
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-48

2004-08-04

Pipeline Task Scheduling with Appication to Network Processors Pipeline Task Scheduling with Appication to Network Processors

Seema Datar

Chip Multi-Processors (CMPs) are now available in a variety of systems and provide the

opportunity for achieving high computational performance by exploiting application-level

parallelism. In the communications environment, network processors (NPs), designed around

CMP architectures, are generally usable in a pipelined manner. This leads to the need for static

scheduling of tasks on processor pipelines. This thesis considers problems associated with

determining optimal schedules for such pipelines. A collection of algorithms is presented with

their utility determined by the size and other characteristics of the system. The algorithms

employ heuristics, dynamic programming and statistical methods to schedule tasks derived...

Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Datar, Seema, "Pipeline Task Scheduling with Appication to Network Processors" Report Number:
WUCSE-2004-48 (2004). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1021

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1021?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1021

Pipeline Task Scheduling with Appication to Network Processors Pipeline Task Scheduling with Appication to Network Processors

Seema Datar

Complete Abstract: Complete Abstract:

Chip Multi-Processors (CMPs) are now available in a variety of systems and provide the opportunity for
achieving high computational performance by exploiting application-level parallelism. In the
communications environment, network processors (NPs), designed around CMP architectures, are
generally usable in a pipelined manner. This leads to the need for static scheduling of tasks on processor
pipelines. This thesis considers problems associated with determining optimal schedules for such
pipelines. A collection of algorithms is presented with their utility determined by the size and other
characteristics of the system. The algorithms employ heuristics, dynamic programming and statistical
methods to schedule tasks derived from multiple application flows on pipelines with an arbitrary number
of stages. Experimental results indicate that while the dynamic programming algorithm obtains the
optimal schedules, heuristics and statistical methods obtain schedules within 10% of the optimal, 95% of
the time. Examples are given to show the use of these algorithms for general pipeline/algorithm design
and for use in the Network Processor environment with typical networking applications.

https://openscholarship.wustl.edu/cse_research/1021?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1021?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1021&utm_medium=PDF&utm_campaign=PDFCoverPages

SEVER INSTITUTE OF TECHNOLOGY

MASTER OF SCIENCE DEGREE

THESIS ACCEPTANCE

(To be the first page of each copy of the thesis)

DATE: August 04, 2004

STUDENT’S NAME: Seema Datar

This student’s thesis, entitled Pipeline Task Scheduling with Application to
Network Processors has been examined by the undersigned committee of four faculty
members and has received full approval for acceptance in partial fulfillment of the
requirements for the degree Master of Science.

APPROVAL: Chairman

Short Title: Pipeline Task Scheduling Datar, M.Sc. 2004

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PIPELINE TASK SCHEDULING WITH APPLICATION TO NETWORK

PROCESSORS

by

Seema Datar, B.E.

Prepared under the direction of Dr. Mark A. Franklin

A thesis presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Master of Science

August, 2004

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

PIPELINE TASK SCHEDULING WITH APPLICATION TO NETWORK

PROCESSORS

by Seema Datar

ADVISOR: Dr. Mark A. Franklin

August, 2004

Saint Louis, Missouri

Chip Multi-Processors (CMPs) are now available in a variety of systems and

provide the opportunity for achieving high computational performance by exploiting

application-level parallelism. In the communications environment, network proces-

sors (NPs), designed around CMP architectures, are generally usable in a pipelined

manner. This leads to the need for static scheduling of tasks on processor pipelines.

This thesis considers problems associated with determining optimal schedules for such

pipelines. A collection of algorithms is presented with their utility determined by the

size and other characteristics of the system. The algorithms employ heuristics, dy-

namic programming and statistical methods to schedule tasks derived from multiple

application flows on pipelines with an arbitrary number of stages. Experimental re-

sults indicate that while the dynamic programming algorithm obtains the optimal

schedules, heuristics and statistical methods obtain schedules within 10% of the op-

timal, 95% of the time. Examples are given to show the use of these algorithms for

general pipeline/algorithm design and for use in the Network Processor environment

with typical networking applications.

to my parents

Contents

List of Tables . vii

List of Figures . viii

Acknowledgments . x

1 Introduction . 1

1.1 Generic NP Architecture . 2

1.2 Problem Introduction . 3

1.3 Related Work . 5

1.4 Thesis Outline . 7

2 Pipeline Task Scheduling Problem . 9

2.1 Problem Formulation . 9

2.2 Assignment Constraints . 11

2.3 Memory Contention Model . 12

2.4 Performance Metrics . 17

2.5 Complete Enumeration Method . 18

3 Greedypipe - A Heuristic . 21

3.1 Greedypipe Algorithm . 21

3.1.1 Greedypipe: Overall Algorithm 23

3.1.2 A Simple Example . 24

3.2 Complexity of Greedypipe . 26

3.2.1 Multiple Flows with no shared tasks 26

3.2.2 Multiple Flows with shared tasks 27

3.3 GreedyPipe Performance . 27

iv

4 Dynamic Programming . 31

4.1 Dynamic Programming for Task Scheduling 32

4.1.1 Example . 35

4.1.2 Multiple Flows with Shared Tasks 37

4.2 Complexity . 38

5 Simulated Annealing - A Statistical Approach 40

5.1 Simulated Annealing for Task Scheduling 42

5.1.1 Step Change . 42

5.1.2 Annealing Schedule . 43

5.1.3 Initial Task Assignment . 45

5.1.4 Multiple Flows . 45

5.2 Complexity . 46

5.3 Performance and Constraints . 47

6 Pipeline Design . 48

6.1 Pipeline Design using Scheduling Algorithms 48

6.1.1 Number of Pipeline Stages and Number of Pipelines: 50

6.1.2 Sharing of Tasks Between Flows 51

6.1.3 Task Partitioning . 52

6.1.4 Number of Memory Banks and Memory Bank Assignment . . 54

6.2 A Network Processor Problem . 55

6.2.1 Longest Prefix Matching (LPM) 56

6.2.2 AES Encryption - A Pipelined Implementation 59

6.2.3 Data Compression - A Pipelined Implementation 61

6.2.4 NP Example Design Results 62

6.2.5 Simulated Annealing for Task & Memory Assignment 65

7 Comparative Study of Solution Approaches 68

7.1 Complexity Analysis . 68

7.2 Execution Time and Accuracy . 70

7.2.1 SP/SF . 71

7.2.2 SP/MF . 72

7.2.3 SP/MF/ST . 73

7.2.4 SP/SF/SM . 75

7.2.5 SP/MF/SM . 76

v

8 Conclusions and Future Work . 78

8.1 Contributions . 78

8.2 Future Work . 79

Appendix A Memory Contention Delay 81

Appendix B Phoenix Toolset Manual (ver 1.0) 84

B.1 Usage . 84

B.1.1 Command Line Format . 85

B.1.2 Configuration File Format . 87

B.1.3 Output Format . 89

B.2 Example . 90

Appendix C Phoenix Toolset File Organisation 94

References . 96

Vita . 101

vi

List of Tables

2.1 A Single Flow, Single Shared Memory Example 13

3.1 A Single Flows with five ordered tasks 24

3.2 All possible allocations for Stage 1 24

3.3 Best allocations for Stage 2 . 25

3.4 Best allocations, forward direction . 26

4.1 A Single Flow with five ordered tasks 35

4.2 Optimal Solutions at Stage 1 . 35

4.3 Possible States at Stage 2 . 36

4.4 Optimal State Values at Stage 2 . 36

4.5 Possible States at Stage 3 . 36

4.6 Optimal State Values at Stage 3 . 37

4.7 Optimal allocations . 37

6.1 Task Times (µsec) for LPM, Encryption & Compression 59

6.2 Bandwidths for Best Assignments (Pps=Packets/second; Flow 1 packet

length=40 Bytes; Flow 2 & 3 packet length=1500 Bytes) 64

6.3 Task Times (µsec) for AES Encryption assuming 15 clock cycles per

memory access . 65

7.1 Time Complexities . 69

B.1 Sample - Interactive Command Line Option 84

B.2 Command Line Options For Phoenix 84

vii

List of Figures

1.1 Generic Network Processor Architecture 2

1.2 NP Task Scheduling Problem Examples 4

2.1 Memory Contention Example . 14

2.2 Worst Case Memory Contention Computation 16

2.3 Variation in execution time for flows with no shared tasks 19

2.4 Variation in execution time for flows with shared tasks 19

3.1 % Error vs % Cases with Error . 27

3.2 % Error vs Number of Stages . 28

3.3 % Error vs % Sharing . 29

4.1 Dynamic Programming . 33

5.1 Simulated Annealing Flow Diagram 41

5.2 A Step in Simulated Annealing . 42

6.1 Throughput vs number of pipeline stages 50

6.2 Throughput vs number of pipelines vs number of stages 51

6.3 Throughput vs percent shared tasks 52

6.4 Throughput vs task partitioning . 53

6.5 Throughput versus Number of Memory Banks 54

6.6 Example Longest Prefix Match Tree 58

6.7 Throughput vs. Number of Stages (A single separate pipeline for each

application) . 59

6.8 Rijndael Algorithm Implementation Block Diagram 61

6.9 Pipelined Implementation of the LZW Algorithm 62

6.10 Two Pipelines - Throughput vs. Num. Stages (X, Y –> X stages for

Pipe 1 & Y stages for Pipe 2) . 65

viii

6.11 Three Pipelines - Throughput vs Num. stages for Pipelines 2 & 3;

Pipeline 1=4 stages . 65

6.12 Throughput vs Number Memory Banks 66

7.1 Execution Time, Single Flow . 71

7.2 % Error in Throughput, Single Flow (SA is optimal over all experiments) 71

7.3 Execution Time for Multiple Flows. 72

7.4 % Error in Throughput, Multiple Flows. 72

7.5 Execution Time for Multiple Flows, Shared Tasks 73

7.6 % Error in Throughput, Multiple Flows, Shared Tasks 73

7.7 Execution Time; Single Flow, Memory Contention 75

7.8 % Error in Throughput, Single Flow, Memory Contention 75

7.9 Execution Time; Multiple Flows, Memory Contention 76

7.10 % Error in Throughput; Multiple Flows, Memory Contention 76

A.1 Multi-flow Memory Contention . 82

B.1 Sample - Phoenix Toolset Configuration File 87

B.2 Sample - Phoenix Toolset Output . 89

B.3 Sample - Phoenix Interactive Execution 91

B.4 Example - config.txt . 92

B.5 Example - Phoenix Output . 93

ix

Acknowledgments

I would like to thank my advisor, Dr. Mark A. Franklin, for his supervision, guidance,

insightful suggestions and support for the last two years. I would also like to thank the

other members of my thesis defense committee, Dr. Roger Chamberlain, Dr. Patrick

Crowley and Dr. Jason Fritts, who offered their time, experience and expertise in the

evaluation of my research.

I would like to thank all my friends in the CSE department for the wonderful

time spent at work. I would in particular like to thank Vinayak Joshi and Sarang

Dharmapurikar for sharing their time and knowledge throughout the last two years.

I would also like to thank Praveen Krishnamurthy, Roopa Pundaleeka and Bharath

Madhusudan for the many enjoyable experiences we shared.

The research represented in this thesis was supported in part by NSF under

grant CCR-0217334 and I would like to thank the organization for its financial sup-

port.

I would also like to acknowledge Jean Grothe, Myrna Harbison, Peggy Fuller,

Sharon Matlock and Stella Sung for their efforts in making the CSE department run

effectively.

Finally I would like to thank my parents for all their love and support.

Seema Datar

Washington University in Saint Louis

August 2004

x

1

Chapter 1

Introduction

Due to increased data rates and the requirements of more sophisticated networking

protocols and functions, networking solutions continue to demand more powerful pro-

cessing capabilities. These processing requirements are in flux and continue to change

and evolve. Thus, another important aspect of satisfying processing needs is that the

solution have the flexibility to respond to changing requirements. This has led to the

development of the Network Processor (NP), a software programmable device with

architecture and features, that are designed for efficient packet processing. It achieves

a high programming power by employing multiple programmable processing engines

(PEs), by adding special instructions targeted to networking applications, and by

having dedicated on-chip logic implementing selected complex functions. Thus, the

NP combines the best of both worlds; the flexibility/programmability of a generic

processor and the speed of hardwired ASIC solutions. Network Processors (NPs), de-

signed around Chip Multi-Processor (CMP) architectures, may be used in a pipelined

manner. This leads to the issue of scheduling tasks on processor pipelines. The re-

search considered in this thesis evaluates problems associated with determining opti-

mal schedules for such pipelines.

2

Switch Fabric
Interface

Controller
SRAM DRAM

Controller
Internal Shared

Memory Modules

M1 M2 Mn

Engine
Processing

(PE)

Engine
Processing

(PE)

Engine
Processing

(PE)

Engine
Processing

(PE)

Switch Scheduler

External SRAM External DRAM

NetworkSwitch Fabric

Packet Demultiplexer
& Scheduler

Figure 1.1: Generic Network Processor Architecture

1.1 Generic NP Architecture

Figure 1.1 shows the layout of a typical Network Processor. The PEs in an NP

are typically arranged in a parallel or a pipelined fashion and NPs with as many as

sixteen PEs are currently commercially available [20, 21, 27]. The arrangement is

configurable and selecting the best one is important in achieving high performance.

The data path of a packet begins at the switch fabric interface where the packet

is received and passed on to the Packet De-multiplexer and Scheduler unit. The

scheduler performs packet classification and allocates the packets to the appropriate

PE resources. Note that the NP may be configured to have multiple PE pipelines and

packets may require assignment to a particular pipeline depending on their processing

requirements. After progressing through a pipeline of PEs, the packet is returned to

the switch fabric through the switch scheduler and is transmitted to the next node

of the network. NPs have a fast access on-chip RAM in addition to external DRAM

3

(for large routing and classification tables) and SRAM capabilities. Additionally, the

on-chip RAM (i.e., internal shared memory) may consist of multiple modules with

one or more PEs being associated with a given module. Note that when memory

modules are shared, contention for this resource can result in a loss of performance.

1.2 Problem Introduction

This research concentrates on NPs that are configured into one or more PE pipelines.

We consider situations where packet applications are segmented into an ordered set of

tasks with these tasks assigned to a pipeline of PEs (each PE is a pipeline stage). Thus

the packet is processed in parts as it progresses through the pipeline, executing each

task of the application in turn. Packet processing may involve multiple applications

and different packet types may require different application sets for their processing.

We refer to these application sets as flows. Certain applications could be common

across application sets so that there may be shared tasks between flows. There may

also be more than one pipeline available for allocation, so that an effective assignment

of flows to pipelines would also need to be done.

Considering all these factors, we can categorize the scheduling problem in order

of increasing complexity as follows. Figure 1.2 illustrates the different scheduling

problem types and provides sample task allocations.

1. Single Pipeline, Single Flow (SP/SF) - Tasks in a single flow are allocated to

a single pipeline of processors.

2. Single Pipeline, Multiple Flow (SP/MF) - Tasks of multiple flows need to be

allocated to a single pipeline of processors.

3. Single Pipeline, Multiple Flow, Shared Tasks (SP/MF/ST) - This is like

SP/MF except that there may be shared tasks between the flows.

4. Multiple Pipelines, Multiple Flows (MP/MF) - More than one pipeline may

be available so that while tasks need to be optimally allocated to processors,

4

Memory Modules − 2
Processors − 4

Flow No.

Flow 1

Tasks

Flow 2

Task 1

Task 6

Task 2

Task 7

Task 3

Task 8

Task 4

Task 9

Task 5

Task 10

Single Pipeline, Multiple Flows with Multiple Memory Modules

5) SP/MF/MM

Proc. 3, Proc. 4Proc. 1, Proc. 2

Module 1 Module 2

A Possible Allocation of Memory Modules to Processors

A Possible Allocation of Tasks on 4 Processors

Flow No.

Flow 1

Flow 2 Task 9

Proc. 4Proc. 3Proc. 1

Task 1

Proc. 2

Task 2

Task 8

Task 3,Task 4

Task 6,Task 7 Task 10

Task 5

Processors

Flow No. Tasks

Task 1

Task 6

Task 2

Task 7

Task 3

Task 8

Task 4

Task 9

Task 5Flow 1

Flow 2

Flow 3 Task 11 Task 12 Task 14Task 13 Task 15

Task 10
Processor 1Flow No.

Flow 3

Pipeline 2 − A Possible Allocation on 2 Processors

Task 14, Task 15

Processor 2

Task 11, Task12, Task13

Multiple Pipeline, Multiple Flows
Pipeline 1 − A Possible Allocation on 3 Processors

2 Pipelines Pipeline 1 : 3 Processors

Pipeline 2 : 2 Processors

− Flow No.

Flow 1

Flow 2

Processor 1 Processor 2

Task 3

Task 8,Task 9

Processor 3

Task 4, Task 5

Task 10

Task 1, Task 2

Task 6,Task 7

4) MP/MF/ST

Single Pipeline, Multiple Flows with No Shared Tasks

Flow No.
Flow 1

Tasks

Flow 2
Task 1
Task 6

Task 2
Task 7

Task 3
Task 8

Task 4
Task 9

Task 5
Flow No.
Flow 1

A Possible Allocation on 2 Processors

Flow 2
Task 4, Task 5
Task 8, Task 9Task 6, Task 7

Task 1, Task2, Task3
Processor 2Processor 1

2) SP/MF

Single Pipeline, Single Flow

Flow No.

Flow 1 Task 1 Task 2 Task 3 Task 4 Task 5

Tasks Processor 1Flow No.

Flow 1

A Possible Allocation on 2 Processors

Processor 2

Task 4, Task 5Task 1, Task2, Task3

1) SP/SF

Single Pipeline, Multiple Flows with Shared Tasks

Flow No.
Flow 1

Tasks

Flow 2
Task 1
Task 6

Task 2
Task 7

Task 3
Task 2

Task 4
Task 3

Task 5
Task 8

Processor 1Flow No.
Flow 1

A Possible Allocation on 2 Processors

Flow 2
Task 4, Task 5
Task 8

Processor 2

Task6,Task7,
Task 1, Task2,Task3

Task2, Task3

3) SP/MF/ST

Figure 1.2: NP Task Scheduling Problem Examples

flows also need to be effectively mapped to pipelines. A given flow must be

implemented entirely within a single pipeline.

5. Single Pipeline, Multiple Flows, Multiple Memory Modules(SP/MF/MM)

- While there may be multiple modules of internal memory available, they may

need to be shared between processors. This kind of sharing of resources could

lead to contention for resources (memory in this case) and affect the perfor-

mance. The task allocation in this case should be made with consideration

to the memory resource contention. Extensions to this problem class include

MP/MF/MM and MP/MF/ST/MM.

5

The line rates that can be supported by the system depend on the pipeline(s)

throughput which, in turn, depends on a number of factors including just how applica-

tion subtasks are assigned to the PEs. In our research, we mainly focus on maximizing

the system throughput by effective allocation of tasks to processors. Three different

approaches are used towards solving the task scheduling problem; a heuristic ap-

proach, dynamic programming and a statistical approach using Simulated Annealing.

The subsequent chapters describe these approaches and the limitations of each one

of them when applying them to the above described classes of problems.

