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Abstract 

C-to-T mutations are a hallmark of UV light and, in humans, occur 

preferentially at methylated PymCG sites, which are also sites of preferential 

cyclobutane pyrimidine dimer (CPD) formation. CPDs containing C or 

5-methylcytosine (mC) are not stable and spontaneously deaminate to U or T at pH 7 

and 37°C over a period of hours or days. Deamination of Cs or mCs in CPDs is highly 

mutagenic because polymerase η will faithfully insert A opposite the resulting Us or 

Ts, thereby producing the observed C to T and CC to TT mutations (the 

deamination-bypass mechanism). In this thesis, we prepared a CPD of a TmCG site, a 

known hotspot for C methylation, CPD formation, and UV light-induced C-to-T 

mutations found in the p53 gene of basal and squamous cell cancers. We show that 

both yeast and human pol η could synthesize past the 3’-mC in T=mC CPD in a >99% 

error-free manner by non-mutagenic insertion of G opposite the mC in the CPD.  We 

also confirmed the error-free but mutagenic insertion of A opposite the resulting 

deaminated T.  

Nucleosomes are the primary structural unit of chromatin in eukaryotic cells. 

UV preferentially induces the formation of CPDs in nucleosomes at sites where the 

phosphodiester backbone is positioned away from the histone surface and DNA 

bending is toward the major groove. Nucleosomes have also been found reduce the 

rate of nuclear excision repair to different extents depending on specific tissue and 

cell type. Although the frequency of CPD formation and repair is modestly modulated 

by its rotational positioning within a nucleosome, the effect of nucleosome rotational 
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positioning on the rate of deamination of mC in a CPD has not been previously 

studied. In this thesis, we investigated the deamination of CPDs in a chicken 

erythrocyte nucleosome core particle reconstituted with synthetic DNA. We found 

that the deamination of a TmC CPD whose sugar phosphate backbone is positioned 

against the histone core surface decreases by a factor of 4.7, whereas that of a TmC 

CPD positioned away from the surface increases by a factor of 8.9 when compared 

with unbound DNA. Considering that formation of the CPD positioned away from 

the surface is also enhanced by a factor of two, a TmCG site in this position might be 

expected to have up to an 84-fold higher probability of resulting in a UV-induced mC 

to T mutation than one positioned against the surface. We also determined the 

deamination rate for T=mC CPDs in all ten possible nucleosome rotational positions 

of a full periodic turn on the nucleosome core particle surface, at the same 

translational position. Three T=mCG CPDs positioned inside deaminated slower than 

the unbound DNA, whereas the seven positioned outside deaminated faster than the 

unbound sequence. 

Many of researchers have relied on nucleosome core particles isolated directly 

from organisms for their in vitro studies. Although the isolation process is 

straightforward, it is generally time-consuming, and may contain modified histones.  

Recombinant histones offer the possibility to carefully study the structure activity 

relationships of nucleosome core particles containing DNA photoproducts, and in this 

thesis, we report the preparation and assembly of a nucleosome core particle from 

recombinant histones. A histone octamer was prepared from recombinant Xenopus 
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histones expressed and purified from E. coli, based on minor modifications of 

previously described protocol. We also reconstituted the recombinant histone octamer 

with our synthetic 147-mer DNA duplex, and demonstrated that it assembled with a 

specific rotational and translational position.   
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1.1 General pathway leading to UV-induced skin cancer. 

UV light is believed to be one of the major epidemiological factors for human 

skin cancer, especially non-melanoma skin cancer. Exposure of basal and squamous 

skin cells to UV irradiation can cause the formation of various types of DNA 

photoproducts in the genomic DNA. When these photoproducts form within crucial 

proto-oncogenes, such as the ras family genes, and tumor suppressor genes, such as 

the p53 gene TP53, which are involved in cell cycle control, maintenance of gene 

integrity and cell proliferation and differentiation, there is the potential for inducing 

cancer (1-5). Of many types of DNA photoproducts, cis-syn cyclobutane pyrimidine 

dimers (CPD) and the pyrimidine (6-4) pyrimidone photoproducts [(6-4) 

photoproducts] of dipyrimidine sites are known to be most frequent DNA 

photo-lesions formed by UVB or UVC irradiation (6-9). CPDs are generated through 

the formation of a cyclobutane ring between the 5, 6-double bonds of the adjacent 

pyrimidine bases in the genome, which causes an approximately 7-9º deformation 

relative to the B-form DNA structure at the photo-lesion site. Compared with CPDs, 

(6-4) photoproducts have cause a much greater deformation of 44º  which makes 

them more easily detected and repaired than CPDs (9). CPDs are formed at least 

20-40 fold more frequently than (6-4) photoproducts (6), and given their slower rate 

of repair (9, 10), makes them a prime candidate for the mutagenic effects of light (11, 

12).  

Mutations at CpG sites.  In mammalian cells, cytosine is often methylated 

during cell differentiation to give 5-methyl cytosine (mC) which almost exclusively 
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occurs at the CpG dinucleotide sites. MethylC sites are known mutational hotspots in 

cancer-related genes and are often mutated in genes associated with human genetic 

diseases. Sequencing of the tumor suppressor p53 gene in human skin cancers has 

revealed that about 35% of these mutations involve the tri-nucleotide sequence with 

5-methyl cytosine, as 5’-PymCG, (Figure 1.1). Most of the mutations occurring at this 

methylated CpG sites are C→ T, mC→T or CC→TT mutations, which are generally 

considered as the molecular signature of UV light (1-4). Among the eight commonly 

observed hotspot mutations along p53 gene, five contain the methylated CpG sites, 

either with 5’-CmCG or 5’-TmCG (9, 13), as indicated by * in Figure 1.1. The 

enhanced mutation frequency at these sites has been attributed to the red shift in the 

absorption of UV light from λmax = 267nm (cytosine) to λmax = 273nm (5-methyl 

cytosine), as shown in Figure 1.2. This red shift results in an approximately 15-fold 

enhancement in the photoreactivity of mC compared with C to form the mC-containing 

CPDs at 5’-PymCG sites under UVB irradiation (280-320 nm) (9, 14-16).  

Mechanisms for UV-induced C→T mutations. There are two principal 

mechanisms that have been proposed to explain how the UV induced C→T or mC→T 

transition mutations occur. One is called the “tautomer-bypass mechanism” in which 

the C or mC in a CPD adopts a tautomeric form that resembles T (18). Unlike T in 

native DNA or in a CPD, which is known to preferentially adopt the keto tautomeric 

state and base pair with A, a C or mC in a CPD could, in principal, adopt both amino 

and/or imino tautomeric forms with E- or Z-stereochemisty (the imino hydrogen is 

trans or cis with respect to N3), as shown in Figure 1.3. While the amino tautomer of 
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C or mC can base pair with G, the E-imino tautomer of C or mC has the same base 

pairing ability as T, which would direct the insertion of A during DNA replication 

thereby causing a C or mC to T mutation (17, 18). The possibility that C or mC could 

exist in an imino tautomeric form comes from early work demonstrating that 

dihydrocytosine adopts the amino tautomeric form in water but an imino tautomeric 

form in the much less polar solvent chloroform (19). Gas phase theoretical 

calculations have reproduced the preference for the imino tautomeric form in 

non-polar environments (20, 21) but failed to reproduce the preference for the amino 

form in water (21). 

The other mechanism was proposed by our group, is the “deamination-bypass 

mechanism”. Unlike T=T CPDs which are chemically stable, the C-containing or 

(mC)-containing CPDs are not, and deaminate to U or T respectively, within hours to 

days (22-27). The deamination process occurs under acidic conditions, with the C or 

mC first being protonated at the N3 position, followed by a water attack at C4, and the 

loss of ammonia resulting in the formation of U or T, as shown in Figure 1.4 for a 

T=mC CPD. Spontaneous deamination of normal C or mC is very slow, with a 

half-life about 50,000 years (28, 29), while the formation of a CPD greatly accelerate 

this process, due to the disruption of the original aromatic system by the saturation of 

5, 6-double bond.  

DNA polymerase η.  In response to UV irradiation, cells have adopted 

global genome and transcription-coupled nucleotide excision repair systems to 

specifically remove the UV-induced DNA lesion along the genome (30-32). It is 
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believed however, that the CPDs are less efficiently repaired compared with (6-4) 

photoproducts, due to their moderate distortion on both the DNA structure and the 

duplex stability (34-37). For those unrepaired DNA photolesions, cells have evolved 

DNA damage bypass polymerases to carry out the trans-lesion synthesis (33). These 

DNA damage bypass polymerases generally belong to the Y family of DNA 

polymerases, of which polymerase η (Pol η) appears to be specifically adapted to 

synthesize past cis-syn CPDs (38-40). Pol η was first identified in yeast and was 

found to insert two A’s opposite the the two T’s of a T=T CPD (38). At about the 

same time it was shown that a defect pol η was responsible for the inability of XPV 

cells, which are proficient in the nucleotide excision repair, to replicate past 

UV-damaged DNA (41). The unique ability of Pol η to synthesize past CPDs comes 

from its unique structural features that were revealed in a crystal structure of the 

active site in Pol η complexed with a primer-template. Instead of only being able to 

accomodate one templating nucleotide in the active site as do replicative DNA 

polymerases, Pol η can accommodate both nucleotides of a CPD in its active site (42). 

As for a mC-containing CPD, we’ve been able to prove that yeast DNA Pol η can 

bypass a mC=T CPD in an error-free manner by inserting a G opposite the dimerized 

mC in the CPD (43).  

In contrast to CPDs, bypass of (6-4) photoproducts by Pol η is very poor and 

can be error-prone. Pol η can not completely replicate past a (6-4) photoproduct and it 

will preferentially incorporate a G opposite the 3’ pyrimidine of a (6-4) photoproduct 

followed by extension opposite the 5’ pyrimidine by Po l ζ in an error-free manner 
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(44). So the overall consequence of bypassing (6-4) photoproduct would be error-free 

for a 3’ C or mC, whereas it would result in a T→ C mutation opposite a 3’ T.  

Deamination of C-containing CPDs.  Because we had found that DNA Pol 

η inserted A opposite the mC in mC=T CPD, it would appear that the mC has to 

deaminate to T to become mutagenic, as shown in Figure 1.5. We expected that this 

would also hold true for a T=mCG dimer, and that the deaminated mC would similarly 

direct the insertion of A during the trans-lesion synthesis by Pol η in an error-free 

manner, leading the mC to T mutation at the CpG methylation site (43). Studies on mC 

deamination processes have been carried out both in vitro and in vivo, utilizing a 

various types of techniques, i.e., mass spectrometry, enzymatic assay, genetic analysis 

and ligation-mediated PCR (26, 45). Based on these results, the mC deamination rate 

was found to depend highly on the sequence context, pH, temperature, and the cell 

type, with a range of hours to weeks.  

Previously, Dr. Cannistraro in our group developed a strategy to sensitively 

measure the mC deamination rate in vitro by use of an internally 32P-radiolabled mC 

(46). According to this strategy, the mC was 5’-32P radiolabeled, then ligated to 

another DNA fragment to fulfill the length and sequence context desired. After UVB 

irradiation, the mC-containing CPD was allowed to deaminate for specific times at a 

specific temperature and pH. Then the CPDs were photo-reverted to non-dimerized 

mC or T depending on the extent of deamination, by use of E. coli photolyase (47). 

Following that, the DNA was further degraded by Nuclease P1 to mononucleotides 

and the 32P-dT and 32P-mdC were separated by two-step acrylamide gel 
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electrophoresis. In the first step, 32P-mdC and 32P-dT were separated from partially 

digested material and protein based on their size and charge by electrophoresis in an 

10% acrylamide denaturing 7M urea, TBE gel. For the second step, the gel 

surrounding the radioactive band containing the mononucleotides was excised, and a 

second acrylamide gel containing 25 mM citric acid, pH 3.5, and 7M urea was poured 

around the remaining gel slice. Electrophoresis on this gel separated 32P-mdC from 

32P-dT with the 32P-dT migrating the fastest. The deamination rate constant was 

obtained from the slope of a linear least squares fit of the log of the fraction of 

remaining TmC CPD versus deamination time. 

Factors affecting deamination of C-containing CPDs.  When CPDs in a 

number of different sequence contexts were investigated, a number of factors were 

discovered to influence the mC deamination rate. Higher salt concentrations slowed 

down the deamination presumably by stabilizing the duplex and thereby inhibiting 

protonation of mC and addition of water. A 3’-mC was found to deaminate faster than 

a 5’-mC, and a G flanking the mC accelerated deamination in the duplex, by some 

process that appeared to involve the O6-carbonyl group of the G, since substitution of 

this O6-carbonyl group with other functional groups slowed down the deamination, 

as summarized in Figure 1.6 & 1.7 (46). Besides these factors, the methyl-C binding 

protein (MeCP2) was also found to enhance mC-containing CPD formation, while at 

the same time suppressing its deamination (48). 

 

1.2 How does chromatin affect photochemistry of DNA in mammalian cells? 
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In eukaryotic cells, the DNA molecule is packaged into chromatin which can 

both protect the DNA from physical stresses or damage and package the genetic 

information within the nucleus of the cell (49-53). The packaging process is believed 

to involve several key steps: first of all, the genomic DNA will first form a “bead on a 

string” by assembling with histones, which results in a five to ten fold compaction of 

the DNA. In this process, the DNA wraps around histone octamers to form 

nucleosome core particles. The DNA between two consecutive nucleosome core 

particles is called the “linker DNA”, and varies in size between 20 to 60 bp, as shown 

in Figure 1.8. As demonstrated by high-resolution X-ray structural analysis, each 

nucleosome, which contains both the nucleosome core particle and the linker DNA,  

compacts around 200 bp of genomic DNA into almost two left-handed super-helical 

turns (51-55). The nucleosome has a cross-section diameter about 11 nm, and it is this 

11 nm thick poly-nucleosome string that then condenses into a highly folded and 

compact structure called “30 nm chromatin fiber”. This fiber is believed to be 

stabilized by the binding of histone protein H1 to each nucleosome core particle and 

to the adjacent linker DNA and by divalent cations (56-59). The “30 nm chromatin 

fiber” results in a net compaction of about 50-fold. Various models have been 

proposed to explain the geometry of this fiber, and can be grouped into two classes.  

One model is the one-start solenoidal helix with linear coiled nucleosome arrays and 

bent linker DNA. The second is a two-start zig-zag helix with two stacks of helically 

arranged nucleosome arrays connected by straight linker DNA (60-64). This “30nm 

chromatin fiber” then further packs within the nucleus to form the chromosome 
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structure, with the exact mechanism remaining unclear.  

Nucleosome positioning.  To better understand the role of chromatin 

structure in regulating various biological processes such as gene expression, DNA 

replication, transcription and repair, a lot of approaches have been developed to 

investigate the chromatin structure of specific cancer-related genes or even the whole 

genome by mapping of DNA-histone interactions, nucleosome occupancy and 

chromatin remodeling (65-68). With regards to UV carcinogenesis, Pfeifer and 

coworkers reported a high-resolution analysis of the chromatin structure along p53 

gene in human fibroblast, using both DNaseI footprinting and Micrococcal nuclease 

(MNase) mapping (69). MNase preferentially cleaves chromatin in the linker DNA 

region, and was used to determine indicator the positions of nucleosomes along the 

p53 gene. They found that was there were two preferentially positioned nucleosomes 

between exon 5 and 6 along the p53 gene, one from the C-terminal of exon 5 to part 

of exon 5, and the other covering exon 6 and part of intron 6. They did not, however 

observe a clear nucleosome occupancy for exon 7 and 8. They tried to correlate the 

nucleosome positioning of the mutational hotspots located in exon 5 and 6 with the 

relative repair efficiency of photoproducts at these sites but failed, suggesting that 

different cellular machinery may have different bias towards specific chromatin 

structures.  

Nucleosome structure.  As the basic structural repeating unit, nucleosome 

core particle consists of a histone octamer and nucleosomal DNA with an average 

size of 147 bp, as shown in Figure 1.9, the nucleosome has a diameter about 7 nm and 
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bears a 2-fold symmetry, based on the high-resolution X-ray structural analysis (51, 

52). The histone core octamer is made up with two copies of each of the four histone 

proteins: H2A, H2B, H3 and H4, as shown in different colors in Figure 1.9, the 

octamer has a molecular weight about 108 kDa. Each histone protein has a central 

histone-fold motif and flanking tail or extensions, the structural motif consist of three 

α helices connected by two loops, generally dictated as α1-L1-α2-L2-α3. During the 

assembly of histone octamer, it is well believed that two H3-H4 dimers first form a 

tetramer though a 4-helix bundle between two H3 proteins. Then two H2A-H2B 

dimers will join and bind to the H3-H4 tetramer to form the histone octamer structure, 

through another 4-helix bundle between H2 and H4 proteins (51, 52). The 147 bp 

nucleosomal DNA is forms about 1.7 left-handed superhelical turns around the 

histone octamer, with the minor groove of DNA facing toward the histone octamer 

surface 14 times in the nucleosome core particle. It is believed that there are five 

types of histone-DNA interactions between the phosphodiester backbone of the DNA 

chain facing the histone octamer surface: (1) Electrostatic interactions between the 

positive charge from the amino-termini of α1 and α2 helix of the four histones and the 

phosphate group from the DNA backbone; (2) Hydrogen-bonding between the DNA 

phosphate group and the amide backbone nitrogen atoms from the amino acids 

located in the position of α1 and α2 helix that are close to the histone surface; (3) 

Insertion of an arginine side chain from either the histone-fold domain or the histone 

tail into the DNA minor groove; (4) Non-polar contacts between the deoxyribose 

groups of the DNA and non-polar amino acid side chains from the histone-fold 
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surface; (5) Salt-bridges between the oxygen atoms from the DNA phosphate 

backbone and basic or hydroxyl side chains of the histone proteins on the surface.  

Histone posttranslational modifications.  Histone posttranslational 

modifications, or commonly viewed as the “histone code”, play a key role in 

regulating gene expression, epigenetic patterns, the stability of chromatin structure, 

etc (70-73). Histone modifications are believed to be reversible, and are not only 

confined to histone tails but also happen to structured histone folds, and include 

methylation, acetylation, phosphorylation and ubiquitylation of the basic amino acids, 

lysine and arginine (74-76). The specific “histone code” is read out by histone 

chaperons or chromatin remodeling complexes, to regulate DNA accessibility. For 

example, the methylation of Lys 9 in histone H3 can recruit the heterochromatin 

protein HP1 and stabilize the higher-order chromatin structure (77-79). Acetylation of 

Lys 14 in histone H3 can direct the binding of the ATP-dependent 

nucleosome-remodeling complex, thereby stimulating the gene activation (80, 81). 

Different cell types bear different histone modification patterns, especially in cancer 

development and progression, and could have unique hallmarks that are correlating 

with the specific type of carcinogenesis (82-86).  

Nucleosomal DNA positions.  The two key parameters commonly used to 

specify a DNA position in a nucleosome core particle are its translational and 

rotational position. In general, the 147 bp nucleosomal DNA binds the histone 

octamer with a central base pair falling at the pseudo-dyad, with the translational 

positioning being defined as the position of relative to the central base pair. The 
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position is generally denoted in superhelical units with reference to the superhelix 

location zero, or SHL 0 with each superhelical turn containing 10 to 11 bp of the 

nucleosomal DNA (52). The 14 superhelical repeats of the nucleosomal DNA are thus 

divided into two 73-bp halves, with the translational positioning number increasing 

from SHL+1 to SHL+7 starting from the first superhelix on the right of pseudo-dyad, 

and continue clockwise towards the right 73-bp half. The superhelical positions on 

the left half decrease from SHL-1 to SHL-7 starting from the first superhelix on the 

left of pseudo-dyad, continuing counter clockwise for the remainder of the left 73-bp 

half.   

The rotational position usually describes the orientation of a DNA 

phosphodiester backbone relative to the histone octamer surface. Rotataional 

positions can be categorized as either being “IN” in which the phosphodiester 

backbone of the DNA faces inside or toward the histone octamer surface, or “OUT” 

in which the phosphodiester backbone faces outside or away from the histone 

octamer surface. Generally, in one superhelical turn of the nucleosomal DNA, 

roughly three out of ten nucleotides adopt the “IN” rotational positioning, while the 

other seven nucleotides bearing the “OUT” rotational positioning. The key feature of 

nucleosome rotational positioning is that it represents the relative accessibility of the 

nucleosomal DNA to various DNA cleavage reagents, also other enzymes or cellular 

machinery that recognizes specific DNA sequence or structure to carry out important 

biological processes, i.e., DNA replication, transcription or DNA repair. It is well 

believed that both translational and rotational positioning of nucleosomal DNA can be 
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modulated or changed to facilitate to cellular response to both endogenous and 

exogenous biological signals (87-91).  

Nucleosome preparation.  There are two general approaches to preparing 

nucleosome core particles, one involving the isolation and purification of nucleosome 

core particles directly from specific organisms (92-95), and the other involving 

reconstitution of a synthetic DNA with a histone octamer assembled from 

recombinant histones (96-100). For example, Smerdon, and coworkers developed a 

protocol for the isolation and purification of nucleosome core particles from chicken 

blood cells. Because chicken blood cells serve a very special function, most genes are 

silenced and the histones are largely unmodified. The overall procedure involves 

isolation of nuclei from chicken erythrocytes, chromatin digestion by Micrococcal 

Nuclease to generate nucleosomes, depletion of linker histone H1, purification of 

nucleosome core particle through ion-exchange chromatography and gel-filtration 

chromatography. The advantages of this isolation and purification method is that it is 

relatively easy to perform, nucleosome core particles could be obtained from different 

tissues or cell types, and the purified nucleosome core particles are stable and could 

be stored at 4ºC for more than a year.  

The disadvantages of the isolation method, is that the overall procedure is 

relative time-consuming and restricted to the availability of sufficient quantities of the 

tissue or organism of interest, the presence of a heterogenous mix of 

post-translational histone modifications, depending on the chosen type of cell or 

organism. Also a great excess of the nucleosome core particle with respect to the 
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DNA to be reconstituted (more than 100-fold) is required. Perhaps the biggest 

drawback of this method is that only naturally occurring histones can be studied, 

which limits the ability of researchers to investigate the structure-function activities 

of histone mutants or variants (97, 99).  

Recombinant histone core particles.  To better understand the role of 

individual histone in modulating both the structure and function of nucleosome core 

particle or even chromatin structure, researchers have switched to preparing 

nucleosome core particle from recombinant histones (96-100). In particular, Luger 

and coworkers reported a detailed procedure for expressing and purifying four 

recombinant histones from Xenopus Oocyte in E. coli, and assembling them together 

to form the histone octamer. After that a synthetic DNA was reconstituted onto the 

histone octamer to generate the nucleosome core particle (99). Their procedure is 

based on the evidence that histone assembly occurs by H3 and H4 forming a tetramer 

first, followed by binding with two H2A-H2B dimers. By using this approach, 

researchers it becomes possible to construct nucleosome core particles containing 

specific histone modifications, histone mutants or variants, to study the effects of 

these alterations.  

Nucleosomal DNA.  Researchers have discovered that the binding affinity 

and position of DNA for the histone octamer is highly sequence-dependent (101-103). 

Several nucleosome positioning DNA motif or repeats have been found to play a 

great role in determining the specific DNA binding affinity and orientation of the 

DNA on the nucleosome core particle, such as TATA and, CA repeats, TG motifs, etc 
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(104-106). For example, Wrang and co-workers successfully utilized the TG motif to 

incorporate the glucocorticoid response element into 165 bp nucleosomal DNA with 

specific translational and rotational positioning relative to the histone octamer (107). 

Davey and coworkers crystallized the nucleosome core particles with the “601 DNA 

sequence” to give high-resolution crystal structures, demonstrating that this particular 

DNA sequence exhibited a strong preference for nucleosome positioning (108). To 

date, it is well accepted that the TG motif, (A/T)3NN(G/C)3NN, is one of the best 

nucleosome positioning motifs. The ten nucleotides make up one full nucleosomal 

helical turn, with the major groove of the G·C base pairs preferentially facing the 

histone octamer surface, which is consistent with their tendency to bend into the 

major groove. In contrast the minor groove of the A·T base pairs in this motif have a 

strong preference for facing the histone octamer surface, which is consistent with 

their tendency to bend into the minor groove. The bent nature of the minor groove of 

the A·T base pairs is also favorable for the insertion of single arginine side chain (52).  

