ|g = 1) − PRD(θ|g = 0)

∣∣ is positively unimodal w.r.t. θ

and is maximized at any θU s.t. P
(
g = 1|x = θU

)
= P

(
g = 1

)
.

Proof: (Lemma A.1.2). For a classifier f(x) = I[x ≥ θ], we begin by demonstrating (1) the

unimodality of P
(
x ≥ θ|g = 1

)
−P
(
x ≥ θ|g = 0

)
and then use this propriety to show (2) the
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equivalence between P
(
x ≥ θ|g = 1

)
− P

(
x ≥ θ|g = 0

)
and the unfairness term

∣∣P(x ≥ θ|g = 1
)
− P

(
x ≥ θ|g = 0

)∣∣.
First, note that

= P
(
x ≥ θ|g = 1

)
− P

(
x ≥ θ|g = 1

)
=

P
(
g = 1, x ≥ θ

)
P
(
g = 1

) −
P
(
g = 0, x ≥ θ

)
P
(
g = 0

)
=

P
(
g = 1

)
− P

(
g = 1, x ≤ θ

)
P
(
g = 1

) −
P
(
g = 0

)
− P

(
g = 0, x ≤ θ

)
P
(
g = 0

)
= 1−

P
(
g = 1, x ≤ θ

)
P
(
g = 1

) − 1 +
P
(
g = 0

)
P
(
g = 0, x ≤ θ

)
P
(
g = 0

)
= −

P
(
g = 1, x ≤ θ

)
P
(
g = 1

) +
P
(
g = 0, x ≤ θ

)
P
(
g = 0

)
Since each term involving θ is a joint CDF, the derivative of this term w.r.t to θ exists and

is equal to

pg,x(g = 0, x = θ)

P
(
g = 0

) − pg,x(g = 1, x = θ)

P
(
g = 1

)
=

P
(
g = 0|x = θ

)
px(x = θ)

P
(
g = 0

) −
P
(
g = 1|x = θ

)
px(x = θ)

P
(
g = 1

)
=

(
1− P

(
g = 1|x = θ

))
hx(x = θ)

P
(
g = 0

) −
P
(
g = 1|x = θ

)
hx(x = θ)

P
(
g = 1

)
= px(x = θ)

P
(
g = 1

)
− P

(
g = 1|x = θ

)
P
(
g = 1

)
P
(
g = 0

)
Since P

(
g = 1|x

)
is split by the value P

(
g = 1

)
the above term is split by the value 0, thus by

Lemma the term P
(
x ≥ θ|g = 1

)
− P

(
x ≥ θ|g = 0

)
is positively unimodal, and is maximized

at any θU s.t.

px(x = θU)
P
(
g = 1

)
− P

(
g = 1|x = θU

)
P
(
g = 1

)
P
(
g = 0

) = 0

Since px(x = θ) > 0 any such θU has the propriety that P
(
g = 1|x = θU

)
= P

(
g = 1

)
. Thus

concluding the proof of (2).
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We now use (2) to show that (1) immediately follows. Note that for θ ∈ {0, 1} we have

P
(
x ≥ θ|g = 1

)
= P

(
x ≥ θ|g = 0

)
. Since the function is positively unimodal and P

(
g = 1

)
>

0 neither θ = 0 nor θ = 1 can be points corresponding to local maximums, hence for any θ

we have

P
(
x ≥ θ|g = 1

)
− P

(
x ≥ θ|g = 0

)
≥ P

(
x ≥ 1|g = 1

)
− P

(
x ≥ 1|g = 0

)
= 0

Lemma A.1.3. Suppose that fairness is defined by either True Positive Rate or False Posi-

tive Rate and that g, y are conditionally independent given x. Suppose further that P
(
g = 1|x

)
has a single crossing with P

(
g = 1|y = 1

)
in the TPR case and by P

(
g = 1|y = 0

)
in the

FPR case. Then when M is TPR or FPR,

1. MD(θ|g = 1) ≥ MD(θ|g = 0) for any θ ∈ [0, 1], (i.e. group 1 is advantaged under any

threshold classifier), and

2. the unfairness term
∣∣MD(θ|g = 1)−MD(θ|g = 0)

∣∣ is positively unimodal w.r.t. θ and

is maximized at any θU s.t. P
(
g = 1|x = θU

)
= P

(
g = 1|y = 1

)
in the TPR case and

P
(
g = 1|x = θU

)
= P

(
g = 1|y = 0

)
in the FPR case.