Additionally, we also evaluate the usability of a tool, based on the above

mentioned approaches, for designing Network Processors given that there is a pri-

ori knowledge of the flow types that will be serviced, the performance requirements,

and the costs associated with implementation (e.g., chip area). In architectures where

there are a limited number of on-chip RAM modules, assignment of these modules to

one or more PEs affects performance. Other design issues relate to determining the

number of stages a pipeline must have. While this is clearly related to the line rates

one would like to achieve, and the complexity of the applications, there are a number

of design options available, each of which requires that a good assignment of applica-

tion tasks to pipeline stages be obtained. Another example is determining whether

algorithmic efforts at changing the number of tasks or task durations associated with

an application might help in improving system throughput. We demonstrate the ef-

fect of various elements of NP design on the performance of an NP by a range of

experiments conducted using the scheduling tool-set developed as part of this thesis.

1.3 Related Work

There is a long history associated with related problems in deterministic job-shop

scheduling [22] and these problems have been investigated from a variety of per-

spectives including integer programming, heuristics, and other approaches. Similar

problems have also been dealt with in the context of finding compilation techniques for

6

general purpose parallel languages on multiprocessors[39, 35]. The primary objective

of the compilation techniques is to minimize the response time while simultaneously

reducing overhead due to inter-process synchronization and communication over a

general parallel processor. Multiprocessor performance in these cases is maximized

by identifying potential parallelism and then partitioning the program accordingly to

exploit the parallelism.

Scheduling of jobs to processors so that a given cost function is minimized is

an important problem in many areas of computer science. In parallel computing,

with no special constraints on the jobs or the processors, minimizing the total com-

pletion time has been proved to be NP-Hard [14], even for two processors. Thus a

number of restricted versions of the scheduling problem have been investigated in

order to make it tractable. One such class of problems, referred to as Structured

Data Partitioning problems or MinMax problems, impose an implicit order on a se-

quence of n elements. The objective is to partition the elements into a sequence of

p intervals such that the maximal value of the cost function, of each interval is min-

imized (hence the name MinMax). The first reference to the MinMax problem was

made by A.Bokhari for single dimensional partitioning problems in parallel, pipelined

and distributed computing in [36] where he presented an O(n3p) algorithm using a

bottleneck-path algorithm. Anily and Federgruen [33] and Hansen and Lih [18] in-

dependently presented the same dynamic programming algorithm reducing the time

complexity of the solution to O(n2p). Manne and Sorevik then presented, in [26], an

O(p(n − p) log p) algorithm based on iteratively improving a given partition. They

also described a bisection method for finding an approximate solution which runs in

time O(n log(f(0, n − 1/e)), where e is the desired precision. Further improvements

to the iterative approach were suggested by Pinar and Aykanat in [31]. They use

improved algorithm initialization methods. Olstad and Manne studied the problem

in the context of issues related to load balancing when performing sparse matrix com-

putations on parallel computers. They refined the dynamic programming approach

to a complexity of O(p(n − p)) and applied it for partitioning of acyclic graphs too.

7

There exists a rich literature on scheduling of tasks to processors and an overview

of it can be found in [16]. The MinMax problem can be generalized to dimensions

higher than one however, all the cited solutions are pertinent to single dimensional

partitioning problems.

Real-time packet scheduling problems have also been considered in the context

of network processors [43]. In this case, however, packets were assumed to be com-

pletely processed on a single processor. A primary concern in that work was to assign

packets to processors in a manner that minimized the effect of cold cache misses on

performance.

Our work aims at maximizing the throughput of a pipelined CMP by effective

assignment of flow tasks to pipeline stages. It differs from the prior work cited in

a number of ways. Primarily, the problem definition differs from those considered

in the past in that we consider multiple flows and pipelines, sharing of tasks on

pipeline stages, sharing of resources (e.g., memory) between stages and employing

a bandwidth performance metric associated with the requirements of the computer

pipeline environment. Thus, while limited problem classes (e.g., 1 - SP/SF) can be

solved using some of the existing techniques, the more complex classes noted above

have required consideration of new approaches.

1.4 Thesis Outline

Chapter 2 presents a model for the assignment of application tasks and memory

modules to pipeline stages. Given this formulation, Chapter 3, 4 and 5 indicate how

heuristics, dynamic programming and a statistical optimization method (Simulated

Annealing) can be used to obtain the optimal task and memory assignment. Chapter

6 then illustrates the use of this capability first in a set of synthetic problems, and

then by applying it to a specific NP problem where the applications include routing,

compression and encryption. Chapter 7 compares the three algorithmic approaches

8

for the task scheduling problem and concludes with a summary and a discussion of

future work.

9

Chapter 2

Pipeline Task Scheduling Problem

2.1 Problem Formulation

In this chapter, we give a formal definition of the task scheduling problem and lay

down the constraints associated with it. We also describe a resource (memory in

this case) contention model and use it to formulate the performance metrics for the

scheduling problem. Network processors (NPs) typically have multiple input flows

where, for our research, we define a flow as a set of successive functions that must

be performed on packets belonging to the flow1. For example, one flow may require

that incoming packets be compressed (say using Lempel Ziv) and then routed using

a specific LPM (Longest Prefix Match) algorithm. Another flow might require packet

encryption, transcoding and then routing. We consider here application algorithms

that may be pipelined and are implemented on a pipeline of identical processors.

The general issue of how to develop a pipelined algorithm for a given application

is not considered here except for the special cases of Longest Prefix Match (LPM),

encryption (AES) and compression (LZW) that are discussed in Chapter 7. Each

processor in the pipeline operates on a packet, does some partial processing associated

with the application, and then passes the packet (generally modified) along with other

1Flows correspond to a sequence of functions rather than packets associated with source-
destination pairs.

10

information to the next processor in the pipeline2. After passing through the pipeline,

the packet is sent into a switch and from there into the network. We assume that

there is a steady stream of packets arriving.

Each packet belongs to one flow and flows are represented by the set F :

F = {F1,F2,F3, ... ,FN}

The processing associated with flow applications can be partitioned into an ordered

set of tasks, Tasksj. Each task in Tasksj is represented by Tij, where i (1 ≤ i ≤ Mj),

and j (1 ≤ j ≤ N) respectively designate the task and flow number. Thus Tasksj is

the set of tasks associated with flow j and Mj is the total number of tasks for flow j

given by:

Tasksj = {T1j, T2j , T3j , ... ,TMjj}

Corresponding to the tasks are task times (i.e., the time for executing the tasks on a

given pipeline stage), tij. For flow j, the set of task execution times is:

TaskT imesj = {t1j, t2j , ... ,tMjj}

These times will be obtained experimentally using a processor simulator under zero

cache miss conditions. This permits us to separate out the effects of memory ar-

chitecture from the pure computational requirements of the applications. To take

application/task memory usage into account, each task has associated with it the

number of memory accesses that occur during its execution, mij. Each PE in an NP

is assumed to have local instruction memory and the memory accesses are primar-

ily required for data accesses. the memory accesses will also be obtained through

simulations. Thus, for flow j:

MEMj = {m1j , m2j , ... ,mMjj}.

The resources associated with the NP consist of PEs that may be arranged in a

pipeline manner (K identical processor stages for a single pipeline) and memory

modules (Q modules) with Q ≤ K. Thus, the set of PEs, P , and memory modules,

M , are given by :
2Note that there is generally an overhead associated with moving data between successive stages.

This can be easily dealt within the framework provided. However, for a constant overhead between
stages, this typically affects the pipeline latency but not throughput and thus does not impact task
scheduling

11

P = {P1, P2, P3, ... , PK}

M = {M1, M2, M3, ... , MQ}

The memory modules may be on-chip or off-chip and may be shared between the PEs.

The K PEs can also arranged into multiple pipelines. A two pipeline case would be

represented as :

Pipeline1 = {P1, P2, P3, ... , Pl}

Pipeline2 = {Pl+1, Pl+2, Pl+3, ... , PK}

Initially we present a less complex model, where memory delays are not a

significant factor and may be ignored in the task assignment process. Later when

memory issues are considered, the association of a processor k with a memory block

m is represented by the variable Akm. Akm = 1 indicates that the processor k has

access to the memory block m, while Akm = 0 indicates otherwise. If Q < K, then

multiple processors access the same memory block, leading to contention amongst

the processors for memory access. This may have a significant effect on system

performance and is considered later in the discussion of performance metrics.

2.2 Assignment Constraints

The task assignment problem consists of mapping the full set of tasks onto the stages

of a pipeline in a manner that preserves task ordering within a flow and optimizes a

given performance metric. The assignment of task i from flow j to processor stage k

can be expressed using the binary variable Xijk where Xijk = 1 if the task is assigned

to the processor, and Xijk = 0 otherwise. Thus, the number of tasks on a processor

k is given by:

Pnum.k =
N
∑

j=1

Mj
∑

i=1

Xijk (2.1)

Additionally, the following three constraints apply:

• The assignment process must maintain sequential task ordering. Thus, for l, 1 ≤

l ≤ Mj, for all i, j, k, r if Xijk = 1 and X(i+l)jr = 1 then k ≤ r.

12

• A task may only be assigned to a single processor. Thus for a given task i from

flow j,
∑R

k=1 Xijk = 1.

• An additional constraint is applied in situations where the same task is asso-

ciated with multiple flows. Designating tasks to be shared across flows implies

that there will be a single instantiation of the shared task and it will be assigned

to a single pipeline stage. Thus, for the case of two flows, j, s, and two tasks,

i, r, that are the same and are to share the same stage (and code):

if Tij = Trs and Xijk = 1 and Xrsm = 1 then k = m.

This can be extended naturally to more than two flows. If it is not desired to

have such sharing even though the tasks are the same, this can be dealt with

by giving the tasks different names.

The third constraint helps in conserving code space and instruction cache misses since

the application code does not get duplicated. Additionally, in designs employing

caches, it can help to reduce cache misses. However this constrains how tasks can be

assigned and thus, in certain cases may lead to a loss in performance. The general

problem considered therefore is just how to assign the tasks from each flow to the

pipeline(s) stages, in a manner that satisfies the above constraints while maximizing

an appropriate performance metric. Performance metrics are considered in Section

2.4. The next section presents a model for memory contention in the task scheduling

problem.

2.3 Memory Contention Model

The assignment of memory modules to pipeline stages may strongly impact system

performance. Since each of the pipeline stages that accesses a shared module may

encounter a delay due to contention, any task and memory module assignment must

include a method for evaluating these contention delays. If, ideally, a very fast simula-

tion of the entire NP along with the flows and associated applications were available,

13

then successive simulation runs could provide performance information from which

the best assignment could be derived. This, however, is not practical since such sim-

ulations take a long time, and to find the best assignments requires a large number

of simulation executions.

Table 2.1: A Single Flow, Single Shared Memory Example

F low Tasks T1 T2 T3

F low Task Times t1 t2 t3
F low Memory Accesses w11,w12 w21,w22,w23 w31

Pipeline P1 P2 P3

In our research, we adopt a worst case memory contention model. This per-

mits simple evaluation of memory contention delays without having to resort to a full

NP simulation. It also corresponds to the general requirement that networking com-

ponents must meet line rates under worst case conditions and, since processors and

memory accesses across pipeline stages are not synchronized in time, such worst case

conditions may occur. We are concerned here principally with data memory accesses,

and assume that sufficient local instruction memory is present on each processor stage

so that contention delays are not encountered when accessing instructions. The tech-

nique employed may be best explained by use of a simple example where a single

memory module is being considered. Assume that the memory module is shared by

three processors in a single pipeline and single flow F1 is present consisting of three

consecutive tasks T1, T2 and T3. The tasks are assigned to the processors P1, P2 and

P3 in the three-stage pipeline. Associated with each task is a set of successive memory

accesses that are designated by wij where i is the task number and j is the memory

access number. Thus, w12 is the second memory access for task 1. These are shown

for this system in Table 2.1.
Figure 2.1 shows two possible rounds of data memory accesses for the proces-

sors and depicts a worst case scenario for the memory accesses made by P1. In the

first round, while the memory request by P3 (w31) is being processed the other two

processors (P2 and P1) also make their first memory requests (w21 and w11) and these

14

= 2 + 1 = 3

1mem mem = 32 = 13mem

Memory Accesses before P1 : w12 = 1; (w22)

Contending Memory Accesses from P3 = 0

Memory Accesses delays for P1 : w11 = 2; (w21 and w31)

Contending Memory Accesses from P2 = 1; (w21)

Contending Memory Accesses from P3 = 1; (w31)

Total Contending Memory Accesses from P2 = 1 + 1 = 2

Total Contending Memory Accesses from P3 = 1 + 0 = 1

Total Contending Memory Accesses for P1 = # Contending Memory Accesses from (P2 + P 3)

P1 P2 P3

w 11

w 31

w 21

w 22

w 12

Shared Memory

Memory Request

P1 P2 P3

Queue

Memory Request
Queue

Shared Memory

= 13memmem = 32= 21mem

w 11
w 12

w 21
w 22
w 23

w 31

w 12 w 22
w 23

Contending Memory Accesses from P2 = 1; (w22)

= 2

Figure 2.1: Memory Contention Example

requests must now wait. So, while w31 is being serviced, requests w21 and w11 get

queued up and serviced in a FIFO fashion. In this situation w11 must wait until the

two requests (w31,w21) before it are completed, and only after that is w11 processed.

Similarly, if there were different orderings of requests , P2’s and P3’s requests might

also encounter such delays. Given the number of memory requests associated with

each task and a given task to stage assignment, the worst case memory delay for a

stage can be evaluated. Once this worst case delay is known, the worst case task

execution time, W , can be evaluated in terms of two components, the task execution

time without data memory delays and the worst case memory waiting time. Thus:

15

W = Task Execution time + Memory Waiting Time (2.2)

We assume that after a memory request has been made, a single threaded processor

must stall until the request is satisfied. Therefore, there cannot be more than one

pending request from a processor. Thus, the maximum number of memory requests at

any point in time will be equal to the number of processors (given that each processor

has a memory request) accessing the memory block.

While the example above has a single memory module, in general there may

be multiple modules available and part of the assignment task is to assign memory

modules to processor stages. Following the example above, for a given memory block

m, the maximum memory contention/waiting time for any processor is equal to (Rm−

1) × tmem where Rm is the number of processors assigned to the memory block m

and tmem is the time required to process a single memory request with no contention.

Since in the considered example there is only a single memory module shared between

processors, we can drop the subscript m for this case. In this case all the processors

are contending, but contention is generally less than (Rm − 1) × tmem since the

number of memory requests associated with each stage is different and, after a few

requests have been satisfied, some processors will not have any requests remaining

while others may. This is illustrated by a possible second round of memory accesses

shown in Figure 2.1. The number of memory requests required by the processors is

represented by mem1, mem2 and mem3. In the first round of memory requests, the

waiting time for w11 is (R−1) × tmem with R = 3, since all the three processors have

made a memory request (the worst case). However, in the second round of memory

accesses, again assuming a worst case so that all the processors make memory requests

together, since processor P3 does not have any more memory accesses, the memory

request by processor P1 (w12) faces contention only due to the memory request by

processor P2 (w21). Note that, after the second round, P1 is finished with all it’s

memory requests and thus, does not face any more contention from the remaining

memory requests (w23).

16

mem

while (round < Total_Rounds)

Max_Contention_For_Round = R

for (j = 1 to R)

Begin

Begin

End

Total_Contention = Total_Contention + Max_Contention_For_Round

k
round = 1

 Max_Contention_For_Round = Max_Contention_For_Round − 1

else

if (mem == 0) AND (j != k)j

End
round = round + 1

mem = mem − 1j j

Total_Waiting_Time = Total_Contention * t

Total_Rounds = mem

Figure 2.2: Worst Case Memory Contention Computation

Thus, given the number of memory requests associated with each task and the

task to stage assignment, the memory contention can be computed using the algo-

rithm shown in Figure 2.2. In the figure, memk refers to the memory accesses required

by processor k. As shown, the total number of rounds (Total Rounds) of memory ac-

cess is equal to the number of memory accesses for the processor, k, for which the

maximum contention needs to be obtained. At each round the number of contending

requests (Maximum Contention For Round) is initialized to R (the total number of

processors) assuming that all the processors need to make memory requests. Subse-

quently, the number of remaining memory requests for each processor is checked and if

a processor has completed all it’s memory requests, Maximum Contention For Round

is reduced by one since that processor does not contend for memory any more. After

each round, the number of memory requests required by each processor is reduced by

one to account for the memory request completed in that round for each processor.

The Maximum Contention For Round for all the rounds is added up to obtain the

total waiting time for a processor to complete all it’s memory requests.

17

The expression to calculate the worst case memory delay for each processor,

for the above described memory contention model is presented in Appendix A.

2.4 Performance Metrics

Given the formation above, to determine an optimal assignment it is necessary to

specify a performance metric. The metric of interest in the NP environment generally

relates to maximizing pipeline throughput (i.e., the number of packets processed per

second).

Consider the case where there are one or more flows, flows that may share

tasks, and (for simplicity) a single pipeline. Assume that pipeline throughput is

limited by the maximum stage execution time taken over all stages in the pipeline.

The execution time for a stage is determined by the tasks assigned to each stage and

the memory modules assigned to each processor. Thus, the execution time for a single

flow j, on a given stage k is given by:

sjk =
Mj
∑

i=1

Xijktij + (cjk ∗ tmem) (2.3)

where (cjk ∗ tmem) is the additional time required due to contention for memory. cjk

as described in the previous section, represents the number of contending memory

accesses for tasks of flow j that are assigned to stage k and tmem is the time required

to process a single memory request without contention. The worst case value of

cjk can be determined as described in the previous section. The maximum stage

execution time for flow j across all the R stages is:

Pj =
R

max
k=1

[sjk] =
R

max
k=1

Mj
∑

i=1

Xijktij + (cjk ∗ tmem)

(2.4)

The maximum stage execution time over all flows and stages is given by:

P =
N

max
j=1

Pj =
N

max
j=1

R
max
k=1

Mj
∑

i=1

Xijktij + (cjk ∗ tmem)

(2.5)

To maximize packet throughput, the problem becomes one of finding a task and

memory assignment that minimizes P since packet throughput ≈ 1/P .

18

2.5 Complete Enumeration Method

A straight forward method of finding the task and memory assignment that minimizes

P is to perform a complete enumeration of all possible assignments, identify feasible

assignments (i.e., those that satisfy the constraints discussed above), and select the

optimum one. Since the multi-processor pipelines are supposed to be programmed

offline, this method may not seem very expensive. However, even restricted versions

of this problem have been proven to be NP Hard [22] and for a complex configuration

of flows, stages and tasks per flow, it could take years to compute the optimal assign-

ment, using the complete enumeration method. However, the complete enumeration

method was implemented and used in evaluation of the other approaches for limited

cases when the problem size was small.

Consider first the complexity associated with performing only task assignments

for the single flow case where there are M tasks present and R identical pipeline stages.

An upper bound on the number of combinations that must be examined for each flow,

corresponds to the standard problem of calculating the number of ways of placing M

identical balls into (M + R − 1) bins and is given by :

Number of Assignments For Each F low ≤

(

Mj + R − 1

Mj

)

(2.6)

With N flows present each flow having Mj tasks, the number of combinations increases

by the product of combinations possible with each flow. Thus:

Number of Assignments ≤
N
∏

j=1

(

Mj + R − 1

Mj

)

(2.7)

Accordingly, assuming that the complexity of obtaining each assignment is O(1),

the time complexity of enumerating all the task assignments will be approximately

O(((M+R)!
M !R!

)N). However if the flows are independent with no shared tasks and a

separate memory module for each processor stage, the combinations for each flow

can be enumerated independently and the complexity in that case will be given by

19

O(((M+R)!
M !R!