Probing DNA rotational position.  Both chemical and enzymatic 

approaches have been developed to probe the DNA-histone interactions in 

nucleosome core particles or chromatin, especially for mapping the nucleosome 

positioning of synthetic or genomic DNA. Among these different approaches, DNase 

I mapping and hydroxyl radical footprinting are the two most commonly used 

techniques to determine the nucleosome rotational positioning, while Exonuclease III 

is used to determine translational positioning (109-111). Both DNase I and hydroxyl 

radical show a preference for cutting nucleosomal DNA backbone that faces OUT, 
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though hydroxyl radicals exhibit much less sequence specificity and thus can probe 

the DNA backbone at a single nucleotide level (112-114). The hydroxyl radical can be 

easily generated by the Fenton reaction: [Fe(EDTA)]2-  + H2O2 → [Fe(EDTA)] 1-  

+·OH + OH-, and is believed to mainly attack the hydrogen at the C5’-position of the 

sugar ring of DNA, and 2–5-fold less at other sugar sites in the order C4’ > C3’ > 

C2’> C1’(115). The principle cleavage products that result are a nucleotide 5’- 

phosphate, a nucleotide 3’- phosphate and a nucleotide 3’- phosphoglycolate, as 

shown in Figure 1.10 (116). When nucleosomal DNA is exposed to hydroxyl radical, 

the outside facing positions are more accessible to attack compared with inside facing 

positions, resulting in a darker band on a DNA sequencing gel. Since the rotational 

position of the nucleotides is repeated every 10-11 bp, the hydroxyl radical cleavage 

patter of nucleosomal DNA is characterized by a pronounced 10-11 bp periodicity.  

Probing DNA translational position.  Exonuclease III is used to determine 

the translational positioning of a given nucleosome-bound DNA duplex, because of 

its ability to specifically cleave the ends of DNA that are not bound to the histones at 

the “entry” and “exit” ends of the nucleosome-bound DNA (110, 111). The resulting 

cleavage bands serve to map out the DNA region that is tightly bound to the histone 

octamer with the central base pair falling on the pseudo-dyad axis to form the 2-fold 

symmetrical nucleosome core particle.  

Nucleosome dynamics.  Although there are interactions between the DNA 

and histone octamer surface that result in fairly well-defined rotational and 

translational positioning of the DNA, it is believed that the nucleosome is not 
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completely static. It appears that the nucleosome can undergo a series of dynamic 

processes that alter both the structure and the function of nucleosome or chromatin 

(117-119). The three main classes of nucleosome dynamics that have been identified 

are: nucleosome breathing, nucleosome sliding or rearrangement, and chromatin 

remodeling (117). Nucleosome breathing is characterized by a transient site-exposure 

of the “entry” or “exit” region of the nucleosomal DNA through unwrapping and 

re-wrapping between the histone octamer and the end of the nucleosomal DNA. This 

short-live exposure is supported by the observation that transcription factors exhibit a 

relative higher binding affinity for the DNA in the regions located close to the ends of 

nucleosomal DNA. Since both the “entry” and “exit” site are close to the dyad of the 

nucleosome, the nucleosome breathing could also facilitate the recognition between 

the DNA sequences around the dyad and the specific nucleosome binding proteins 

(120, 121). Nucleosome sliding is defined as the movement of the histone octamer 

with respect to the nucleosomal DNA, which can free up the previously bound DNA 

sequences and increase the accessibility of the nucleosomal DNA. Nucleosome 

sliding or histone octamer sliding process is found to be temperature-dependent, 

directly reflecting the stability of the translational positions of the nucleosomal DNA. 

At certain temperatures, other cellular machinery like histone chaperons or chromatin 

remodeling complexes can specifically bind to the nucleosome and carry out the 

rearrangement process (122, 123). The chromatin remodeling process is usually 

ATP-dependent, and various chromatin remodeling factors are believed to function in 

this process, generating different “remodeled” substrates, depending to some extent 
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on the specific type of ATPase involved (124-126).  

There are a number of factors that play roles in regulating nucleosome 

dynamics. First of all, the sequence of the nucleosomal DNA can greatly affect both 

the translational and rotational positioning in the nucleosome, which determines the 

stability of the nucleosome. The stronger the nucleosome positioning sequences in the 

nucleosomal DNA, the more “rigid” the nucleosome structure, and the less dynamics. 

Secondly, histone modifications can drastically change the properties of specific 

amino acids. Depending on the location of the amino acid, the modification could 

either alter the charge and shape of histone octamer structure and its interactions with 

nucleosomal DNA, both of which can affect the stability of the nucleosome (73-74, 

127). Thirdly, histone tails are of particular interest in controlling nucleosome 

dynamics, not only because they contribute many of the binding sites between 

nucleosomal DNA and histone octamer, but also because they are involved in 

inter-nucleosome cross-talk through by interacting with other nucleosomes at the 

histone octamer surface. Removal of histone tails has been found to lower the energy 

barrier for repositioning nucleosomes and chromatin (128, 129). Last but not least, 

histone variants have different sequences with more conserved sequences in their 

structural motif domain and can interfere with nucleosome structure and function in 

several ways (130-133). They can interfere with the interactions between 

nucleosomal DNA and histone octamer thereby affecting nucleosome stability.   

Specific histone variants can also induce or repress DNA transcription through 

histone eviction, or interfere with recognition by ATP-dependent chromatin 
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remodeling complexes.  

Probes for nucleosome dynamics.  A series of techniques have been 

developed to probe nucleosome dynamics, especially structural fluctuations and 

short-lived dynamical states, among which Exonuclease III (Exo III) digest and 

Fluorescence resonance energy transfer (FRET) are the two most commonly utilized 

methods (134-139). In a mono-nucleosome, nucleosome array or chromatin structure, 

Exo III can preferentially digest the linker DNA in a 3’ to 5’ direction until it is 

blocked by the bulky nucleosome core particle. Because of nucleosome dynamics, the 

transiently exposed “entry” and “exit” sites of the nucleosomal DNA could be 

accessible to Exo III digestion, revealing the frequency of nucleosome breathing. 

Likewise both histone octamer sliding and chromatin remodeling processes can be 

detected by Exo III, as these nucleosome dynamics can result in different exposure of 

the nucleosomal DNA Exo III digestion both in vitro and in vivo (134-136).  

Compared with Exo III, FRET measurements are confined to in vitro studies 

using a donor-acceptor pair of flurophores incorporated in the nucleosome structure 

that can probe conformational changes during nucleosome dynamics (137-139). 

Generally, two approaches are commonly used for FRET studies of nucleosome 

dynamics. In one approach the two fluorophores are incorporated into the 

nucleosomal DNA, with one located at the dyad region, the other one at either the 

“entry” or the “exit” site of nucleosomal DNA. Using this design, the FRET 

measurements can detect nucleosome breathing processes, since in the unwrapped 

state, the two fluorophores are not close enough to generate the FRET signal, while 



 20 

they are in the wrapped state. In another approach, one fluorophore is placed in the 

nucleosomal DNA, while the other one is incorporated at specific site a of histone 

protein. By monitoring the distance between particular site of the nucleosomal DNA 

and certain position of the histone octamer by FRET, one can determine the extent of 

nucleosome sliding and chromatin remodeling. 

 

1.3 How is DNA damage and repair modulated by the nucleosome? 

DNA damage can be generated either endogenously or exogenously.  

Endogenous reactions mainly involve reactive oxygen species (ROS) from metabolic 

byproducts, like hydroxyl radicals, which can cause different types of DNA damages, 

i.e., oxidation of DNA base (8-oxoG), strand cleavage, and formation of base adducts, 

as well as spontaneous reactions such as depurination, and deamination (140-143). 

Exogenous reactions could arise from different sources, such as UV irradiation which 

induces various type of DNA photoproducts such as the CPD and (6-4) products as 

the two predominant forms(6-9), ionizing radiation which can generate single-strand 

break (SSB), double-strand break (DSB) or even inter-strand crosslink (144-147). 

Other DNA damaging chemicals, such as cisplatin or etoposide, can contribute to the 

overall number of DNA lesions by creating different DNA base adducts or distortion 

to the DNA structure (148-149). In response to DNA damage, cells undergo DNA 

repair, cell cycle arrest, and apoptosis, but significant amounts of unrepaired DNA 

damage could lead to DNA mutations, which can lead to cancer (150-154).  

Photoproduct formation in nucleosomes. In eukaryotic cells, it is well 
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believed that both formation and processing of DNA damage could be modulated by 

numerous factors, among which nucleosome and chromatin structure serve as a 

general platform since most of the genomic DNA is wrapped around the histone 

octamer to form the higher-ordered chromatin structure. As one of the main 

exogenous DNA damaging agent, UV irradiation can still induce both CPD and (6-4) 

photoproducts formation within the chromatin environment, with the (6-4) 

photoproducts largely confined to the linker DNA region, compared with CPDs 

which form in both linker and nucleosomal DNA. UV irradiation of the nucleosomal 

DNA results in CPD DNA photoproducts which vary with the rotational position, 

compared with the relatively uniform distribution in the linker DNA region. 

Formation of CPDs show a slight preference for sites where the DNA phosphodiester 

backbone is positioned away from the histone octamer surface (9, 155-157). The 

broadly accepted explanation for this preference is that the nucleosomal DNA at the 

facing OUT region has a higher decompression and rotational flexibility which allows 

the adjacent pyridimines additional freedom to adopt a more favorable photoreactive 

orientation for forming CPDs. Since the formation of CPDs causes a 7-9º structural 

distortion onto the DNA, the facing OUT position can accommodate this distortion 

better than the facing IN region, where the DNA conformation is more compressed 

and rigid. This point of view is furthered supported by the observation that the similar 

preference was also detected from the loop DNA or bent DNA that is not in contact 

with a protein, and unfolding of nucleosomes under low ionic strength condition 

yields a CPD distribution pattern similar to naked DNA (158-161).  
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When DNA containing randomly distributed CPDs is reconstituted into 

nucleosomes, the CPDs greatly influence nucleosome rotational positioning, since 

they favor the orientation where the phosphodiester backbone is facing OUT. On the 

other hand, the formation of CPDs could also interfere with the translational 

positioning in nucleosome as the CPDs show a preference for being located in the 

central three superhelical turns around the pseudo-dyad axis, where the nucleosomal 

DNA is almost exclusively bound by histone H3-H4 tetramers. This is probably due 

to the relative larger space between the nucleosomal DNA and the histone octamer 

surface which can better accommodate the local distortions induced by the CPD 

structure (161-163).  

Although the formation of CPDs can cause local distortions in nucleosomal 

DNA, it doesn’t block the reconstitution of the nucleosome with DNA containing 

CPDs with different rotational or translational positionings. A number of studies have 

reported the successful preparation and isolation of nucleosome core particles bearing 

CPDs at either specific positions or when randomly distributed along the nucleosomal 

DNA (164-166). Smerdon’s laboratory developed a method for incorporating a T=T 

CPD DNA photoproduct into specific sites within a synthetic DNA duplex containing 

multiple TG motifs (164). After a DNA exchange reaction with nucleosome core 

particles isolated and purified from chicken blood cells, they managed to reconstitute 

the T=T CPD containing DNA duplex into a nucleosome core particle. By comparing 

the hydroxyl radical footprinting pattern between the nucleosomal DNA containing 

the T=T CPD with the nucleosomal DNA containing a non-dimerized TT sequence, 
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they could determine the rotational positioning of the specific T=T CPD site. They 

were able to use hydroxyl radical footprinting to confirm the position of the CPD as 

shown in Figure 1.10. Due to the formation of the four-member ring in the CPD 

structure, the breakage of the phosphodiester bond between the T and T, which 

should create a footprinting band for the 3’-T in a non-dimerized TT sequence, won’t 

generate the cleavage site along the nucleosomal DNA. This is because the cleaved 

fragment is still connected to the rest of the DNA duplex through the four-member 

ring, as showed in Figure 1.10, B, thereby generating a “missing band” corresponding 

to the position of the 3’-T of the T=T CPD on the footprinting pattern.  

If the CPD DNA photoproducts are not directly incorporated into the 

nucleosomal DNA sequences, but generated by UV irradiation of the reconstituted 

nucleosome, the hydroxyl radical footprinting method can still work to identify the 

rotational positioning of a specific CPD, but in this case, there won’t be a clear 

“missing band” on the footprinting pattern of the UV-irradiated nucleosomal DNA. In 

this case, there will be a change in the cleavage intensity at the footprinting band 

depending on the yield of the CPD. The rotational position could then be determined 

by comparing the intensity change between the UV-irradiated nucleosomal DNA 

footprinting pattern with the one of non-UV-irradiated nucleosomal DNA.  

Repair of DNA photodamage in nucleosomes.  When it comes to 

UV-induced DNA damage, photoreversal by photolyase and nucleotide excision 

repair are considered as the two main pathways leading to the removal or repair of 

UV-induced DNA photoproducts, the former is modulated by the accessibility of the 
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DNA lesion to the monomeric enzyme photolyase, whereas the latter relies on a 

stepwise assembly of multiple proteins onto the DNA lesion to form the complicate 

repair system. Nucleosomes have been found to play an important role in modulating 

these DNA repair process both in vitro and in vivo (167-172). Photolyase 

photoreverts CPDs by bending the DNA and flipping out the pyrimidine dimer from 

the double helix into the active site of the enzyme (173, 174). The repaired 

pyrimidines are then released from the enzymatic pocket and the photolyase 

dissociates from the DNA. It has been reported that a reconstituted nucleosome core 

particle inhibits repair of CPDs in the core DNA by photolyase compared with the 

linker DNA region. On the other hand, repair of a CPD at the ends of the nucleosomal 

DNA is greater than one in the core DNA, indicating that transient unwrapping of the 

DNA is taking place (175, 176).  

In vivo studies of photoproduct repair in nucleosomes.  In living cells, the 

presence of nucleosomes slows down CPD repair by photolyase, with a gradually 

increased rate from the center of the nucleosome toward the ends, where the 

accessibility of the CPDs to photolyase is higher. This could be attributed to the 

dynamic properties of nucleosome in vivo, such as transient unwrapping or sliding of 

the histone octamer thereby making the CPD accessible to photolyase (177-180). It 

has also been shown that the yeast SWI/SNF remodeling complex can accelerate 

photolyase repair of a CPD in a reconstituted nucleosome core particle presumably by 

destabilizing the nucleosome core particle (176).  

Nucleosomes have also been shown to interfere with the nucleotide excision 



 25 

repair (NER) in different ways. NER comprises two sub-pathways: global genome 

repair (GGR) and transcription-coupled repair (TCR), with the GGR accounting for 

the removal of the majority of DNA lesions in nucleosomes (181, 183). In living cells, 

NER repair initially occurs at the ends of nucleosomal DNA and becomes more 

evenly distributed later on and sometimes results in nucleosome rearrangement. This 

observation could be explained by transient unwrapping and histone octamer sliding 

which would free up both the end and core regions of the nucleosomal DNA (186, 

184). An alternate explanation is involves histone eviction or displacement in the 

beginning of NER repair followed by reassembly of the original histones to restore 

the nucleosome structure and encoded epigenetic information. Such a process may be 

aided by chromatin remodeling complexes (185-188).  

In vitro studies of photoproduct repair in nucleosomes.  In vitro studies 

with various nucleosome substrates and NER competent cell extracts also 

demonstrate the inhibitory effect of nucleosomes on the NER of UV-induced DNA 

lesions, with CPDs repaired much more slowly than (6-4) DNA photoproducts and 

other types of photo lesions (189-194). The presence of nucleosome was found to 

reduce the NER of CPDs by 6-9 fold compared with free DNA, using cellular extracts 

of human fibroblasts (189). In a study of a human nucleosome containing a 

site-specific CPD, the NER repair rate was slowed down by 10 fold, and was not 

affected by the yeast SWI/SNF chromatin remodeling complex which could stimulate 

the NER of a (6-4) DNA photoproduct (193, 194).  

Smerdon and coworkers laboratory studied the nucleosome’s effect on the 
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NER rate of a T=T CPD photoproduct in two different nucleosome rotational 

positioning, using Xenopus nuclear extracts. As shown in Figure 1.11, the green color 

highlights the positions of the two T=T CPD DNA photoproduct sites in the 

nucleosome core particle, one IN, and the other OUT. They found that the OUR 

facing T=T CPD was repaired about 1.5-fold faster compared with the IN facing T=T 

CPD, and that both were repaired a 2-3 times slower than in naked DNA (165).  

 

1.4 Goals of this thesis.   

The major goal of this thesis was to continue the study of the deamination 

bypass mechanism with a focus on T=mCG CPDs. Though we had previously 

established that a mC=T CPD was bypassed in an almost completely error free 

manner by yeast polymerase η, we did not know how the biologically relevant 

T=mCG CPD would be bypassed by human as well as yeast polymerase η. Thus in 

chapter 2 we describe the preparation, characterization and in vitro bypass of a 

T=mCG CPD, and show that it is bypassed in a similar error-free manner by both 

yeast and human polymerase η. Because this was the case, the mC of the T=mCG CPD 

would have to deaminate first, followed by error-free bypass by polymerase η to 

efficiently produce a C to T mutation. It therefore became of great interest to see how 

this deamination process would be modulated in mammalian cells. 

Prior in vivo studies with uracil DNA glycosylase-deficient cells have showed 

that the deamination of C-containing CPDs did occurs at a significant rate with an 

estimated half-life from a few hours to 120 hours (195-198). Futhermore, research on 
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UV-irradiated human fibroblasts revealed that C or mC-containing CPDs deaminate in 

a sequence and time-dependent manner, with about 10 to 60% deamination after 24 

hours (199). However, none of these studies tried to correlate the C or mC 

deamination in the CPD with the nucleosome occupancy or nucleosome positioning. 

Most recently, it has been reported that nucleosome occupancy greatly suppresses the 

spontaneous deamination of C, with a nearly 50% decrease in the rate of C to T 

mutation in nucleosomal DNA in yeast (200). Thus it would appear that the 

nucleosome position of a C or mC-containing CPD could affect the deamination rate.  

Therefore, in Chapter 3, we examined the effect of nucleosome rotational 

position on TmCG CPD deamination by preparing a nucleosome core particle with the 

same 150-mer DNA sequence as used by the Smerdon group (165) and substituted the 

TTN (N: any nucleotide) site with TmCG, to have a CPD site facing inside (IN) and 

one facing outside (OUT) relative to the histone core surface. We found that a TmC 

CPD positioned against the surface could deaminate 4.7 times slower than the 

unbound sequence, whereas a TmC CPD facing out deaminated 8.9 times faster than 

the unbound sequence, corresponding to an overall 42-fold difference in rate (201).  

In Chapter 4, we went on to examine the deamination rate of T=mCG CPDs in all ten 

possible nucleosome rotational positioning in one full periodic turn at the same 

translational positioning site, and found a similar effect. 

In chapter 5, we expressed and purified histones H2A, H2B, H3 and H4 from 

Xenopus Oocyte in E. Coli, reassembled the histone octamer based on the previously 

reported method (99). Through nucleosome reconstitution with the synthetic 147-mer 



 28 

DNA sequences as used in Chapter 4, we were able to prove the nucleosome 

positioning pattern via hydroxyl radical footprinting, although with some difference 

compared with chicken nucleosome core particle. 

In the appendix, we described a hydroxyl radical footprinting method 

followed by the ligation-mediated PCR (LMPCR) detection to probe the nucleosome 

positioning along p53 gene in both HeLa cells and human primary keratinocyte. 

Consistently with earlier results using DNase I footprinting (69), we were able to 

identify a clear nucleosome positioning pattern in exon 5 and 6 along p53 gene.  
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Figure 1.1 Mutation spectrum of the p53 gene in human non-melanoma skin 

cancers. * Sites that are asterisked correspond to C to T mutations at methylated CpG 

sites.  

 

 

 

 

 

 

 

 

* The picture was adapted from Ref. 13 with permission. 
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Figure 1.2 Origin of 5-methyl cytosine enhancement of photoproduct formation 

in UVB light. * Methylation of C causes a red shift in its absorption spectrum which 

can then better absorb UVB light. 

 

 

 

 

 

 

 

 

* The picture was adapted from Ref. 15 with permission. 
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Figure 1.3 Coding properties of tautomers of C-containing CPD relevant to the 

tautomer-bypass mechanism for C or mC to T transition mutations. 
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Figure 1.4 Deamination of the C in CPDs relevant to the deamination-bypass 

mechanism for C or mC to T transition mutations. 
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Figure 1.5 Deamination-bypass mechanism for UV-induced mC to T transition 

mutations at CpG methylation sites. 
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Figure 1.6 Effect of sequence context and duplex formation on deamination 

rate.* Sequences in italic and red on the back face of the cube refer to the single 

stranded form. Sequences in bold and blue on the front face of the cube refer to the 

double stranded form. Numbers in italics are the deamination half lives in hours. 

 

 

* The picture was adapted from Ref. 46 with permission. 
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Figure 1.7 Influence of individual functional groups of a 3'-G on the deamination 

rate of the 3'-C of the dimer in tGT=mCGtc. Values in italics are the half lives in 

hours at 37°C. * 

 

 

 

 

 

 

* The picture was adapted from Ref. 46 with permission. 
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Figure 1.8 Assembly process of DNA in cells to form chromosomes in eukaryotic 

cells. * 

 

 

 

 

* The picture was adapted from Ref. 55 with permission. 
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Figure 1.9 Crystal structure of nucleosome core particle. * Nucleosome core 

particle is shown with the 146-bp DNA phosphodiester backbones in brown and 

turquoise, and the eight histone protein main chains in blue for H3, green for H4, 

yellow for H2A and red for H2B. The views are shown down the DNA superhelix 

axis for the left panel and perpendicular to it for the right panel. For both views, , the 

pseudo-twofold axis is aligned vertically with the DNA center at the top. 

 

 

 

 

* The picture was adapted from Ref. 52 with permission. 
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A 

 

B 

 

 

Figure 1.10 Proposed H-4’-abstraction pathway for DNA strand scission by 

gamma radiolysis. * A, anaerobic conditions. B, aerobic conditions. 

 

* The picture was adapted from Ref. 116 with permission. 
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A 

 

B 

 

Figure 1.11 Mechanism of hydroxyl radical backbone cleavage of DNA at a 

normal TT site, and a dimerized site. A, hydroxyl radical attack on H4’ of 3’-T in 

normal 5’TT3’ sequence. B, hydroxyl radical attack at H4’ of 3’-T in dimerized 

5’T=T3’ sequence, showing that the latter backbone cleavage does not lead to strand 

cleavage. 
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Figure 1.12 Structure of nucleosome core particle containing two T=T CPD 

DNA photoproducts with different rotational positionings. * Grey color represents 

the DNA duplex wrapping around the histone octamer surface. Blue color indicates 

the histone core octamer. Green color highlights the CPDs. IN and OUT refers to 

position facing against or inside the histone core particle surface and facing away or 

outside the histone core particle surface, respectively. 

 

 

 

 

 

* The picture was adapted from Ref. 166 with permission. 
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Chapter 2 
 
 

Preparation of A Site-Specific T=mCG Cis-Syn 

Cyclobutane Pyrimidine Dimer-Containing Template 

and Its Error-Free Bypass by Yeast and Human 

Polymerase Eta * 

 
 
 
 
 
 
 
 
 
 
 
 
 

* The chapter was adapted from Ref. 51 with permission. 
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Abstract 

      C-to-T mutations are a hallmark of UV light and, in humans, occur 

preferentially at methylated PymCG sites, which are also sites of preferential 

cyclobutane pyrimidine dimer (CPD) formation. In response, cells have evolved 

DNA damage bypass polymerases, of which polymerase η (pol η) appears to be 

specifically adapted to synthesize past cis-syn CPDs. Although T=T CPDs are stable, 

CPDs containing C or 5-methylcytosine (mC) are not and spontaneously deaminate to 

U or T at pH 7 and 37°C over a period of hours or days, making their preparation and 

study difficult. Furthermore, there is evidence to suggest that, depending on solvent 

polarity, a C or an mC in a CPD can adopt three tautomeric forms, one of which could 

code as T. Although many in vitro studies have established that synthesis past T or U 

in a CPD by pol η occurs in a highly error-free manner, the only in vitro evidence that 

synthesis past C or mC in a CPD also occurs in an error-free manner is for an mC in 

the 5’-position of an mC=T CPD. Here in this chapter, we describe the preparation 

and characterization of an oligodeoxynucleotide containing a CPD of a TmCG site, 

one of the major sites of C methylation and C-to-T mutations found in the p53 gene 

of basal and squamous cell cancers. We also demonstrate that both yeast and human 

pol η synthesize past the 3’-mC CPD in a >99% error-free manner, consistent with the 

highly water-exposed nature of the active site. 
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Introduction 

      One of the primary causes of basal and squamous cell skin cancer is exposure 

to sunlight. Sequencing of the p53 gene of these skin cancers has revealed a 

predominance of C-to-T and CC-to-TT mutations at methylated dipyrimidine sites, 

PymCG (1, 2). These sites are also hotspots for cis-syn cyclobutane pyrimidine dimer 

(CPD) formation induced by the UV in sunlight (3, 4). Unlike CPDs of TT sites, C- 

or 5-methylcytosine (mC)-containing CPDs are unstable and deaminate to U or T 

(5–11). The major responses to UV damage are global genome and 

transcription-coupled nucleotide excision repair (12–14) and translesion synthesis 

(15). CPDs do not distort DNA structure or duplex stability greatly (16–18), making 

them difficult to be detected and repaired by nucleotide excision repair (19). 