Proof: (Lemma A.1.3). This proof follows identically from Lemma A.1.2 when replacing

terms related to PR with terms related to either FPR or TPR.

Experiments

Figure A.1 show the single crossing conditions between P
(
y = 1|x

)
, and P

(
g = 1|x

)
, and

their respective constant functions given in Lemmas A.1.1, A.1.2, A.1.3. We see that in each

dataset, the single crossing conditions approximately holds in the sense that when the condi-

tion is violated, (i.e. crossing the respective horizontal line more than once) the violation is

small in magnitude. Recall that the single crossing propriety implies the unimodality of the

error and unfairness terms, which we see in Figure A.2 Small violations (both in magnitude

and duration) of the single crossing condition amount to small changes in the derivative of
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Figure A.1: Probabilities of group membership g (green) and true label y (orange). Proba-
bilities conditioned on the feature x are given as solid lines, while those unconditioned are
given as dotted, or dashed, lines. Recall that if the conditioned probabilities P(g = 1|x)
and P(y = 1|x) having a single crossing with the respective unconditioned value (outlined
in Lemmas A.1.1, A.1.2, A.1.3) then error and unfairness will be unimodal w.r.t. to the
threshold θ. For example, in the case of PR fairness, if P(g = 1|x) has a single crossing with
P(g = 1) and P(y = 1|x) has a single crossing with P(y = 1) then error and unfairness are
unimodal w.r.t. to θ.

error or unfairness, which in term does not consequentially impact the unimodality of either

term from an empirical perspective.

Figures A.4 and A.3 demonstrate additional instances of fairness reversals for varying levels

of fairness given by α.

A.2 Individual Welfare

Figures A.5, A.6, A.7 show the popularity of the fair classifier fC for the population (pop),

advantaged group G1, and disadvantaged group G0. Unlike other fair learning schemes, we

see that the EqOdds classifier, presented in Figure A.7, results one group always having

popularity-1. This is due to the fact that EqOdds only perturbs the scores of a single,

implying that the other group will always be at least as good under the fair model as they

are under the conventional model.
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Figure A.2: Unfairness and error of threshold classifiers. Both error and unfairness are ap-
proximately unimodal w.r.t. threshold θ = x. Thus error and unfairness are also unimodal
w.r.t. the manipulation budget B for any manipulation cost function c(x, x′) which is mono-
tone in |x′ − x|. When this unimodality holds θC < θF implies that strategic manipulation
will lead to θC becoming more fair than θF . This fairness reversal is due to the fact that
strategic manipulation amounts to lowering (shifting to the left) the threshold.

A.2.1 Individual Impact

Figures A.8-A.12 give a better sense of of how perceived impact overestimates realized impact

in several specific cases. First we see that while the magnitudes of direct and realized impact

can vary somewhat dramatically with the choice of dataset, baseline classifier, and fair

learning scheme, there are is a nontrivial number of agents who are impacted across each

dataset and pair of classifiers. Second, we generally see as θ increases and k decreases, realized

Figure A.3: Fairness reversals on the Community Crime dataset with Reductions Classifiers.
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Figure A.4: Fairness reversals on the Law School dataset with Reductions Classifiers.

impact decrease, while perceived impact is, for the most part, independent of θ. Perceived

impact can change with respect to θ in cases which agents tie for a resource. Third, for lower

variance classifiers, such as Logistic Regression, we see the fraction of subsamples, an agent is

impacted on, converge to 0 more rapidly. This is due to a randomness in resource allocation,

due to model stability, meaning that the decisions of the baseline and fair classifiers are more

stable across subsamples. Lastly, there are cases in which realized impact and perceived

impact align, such as the the top two plots for the Law School dataset in Figure A.11, and

cases in which perceived impact vastly overestimates realized impact, such as the plots for

the Community Crime datasets in Figure A.9.