)N). Equation 2.7 results in the worst case count of combinations. This

will decrease (sometimes significantly) when there are more tasks common between

the flows (i.e., shared), however, even with this reduction, the factorial and product

components may result in the complete enumeration approach being infeasible for

analyzing practical systems. The complexity increases further if the memory modules

are shared between stages. With shared memory modules, the contention for each of

the R stages needs to be computed. The complexity for computation of contention

for each stage will depend on the memory module sharing. Thus, considering a

worst case scenario such that a single memory module is shared between all the R

stages, from Equation A.3 (Appendix A), each memory contention computation for a

processor requires a comparison of memory accesses with all the other R−1 processors.

Given that, the complexity for memory contention calculation for all the R stages is

approximately O(R2). Thus, the complexity of enumerating all the task assignments

with memory contention calculation with a single memory module shared between all

the R processors is given by O(((M+R)!
M !R!

)N × (R2)).

0.001

0.01

0.1

1

10

100

1000

10000

2 3 4 5 6 7 8 9 10

 T
im

e
 (

se
cs

)

 # Stages

One Flow
Two Flows
Four Flows

Figure 2.3: Variation in execution time
for flows with no shared tasks

0.001

0.01

0.1

1

10

100

1000

10000

100000

2 2.5 3 3.5 4 4.5 5 5.5 6

 T
im

e
 (

se
cs

)

 # Stages

Two Flow
Three Flows
Four Flows

Figure 2.4: Variation in execution time
for flows with shared tasks

Figures 2.3 and 2.4 illustrate the effect on the execution time of the complete

enumeration method when the number of stages in a pipelined processor system

is varied. Each datapoint represents an average of 10 experiments. The number

of tasks in each flow is equal to twice the number of stages for each experiment.

20

Figure 2.3 shows experiments for systems with independent flows (no shared tasks)

while Figure 2.4 shows experiments for flows with shared tasks. With the increase

in number of flows in the system, for systems with independent flows, there is a

linear increase in execution time whereas for systems with shared tasks the increase

in execution time is almost exponential. The figure with shared tasks shows limited

experiments due to very high execution times for systems with more than 4 stages.

This chapter provided a formal definition of the task scheduling problem and

the constraints associated with it. Additionally, it also presented a memory con-

tention model for the class of problems with limited or shared resources (memory

in this case). This model was subsequently used to present the performance metric

for the task scheduling problem. Chapters 3, 4, and 5 introduce three different ap-

proaches to allocate tasks to processors and use the described metric to demonstrate

the effectiveness of the approaches under the given constraints.

21

Chapter 3

Greedypipe - A Heuristic

Greedypipe is a heuristic based, in part, on a greedy algorithm. It gives no guarantee

of finding an optimal solution, however, it provides solutions quickly and tests indicate

that it finds a near optimal solution most of the time. Note also that the algorithm

was developed for solving the cases of multiple flows with shared tasks, but does

not directly extend to the shared memory environment. Section 3.1 describes the

Greedypipe algorithm and uses an example to further illustrate the application of the

algorithm. Section 3.2 discusses the complexity of Greedypipe and Section 3.3 the

algorithm’s performance.

3.1 Greedypipe Algorithm

Ideally, one would like an assignment where, for each flow, the total execution times

of flow tasks associated with each stage are equal. Using the notation introduced in

Chapter 2, the total time for executing the tasks associated with flow j is given by:

TotalT imej =
Mj
∑

i=1

tij (3.1)

With R stages in the pipeline, as indicated, an optimal allocation of tasks to pipeline

stages is one where the execution time for each stage is equal. Under these conditions,

the ideal delay per stage for flow j is :

22

Ideal.Delay.per.Stagej = TotalT imej/R (3.2)

and the resulting maximized throughput is :

Packet.Throughputj = 1/Ideal.Delay.per.Stagej (3.3)

Thus, Step 1 of the GreedyPipe is to calculate this ideal delay (Equation 3.2). Actual

task times and assignments that satisfy the constraints noted in Chapter 1 will how-

ever generally result in unequal execution times associated at each stage. The best of

the possible assignments, however, will be the one(s) that come closest to that ideal.

Consider the time for execution of all flow j tasks on stage k as given by:

tjk =
Mj
∑

i=1

Xijktij (3.4)

Since, throughput is calculated from the inverse of the maximum stage execution

time, the optimum assignment for flow j is one that minimizes the value of Varj in

the expression given by Equation 3.5.

V arj =
R

max
k=1

{|[tjk] − Ideal.Delay.per.Stagej|} (3.5)

When multiple flows are present there are potentially shared tasks that compli-

cates task assignment. However, various assignments will meet the above constraints

and selecting the optimal now requires Equation 3.5 to be expanded so that the

throughput across all the flows is maximized. This can be achieved by selecting the

task to stage assignment that minimizes the maximum Varj across all flows:

V ar =
N

max
j=1

V arj =
N

max
j=1

{

R
max
k=1

{|[tjk] − Ideal.Delay.per.Stagej|}
}

(3.6)

This metric attempts to equalize both the distribution of tasks to stages on a per flow

basis and also on an aggregate flow basis. Note that, at a given stage m, potentially

there may be multiple allocations for which the minimized V ar has the same value.

A simple tie breaking algorithm is used that selects the assignment, over all flows,

23

that minimizes the sum, S (Equation 3.7), of the differences between the ideal delays

and the assigned delays.

S =
N
∑

j=1

(|[tjm] − Ideal.Delay.per.Stagej|) (3.7)

3.1.1 Greedypipe: Overall Algorithm

The overall heuristic begins by calculating the Ideal.Delay.per.Stage for each of the

flows (Step 1). Task to stage allocations start with the first processor stage. Two

sets of tasks, satisfying the constraints, are selected from each of the flows for allo-

cation to this processor (Step 2). The first set is chosen so that the variation, V arj,

given by Equation 3.5 is minimized and is also a positive number. The second set

is chosen similarly, however, V arj is required to be a negative number. Thus the

ideal delay value is bracketed. Additional sets that satisfy the constraints may be

chosen at the cost of increased complexity and execution time. At this point, there

are two allocations associated with each flow for the first processor and thus there

are thus (2)N possible combinations of flow allocations. Each of these combinations

is examined and the ”best” two are kept for use in performing task assignments for

the next pipeline stage(Step 3). The best two correspond to the two that, for this

stage, minimize V ar as expressed in Equation 3.6 with R = 1.

Assignments for the next pipeline stage are now considered. The process begins by

first calculating new Ideal.delay.per.stage values based on unallocated tasks and the

number of remaining pipeline stages. Next, each of the two best allocations from

the prior stage is used as a starting point for determining the best task-to-stage

assignments for the current stage. For each of these and for each flow, two ”best”

assignments (positive and negative) are selected. As before, all combinations of these

flow assignments are then examined and the two that minimize V ar (Equation 3.6)

with R = 2 are now kept as starting points for considering the next pipeline stage

(Stage 3). This process continues until all stages in the pipeline are examined and a

24

complete assignment has been done. The best of the final stage two assignments is

now kept.

Notice that the algorithm has an implicit ordering aspect to it such that tasks

and stages are considered in their first-to-last order. While in general this does well,

given that local conditions determine allocations at each stage, it will not always result

in the optimal allocation. To improve the results one can apply the same heuristic,

however, start from the last task and stage, and apply the heuristic in a last-to-first

order. Thus, in GreedyPipe the algorithm is applied in both directions with the final

assignment being the best of the two.

3.1.2 A Simple Example

To illustrate operation of the GreedyPipe we present a simple single flow example

that has five tasks and a three stage pipeline. The task times are given in Table 4.1.

Table 3.1: A Single Flows with five ordered tasks

Task 1 Task 2 Task 3 Task 4 Task 5

Flow 1 T1 T2 T3 T4 T5

Task Execution Times 2 5 3 1 3

Begin by calculating the Ideal.Delay.per.Stage as 4.66 (e.g., (2 + 5 + 3 + 1 + 3)/3 =

4.66). Next consider allocations to stage 1 and calculate V ar1. This is shown in

complete form in Table 3.2 although clearly not all calculations need be done.

Table 3.2: All possible allocations for Stage 1

Stage 1 V ar1 Best
Allocation Selections

T1 V ar1 = 4.66 − 2 = 2.66 +
T1, T2 V ar1 = 4.66 − (2 + 4) = − 1.34 −
T1, T2, T3 V ar1 = 4.66 − (2 + 4 + 3) = − 4.34
T1, T2, T3, T4 V ar1 = 4.66 − (2 + 4 + 3 + 1) = − 5.34
T1, T2, T3, T4, T5 V ar1 = 4.66 − (2 + 4 + 3 + 1 + 3) = − 8.34

25

The best positive selection corresponds to a stage 1 assignment of T1, while the

best negative selection corresponds to T1, T2. Starting with these selections, stage

2 assignments are now considered. Two new Ideal.Delay.per.Stage values are now

calculated based on stage selections 1 and 2 above. They are:

Ideal.Delay.per.Stage1 = [(5 + 3 + 1 + 3)/2] = 6.0

and

Ideal.Delay.per.Stage2 = [(3 + 1 + 3)/2] = 3.5.

A new set of possible allocations is now calculated. Table 3.3 shows the four

assignments associated (Equation 3.5) with the starting allocations of stage 1. From

these four, the two best are selected for consideration (noted with a *). The heuristic

then breaks the 2.3 tie by employing the tie breaking algorithm. From Equation 3.7,

since 1.0 < 2.0, the second entry in the table is selected. Since GreedyPipe retains

two choices at each stage, the lower two choices are now examined. They are tied

both in terms of the Max calculation (1.7) and the use of tie breaker. Thus, for this

situation one of them is arbitrarily selected.

Table 3.3: Best allocations for Stage 2

Stage 2 Allocation

Stage 1 Stage 2 V ar2 Max Best
[|V ar1|, |V ar2|] Selections

T1 T2 V ar2 = 6.0 − 4 = 2.0 2.3
T1 T2, T3 V ar2 = 6.0 − (4 + 3) = − 1.0 2.3 ∗
T1, T2 T3 V ar2 = 3.5 − 3 = 0.5 1.7
T1, T2 T3, T4 V ar2 = 3.5 − (3 + 1) = − 0.5 1.7 ∗

The two stage 2 allocation choices are now the starting point for examining

the possible assignments for stage 3 as shown in Table 3.4. Since this is the last

stage, all the remaining assignments are dictated by prior stage assignments. For this

example, as Table 3.4 indicates, there are two best assignments. The same process is

now repeated starting from stage 3 and task 5 and working in the reverse direction.

For this case, the best assignments are the same as obtained in the forward direction.

26

Additionally, the maximum stage delay (7) for these is also the same as obtained when

using a complete enumeration approach to find the optimal. Thus, in this example

the heuristic yielded the optimal assignment.

Table 3.4: Best allocations, forward direction

Stage 3 Allocation

Stage 1 Stage 2 Stage 3 Max. Stage Time
T1, T = 2 T2, T = 5 T3, T4, T5, T = 7 7
T1, T2, T = 7 T3, T4, T = 4 T5, T = 3 7 ∗

3.2 Complexity of Greedypipe

We now determine the time complexity of the Greedypipe algorithm. Since the algo-

rithm execution varies depending on whether there are shared tasks between flows,

we will find the complexity for two cases:

• Multiple flows with no shared tasks.

• Multiple flows with shared tasks.

3.2.1 Multiple Flows with no shared tasks

In this case, since there is no dependency between flows, each flow can be handled

independently. We have seen that Greedypipe progresses from the first stage to the

last stage and then for better results does a reverse traversal. The operations at

each stage are almost the same. Thus, with no dependency between the flows, the

allocation can be done for one flow at a time. Since the operations at each stage are

almost the same, we will find the complexity for a single stage execution and extend

it to include multiple stages and flows. At each stage, except for the first stage, there

are two initial starting points and for each one, selections are made in accordance

with Equations 3.5 and 3.6. The complexity of these operations per stage is roughly

O(1). Now, since the same operation needs to be done for all the stages and flows,

27

the complexity for a complete execution of the algorithm would be given by O(NR),

where N is the number of flows and R is the number of stages.

3.2.2 Multiple Flows with shared tasks

The flows in this case cannot be treated independently since the shared tasks need

to be allocated to the same stage (third constraint). However, the operations at

each stage are almost the same. At each stage, again there are two initial starting

points depending on the previous stage allocations. After making the selections using

Equation 3.5, each selection is combined with the selections of the other flows which

leads to 2N combinations for N flows, and the ”best” two of these combinations

are selected. Thus, the complexity of each stage operation would be O(2N) and the

complexity of execution over all the stages will be O(2NR).

The space complexity for both the cases is of the same order as their time

complexity. A performance comparison in terms of complexity, for all the algorithm

approaches discussed in this thesis will be done in Chapter 7.

3.3 GreedyPipe Performance

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 10 20 30 40 50 60 70 80 90 100

 %
 C

as
es

 w
ith

 E
rr

or

 % Error

Flows = 3, # Tasks = 15, # Stages = 5 No Sharing

Figure 3.1: % Error vs % Cases with Error

28

There are two elements associated with evaluating GreedyPipe performance.

The first concerns how closely GreedyPipe results match the true optimal results.

While no analytic bounds on the errors have been developed, extensive experimenta-

tion has been performed where the results of GreedyPipe were compared with the true

optimal as obtained by running the time consuming complete enumeration method

explained in Chapter 2. For each experiment, the task times were randomly selected

from a uniform distribution ranging from 0 to 10 time units. Figure 3.1 shows the

results for a system with 3 flows and 10 tasks per flow with no sharing between the

tasks. The pipeline consisted of 5 stages and the task to stage assignment was done

using Greedypipe. A total of 500 experiments were conducted on the described sys-

tem where, as mentioned before, the task times for each experiment were generated

randomly. The figure shows that the error is never more than 15% of the optimal and

that less than 1% of results produced by Greedypipe were non-optimal.

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 2 3 4 5 6 7 8 9 10

 %
 C

as
es

 w
ith

 E
rr

or

 # Stages

 % Cases within 5% of Optimal
% Cases within 10% of Optimal
% Cases within 15% of Optimal

Figure 3.2: % Error vs Number of Stages

Figure 3.2 shows the effect of increase in number of stages on the performance

of a system. The system consisted of 3 flows and the number of tasks in each flow was

equal to three times the number of stages with no shared tasks between the flows.

The number of stages was varied from 2 to 10 and 50 experiments were conducted for

each configuration. The results show that the number of non-optimal cases increases

with the increase in the number of stages. Almost all experiments result in an error

29

less than or equal to 15% of the optimal. With more stages, the heuristic selection at

the earlier stages gets propagated to longer pipeline depths and thus the probability

of it leading to an overall optimal solution is reduced.

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90

 %
 C

as
es

 w
ith

 E
rr

or

 % Sharing

 % Cases equal to Optimal
 % Cases within 10% of Optimal

% Cases within 20% of Optimal
% Cases within 30% of Optimal

Figure 3.3: % Error vs % Sharing

Figure 3.3 shows another set of experiments on a system with 3 flows and 9

tasks in each flow with tasks shared between the flows. The percentage sharing of

tasks between flows was varied from 10% to 90% and the tasks were assigned to a 3

stage pipeline using Greedypipe. The results were averaged over 50 experiments for

each configuration. The figure shows that up to a point, the percentage of cases with

error increase with the increase in sharing of tasks. With tasks shared between flows,

the flows cannot be treated independently and at each stage results for each flow are

combined with that of other flows to select a probable allocation for that stage. This

leads to more number of choices available at each stage and thus the probability of

the selection at a stage leading to an overall optimal allocation reduces. Beyond 60%

sharing, the percentage of cases with error decreases with sharing since with extensive

sharing, there are very few valid allocations possible.

Overall, over a wide range of randomly generated conditions, 98% of the time

GreedyPipe results are within 15% of the optimal and in no case was the GreedyPipe

result greater than 25% from the optimal. The results however varied with the number

30

of stages in the pipeline and the percentage of shared tasks associated with different

flows.

The experiments were conducted for systems containing 1 to 3 flows, task

sharing varying from 0% to 75% and the number of tasks per flow being equal to

three times the number of stages. The number of stages were varied from 1 to 5

for systems with shared tasks while problems with up to 10 stages were considered

for systems with no task sharing between the flows. A set of 50 experiments were

conducted for each possible combination of the above described parameters. The

overall results are as follows:

• For small systems involving 2 or 3 stages; 95% of the time the optimal solution

was obtained and 98% of the time the result was within 10% of the optimal.

• For larger systems involving 4 or 5 stages; 72% of the time the optimal solution

was obtained and 96% of the time the result was within 10% of the optimal.

• For all systems, when the percentage of task sharing was 25% or less, nearly

100% of the time the result was within 10% of the optimal. When there was

no task sharing, more than 99% of the time GreedyPipe obtained the optimal

result.

The second aspect of performance, execution time, is discussed in Chapter 7.

31

Chapter 4

Dynamic Programming

Dynamic Programming (DP) is an important optimization technique [6]. It is efficient

in finding optimal solutions for cases with many overlapping subproblems. It solves

problems by successively recombining solutions to subproblems and sub-subproblems.

In order to avoid solving these sub-subproblems several times, their results are grad-

ually computed and memorized, starting from the simpler problems, until the overall

problem itself is solved. Thus, dynamic programming is simply memorization of re-

sults of a recurrence, so that time is not spent trying to solve the same subproblem

(or problem) repeatedly. Dynamic programming can only be applied when the prob-

lem under concern has optimal substructure [19]. Optimal substructure means that

the optimal solutions of local problems can lead to the optimal solution of the global

problem. In simple terms, that means that the problem can be solved by breaking it

down and solving the simpler problems.

In a multi-processor system, if each processor has a separate data memory

module associated with it, there will be no memory contention overheads. However,

if the number of memory modules is less than the number of processors, the typical

case, memory modules will be shared between processors and the overhead due to

memory contention needs to be considered when obtaining the optimal allocation.

As described in Chapter 2, memory contention overhead can be calculated only after

32

the complete allocation of tasks is known. In this chapter, we describe the applica-

tion of DP to the task scheduling problem, however since DP divides the problem

in to smaller subproblems and deals with one stage at a time it is not possible to

consider memory contention while obtaining the optimal solution. Finding the opti-

mal task and memory module assignment is considered in Chapter 5 using Simulated

Annealing.

4.1 Dynamic Programming for Task Scheduling

As indicated above, we consider here a simpler form of the scheduling problem such

that each processor has a different memory module allocated to it. Thus, there are

no contention overheads and, with cjk = 0, the performance metric (Equation 2.5) is

reduced to:

P =
N

max
j=1

Pj =
N

max
j=1

K
max
k=1

Mj
∑

i=1

Xijktij

(4.1)

We further simplify the problem to a single flow, F1, with tasks

T = {T1, T2, T3, ..., TM}

where M tasks are to be assigned to a pipeline of R processors.

This problem can also be viewed as a partitioning problem where M consec-

utively ordered tasks are to be partitioned into R intervals such that the maximum

time needed to execute the tasks in any interval is minimized. A. Bokhari proposed

a dynamic programming solution for this problem in [36] which was further refined

by Anily and Federgruen in [33] and Manne and Olstad in [10].