Although they block RNA polymerases and can thus be removed by 

transcription-coupled repair, this cannot occur for the non-transcribed strand or in 

either strand of inactive genes. Thus, many CPDs may go unrepaired before 

replication is initiated, and because they block replicative polymerases, DNA damage 

bypass polymerases are recruited to carry out translesion synthesis. Of these, 

polymerase η (pol η) is the most efficient at synthesizing past CPDs and appears to be 

the principal polymerase involved in CPD translesion synthesis (20–22). Early in 

vitro studies showed that pol η could synthesize past a T=T CPD in an essentially 

error-free manner, suggesting that the two Ts of the CPD were capable of directing 

the insertion of As. It was only by investigating DNA synthesis past N3-methyl 

derivatives of T=T CPDs that it was possible to demonstrate that both the 5’- and 
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3’-Ts of the CPD were directing the insertion of As and that the As were not being 

inserted by a non-templated mechanism, otherwise known as the “A rule” (23). 

Furthermore, studies with 7-deaza-ATP demonstrated that a Watson-Crick like 

intermediate was being used to direct the insertion of the A, and not a Hoogsteen-type 

base pair as found in the crystal structure of another Y-family polymerase (24). These 

conclusions were later confirmed through x-ray crystallography of intermediates in 

the synthesis past a T=T CPD by human pol η (25).  

      Unlike T in native DNA or in a CPD, which is known to preferentially adopt a 

keto tautomer and base pair with A, a C or an mC in a CPD could, in principal, adopt 

amino and/or imino tautomeric forms with E- or Z-stereochemisty (the imino 

hydrogen is trans or cis with respect to N3), some of which could thereby direct the 

insertion of G and/or A (Figure 2.1) (26, 27). The possibility that C or mC could exist 

in an imino tautomeric form comes from early work demonstrating that 

dihydrocytosine adopts the amino tautomeric form in water but an imino tautomeric 

form in the much less polar solvent chloroform (28). Gas phase theoretical 

calculations have reproduced the preference for the imino tautomeric form in 

non-polar environments (29, 30) but failed to reproduce the preference for the amino 

form in water (30). The same type of calculations also predicted that the Cs in CPD 

should exist almost exclusively in the imino tautomeric state in water (27). However, 

evidence that Cs in CPDs exist in their amino tautomeric state comes from them 

highly preferential insertion of G opposite the Cs by pol η from various genetic 

experiments in yeast and human cells (31, 32) and from an in vitro translesion 
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experiment with an mC=T CPD-containing template and yeast pol η (33). No work 

has yet been carried out on a site-specific CPD of an mCG site. Because we have 

previously observed that the deamination rate of an mC in a CPD is 3–4 times slower 

for PumCTPu than for PuTmCPu (where Pu = A or G) and depends on flanking 

sequence (34), it was possible that the relative proportion of tautomers may likewise 

depend on position and flanking sequence.  

      Part of the difficulty in working with C- or mC-containing CPDs in vitro or in 

vivo is their spontaneous deamination to U or T within hours to days (34) compared 

with ~ 50,000 years for canonical C or mC in duplex DNA (35, 36). This lability has 

also impeded the development of a phosphoramidite building block for site-specific 

incorporation of C-containing CPDs into DNA templates by automated synthesis. At 

the moment, the only route to such templates involves UV irradiation of an 

oligodeoxynucleotide (ODN) followed by HPLC purification, as was originally 

developed for the preparation of a T=C CPD-containing 11-mer (37).We used this 

approach to prepare a 14-mer containing the CPD of an mCTA site (33). An mCTA 

site was chosen for our initial studies because the CPD was found to have a much 

lower deamination rate and to be produced in a higher yield than at the more 

biologically relevant TmCG site (34). Herein, we report the preparation and 

characterization of a CPD of a TmCGsite, a known hotspot for C methylation, CPD 

formation, and UV light-induced C-to-T mutations, and demonstrate the highly 

error-free, non-mutagenic insertion of G opposite the mC in the CPD by yeast and 

human pol η. We also report the deamination rate of the mC in the CPD and confirm 
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the error-free but mutagenic insertion of A opposite the resulting T.  

Experimental Procedures 

Enzymes, Substrates, and Equipment 

      T4 polynucleotide kinase was purchased from New England Biolabs, 

[γ-32P]ATP from Amersham Biosciences, and dNTPs from Invitrogen. The catalytic 

core of yeast pol η with an N-terminal His6 tag was prepared as described previously 

(38). Full-length human pol η with a C-terminal His6 tag was also prepared as 

described previously (39). The mC-containing template ODN and primer ODNs were 

synthesized by Integrated DNA Technologies, Inc. Mass spectrometry was carried 

out on an LCQ Classic ion trap mass spectrometer (Thermo Finnigan, San Jose, CA). 

Preparation and Deamination of cis-syn T=mC CPD-containing 14-mer DNA 

Template 

      100 µg of TmC 14-mer in 200 µl of 20mM Tris (pH 8.8) on a piece of Saran 

Wrap was irradiated for 1 h on top of a 302-nm transilluminator (~1.9 milliwatts/ cm2) 

at 4°C in a cold room. HPLC purification was carried out with 50mM triethylamine 

acetate at pH 8.5 to minimize deamination to yield ~ 5.2 µg of the cis-syn dimer 

eluting in 1 mL of ~ 10% acetonitrile. This sample was immediately stored at -80°C 

prior to use. A sample was also completely deaminated by adjusting the pH of the 

T=mC 14-mer sample to pH 6.5 by adding 0.5M Mes buffer and heated overnight at 

67°C.  

DNA Photoproduct Identification and Characterization by HPLC and Mass 

Spectrometry 
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      The fractions corresponding to the major photoproduct peaks from the HPLC 

of the TmC 14-mer irradiation mixture, with and without heating, were analyzed by an 

enzyme-coupled mass spectrometry assay. In a typical assay, 1µL of a 1 unit/µL 

aqueous solution of nuclease P1 was added to a 10-µL aliquot of the ODN sample, 

incubated at room temperature for 3 min, cooled on ice, and immediately analyzed by 

electrospray ionization coupled to MS/MS. MS/MS data were acquired on the 

selected [M - H] ions. To select both the deaminated and undeaminated components 

for fragmentation, the mass width for precursor selection was set at 5–6 m/z units. 

Single-hit Competitive Nucleotide Insertion Assay 

      In a cold room (4°C), a 5-µL aliquot of the T=mC 14-mer template (120nM) 

was added to 5 µL of 40nM 5’-32P end-labeled primer, 20mM Tris-HCl (pH 7.5), and 

10mM DTT, and allowed to anneal for 10 min before the addition of pol η (500nM). 

Each sample was incubated for an additional 7 min before initiating single-hit 

synthesis by the addition of 30 µL of all dNTPs (200µM each) containing 10mM 

MgCl2, 10mM Tris-HCl (pH 7.5), and 10mg/mL sonicated/denatured salmon sperm 

DNA as a polymerase trap. The synthesis reaction was quenched after 10 s by the 

addition of 80 µL of formamide containing 0.1% xylene cyanol, 0.2% SDS, 25mM 

EDTA, and 1 µg of unlabeled primer (stop mixture). The samples were then heated at 

100°C for 10 min before loading onto a 10% polyacrylamide gel (40 cm×0.8mm) 

containing 25mM citrate (pH 3.5), which was the same as the reservoir buffer. The 

gel was polymerized by adding 1.3 mL of ferrous sulfate (250 mg/100 mL), 1.3 mL 

of 10% ascorbate, and 300µL of 3% hydrogen peroxide. The gel was run at 
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2000Vuntil the xylene cyanol dye marker reached 25 cm (~ 3 h). For biased pool 

experiments, the dNTP of interest was held at 100µM while the dGTP concentration 

was varied as indicated.  

Multiple-hit Competitive Nucleotide Insertion Assays 

      In a cold room (4°C), primer-templates were prepared by annealing 20nM 

primer with 60nM template, to which 200µM of each dNTP, 10mM MgCl2, 5mM 

DTT, 10mMTris-HCl (pH 7.5), and 500nM pol η were added. After 2 min, a 10-µL 

aliquot was removed and added to a tube containing 300 µg of sonicated and 

denatured salmon sperm DNA before quenching the reaction with 80µL of stop 

mixture. Aliquots from extension times that yielded almost exclusively full-length 

product were then assayed by electrophoresis on a 20% polyacrylamide gel 

containing 25mM citrate (pH 3.5).  

Deamination Rates by Nucleotide Insertion Assay 

      The T=mC 14-mer template (120nM) was adjusted to pH 7.5 with Mes buffer 

(0.5M) and incubated at 37 or 50°C. Aliquots (5 µL) were removed at various times 

and quickly frozen on dry ice before storing overnight at -80°C. All subsequent steps 

were performed in a cold room (4°C). To each of the 5-µL aliquots was added 5µL of 

40nM 5’-32P end-labeled primer, 1mM of each dNTP, 20mM Tris-HCl (pH 7.5), and 

10mM DTT, followed by annealing for 10 min before the addition of yeast pol η 

(500nM). Each sample was incubated for an additional 5 min to complete multiple-hit 

synthesis, after which 300µg of sonicated and denatured salmon sperm DNA was 

added before quenching the reaction with 80µL of stop mixture. The samples were 
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then heated at 95°C for 10 min before loading onto a 25% polyacrylamide gel (40 cm

×0.8 mm) containing 25mM citrate (pH 3.5), which was the same as the reservoir 

buffer, and the gel was run at 2000Vuntil the xylene cyanol dye marker reached 18 

cm (~ 4 h). The gel had been polymerized by adding 1.3 ml of ferrous sulfate (250 

mg/100 mL), 1.3 mL of 10% ascorbate, and 300µL of 3% hydrogen peroxide. 

Analysis of Deamination Rate Data 

      The deamination rate constant was obtained from the slope of a nonlinear 

least squares fit of the natural log of the fraction of dGMP inserted, G/(G + A), versus 

time to ln(G/(G + A))0 _k*t where (G/(G + A))0 equals the fraction of dGMP inserted at 

time 0. 

Results 

Template Design 

      Because there is still no phosphoramidite building block available for 

incorporating a T=mC CPD into an ODN, we resorted to preparing the T=mC 

CPD-containing template by UV irradiation of an ODN. On the basis of prior 

experience with the preparation of an mC=TA CPD-containing 14-mer (33), we 

designed the TmC-14-mer (Table 2.1 and Figure 2.2). This sequence is devoid of 

other dipyrimidine sites, so the T=mC CPD-containing product could be cleanly 

separated from other photoproducts of the TmC site and unreacted ODN by reverse 

phase HPLC. The sequence was long enough, however, to accommodate a 10-mer for 

primer extension reactions by positioning the TmC site toward the 5’-end. However, 

the exact sequence was modified from what was used before to accommodate the 
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TmCG sequence and to optimize separation of the expected primer extension products 

by citrate-PAGE according to which nucleotides were inserted opposite the CPD by 

pol η (Figure 2.2).  

Preparation and Characterization of CPD-containing 14-mer Templates 

      The TmC-14-mer was irradiated with 302 nm light at 4°C at pH 8.5 to 

suppress deamination for 1 h, after which half of the sample was allowed to 

completely deaminate by heating at 67°C for 3 h at pH 6.5. The reaction mixtures 

were then subjected to reverse phase HPLC to separate the different photoproducts 

from the starting TmC-14-mer. The fractions collected by HPLC were immediately 

cooled on dry ice to suppress deamination prior to further analysis and use. The 

desired cis-syn CPD-containing product, T[c,s]mC-14-mer, was initially identified by 

its conversion to its deamination product, T[c,s]T-14-mer, which eluted with a longer 

retention time. Thus, UV irradiation of the TmC-14-mer resulted in one major product 

peak with a retention time of 30.5 min (Figure 2.3), which shifted to a peak with a 

retention time of 33.2 min after heating to effect deamination (Figure 2.4). To further 

confirm the assignment of the T=mC-14-mer as the cis-syn cyclobutane dimer, we 

analyzed the sample by nuclease P1-coupled electrospray ionization-MS. Nuclease 

P1 digests CPD-containing DNA to mononucleotides and a CPD containing 

trinucleotide, pPy=PyN, which results in a major fragment, pPy=Pyab, corresponding 

to loss of the base from the 3’-nucleotide to yield an abasic site (ab) (40). MS/MS of 

the nuclease P1 digestion products of the HPLC fraction that eluted at 30.5 min 

showed an ion at m/z 953.4, corresponding to a pT=mCG photoproduct, which 
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fragmented to a major ion at m/z 802 (Figure 2.5), corresponding to pT[c,s]mCab. 

MS/MS of the digestion products of the fraction eluting at 33.2 min showed an ion at 

m/z 954.3, corresponding to pT=TG, which fragmented to an ion at m/z 803, 

corresponding to pT[c,s]Tab (Figure 2.6). 

Single-hit Competitive Nucleotide Insertion Assay Opposite CPDs by pol η 

      To determine the extent to which the mC in the T=mC CPD codes as C or T, 

we first carried out a single-hit competition assay with dATP and dGTP. In this assay, 

yeast pol η was first incubated with the 9-mer primer-TX 14-mer templates and then 

added to a solution containing equimolar dATP and dGTP and a large excess of 

sonicated and denatured salmon sperm DNA to trap the polymerase once it 

dissociated from the primer-template. To resolve the products of insertion, we used of 

a 25mM citrate gel (pH 3.5), which can easily separate products according to their 

nucleotide composition as evidenced from the independently synthesized standards in 

Figure 2.7. Primer extension under these single-hit conditions yielded primarily the 

products in which the primer was extended by two nucleotides, corresponding to the 

almost exclusive extension by G followed by A for the native and CPD-containing 

TmC templates and to extension by AA for the TT templates.  

Multiple-hit Competitive Nucleotide Insertion Assay Opposite CPDs 

      We also examined insertion opposite the mC site in the T=mC CPD using a 

multiple-hit competition assay in which the full-length translesion synthesis products 

could also be separated according to nucleotide composition on a low pH citrate gel. 

In this assay, primer extension was carried out by both yeast and human pol η on the 
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T=mC-14-mer template in the presence of equal amounts of all dNTPs. The primer 

extension products were then electrophoresed on a 20% Tris/borate/EDTA - 

polyacrylamide gel to identify the full-length synthesis products in comparison with 

authentic 14-mer standards AA-14-mer and GA-14-mer, corresponding to insertion of 

dAMP or dGMP opposite the mC site, respectively. We found that both yeast and 

human pol η were able to fully extend the primer to the end of the T=mC and 

T=T-14-mer templates and that the full-length products had the same mobility on a 

denaturing polyacrylamide gel as the primer extension products opposite the 

undimerized TmC and TT-14-mer templates and both the GA-14-mer and AA-14-mer 

standards (Figure 2.8). To determine the nucleotide insertion selectivity opposite the 

dipyrimidine sites, we used a 20% citrate-polyacrylamide gel to separate the 

full-length 14-mer synthesis products according to sequence composition (Figure 2.9). 

As shown, the full-length synthesis products from both yeast and human pol η 

opposite the T=mC-14-mer were found to have the same gel mobility as those 

opposite the undimerized TmC-14-mer, as well as an authentic 14-mer ODN 

containing G (Figure 2.9, lanes 1–3), indicating the preferential insertion of G 

opposite the mC of the CPD. Conversely, the full-length synthesis product opposite 

the completely deaminated T=mC-14-mer had the same mobility as that opposite the 

undimerized TT template and the authentic 14-mer product containing A (Figure 2.9, 

lanes 1, 2, and 5). These results demonstrate that the T=mC-14-mer template did not 

undergo any detectable deamination during its purification and subsequent handling, 

which would have resulted in the production of an A-containing 14-mer bypass 
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product.  

Selectivity of Nucleotide Insertion Opposite T=mCG CPD 

      To determine the selectivity of nucleotide insertion opposite the mC of the 

dimer in comparison with undamaged DNA, we carried out the single-hit primer 

extension experiment in the presence of a biased nucleotide pool in which the 

indicated nucleotide was present in a 32-fold excess over dGTP (Figure 2.10). As 

shown, the 9-mer primer was extended only by G opposite both TmC and T=mC by 

both yeast and human pol η, even in the presence of 32-fold excess dCTP or dTTP. 

Extension of the primer by C or T would have produced bands moving slower than 

the 9-mer and faster than 9G, respectively (33), which was not observed. On the other 

hand, in the presence of 32-fold excess dATP, a small amount of a band 

corresponding to extension by AA opposite T=mC was observed in addition to 

extension by GA. This band was not observed for the undamaged TmC site, 

suggesting that insertion opposite the mC in a dimer proceeds with a lower fidelity of 

insertion than that opposite an undamaged mC. To more accurately determine the 

selectivity of nucleotide insertion, primer extension was carried out with different 

ratios of dATP to dGTP (Figure 2.11). The selectivity of an A insertion relative to G 

could then be determined accurately from the slope of a linear fit of the ratio of the 

primer extension product incorporating A compared with G versus the ratio of the 

concentrations of dATP versus dGTP. Both yeast and human pol η showed similar 

selectivities for A versus G insertion of 6.6×10-3 and 6.1×10-3, respectively, 

corresponding to G versus A selectivities of 152 ± 7 and 165 ± 6. The non-zero 
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intercepts of 0.012 ± 0.008 and 0.007 ± 0.006 for yeast and human pol η suggest the 

presence of ~ 1% of the deaminated T=mC CPD and/or the E-imino tautomer 

(Selectivity data are the average of those calculated from linear least squares fits to 

three independent sets, with the error shown derived from propagation of the standard 

deviations for each fit.).  

Deamination Kinetics of T=mC CPD 

      The ability of pol η to faithfully insert A opposite T and G opposite mC in a 

CPD was then used to study the deamination kinetics of the T=mC CPD at two 

temperatures. The fraction of mC remaining in the CPD as a function time was 

determined by monitoring the fraction of G inserted opposite the mC by pol η in the 

full-length primer extension reaction (Figure 2.12). The rate constants were then 

determined from the slope of linear fits of the data to a first-order rate process (Figure 

2.13). In this way, the deamination rate constants were determined to be 0.0014 min-1 

at 37°C and 0.0054 min-1 at 50°C, corresponding to deamination half-lives of 8.25 

and 2.1 h, respectively.  

Discussion 

      In this chapter, we have demonstrated that DNA synthesis by both yeast and 

human polymerase η opposite an mC in a cis-syn CPD of a TmCG site proceeds in 

a >99% error-free and hence non-mutagenic manner. Our original expectation was 

that the mC might also exist in an imino tautomeric form based on an early study 

showing that 5,6-dihydrocytosine could exist in either an amino or imino tautomeric 

form depending on the solvent (28). In the relatively non-polar solvent chloroform, 
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dihydrocytosine was found to exist primarily in an imino tautomeric form (E and/or 

Z), whereas in water, it was found to exist primarily in the amino tautomeric form. If 

a polymerase were to surround the nascent base pair involving C or mC of a CPD and 

exclude water, as it does for a representative replicative polymerase, yeast pol δ 

(Figure 2.14, A) (41), one might expect an increased preference for an imino 

tautomer. 

      The observation of only a dGMP insertion opposite the mC of the TmC CPD 

by either yeast or human pol η in the presence of equal concentrations of all four 

dNTPs indicates that the mC is not adopting a significant amount of the E-imino 

tautomer form, which would have templated the insertion of dAMP (Figure 2.1). An 

upper limit to the amount of the E-imino tautomer comes from the non-zero intercept 

of ~ 1% observed in the plots of dAMP versus dGMP insertion as a function of 

[dATP]/ [dGTP], which could also more likely be attributed to the presence of the 

deaminated T=mC CPD. We do not have any direct way of knowing whether or not 

any of the Z-imino tautomer is present, as it is not Watson-Crick complementary to 

any of the canonical DNA bases. If it is present, it is either very poor at directing 

nucleotide insertion or directs the insertion of only G. Results from the single-hit 

primer extension experiments (Figure 2.7) did not show any premature dissociation 

from the template compared with the undamaged template that would be indicative of 

significant impediment to nucleotide insertion. If the Z-imino isomer were directing 

insertion of G, it would likely be occurring via the equivalent of a G· T wobble base 

pair. Both insertion and extension of a G opposite the 3’-T of a T=T CPD by yeast 
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pol η are known, however, to be much less efficient than for a Watson-Crick 

base-paired A (42, 43). Thus, the comparably efficient extension opposite the 3’-mC 

in the dimer and the undamaged template observed in the single-hit primer extension 

reaction suggest that insertion is occurring largely if not exclusively via the amino 

tautomer in the CPD. 

      The selectivity of dGMP insertion relative to dAMP by yeast and human pol η 

opposite the mC of the T=mC CPD is less, however, than that opposite an undamaged 

mC, as shown in Figure 2.10 , in which 32-fold excess of dATP over dGTP was used. 

In Figure 2.10, a band for dAMP insertion opposite the mC in the dimer is clearly seen, 

whereas it is not seen for undamaged mC. This is consistent with experiments that 

determined that the selectivity for dGMP insertion relative to dAMP opposite a C in 

undamaged DNA was 960 for the same yeast pol η used in these experiments (44) 

and 909 for human pol η (45) compared with 152 and 165, respectively, which we 

observed for insertion opposite the mC in the T=mC CPD. The lower fidelity may have 

to do with the greater ability of an mC in a CPD to adopt the E-imino tautomer 

compared with an undamaged mC due to the loss of aromatic stabilization of the 

amino tautomer (27, 29, 30). Interestingly, we had observed a selectivity of only 120 

for insertion opposite the mC in a mC=T CPD (33), suggesting that the 5’-mC may be 

more prone to tautomerization or that insertion opposite the amino tautomer is less 

specific opposite the 5’-mC of a CPD. 

      The almost exclusive presence of the amino tautomeric form of the mC in the 

CPD during nucleotide insertion suggests that it is in a polar and/or aqueous 
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environment (28), which is in accord with a recent crystal structure of a ternary 

complex of human pol η with dATP opposite the 3’-T of a T=T CPD (25). In this 

structure, the O4 carbonyl of the 3’-T of the T=T CPD, corresponding to the position 

of the N4 of the 3’-C of a Py=mC CPD, is completely exposed to water during 

insertion of dATP (Figure 2.14, B). Likewise, the O4 carbonyl of the 5’-T of the CPD, 

corresponding to the 5’-mC of a mC=Py CPD, is also highly exposed to water during 

dATP insertion (Figure 2.14, C). The 5’-mC of a mC=T CPD would therefore also be 

expected to adopt the amino tautomeric form, in accord with our previous study 

showing that only dGMP is inserted opposite this mC in the presence of a equal 

concentration of A (33). These results suggest that pol η may have evolved to bypass 

CPDs in an error-free manner by increasing the exposure of the N4 of a C or an mC in 

either or both of the 3’- and 5’-sites of a cis-syn CPD to maximize the amount of the 

amino tautomer. 

      The active site of pol η also had to evolve to accommodate the 5’-pyrimidine 

of the CPD when the 3’-pyrimidine of the CPD is in the templating position, 

otherwise the 3’-pyrimidine could not template insertion of the complementary 

nucleotide. Replicative polymerases achieve high selectivity for canonical bases in 

part by extensive contacts with the 5’-face of the templating nucleotide (Figure 2.14, 

A), which would prevent the CPD from entering the active site when insertion 

opposite the 3’-pyrimidine of the CPD is to take place. As a result, the polymerase 

would become arrested at a CPD, which would allow for the recruitment of DNA 

damage bypass polymerases. It has been shown, however, that in the absence of other 
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polymerases, the replicative T7 DNA polymerase will preferentially insert A opposite 

the 3’-pyrimidine of all types of dipyrimidine photoproducts, irrespective of their 

base pairing properties, by a non-template mechanism (46-48). If non-template 

insertion were to occur opposite the 3’-C or mC of a CPD, a C-to-T mutation would 

result and may represent an alternate pathway for UV light-induced C-to-T mutations. 

Thus, the T=mC CPD could serve as a useful probe for determining if a polymerase 

synthesizes past CPDs by a template or non-template mechanism. 