To look more closely at the ratio of impact between groups we present Figures A.13-A.16

which show the average fraction of each group which is impacted.

A general trend we see across most combinations of datasets, baseline classifiers, and fair

learning schemes is that as resources become more scarce, the disadvantaged group is im-

pacted at lower proportions, while for more abundant resources the disadvantaged group

can suffer the majority of the impact across the population. Moreover, we see that there are

people, from both of the sensitive groups, who are reliably impacted from the application

of group fairness. More specifically, on every dataset, we see instances in which members of

either group are impacted, even for large values of θ. This shows that there are identifiable

individuals, regardless of group, who bare the burdens of group fairness at rates much higher

than other members of the population. Moreover, we also see that the magnitude and dis-

tribution of impact varies significantly with respect to the choice of baseline classifier, fair

learning scheme, and dataset.
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Figure A.5: Fraction of each population or group voting for fF over fC for randomized
classifiers (top) and deterministic classifiers (bottom), when fF is learned via the Reductions
algorithm and each classifier uses Gradient Boosted Trees.
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Figure A.6: Fraction of each population or group voting for fF over fC for randomized
classifiers (top) and deterministic classifiers (bottom), when fF is learned via the Reductions
algorithm and each classifier uses SVMs.

Figure A.7: Fraction of each population or group voting for fF over fC for randomized
classifiers, when fF is learned via the EqOdds algorithm and each classifier uses Logistic
Regression. Due to the way in which EqOdds achieves fairness, the entirety of one group
will always prefer fF , since fF = fC on that group.
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Figure A.8: Comparison of realized impact (solid) and perceived impact (dotted) when
switching from a baseline classifier to DI-Remove. The shaded region gives a visual inter-
pretation of how often, and to what degree, perceived impact overestimates realized impact.
Only the top 10% of impacted agents are shown, realized and perceived impact are sorted
independently.
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Figure A.9: Comparison of realized impact (solid) and perceived impact (dotted) when
switching from a baseline classifier to GerryFair. The shaded region gives a visual interpre-
tation of how often, and to what degree, perceived impact overestimates realized impact.
Only the top 10% of impacted agents are shown, realized and perceived impact are sorted
independently.
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Figure A.10: Comparison of realized impact (solid) and perceived impact (dotted) when
switching from a baseline classifier to EqualRep. The shaded region gives a visual interpre-
tation of how often, and to what degree, perceived impact overestimates realized impact.
Only the top 10% of impacted agents are shown,realized and perceived impact are sorted
independently.
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Figure A.11: Comparison of realized impact (solid) and perceived impact (dotted) when
switching from SVM to Reduction wit FNR fairness. The shaded region gives a visual
interpretation of how often, and to what degree, perceived impact overestimates realized
impact. Only the top 10% of impacted agents are shown, realized and perceived impact are
sorted independently.
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Figure A.12: Comparison of realized impact (solid) and perceived impact (dotted) when
switching from a baseline classifier to EqualizeOdds with FNR relaxation. The shaded
region gives a visual interpretation of how often, and to what degree, perceived impact
overestimates realized impact. Only the top 10% of impacted agents are shown, realized and
perceived impact are sorted independently..
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Figure A.13: Average fraction of each group impacted (realized), when switching from a
baseline classifier to Reductions.
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Figure A.14: Average fraction of each group impacted (realized), when switching from a
baseline classifier to DI-Remove.
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Figure A.15: Average fraction of each group impacted (realized), when switching from a
baseline classifier to EqualRep.
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Figure A.16: Average fraction of each group impacted (realized), when switching from a
baseline classifier to EqualizeOdds.
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Appendix B

B.1 Aduiting and Recourse

Despite the ease of executing and defining the optimal audit policy, computing the expected

number of agents which will prefer recourse is NP-hard.

Theorem B.1.1. Let Ua,R(x) = ua(xR) − cR(x,xR) and Ua,M(x) = ua(x) − cA(x,xM ; g),

then the objective value of a recourse maximizing principal,

R∗ = max
α

PX

(
Ua,R(x) ≥ Ua,M(x)

)
s.t. Eα

[ ∑
z′∈g(X)

α(z′; g(X))|g(X)
]
≤ B ∀ g(X)

is NP-hard to compute, even if the principal is given the optimal α, the classifier ŷ is linear,

the distribution D over agent features is uniform, and there are only n = 2 agents.