We start by describing the algorithm in [33]. To apply dynamic programming,

the optimization problem is first divided into multiple subproblems. Let f be a

function that gives the delay associated with the tasks allocated to a stage such that

f(i, j) =
j
∑

l=i

tl ≥ 0 (4.2)

33

for 1 ≤ i, j ≤ M , with equality if and only if j < i. Let d(j, k) represent the maximum

processing stage delay over all R stages when tasks {T1, T2, ..Tj} in a flow are assigned

to k stages where 1 ≤ j ≤ M and 1 ≤ k ≤ R. Then d(M, R) will give the optimal

delay of allocating M tasks to R stages (i.e., a task assignment that minimizes the

maximum delay). From Equation 4.2, the cost of assigning the first j tasks to a single

stage is given by :

d(j, 1) = f(1, j) =
j
∑

i=1

ti (4.3)

For any value of j, 1 ≤ j ≤ M , d(j, k) can be computed for 2 < k ≤ R by using the

recursion given by Equation 4.4.

d(j, k) =
j−1

min
i=k−1

(max[d(i, k − 1), f(i + 1, j)]) (4.4)

Stage 2

T1 T2 T3 T4

3

2

1 d(1, 1)=t1

d(3, 1)=t1+t2+t3

d(2, 1)=t1+t2

max{d(2,1), f(3,4)}2

max{d(1,1), f(2,4)}1

max{d(3,1), f(4,4)}3

min = d(4,2)

Stage 1

T1 T2 T3 T4

f(4,4)d(3,1)

d(2,1) f(3,4)

f(2,4)d(1,1)

Figure 4.1: Dynamic Programming

Thus, as shown by Equation 4.4, the problem is divided with respect to stages and

each stage can have multiple states (for different values of j) where each state is

defined by the number of tasks allocated up to that stage. Each state at each stage

34

represents an optimal allocation. Note that the optimal solutions at stage k are

dependent only on the optimal solutions at stage k− 1. Thus, given the states at the

current stage, the optimal decision for the next stage does not depend on the previous

stages but on the states at the current stage. There exists a recursive relationship

that identifies the optimal decision for stage k, given that stage k − 1 has already

been solved, so that d(M, R) can be computed by finding the values for all the states

for stages 1 ≤ k ≤ R. Since d(M, R) gives only the optimal delay, the actual task

allocations associated with it can be obtained by reverse traversal of the states in the

previous stages. The lower limit on i is set to k− 1 to ensure that there is atleast one

task allocated to each stage.

Equation 4.4 can be better explained using the example in Figure 4.1. The

example illustrates application of DP to the tasks in a single flow to be allocated to

two stages. The flow consists of four tasks, T1, T2, T3 and T4, with their execution

times given by t1, t2, t3 and t4 respectively. At the first stage, there are four possible

states depending on the number of tasks selected (i.e., d(1, 1), d(2, 1), d(3, 1) and

d(4, 1)). The figure does not show the fourth state, d(4, 1), since if all the four tasks

are allocated to the first stage, stage 2 will be empty.

Consider next the second stage. At this stage, all the algorithm requires is

the knowledge of the number of tasks already allocated in the previous stages (in

this case just the first stage) and the optimal value for the allocations. Accordingly,

the optimal state values at stage 1 are used to obtain the values for all the possible

states at stage 2. At stage 2, there are 4 possible states, d(1, 2), d(2, 2), d(3, 2),

d(4, 2). However, the algorithm selects only the value of d(4, 2) since it is the optimal

delay when all the 4 tasks are allocated to 2 stages. The figure shows the possible

allocations at stage 2 for the state d(4, 2). As the figure indicates, d(4, 2) is obtained

by selecting the allocation that minimizes the maximum delay which is equivalent to

obtaining the minimum value by using the Equation 4.4 as :

d(4, 2) =
4−1
min
i=2−1

(max[d(i, 2 − 1), f(i + 1, 4)]) (4.5)

35

Thus, if d(4, 2) = max{d(3, 1), f(4, 4)}, then allocating the first three tasks to the

first stage and the fourth task to the last stage gives an optimal solution.

For multiple flows, the same approach can be applied as long as there are no

shared tasks between the flows. Since there is no dependency between the flows,

tasks in each flow are assigned independently of those in the other flows. Thus, if

there are N flows, the problem is reduced to solving N problems independently, and

combining the results to get the optimal allocation for N flows. The next section

demonstrates application of dynamic programming to the task scheduling problem

using an example.

Table 4.1: A Single Flow with five ordered tasks

Task 1 Task 2 Task 3 Task 4 Task 5

Flow 1 T1 T2 T3 T4 T5

Task Execution Times 2 4 3 1 3

4.1.1 Example

A simple single flow example with five tasks and a three stage pipeline is now pre-

sented. The task times are as given in Table 4.1. The algorithm starts by calculating

d(j, 1) for 1 ≤ j ≤ 5. Thus using Equation 4.3, for k = 1, the optimal solutions at

Stage 1 are as shown in Table 4.2.

Table 4.2: Optimal Solutions at Stage 1

j f(1,j) d(j,1)

1 2 d(1,1)=2
2 2+4=6 d(2,1)=6
3 2+4+3=9 d(3,1)=9
4 2+4+3+1=10 d(4,1)=10
5 2+4+3+1+3=13 d(5,1)=13

Subsequently, Equation 4.4 is use to obtain the optimal solutions at Stage 2 from

those at Stage 1. Thus, at Stage 2, there will be three possible states corresponding

to 2 ≤ j ≤ 4 and k = 2, given by

36

Table 4.3: Possible States at Stage 2

j d (j, 2)

2 min 2−1
i =1 (max [d(i, 1), f(i + 1, 2)]))

3 min 3−1
i =1 (max [d(i, 1), f(i + 1, 3)]))

4 min 4−1
i =1 (max [d(i, 1), f(i + 1, 4)]))

The optimal values associated with each state at Stage 2 are as shown in Table 4.4.

d(5, 2) need not be computed at Stage 2 since at least one task needs to be left

unassigned for Stage 3. If T5 is allocated to Stage 2, Stage 3 will have no tasks

assigned to it.

Table 4.4: Optimal State Values at Stage 2

j i = 1 i = 2 i = 3 d (j , 2)

2 max [d(1,1), f(2,2)] d(2,2) = 4
=max [2,4] = 4

3 max [d(1,1), f(2,3)] max [d(2,1), f(3,3)] d(3,2) = 6
=max [2,7] = 7 =max [6,3] = 6

4 max [d(1,1), f(2,4)] max [d(2,1), f(3,4)] max [d(3,1), f(4,4)] d(4,2) = 6
=max [8,2] = 8 =max [4,6] = 6 =max [1,9] = 9

Similarly the states and the optimal values associated with the states for Stage 3 are

shown in Table 4.5 and 4.6.

Table 4.5: Possible States at Stage 3

j d (j, 3)

3 min 3−1
i =2 (max [d(i, 2), f(i + 1, 3)]))

4 min 4−1
i =2 (max [d(i, 2), f(i + 1, 4)]))

5 min 5−1
i =2 (max [d(i, 2), f(i + 1, 5)]))

We focus only on the value of d(5, 3) since that gives the cost of optimally allocating

all the 5 tasks to 3 stages.

Now that the optimal delay is obtained, the stages need to be traversed in a

reverse order to obtain the task allocation associated with the optimal delay. At stage

37

Table 4.6: Optimal State Values at Stage 3

j i = 2 i = 3 i = 4 d(j,3)

3 max [d(2,2), f(3,3)] d(3,3) = 4
=max [4,3] = 4

4 max [d(2,2), f(3,4)] max [d(3,2), f(4,4)] d(4,3) = 4
=max [4,4] = 4 =max [6,1] = 6

5 max [d(2,2), f(3,5)] max [d(3,2), f(4,5)] max [d(4,2), f(5,5)] d(5,3) = 6
=max [4,7] = 7 =max [6,4] = 6 =max [6,3] = 6

3, there are two states that lead to the optimal delay for values of i = 3 and i = 4.

The optimal allocations at stage 3 are associated with the values d(3, 2) and d(4, 2)

at stage 2. Thus, there are two optimal allocations obtained from Tables 4.6 and 4.4,

each with the same maximum delay of T = 6. The optimal assignments are shown in

Table 4.7.

Table 4.7: Optimal allocations

Allocations Stage 1 Stage 2 Stage 3
1 T1, T2, T = 6 T3, T = 3 T4, T5, T = 4
2 T1, T2, T = 6 T3, T4, T = 4 T5, T = 3

The next section discusses a variation in the dynamic programming algorithm to

address the problem of dealing with shared tasks between multiple flows.

4.1.2 Multiple Flows with Shared Tasks

The problem becomes much more complex when there are tasks shared between the

flows, since the flows cannot be treated independently. Let us denote d(j, k) for flow

F1 as dF1(j, k), for flow F2 as dF2(j, k) and so on. Similarly, let f(j, k) for flow F1 be

denoted by fF1(j, k), for flow F2 be denoted by fF2(j, k) and so on. Equation 4.4 in

Section 2.1 is now modified for multiple flows with shared tasks. For two flows the

equation is given by :

38

d(j1, j2, k) =
j1

min
i1=1

[
j2

min
i2=1

(max[dF1(i1, k1 − 1), fF1(i1 + 1, j1), dF2(i2, k2 − 1), fF2(i2 + 1, j2)])]

(4.6)

Equation 4.6 indicates that at each stage, there will be j1× j2 states and every

state is computed by combining each possible solution for flow F1 with that of flow

F2. Also the limits in this case change since we may not want to force allocating at

least one task of each flow to each stage. When the max value in the equation is

evaluated, the validity of the allocation is checked, so that a shared task in different

flows should not be allocated to different stages. Consider a case with 2 flows, F1

and F2 with shared tasks. fF1 now includes a shared task at some stage k while fF2

does not include the shared task at that stage. This implies that if this allocation is

considered valid, the shared task will not be allocated to the same stage. To comply

with the allocation constraints, such allocations where the shared task is assigned to

different stages are marked invalid and not considered in obtaining the optimal value

for a state. The above equation can be extended to include N flows, however for

larger values of N the complexity of the solution will be very high.

4.2 Complexity

For convenience, we reproduce Equation 4.4.

d(j, k) =
j−1

min
i=k−1

(max[d(i, k − 1), f(i + 1, j)]) (4.7)

In Equation 4.7, computation of each value of f can be assumed to have a complexity

of O(1). To obtain each value of d(j, k) for k − 1 ≤ i ≤ j − 1, (j − 1) − (k + 1)

values of f need to be computed which will lead to a complexity of roughly O(M)

for M tasks in a flow. Also, for M tasks in a flow, at each stage M − k states (k

less since we do not want to leave any stage empty) will be possible and thus M − k

values of d need to be computed at each stage for use at the next stage. Thus, at each

39

stage the complexity for computing all the possible states is given by O(M 2) while

the time complexity for a single flow allocation to R stages is O(M 2R). Accordingly,

the time complexity for N independent flows to be allocated to R stages will be given

by O(M2RN).

For two flows with shared tasks, from Equation 4.6, each value of d requires

computation of j1 × j2 values of the function f . Thus the complexity of computing

each value of d is given by O(M 2) for M tasks in each of the two flows. Again, there

will be j1 × j2 states possible at each stage. Therefore, the time complexity for R

stages for the two flows is given by O((M 2)2R). Consequently, for N flows, there will

be j1 × j2 × j3...jN values of d computed at each stage and the same number of states

also will be possible at each stage. Thus, the time complexity for N flows will be

given by O((M)2NR). A comparison of the complexity of the dynamic programming

solution with the other approaches described in the thesis will be presented in Chapter

7.

Chapter 5 describes a statistical approach to solve the task scheduling problem

that takes into consideration the overheads due to memory sharing.

40

Chapter 5

Simulated Annealing - A Statistical

Approach

Simulated annealing exploits an analogy between the way in which a metal cools and

finally freezes [29] (the process of annealing) achieving a minimum energy crystalline

structure, and the search for a state minimizing a specified performance metric or

objective function in a general system. In an annealing process, an initial state of

a system, approximately in thermodynamic equilibrium is chosen at energy E and

temperature T. Holding T constant, the initial configuration is perturbed and the

change in energy dE is computed. If the change in energy is negative the new system

state after perturbation is accepted. If the change in energy is positive, the new

system state is accepted with a probability given by the Boltzmann factor e−(dE/T).

For the current temperature, this process is then repeated a sufficient number of times

to come close to the minimum energy state for that temperature. The temperature

is then decremented and the entire process repeated until the system approaches

the lowest energy level possible at T=0 where, in a real annealing environment, the

material becomes a single crystal.

Simulated Annealing, a generalization of this process to combinatorial opti-

mization problems, was first proposed by Kirkpatrick in [34]. It attempts to minimize

41

Yes

Start

Make a Step

Yes

No

No

than current cost ?
New Cost Better

Randomized acceptance
according to the

current temperature

Is accepted ?

Replace current

solution by new solution

Decrease the temperature
by a specified factor

Reached lower limit
for the temperature ? End

for this temperature ?
Reached maximum tries

Yes

No

YesNo

Figure 5.1: Simulated Annealing Flow Diagram

a given objective function over the entire system state space. Solutions in a combi-

natorial optimization problem are analogous to states in a thermodynamic system,

the cost of a solution is equivalent to the energy of a state and ground state (i.e.,

state at which T=0) is analogous to the global minimum of the objective function.

The major difficulty in implementation of the algorithm is that there is no obvious

analogy for the temperature T with respect to a free parameter in the combinatorial

problem. Furthermore, it’s ability to avoid local minima is dependent on the ”anneal-

ing schedule”; the choice of initial temperature, how many iterations are performed

at each temperature, and how much the temperature is decremented at each step as

cooling proceeds. Figure 5.1 shows the flow diagram for a generic simulated annealing

process.

42

5.1 Simulated Annealing for Task Scheduling

For the task/pipeline system in question one must first define a set of states. In this

problem domain that set constitutes all the possible allocations of tasks to pipeline

stages that satisfy system constraints (e.g., maintaining task ordering). To implement

the algorithm we must now decide on the following items

• Step Change : a generator of random changes in task-to-stage allocations.

• Annealing Schedule : rules for lowering the temperature as the search progresses.

• Initialization : initial allocation of tasks and inital temperature.

5.1.1 Step Change

A step constitutes a move from one state to another. A step must be defined so that

over a set of random steps, if the number of steps is sufficiently large, it must be

possible to reach every state in the system.

T1 T2 T3 T4 T5 T6 T7 T8 T9Original Layout

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

After Step 1

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

After Step 2

Figure 5.2: A Step in Simulated Annealing

In the system considered here we assume that we are given a memory to stage

assignment and restrict ourselves to steps that involve the movement of tasks from

one stage to another. Another approach is to include the memory assignment as a

part of the state definition. This was not considered in this thesis. Thus, for example,

Figure 5.2 shows a system with a single flow consisting of nine tasks and a three stage

pipeline. Two successive steps are illustrated. The two vertical lines delineate the

43

tasks associated with each stage. The first step moves T3 from stage 1 to stage 2 while

the second step moves T7 from stage 3 to stage 2. Note that a step in this system

involves randomly moving one stage boundary task from one stage to an adjacent

stage. By restricting the step in this manner, task ordering is maintained. After

each step, the throughput associated with the given task assignment and memory

configuration is evaluated. If the throughput is greater, then the step has moved

the system closer to an optimum value. Another step is then taken and the process

repeated.

When a step results in a decrease in throughput, then another aspect of the

simulated annealing algorithm is employed. In order to guarantee that the entire state

space is explored and that a global optimum is found, under certain circumstances, a

step that results in a lower throughput is accepted. This acceptance of a less optimum

state is determined if the inequality shown below is satisfied.

p < e(NewThroughput−PreviousThroughput)/Temp (5.1)

p is a random number between 0 and 1 that is generated as part of the algorithm.

Temp (temperature) is an algorithm parameter that decreases over the course of the

optimization procedure. Thus, for each step that results in a lower throughput, p

is generated and if the inequality is satisfied, the step and associated new state is

accepted. The process then repeats itself through Nstep steps (discussed in Section

5.1.2) before the temperature is decreased. A sequence of Nstep steps is referred to as

a temperature cycle.

5.1.2 Annealing Schedule

As the optimization procedure proceeds, Temp is periodically lowered so that the

probability of accepting lower throughput states diminishes (i.e., Tempi+1 < Tempi).

To ensure that each state is reachable and that one does not get trapped in the local

minima, the initial temperature Temp1 should be set at a reasonably high value.

We have chosen this value to be fifty times of the difference in throughputs over a

Step Change. Thus, after the initial task assignment (described in Section 5.1.3),

44

the throughput, Throughputinit, is calculated. Subsequently, a Step Change is made

which leads to a new throughput, Throughputnew, for the system. Then, the value of

initial temperature is set to :

Temp1 = |Throughputinit − Throughputnew| × 50

The number of temperature cycles is Tcycles = 10R2NM where R is the number

of stages, N is the number of flows and M is the maximum number of tasks across

all flows. After each temperature cycle is completed, Temp is reduced to 90% of

its prior value (e.g., Tempi = 0.9 × Tempi−1). After proceeding through all the

temperature cycles, the annealing/optimization process is complete. As the simulated

annealing algorithm goes through temperature cycles, the probability of accepting less

optimal allocations keeps decreasing. While the deviation in throughputs of accepted

solutions is high during the initial temperature cycles, it decreases as the temperature

reduces and the solution converges towards the optimal. Thus, for lower temperatures,

when the difference between throughputs for a set of consecutive temperature cycles

is very low, the solution is likely to be an optimal solution. Given the above, an

additional terminating condition is introduced so that the simulated annealing ends

if the following condition is satisfied.

(Tcycles > 1000) AND

(Throughputi − Throughputi−1) < (0.001 × Throughputi) AND

(Throughputi−2 − Throughputi−3) < (0.005 × Throughputi−2) AND

(Throughputi−4 − Throughputi−5) < (0.01 × Throughputi−4)

Throughputi refers to the throughput at the end of the ith temperature cycle. Often,

the optimum is obtained with fewer than Tcycles = 10R2NM . The additional termi-

nation condition helps in reducing overall execution time while still obtaining near

optimal results.

45

The number of steps, Nstep, per temperature cycle is also reduced from cycle

to cycle. Initially the first temperature Nstep,1 = 10R2NM . Nstep,i is reduced at the

end of each temperature cycle following a logarithmic formula (Equation 5.2) so that

Nstep,Tcycles
is equal to Nstep,1/10.

Nstep,i+1 = Nstep,i ∗ e(log ((Nstep,1/10)/Nstep,1)/(Tcycles−1)) (5.2)

Thus, as the temperature decreases both the probability of acceptance of states that

have lower throughput is decreased, and the number of states examined at a given

temperature is decreased. The procedures described above are referred to as the

annealing schedule and the parameters associated with the schedule have been arrived

at by evaluating the accuracy of the results over a range of experiments.

5.1.3 Initial Task Assignment

Before applying the simulated annealing process, an initial allocation for tasks should

be made. The tasks should be reasonably scattered across stages for faster conver-

gence to an optimal allocation. The tasks are assigned to stages using the dynamic

programming algorithm described in Chapter 4. In case of multiple flows with shared

tasks, after applying the dynamic programming algorithm, the task allocations are

validated to make sure that the allocation satisfies the allocation constraints (a shared

task is allocated to the same stage). If the constraints are not satisfied, a simple al-

gorithm is used which forces the shared task in different flows to be allocated to the

same stage.

5.1.4 Multiple Flows

For multiple flows with no shared tasks, a Step is applied to each of the flows inde-

pendently but the maximum delay within a Step is calculated across the flows. The

flows cannot be dealt with independently since the worst case memory contention

is dependent on the allocation of all the flows. In the case of multiple flows with

46

shared tasks, in addition to the above, within a Step, the validity of the assignment

is checked to verify if it satisfies the sharing constraints.