      Although bypass of a C- or an mC-containing CPD by pol η occurs in an 

error-free and hence non-mutagenic manner, once the C or mC in a CPD deaminates, 

error-free insertion by pol η opposite the resulting U or T leads to a mutation. Thus, 

the mutagenicity of pol η bypass of a CPD will depend on the presence and 

deamination rate of a C or an mC within the dimer, which we have recently shown to 

be highly dependent on sequence (34), protein binding (49), and nucleosome position 

(50). As we have shown herein, the TmC CPD in a single-strand ATmCG sequence 

context deaminates with a half-life of 7.1 h at 37 °C, which is not much different 

from what we previously found for a CPD with the same flanking sequence in duplex 

DNA at low salt concentration (7.7 h) (34). On the other hand, the 

methyl-CpG-binding protein MeCP2 was found to completely suppress deamination 

of a T=mCG CPD (49) and hence the mutagenic potential of the CPD if bypassed by 

pol η. In a nucleosome core particle, the deamination rate of a T=mCG CPD whose 

backbone faced away from the histone surface was accelerated by a factor of 9, 

whereas one whose backbone faced toward the surface was retarded by ~ 5-fold (50). 
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Thus, as long as pol η synthesizes past a C/mC-containing CPD prior to deamination, 

the bypass event will be non-mutagenic, but as soon as the CPD deaminates, the 

bypass will be mutagenic. Therefore, although pol η synthesizes past CPDs in an 

error-free manner, in the sense of faithfully inserting nucleotides that are 

complementary to the pyrimidines present in the CPD, if a U or T arises from 

deamination of a C or an mC, trans-lesion synthesis will be mutagenic and can explain 

the origin of UV light-induced C-to-T mutations. 

Conclusions 

      We prepared and characterized an 14-mer DNA oligodeoxynucleotide 

containing a T=mC CPD at a TmCG site, which is one of the major sites of C 

methylation and C-to-T mutations found in the p53 gene of basal and squamous cell 

cancers. We demonstrated that both yeast and human pol η could synthesize past the 

3’-mC in the T=mC CPD in a >99% error-free manner, consistent with the highly 

water-exposed nature of the active site. We also report the deamination rate of the mC 

in the T=mC CPD at TmCG site and confirm the error-free bypass at the dimer site but 

mutagenic insertion of A opposite the resulting T. 
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Table 2.1 Oligodeoxynucleotides (ODN) used in this study. 

 

ODN Sequence 

9-mer 5’-GCTCGTCAC-3’ 

9A-mer 5’-GCTCGTCACA-3’ 

9AA-mer 5’-GCTCGTCACAA-3’ 

9G-mer 5’-GCTCGTCACG-3’ 

9GA-mer 5’-GCTCGTCACGA-3’ 

AA-14-mer 5’-GCTCGTCACAAT AC-3’ 

GA-14-mer 5’-GCTCGTCACGAT AC-3’ 

TmC-14-mer 5’-GTATmCGTGACGAGC-3’ 

T=mC-14-mer 5’-GTAT=mCGTGACGAGC-3’ 

TT-14-mer 5’-GTATTGTGACGAGC-3’ 

T=T-14-mer 5’-GTAT=TGTGACGAGC-3’ 
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Figure 2.1 Mutagenic properties of mC and its deamination product, T, in cis-syn 

cyclobutane pyrimidine dimer. 
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Figure 2.2 Oligodeoxynucleotides on citrate PAGE gel. 
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Figure 2.3. Analysis of the UV irradiation products of TmC-14-mer before 

deamination. HPLC trace of TmC-14-mer after UV irradiation at 4°C for 1 hour at 

pH 8.5. 
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Figure 2.4 Analysis of the UV irradiation products of TmC-14-mer after 

deamination. HPLC trace of TmC-14-mer after UV irradiation at 4°C for 1 h 

followed by 3 h at 67°C and pH 6.5. 
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Figure 2.5 Nuclease P1-coupled ESI-MS/MS analysis of T=mC-14-mer. MS/MS 

of nuclease P1 digestion products of the HPLC peak corresponding to the cis-syn 

CPD of TmC-14-mer (A1: parent ion m/z: 953, full MS; A2: zoom scan at m/z: 802). 

The 953 parent ion corresponds to [pT=mCG-H]-. 
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Figure 2.6 Nuclease P1-coupled ESI-MS/MS analysis of the deamination 

products of T=mC-14-mer. Spectra of the nuclease P1 digested HPLC peak 

corresponding to the deaminated product of cis-syn CPD TmC-14-mer (A1: parent 

ion m/z: 954, full MS; A2: zoom scan at m/z: 803). The 954 parent ion corresponds to 

[pT=TG-H]-. 
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Figure 2.7 Single-hit primer extension competition experiment opposite 14-mer 

templates. An equimolar mixture of all dNTPs (200µM each) together with 

sonicated/denatured salmon sperm DNA was added to a preincubated mixture of the 

indicated 9-mer primer-14-mer template and pol η. The reactions were terminated 

after 10 s with EDTA and unlabeled primer, and the products were electrophoresed 

on a citrate (pH 3.5)-10% polyacrylamide gel. The standards corresponding to 

extension of the 9-mer by A or G were prepared by automated synthesis. yPolη: yeast 

Pol η; hPolη: human Pol η. 
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Figure 2.8 Multiple hit full length primer-extension experiment (TBE PAGE). 

The 9-mer primer/14-templates were incubated with Pol η and 100 μM of each dNTP 

until complete extension was achieved. Denaturing electrophoresis gel (20% TBE 

PAGE) showed production of full-length primer extension products under the 

reaction conditions. 
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Figure 2.9 Multiple hit full length primer-extension experiment (Citrate PAGE 

gel). The indicated 9-mer primer-14-mer templates were incubated with pol η and 

200μM each dNTP for 2 min, and the products were electrophoresed on a citrate (pH 

3.5)-20% polyacrylamide denaturing gel in comparison with standards. yPolη: yeast 

pol η; hPolη: human pol η. 
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Figure 2.10 Single-hit primer extension biased nucleotide pool competition 

experiment opposite 14-mer templates. A 32:1 mixture of the indicated 

dNTP/dGTP (100 μM in the dNTP) together with sonicated/denatured salmon sperm 

DNA was added to a preincubated mixture of the indicated 9-mer primer-14-mer 

template and pol η. The reaction was terminated after 10 s with EDTA and unlabeled 

primer, and the products were electrophoresed on a citrate (pH 3.5)-10% 

polyacrylamide gel. The standards corresponding to extension of the 9-mer by A or G 

were prepared by automated synthesis. yPolη: yeast pol η; hPolη: human pol η. 
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Figure 2.11 Selectivity of dGMP versus dAMP insertion opposite mC of T=mC 

CPD via single-hit assay. Varying ratios of dATP to dGTP (with dATP fixed at 100 

μM) together with sonicated/denatured salmon sperm DNA were added to a 

preincubated mixture of the 9-mer primer-14-mer template and pol η. The reaction 

was terminated after 10 s with EDTA and unlabeled primer, and the products were 

electrophoresed on a citrate (pH 3.5)-10% polyacrylamide gel. The standards 

corresponding to extension of the 9-mer by A or G were prepared by automated 

synthesis. yPolη: yeast pol η; hPolη: human pol η. 
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Figure 2.12 Temperature dependence of mC deamination in T=mC-14-mer CPD 

at pH 7.5. Multiple-hit nucleotide insertion competition assay carried out with 100 

μM of each dNTP at 37°C and 50°C and electrophoresed on a 25% polyacrylamide, 

pH 3.5, citrate gel. 
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Figure 2.13 Deamination rate constant determinations. Least squares fit to a plot 

of the natural log of the fraction of mC remaining in the TmCG-14-mer CPD versus 

deamination time at two different temperatures. The fraction of mC remaining equals 

the fraction of G inserted, G/(G + A), opposite the mC of the T=mC 14-mer by yPol η. 



 96 

 

 

 

Figure 2.14 Visual comparison of water accessibility of O6 of template guanine 

(yellow) inactive site of yeast pol δ (Protein Data Bank code 3IAY) (A) and of O4 

of template 3’-T (B) and template 5’-T (C) of cis-syn TT CPD (yellow) in active 

site of human pol η (code 3MR4). 
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Chapter 3 
 
 

Rotational Position of a 5-Methylcytosine-containing 

Cyclobutane Pyrimidine Dimer in a Nucleosome 

Greatly Affects Its Deamination Rate* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* The chapter was adapted from Ref. 57 with permission. 
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Abstract 

C to T mutation hotspots in skin cancers occur primarily at methylated CpG 

sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) 

formation. These mutations are proposed to arise from the insertion of A by DNA 

polymerase η opposite the T resulting from deamination of the methylC (mC) within 

the CPD. Although the frequency of CPD formation and repair is modestly modulated 

by its rotational positioning within a nucleosome, the effect of nucleosome rotational 

positioning on the rate of mC deamination in a CPD has not been previously studied. 

We now report that deamination of a TmC CPD whose sugar phosphate backbone is 

positioned against the histone core surface decreases by a factor of 4.7, whereas that 

of a TmC CPD positioned away from the surface increases by a factor of 8.9 when 

compared with unbound DNA. Because the mCs undergoing deamination are in 

similar steric environments, the difference in rate appears to be a consequence of a 

difference in the flexibility and compression of the two sites due to DNA bending. 

Considering that formation of the CPD positioned away from the surface is also 

enhanced by a factor of two, a TmCG site in this position might be expected to have 

up to an 84-fold higher probability of resulting in a UV-induced mC to T mutation 

than one positioned against the surface. These results indicate that rotational position 

may play an important role in the formation of UV-induced C to T mutation hotspots, 

as well as in the mutagenic mechanism of other DNA lesions. 
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Introduction 

Sunlight is a major epidemiological factor for the induction of skin cancer. In 

basal and squamous cell carcinomas, the p53 tumor suppressor gene exhibits a very 

high percentage of C to T transition mutations at dipyrimidine sites, including the 

tandem CC to TT mutation (1–4). The UVB wavelengths in sunlight induce the 

formation of many types of photoproducts at dipyrimidine sites in DNA, the majority 

of which are cyclobutane pyrimidine dimers, which are normally abbreviated as 

CPDs (5–8). Methylation of C at 5’-PyCG sites further enhances formation of CPDs 

15- fold in sunlight (9, 10), and most C to T mutation hotspots occur at methylated 

5’-PyCG sites (10–12). It has been found that 5-methylcytosine is involved in 

25–40% of sunlight-induced mutations of the cII and lacI transgenes as well as the 

p53 gene in skin tumors and that CPDs are responsible for a significant fraction of 

these mutations (6, 13).  

The initially formed cyclobutane pyrimidine dimers are not significantly 

mutagenic, however, because of the DNA damage bypass polymerase η, which can 

efficiently bypass T- and C/mC-containing dimers in an essentially error-free manner 

(14–17). Although the T in a CPD is stable, the C and mC are not, and they deaminate 

to U and T in a matter of hours or days (18–24) (Figure 3.1), unlike their canonical 

forms, which deaminate with a half-life of about 50,000 years (25, 26). Deamination 

of Cs or mCs in CPDs is highly mutagenic because polymerase η will faithfully insert 

A opposite the resulting Us or Ts, thereby producing the observed C to T and CC to 

TT mutations (the deamination-bypass mechanism) (3, 4, 27–29). The frequency of C 
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to T and CC to TT mutations will depend, however, on the rate of formation of 

C-containing dimers, their rate of repair, deamination, and bypass by polymerases. 

All of these processes are expected to be modulated by sequence context, protein 

interactions, as well as the secondary and tertiary structure of DNA. A detailed 

understanding of all these processes and interactions may lead to a better 

understanding of the origin of UV mutation hotspots.  

Nucleosomes are the primary structural unit of chromatin in eukaryotic cells 

(30). Nucleosome core particles contain about 150 bp of DNA, which wrap 1.7 times 

around a histone octamer, made up of two H2A, H2B, H3, and H4 histones (31). UV 

preferentially induces the formation of CPDs in nucleosomes at sites where the 

phosphodiester backbone is positioned away from the histone surface and DNA 

bending is toward the major groove (32, 33). This preference is also seen for bent 

DNA that is not in contact with a protein (34) and has been attributed to the greater 

degree of rotational freedom in the phosphate backbone, making it easier to for 

adjacent pyrimidines to adopt a photoreactive conformation (35, 36). When DNA 

containing randomly distributed CPDs is assembled into nucleosomes, the CPDs also 

favor positions away from the surface (37), which is consistent with the 30° bend that 

they make toward the major grove of DNA (38). Despite the distortion of DNA 

caused by CPDs, nucleosome core particles containing CPDs in different rotational 

settings can be readily prepared and isolated (39–41).  

Nucleosomes have also been found to affect the repair of CPDs (42). In vitro 

studies with human fibroblast extracts found that nucleosomes reduce the rate of 
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nucleotide excision repair of CPDs by 6–9-fold relative to free DNA (43). A similar 

10-fold reduction in excision repair has been observed for a site-specific CPD 

reconstituted with human nucleosome core particles (44). With Xenopus nuclear 

extracts, the nucleotide excision repair rates of rotationally positioned CPDs were 

only 2–3 times lower in nucleosomes and no more than 1.5-fold greater when a CPD 

was positioned away from the histone surface when compared with against the 

surface (41). In an earlier study with a 5S rRNA gene, no correlation was observed 

with rotational positioning of the CPD (45).  

Although the effects of nucleosome positioning on the rates of CPD formation 

and repair have been studied, the effects on the deamination rates of C- and 

mC-containing CPDs have not. The purpose of this study was to determine the extent 

to which the rotational position of the CPD relative to the histone surface affects the 

rate of mC to T deamination, and hence, its potential mutagenicity by a deamination 

bypass mechanism. To address this question, we determined the deamination rate of a 

TmCG CPD in two different orientations in a nucleosome core particle. We find that a 

TmC CPD positioned against the surface deaminates 4.7 times slower than the 

unbound sequence, whereas a TmC CPD facing out deaminates 8.9 times faster than 

the unbound sequence, corresponding to an overall 42-fold difference in rate. 

Experimental Procedures 

DNA Substrates 

Oligodeoxynucleotides (ODN) with or without 5’-terminal phosphates were 

purchased from Integrated DNA Technologies and purified by denaturing gel 
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electrophoresis prior to ligation with T4 DNA ligase and ATP in the presence of 

complementary 20-mer ligation scaffolds (Table 3.1 to 3.4, Figure 3.3). The 150-mer 

single strand products were purified by denaturing PAGE. Complementary 150-mers 

were then annealed to form the 150-mer duplexes and purified by native PAGE 

(Figure 3.4). 

Nucleosome Reconstitution 

Nucleosome core particles were isolated and purified from chicken 

erythrocytes following a detailed procedure provided by the Dr. Michael Smerdon 

laboratory. Each 150-mer DNA duplex (ds-IN, ds-OUT, and ds-control) was 

reconstituted with the chicken nucleosome core particles by slow dialysis from high 

to low salt as described previously (46). Briefly, about 10nM 150-mer duplex was 

incubated with an increasing amount of nucleosome core particles (from 100 to 

500nM) in a total volume of 500µL, containing 2M NaCl, 10mM Tris-HCl, 5mM 

EDTA at pH 7.5 and room temperature for 2 h, and then dialyzed against 50mM 

NaCl, 10mM Tris-HCl, pH 7.5, at 4°C, overnight. Finally, the reconstituted particles 

were recovered from the dialysis tubing and equilibrated at 55°C for 2 h to fix the 

nucleosome phasing. The reconstituted particles were assayed by native PAGE (6% 

acrylamide, 0.2% bisacrylamide in TBE), and the ratio of nucleosome-bound DNA to 

free DNA was quantified by the Quantity One software (Figure 3.5). 

Hydroxyl Radical Foot-printing and Dimethylsulfate Mapping 

Hydroxyl radical footprinting was performed as described previously (46). 

Briefly, a 15-µL aliquot of 10mM sodium ascorbate, a 15-µL aliquot containing 1mM 
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Fe(NH4)2(SO4)2· 6H2O and 2mM EDTA, and 15µL of a 0.12% (w/w) H2O2 solution 

were premixed and added within 5 s to 105µL of the nucleosome-bound DNA sample. 

The reaction was incubated for 120 s at room temperature and stopped by the addition 

of 16µL of 50% (v/v) glycerol and 4µL of a 500mM EDTA solution. The samples 

were electrophoresed on a native gel (6% acrylamide, 0.2% bisacrylamide in TBE), 

and the nucleosome bands were electroeluted in TBE. The proteins were extracted 

with phenol:chloroform:isopropyl alcohol 25:24:1, and the DNA was precipitated 

with ethanol. The free ds-control was treated in a similar way, except that the reaction 

was quenched with a solution containing 1M sodium acetate, 120mM thiourea, 

300µg/ml salmon sperm DNA, and 60mM EDTA at pH 6.5 and then 

ethanol-precipitated. A Maxam-Gilbert G sequencing reaction was also carried out on 

the free ds-control in 50mM cacodylate, 50mM NaCl, 5mM EDTA in the presence of 

10nM ds-control. For a 50-µL reaction, 0.5µL of dimethyl sulfate was added to 

initiate the reaction, and 10-µL aliquots were removed over time and quenched by the 

addition of 50µL of 1.5M sodium acetate, 1M mercaptoethanol and 50µg of 

denatured salmon sperm DNA. The samples were ethanol-precipitated twice, and the 

resulting pellets were vacuum-dried and then solubilized in 100µL of 1M piperidine. 

The samples were then heated at 90°C in 1M piperidine for 30 min and then 

evaporated to dryness at 60°C. 

Deamination Rate Assay by Two-dimensional Gel Electrophoresis 

The deamination rate was determined by adapting a previously described 

method (24). The free and nucleosome-bound internally 32P-labeled 150-mer ds-IN 
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and ds-OUT were irradiated with 302 nm UVB light at 4°C for 1 h and then adjusted 

to pH 7.2 with Mes buffer (0.5M) and incubated at 37°C. Aliquots (10-µL) were 

removed at various times and quickly frozen on dry ice before storing overnight at 

-80°C. The remaining sample was adjusted to pH 6.5 with Mes buffer (0.5M) and 

heated at 67°C overnight to complete the deamination. The aliquots were then 

warmed to room temperature, extracted with phenol:chloroform:isopropyl alcohol 

25:24:1, ethanol-precipitated, redissolved in buffer containing 10mM Tris-HCl, pH 

7.5, 50mM NaCl, 5mM DTT, and photoreverted with photolyase and 365 nm light 

for 1 h. After photoreversion, the aliquots were treated with nuclease P1 to degrade 

the DNA to mononucleotides containing either 32PmdC or 32P-dT, depending on the 

extent of deamination, and separated by two-dimensional gel electrophoresis. In the 

first dimension, electrophoresis on a 7M urea, a TBE gel was used to separate 

32P-mdC and 32P-dT, which co-migrate, from partially digested material and protein. 

For the second dimension, the gel surrounding the radioactive band containing the 

mononucleotides was excised, and a second gel containing 25mM citric acid, pH 3.5, 

and 7M urea was poured around the remaining gel slice. Electrophoresis on this gel 

separated 32PmdC from 32P-dT with the 32P-T migrating the fastest. The deamination 

rate constant was obtained from the slope of a linear least squares fit of the log of the 

fraction of remaining TmC CPD versus deamination time. The fraction of TmC CPD 

remaining was calculated as 1- (T/(T + mC))/(T∞/(T∞ + mC)) where T∞/(T∞ + mC∞) is 

the fraction T/(T + mC) in the fully deaminated sample. The yield of CPD 

photoproduct was calculated as the T∞/(T∞ + mC∞) - T0/(T0 + mC0), where T0/(T0 + 
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mC0) is the fraction T/(T + mC) at time 0. 

Results 

Design and Synthesis of DNA Substrates 

The substrate for study was adapted from a previously described 150-mer 

DNA duplex sequence that was shown by hydroxyl radical foot-printing to position a 

TT CPD near the nucleosome dyad axis with an inside (IN) or outside (OUT) 

orientation relative to the histone core surface (41). The CPDs were oriented by 

flanking the dimer-containing sequence with multiple TG motifs (T/A)3NN(G/C)3 

that had been shown to position a glucocorticoid hormone-response element (GRE) 

with different orientations relative to the histone surface (47, 48). To study the effect 

of nucleosome rotational positioning on the deamination of cyclobutane pyrimidine 

dimers of TmCG sites, we simply replaced the ATTA (OUT) and GTTC (IN) CPD 

sites in the original 150-mer DNA sequence with ATmCG and GTmCG sites 

respectively (Figure 3.6, top right).  

To determine the deamination rates of the TmC CPDs, we used a previously 

developed method that requires the mC to be 5’-32P-end-labeled (Figure 3.2) (24). We 

therefore prepared the two internally 32P-labeled duplex 150-mers, ds-IN and ds-OUT, 

along with a 5’-end-labeled control duplex, ds-control. The duplexes were prepared 

by annealing complementary single strand 150-mers that were prepared by ligating 

four ODNs together with T4 ligase and ATP in the presence of complementary 

ligation scaffolds (Figure 3.2). For ds-IN and ds- OUT, the second and third ODNs of 

the top strand were designed so that the mC of interest would be at the 5’-end of the 
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third fragment so that the mC could be 5’-32P-end-labeled prior to ligation (Table 3.1 

to 3.4, Figure 3.3). Thus, ds-IN was 32P-labeled at the mC of the GTmCG site, ds-OUT 

was labeled at the mC of the ATmCG site, and ds-control was labeled at the 5’-end of 

the 150-mer of the top strand. Each single strand 150-mer was purified by denaturing 

PAGE, and the final 150-mer duplexes were purified by native PAGE (Figure 3.4). 

Nucleosome Core Particle Reconstitution with the 150-mer DNA Duplexes 

The 150-mer duplexes, ds-IN, ds-OUT, and ds-control, were assembled into 

nucleosome core particles according to a previously described procedure that 

involves exchanging the DNA with that from chicken erythrocyte nucleosome core 

particles (NCPs) (39). The 150-mer duplexes were titrated with the NCPs and 

electrophoresed on a native gel to determine the NCP concentration needed to 

achieve maximal incorporation of the DNA into the NCP (Figure 3.5). We found that 

about 90% of 10nM 150-mer DNA duplexes could be incorporated into 500nM 

nucleosome core particles. 

Orientation of the Two TmC Sites on the Nucleosome Core Particle 

To verify the IN and OUT positions of the GTmCG and ATmCG sites, the 

nucleosomes were analyzed by hydroxyl radical foot-printing. The hydroxyl radical 

cleavage intensity on the nucleosome-bound ds-control with and without UVB 

irradiation exhibited very pronounced 10–11-bp periodicity with the same phasing as 

described previously for the ATTA and GTTC sites within the same 150-mer 

sequence (41) (Figure 3.6, lanes 2 and 3) when compared with the free ds-control 

(Figure 3.6, lane 1). The cleavage sites were mapped onto the sequence by alignment 
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with the Maxam Gilbert G sequencing reaction bands (Figure 3.6, lane 4). Hydroxyl 

radicals primarily attack the H5’5’’ and H4’ hydrogens that are present on the minor 

groove side of the DNA (49). The mC of the ATmCG CPD site is in the center of a 

region of maximal cleavage, indicating that its phosphodiester backbone is facing out 

(Figure 3.6, boxed section). The mC of the GTmCG CPD site, which is half a turn 

from the first site, is at a site of minimal cleavage, indicating that its backbone is 

facing toward the histone surface.  

The similar hydroxyl radical cleavage pattern in the presence and absence of 

UVB irradiation suggests that the UVB photoproducts do not disrupt the phasing. 

Furthermore, the decrease of the intensity of the mC band and increase in that of the 

flanking G at the ATmCG site following UVB radiation is consistent with the 

formation of a significant amount of CPD photoproduct (Figure 3.6, boxed section). It 

has been previously observed that hydroxyl radical cleavage is suppressed at the 3’-T 

of a TT CPD and increased at the nucleotide immediately following the 3’-T (41). 

Deamination Rates of the Two T=mC CPDs 

The deamination rates for the IN and OUT T=mC CPDs when compared with 

free DNA were determined by following the conversion of 32P-mdC to 32P-dT in the 

dimer by an enzyme-coupled two dimensional gel electrophoresis assay (24). In the 

first step, free or NCP complexed ds-IN and ds-OUT were irradiated with 302 nm 

light to produce the cis-syn-cyclobutane pyrimidine dimers (CPD) of the ATmCG and 

GTmCG sites, along with other photoproducts, at 4°C to suppress deamination. The 

samples were then incubated at 37°C and pH 7.2 to allow for deamination for various 
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times, and one was made to undergo complete deamination by lowering the pH down 

to pH 6.5 and heating at 67°C, overnight. The aliquots were then incubated with 

Escherichia coli photolyase and visible light to specifically photorevert the 

cis-syn-CPDs and then treated with nuclease P1 to degrade all of the undamaged and 

photoreverted DNA to mononucleotides. Non-photorevertible dipyrimidine 

photoproducts, such as (6-4) and Dewar DNA photoproducts, would only be digested 

to trinucleotides. The mononucleotides were then isolated by electrophoresis on a 

denaturing gel and subjected to a second electrophoresis on a pH 3.5 citrate gel 

(Figure 3.7) that separates the deaminated 32P-T from the undeaminated 32P-mdC and 

quantified by radioisotopic imaging analysis.  