Proof. The proof is straightforward and follows directly from the hardness of computing the

volume of a hypercube intersected by a hyperplane (HIH). An instance of HIH is given by

a dimension-d hypercube H = [0, 1]d, and a hyperplane defined by the weight vector w and

the bias θ. The objective is compute the volume of the region S = {x ∈ H : w · x ≥ θ}.
To construct an instance of our problem, we define X = H, ŷ(x) = I[x = 1], B = 1, n = 2,

C = 1, and the distribution D over X to be uniform. Lastly, let ua(x) = 1 for all x and,

cR(x,1) =

 0 if w · x ≥ θ

2 if w · x < θ

Under this construction P
(
ŷ(x) = 1

)
= 0. When only one agent reports z′ = 1 that agent is

audited with probability 1, and when both agents report z′ = 1 the agents are audited with

probability 0.5.
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When an agent has w · x ≥ θ it is always optimal to choose recourse to z = 1 since the cost

of recourse is 0, while the cost of manipulation is at least 0.5. When an agent has w ·x < θ it

is always optimal to manipulate since the cost of manipulation is upper-bounded by 1, while

the cost of recourse is 2. Thus the probability that an agent chooses recourse is P
(
w ·x ≥ θ

)
,

i.e. the volume of S.

B.2 Postprocessing for Popularity

Theorem (8.6.5). Postprocessing to achieve γ-popularity β-fairness with k-QLS (i.e., solv-

ing Program 8.23) is strongly NP-hard when models are randomized, U is derived from an

additive fairness metric, and the number of quantiles k is determined by the input.

Proof of Theorem 8.6.5. We reduce from the NP-hard problem exact m knapsack (EmKP),

which is strongly NP-hard when coefficients are rational, which consists of n items, each with

weight and value wi, vi ∈ Q≥0, a capacityW ∈ Q≥0, and a targetm. The objective is to select

exactly m items such that total value is maximized and the weight limit is not exceeded.

To transform an instance of EmKP into an instance of k-QLS postprocessing, we map each

item to an interval where the item weight corresponds to unfairness, item value corresponds

to loss, and popularity is achieved when exactly m intervals have nonzero values of p
(g)
ℓ .

Specifically, for each item i create two agents i0, i1 such that for agent i0, gi0 = yi0 = 0, and

for i1, gi1 = yi1 = 1. For the conventional and fair score function hC = E[fC ], hF = E[fF ],
let

hC(xi0) =
wi +maxj∈[n](wj)

2maxj∈[n](wj)
and hF (xi0) =

vi − 3W
(
1 + 2hC(xi0)

)
maxj∈[n](vj)

4WhC(xi0)maxj∈[n](vj)
(B.1)

and,

hC(xi1) = hF (xi1) = 1.

In Equation B.1 note that 1/2 ≤ hC(xi0) ≤ 1 and as such 0 ≤ hF (xi0) ≤ 1. The particular

values of both variables is selected to ensure that both hC and hF correspond to valid prob-

abilities, and so that the loss and fairness constraint cancel out to yield a weight constraint

over wi and a maximize over vi. Let the efficacy costs be defined as c
(0)
0,1 = c

(1)
0,1 = 1 and all

others are 0, i.e. false positive fairness. Lastly let the popularity coefficient be γ = n+m
2n

,

[154]



maximum unfairness be β = W
2maxj∈[n](wj)

+ m
2
, the number of intervals be k = 2n, and the

regularization coefficient be λ = 1/2. Note that each of the k intervals then contains exactly

one agent.

The key idea is that the construction of the groups, and choice of fairness definition, causes

any optimal solution to positively classify all agents in G1 since gj = yj = 1 for all j ∈ G1.