5.2 Complexity

The complexity of the simulated annealing algorithm is primarily determined by the

annealing schedule. We first need to compute the complexity for each step change of

the algorithm. Other than the random perturbation, which can be assumed to have

a complexity of O(1), a step involves computation of the memory contention delay

and the maximum stage delay. The maximum contention delay for tasks of flow j

allocated to stage k is obtained using Equation 5.3 (discussed in Appendix A).

cjk =
R
∑

p=1,p6=k

zp where zp =

memp if memp < memjk

memjk if memp ≥ memjk

(5.3)

From the equation, for a pipeline with R stages and a single memory module,

it requires R iterations to calculate the contention at each stage and the contention

needs to be calculated for all the stages in the pipeline. The maximum stage delay

is also computed along with the memory contention in the same iteration. Thus, the

complexity of computations at each step is O(R2). We go through approximately

10R2NM steps during each temperature cycle and a maximum of 10R2NM number

of temperature cycles. Thus, the total complexity of obtaining a solution to the

task allocation problem using simulated annealing is given by O((R2)(R2NM)2).

However, the additional terminating condition significantly reduces the number of

iterations that the algorithm needs to go through. For smaller problems with R=4,

N=3 and M=8, the simulated annealing is terminated almost after one third of the

total number of iterations have completed (reduction by a factor of 106).

47

5.3 Performance and Constraints

The first aspect of performance concerns the accuracy of the algorithm. The annealing

schedule of the simulated annealing algorithm plays a significant role in determining

how close the results are to the optimal solution. As mentioned earlier, the parameters

associated with the annealing schedule have been arrived at empirically. The results

have been tested extensively and compared with results obtained using exhaustive

search and, for more limited cases, with dynamic programming techniques. They

indicate that with this schedule we obtain optimum assignments more than 99.5%

of the time with the worst case assignment being within 30% of optimal. The other

element of concern is the execution time of the algorithm which is again primarily

determined by the annealing schedule. The performance can be improved by varying

the parameters associated with the annealing schedule, however, it may affect the

accuracy of the algorithm.

48

Chapter 6

Pipeline Design

This chapter illustrates how the task scheduling algorithms can be used as design

aids in situations where the effects of pipeline depth, task sharing, task partitioning,

number of pipelines and memory to processor assignment are to be explored as part of

the design process. Initially, they are used for a generic case employing synthetic data

and subsequently they are applied to a specific NP problem where the applications

include routing, compression and encryption.

6.1 Pipeline Design using Scheduling Algorithms

In systems, such as Network Processors, with multiple pipelines and flows, deter-

mining the best pipeline and algorithm partitioning and pipeline stage assignment

or memory stage assignment is difficult. The designer typically has a number of

trade-offs to consider. These include:

• Number of Pipeline Stages and Number of Pipelines: Given applica-

tions, and associated flows, that have been partitioned into a number of ordered

tasks, a designer can select the number of pipeline stages to implement. Up to a

point, more stages generally result in higher throughput, however, more stages

49

also requires more chip area and high power consumption. Te described schedul-

ing algorithms can be used to determine just what throughput can be achieved

with a varying number of stages and pipelines.

• Algorithm Task Sharing: When multiple flows and associated applications

are present, there is often an opportunity for the sharing of applications or of

individual tasks across flows. This may result in smaller overall code space being

required which, in turn, may reduce the cost of on-chip memory, or increase

performance due to reduced instruction cache miss rates. However, when tasks

are shared, there is less flexibility in task-to-stage assignments and generally

lower overall throughput results. Use of task scheduling algorithms permits fast

determination of the performance effects related to task sharing.

• Algorithm Partitioning: For many applications, alternative algorithm to

task partitionings are possible. For a given pipeline, each partitioning, after

assignment, generally leads to different throughput results. The scheduling al-

gorithms can be used to determine those tasks that are performance bottlenecks

and what performance gains can accrue from task repartitioning. Up to a point,

for a fixed pipeline design, this may result in higher throughput, however, at

the cost of algorithm and software redesign.

• Number of Memory Banks and Memory Bank Assignment: Fewer

memory banks lead to increased memory contention and may affect the perfor-

mance significantly for memory intensive applications. Increasing the number of

memory banks in the system improves the performance to a certain point. How-

ever more memory banks requires more chip area (if the memory is on-chip) and

may result in increased cost for the system too. The scheduling algorithms can

be used to determine the optimal number (from the perspective of throughput)

of memory banks and their effective assignment to processors.

The sections that follow illustrate the use of scheduling algorithms in these

sorts of design activities. In each subsection, figures illustrating the results of a

50

number of experiments are provided. Each data point presented represents the results

of averaging forty experiments. In each experiment the task times were randomly

selected from a uniform distribution ranging from 0 to 10 time units.

6.1.1 Number of Pipeline Stages and Number of Pipelines:

The DP approach was used to determine the effect of pipeline depth on through-

put performance. This is illustrated in Figure 6.1 where the results for a system with

6 flows, and 20 tasks per flow is shown.

0

0.02

0.04

0.06

0.08

0.1

0.12

2 4 6 8 10 12 14 16 18 20 22

 T
hr

ou
gh

pu
t

 Number of Stages

Flows = 6, # Tasks = 20,
% Task Sharing = 0

Figure 6.1: Throughput vs number of pipeline stages

As expected, the throughput increases with the number of stages, and with this

many flows and tasks, the increase is almost linear until one reaches about six-

teen stages. After that, it is more difficult to evenly distribute the tasks over the

stages and the throughput asymptotically approaches a maximum near 0.1 (i.e.,

1/(maximum task time)). This maximum is a result of the fact that it is likely

that there is at least one task generated with a value near the maximum time of 10

(i.e., the floating point random number generator could yield a value of, for example,

9.7 which would lead to a maximum of 0.103). Figure 6.2 shows the results obtained

when the throughput was plotted as a function of the number of pipelines and the

stages in the pipeline. The experiment consisted of 6 flows with 10 tasks in each flow

and the plots were generated by varying the number of pipelines and the number

51

of stages in the pipelines. With multiple pipelines, the system throughput is equal

to the sum of the throughputs of all the pipelines. To find the optimal allocation

of flows to pipelines, all possible ways of assigning the flows to the pipelines were

evaluated and the allocation that maximized the system throughput was selected as

the optimal allocation. As expected, the throughput increases with the increase in

number of pipelines and stages. When the number of pipelines equals 6, one flow is

assigned to each pipeline.

Flows = 6, # Tasks = 10

1 2 3 4 5 6 # Pipelines
1

2

3

4

5

 # Stages

0

0.02

0.04

0.06

0.08

0.1

 Throughput

Figure 6.2: Throughput vs number of pipelines vs number of stages

6.1.2 Sharing of Tasks Between Flows

Task sharing between flows leads to an interdependence between the flows. This

may be advantageous and result in better memory utilization and lower instruction

cache miss rates, however, it also restricts the number of assignment options and thus

potentially reduces the maximum throughput.

Experiments were conducted for the case of 6 flows, 20 tasks per flow and a

single 8 stage pipeline where the fraction of tasks for each flow that are shared with

52

other flows was varied. Thus, a 50% level of sharing means that 50% of tasks for each

of the flows are common with the other flows. Due to high time and space complexity

of the DP approach for larger problems with shared tasks, GreedyPipe was used to

obtain the task allocations. As expected, the results (Figure 6.3) indicate a significant

decrease in throughput as more tasks are shared between flows. The decrease is over

35% when one moves from 0% sharing to 100% sharing. In a full design analysis, this

would be balanced against the potential gains noted above.

 0.03

 0.032

 0.034

 0.036

 0.038

 0.04

 0.042

 0.044

 0.046

 0.048

 0 20 40 60 80 100

 T
hr

ou
gh

pu
t

 Percent Task Sharing

Flows = 6, # Tasks = 20, Stages = 8

Figure 6.3: Throughput vs percent shared tasks

6.1.3 Task Partitioning

For many applications that can be implemented in a pipelined manner, there

is a choice concerning the task partitioning of the application. Having more tasks

generally results in both having greater flexibility in assigning the tasks to the hard-

ware pipeline and in being able to use longer pipelines. This usually results in higher

throughput. However, there are two potential drawbacks. First, it can be difficult

to divide tasks beyond some basic application partitioning and thus there may be a

nontrivial personnel cost associated with this job. Second, greater task partitioning

often results in larger inter-task communications costs that may increase latency and

reduce throughput. However, in order to make a judgement as to whether increased

53

task partitioning is worthwhile considering, it is first necessary to determine the po-

tential performance gains that might result from such an endeavor. DP was used to

examine the possible gains from additional task partitioning.

0.066

0.068

0.07

0.072

0.074

0.076

0.078

0 1 2 3 4 5 6 7 8 9 10

 T
hr

ou
gh

pu
t

 Partition Cycle Number

Flows = 2, Initial # Tasks = 11, # Stages = 5

% Task Sharing = 0

Two Largest Tasks/Flow Partitioned
Single Largest Task/Flow Partitioned

Figure 6.4: Throughput vs task partitioning

The effects of task partitioning on throughput are illustrated in Figure 6.4.

For both curves presented, the experiments had 2 flows, 11 tasks per flow, a single 5

stage pipeline, and no task sharing. With the lower curve, the longest task in each

flow is successively divided into two equal tasks and then the DP is used to find a

new task assignment. The ”Partition Cycle Number” corresponds to how many times

this division has occurred (a new maximum task is determined and divided on each

cycle). With the upper curve, the two longest tasks in each flow are divided in a

similar manner and the throughput is obtained. Both cases are beneficial since both

provide more opportunities for improved task assignments that aim at equalizing the

delay associated with each stage (and thus maximize throughput). This permits the

designer to determine the potential benefit associated with spending more time on

algorithm partitioning.

54

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 2 3 4 5 6

 T
hr

ou
gh

pu
t

 # Memory Banks

Variation in Throughput with increase in # Memory Banks

#app1
#app2
#app3
#app4
#app5

Figure 6.5: Throughput versus Number of Memory Banks

6.1.4 Number of Memory Banks and Memory Bank Assign-

ment

Sharing of memory banks leads to memory contention which effectively reduces the

throughput of the system. It may not be always feasible to have a single memory bank

per processor since an increase in number of banks increases chip area which in turn

results in increased power consumption. In such a case, the memory banks also need

to be allocated to the processors optimally. Additionally, increasing the number of

memory banks also results in increased performance. A trade-off needs to be attained

between the number of memory banks and the cost involved in it. Figure 6.5 shows

the results of an experiment using Simulated Annealing, where 5 different randomly

generated applications were considered. Each application had a single flow consisting

of 12 tasks and 6 stages. The number of memory modules were varied from 1 to 6.

Each point represents an optimal allocation of memory banks and tasks. All possible

memory to processor allocations were enumerated and the optimal task allocation

was obtained for each of them. The memory to processor allocation that minimized

the optimal task allocation delay was selected as the optimal allocation for tasks

and memory. As expected, the throughput increases with increase in the number of

memory banks and when the number of memory banks equals the number of stages,

55

each application attains the maximum throughput. At this point each stage has an

independent memory bank allocated for it and thus there is no memory contention.

The next section describes the use of the task scheduling algorithms for a

specific problem in the networking domain.

6.2 A Network Processor Problem

Most of the material in this section has been published in [25]. The Intel IXP 2800 is

an example of an NP that can potentially be configured as a set of processor pipelines

where the total number of processor stages is sixteen. Consider now a workload where

there are the following three flows:

1: Longest Prefix Match (LPM) - A flow where the only function to be performed

is that of routing the packet using the LPM algorithm.

2: LPM & Compression - A flow where the NP must perform LPM and also com-

pression on the packet payload.

3: LPM & Encryption - A flow where the NP must perform LPM and also encryp-

tion on the packet payload.

Software implementations for LPM, Compression and Encryption are available and

may provide adequate performance at the edges of the network. However, as one

moves towards the core of the network, real-time constraints generally requires the use

of fast special purpose hardware. An alternative to providing such special hardware

is to utilize a general processor pipeline for these applications. As discussed later,

pipelined implementations for each of these three functions are available [40, 28, 23,

30]

Say that our objective is to maximize overall throughput given the number of

available pipeline processor stages1. Given general pipelined implementations of the

1Two important issues are omitted in this discussion. First, we are not considering multi-
threading effects. However, if we assume a high enough level of multi-threading so that all off-chip

56

functions, and their associated task times, the design space for maximizing throughput

includes the following choices:

1. Number and length of pipelines: Both the number of pipelines and the length of

each pipeline can be selected subject to the constraint that the total number of

processors over all the pipelines must be ≤ the number of processors available.

2. Number of tasks per function: Given a general approach to implementing each

of the functions as a software pipeline of ordered tasks, just how should a

particular set of tasks be selected.

3. Assignment of function tasks to pipeline stages: Given the two items above,

assign each of the tasks to the pipeline stages in a manner that maximizes the

overall throughput of the NP.

With the use of scheduling algorithms, it is a relatively simple matter to explore

key aspects of this design space. Given a pipelined function implementation (item 2)

and a choice of number and length of pipelines (item 1), the scheduling algorithms

will choose a near optimal assignment of tasks to stages (item 3). One can then

iterate over set of allowable pipeline configurations (item 1) and obtain a near optimal

overall design. We next review the flow functions and some pipelined implementation

options. All the results in the following sections were obtained using Greedypipe.

6.2.1 Longest Prefix Matching (LPM)

Most of the material in this subsection has been published in [23]. Performing IP

address lookup for packet routing is a key operation that must be performed by

routers and such lookups require that a Longest Prefix Matching (LPM) algorithm be

executed [28]. Because of its central role[40], NPs often include facilities to perform

fast IP prefix matching often using a combination of software and special purpose

memory latencies are masked, then our rough throughput analysis is not significantly effected by
this assumption. Second, we are not considering other issues associated with the memory hierarchy.
That is, we are assuming that contention for common resources is not appreciable. Extensions to
this work will bring these effects into the model.

57

hardware. One may also implement LPM utilizing a processor pipeline. Such an

approach potentially has high and additionally may also be modified to meet the

requirements of evolving standards. This section considers a pipelined LPM algorithm

based on the work of Moestedt and Sjodin [28]. In their paper, a dedicated pipeline of

special purpose hardware is presented. Our implementation uses a pipeline of general

purpose processors and is based on the development of a routing tree that contains

three types of nodes:

• Valid Route Nodes: Tree leaf nodes that correspond to legal or valid routes

(or destinations). Associated with these nodes are the router output port in-

formation.

• Invalid Route Nodes: Tree leaf nodes that correspond to invalid routes.

• Part Route Nodes: Tree interior that represent branching nodes in the tree

and correspond to part of a prefix.

Consider an example (Figure 6.6) containing three prefixes embedded within a

three level tree. The first level, leaf nodes labeled (1), is of length 3 and corresponds

to the prefix 001. The second, leaf nodes labeled (2), is of length 7 and corresponds

to prefix 0010001. The third, leaf nodes labeled (3) is of length 3 and corresponds

to prefix 110. Note that with this LPM algorithm smaller prefixes (e.g., 001) that

are themselves contained in longer prefixes (e.g., 0010001) may spawn additional

levels and Valid Route Nodes (e.g., level 3 nodes corresponding to the first prefix).

Constructing the tree itself requires that one first decide on the number of levels

desirable, and the number of bits to be considered at each level. Thus, there are

numerous tree structure variants that satisfy the routing table requirements, and the

associated data structures result in differing memory requirements.

Given a packet destination address and the above routing tree structure, ob-

taining the route involves accessing the tree successively and following the path as-

sociated with this address. Thus, say we have the address [0010 0111 X] where X

58

1

1

1

1

1

1

2

3

3

3

3

01

00

10

11

001

111

000

010

011

100

110

101

000

001

010

011

100

101

110

111

00

10

11

Invalid route

N

01

Valid route representing
prefix number N

Part of route

LEVEL 3LEVEL 2LEVEL 1

Figure 6.6: Example Longest Prefix Match Tree

corresponds to the remaining 24 bits in a 32-bit address. Reaching leaf node (2) in

Level 3 requires three tree lookups following the wide path in Figure 6.6.

An approach to pipelining such an algorithm is to associate each level lookup

with a separate task and allocate these tasks to stages in a processor pipeline. In the

above example a three processor pipeline would be used, one stage for each level. With

sufficient data memory bandwidth, this would increase the throughput of a packet

stream by a factor of three over a single processor implementation. Alternatively,

two of the levels could be combined and implemented on a pipeline stage resulting

in a two stage pipeline. This might be desirable if many of the lookups terminated

at a given stage (as is often the case) thus resulting in fewer lookups in later stages.

Using the earlier terminology, this example contains a single flow consisting of three

computationally identical tasks where differences in execution times result from the

number of memory accesses associated with each of the processor stages.

59

A tool called SimplePipe2 was used to evaluate tree level (task) to pipeline stage

assignments for a problem involving 117,212 prefixes obtained from a Sprint network

router (AS1239 [4, 3]). From this set, a five level tree was constructed with each

successive level handling 14, 5, 3, 2 and 8 bits and the entire tree containing 504,857

nodes. Traffic was modeled as a set of 5,000 successive routing requests where the

distribution of request prefixes followed those empirically obtained in [9, 2].

With a five level tree, a separate task (with its task time) may be associated

with accessing each tree level. These times are given in Table 6.1. Initially, GreedyPipe

was used to obtain the best assignment of these five tasks to processor pipelines of

different lengths (1 to 16 stages). This is shown in the top graph in Figure 6.7 where,

at four stages, the maximum throughput is achieved (note that task 2 takes the

longest time) and remains constant after that.

Table 6.1: Task Times (µsec) for LPM, Encryption & Compression

Tasks Task 1 Task 2 Task 3 Task 4 Task 5

LPM 5 2.8×10−2 4.0×10−2 2.6×10−2 2.0×10−2 1.4×10−2

ENCR 11 17.4 ≈ 11.4 per task for up to 10 tasks
COMP 15 ≈ 9.44 per task for up to 15 tasks

6.2.2 AES Encryption - A Pipelined Implementation

Encryption involves transforming unsecured information (”plaintext”) into coded in-

formation (”ciphertext”) with the process being controlled by an algorithm and a

key. The Advanced Encryption Standard (AES) is considered here along with the

Rijndael encryption algorithm. Rijndael is an iterated block cipher which supports

independently specified variable block and key lengths (128, 192 or 256 bits). The

2SimplePipe is a pipeline simulation tool based on SimpleScalar [5]. [23] An in-order processor
with a clock rate of 1 GHz was modeled. All processor stage caches were taken to be of equal size with
the instruction cache being sufficiently large to hold the entire stage program. A 4-way associative,
8KB data cache was assumed (No L2 cache was present) with off-chip memory latencies set at 20
processor clock cycles. The off-chip memory was taken to be structured as a set of independent
banks, one for each of the processor stages where each bank holds data associated with the tasks
assigned to it. A fixed stage-to-stage communications delay of 10ns was also assumed. Data for
encryption and compression was obtained directly from SimpleScalar with the same parameters
indicated above.

60

4.10e+03

8.19e+03

1.64e+04

3.28e+04

6.55e+04

1.31e+05

2.62e+05

5.24e+05

1.05e+06

2.10e+06

4.19e+06

8.39e+06

1.68e+07

3.36e+07

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 P
ip

el
in

e
Th

ro
ug

hp
ut

 (p
ac

ke
ts

/s
ec

)

 # Stages in Pipeline

LPM Throughput
Compression Throughput
Encryption Throughput

Figure 6.7: Throughput vs. Number of Stages (A single separate pipeline for each
application)

algorithm has a variable number of iterations dependent on the key length. For 128

bit blocks, considered here, 10 iterations are required [1].