The rate constants for deamination were then determined from the slopes of 

lines fit to the log of the fraction of remaining TmC CPD (Figure 3.10 & 3.11) as 

described under “Experimental Procedures” for multiple experiments and then 

averaged. The photoproduct yields were determined from the increase in the initial 

amount of radio-labeled T following complete deamination. The initial amount of T 

was non-zero in many cases and could be attributed to unintended labeling of the T at 

the 5’-end of the 150-mer resulting from incomplete heat deactivation of the kinase 

used to label the mC-containing ODN prior to ligation. Table 3.5 shows the 

deamination half-lives and yields of the T=mC CPDs in the IN and OUT positions of 

free and nucleosome-bound DNA. When compared with the free DNA, the 

nucleosome decreases the rate of deamination of the facing IN CPD by a factor of 4.7, 

whereas it increases the rate of deamination of the facing OUT CPD by a factor of 8.9. 
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We also determined that although the nucleosome did not affect the efficiency of 

forming the facing inside CPD, it did enhance the formation of the facing outside 

CPD by a factor of two. 

Discussion 

The goal of this study was to determine whether or not the nucleosome 

rotational positioning of a cis-syn-cyclobutane pyrimidine dimer (CPD) of a TmCG 

site on a nucleosome would affect its deamination rate and thereby contribute to its 

relative UV-induced mutagenicity via a deamination bypass mechanism. Two 

nucleosome rotational positionings were studied, one with the phosphodiester 

backbone of the T=mC CPD positioned against or facing inside the histone core 

surface (IN) and one with the backbone of the T=mC CPD positioned away or facing 

outside from the surface (OUT). These positions can be mapped onto a crystal 

structure of the nucleosome core particle as shown in Figure 3.12. Because the facing 

outside CPD site precedes the facing inside CPD site when going in the 5’- to 

3’-direction, the two sites must lie to one side of the nucleosome pseudo dyad axis.  

The different photoreactivity of the two sites in free DNA (Table 3.5) was 

consistent with an earlier study of ours showing that an ATmCG site is about 2-fold 

more photoreactive than a GTmCG site (5.4 versus 12% yield) due to the quenching 

effect of flanking Gs (24). Complexing the DNA to the histone core particle did not 

affect the photoreactivity of the inside GTmCG site but enhanced the photoreactivity 

of the outside ATmCG site 2-fold to give a 26% yield of the CPD when compared 

with 5.5% for the inside site. The enhanced photoreactivity of the facing outside 
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position is in accord with the higher photoreactivity previously noted for dipyrimidine 

sites positioning away from the histone surface (32, 33).  

In contrast to their photoreactivity, the deamination rates of the two T=mC 

CPD sites in the nucleosome were dramatically different from those in the free DNA, 

with the T=mC CPD positioned against or facing inside the histone core surface 

deaminating 4.7 times slower than the free DNA, whereas the T=mC CPD positioned 

away or facing outside from the histone core particle surface deaminating 8.9 times 

faster compared with the free DNA (Table 3.5). The relative reactivity of the two 

T=mC CPDs toward deamination parallels the relative reactivity of the two T=mC 

CPD sites to hydroxyl radical cleavage, but we believe for a different reason. 

Although hydroxyl radical cleavage of DNA results mainly from initial abstraction of 

the hydrogens on the sugar backbone of DNA (49), deamination of an mC in a 

cis-syn-cyclobutane pyridimine dimer involves attack of water on the C4 carbon (20), 

which lies in the major groove of the DNA.  

Hydroxyl radical cleavage mainly involves attack at the C5’position and 

2–5-fold less at the other sugar sites in the order C4’ > C3’ > C2’> C1’ (49). 

Maximum inhibition occurs when these hydrogens face toward the histone core 

surface, which sterically blocks the approach of the hydroxyl radical. Conversely, 

maximum cleavage is observed when the sugar hydrogens face out toward the solvent. 

When hydroxyl radical cleavage at a CPD is minimal (inside position), the sugar 

phosphate backbone faces the histone surface, but the C4 carbon of the mC faces in a 

direction parallel with the surface (Figure 3.13). On the other hand, when hydroxyl 
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radical cleavage at the CPD is maximal (outside position), the sugar phosphate 

backbone faces away from the histone surface, but the C4 position of the mC faces in 

a direction parallel with the surface but in an opposite direction when compared with 

the CPD in the inside position (Figure 3.13).  

Analysis of the crystal structure of a nucleosome core particle shows that the 

C4 position of what would be the mC of both the IN and the OUT CPDs is 

unobstructed by protein within a radius of 8.5 A (1KX5.pdb) (50). The same would 

be expected to hold true for the CPDs as the 3’-pyrimidine of a CPD has been found 

to adopt roughly the same position as it does in the undamaged DNA (38). Thus, the 

C4 position of the mC of both the facing inside and the facing outside T=mC CPDs 

would appear to be in a similar, unobstructed environment, suggesting that factors 

other than steric interference by the histone proteins must play a role in inhibiting or 

enhancing the mC deamination of the T=mC CPDs.  

Previous studies of the deamination of C have found that deamination can be 

both inhibited and enhanced by protein binding. In one case, the α/β-type small, 

acid-soluble proteins of Bacillus subtilis spores have been found to suppress 

deamination by as much as 10-fold (51). It was suggested that the protein might be 

inhibiting deamination by a variety of means, such as restricting the “breathing” of 

the DNA, excluding water from the DNA, or enforcing an A conformation on the 

DNA. In a subsequent study, a restriction enzyme was found to both suppress and 

enhance deamination of Cs within its binding site by 7- and 15-fold, respectively (52). 

The large enhancement was proposed to arise from enzyme-mediated flipping of one 
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of the Cs out of the helix. In addition, we recently showed that the methyl CpG 

binding domain of MeCP2 drastically inhibited deamination of a T=mCG CPD, most 

probably by restricting attack of water on the CPD (53). 

In the case of the nucleosome, it may be that the same factors that increase 

CPD formation at outside positions also increase the deamination rate. It has been 

shown that CPD dimers form preferentially in outside positions in protein-free DNA 

loops, demonstrating that a DNA curvature rather than protein-DNA contact is 

controlling reactivity (34). It was suggested that the facing inside positions of curved 

DNA are more compressed and less mobile, whereas the facing outside positions are 

less compressed and more mobile. Thus, although the C4 positions of the mC in the 

facing inside and facing outside CPDs may be in similar steric environments, the 

increased flexibility and/or more open conformation of the outside position may 

facilitate protonation of N3 and/or attack by water at C4. Conversely, protonation of 

N3 or attack of water on C4 might be inhibited by restricted movements and the 

compressed nature of a facing inside CPD site. It is interesting to note that the 

observed rate of deamination of the facing outside CPD is very similar to if not faster 

than what we observed for a CPD with the same flanking bases in single strand DNA 

(t1⁄2 = 1.57h versus 3.5 h). This could indicate that CPD might be able to flip out of 

the helix or is being held in a favorable conformation for deamination. A more 

detailed study of CPDs in different rotational and translational positions will be 

required to sort out these effects, which would be elucidated in following chapters. 

The 8.9-fold increase in the rate of deamination of an outside TmCG dimer 
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when compared with a 4.7-fold decrease for the inside dimer corresponds to an 

overall 42-fold difference in rate. When one couples the difference in deamination 

rate with a 2-fold enhancement of outside CPD formation, there would appear to be 

an 84-fold higher propensity for a UVB induced mC to T mutation at an outside 

TmCG site when compared with an inside site. Given that little difference has been 

observed in excision repair rates between inside and outside TT CPDs (41), the large 

difference in deamination rates could explain, at least in part, the origin of UV 

mutation hotspots and cold spots in phased nucleosomes that would arise following 

polymerase η bypass. On the other hand, deamination of an mC-containing CPD will 

result in a T/G mismatch, which has been shown to destabilize the DNA duplex by 

0.7 kcal/mol (54). This duplex destabilization may be able to further destabilize the 

nucleosome, which has already been shown to be destabilized by 0.14–0.24 kcal/mol 

by a TT CPD (41), and facilitate recognition by histone modification and/or excision 

repair systems. The extent of nucleosome destabilization, and hence recognition, may 

depend, however, on the nucleosome rotational position of the mismatch. Deaminated 

C-containing CPDs have been shown to be much more readily detected and repaired 

than TT CPDs (55, 56). 

In a word, we have found that the nucleosome rotational positioning of a 

TmCG CPD in a nucleosome greatly affects its deamination rate, and this may explain 

at least in part the origin of UV mutation hotspots and coldspots in phased 

nucleosomes. Deamination of CPDs may also be accelerated in unphased 

nucleosomes if the CPDs are in dynamic exchange with outside positions. It remains 
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to been seen how the nucleosome affects the deamination rate of CmCG CPDs, which 

are much more slowly deaminated than TmCG CPDs in free DNA (24), as well as the 

deamination of (6-4) and Dewar DNA photoproducts, which also form at this site 

(22). Nucleosome rotational positioning is also expected to affect the spontaneous 

deamination of C and mC and their more readily deaminated oxidized products, as 

well as the chemistry of many other bases and adducts. 

Conclusions 

We have found that the rotational position of a TmCG CPD in a nucleosome 

greatly affects its deamination rate, and this may explain at least in part the origin of 

UV mutation hotspots and coldspots in phased nucleosomes. Deamination of CPDs 

may also be accelerated in unphased nucleosomes if the CPDs are in dynamic 

exchange with outside positions. It remains to been seen how the nucleosome affects 

the deamination rate of CmCG CPDs, which are much more slowly deaminated than 

TmCG CPDs in free DNA, as well as the deamination of (6-4) and Dewar DNA 

photoproducts, which also form at this site. Rotational positioning is also expected to 

affect the spontaneous deamination of C and mC and their more readily deaminated 

oxidized products, as well as the chemistry of many other bases and adducts. 
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Table 3.1 Sequences used to assemble the 150-mer top strand for ds-IN. 

 

ds-IN top strand 

ODN Sequence 

ts1 TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TGT AAC TCG     

ts2_IN GTG TTA GAG CCT GTA ACT CGG TGA TTG TAC ATMC GTG T 

ts3_IN MCG TAG CCT GTA ACA GCC TGT TAG AGC CTG TAA CTC  

ts4 GGT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT GTA ACT 

ts12 GCT CTA ACA CCG AGT TAC AG 

ts23_IN ACA GGC TAC GAC ACG ATG TA 

ts4 CTC TAA CAC CGA GTT ACA GG 
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Table 3.2 Sequences used to assemble the 150-mer top strand for ds-OUT. 

 

ds-OUT top strand 

ODN Sequence 

ts1 TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TGT AAC TCG     

ts2_OUT GTG TTA GAG CCT GTA ACT CGG TGA TTG TAC AT 

ts3_OUT MCG TGT MCG TAG CCT GTA ACA GCC TGT TAG AGC CTG TAA CTC  

ts4 GGT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT GTA ACT 

ts12 GCT CTA ACA CCG AGT TAC AG 

ts23_OUT ACA GGC TAC GAC ACG ATG TA 

ts4 CTC TAA CAC CGA GTT ACA GG 
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Table 3.3 Sequences used to assemble the 150-mer top strand for ds-Control. 

 

ds-Control top strand 

ODN Sequence 

ts1 TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TGT AAC TCG     

ts2_Control GTG TTA GAG CCT GTA ACT CGG TGA TTG TAC ATMC GTG T 

ts3_Control MCG TAG CCT GTA ACA GCC TGT TAG AGC CTG TAA CTC  

ts4 GGT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT GTA ACT 

ts12 GCT CTA ACA CCG AGT TAC AG 

ts23_Control ACA GGC TAC GAC ACG ATG TA 

ts4 CTC TAA CAC CGA GTT ACA GG 
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Table 3.4 Sequences used to assemble the 150-mer top bottom strands for ds-IN, 

ds-OUT and ds-Control. 

 

ds-IN, ds-OUT and ds-Control bottom strand 

ODN Sequence 

cs1 AGT TAC AGG CTC TAA CAC CGA GTT ACA GGC TCT AA 

cs2 CAC CGA GTT ACA GGC TCT AAC AGG CTG TTA CAG GCT ACG 

cs3 ACA CGA TGT ACA ATC ACC GAG TTA CAG GCT CTA ACA C 

cs4 CGA GTT ACA GGC TCT AAC ACC GAG TTA CAG GCT CTA ACA 

cs12 TAA CTC GGT GTT AGA GCC TG 

cs23 TAC ATC GTG TCG TAG CCT GT 

cs4 CTG TAA CTC GGT GTT AGA GC 
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Table 3.5 Yields and deamination half lives of the TmC CPDs in free and 

nucleosome-bound DNA (37°C, 50mM NaCl). 

 

 Facing in yield a 

(%) 

Facing out yield a 

(%) 

Facing in half-life b 

t1/2 (h) 

Facing out half-life b 

t1/2 (h) 

Free  5.5, 5.5 13, 12 12.2 ± 0.9 14.0 ± 1.3 

Nucleosome-bound 6.0 ± 0.5 26 ± 4 57.8 ± 5.1 1.57 ± 0.13 

Fold  

change 

1.1 2.1 4.7 0.11(1/8.9) 

 

a Photoproduct yields for free DNA are from two independent experiments, and for 

nucleosome DNA, yields are the average of three independent experiments with the 

standard deviations shown. 

b Deamination half-lives were the average of those calculated from linear least 

squares fits to two (free DNA) or three (nucleosome DNA) independent sets of 

deamination data (7–9 time points each), with the error shown derived from 

propagation of the standard deviations for each fit. 
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Figure 3.1 Mutagenic properties of mC-containing cis-syn-cyclobutane 

pyrimidine dimers and their deamination products.  
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Figure 3.2 Strategy for determining the deamination rates of TmCG CPDs in a 

nucleosome core particle. 
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Figure 3.3 Ligation strategy for assembly of the 150-mer top strand substrates. 
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Figure 3.4 Characterization and purification of the 150-mer DNA duplexes by 

native PAGE. The PAGE-purified single strand 150-mer substrates were annealed 

together to form duplexes and characterized by native gel electrophoresis on a 10% 

acrylamide, 0.3% bisacrylamide polyacrylamide gel in TBE. Lane 1: 25 bp DNA 

ladder, lane 2: 5’-endlabeled single strand 150-mer, lane 3: 150-mer duplex with 

internally 32P-labeled facing out mC, lane 4: 150-mer duplex with internally 

32P-labeled facing in mC, lane 5: 5’-end labeled 150-mer. Each duplex substrate was 

isolated from the gel for further studies.  
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Figure 3.5 Reconstitution of the nucleosome core particles with the 150-merr 

DNA duplexes. The 150-mer DNA duplexes (10 nM) were incubated with increasing 

amounts of chicken erythrocyte nucleosome core particles (NCP) (lanes 1-4: 100, 200, 

300, 500 nM) at room temperature in 2M NaCl at pH 7.5 for 2 h followed by dialysis 

overnight at 4°C in 50mM NaCl, with final equilibration at 55°C for 2 h. The 

reconstituted NCP were then electrophoresed on a native polyacrylamide gel (6% 

acrylamide, 0.2% bisacrylamide in TBE). 
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Figure 3.6 Hydroxyl radical footprinting of the reconstituted nucleosome core 

particles to determine phasing. The nucleosome core particle reconstituted with 

5’-end-labeled 150-mer duplex DNA was subjected to hydroxyl radical footprinting 

and electrophoresed on a 7M urea, 10% acrylamide, 0.3% bisacrylamide denaturing 

gel. Lane 1, hydroxyl radical footprinting of the free DNA duplex; lane 2, hydroxyl 

radical footprinting of the nucleosome-bound DNA duplex; lane 3, hydroxyl radical 

footprinting of the nucleosome-bound duplex DNA after 1 h of irradiation at 302 nm 

at 4°C; lane 4, Maxam Gilbert G reaction on the free duplex. DMS: dimethyl sulfate. 
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Figure 3.7 Deamination rate of T=mC CPD in nucleosome-bound ds-IN using 

two-dimensional gel electrophoresis. 
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Figure 3.8 Deamination rate of T=mC CPD in nucleosome-bound ds-OUT using 

two-dimensional gel electrophoresis. 
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Figure 3.9 Deamination of the T=mC CPDs in the free and nucleosome-bound 

150-mer DNA duplexes. Plots of log (fraction of T=mC CPD remaining) as a 

function of different deamination times for the gels shown in Figure 3.6.1 and Figure 

3.6.2 and for the free 150-mer ds substrates, after correcting for background 32P-T. 

Plots for other sets of independent measurements are given in Figure 3.6.4 and 

Figure 3.6.5. The intermediate bands in the gels shown in Figure 3.6.1 and Figure 

3.6.2 are due to non-photorevertible photoproduct-containing trinucleotides and 

incomplete digestion products and do not significantly affect the rate measurements. 
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Figure 3.10 Linear regression analysis of the deamination rate data for GTmCG 

CPD-IN. Plots of the individual deamination rate data as log (fraction T=mC 

remaining) vs time for A): the nucleosome-bound ds-IN (NCP-150-ds-IN), and B): 

free 150-ds-IN. The non-zero intercept is due to contamination from 32p-dT resulting 

from labeling the 5’-end of the DNA 150-mer as a result of incomplete heat 

inactivation of the kinase prior to ligation.  
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Figure 3.11 Linear regression analysis of the deamination rate data for ATmCG 

CPD-OUT. Plots of the individual deamination rate data as log (fraction T=mC 

remaining) vs time for A): the nucleosome-bound ds-OUT (NCP-150-ds-OUT), and 

B): free 150-ds-OUT. The non-zero intercept is due to contamination from 32p-dT 

resulting from labeling the 5’-end of the DNA 150-mer as a result of incomplete heat 

inactivation of the kinase prior to ligation.  
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Figure 3.12 Nucleosome core particle structure highlighting in white the 

positions of the facing inside and outside T=mCG CPD sites that are consistent 

with the hydroxyl radical foot-printing data. Brown color represents the histone 

proteins, red and blue color indicate the DNA duplex wrapping around the histone 

octamer surface. Black dashed line points out the dyad axis of the nucleosome core 

particle. White color highlights the two specific nucleosome rotational positionings. 
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Figure 3.13 orientation of the mC:G base pair for the inside (A) and outside (B) 

T=mC CPD sites. The structure was rendered from 1KX5.pdb (50) with Jmol using 

T1C2 and C6T7 of chain J to represent the outside and inside CPD sites with editing 

to produce the mC:G base pair. 
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Abstract 

C to T mutation hotspots in skin cancers occur primarily at methylated CpG 

sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) 

formation. We have previously shown a 45-fold greater deamination rate of a T=mCG 

CPD with sugar phosphate backbone positioned away from the histone core surface 

than one positioned against the surface. We do not yet know if this represents the 

extremes of the range, or how the rate may vary in other positions, so in this chapter, 

we report the deamination rate of T=mCG CPDs in one full helical turn at the dyad 

axis of the nucleosome core particle. We find that three out of the ten T=mCG CPDs 

positioned inside the nucleosome core particle surface deaminated slower than the 

unbound sequence, with a maximum decrease in rate of 3.1-fold, whereas the other 

seven T=mCG CPDs positioned outside the core particle surface deaminated faster 

than the unbound sequence, with a maximum increase in rate of 3.8-fold, 

corresponding to an overall 12-fold difference in deamination rate. We also replaced 

the G with A at two positions and surprisingly found that although the facing outside 

T=mCA CPD still deaminated faster than the unbound sequence, the CPD facing 

inside only exhibited a 1.3-fold decrease in deamination rate. This discovery indicates 

that nucleosome rotational positioning could interfere with the accelerating function 

of the G at T=mCG CPD, with the inside facing positioning greatly hindering the 

accelerating ability of flanking G on the deamination rate. 
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Introduction 

      Nucleosomes are the primary structural unit of chromatin in eukaryotic cells 

(1). Nucleosome core particles contain about 147 bp of DNA duplex, which wrap 1.7 

times around a histone octamer, which is made up of two H2A, H2B, H3, and H4 

histones (2). UV light preferentially induces the formation of CPD DNA 

photoproducts in nucleosomes at sites where the phosphodiester backbone is 

positioned away from the histone core particle surface and DNA bending is toward 

the major groove (3, 4). This preference is also seen for bent DNA that is not in 

contact with a protein (5) and has been attributed to the greater degree of rotational 

freedom in the phosphate backbone, making it easier for adjacent pyrimidines to 

adopt a photoreactive conformation (6, 7). When DNA containing randomly 

distributed CPDs is assembled into nucleosomes, the CPDs also favor positions away 

from the surface (8), which is consistent with the 30° bending that they make toward 

the major grove of DNA (9). Despite the distortion of DNA caused by CPDs, 

nucleosome core particles containing CPDs in different rotational settings can be 

readily prepared and isolated (10-12). 

      In Chapter 3, we have already determined the deamination rates for two 

T=mCG CPDs with sugar phosphate backbones positioned against or away from the 

histone core surface and found a 45-fold difference in mC deamination rate (13). We 

do not yet know if this represents the extremes of the range, so in this chapter, we 

examined the deamination rate of T=mCG CPDs in a full turn of the helix nucleosome 

core particle surface at the dyad axis. In chapter 3, we used a method for preparing IN 
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and OUT facing CPDs (14, 15) that made use of nucleosome core particles isolated 

from chicken erythrocytes and a rotationally positioned 150-mer DNA based on a 

sequence by Li and Wrange (16). The 150-mer DNA substrate was prepared by 

ligation and contained repeating (T/A) 3NN(G/C)3NN sequences that insured a 

particular rotational setting of the DNA on the histone surface which was verified by 

hydroxyl radical foot-printing with EDTA. However, this 150-mer sequence appears 

to have been modified from the originally reported sequence (16) by the insertion of 3 

extra nucleotides that puts the 3’-side slightly out of phase with the 5’-side. So in this 

chapter, we adapted the originally designed 147-mer sequence (14, 16), and made the 

center of the sequence coincide with the pseudodyad axis, so these 10 T=mCG sites 

would flank the pseudodyad axis on the nucleosome core particle surface. 

      The purpose of this study was to determine the full extent to which the 

rotational positioning of the T=mC CPD relative to the histone core particle surface 

affects the rate of mC to T deamination, and hence, its potential mutagenicity by a 

deamination bypass mechanism. To answer this question, we determined the 

deamination rate of a T=mCG CPD in ten different positions in a nucleosome core 

particle. We find that in a full turn of the nucleosome core particle surface, three out 

the ten T=mCG CPDs positioned against the nucleosome core particle surface 

deaminated more slowly than the unbound sequence, with a maximal decrease of 

3.1-fold. The other seven T=mCG CPDs positioned away or outside the core particle 

surface, on the other hand, deaminated faster than the unbound sequence, with a 

maximum increase of 3.8-fold, corresponding to an overall 12-fold difference in 
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terms of mC deamination rate, and not the 45-fold observed before.  

      Since we had previously observed that a G flanking the mC of a TmC CPD site 

could increase the deamination rate in duplex DNA 40-fold compared with a flanking 

A, we also investigated the extent to which nucleosome rotational positioning would 

have on this rate. To study this we simply replaced the TmCG with TmCA in two 

147-mer DNA duplexes corresponding to inside and outside facing positions. 

Surprisingly, we found that while the facing outside AT=mCA DNA photoproduct still 

deaminated 3.1-fold faster than in the free DNA control, the inside facing AT=mCA, 

didn’t show a significant decrease in deamination rate like the AT=mCG DNA 

photoproduct, This phenomenon indicates that nucleosome rotational positioning 

could interfere with the accelerating function of flanking G, with the inside facing 

position greatly hindering the accelerating effect of the flanking G on mC deamination 

rate. 

Experimental Procedures 

DNA Substrates 

      Similar to chapter 3, oligodeoxynucleotides (ODN) with or without 

5’-terminal phosphates used in this chapter were purchased from Integrated DNA 

Technologies and purified by denaturing gel electrophoresis prior to ligation with T4 

DNA ligase and ATP in the presence of complementary 20-mer ligation scaffolds 

(Table 4.1 to 4.12, Figure 4.1 to 4.5). The 147-mer single strand products were 

purified by denaturing PAGE. Complementary 147-mers were then annealed to form 

the 150-mer duplexes and purified by native PAGE (Figure 4.6). 
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Nucleosome Reconstitution 

      Nucleosome core particles were isolated and purified from chicken 

erythrocytes following a detailed procedure provided by the Dr. Michael Smerdon 

laboratory as described in Chapter 3. An equimolar ratio mixture of the ten 147-mer 

DNA duplexes ds-1, ds-2 to ds-10, and also individual 147-mer DNA duplexes 

NCP-1, NCP-2 to NCP-10, were reconstituted with the chicken nucleosome core 

particles by slow dialysis from high to low salt.  Briefly, 10 nM 147-mer duplexes 

were incubated with an increasing amounts of nucleosome core particles (from 100 to 

1000 nM) in a total volume of 500 μl, containing 2 M NaCl, 10mM Tris-HCl, 5 mM 

DTT, and 5 mM EDTA at pH 7.5 and room temperature for 2 h, and then dialyzed 

against 50 mM NaCl, 10 mM Tris-HCl, 1 mM DTT, pH 7.5, at 4°C, overnight. 