Doing so yields 0 loss on G1 and makes no contribution to unfairness (since fairness is defined

by FPR). Moreover, ignoring popularity, any optimal solution will negatively classify all

agents in G0 since gj = yj = 0 for all j ∈ G0 and doing so yields 0 loss on G0 and makes

no false positive predictions. When adding the popularity constraint, i.e. n +m of the 2n

agents must have a an expected outcome under hF which is at least as large as the expected

outcome under hC , the decisions on G1 will remain invariant, but an optimal solution will

select the lowest possible number of agents in G0 (namely m) minimally increasing loss and

not violating unfairness, and classify those agents positively with probability hC(xj) (i.e.,

their expected outcome under the conventional classifier). By the construction of the hC

and hF in Equation B.1, these m agents will correspond to most profitable m items which

do not exceed the weight limit.

To see why this is the case we first consider the loss term on each agent j in G0 when that

agent has expected outcome p
(0)
j ,

p
(0)
j (1− yj) + (1− p

(0)
j )yj + λ(hF (xj)− p

(0)
j )2

=p
(0)
j

(
1 + 1/2p

(0)
j − hF (xj)) + 1/2hF (xj)

2

since 0 ≤ hF (xj) ≤ 1, this term is monotonically increasing in p
(0)
j and is minimized at

p
(0)
j = 0. Thus without consideration of popularity or unfairness, the optimal solution is

to set p
(0)
j = 0 for all j ∈ G0. Moreover, by construction of the fairness cost coefficients

c
(0)
0,1 = c

(1)
0,1 = 1, the fairness constraint can be written as

U (fp,X , Y,G) ≤ β

⇐⇒ −β ≤
∑
i∈G1

p
(1)
i c

(1)
yi,1

+ (1− p
(1)
i )c

(1)
yi,0

−
∑
j∈G0

p
(0)
j c

(0)
yj ,1

+ (1− p
(0)
j )c

(0)
yj ,0

≤ β

⇐⇒
∑
j∈G0

p
(0)
j c

(0)
0,1 ≤ β
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since c
(0)
0,1 = 1, the left-hand side of the inequality is monotonically increasing in each p

(0)
j .

Therefore, the fairness constraint adds no incentive to increase any p
(0)
j on group 0, and thus

only the popularity constraint will force p
(0)
j > 0 for some j.

Since γ2n = m+n
2n

2n = m + n number of agents need to prefer fP to fC (i.e., need p
(g)
i ≥

hC(xi)), and all n of the agents in G1 trivially prefers fP , the popularity constraint is satisfied

only when m agents from G0 prefer fP .

Note that since both the unfairness term∑
j∈G0

p
(0)
j c

(0)
0,1

and the loss term ∑
j∈G0

p
(0)
j

(
1 + 1/2p

(0)
j − hF (xj)) + 1/2hF (xj)

2

corresponding to G0 are both monotonically increasing in each p
(0)
j , the optimal solution is

to set exactly m of the n variables p
(0)
j to hC(xj) (i.e. the lowest possible value such that

agent j prefers fP to fC). Let αj ∈ {0, 1} correspond to an indicator that p
(0)
j = hC(xj),

then k-QLS is equivalent to,

min
α

∑
j∈G0

αj

(
hC(xj)

(
1 + 1/2hC(xj)− hF (xj)) + 1/2hF (xj)

2

)
(B.2)

+ (1− αj)(1/2hF (xj)
2)

s.t.
∑
j∈G0

αjhC(xj) ≤ β (B.3)∑
j∈G0

αj = m. (B.4)
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Simplifying the objective and substituting the expressions for hC(xj) and hF (xj) yields

min
α

∑
j∈G0

αj

(
hC(xj)

(
1 + 1/2hC(xj)− hF (xj)) + 1/2hF (xj)

2

)
+ (1− αj)(1/2hF (xj)

2)

⇐⇒ min
α

∑
j∈G0

αj

(
hC(xj)

(
1 + 1/2hC(xj)− hF (xj))

)
+ 1/2hF (xj)

2

⇐⇒ min
α

∑
j∈G0

αj

(
3/4 − vj

4W maxi∈G0(vi)
)

⇐⇒ max
α

∑
j∈G0

αj
vj

4W maxi∈G0(vi)
−
∑
j∈G0

αj
3/4

⇐⇒ max
α

∑
j∈G0

αj
vj

4W maxi∈G0(vi)

where the final line stems from the fact that
∑

j∈G0
= m and is thus a constant term, not

affecting the optimization. Moreover, note that the denominator 4W maxi∈G0(vi) is also

constant, thus minimizing (B.2) is equivalent to maximizing the value of the knapsack.