Algorithm transformations operate on an intermediate result called the State

which is defined as a rectangular array with 4 rows and Nb columns where Nb =

block.length/32. Transformations treat the 128-bit data block as a 4 column rectan-

gular array of 4-byte vectors. The data block along with the 128-bit (16B) plaintext

is interpreted as a State. The cipher key is also considered to be a rectangular ar-

ray with four rows, the number of columns Nk being the key length divided by 32.

The number of rounds (iterations) depends on the values Nb and Nk and, for 128 bit

blocks, is 10.

The algorithm consists of an initial data/key addition, then 9 round transfor-

mations followed by a final round. The Key schedule expands the key entering for

the cipher so that a different round key is created for each Round Transformation.

Such transformations are comprised of the following four operations: ByteSub Trans-

formation, a shiftRow Transformation, a MixColumn Transformation and a Round

Key Addition. The final round is similar to earlier rounds except that the MixCol-

umn(State) operation is omitted. Details associated with these operations can be

found in [32]. An overview of a single processor/stage implementation is shown in on

61

the left side of Figure 6.8 while a pipelined implementation employing loop unrolling

is shown on the right side of the figure.

As indicated, each iteration or can be associated with a pipelined task. At the

end of each iteration, both the schedule and the transformed packet are passed from

one stage to the next. The task times associated with each of the eleven tasks are

shown in Table 6.1. The values were obtained using from a SimpleScalar simulation

of the algorithm. Figure 6.7 shows the throughput obtained when GreedyPipe is used

to assign only these eleven tasks to pipelines of different lengths. Notice that since

there are eleven tasks, after the pipeline length reaches a length of eleven there is no

throughput improvement. Furthermore, note that given the much higher computa-

tional complexity of encryption versus LPM, the throughput that can be achieved is

between two and three orders of magnitude less for pipelines of equivalent length.

Key
Schedule

Round Logic Block

Cipher

128−bit Data
Block Init

128 bit Key

R<10

R=0

Round Logic Block − Round 2Task3

Round Logic Block − Round 1Task2

Key Scheduling and Data Block Initialization

Round Logic Block − Round 10

Task1

Task11

Iterative Looping Pipelined Implementation

Cipher

Schedule & Packet

Schedule & Packet

Figure 6.8: Rijndael Algorithm Implementation Block Diagram

6.2.3 Data Compression - A Pipelined Implementation

With data compression (DC) a string of characters is transformed into a new reduced

length string having the same information. In this way the bandwidth required for

passing a given string is reduced. LZW is a DC method that takes advantage of

recurring patterns of strings that occur in data files. The original LZW method was

created by Lempel and Ziv [46] and was further refined by Welch [42].

62

LZW is a ”dictionary”-based compression algorithm that encodes input data by ref-

erencing a dictionary. Encoding a substring only requires that a single code number

corresponding to that substring’s dictionary index be written to the output file. LZW

starts out with a dictionary of 256 characters (for the 8-bit case) and uses those as

the ”standard” character set. Data is then read 1 byte at a time (e.g., ’p’, ’q’, etc.)

and encoded as the index number taken from the dictionary. When a new longer

substring is encountered (say, ”pq” and later say ”pqr”), the dictionary is expanded

to include the new substring and an index is associated with the new substring. The

new index is then used when the new substring is encountered. To quickly associate

substrings with indices, hashing techniques may be employed and to to limit memory

size, a limit placed on maximum number of dictionary entries (say, 1024).

(N−1)*N/B − N*N/B bytes CompressedTaskN

Compressed Block

Ucompressed Block (B Bytes)

LZW Logic BlockTask1 0 − N/B bytes Compressed

Dictionary Data Block

Task2 N/B − 2N/B bytes Compressed

Figure 6.9: Pipelined Implementation of the LZW Algorithm

With a straight forward pipelined LZW implementation the input data is partitioned

and successive pipeline stages operate on successive portions of the input data. Thus,

if there are N stages in the pipeline, and a block of B bytes requires compression, each

stage operates and compresses B/N successive input data bytes. Figure 6.9 shows

the pipelined implementation. The partially compressed data block and the updated

dictionary is made available to every stage of the pipeline and the resulting system

throughput increases almost linearly with N .

63

Task times (found using Simple Scalar) associated with each task for a fourteen

task implementation are shown in Table 6.1 and Figure 6.7 shows the throughput ob-

tained when GreedyPipe is used to assign these tasks to pipelines of different lengths.

6.2.4 NP Example Design Results

The results shown in Figure 6.7 are for single flows executing on a single pipeline.

The problem becomes more complex when:

1. Multiple flows are considered with some flows requiring multiple applications.

2. Some of the flow applications/tasks are shared and are instantiated only once.

3. Multiple processor pipelines are present with a constraint on the total number

of stages available.

This more complex problem is now considered. Table 6.1, shows the execution times

per task for the three applications where the output from one task becomes the input

to the next task. Assume that we have the three flows indicated earlier. We assume

that packets associated with Flow 1 (LPM) are 40 Bytes long while packets from

Flows 2 and 3 (LPM & Encryption; LPM & Compression) are 1,500 Bytes long. Four

experiments were performed:

1. Single Pipeline: A single 16 stage pipeline was considered where the LPM

application was shared among the three flows.

2. Two Pipelines: Two pipelines were used where the length of each pipeline

was varied between 1 and 15 stages, with the sum of the stages being set 16.

Flow 1 was assigned to one pipeline and its LPM application was not shared

with the other Flows. Flows 2 & 3 were assigned to the second pipeline and the

LPM application was shared between them.

3. Three Pipelines: Three pipelines were used, one flow assigned to each, where

the length of each pipeline was varied between 1 and 14 stages with the sum of

the stages set to 16.

64

Consider the first case above where there is a single 16 stage pipeline. Entering the set

of flows, their respective applications, and the application task sequence and times,

GreedPipe performs the assignment process and obtains an assignment that maximizes

the total throughput. The results in this case are that stage 1 is assigned to LPM

(shared across all flows) while the remaining stages are shared by the encryption and

compression components of flows 2 and 3. Table 6.2 shows the resulting best overall

bandwidth (both in Gbps and Packets/second, Pps) for each flow, and the length of

each pipeline for the two and three pipeline cases. Note that with a single pipeline, the

bandwidth is constrained by the longest latency task which, in this case, corresponds

to encryption which has the highest computational complexity.

In the second case the 16 processor stages are divided into two pipelines with

their length not necessarily being equal. GreedyPipe was executed iteratively with

a different number of stages assigned to each pipeline and, for each pipeline length

selection, a near optimal assignment obtained (see Figure 6.10). For pipeline 1 (Flow

1, LPM), the results are the same as seen in Figure 6.7 since there is a single pipeline

associated with that flow. As the number of stages for pipeline 1 increases however,

the number remaining for pipeline 2 decreases. The result is that there are increased

delays for flows 2 (LPM & Encryption) and 3 (LPM & LZW). GreedyPipe yields

the near optimum task allocations for each of these pipeline lengths. Note that for

pipeline 2, the bandwidth is dominated by the requirements of encryption. Flow 1

bandwidth is significantly improved since, having its own pipeline, its packets are now

not limited by the delays for encryption.

Table 6.2: Bandwidths for Best Assignments (Pps=Packets/second; Flow 1 packet

length=40 Bytes; Flow 2 & 3 packet length=1500 Bytes)

Number Flow 1 Rate Flow 2 Rate Flow 3 Rate Pipe 1 Pipe 2 Pipe 3

Pipelines (Gbps / Pps) (Gbps / Pps) (Gbps / Pps) Length Length Length

1 0.018/5.7x104 0.68/ 5.7x104 0.68/5.7x104 16 0 0

2 7.94/2.4x107 0.68/5.7x104 0.68/5.7x104 4 12 0

3 7.94/2.4x107 0.525/ 4.3x104 0.48/4.0x104 4 6 6

65

4.10e+03

8.19e+03

1.64e+04

3.28e+04

6.55e+04

1.31e+05

2.62e+05

5.24e+05

1.05e+06

2.10e+06

4.19e+06

8.39e+06

1.68e+07

3.36e+07

1, 15 2, 14 3, 13 4, 12 5, 11 6, 10 7, 9 8, 8 9, 7 10, 6 11, 5 12, 4 13, 3 14, 2 15, 1

 P
ip

e
lin

e
 T

h
ro

u
g

h
p

u
t

(p
a

c
k
e

ts
/s

e
c
)

 # Stages in Pipeline 1, Pipeline 2

Pipeline 1 - LPM
Pipeline 2 - LPM+Enc/LPM+Comp

Figure 6.10: Two Pipelines - Through-
put vs. Num. Stages (X, Y –> X stages
for Pipe 1 & Y stages for Pipe 2)

4.10e+03

8.19e+03

1.64e+04

3.28e+04

6.55e+04

1.31e+05

2.62e+05

5.24e+05

1.05e+06

2.10e+06

4.19e+06

8.39e+06

1.68e+07

3.36e+07

1, 11 2, 10 3, 9 4, 8 5, 7 6, 6 7, 5 8, 4 9, 3 10, 2 11, 1

 P
ip

e
lin

e
 T

h
ro

u
g

h
p

u
t

(p
a

c
k
e

ts
/s

e
c
)

 # Stages in Pipeline 2, Pipeline 3

Pipeline 1 (LPM)
Pipeline 2 (LPM+Comp)
Pipeline 3 (LPM+Enc.)

Figure 6.11: Three Pipelines -
Throughput vs Num. stages for
Pipelines 2 & 3; Pipeline 1=4 stages

For the third case, the 16 processor stages are shared across three pipelines with

flows 1, 2 and 3 being assigned to pipelines 1, 2 and 3 respectively. Using GreedyPipe,

all partitioning of the 16 stages across 3 pipelines were considered and evaluated.

The results indicate that assigning 4 stages to Pipeline 1 (Flow 1, LPM) achieves

the highest throughput. Figure 6.11 plots results associated with pipeline 1’s length

equal to 4 stages. As more of the remaining 12 stages stages are assigned to flow 2

there are fewer for flow 3. Given the pipelined implementations of encryption and

compression, the crossover point on the graph corresponds to the highest throughput

result (also see Table 6.2. Due to the fact that the length of pipelines 2 and 3 are

constrained, the full effect of pipelining the flows 2 and 3 cannot be realized and the

maximum throughput for those flows is less than the two pipeline case.

6.2.5 Simulated Annealing for Task & Memory Assignment

The simulated annealing approach was applied to the pipelined implementation of

the AES Encryption algorithm which involved a single flow with 11 tasks. This

experiment was primarily conducted to explore the effect on performance/throughput

with the variation in number of stages and the number of memory modules available

for the stages. As described earlier, each iteration of the encryption process can be

66

associated with a pipelined task. The task times associated with each of the eleven

tasks are shown in Table 6.3. These values were obtained using SimpleScalar with

the times modified to reflect an environment where there is no cache, no memory

contention between tasks, and memory access time set to 15 clock cycles.

Table 6.3: Task Times (µsec) for AES Encryption assuming 15 clock cycles per
memory access

Appl:# Tasks Task 1 Task 2 to Task 11
ENCRYPTION : 11 76.5 ≈ 24.4 per task for up to 10 tasks

The data inputs for each of the tasks are the key for the corresponding round and

the partially encrypted 128-bit text. We assume that there are buffers available for

communication of data between the processors (e.g. next neighbor registers in Intel

IXP 2400). Thus the partially encrypted text can be assumed to be communicated

between the processors using these buffers. The round keys, as described earlier are

generated by the first task and stored in the SRAM/DRAM for use by the remaining

tasks. Thus each task (except task1) needs to access the memory to get the corre-

sponding round key and then execute a round of encryption on it. We assume that

the memory width is 32-bits, so that it takes 4 memory requests to load or store

the 128-bit key. Since the first task generates all the 10 keys for the 10 rounds and

stores them in the memory, it would involve 10× 4 = 40 memory accesses. Since the

remaining 10 tasks correspond to the 10 rounds, each of them would involve reading

the 128-bit key once, which is equivalent to 1 × 4 memory accesses.

Although, this experiment was conducted with an assumption that the first

pipeline stage (key generation stage) has access to all the memory modules, our

implementation of the simulated annealing algorithm is more constrained and does

not permit multiple memory modules to be accessed by one stage. Hence, the results

presented for the experiment are approximate values and the actual throughput for

these experiments is likely to be lower due to increased memory contention.

67

 5.5e-06

 6e-06

 6.5e-06

 7e-06

 7.5e-06

 8e-06

 8.5e-06

 9e-06

 9.5e-06

 1e-05

 1.05e-05

 1.1e-05

 1 2 3 4 5 6 7 8

 T
hr

ou
gh

pu
t

 # Memory Modules

Variation in Throughput with increase in # Memory Banks

#Stages=4
#Stages=6
#Stages=8

Figure 6.12: Throughput vs Number Memory Banks

Figure 6.12 shows the variation in throughput with an increase in the number

of memory modules available. Each point on a curve represents the best throughput

possible for the corresponding number of memory modules. The best throughput

value was obtained by evaluating (using the simulated annealing algorithm) all the

allocation permutations associated with memories and processors. Experiments were

conducted for varying number of stages in the pipeline (viz. 4, 6 and 8). As expected,

for a given number of stages, the throughput increases as the number of memory

modules available is increased since with an increased number of modules there will

be a decrease in memory contention delays. The throughput does not improve beyond

a certain point(Number of Stages=8), since that is the maximum possible throughput

corresponding to the maximum delay task (task1).

This chapter demonstrated the use of task scheduling algorithms to evaluate

the effects of pipeline depth, task sharing, task partitioning and memory to processor

allocation on the performance on a multi-processor pipelined system. The next chap-

ter presents a performance comparison of the task scheduling algorithms discussed in

this thesis.

68

Chapter 7

Comparative Study of Solution

Approaches

This chapter presents a comparison of the four solution approaches described earlier

in the thesis: Complete Enumeration (CE), GreedyPipe, Dynamic Programming and

Simulated Annealing. These approaches will be examined in terms of their complexity,

execution time, applicability and the accuracy of the solutions obtained.

7.1 Complexity Analysis

Regarding the efficiency of algorithms, a standard measure is the number of elemen-

tary computer operations required to solve the problem or the complexity of the

solution approach in the worst case. Average performance is generally not a safe

measure since there may be particular cases that behave much worse than the aver-

age. Of primary interest is the comparison of the various solution approaches, as a

function of the problem size where the size parameter(s) selected is/are based on the

given problem domain. The time complexity of all the four algorithmic approaches

was discussed earlier in the thesis and is being reproduced here for convenience. We

will consider three classes of problems:

• Single Pipeline, Multiple Flow (SP/MF)

69

• Single Pipeline, Multiple Flow, Shared Tasks (SP/MF/ST)

• Single Pipeline, Multiple Flows, Shared Memory Modules(SP/MF/SM)

Table 7.1 shows the complexity for all the algorithm approaches for the above men-

tioned classes of problems. The time complexity derivation for each algorithm was

presented in the chapters describing the algorithms, earlier in the thesis. In the table,

N is the number of flows in the system, M is the number of tasks in each flow and R

is the number of stages in the pipeline.

Table 7.1: Time Complexities

SP/MF SP/MF/ST SP/MF/SM

CE: Complete Enumeration O(((M+R)!
M !R!

)N) O(((M+R)!
M !R!

)N) O(((M+R)!
M !R!

)N(R2))
(Section 2.5)
GreedyPipe O(NR) O(2NR)
(Section 3.2)
DP: Dynamic Programming O(M 2RN) O(M2NR)
(Section 4.2)
SA: Simulated Annealing O((R2NM)2) O((R2NM)2) O(R2)(R2NM)2)
(Section 5.2)

From Table 7.1, GreedyPipe has a polynomial time complexity irrespective of the

size or class of the problem. The rate of growth of execution time of CE may be

comparable to that of DP or GreedyPipe for smaller problems of the SP/MF class.

However, as the problem size increases, the time complexity of CE method increases

rapidly due to the factorial component and attains a very high value for all classes of

problems. The performance of DP is comparable to GreedyPipe for the SP/MF class of

problems, but it’s complexity also increases exponentially with N for the SP/MF/ST

class of problems. SA has a polynomial time complexity for all classes of problems

but being a statistical approach, irrespective of the problem size, it’s complexity is

very high. Comparing the four approaches, Greedypipe involves minimum growth in

execution time for all classes of problems. DP is an acceptable option for the SP/MF

class of problems but may become infeasible for larger problems of the SP/MF/ST

70

class. SA is applicable for the SP/MF/SM class of problems and is a preferable

approach to the complete enumeration method for larger problems of that type.

7.2 Execution Time and Accuracy

An alternative way to examine the computational complexity of the algorithms is to

compare the actual execution time of the algorithms for the same set of problems.

However, there is another element of concern when evaluating the performance of the

various solution approaches and that is, how closely do the results obtained using these

methods match with the true optimal results. The following subsections illustrate

the difference in performance of the of the algorithms for the following five classes of

problems :

• Single Pipeline, Single Flow (SP/SF)

• Single Pipeline, Multiple Flow (SP/MF)

• Single Pipeline, Multiple Flow, Shared Tasks (SP/MF/ST)

• Single Pipeline, Single Flow, Shared Memory Modules(SP/SF/SM)

• Single Pipeline, Multiple Flows, Shared Memory Modules(SP/MF/SM)

Figures illustrating the results of a number of experiments are provided in the

following subsections for a comparison of the correctness of the solutions obtained

using the four algorithm approaches and the execution time required by the four

algorithm approaches. Each data point presented represents the results of averaging

10 experiments. Each of the four algorithms, CE, Greedypipe, DP and SA, was used to

generate the task to pipeline assignment for every experiment. The number of tasks

in a flow for each experiment were equal to twice the number of stages in the system

and the task times were randomly selected from a uniform distribution ranging from 0

to 10 floating point time units. For the experiments of the classes SP/SF, SP/MF and

71

SP/MF/ST, an independent memory module was made available to each processor,

to avoid any memory contention. The experiments examine the effect of increase in

number of stages and tasks on the throughput and the execution time of the algorithm

implementations. All the experiments were conducted on a 1.4GHz Intel processor

system.

7.2.1 SP/SF

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

 T
im

e
 (

se
cs

)

 # Stages

GreedyPipe
Dynamic Programming

Simulated Annealing
Complete Enumeration

Figure 7.1: Execution Time, Single
Flow

avg

max

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9 10 11

 %
 E

rr
o

r

 # Stages

GreedyPipe
Simulated Annealing

Figure 7.2: % Error in Throughput,
Single Flow (SA is optimal over all ex-
periments)

Figure 7.1 illustrates the results for a system with a single flow on a log-

scale. As expected, the execution times for DP and GreedyPipe both increase linearly

with the increase in the number of stages. The execution time for GreedyPipe is

more than DP because of the difference in constant time factor due to traversal in

both forward and reverse directions, data structure maintenance etc. As described

in Chapter 3, GreedyPipe involves maximizing the throughput across all the stages.