Finally, the reconstituted particles were recovered from the dialysis tubing and 

equilibrated at 55°C for 2 h to fix the nucleosome phasing. The reconstituted particles 

were assayed by native PAGE (6% acrylamide, 0.2% bisacrylamide in TBE), and the 

ratio of nucleosome-bound DNA to free DNA was quantified by the Quantity One 

software (Figure 4.6). 

Hydroxyl Radical Foot-printing and Dimethylsulfate Mapping 

      Hydroxyl radical foot-printing was performed as described previously (17). 

Briefly, a 15 µL aliquot of 10mM sodium ascorbate, a 15 µL aliquot containing 1 

mM Fe(NH4)2(SO4)2· 6H2O and 2 mM EDTA, and 15 µL of a 0.12 % (w/w) H2O2 

solution were premixed and added within 5 s to 105 µL of the nucleosome separately 

reconstituted with the equimolar ratio mixture of the 147-mer DNA duplexes ds-1 to 



 144 

ds-10. The reaction was incubated for 120 s at room temperature and stopped by the 

addition of 16µL of 50% (v/v) glycerol and 4µL of a 500mM EDTA solution. The 

samples were electrophoresed on a native gel (6 % acrylamide, 0.2 % bisacrylamide 

in TBE), and the nucleosome bands were electroeluted in TBE. The proteins were 

extracted with phenol:chloroform:isopropyl alcohol 25:24:1, and the DNA was 

precipitated with ethanol. The free ds-control was treated in a similar way, except that 

the reaction was quenched with a solution containing 1M sodium acetate, 120 mM 

thiourea, 300 µg/ml salmon sperm DNA, and 60 mM EDTA at pH 6.5 and then 

ethanol-precipitated. A Maxam-Gilbert G sequencing reaction was carried out on 

each 147-mer DNA duplex ds-1 to ds-10 in 50 mM cacodylate, 50 mM NaCl, 5 mM 

EDTA in the presence of 10 nM ds-control. For a 50 µL reaction, 0.5 µL of dimethyl 

sulfate was added to initiate the reaction, and 10 µL aliquots were removed over time 

and quenched by the addition of 50 µL of 1.5 M sodium acetate, 1 M 

mercaptoethanol and 50 µg of denatured salmon sperm DNA. The samples were 

ethanol-precipitated twice, and the resulting pellets were vacuum-dried and then 

solubilized in 100 µL of 1 M piperidine. The samples were then heated at 90°C in 1 

M piperidine for 30 min and then evaporated to dryness at 60°C. 

Deamination Rate Assay by Two-dimensional Gel Electrophoresis 

      The deamination rate was determined by adapting a previously described 

method (18). The equimolar ration mixture of free ds-1 to ds-10 and the individual 

nucleosome-bound internally 32P-labeled 147-mer NCP-1 to NCP-10, and 147-mer 

NCP-1A, NCP-6A were irradiated with 302 nm UVB light at 4°C for 1 h and then 
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adjusted to pH 7.2 with Mes buffer (0.5 M) and incubated at 37°C. Aliquots (10 µL) 

were removed at various times and quickly frozen on dry ice before storing overnight 

at -80°C. The remaining sample was adjusted to pH 6.5 with Mes buffer (0.5 M) and 

heated at 67°C overnight to complete the deamination. The aliquots were then 

warmed to room temperature, extracted with phenol:chloroform:isopropyl alcohol 

25:24:1, ethanol-precipitated, redissolved in buffer containing 10 mM Tris-HCl, pH 

7.5, 50 mM NaCl, 5 mM DTT, and photoreverted with photolyase and 365 nm light 

for 1 h. After photoreversion, the aliquots were treated with nuclease P1 to degrade 

the DNA to mononucleotides containing either 32PmdC or 32P-dT, depending on the 

extent of deamination, and separated by two-dimensional gel electrophoresis. In the 

first dimension, electrophoresis on a 7M urea, a TBE gel was used to separate 

32P-mdC and 32P-dT, which co-migrate, from partially digested material and protein. 

For the second dimension, the gel surrounding the radioactive band containing the 

mononucleotides was excised, and a second gel containing 25 mM citric acid, pH 3.5, 

and 7 M urea was poured around the remaining gel slice. Electrophoresis on this gel 

separated 32PmdC from 32P-dT with the 32P-T migrating the fastest. The deamination 

rate constant for each nucleosome-bound NCP- 1 to 10 was obtained from the slope 

of a linear least squares fit of the log of the fraction of remaining TmC CPD versus 

deamination time. The fraction of TmC CPD remaining was calculated as 1- (T/(T + 

mC))/(T∞/(T∞ + mC)) where T∞/(T∞ + mC∞) is the fraction T/(T + mC) in the fully 

deaminated sample. The yield of CPD photoproduct was calculated as the T∞/(T∞ + 

mC∞) - T0/(T0 + mC0), where T0/(T0 + mC0) is the fraction T/(T + mC) at time 0. 
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Results 

Design and Synthesis of DNA Substrates 

      The substrate for this study was adapted from a previously described 147-mer 

sequence that was shown by hydroxyl radical foot-printing to have a well defined 

nucleosome translational and rotational positioning relative to the histone core 

surface.12 The T=mC CPDs were oriented by flanking the dimer-containing sequence 

with multiple TG motifs (T/A)3NN(G/C)3 that had been shown to position a 

glucocorticoid hormone-response element (GRE) with different orientations relative 

to the histone surface (20, 21). To study the effect of nucleosome rotational 

positioning on the deamination of T=mC CPD on a full turn of the helix, we 

constructed ten 147-mer DNA duplexes, which contained ten TmCG sites, varying 

from the first position in a 10-nucleotide nucleosomal turn to the 10th position in the 

turn.  

      To determine the deamination rates of the TmC CPD at TmCG and TmC sites, 

we used the previously described method that requires that the mC to be 

5’-32P-end-labeled (Fig 4.1 to 4.5) (18). We therefore prepared the ten internally 

32P-labeled 147-mer DNA duplexes, NCP-1 to NCP-10, along with ten 

5’-32P-end-labeled control duplexes, ds-1 to ds-10. We also prepared the internally 

32P-labeled 147-mer DNA duplexes NCP-1A and NCP-6A in the same way. The 

duplexes were prepared by annealing the complementary 147-mer single strands that 

were prepared by ligating four oligodeoxynucleotides (ODN) together with T4 ligase 

and ATP in the presence of complementary ligation scaffolds (Figure 4.1 to 4.5). For 
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NCP-1 to NCP-10, NCP-1A and NCP-6A, the third ODN of the top strand was 

designed so that the mC could be 5’-32P-end-labeled prior to ligation, and for ds-1 to 

ds-10, the first ODN of the top strand was 5’-32P-end-labeled prior to ligation (Table 

4.1 to 4.10).  

Nucleosome Core Particle Reconstitution with the 147-mer DNA Duplexes 

      An equimolar ratio mixture of the ten 147-mer DNA duplexes ds-1, ds-2 to 

ds-10, and also individual 147-mer DNA duplexes NCP-1 to NCP-10, NCP-1A, 

NCP-6A were assembled into nucleosome core particles according to a previously 

described procedure that involves exchanging the DNA with that from chicken 

erythrocyte nucleosome core particles (NCPs) (10). The equimolar ratio mixture of 

ten 147-mer DNA duplexes were titrated with the NCPs and electrophoresed on a 

native gel to determine the NCP concentration needed to achieve maximal 

incorporation of the DNA into the NCP (Figure 4.7). We found that about 95% of 10 

nM 147-mer DNA duplexes could be incorporated into 1000 nM nucleosome core 

particles. 

Orientation of the TmC Sites on the Nucleosome Core Particle 

      The hydroxyl radical cleavage intensity on the nucleosome core particle 

reconstituted with the mixture of ten 147-mer DNA duplexes ds-1 to ds-10 exhibited 

a very pronounced 10–11 bp periodicity (Figure 4.9). The cleavage sites were 

mapped onto the sequence by alignment with the DMS mapping on ds-1, ds-2 to 

ds-10 (Figure 4.9) and with the 10 bp DNA ladder (Figure 4.10). The mC of NCP-1, 

NCP-2 and NCP-10, which corresponded to 71, 72 and 80-mers in terms of length on 
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ds-1, ds-2, and ds-10, were located in the minimal cleavage region, indicating that 

phosphodiester backbones of these three mCs were facing inside (Figure 4.10, boxed 

section). The mC of NCP-3 through NCP-9, which corresponded to 73 to 79-mers in 

length on ds-3 through ds-9, were located in the maximal cleavage region, indicating 

that the phosphodiester backbones of these seven mCs were facing outside (Figure 

4.10, boxed section). 

Deamination Rates of the T=mC CPDs 

      The deamination rates for the three inside facing and seven outside facing 

T=mCG CPDs were determined by following the conversion of 32P-mdC to 32P-dT in 

the CPD by our enzyme-coupled two dimensional gel electrophoresis assay (18).  In 

the first step, free or nucleosome-bound 147-mer DNA duplexes were irradiated with 

302 nm light to produce the cis-syn-cyclobutane pyrimidine dimers (CPD) at the 

ATmCG sites, along with other photoproducts, at 4°C to suppress deamination. The 

samples were then incubated at 37°C and pH 7.2 to allow for deamination for various 

times, and one was made to undergo complete deamination by lowering the pH to 6.5 

and heating at 67°C, overnight. The aliquots were then incubated with Escherichia 

coli photolyase and visible light to specifically photorevert the cis-syn-CPDs and then 

treated with nuclease P1 to degrade all of the undamaged and photoreverted DNAs to 

mononucleotides. Non-photorevertible dipyrimidine photoproducts, such as (6-4) and 

Dewar DNA photoproducts, would only be digested to trinucleotides. The 

mononucleotides were then isolated by electrophoresis on a denaturing gel and 

subjected to a second electrophoresis on a pH 3.5 citrate gel (Figure 4.11 to 4.21, top 
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picture) that separates the deaminated 32P-T from the undeaminated 32P-mdC and 

quantified by radioisotopic imaging analysis.  

      The rate constants for mC deamination were then determined from the slopes 

of lines fit to the log of the fraction of remaining TmCG CPD (Figure 4.11 to 4.21, 

bottom picture) as described in the Experimental Procedures section. The 

photoproduct yields were determined from the increase in the initial amount of 

radio-labeled T following complete deamination. The initial amount of T was 

non-zero in many cases and could be attributed to unwanted small fraction of 

deamination during the DNA purification through PCI (phenol:chloroform:isopropyl 

alcohol 25:24:1) extract and ethanol precipitation. Table 4.13 summarizes the 

deamination half-lives and yields of the T=mCG CPDs in the ten different nucleosome 

rotational positions and in the free DNA format. When compared with the free DNA, 

the nucleosome decreases the rate of deamination of the in facing T=mCG CPDs by a 

maximum factor of 3.1, whereas it increases the rate of deamination of the out facing 

T=mC CPDs by a maximal factor of 3.8. When it comes to the photoproduct yield, the 

nucleosome decreases the formation of the inside T=mCG CPDs by a maximal factor 

of 1.7 and enhanced the formation of the outside T=mCG CPDs by a maximal factor 

of 1.9. 

      Deamination of the two T=mCA CPDs did not behave in the same way as the 

corresponding T=mCG CPDs. As shown in Figure 4.22 to 4.25, the deamination 

half-lives of mC in T=mCA were calculated in the same way as for the T=mCG CPDs, 

and is summarized in Table 4.14. While the out facing AT=mCA DNA photoproduct 
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deaminating 3.1-fold faster than in free DNA, the in facing AT=mCA, unlike the 

corresponding AT=mCG DNA photoproduct, didn’t show any significant decrease in 

deamination rate, compared to free DNA. Compared with the 12-fold difference in 

deamination rate between in and out facing T=mCG CPDs, the T=mCA CPDs only 

exhibited a 4-fold difference in deamination rate.  

Discussion 

      As mentioned earlier, we had already determined that there was a 45-fold 

effect on the deamination of mC to T in in and out facing T=mCG CPDs (17). The 

goal of this study was to determine the effect of nucleosome positioning on the 

deamination rate of T=mC CPD in a periodic full turn of DNA at the dyad axis. In 

order to achieve this goal, ten T=mC CPDs which made up a full periodic turn on the 

histone core surface were prepared and studied. Three out of the ten CPDs were 

shown to have the phosphodiester backbone of the CPD facing against the histone 

core surface (IN) by hydroxyl radical footprinting, and the other seven CPDs were 

shown to have the backbone facing away from the surface (OUT). These ten 

positionings can be mapped onto a crystal structure of the nucleosome core particle as 

shown in Figure 4.29.  

      The photoreactivity of the ten T=mCG sites in nucleosome-bound DNA 

duplexes (Table 4.13 & Figure 4.26) were partially consistent with the previous study 

as shown in Chapter 3. The out facing T=mCG sites showed a maximum 1.8-fold 

increase when compared with the free DNA duplexes (22% vs 12% yield). However, 

instead of no effect as found in Chapter 3, the in facing T=mCG sites exhibited a 
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maximal 1.7-fold decrease when compared with the free DNA duplexes (6.9% vs 

11.8%).  A possible explanation for this difference could be that the in facing CPD 

sequence used in Chapter 3 was GT=mCG , which only produced 5.5% CPD, which 

could make a small decrease in the nucleosome difficult to detect, compared to the 

AT=mCG sequence, which produced 11.8% CPD in free DNA. The enhanced 

photoreactivity of the out facing positions is in agreement with the higher 

photoreactivity previously noted for dipyrimidine sites positioned away from the 

histone surface (3, 4). 

      On the other hand, the deamination rates of the ten T=mCG CPD sites in the 

nucleosome were dramatically different from those in the free DNA. Consistent with 

the results in Chapter 3, T=mCG CPDs positioned inside or against the nucleosome 

core particle deaminated much slower than in free DNA, with a maximum decrease 

of about 3.1-fold.  The T=mCG CPDs positioned outside or away from the 

nucleosome core particle deaminated faster than in free DNA, with a maximum 

increase about 3.7-fold (Table 4.13 & Figure 4.27). Interestingly, we did not observe 

as gradual change in mC deamination rates as observed for hydroxyl radical cleavage. 

Instead, there was a consistently high rate of mC deamination, with seven out of the 

ten T=mCG sites having the deamination half-life ranging from 3.5 h to 15 h, as 

shown in Table 4.13, while the three innermost positions deaminated with half-lives 

between 36 h to 41 h. The biggest difference in mC deamination rates between the 

innermost and outmost positions was a factor of 12.  

      As mentioned in Chapter 3, hydroxyl radical cleavage of DNA results mainly 
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from initial abstraction of the hydrogens from the sugar backbone of DNA (21), 

whereas deamination of an mC in a cis-syn cyclobutane pyrimidine dimer involves 

attack of water on the C4 carbon (22), which lies in the major groove of the DNA. 

Analysis of the crystal structure of a nucleosome core particle shows that the C4 

position of what would be the mC of both the IN and the OUT CPDs is unobstructed 

by protein within a radius of 8.5 A (1KX5.pdb) (23). Thus, the C4 position of the mC 

in T=mC CPDs of both the facing inside and facing outside positions would appear to 

be in a similar, unobstructed environment, suggesting other factors, but not steric 

interference by the histone proteins might play a role in inhibiting or enhancing 

deamination of the T=mC CPDs. In the reconstituted nucleosome.   It may be that 

the same factors that increase CPD formation at outside positions also enhance the 

deamination rate. CPD DNA photoproducts also form preferentially in outside 

positions in protein-free DNA loops, demonstrating that a DNA curvature rather than 

protein-DNA contact is controlling the DNA photo-reactivity (5). It was suggested 

that the inside positions of curved DNA could be more compressed and less mobile, 

whereas the outside positions were less compressed and more mobile. In this case, 

although the steric environment of C4 positions of the mC in both the inside and 

outside T=mC CPDs might be similar, the facing outside positions might have an 

increased flexibility and/or more open conformation, which could facilitate N3 

protonation and subsequent water attack at C4 position of the mC. On the other hand, 

protonation of N3 or attack of water on C4 of mC might be inhibited by restricted 

movements and the compressed nature of a facing inside T=mC CPD. 



 153 

      When considering the large difference between the effect of flanking G and 

flanking A on the deamination rate of T=mC CPD, it is possible that the nucleosome 

rotational positioning could interfere with the accelerating effect previously observed 

for flanking G in free DNA. Since the facing inside positions are more compressed 

and less mobile, it is possible that the interaction between mC and flanking G might 

not be in the optimal orientation could diminish the potential accelerating effect of the 

flanking G. 

Conclusions 

      In this chapter, we have determined that the rotational position of TmCG 

CPDs in a full turn of nucleosome greatly affects their deamination rate, and this may 

explain at least in part the origin of UV mutation hotspots and coldspots in phased 

nucleosomes. Three out of the ten T=mCG CPDs positioned against or inside the 

nucleosome core particle surface deaminated slower than the free sequences, with a 

maximum decrease in rate of 3.1-fold. The other seven T=mCG CPDs positioned 

away or outside the core particle surface deaminated faster than the free sequences, 

with a maximum increase of 3.8-fold, resuling in a maximum difference in rates 

between outside and inside positions of 12-fold. Surprisingly, after we replaced the G 

with A at the fastest and slowest deamination sites, the inside facing AT=mCA CPD, 

unlike the AT=mCG DNA photoproduct, didn’t show a significant decrease in 

deamination rate, whereas the outside facing AT=mCA CPD deaminated 3.1-fold 

faster than the free DNA control. This result may indicate that nucleosome rotational 

positioning could interfere with the accelerating function of flanking G at T=mC CPD, 
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with the inside facing position greatly hindering the accelerating ability of flanking G 

in terms of mC deamination rate. 
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Table 4.1 Oligonucleotide sequences used for 147-mer NCP-1. 

 

NCP-1 top strand 

ODN Sequence 

ts1 AGT TAT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT 

ts2_1 GTA ACT CGG TGT TAG AGC CTG TAA CTC GGT GTA T 

ts3_1 MCG ATG GTA TAG AGC CTG TAA CAG AAT GTT AGA GCC TGT AAC T 

ts4 CGG TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TG 

ts12 ACC GAG TTA CAG GCT CTA AC 

ts23_1 TAT ACC ATC GAT ACA CCG AG 

ts4 TCT AAC ACC GAG TTA CAG GC 

 

NCP-1 bottom strand 

ODN Sequence 

cs1 CAG GCT CTA ACA CCG AGT TAC AGG CTC TAA CAC CGA GTT 

cs2_1 ACA GGC TCT AAC ATT CTG TTA CAG GCT CTA TAC CAT CGA TA 

cs3 CAC CGA GTT ACA GGC TCT AAC ACC GAG TT 

cs4 ACA GGC TCT AAC ACC GAG TTA CAG GCT CTA ACA TAA CT 

cs12 TAG AGC CTG TAA CTC GGT GT 

cs23_1 TAA CTC GGT GTA TCG ATG GT 

cs4 TAG AGC CTG TAA CTC GGT GT 
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Table 4.2 Oligonucleotide sequences used for 147-mer NCP-2. 

 

NCP-2 top strand 

ODN Sequence 

ts1 AGT TAT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT 

ts2_2 GTA ACT CGG TGT TAG AGC CTG TAA CTC GGT GAT AT 

ts3_2 MCG ATA TGT ATA GCC TGT AAC AGA ATG TTA GAG CCT GTA ACT 

ts4 CGG TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TG 

ts12 ACC GAG TTA CAG GCT CTA AC 

ts23_2 ATA CAT ATC GAT TAC ACC GA 

ts4 TCT AAC ACC GAG TTA CAG GC 

 

NCP-2 bottom strand 

ODN Sequence 

cs1 CAG GCT CTA ACA CCG AGT TAC AGG CTC TAA CAC CGA GTT 

cs2_2 ACA GGC TCT AAC ATT CTG TTA CAG GCT ATA CAT ATC GAT AT 

cs3 CAC CGA GTT ACA GGC TCT AAC ACC GAG TT 

cs4 ACA GGC TCT AAC ACC GAG TTA CAG GCT CTA ACA TAA CT 

cs12 TAG AGC CTG TAA CTC GGT GT 

cs23_2 TAA CTC GGT GAT ATC GAT TA 

cs4 TAG AGC CTG TAA CTC GGT GT 
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Table 4.3 Oligonucleotide (ODN) sequences used for 147-mer NCP-3. 

 

NCP-3 top strand 

ODN Sequence 

ts1 AGT TAT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT 

ts2_3 GTA ACT CGG TGT TAG AGC CTG TAA CTC GGT GTA TAT 

ts3_3 MCG ATA TGT AAG CCT GTA ACA GCC TGT TAG AGC CTG TAA CT 

ts4 CGG TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TG 

ts12 ACC GAG TTA CAG GCT CTA AC 

ts23_3 TTA CAT ATC GAT ATA CAC CG 

ts4 TCT AAC ACC GAG TTA CAG GC 

 

NCP-3 bottom strand 

ODN Sequence 

cs1 CAG GCT CTA ACA CCG AGT TAC AGG CTC TAA CAC CGA GTT 

cs2_3 ACA GGC TCT AAC AGG CTG TTA CAG GCT TAC ATA TCG ATA TA 

cs3 CAC CGA GTT ACA GGC TCT AAC ACC GAG TT 

cs4 ACA GGC TCT AAC ACC GAG TTA CAG GCT CTA ACA TAA CT 

cs12 TAG AGC CTG TAA CTC GGT GT 

cs23_3 TAA CTC GGT GTA TAT CGA TA 

cs4 TAG AGC CTG TAA CTC GGT GT 
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Table 4.4 Oligonucleotide (ODN) sequences used for 147-mer NCP-4. 

 

NCP-4 top strand 

ODN Sequence 

ts1 AGT TAT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT 

ts2_4 GTA ACT CGG TGT TAG AGC CTG TAA CTC GGT GAT ACA T 

ts3_4 MCG TGT ATG AGC CTG TAA CAG CCT GTT AGA GCC TGT AAC T 

ts4 CGG TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TG 

ts12 ACC GAG TTA CAG GCT CTA AC 

ts23_4 CAC ATA CAC GAT GTA TCA CC 

ts4 TCT AAC ACC GAG TTA CAG GC 

 

NCP-4 bottom strand 

ODN Sequence 

cs1 CAG GCT CTA ACA CCG AGT TAC AGG CTC TAA CAC CGA GTT 

cs2_4 ACA GGC TCT AAC AGG CTG TTA CAG GCT CAT ACA CGA TGT AT 

cs3 CAC CGA GTT ACA GGC TCT AAC ACC GAG TT 

cs4 ACA GGC TCT AAC ACC GAG TTA CAG GCT CTA ACA TAA CT 

cs12 TAG AGC CTG TAA CTC GGT GT 

cs23_4 TAA CTC GGT GAT ACA TCG TG 

cs4 TAG AGC CTG TAA CTC GGT GT 
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Table 4.5 Oligonucleotide (ODN) sequences used for 147-mer NCP-5. 

 

NCP-5 top strand 

ODN Sequence 

ts1 AGT TAT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT 

ts2_5 GTA ACT CGG TGT TAG AGC CTG TAA CTC GGT GTA TGT AT 

ts3_5 MCG ATA GTA GCC TGT AAC AGC CTG TTA GAG CCT GTA ACT 

ts4 CGG TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TG 

ts12 ACC GAG TTA CAG GCT CTA AC 

ts23_5 GCT ACT ATC GAT ACA TAC AC 

ts4 TCT AAC ACC GAG TTA CAG GC 

 

NCP-5 bottom strand 

ODN Sequence 

cs1 CAG GCT CTA ACA CCG AGT TAC AGG CTC TAA CAC CGA GTT 

cs2_5 ACA GGC TCT AAC AGG CTG TTA CAG GCT ACT ATC GAT ACA TA 

cs3 CAC CGA GTT ACA GGC TCT AAC ACC GAG TT 

cs4 ACA GGC TCT AAC ACC GAG TTA CAG GCT CTA ACA TAA CT 

cs12 TAG AGC CTG TAA CTC GGT GT 

cs23_5 TAA CTC GGT GTA TGT ATC GA 

cs4 TAG AGC CTG TAA CTC GGT GT 
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Table 4.6 Oligonucleotide (ODN) sequences used for 147-mer NCP-6. 