Lastly, we need only show that the fairness term is equivalent to the original capacity con-

straint. The fairness constraint can be written then as∑
j∈G0

αjhC(xj) ≤ β

⇐⇒
∑
j∈G0

αj

wi +maxj∈[n](wj)

2maxj∈[n](wj)
≤ W

2maxj∈[n](wj)
+

m

2

⇐⇒
∑
j∈G0

αj

(
wi +max

j∈[n]
(wj)

)
≤ W +mmax

j∈[n]
(wj)

⇐⇒
∑
j∈G0

αjwi ≤ W

where the last line is again due to
∑

j∈G0
αj = m. Thus the fairness constraint is satisfied if

and only if the original capacity constraint is satisfied. Thus, any solution to k-QLS which

successfully minimizes loss such that unfairness is not violated and at least m agents from

G0 prefer fP can be used as an optimal solution to the original EmKP problem by simply

selecting all items j which correspond to nonzero values of p
(0)
j . Since EmKP is strongly

NP-hard, so is k-QLS postprocessing on randomized classifiers.
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Figure B.1: Model performance and unfairness on test data (3-fold average) for deterministic
models with γ = 0.95. The conventional classifier fC , fair classifier fF learned via the reduc-
tions algorithm, and the fair popular classifier fP learned via our postprocessing techniques
k-QLS, each using Gradient Boosted Trees.

Experiments

Figures B.1, B.2 show the accuracy and unfairness of the conventional model fC , β-fair

model fF , and the γ-popular β-fair model fP (learned via k-QLS) when model outcomes

are deterministic. Figures B.3, B.3 show model AUC and unfairness of these model in the

case of randomized classifiers. Figure B.5, B.6 show model AUC and unfairness when fP is

learned via the DOS algorithm in the case of randomized classifiers. Similar to the case of

Logistic Regression, we see that fP can achieve γ-popularity, and β-fairness, for relatively

large levels of γ with minimal degradation to model performance.

Figure B.7 demonstrates the increased false positive rate errors made by γ-popular classifiers

as γ increases.
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Figure B.2: Model performance and unfairness on test data (3-fold average) for deterministic
models with γ = 0.95. The conventional classifier fC , fair classifier fF learned via the reduc-
tions algorithm, and the fair popular classifier fP learned via our postprocessing techniques
k-QLS, each using Support Vector Machines.

Figure B.3: Model performance and unfairness on test data (3-fold average) for randomized
models with γ = 0.85. The conventional classifier fC , fair classifier fF learned via the reduc-
tions algorithm, and the fair popular classifier fP learned via our postprocessing techniques
k-QLS, each using Gradient Boosted Trees.
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Figure B.4: Model performance and unfairness on test data (3-fold average) for randomized
models with γ = 0.8. The conventional classifier fC , fair classifier fF learned via the KDE
algorithm, and the fair popular classifier fP learned via our postprocessing techniques k-
QLS, each using Support Vector Machines.

Figure B.5: Model performance and unfairness on test data (3-fold average) for randomized
models with γ = 0.8. The conventional classifier fC , fair classifier fF learned via the reduc-
tions algorithm, and the fair popular classifier fP learned via our postprocessing techniques
DOS, each using Gradient Boosted Trees.
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Figure B.6: Model performance and unfairness on test data (3-fold average) for randomized
models with γ = 0.8. The conventional classifier fC , fair classifier fF learned via the KDE
algorithm, and the fair popular classifier fP learned via our postprocessing techniques DOS,
each using Support Vector Machines.

Figure B.7: Expected False Positive Rate (FPR) of k-QLS, on randomized classifiers for
PR-fairness (left) TPR-fairness (center) and FPR-fairness (right),as a function of γ (Support
Vector Machines).
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