The data structure maintenance involved in Greedypipe implementation was a little

more complex to add a constant time to the execution time and avoid comparisons

across all the stages. As expected, execution time for CE increases rapidly with

the number of stages and tasks. The execution time for SA also increases with

the number of stages (as expected from Table 7.1) and is the maximum of all the

72

approaches for most of the experiments. Figure 7.2 shows the percentage error for

throughput results obtained by different algorithm approaches. Since DP produces

optimal solutions, the throughput obtained by DP for each experiment is the same as

that obtained using CE. The heuristic approach produces optimal results when the

number of stages are few however, beyond 4 stages, the results obtained by it deviate

from the optimal. The maximum deviation from the optimal is seen at number of

stages equal to 5, however, the average deviation for GreedyPipe is less than 5% of the

optimal. Simulated annealing produces an optimal allocation for all the experiments

and thus there are no entries on the figure.

As seen from the experiments, for a single flow system with no task sharing and

no memory contention, DP is the most efficient approach in terms of both execution

time and accuracy of the solutions obtained using it.

7.2.2 SP/MF

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

 T
im

e
 (

se
cs

)

 # Stages

GreedyPipe
Dynamic Programming

Simulated Annealing
Complete Enumeration

Figure 7.3: Execution Time for Multi-
ple Flows.

avg

max

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 3 4 5 6 7 8 9 10 11

 %
 E

rr
o

r

 # Stages

GreedyPipe
Simulated Annealing

Figure 7.4: % Error in Throughput,
Multiple Flows.

For a system with multiple flows and no shared tasks, each flow can be treated

independently. It is equivalent to having multiple SP/SF problems and thus, a linear

increase in execution time should be expected with the increase in number of flows in

the system. Figure 7.3 shows the results of the experiments conducted on a system

with 3 flows. The results seem similar to those in Figure 7.1 except for the relative

73

increase in the execution time. There is a linear increase in execution times due to

increase in the number of flows, however it is not as apparent due to the log-scale

plot. From Figure 7.4, DP, as before, always obtains an optimal assignment of tasks to

pipeline. GreedyPipe produces less optimal results as the number of stages increases

and the maximum error for GreedyPipe is around 13% (at number of stages=7) of

the opimal. However, the average percentage error is still within 5% (as in case of

SP/SF). SA also produces unoptimal results with a maximum error percentage within

5% (at number of stages=9) of the optimal value while the average error for solutions

obtained using SA is within 2% of the optimal.

For a multiple flow system with no task sharing and no memory contention,

again DP is the most efficient approach in terms of both execution time and accuracy

of the solutions obtained using it.

7.2.3 SP/MF/ST

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

 T
im

e
 (

se
cs

)

 # Stages

GreedyPipe
Dynamic Programming

Simulated Annealing
Complete Enumeration

Figure 7.5: Execution Time for Multi-
ple Flows, Shared Tasks

max

avg

 0

 10

 20

 30

 40

 50

 60

 70

 2 3 4 5 6 7 8 9 10 11

 %
 E

rr
o

r

 # Stages

GreedyPipe
Simulated Annealing

Figure 7.6: % Error in Throughput,
Multiple Flows, Shared Tasks

Figure 7.5 presents the results for a system with 3 flows and tasks shared

between the flows such that, 25% of the tasks in each flow are common with the other

flows. As the figure shows, there is not a significant difference in the performance

of both the SA and the GreedyPipe methods. When SA is applied to a system

with shared tasks, the only additional functionality for SA is to validate the task

74

allocation to comply with the sharing constraint and thus it’s performance is not as

much affected. GreedyPipe performance would be further affected with the increase

in number of flows N , since from Table 7.1, it’s execution time reduces by a factor

of 2N . Even then, it’s performance in terms of execution time is still expected to be

much better than that of DP and CE. Due to the interdependence between flows,

CE and DP cannot treat the flows independently and thus, as seen in the figure, the

execution time for a certain number of stages in a system is much higher than the

corresponding execution time (Figure 7.3) for a SP/MF system. The performance for

both DP and CE is expected (from complexity analysis in the previous section) to

deteriorate significantly with the increase in number of flows. For DP, as the number

of flows and tasks in flow increase, the space complexity also increases by the same

order and makes it less feasible for use. Figures 7.5 and 7.6 show the data points

for CE only up to 5 stages since beyond that, it will take days or even weeks to

compute the optimal assignment using the complete enumeration method. Figure 7.6

shows the percentage error in the throughputs obtained when the four algorithmic

approaches are applied to the same set of experiments. From the figure, SA obtains

an optimal allocation for most of the experiments. It gives non-optimal results at

number of stages=2, with the average error less than 5% and the maximum error

around 17%. The throughput values obtained using GreedyPipe become less optimal

as the number of stages and the number of tasks per flow are increased. While up to

5 stages and 10 tasks per flow, the average percentage error is around 10%, it goes up

to 30% when the number of stages equals 10 and the number of tasks in each flow is

equal to 20. Also the maximum percentage error for GreedyPipe goes to almost 60%

of the optimal at number of stages=10.

The applicability of an algorithm for a system with shared tasks will depending

on the size and complexity of the problem, required accuracy of the solution and the

allowed run-time delays for the algorithm implementations.

75

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9 10

 T
im

e
 (

se
cs

)

 # Stages

Simulated Annealing
Complete Enumeration

Figure 7.7: Execution Time; Single
Flow, Memory Contention

max

avg
 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9 10

 %
 E

rr
o

r

 # Stages

Simulated Annealing

Figure 7.8: % Error in Throughput,
Single Flow, Memory Contention

7.2.4 SP/SF/SM

This section examines the algorithm performance on a system with a single flow but

the number of memory modules in the system is less than the number of processors

so that memory contention also needs to be considered when the tasks are allocated

to the pipelined processors. For all the experiments, each memory module was shared

by a maximum of three processors and the memory modules were randomly allocated

to the processors. Each memory contention computation requires a complete layout

of the tasks allocation. Since both DP and GreedyPipe work on one stage at a time

and propagate the results to the subsequent stages to get the final task allocation,

they cannot be applied to systems where memory contention needs to be considered.

Figure 7.7 shows the execution times for both SA and CE. For systems with up to 8

stages, the run-time for CE is less than that of SA, however with more than 8 stages,

the execution times for CE become comparable to that of SA. Figure 7.8 shows the

throughputs obtained using CE and SA. As the figure shows, the allocations produced

by SA are very close to optimal for less number of stages. The maximum percentage

error in throughput for allocations obtained using SA is around 11% at number of

stages=10 and number of tasks=20. The average error in throughput for SA is less

than 5%. From the figure, for stages more than 10, CE may not perform as well as

SA and using SA would be much more practical.

76

7.2.5 SP/MF/SM

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8

 T
im

e
 (

se
cs

)

 # Stages

Simulated Annealing
Complete Enumeration

Figure 7.9: Execution Time; Multiple
Flows, Memory Contention

max

avg
 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5

 %
 E

rr
o

r

 # Stages

Simulated Annealing

Figure 7.10: % Error in Throughput;
Multiple Flows, Memory Contention

This section presents a performance comparison of the algorithms for systems

with 3 flows and no shared tasks such that again memory contention needs to be con-

sidered when allocating the tasks to the processor pipeline. For all the experiments,

each memory module was shared by a maximum of three processors and the memory

modules were randomly allocated to the processors. For such a system, the flows

cannot be treated independently, since the maximum memory contention computa-

tion requires the complete task allocation for all the flows (explained in Appendix

A). Thus the execution time for CE grows exponentially with increase in number of

stages and tasks as shown in Figure 7.9. The figure shows values only up to 4 stages

since it was practically impossible to determine the allocation using CE due to it’s

very high execution time. As seen from the figure, the execution time for SA is still

feasible for even higher number of stages. Also, from Figure 7.10, up to 4 stages, the

results obtained using SA are very close to optimal with the maximum error within

8% of the optimal. Thus, beyond 4 stages, SA is the only feasible algorithm that can

be applied to the systems of the class SP/SF/SM.

Different algorithm approaches will present effective solutions for different sys-

tem scenarios. The experiments show that the choice of an algorithm for a problem

will depend on the complexity and size of the problem, the expected accuracy of the

77

solution obtained using the algorithm, and the available run-time for the algorithm.

Also, the figures in the above sections represent the relative performance of the al-

gorithms and the actual execution times could be further improved with optimized

algorithm implementations.

78

Chapter 8

Conclusions and Future Work

8.1 Contributions

With the increasing availability of chip multi-processors (CMPs), the problems asso-

ciated with assigning tasks to processors in a manner that maximizes performance

will gain in importance. In selected CMPs tailored towards the networking environ-

ment, single processor pipelines can be configured under software control. Network

Processors have this capability and this thesis has examined the problem of task to

pipeline stage assignment in this domain. A formal definition of the task scheduling

problem was presented including the constraints associated with it. Additionally, the

thesis also described a resource (memory in this case) contention model and used it

to formulate the performance metrics for the scheduling problem. Obtaining optimal

assignments is an NP hard problem and exhaustive search techniques can take mul-

tiple days to find an optimal assignment for reasonable sized problems. The thesis

described three optimization algorithms based on heuristics (GreedyPipe), dynamic

programming and a statistical approach (Simulated Annealing) to quickly perform

optimal or nearly optimal task-to-pipeline stage assignments in a multiple flow, mul-

tiple pipeline environment. In addition to presenting details associated with the

design and performance of the algorithms, the thesis also illustrated how the algo-

rithms can be together employed as a design tool in situations where the effects of

79

pipeline depth, task sharing, task partitioning, number of pipelines and memory to

processor assignment are to be explored as part of the design process. Initially, the

algorithms were used for a generic case employing synthetic data and subsequently

they were applied to a specific NP problem where the applications include routing,

compression and encryption. The thesis showed how the algorithms can be used

to obtain good assignments in an environment where the total number of processor

stages in all the pipelines is constrained (e.g., 16). This is similar to what is available

in the Intel IXP2800. Finally, the thesis presented a comparison of the four solution

approaches, Complete Enumeration (CE), GreedyPipe, Dynamic Programming and

Simulated Annealing in terms of their complexity, execution time, applicability and

the accuracy of the solutions obtained using them.

8.2 Future Work

Most of the recent Network Processor models are multi-threaded multiprocessor sys-

tems. The scheduling algorithms and the memory model, however are constrained to

single threaded systems. Further work can be done to formulate the problem includ-

ing changing the memory contention model for a multi-threaded system and adapt

the optimization algorithms accordingly.

Secondly, the algorithms as of now may find an off-line use, so that the tasks

and flows are allocated to processor pipelines as part of the initialization process

for the system. Thus, any variation in the traffic will need to be examined and the

tasks will need to be reassigned offline to adapt to the changes in traffic. Future

work could involve extension to the algorithms so that the traffic updates can be

passed as feedback to the algorithms. Thus, the algorithms on receiving a feedback

could reallocate the tasks to pipelined processors on a real-time basis. Considerable

improvement in performance may be required for the task scheduling to be done on

a real-time basis, however, precomputation of sets of likely conditions that required

80

reassignment can be stored along with associated optimal assignments and potentially

used for fast task assignment.

81

Appendix A

Memory Contention Delay

We determine an expression to calculate the worst case memory delay for each pro-

cessor, for the memory contention model described in Chapter 2. The total number

of memory accesses by all the tasks of flow j allocated to processor k is represented

by memjk so that

memjk =
Mj
∑

i=1

Xijkmij (A.1)

For a single flow, the subscript j can be dropped.

Say we need to compute the maximum possible contention for tasks of flow

j ′ on processor k′. For a case with a single flow, the number of contending memory

accesses from a processor k where k 6= k′, is given by mem1k (single flow : j ′ = 1).

However, in case of multiple flows, the number of contending memory accesses from a

processor k is given by the maximum value of memjk across all flows (for 1 ≤ j ≤ N),

since packets of different flows could be executing on different processors. This can

be further explained by the example shown in Figure A.1. The example shows two

cases of a problem with two flows, F1 and F2. For simplicity, each flow is assumed

to have 3 tasks with each task allocated to a different processor. The contending

memory accesses for the current packet in any processor k is represented by memk.

82

Figure A.1 (a) shows a case where a packet of flow F1 is being processed in each of the

stages. Thus, mem1 = mem11 = 2, mem2 = mem12 = 3 and mem3 = mem13 = 0.

= 2

a.

P1

Packet = F1

mem = 2

Memory Request
Queue

P2

Packet = F1

mem = 3

mem

mem

P3

Packet = F1

mem

mem

mem = 0

mem

mem 23 = 2

= 013= 312
= 122

= 2

1 3

P1

Packet = F1

mem = 2

Memory Request
Queue

P2

Packet = F1

mem = 3

mem

mem

P3

Packet = F2

mem

mem

mem = 2

mem

mem 23

= 013= 312
= 122

= 2
= 4

1 3

b.

Shared MemoryShared Memory

11
21

11
21= 4

2 2

Figure A.1: Multi-flow Memory Contention

Now, we consider Figure A.1 (b), which is a variation of the previous case except

that now processor P3 has a packet of flow F2 being processed in it. Accordingly,

the number of contending memory accesses from processor P3 is given by mem3 =

mem23 = 2. Hence, the contending memory accesses by a processor vary depending

on the type of packet being processed in it. Thus, for multiple flows, the number of

contending memory accesses by the tasks allocated to processor k is given by:

memk =
N

max
j=1

[memjk] (A.2)

Accordingly, the number of contending memory accesses for the processors in Fig-

ure A.1 are P1 : mem21 = 4, P2 : mem12 = 3 and P3 : mem13 = 2.

Now we will calculate the total number of contending memory accesses when

a packet of flow j ′ is being executed on processor k′. The number of memory accesses

required by processor k′ to process a packet of flow j ′ is represented by memj′k′ . While

evaluating the contending memory accesses due to a processor k where k 6= k ′, though

the number of memory accesses made by the processor (by Equation A.2) would be

memk, we need to find just how many of those actually contend with memj′k′.

83

Assuming a worst case scenario, if memj′k′ > memk, the number of contending

memory accesses by processor k is equal to memk, since in the worst case everytime

processor k′ makes a request, a request by processor k is being serviced. Thus,

processor k′ will have to wait for one memory request for each memory request it

makes till it has completed a total of memk memory requests. By using a similar

argument, for the same case, if memj′k′ ≤ memk, the number of contending memory

accesses by processor k is equal to memjk. This is illustrated in the example shown

in Figure 2.1. where it shows the computation of the total number of contending

memory accesses for P1 (mem1). Since, mem3 < mem1, the number of contending

memory accesses from P3 = mem3 = 1. Also, since mem1 < mem2, the number of

contending memory accesses from P2 = mem1 = 2.

Thus, the maximum number of contending memory accesses, cjk, for a packet

of flow j requiring memjk memory accesses on processor k is given by :

cjk =
R
∑

p=1,p6=k

zp where zp =

memp if memp < memjk

memjk if memp ≥ memjk

(A.3)

For multiple memory modules, with the processor-memory block association

represented by Akm(as described in Section 2.1), zp from Equation A.3 should be

considered only if both processor k and processor p access the same memory block.

Thus, for a system with multiple memory modules and R processors, cjk is given by:

cjk =
R
∑

p=1

zpApm where Akm = 1 (A.4)

In Equation A.4, Akm = 1 implies that the processor k accesses memory block m.

Since Apm can either be 0 or 1, zp gets added to the total contending accesses (cjk)

only if Apm = 1 i.e. if processor p accesses memory module m.

84

Appendix B

Phoenix Toolset Manual (ver 1.0)

The Phoenix toolset is a set of algorithms to allocate sequential tasks optimally, to

a processor pipeline. It can be configured to use a heuristic approach (GreedyPipe),

dynamic programming or a statistical approach (Simulated Annealing). The tool

has been written using the C programming language. The tool is enabled to accept

the input parameters at the command prompt or in the form of a configuration file.

Phoenix has been tested on both Solaris and Linux operating systems. To obtain the

Phoenix Toolset, e-mail your requests to seema/jbf@ccrc.wustl.edu

B.1 Usage

The following command needs to be issued at the command prompt to run the Phoenix

tool:

$ phoenix

The toolset accepts the following command line arguments:

Table B.1: Sample - Interactive Command Line Option

default prints the help message
-f reads the parameters from a configuration file named config.txt
-c gets the input parameters from the command line

Table B.2: Command Line Options For Phoenix

85

Please enter the number of stages in the pipeline : 3
Please enter the number of flows in the system : 2
Please enter the number of memory modules in the system : 2

Please enter the algorithm to be used (SA, DP, GP) : SA

Please enter the number of tasks in Flow − 1 : 2

Please enter the task ids in Flow − 1 with the corresponding execution time

and memory accesses

e.g. Task1=3.4−1,Task2=5.4−2,Task3=9.4−3

Task1=2.3−1,Task2=4.5−2

Please enter the task ids in Flow − 2 with the corresponding execution time

Please enter the number of tasks in Flow − 2 : 2

and memory accesses

e.g. Task1=3.4−1,Task2=5.4−2,Task3=9.4−3

Task3=6.2−3,Task4=8.0−3

Please enter the processors associated with Memory Module − 1 :

e.g. P1,P2,P3

P1,P2

Please enter the number of processors allocated to Memory Module − 2 :

Please enter the processors associated with Memory Module − 2 :

e.g. P1,P2,P3

P3

Please enter the number of processors allocated to Memory Module − 1 : 2

B.1.1 Command Line Format

The input parameters to the toolset can be provided through the command line by

using the following command:

$ phoenix -c

On issuing the above command, the user is prompted to enter the system configuration

interactively as shown in Figure B.1. The entries in bold are the user entered values.

The tool expects an integer value to be entered for the number of processor stages,

the number of flows , the number of memory modules and the number of tasks in

86

flows. The minimum integer value for all the entities can be 1. The tool also requires

to know the algorithm to be used. The algorithm options are :

• GP : GreedyPipe

• DP : Dynamic Programming

• SA : Simulated Annealing

• CE : Complete Enumeration

For CE, if the problem size is large, the tool gives a warning about high execution

time and prompts for confirmation of the algorithm to be used. If a memory module is

shared between processors, the tool ignores the user entered option for the algorithm

to be used and uses SA. The task details pertaining to each flow are entered in terms

of task Ids, their respective execution times and the total number of memory accesses

required by each task as

TaskId1 = Execution T ime1-Memory Accesses1, TaskId2 = Execution T ime2-

Memory Accesses2,....

The task Ids need to have the format Task{xxx} where ’xxx’ is a unique integer

identifying the task. The task Id can also be represented using a short-hand notation

as T{xxx}. The execution time could be any decimal number to a precision of 6

decimal places. The order of the entered tasks also implies the sequence in which the

tasks need to be executed. MemoryAccesses is the total number of memory accesses

required by the task and should be an integer entry.

The memory to processor allocation details are entered in terms of the memory

module number and the processors associated with it.

MemoryModule1 = {Processor1, Processor2,....}

The memory modules need to have the format M{xxx} where ’xxx’ is a unique integer

identifying the memory module. The processors need to be represented as P{xxx}

where ’xxx’ is a unique integer identifying the processor. After getting all the system

87

configuration parameters, the tool computes the optimal allocation and displays the

task assignments for the pipeline. All the entries on the command line are case

insensitive.

B.1.2 Configuration File Format

The algorithm parameter conveys the algorithm to be used for task allocation
The options are SA, DP or GP

Algorithm = DP

Each Task Identifier should be represented with a ’Task’ appended

The Task Identifiers, the corresponding execution times and memory accesses

Flow[Flow Identifier]:Task[Task Identifier]=Task Execution Time − Memory Accesses,

Task Description for each Flow should be entered on a separate line

Task Details for Flows

by a unique integer associated with the Task Id

should be represented as

Task[Task Identifier]=Task Execution Time − Memory Accesses, ..