 

NCP-6 top strand 

ODN Sequence 

ts1 AGT TAT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT 

ts2_6 GTA ACT CGG TGT TAG AGC CTG TAA CTC GGT GAT GAT GAT 

ts3_6 MCG TAT GAG CCT GTA ACA GCC TGT TAG AGC CTG TAA CT 

ts4 CGG TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TG 

ts12 ACC GAG TTA CAG GCT CTA AC 

ts23_6 GGC TCA TAC GAT CAT CAT CA 

ts4 TCT AAC ACC GAG TTA CAG GC 

 

NCP-6 bottom strand 

ODN Sequence 

cs1 CAG GCT CTA ACA CCG AGT TAC AGG CTC TAA CAC CGA GTT 

cs2_6 ACA GGC TCT AAC AGG CTG TTA CAG GCT CAT ACG ATC ATC AT 

cs3 CAC CGA GTT ACA GGC TCT AAC ACC GAG TT 

cs4 ACA GGC TCT AAC ACC GAG TTA CAG GCT CTA ACA TAA CT 

cs12 TAG AGC CTG TAA CTC GGT GT 

cs23_6 TAA CTC GGT GAT GAT GAT CG 

cs4 TAG AGC CTG TAA CTC GGT GT 
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Table 4.7 Oligonucleotide (ODN) sequences used for 147-mer NCP-7. 

 

NCP-7 top strand 

ODN Sequence 

ts1 AGT TAT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT 

ts2_7 GTA ACT CGG TGT TAG AGC CTG TAA CTC GGT GTA TAT GCA T 

ts3_7 MCG TAC AGC CTG TAA CAG CCT GTT AGA GCC TGT AAC T 

ts4 CGG TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TG 

ts12 ACC GAG TTA CAG GCT CTA AC 

ts23_7 AGG CTG TAC GAT GCA TAT AC 

ts4 TCT AAC ACC GAG TTA CAG GC 

 

NCP-7 bottom strand 

ODN Sequence 

cs1 CAG GCT CTA ACA CCG AGT TAC AGG CTC TAA CAC CGA GTT 

cs2_7 ACA GGC TCT AAC AGG CTG TTA CAG GCT GTA CGA TGC ATA TA 

cs3 CAC CGA GTT ACA GGC TCT AAC ACC GAG TT 

cs4 ACA GGC TCT AAC ACC GAG TTA CAG GCT CTA ACA TAA CT 

cs12 TAG AGC CTG TAA CTC GGT GT 

cs23_7 TAA CTC GGT GTA TAT GCA TC 

cs4 TAG AGC CTG TAA CTC GGT GT 
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Table 4.8 Oligonucleotide (ODN) sequences used for 147-mer NCP-8. 

 

NCP-8 top strand 

ODN Sequence 

ts1 AGT TAT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT 

ts2_8 GTA ACT CGG TGT TAG AGC CTG TAA CTC GGT GAT ACG CACA T 

ts3_8 MCG TAA GCC TGT AAC AGC CTG TTA GAG CCT GTA ACT 

ts4 CGG TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TG 

ts12 ACC GAG TTA CAG GCT CTA AC 

ts23_8 CAG GCT TAC GAT GTG CGT AT 

ts4 TCT AAC ACC GAG TTA CAG GC 

 

NCP-8 bottom strand 

ODN Sequence 

cs1 CAG GCT CTA ACA CCG AGT TAC AGG CTC TAA CAC CGA GTT 

cs2_8 ACA GGC TCT AAC AGG CTG TTA CAG GCT TAC GAT GTG CGT AT 

cs3 CAC CGA GTT ACA GGC TCT AAC ACC GAG TT 

cs4 ACA GGC TCT AAC ACC GAG TTA CAG GCT CTA ACA TAA CT 

cs12 TAG AGC CTG TAA CTC GGT GT 

cs23_8 TAA CTC GGT GAT ACG CAC AT 

cs4 TAG AGC CTG TAA CTC GGT GT 
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Table 4.9 Oligonucleotide (ODN) sequences used for 147-mer NCP-9. 

 

NCP-9 top strand 

ODN Sequence 

ts1 AGT TAT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT 

ts2_9 GTA ACT CGG TGT TAG AGC CTG TAA CTC GGT GTA TGT AGA CAT 

ts3_9 MCG CAG CCT GTA ACA GCC TGT TAG AGC CTG TAA CT 

ts4 CGG TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TG 

ts12 ACC GAG TTA CAG GCT CTA AC 

ts23_9 ACA GGC TGC GAT GTC TAC AT 

ts4 TCT AAC ACC GAG TTA CAG GC 

 

NCP-9 bottom strand 

ODN Sequence 

cs1 CAG GCT CTA ACA CCG AGT TAC AGG CTC TAA CAC CGA GTT 

cs2_9 ACA GGC TCT AAC AGG CTG TTA CAG GCT GCG ATG TCT ACA TA 

cs3 CAC CGA GTT ACA GGC TCT AAC ACC GAG TT 

cs4 ACA GGC TCT AAC ACC GAG TTA CAG GCT CTA ACA TAA CT 

cs12 TAG AGC CTG TAA CTC GGT GT 

cs23_9 TAA CTC GGT GTA TGT AGA CA 

cs4 TAG AGC CTG TAA CTC GGT GT 
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Table 4.10 Oligonucleotide (ODN) sequences used for 147-mer NCP-10. 

 

NCP-10 top strand 

ODN Sequence 

ts1 AGT TAT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT 

ts2_10 GTA ACT CGG TGT TAG AGC CTG TAA CTC GGT GAT ACG CAC GTA T 

ts3_10 MCG AGC CTG TAA CAG CCT GTT AGA GCC TGT AAC T 

ts4 CGG TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TG 

ts12 ACC GAG TTA CAG GCT CTA AC 

ts23_10 TAC AGG CTC GAT ACG TGC GT 

ts4 TCT AAC ACC GAG TTA CAG GC 

 

NCP-10 bottom strand 

ODN Sequence 

cs1 CAG GCT CTA ACA CCG AGT TAC AGG CTC TAA CAC CGA GTT 

cs2_10 ACA GGC TCT AAC AGG CTG TTA CAG GCT CGA TAC GTG CGT AT 

cs3 CAC CGA GTT ACA GGC TCT AAC ACC GAG TT 

cs4 ACA GGC TCT AAC ACC GAG TTA CAG GCT CTA ACA TAA CT 

cs12 TAG AGC CTG TAA CTC GGT GT 

cs23_10 TAA CTC GGT GAT ACG CAC GT 

cs4 TAG AGC CTG TAA CTC GGT GT 
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Table 4.11 Oligonucleotide (ODN) sequences used for 147-mer NCP-1A 

 

NCP-1A top strand 

ODN Sequence 

ts1 AGT TAT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT 

ts2_1A GTA ACT CGG TGT TAG AGC CTG TAA CTC GGT GTA T 

ts3_1A MCA ATG GTA TAG AGC CTG TAA CAG AAT GTT AGA GCC TGT AAC T 

ts4 CGG TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TG 

ts12 ACC GAG TTA CAG GCT CTA AC 

ts23_1A TAT ACC ATT GAT ACA CCG AG 

ts4 TCT AAC ACC GAG TTA CAG GC 

 

NCP-1A bottom strand 

ODN Sequence 

cs1 CAG GCT CTA ACA CCG AGT TAC AGG CTC TAA CAC CGA GTT 

cs2_1A ACA GGC TCT AAC ATT CTG TTA CAG GCT CTA TAC CAT TGA TA 

cs3 CAC CGA GTT ACA GGC TCT AAC ACC GAG TT 

cs4 ACA GGC TCT AAC ACC GAG TTA CAG GCT CTA ACA TAA CT 

cs12 TAG AGC CTG TAA CTC GGT GT 

cs23_1A TAA CTC GGT GTA TCA ATG GT 

cs4 TAG AGC CTG TAA CTC GGT GT 
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Table 4.12 Oligonucleotide (ODN) sequences used for 147-mer NCP-6A 

 

NCP-6A top strand 

ODN Sequence 

ts1 AGT TAT GTT AGA GCC TGT AAC TCG GTG TTA GAG CCT 

ts2_6A GTA ACT CGG TGT TAG AGC CTG TAA CTC GGT GAT GAT GAT 

ts3_6A MCA TAT GAG CCT GTA ACA GCC TGT TAG AGC CTG TAA CT 

ts4 CGG TGT TAG AGC CTG TAA CTC GGT GTT AGA GCC TG 

ts12 ACC GAG TTA CAG GCT CTA AC 

ts23_6A GGC TCA TAT GAT CAT CAT CA 

ts4 TCT AAC ACC GAG TTA CAG GC 

 

NCP-6 bottom strand 

ODN Sequence 

cs1 CAG GCT CTA ACA CCG AGT TAC AGG CTC TAA CAC CGA GTT 

cs2_6 ACA GGC TCT AAC AGG CTG TTA CAG GCT CAT ATG ATC ATC AT 

cs3 CAC CGA GTT ACA GGC TCT AAC ACC GAG TT 

cs4 ACA GGC TCT AAC ACC GAG TTA CAG GCT CTA ACA TAA CT 

cs12 TAG AGC CTG TAA CTC GGT GT 

cs23_6 TAA CTC GGT GAT GAT GAT CA 

cs4 TAG AGC CTG TAA CTC GGT GT 
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Table 4.13 Nucleosome rotational positioning effect on T=mCG CPD 

photoproduct yield and deamination.  

 

 T=mC yield (%) Fold change Deamination half-life (h) Fold change 

Free NCP 1-10 11.8 - 13.1 - 

Nucleosome-bound NCP-1 6.9 0.59 40.8 3.1 

Nucleosome-bound NCP-2 7.6 0.64 38.5 2.9 

Nucleosome-bound NCP-3 13.2 1.1 14.9 1.1 

Nucleosome-bound NCP-4 14.4 1.2 8.8 0.67 

Nucleosome-bound NCP-5 19.2 1.6 5.1 0.39 

Nucleosome-bound NCP-6 21.9 1.9 3.5 0.26 

Nucleosome-bound NCP-7 19.9 1.7 3.6 0.28 

Nucleosome-bound NCP-8 13.8 1.2 10.2 0.78 

Nucleosome-bound NCP-9 12.2 1.0 12.1 0.92 

Nucleosome-bound NCP-10 8.4 0.71 35.9 2.7 
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Table 4.14 Nucleosome rotational positioning effect on T=mCA CPD 

photoproduct yield and deamination.  

 

 T=mC yield (%) Fold change Deamination half-life (h) Fold change 

Free NCP-1A 13.8 - 86 - 

Nucleosome-bound NCP-1A 11.6 0.84 113 1.3 

Free NCP-6A 14.0 - 90 - 

Nucleosome-bound NCP-6A 23.7 1.7 29 0.32 
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p T pp*mCG

T*mCG

ts1: 36-mer ts2_1: 34-mer ts3_1: 42-mer ts4: 35-mer

ts12: 20-mer ts23_1: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-1

p T pp*mCG

T*mCG

ts1: 36-mer ts2_1: 34-mer ts3_1: 42-mer ts4: 35-mer

ts12: 20-mer ts23_1: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-1  

 

 

 

p T pp*mCG

T*mCG

ts1: 36-mer ts2_2: 35-mer ts3_2: 41-mer ts4: 35-mer

ts12: 20-mer ts23_2: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-2

p T pp*mCG

T*mCG

ts1: 36-mer ts2_2: 35-mer ts3_2: 41-mer ts4: 35-mer

ts12: 20-mer ts23_2: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-2  

 

Figure 4.1 Ligation strategy for assembly of the 147-mer NCP-1 and NCP-2 

substrate. 
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p T pp*mCG

T*mCG

ts1: 36-mer ts2_2: 35-mer ts3_2: 41-mer ts4: 35-mer

ts12: 20-mer ts23_2: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-2

p T pp*mCG

T*mCG

ts1: 36-mer ts2_2: 35-mer ts3_2: 41-mer ts4: 35-mer

ts12: 20-mer ts23_2: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-2  

 

 

 

p T pp*mCG

T*mCG

ts1: 36-mer ts2_3: 36-mer ts3_3: 40-mer ts4: 35-mer

ts12: 20-mer ts23_3: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-3

p T pp*mCG

T*mCG

ts1: 36-mer ts2_3: 36-mer ts3_3: 40-mer ts4: 35-mer

ts12: 20-mer ts23_3: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-3  

 

Figure 4.2 Ligation strategy for assembly of the 147-mer NCP-3 and NCP-4 

substrate. 
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p T pp*mCG

T*mCG

ts1: 36-mer ts2_4: 37-mer ts3_4: 39-mer ts4: 35-mer

ts12: 20-mer ts23_4: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-4

p T pp*mCG

T*mCG

ts1: 36-mer ts2_4: 37-mer ts3_4: 39-mer ts4: 35-mer

ts12: 20-mer ts23_4: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-4  

 

 

 

p T pp*mCG

T*mCG

ts1: 36-mer ts2_5: 38-mer ts3_5: 38-mer ts4: 35-mer

ts12: 20-mer ts23_5: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-5

p T pp*mCG

T*mCG

ts1: 36-mer ts2_5: 38-mer ts3_5: 38-mer ts4: 35-mer

ts12: 20-mer ts23_5: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-5  

 

Figure 4.3 Ligation strategy for assembly of the 147-mer NCP-5 and NCP-6 

substrate. 

 

 



 174 

 

p T pp*mCG

T*mCG

ts1: 36-mer ts2_6: 39-mer ts3_6: 37-mer ts4: 35-mer

ts12: 20-mer ts23_6: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-6

p T pp*mCG

T*mCG

ts1: 36-mer ts2_6: 39-mer ts3_6: 37-mer ts4: 35-mer

ts12: 20-mer ts23_6: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-6  

 

 

 

p T pp*mCG

T*mCG

ts1: 36-mer ts2_7: 40-mer ts3_7: 36-mer ts4: 35-mer

ts12: 20-mer ts23_7: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-7

p T pp*mCG

T*mCG

ts1: 36-mer ts2_7: 40-mer ts3_7: 36-mer ts4: 35-mer

ts12: 20-mer ts23_7: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-7  

 

Figure 4.4 Ligation strategy for assembly of the 147-mer NCP-7 and NCP-8 

substrate. 
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p T pp*mCG

T*mCG

ts1: 36-mer ts2_8: 41-mer ts3_8: 35-mer ts4: 35-mer

ts12: 20-mer ts23_8: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-8

p T pp*mCG

T*mCG

ts1: 36-mer ts2_8: 41-mer ts3_8: 35-mer ts4: 35-mer

ts12: 20-mer ts23_8: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-8  

 

 

 

p T pp*mCG

T*mCG

ts1: 36-mer ts2_9: 42-mer ts3_9: 34-mer ts4: 35-mer

ts12: 20-mer ts23_9: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG

Anneal to complementary 147-mer ss

147-mer DNA duplex: NCP-9

p T pp*mCG

T*mCG

ts1: 36-mer ts2_9: 42-mer ts3_9: 34-mer ts4: 35-mer

ts12: 20-mer ts23_9: 20-mer ts34: 20-mer

1) DNA ligase, ATP

2) PAGE

T*mCG
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Figure 4.5 Ligation strategy for assembly of the 147-mer NCP-9 and NCP-10 

substrate. 

 

 



 176 

 

Lane 1: 25bp DNA ladder

Lane 2-11: 147-mer NCP-1, NCP-2, to NCP-10

150 -

125 -

100 -

75 -

21 3 4 5 6 7 8 9 10 11

Lane 1: 25bp DNA ladder

Lane 2-11: 147-mer NCP-1, NCP-2, to NCP-10

150 -

125 -

100 -

75 -

21 3 4 5 6 7 8 9 10 11

 

 

Figure 4.6 Characterization and purification of the 147-mer DNA duplexes 

NCP-1, NCP-2 to NCP-10 by native PAGE. The PAGE-purified single strand 

147-mer substrates were annealed together to form duplexes and characterized by 

native gel electrophoresis on a 10% acrylamide, 0.3% bisacrylamide polyacrylamide 

gel in TBE. Lane 1: 25 bp DNA ladder, lane 2-11: 147-mer NCP-1, NCP-2 to 

NCP-10. Each duplex substrate was isolated from the gel for further studies. 
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Figure 4.7 Reconstitution of the nucleosome core particles with equimolar ratio 

mixture of the ten 147-mer DNA duplexes ds-1, ds-2 to ds-10. The 147-mer DNA 

duplexes mixture (10nM total) were incubated with increasing amounts of chicken 

erythrocyte nucleosome core particles (NCP) (lanes 1-4: 100, 300, 500, 1000 nM) at 

room temperature in 2 M NaCl at pH 7.5 for 2 h followed by dialysis overnight at 

4°C in 50 mM NaCl, with final equilibration at 55°C for 2 h. The reconstituted NCP 

were then electrophoresed on a native polyacrylamide gel (6% acrylamide, 0.2% 

bisacrylamide in TBE). 
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Figure 4.8 Reconstitution of the nucleosome core particles with individual 

147-mer DNA duplex: NCP-1, NCP-2 to NCP-10. The 147-mer DNA duplexes 

(10nM each) were incubated with 1000nM chicken erythrocyte nucleosome core 

particles (NCP) at room temperature in 2 M NaCl at pH 7.5 for 2 h followed by 

dialysis overnight at 4°C in 50 mM NaCl, with final equilibration at 55°C for 2 h. The 

reconstituted NCP were then electrophoresed on a native polyacrylamide gel (6% 

acrylamide, 0.2% bisacrylamide in TBE). Lane 1: free 147-mer DNA duplex, Lane 

2-11: reconstituted nucleosome-bound NCP-1, NCP-2 to NCP-10. 
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Figure 4.9 Hydroxyl radical footprinting of the reconstituted nucleosome core 

particle with equimolar ratio mixture of the ten 147-mer DNA duplexes ds-1, 

ds-2 to ds-10 and DMS mapping of ds-1, ds-2 to ds-10. The nucleosome core 

particle reconstituted with 5’-end-labeled 147-mer DNA duplexes ds-1, ds-2 to ds-10 

was subjected to hydroxyl radical footprinting and electrophoresed on a 7 M urea, 

10% acrylamide, 0.3% bisacrylamide denaturing gel. Lane 1, 25bp DNA ladder; lane 

2 to 6, DMS mapping on ds-1 to ds-5; lane 7, hydroxyl radical footprinting of the 

reconstituted nucleosome core particle with the mixture of ten 147-mer DNA 

duplexes ds-1 to ds-10; lane 8 to 12, DMS mapping on ds-6 to ds-10; lane 13, 10bp 

DNA ladder. DMS, dimethyl sulfate. 
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Figure 4.10 Hydroxyl radical footprinting of the reconstituted nucleosome core 

particle with equimolar ratio mixture of the ten 147-mer DNA duplexes ds-1, 

ds-2 to ds-10. The cleavage intensity was plotted up and the box region highlighted 

the ten positions of mC. 
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Figure 4.11 Deamination rate of T=mC CPD in nucleosome-bound NCP-1 using 

two-dimensional gel electrophoresis (top) & Linear regression analysis of the 

deamination rate data (bottom). Plots of the individual deamination rate data as log 

(fraction T=mC remaining) vs time.  
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Figure 4.12 Deamination rate of T=mC CPD in nucleosome-bound NCP-2 using 

two-dimensional gel electrophoresis (top) & Linear regression analysis of the 

deamination rate data (bottom). Plots of the individual deamination rate data as log 

(fraction T=mC remaining) vs time.  
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Figure 4.13 Deamination rate of T=mC CPD in nucleosome-bound NCP-3 using 

two-dimensional gel electrophoresis (top) & Linear regression analysis of the 

deamination rate data (bottom). Plots of the individual deamination rate data as log 

(fraction T=mC remaining) vs time.  
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Figure 4.14 Deamination rate of T=mC CPD in nucleosome-bound NCP-4 using 

two-dimensional gel electrophoresis (top) & Linear regression analysis of the 

deamination rate data (bottom). Plots of the individual deamination rate data as log 

(fraction T=mC remaining) vs time.  
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Figure 4.15 Deamination rate of T=mC CPD in nucleosome-bound NCP-5 using 

two-dimensional gel electrophoresis (top) & Linear regression analysis of the 

deamination rate data (bottom). Plots of the individual deamination rate data as log 

(fraction T=mC remaining) vs time.  
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Figure 4.16 Deamination rate of T=mC CPD in nucleosome-bound NCP-6 using 

two-dimensional gel electrophoresis (top) & Linear regression analysis of the 

deamination rate data (bottom). Plots of the individual deamination rate data as log 

(fraction T=mC remaining) vs time.  
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Figure 4.17 Deamination rate of T=mC CPD in nucleosome-bound NCP-7 using 

two-dimensional gel electrophoresis (top) & Linear regression analysis of the 

deamination rate data (bottom). Plots of the individual deamination rate data as log 

(fraction T=mC remaining) vs time.  
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Figure 4.18 Deamination rate of T=mC CPD in nucleosome-bound NCP-8 using 

two-dimensional gel electrophoresis (top) & Linear regression analysis of the 

deamination rate data (bottom). Plots of the individual deamination rate data as log 

(fraction T=mC remaining) vs time.  
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Figure 4.19 Deamination rate of T=mC CPD in nucleosome-bound NCP-9 using 

two-dimensional gel electrophoresis (top) & Linear regression analysis of the 

deamination rate data (bottom). Plots of the individual deamination rate data as log 

(fraction T=mC remaining) vs time.  
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Figure 4.20 Deamination rate of T=mC CPD in nucleosome-bound NCP-10 using 

two-dimensional gel electrophoresis (top) & Linear regression analysis of the 

deamination rate data (bottom). Plots of the individual deamination rate data as log 

(fraction T=mC remaining) vs time.  
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Figure 4.21 Deamination rate of T=mC CPD in the mixture of ds-1, ds-2 to ds-10 

using two-dimensional gel electrophoresis (top) & Linear regression analysis of 

the deamination rate data (bottom). Plots of the individual deamination rate data as 

log (fraction T=mC remaining) vs time.  
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Figure 4.22 Deamination rate of T=mCA CPD in nucleosome-bound NCP-1A 

using two-dimensional gel electrophoresis (top) & Linear regression analysis of 

the deamination rate data (bottom). Plots of the individual deamination rate data as 

log (fraction T=mC remaining) vs time.  
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Figure 4.23 Deamination rate of T=mCA CPD in nucleosome-bound NCP-6A 

using two-dimensional gel electrophoresis (top) & Linear regression analysis of 

the deamination rate data (bottom). Plots of the individual deamination rate data as 

log (fraction T=mC remaining) vs time.  
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Figure 4.24 Deamination rate of T=mCA CPD in free NCP-1A using 

two-dimensional gel electrophoresis (top) & Linear regression analysis of the 

deamination rate data (bottom). Plots of the individual deamination rate data as log 

(fraction T=mC remaining) vs time.  
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Figure 4.25 Deamination rate of T=mCA CPD in free NCP-6A using 

two-dimensional gel electrophoresis (top) & Linear regression analysis of the 

deamination rate data (bottom). Plots of the individual deamination rate data as log 

(fraction T=mC remaining) vs time.  
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Figure 4.26 T=mCG CPD photoproduct yield in NCP-1, NCP-2 to NCP-10. 
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Figure 4.27 T=mCG CPD photoproduct deamination half-life in NCP-1, NCP-2 

to NCP-10. 
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Figure 4.28 Relative hydroxyl radical foot-printing cleavage intensity for 

nucleosome-bound NCP-1, NCP-2 to NCP-10. 
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Figure 4.29 Nucleosome core particle structure highlighting the positions of the 

facing inside and outside T=mCG CPD sites that are consistent with the hydroxyl 

radical foot-printing data. Purple color represents the histone proteins, yellow and 

blue color indicate the DNA duplex wrapping around the histone octamer surface. 

Black dashed line points out the dyad axis of the nucleosome core particle. Red color 

highlights the ten specific nucleosome rotational positionings of T=mCG CPDs, with 

the number 1 to 10 indicating the mC sites relative the histone core surface. 
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Abstract 

Most of in vitro studies on nucleosome core particles (NCPs) or nucleosomes 

have generally been limited to the use of histone proteins isolated from chromatin, 

which although straightforward, has several inherited drawbacks. Among the various 

drawbacks, the procedure is generally time-consuming and the histone proteins 

obtained in this way are susceptible to degradation from contaminating proteases.  