Example :

Flow1:Task1=3.0−1,Task2=4.0−2,Task3=5.3−1

Flow2:Task4=2.3−1,Task5=7.4−3,Task6=6.5−3

Flow1:Task1=3.1−1,Task2=4.2−0,Task3=5.3−1

Flow2:Task4=2.34367−1,Task5=7.4−0,Task6=6.5−2

System Configuration File

Number of Stages = 3

Number of Flows = 2

Number of Memory Modules = 2

Each Memory Module should be represented with an ’M’ appended

by a unique integer associated with the memory module

Each processor should be represented with an ’M’ appended

by a unique integer associated with the processor

The Memory Module to processor association is represented as

M[Integer]:P[Integer], P[Integer], ..

Example :

M1 : P1,P3

M1 : P1,P2

Memory Module to Processor Allocation

Figure B.1: Sample - Phoenix Toolset Configuration File

The input parameters to the tool can alternatively be provided through a

configuration file, config.txt, by executing the following command

88

$ phoenix -f

The configuration file should be placed in the same directory as the toolset executable.

The configuration file contains the tool and system configuration details like the

number of processor stages, the number of flows in the system, the number of memory

modules, the task details for each of th flows etc. Figure B.1 shows a sample format

of the configuration file. The contents of the file are not case sensitive. The lines in

the file starting with the character ’#’ are considered to be comments. The system

description primarily consists of the following entries.

• Number of Stages : Denotes the number of processor stages in the pipeline and

expects an integer value to be entered after the ’=’ delimiter.

• Number of Flows : Specifies the number of flow classifications in the system and

requires an integer index to be entered following the ’=’ delimiter.

• Number of Memory Modules : Specifies the number of memory blocks in the

system and needs an integer index to be entered following the ’=’ delimiter.

• Algorithm : Specifies the algorithm to be used for task scheduling. The valid

options are SA, DP, GP or CE (described in the previous subsection).

• Task Details for Flows : This set of entries, specifies the task details for each of

the flows. Each entry depicting the details for each flow should be entered on a

new line and should comply with the following format.

F lowId1:TaskId1=Execution T ime1-Memory Accesses1, TaskId2=Execution

T ime2-Memory Accesses2,..

The flow identification needs to be entered in the format Flow{xxx}, where

’xxx’ represents the unique integer identifying the flow. The flow Id can also be

represented using a short-hand notation as F{xxx}. The flow identification The

sequence of task entries in a flow entry represents the order of execution of the

tasks.

89

• Memory Module to Processor Allocation : This set of entries specifies the mem-

ory to processor allocation. The memory module identification should be en-

tered in the format M{xxx}, where ’xxx’ represents the unique integer identifying

the memory module. The memory module identifier is followed by the set of

processors associated with the memory module. A processor is represented as

P{xxx}, where ’xxx’ indicates the unique integer identifying the processor. The

number of processors allocated to a memory module indicates if there is any

memory contention.

Number of Processor Stages = 3

Number of Flows = 3

Number of Memory Modules = 3

Memory Contention Does Not Exist

Algorithm to be used = DP

 =========================== System Configuration =======================
 Flow 1 − Task1 Task2 Task3 Task4 Task5
 Execution Time − 5.000000 4.000000 3.000000 1.000000 3.000000

 Flow 2 − Task10 Task12 Task13 Task14 Task15
 Execution Time − 5.000000 4.000000 3.000000 1.000000 3.000000

 Flow 3 − Task6 Task7 Task8 Task9
 Execution Time − 5.000000 3.000000 4.000000 2.000000

 ======================= Dynamic Programming Allocation ===================

 Processor = 2 : 2 3 12 13 7
 Processor = 3 : 1 10 6

 Processor = 1 : 4 5 14 15 8 9

 Pipeline Throughput = 0.142857

===

===

Figure B.2: Sample - Phoenix Toolset Output

B.1.3 Output Format

Given a set of input parameters for the system configuration, Phoenix determines and

displays the optimal task assignments for the pipeline. Figure B.2 shows a sample

90

output format. The displayed output (FigureB.2) shows the tasks allocated to each

processor stage and also the throughput of the system for the given allocation.

B.2 Example

This section gives complete examples of execution of the tool using both the command

line option and the the configuration file option. The first example being considered

has a system configuration with 3 processor stages and two flow classifications. The

applications for both the flows are pipelined into three tasks. There are two memory

modules in the system; the first one has two processors allocated to it and the second

one has one processor allocated to it. Since the memory modules are shared, there is

memory contention. The algorithm to be used for task scheduling is SA. Figure B.3

shows all the steps of the tool execution when the described system configuration

information is entered interactively through the command-line.

The next example being considered has the input parameters provided through

the configuration file. The pipeline has two processor stages and two flows. The

applications in both the flows are pipelined into three tasks. There is no memory

contention. The algorithm to be used is SA. Figure B.4 shows the contents of the

config.txt file that describes the pipeline configuration details.

Figure B.5 shows the allocation generated by Phoenix for the system configu-

ration in Figure B.4.

91

Please enter the number of stages in the pipeline :

Please enter the number of flows in the system :

Please enter the number of Memory Modules in the system :

Please enter the algorithm to be used (SA,DP,GP) :

Please enter the number of tasks in Flow − 1 :

Please enter the task ids in Flow − 1 with the corresponding execution times and mem ory accesses

e.g. T1=3.4−2,T2=5.4−1,T3=9.4−3

T1=3−1,T2=4−0,T3=6−2

Please enter the number of tasks in Flow − 2 :

Please enter the task ids in Flow − 2 with the corresponding execution times and mem ory accesses

e.g. T1=3.4−2,T2=5.4−1,T3=9.4−3

T4=5−3,T5=2−0,T6=7−3

Please enter the number of processors allocated tp Memory Module − 1 :

Please enter the Processor ids associated with memory module− 1

e.g. P1,P2,P3

P1,P2

Please enter the number of processors allocated tp Memory Module − 2 :

Please enter the Processor ids associated with memory module− 2

e.g. P1,P2,P3

P3
 =========================== System Configuration =======================

 M1 − P1 P2

 M2 − P3
 ==

Flow 1 − Task1 Task2 Task3
 Execution Time − 3.000000 4.000000 6.000000

 Flow 2 − Task4 Task5 Task6
 Execution Time − 5.000000 2.000000 7.000000

 =========================== Simulated Annealing Allocation =======================

 Processor = 2 : 1 2 4 5
 Processor = 3 : 3 6

Processor = 1 :

 ==
3

2

2

SA

3

3

2

1

 ==
 Pipeline Throughput = 0.142857

Figure B.3: Sample - Phoenix Interactive Execution

92

The "Algorithm" parameter conveys the algorithm to be used for task allocation
The options are SA, GP, DP
Algorithm = SA

#Task Details for Flows
#Each Task Identifier should be represented with a ’T’ appended
#by a unique integer associated with the Task ID.
#The Task Identifiers, the corresponding execution times and memory accesses
#should be represented as

#F[Integer]:T[Integer]=Task Execution Time−Number of Memory Accesses,

Example :

F1:T1=3.0−3,T2=4.0−2,T3=5.3−0

F2:T4=2.3−2,T5=7.4−3,T6=6.5−1

FLOW1:Task1=4−2,Task2=3−1,Task3=4−1

FLOW2:Task4=5−1,Task5=4−1,Task6=3−1

T[Integer]=Task Execution Time−Number of Memory Accesses

#System Configuration File
Number of Stages = 2

Number of Flows = 2

Number of Memory Modules = 2

==

#Each Memory Module should be represented with an ’M’ appended
#by a unique integer associated with the memory module.
#Each Processor should be represented with a ’P’ appended
#by a unique integer associated with the Processor ID.
The memory module to processor association is represented as
#M[Integer]:P[Integer],P[Integer], ..
Example :
#M1:P1,P3
#M2:P2

M1:P1

M2:P2
==

#Memory Module to Processor Allocation

Figure B.4: Example - config.txt

93

Number of Flows = 2

Number of Memory Modules = 2

Memory Contention Does Not Exist

Algorithm to be used = SA

 =========================== System Configuration =======================

Number of Processor Stages = 2

 ===

 Flow 1 − Task1 Task2 Task3
 Execution Time − 4.000000 3.000000 4.000000

 Flow 2 − Task4 Task5 Task6
 Execution Time − 5.000000 4.000000 3.000000

 ======================== Simulated Annealing Allocation ====================
 Processor = 1 : 1 2 4
 Processor = 2 : 3 5 6

 Throughput = 0.142857

 ===

Figure B.5: Example - Phoenix Output

94

Appendix C

Phoenix Toolset File Organisation

The toolset installation comes in the form of a tar-gzip file called Phoenix.tar.gz. On

extracting the tar file, it forms a directory called Phoenix-1.0. In addition to the

Phoenix toolset manual, this directory has all the source files including a Makefile to

build an executable. The source files in the directory are :

• common.h : Contains the functions and global variables common to all the three

algorithms.

• dp.c : Contains the functions associated with the dynamic programming algo-

rithm.

• stack dp.h : Contains the functions to maintain a stack for the dynamic pro-

gramming algorithm.

• sa.c : Contains the functions associated with the simulated annealing algorithm.

• ce.c : Contains the functions associated with the complete enumeration algo-

rithm.

• greedypipe.c : Contains the functions associated with GreedyPipe (the heuristic

approach).

95

• stack gp.h : Contains the functions to maintain a stack for the GreedyPipe

algorithm.

• phoenix.c : Contains the main program that invokes the three algorithms.

• Phoenix manual.pdf : Phoenix toolset manual

To install the tool, run the make command which builds the binary phoenix.

96

References

[1] AES Algorithm Rijndael Information. http://csrc.nist.gov/CryptoToolkit/aes/rijndael.

[2] CAIDA : The Cooperative Association for Internet Data Analyses .

http://www.caida.org.

[3] AS1239 BGP Table Data. http://bgp.potaroo.net/1239/bgp-active.html, 2003.

[4] BGP Table Data. http://bgp.potaroo.net/, 2003.

[5] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure for Com-

puter System Modelling. In IEEE Computer, February 2002.

[6] Richard Bellman. Dynamic programming treatment of the travelling salesman

problem. Journal of the ACM, 9(1):61–63, 1962.

[7] P. Bjørstad, F. Manne, T. Sørevik, and M. Vajteršic. Efficient matrix multipli-

cation on SIMD computers. SIAM J. Matrix Anal. Appl., 13(1):386–401, 1992.

[8] P. Chretienne, Jr. E. G. Coffman, J. K.Lenstra, and Z. Liu. Scheduling Theory

and its Applications. John Wiley & Sons, Chichester, England, 1995.

[9] K. Claffy, G. Miller, and K. Thompson. The Nature of the Beast: Recent Traffic

Measurements from an Internet Backbone. Technical report, April 1998.

[10] F. Manne and B. Olstad. Efficient Partitioning of Sequences. volume 44, pages

1322–1326, 1995.

[11] M. A. Franklin and T. Wolf. A Network Processor Performance and Design

Model with Benchmark Parameterization. In Network Processor Design, Vol.1,

by Crowley, P., Franklin, M., Hadimioglu, H. and Onufryk, P. Morgan Kauf-

mann Publishers, Inc., San Francisco, CA., 2003.

97

[12] M.A. Franklin and T.Wolf. A Network Processor Performance and Design Model

with Benchmark Parameterization. In Proc. 1st Workshop on Network Proces-

sors, in conjunction with 8th Inter. Symp. on High Performance Computer Ar-

chitecture (HPCA-8), Cambridge, MA., Feb 2002.

[13] M.A. Franklin and T.Wolf. Power Considerations in Network Processor De-

sign. In Proc. 2nd Workshop on Network Processors, in conjunction with 9th In-

ter. Symp. on High Performance Computer Architecture (HPCA-9), Cambridge,

MA., Feb 2003.

[14] M.R. Garey and D.S. Johnson. Complexity results for multiprocessor scheduling

under resource constraints. SIAM J. Comput., 4:397–411, 1975.

[15] M. Gordon. A Stream Compiler for Communication-Exposed Architectures. MIT

Tech. Memo TM-627, Cambridge, MA, March 2002.

[16] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan. Optimization

and approximation in deterministic sequencing and scheduling : A survey. Annals

of Discrete Mathematics, 5:287–326, 1979.

[17] Leung J. Y.-T. Han S., Hong D. On the asymptotic optimality of heuristic

multiprocessor scheduling algorithms. Technical report, Univ. of Nebraska, De-

partment of computer Science, 1992.

[18] P. Hansen and K.-W. Lih. Improved algorithms for partitioning problems in

parallel, pipelined , and distributed computing. IEEE Trans. Comput., 41:769–

771, 1992.

[19] P. Helman. The principle of optimality in the design of efficient algorithms.

Journal of Mathematical Analysis and Applications, 119:97–127, 1986.

[20] IBM Corp. IBM Power Network Processors, 2000.

[21] Intel Corp. Intel IXP 2800 Network Processor, 2000.

[22] A. S. Jain and S. Meeran. Deterministic Job-Shop Scheduling: Past, Present

and Future. European Jrnl. of Operational Research, 113(2), 1999.

[23] V. Joshi and M. Franklin. SimplePipe: A Simulation Tool for Task Allocation and

Design of Processor Pipelines with Application to Network Processors. Technical

report, Washington Univ. in St. Louis, CSE Dept, (Pending).

98

[24] Eddie Kohler, Robert Morris, and Benjie Chen. Programming language optimiza-

tions for modular router configurations. In Proceedings of the 10th international

conference on Architectural support for programming languages and operating

systems, pages 251–263. ACM Press, 2002.

[25] M. Franklin and S. Datar. Pipeline Task Scheduling on Network Processors. In

Proc. of 3rd Workshop on Network Processors, Feb. 2004.

[26] Fredrik Manne and Tor Sørevik. Optimal partitioning of sequences. J. Alg.,

19(2):235–249, 1995.

[27] John Marshall. Cisco Systems - Toaster2. In Network Processor Design, Vol.1, by

Crowley, P., Franklin, M., Hadimioglu, H. and Onufryk, P. Morgan Kaufmann

Publishers, Inc., San Francisco, CA., 2003.

[28] A. Moestedt and P. Sjodin. IP Address Lookup in Hardware for High-Speed

Routing. In Hot Interconnects, August 1998.

[29] N. Metropolis and A.N. Rosenbluth and M.N. Rosenbluth and A.H. Teller and

H. Teller. Equation of State Calculations by Fast Computing Machines. Journal

of Chemical Physics, 21:1087–1092, 1953.

[30] P. Chodowiec and P. Khuon and K. Gaj. Fast implementations of secret-key

block ciphers using mixed inner- and outer-round pipelining. In ACM SIGDA

Inter. Symp. on Field Programmable Arrays (FPGA’01), Monterey, CA, Feb.

2001.

[31] Ali Pinar and Cevdet Aykanat. Fast optimal load balancing algorithms for 1d

partitioning. to appear in Journal of Parallel and Distributed Computing.

[32] V. Rijmen and J. Daemen. The Block Cipher Rijndael. In Proc. of the Third In-

ternational Conference on Smart Card Research and Applications, CARDIS’98,

LNCS 1820, pages 277–284, 2000.

[33] S. Anily and A. Federgruen. Structured Partitioning Problems. Operations Re-

search, 13:130–149, 1991.

[34] S. Kirkpatrick and C. Gelatt and P. Vecchi. Optimization by Simulated Anneal-

ing. Science, 220:671–679, 1983.

99

[35] M. Schwehm and T. Walter. Mapping and Scheduling by Genetic Algorithms. In

Conf. on Algorithms and Hardware for Parallel Processing, pages 832–841, 1994.

[36] S.H. Bokhari. Partitioning Problems in Parallel, Pipelined, and Distributed

Computing. IEEE Trans. Comput., 37:48–57, 1988.

[37] T.Wolf and M.A. Franklin. CommBench - A telecommunications benchmark for

network processors. In Proc. of IEEE Inter. Symp. on Performance Analysis of

Systems and Software (ISPASS), pages 154–162, Austin, TX., Apr 2000.

[38] T.Wolf and M.A. Franklin. Design tradeoffs for embedded network processors.

In Proc. of Inter. Conf. on Architecture of Computing Systems (ARCS) (Lecture

Notes in Computer Science), volume 2299, pages 149–164, Karlsruhe, Germany,

Apr 2002.

[39] V. Sarkar and J. Hennessey. Compile-time Partitioning and Scheduling of Paral-

lel Programs. In In ACM SIGPLAN ’86 Symp. on Compiler Construction, pages

17–26, 1986.

[40] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable high-speed

prefix matching. ACM Transactions on Computer Systems, 19(4), November

2001.

[41] Wei-Je Huang and N. Saxena and E. J. McCluskey. A Reliable LZ Data Compres-

sor on Reconfigurable Coprocessors. In IEEE Symp. on Field-Programmable Cus-

tom Computing Machines, pages 249–258, Napa Valley, California, April 2000.

[42] T. A. Welsh. A Technique for High-Performance Data Compression. Computer,

17(6), 1984.

[43] Tilman Wolf and Mark A. Franklin. Locality-Aware Predictive Scheduling of

Network Processors. In Proc. 2001 IEEE Inter. Symp. on Performance Analysis

of Systems & Software, Tucson, Arizona, Nov. 2001.

[44] D.F. Wong, H.W. Leong, and C.L. Liu. In Simulated Annealing for VLSI Design.

Kluver Academic Publishers, Norwell, MA., 1998.

[45] T. Yang and A. Gerasoulis. A Parallel Programming Tool for Scheduling on

Distributed Memory Multiprocessors. In Proc. of the 1992 Scalable High Perfor-

mance Computing Conf., Williamsburg, VA, 1992.

100

[46] J. Ziv and A. Lempel. Compression of Individual Sequences via Variable-Rate

Coding. IEEE Trans. Information Theory, 24(5):530–536, 1978.

101

Vita
Seema Datar

Date of Birth June 11, 1973

Place of Birth Jabalpur, Madhya Pradesh, India

Degrees B.E. Electronics and Telecommunications, 1995, S.G.S. Insti-

tute of Tech. and Science, Indore, India.

Publications Mark A. Franklin, Seema Datar: Pipeline Task Scheduling

on Network Processors Proc. of 3rd Workshop on Network

Processors, Feb. 2004

August 2004

	Pipeline Task Scheduling with Appication to Network Processors
	Recommended Citation
	Pipeline Task Scheduling with Appication to Network Processors

	tmp.1470340445.pdf.JDacj

	Abstract: Abstract: Chip Multi-Processors (CMPs) are now available in a
variety of systems and provide the opportunity for achieving high computational
performance by exploiting application-level parallelism. In the communications
environment, network processors (NPs), designed around CMP architectures, are
generally usable in a pipelined manner. This leads to the need for static
scheduling of tasks on processor pipelines. This thesis considers problems
associated with determining optimal schedules for such pipelines. A collection
of algorithms is presented with their utility determined by the size and other
characteristics of the system. The algorithms employ heuristics, dynamic
programming and statistical methods to schedule tasks derived from multiple
application flows on pipelines with an arbitrary number of stages.
Experimental results indicate that while the dynamic programming algorithm
obtains the optimal schedules, heuristics and statistical methods obtain
schedules within 10% of the optimal, 95% of the time. Examples are given to
show the use of these algorithms for general pipeline/algorithm design and for
use in the Network Processor environment with typical networking applications.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: August 4, 2004
	Author: Authors: Datar, Seema
	Title: Pipeline Task Scheduling with Appication to Network Processors, Master's Thesis, August 2004
	ReportNumber: 2004-48
	DepartmentName: Department of Computer Science & Engineering