Also, since the histones are obtained from a natural source they would exist as a 

mixture with various post-translational modifications which might have different 

effects on the property being studied. Most importantly, this method doesn’t allow 

enable one to manipulate the sequence and properties of the histones in a 

straightforward manner. An alternate approach is to prepare nucleosome core 

particles (NCPs), or nucleosomal arrays, from recombinant histone proteins and 

synthetic DNA sequences. This approach has enabled researchers to study histone 

modifications, histone variants and histone site-mutagenesis. In this chapter, we 

report our efforts to assemble a histone octamer from recombinant histones expressed 

and purified from E. coli, based on a previously described protocol. We also describe 

reconstituting the recombinant histone octamer with our synthetic 147-mer DNA 

duplex, and show that the reconstituted protein rotationally position our 147-mer 

DNA, although with some differences compared with the chicken nucleome core 

particles. 
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Introduction 

Most of in vitro studies on nucleosome core particles (NCPs) or nucleosomes 

have generally been limited to the use of histone proteins isolated from chromatin. 

Basically, the histone molecular aggregates (histone octamer, histone tetramer or 

histone dimer) are isolated from “long chromatin,” which could be extracted from the 

nuclei of different organisms. The histone aggregates could then be further separated 

into individual histone proteins. Although straightforward, there are several 

disadvantages with this approach. First of all, the procedure is generally 

time-consuming and highly dependent on the availability of fresh tissue or blood 

from the organism of choice. Second, histone proteins isolated from natural sources 

are often degraded by contaminating proteases (1). Third, depending on the specific 

source of the fresh tissue or blood, there could be different histone isotypes and 

post-translational modifications of histone proteins in the sample, which could give 

rise to heterogeneity in the purified histone proteins. The extent of heterogeneity and 

modifications will be strongly contingent on the type and developmental state of the 

tissue from which chromatin was isolated and could vary significantly between 

different batches. Last but not least, and also the most important, only naturally 

occurring histone proteins can be obtained by this method, if specific engineered 

histone proteins were in need, then these procedures were almost useless. 

Given that, the ability to prepare nucleosome core particles (NCPs), or 

nucleosomal arrays, from recombinant histone proteins and defined-sequence DNA 

has become a requirement in many projects that could address the role of histone 
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modifications, histone variants, or histone mutations in nucleosome and chromatin 

structure. Various reliable and well-established methods have been described in order 

to obtain single histone proteins in large quantities (2, 3). This approach offers many 

advantages, such as the ability to combine histone variants and tail deletion mutants, 

and the opportunity to study the effect of individual histone tail modifications on 

nucleosome structure and function. Also this approach enables histone engineering, 

which would enable researchers to investigate the relationship between histone 

structure and function, as well as nucleosome and chromatin function. 

The availability of large quantities of naturally occurring mutants, or of new 

site-specific mutants of the highly conserved histone proteins, would be extremely 

valuable in attempts to resolve the observed functions and biophysical properties of 

the nucleosome core particles with the recently elucidated crystal structure (4). All 

four nucleosomal histone proteins have been successfully expressed in bacteria, 

which enabled methods to be developed for mapping of nucleosome core particles to 

base pair resolution (5). This also enabled the structure of nucleosome core particle to 

be determined at very high resolution (4). In comparison to yeast expression systems, 

the bacteria expression system gives relatively high yields, low protease activity, and 

does not require the presence of histidine-tags or other fusion tags (6, 7). 

This chapter describes the over-expression of histones H2A, H2B, H3, and H4 

in a bacterial system, both as full length proteins and the corresponding 

trypsin-resistant “globular domains” by a reported method (8). It also describes a 

relatively simple and efficient purification protocol in detail, that yields large 
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amounts of homogenous protein in denatured form. Methods for refolding and 

purification of histone octamer, and for assembly of nucleosome core particles using 

a 5’-32P-labeled 147-mer DNA duplex used previously in Chapter 4 are also detailed. 

We verified the formation of recombinant histone octamer, along with the 

reconstitution with 147-mer DNA duplex and hydroxyl radical foot-printing on the 

reconstituted particles. 

Experimental Procedures 

DNA Substrates 

Oligodeoxynucleotides (ODN) with or without 5’-terminal phosphates were 

purchased from Integrated DNA Technologies and purified by denaturing gel 

electrophoresis prior to ligation with T4 DNA ligase and ATP in the presence of 

complementary 20-mer ligation scaffolds (Table 4.1 to 4.10, Figure 4.1 to 4.5). The 

147-mer single strand products were purified by denaturing PAGE. Complementary 

147-mers were then annealed to form the 150-mer duplexes and purified by native 

PAGE (Figure 4.6). 

Histone Expression 

Histone expression and isolation followed a previously described procedure 

with some modifications suited to our laboratory (9). BL21 (DE3) pLysS cells were 

transformed with 0.5 μg pET-Histone expression plasmid, the transformed competent 

cells were plated on AC agar plate, which contained 10% (w/v) bacto-tryptone, 5% 

(w/v) yeast extract, 8% (w/v) NaCl, and 1.5 % (w/v) Agar, supplemented with 100 

μg/L ampicillin and 25 μg/L chloramphenicol. The plates were incubated at 37°C 
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overnight. The next morning, 5 mL of 2X TY-AC media (16% (w/v) bacto-tryptone, 

10% (w/v) yeast extract, and 5% (w/v) NaCl, supplemented with 100 μg/L ampicillin 

and 25 μg/L chloramphenicol) was inoculated with one single colony from the agar 

plate. The culture was shaken at 37°C for 4 h or until the OD600 was between 0.3 and 

0.6. Then 0.5 mL of the culture was transferred into a sterile eppendorf tube, and 0.2 

mL of sterile glycerol was added, the tube was mixed well and stored at –80°C, 

which served as the glycerol stock for large-scale expressions. Then 100 mL of 2X 

TY-AC media was inoculated with the histone glycerol stock. The culture was shaken 

at 37°C overnight. The next morning, 2 2-L Erlenmeyer flasks containing 1000 mL 

2X TY-AC media were inoculated with 20 mL of the 100 mL starter culture per flask. 

The flasks were shaken at 200 rpm under 37°C, until the OD600 has reached 0.6, 

which could take about 3 h. Histone expression was induced by addition of 500 μL of 

0.4 M IPTG (final concentration was 0.2 mM), and the culture was shaken for another 

3 h (H2A & H2B) or 2 h (H3 & H4). The cells were harvested by centrifugation at 

8,000 rpm (10,000 g) using SLA-3000 rotor at room temperature for 15 min. The cell 

pellet was resuspended homogeneously in 50 mL of wash buffer containing 50 mM 

Tris-HCl, pH 7.5, 100 mM NaCl, 1 mM Na-EDTA, 1 mM benzamidine and 5 mM 

2-mercaptoethanol. The sample was immediately stored at -80°C. 

Histone protein inclusion body preparation. 

The cell suspension was thawed in a 37°C water bath with the cell suspension 

became extremely viscous as lysis occurs. The tube was inverted occasionally until 

completely thawed (20–30 min). The cell solution was transferred into a wide, short 
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measuring cylinder and adjusted the volume with wash buffer to 75 mL. The solution 

was centrifuged immediately for 20 min at 4°C and 13,500 rpm (23,000 g), using and 

SS-34 rotor. The pellet contained inclusion bodies of histone protein. The pellet was 

resuspended completely in 75 mL TW buffer (wash buffer with 1% (v/v) Triton 

X-100), centrifuged for 15 min at 4°C at 12,000 rpm (17,240g) using SS-34 rotor. 

This washing step was repeated twice with TW buffer and twice with wash buffer. 

After the last wash, the drained pellet was stored at –20°C until further processing. 

Histone gel filtration chromatography 

A Sephacryl HR-200 gel filtration column (75 cm × 1.5 cm) was equilibrated 

with 2 L of filtered and degassed SAU-1000 buffer containing containing 7M urea 

(deionized with Amberlite MB3), 20 mM sodium acetate, pH 5.2, 1 M NaCl, 5 mM 

2-mercaptoethanol, 1 mM Na-EDTA (passed through 0.4-μm filters before use). 

Controlled the flow rate around 0.3 mL/min. The equilibration could take overnight.  

The drained histone inclusion body pellet was transferred to a 50 mL centrifuge tube 

to which 0.5 mL of DMSO was added allowed to soak for 30 min at room 

temperature. After that, 10 mL of unfolding buffer containing 7M guanidinium HCl, 

20 mM Tris-HCl, pH 7.5, 10 mM DTT (passed through 0.4-μm filters before use) 

was added dropwise and the solution was stirred gently for 1 h at room temperature. 

The cellular debris was removed by centrifugation at room temperature and 

14,000rpm (23,000g) using SS-34 rotor. The supernatant contained the unfolded 

histone protein. The pellet was re-extracted with 10 mL of unfolding buffer, and 

combined with the other supernatant. 
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About 10 mL of the sample was loaded onto the equilibrated Sephacryl 

HR-200 column, and gel filtration chromatography was carried out with SAU-1000 

buffer at a flow rate around 0.3 mL/min with 1.8 mL fractions.  The histone elution 

profile was obtained by taking the absorbance of the fractions at a wavelength of 280 

and 260 nm as shown in Figure 5.1 to 5.4.  Then the fractions containing protein 

were analyzed by 15% SDS-PAGE. The first peak normally contained DNA and 

larger proteins, and sometimes merged with the histone peak. The second peak 

contained the histone protein, and eluted as a slightly smaller peak than the first peak. 

The fractions containing histone proteins were pooled together. 

Histone ion-exchange chromatography 

A Q-Sepharose cation-exchange column (1.5 cm × 1.5 cm) was equilibrated 

with SAU-1000 buffer, the column was drained and  2-3 mL of histone 

protein-DNA complex (about 5 mg) was loaded onto the column and mixed with 

Q-sepharose resin thoroughly by inverting the column repeatedly, then drained the 

SAU-1000 buffer. Then loaded 30 mL of SAU-DIL buffer containing 7 M urea 

(deionized), 20 mM sodium acetate, pH 5.2, 5 mM 2-mercaptoethanol, 1mM 

Na-EDTA (Pass through 0.4-μm filters before use). The solution was then mixed with 

the resin containing the histone protein-DNA complex thoroughly, as this salt dilution 

helps the histone protein bind tightly to the anion resin, instead of the contaminating 

DNA. The solution was drained andcontained most of the contaminating DNA. The 

column was washed with the SAU-DIL buffer until the A260 of the elution was close 

to background value. The histone protein was eluted by gradient salt elution (from 
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SAU-200 buffer containing containing 7M urea, 20 mM sodium acetate, pH 5.2, 0.2 

M NaCl, 5 mM 2-mercaptoethanol, 1 mM Na-EDTA to SAU-1000 buffer containing 

containing 7M urea, 20 mM sodium acetate, pH 5.2, 1 M NaCl, 5 mM 

2-mercaptoethanol, 1 mM Na-EDTA). Collected the eluting fractions under different 

salt concentration. Recorded the A260 and A280. 

The fractions with A260/A280 < 1.0, which indicated the presence of pure 

histone protein, were pooled. Histones H2A & H2B were completely eluted with 

SAU-400 buffer which contained 0.4 M NaCl, histone H3 with 0.3 M NaCl, and 

histone H4 with 0.5 M NaCl. The pure histone proteins were dialyzed against dd H2O, 

and lyophilized in eppendorf tubes. The final yield of each recombinant histone was 

15 mg/L of initial culture (H2A), 18 mg/L (H2B), 23 mg/L (H3), 8 mg/L (H4). 

Histone Octamer Assembly 

About 4 mg of each histone aliquot was dissolved to a concentration of 

approximately 2 mg/mL in unfolding buffer containing 7M guanidinium HCl, 20 mM 

Tris-HCl, pH 7.5, 10 mM DTT (passed through 0.4 μm filters before use). A Pasteur 

pipet was used to scrape the side to ensure that any protein sticking to the sides of the 

tube was dissolved. It is important not to vortex the tube. Unfolding was allowed to 

proceed for at least 30 min and for no more than 3 h. The concentration of the 

unfolded histone proteins was determined by measuring the A276 of the undiluted 

solution against unfolding buffer, according to Table 5.1 (solid matterial was 

removed by centrifugation, if necessary). The four histone proteins were mixed in 

equimolar ratios and adjusted to a total final protein concentration of 1 mg/mL using 
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unfolding buffer. The mixture was dialyzed at 4°C against three changes of 2 L of 

refolding buffer containing 2M NaCl, 10mM Tris-HCl, pH 7.5, 1 mM Na-EDTA, and 

5 mM 2-mercaptoethanol. The second and third dialysis steps were performed 

overnight. The histone assembly solution was recovered from the dialysis tubing and 

concentrated to a final volume about 2 mL. 

Gel filtration chromatography was performed at 4°C at a flow rate of 0.3 

mL/min. The concentrated histone octamer was loaded onto the Sephacryl HR-200 

gel filtration column previously equilibrated with refolding buffer. High-molecular 

weight aggregates eluted as the first peak, and the histone octamer as eluted as the 

second peak.  The purity and stoichiometry of the fractions was analyzed by 15% 

SDS-PAGE. Each fraction was diluted by at least a factor of 4 before loading onto 

SDS-PAGE to reduce distortion of the bands resulting from the high salt 

concentration. The fractions containing equimolar amounts of the histone proteins 

were then pooled together. 

The histone octamer concentration was determined by UV measurement (A276 

= 0.45 for a solution of 1 mg/mL). The pure histone octamer solution was then used 

for nucleosome core particle reconstitution with DNA immediately, or concentrated 

to 3–15 mg/mL, adjusted to 50% (v/v) glycerol, and stored at –20°C. 

Dynamic Light Scattering Measurement 

The size of assembled histone s in the gel filtration fractions was measured by 

dynamic light scattering (DLS) on a Malvern Nano Sizer. Measurements were made 
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with histone assembly concentrations from 0.2 mg/mL to 1 mg/mL, depending on the 

sepecific fraction, at 25 ± 1 °C. Scattered light was collected at a fixed angle of 173°.  

Histone Octamer Reconstitution with 147-mer DNA duplexes 

Reconstitution of histone octamer with 147-mer DNA duplex was 

accomplished using a modified salt gradient dialysis method described in chapter 4. 

Briefly, octamer and 10 nM 147-mer DNA was mixed at 2M KCl, and the salt 

concentration was reduced by dialysis to 0.2 M KCl over a period of 36 h. The 

histone octamer was added to the 5’-32P-labeled 147-mer DNA duplex at a various 

molar ratios of octamer to DNA (0.5:1, 1:1, 2:1, 3:1, 5:1, and 10:1), with a final DNA 

concentration of 10 nM. Before adding the histone octamer, the salt concentration of 

the DNA solution was adjusted to 2 M KCl, and DTT was added to a final 

concentration of 5 mM.  The histone octamer was always added last. The 

reconstitution samples were incubated at 4°C for 30 mins, then dialyzed against 300 

mL of 2 M KCl, 10 mM Tris-HCl, 1 mM DTT, pH 7.5, at 4°C, for 1 h. Then 2.7 L of 

dialysis buffer containing 10 mM Tris-HCl, 1 mM DTT, pH 7.5, was gradually added 

to the 300 mL of the original buffer through a pump at flow rate of 1.5-2.0 mL /min, 

which slowly transfered the dialysis buffer into the original container used for the 

whole dialysis process. The pumping transfer and dialysis was carried out at 4°C, 

over a period of 36 h. The final salt concentration was about 0.2 M KCl. Finally, the 

reconstituted particles were recovered from the dialysis tubing and equilibrated at 

50°C for 2 h to fix the nucleosome positioning.  

The reconstituted particles were assayed by native PAGE (6% acrylamide, 
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0.2% bisacrylamide in TBE), and the ratio of nucleosome-bound DNA to free DNA 

was quantified by the Quantity One software. 

Hydroxyl Radical Foot-printing of Reconstituted Recombinant Histone Octamer 

After the reconstitution process, the nucleosome positioning of the 147-mer 

DNA duplex was determined by hydroxyl radical foot-printing experiment using the 

same reaction conditions as used before for the chicken nucleosome core particle. 

Briefly, a 15 uL aliquot of 10 mM sodium ascorbate, a 15 uL aliquot containing 1 

mM Fe(NH4)2(SO4)26H2O and 2 mM EDTA, and 15 uL of a 0.12% (w/w) H2O2 

solution were premixed and added within 5 s to 105 uL of the reconstituted histone 

octamer with 147-mer DNA duplexes. The reaction was incubated for 120 s at room 

temperature and stopped by the addition of 16 μL of 50% (v/v) glycerol and 4 μL of a 

500 mM EDTA solution. The proteins were extracted with phenol: chloroform: 

isopropyl alcohol 25:24:1, and the DNA was precipitated with ethanol. The free 

ds-control was treated in a similar way, except that the reaction was quenched with a 

solution containing 1 M sodium acetate, 120 mM thiourea, 300 ug/mL salmon sperm 

DNA, and 60 mM EDTA at pH 6.5 and then ethanol-precipitated. 

Results 

Histone protein expression and purification 

Based on previous research, expression levels of histones H2A and H2B 

appear to be insensitive to the sequence variant being expressed, but histone H3 

expression levels vary a lot between different sequence variants or mutated genes. H4 

expression is sensitive to amino acid substitutions and could drop to an undetectable 
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level for certain point mutations. Typical reported yields for H2A, H2B, and H3 were 

50–80 mg of pure protein per liter of bacterial cell culture, while the yield for H4 was 

4–5 times lower (9). The pET-histone expression plasmids used in this research for 

the four histones were kindly provided by Professor Luger’s lab.  

After gel filtration chromatography, the A260/A280 of the histone proteins were 

between 1.4 to 1.7, indicating there was a significant amount of DNA contaminating 

the histone proteins, so we utilized a modified ion-exchange chromatography to 

further purify the histone protein from the protein-DNA complex as described in 

details in experimental section. Using this modified ion-exchange chromatography 

method, we could obtain highly pure histones H2A, H2B, H3 and H4, as 

characterized by SDS-PAGE and mass spectrometry (Figure 5.5 to 5.9 and Table 

5.2).  

Histone Octamer Assembly 

The protocol described in the experimental section works best for 6-15 mg of 

total protein, but for smaller amounts of protein the gel filtration column needs to be 

scaled down. After the gel filtration chromatography the absorbance at 276 nm was 

recorded for each fraction, which identified two big peaks and one small peak (Figure 

5.10). Fractions corresponding to each peak were analyzed on a 15% SDS-PAGE, in 

order to determine the purity and stoichiometry of each peak. As shown in Figure 

5.11, the first peak, with a larger molecular weight, was mainly made up with histone 

H3 and H4, however, for the second peak, as highlighted by the red box, we could 

clearly see the presence of all 4 kinds of histone proteins, indicating this peak contain 



 213 

the histone aggregate made up with the 4 histone proteins under a equimolar ratio of 

each other. 

Besides the SDS-PAGE, we also carried out a dynamic light scattering (DLS) 

measurement of each histone aggregate eluting from the gel filtration 

chromatography, to further identify the histone octamer. As shown in Figure 5.12 to 

5.13, and listed in Table 5.3, the size of the first peak of histone assembly after gel 

filtration chromatography exhibited a hydrodynamic diameter around 20 nm, which 

was about 3-fold larger than the ideal histone octamer assembly. However, the second 

peak exhibited a hydrodynamic diameter around 8.5 nm, which was almost the 

correct size of histone octamer assembly (7 nm).  Since the hydrodynamic diameter 

normally gives a slightly bigger value than the actual size, we believed that the 

second peak was the desired histone octamer. 

Histone Octamer Reconstitution with the 147-mer DNA Duplexes 

Specific DNA fragments of desired length or sequence can be obtained by a 

number of methods (10, 11) for assembly with the recombinant histone octamer to 

form a nucleosome core particle. We used an electrophoretic mobility shift assay 

(Figure 5.14), to monitor the assembly of the recombinant histone core particle with 

the 147-mer DNA duplex. Below a molar ratio of 1:1 of recombinant histone core 

particle to DNA, we could still see free 147-mer DNA duplex (Figure 5.14, Lane 1 to 

3). At a ratio of 3:1, we could see the disappearance of free 147-mer DNA duplex, 

and some histone-DNA complex which exhibited a slower electrophoretic mobility 

on the gel (Figure 5.14, Lane 4). At a ratio of 5:1, higher molecular aggregates 



 214 

appeared, as seen by a higher position on the gel, compared with that with a ratio of 

3:1 (Figure 5.14, Lane 5), when the amount of recombinant histone core particle 

increased even more, no bands were detected on the gel, except the material in the 

well, indicating a super high molecular aggregate formed during the reconstitution 

process (Figure 5.14, Lane 6).  

The reconstitution results proved that the recombinant histone core particle we 

prepared could successfully bind to the 147-mer DNA duplex containing a multiple 

repeat of nucleosome positioning sequence. When compared with the reconstitution 

of the nucleosome core particle isolated and purified from chicken blood cells (Figure 

4.7 & 4.8, Chapter 4), we could see differences. During the assembly of the 

recombinant histone core particle, the nucleosome core particle band was not 

uniformly sized, unlike what we saw using the chicken nucleosome core particle. 

When the amount of recombinant histone core particle increased, higher and higher 

molecular weight aggregates were observed to form during the reconstitution process. 

When we used the chicken nucleosome core particle, however, the nucleosome core 

particle band did not change even when we increased the amount of chicken 

nucleosome core particle, which means only one kind of reconstituted product formed. 

Perhaps this was because this was an exchange reaction between free DNA and a 

properly formed nucleosome core particle. When it comes to the recombinant histone 

core particle, probably one or more reconstituted products can form during the salt 

gradient dialysis process.  

Nucleosome rotational positisioning ability of 147-mer DNA on reconstituted histone 
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octamer. 

Since the 147-mer DNA duplex we used in chapter 4 has proved to have a 

strong nucleosome rotational positioning ability, we want to see whether this 

positioning ability would be observed with the recombinant histone octamer. Based 

on the hydroxyl radical foot-printing results shown in Figure 5.15, we plotted the 

intensity of the bands in each lane under different conditions as shown in Figure 5.16.  

From this figure we can see that although there was no uniform nucleosome core 

particle band, the 147-mer DNA duplex still exhibited strong nucleosome positioning 

on the recombinant histone core particle, as evidenced by the roughly 10-11 bp 

periodicity in the intensity of the hydroxyl cleavage bands. When the molecular ratio 

of recombinant NCP to DNA is 1:1, we could see a clear nucleosome pattern in 

Figure 5.16, although a part of the DNA sequence didn’t exhibit a perfect nucleosome 

positioning (highlighted in the red box). This imperfection was not observed in the 

previous study using the chicken nucleosome core particle. As we increased the ratio 

of recombinant NCP from 1:1 to 10:1, the nucleosome positioning ability did not 

change, which means although higher molecular weight DNA-histone aggregates 

formed as the ratio increased, the DNA still wrapped around the histone octamer with 

a defined rotational positioning. 

Discussion 

In previous chapters, we successfully utilized the nucleosome core particle 

isolated and purified from chicken blood cell to carry out the reconstitution 

experiment with 147-mer DNA duplexes. We were able to show that the nucleosome 
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positioning of the 147-mer DNA duplexes by hydroxyl radical foot-printing and 

detect differences in deamination rates. While were were able to obtain valuable 

information from these particles, we desired a more general system that would allow 

for the introduction of probes, and site specific histone modifications. So in this 

chapter, we aimed to prepare the nucleosome core particles using recombinant 

histone proteins, which would allow us to manipulate the nucleosome core particle at 

the amino acid level, and investigate the structure and function of nucleosome more 

deeply and broadly. 

Following the protocol developed in Professor Luger’s lab (9), we expressed 

the four histone proteins H2A, H2B, H3 and H4 in bacteria system, using the 

pET-histone expression vector. The histone proteins were purified to a high degree of 

purity by gel filtration chromatography and ion-exchange chromatography in their 

denatured form. After that, we refolded the histone octamer using the purified H2A, 

H2B, H3 and H4 histone proteins. The histone octamer turned out to have the 

expected size and composition, and so we went on to reconstitute the nucleosome 

core particle with the previously designed 147-mer DNA duplex. To characterize the 

nucleosome core particle we used electrophoretic shift assays and hydroxyl radical 

foot-printing experiments. 

Although we followed the procedure published before (9), we did see some 

variation in terms of the experiment outcome. During the gel filtration 

chromatography to purify the denatured histone proteins, we kept noticing the 

contamination of the protein sample with DNA, indicated by an A260/ A280 around 1.6, 
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which was not observed in the original experiment carried out by Luger’s lab using 

the same procedure. When we used the reported ion-exchange chromatography 

method, however, we couldn’t separate the protein from the protein-DNA mixture 

cleanly, so we modified the ion-exchange chromatography method. Our modification 

used a salt dilution step, which was proved to be highly effective in separating the 

histone proteins from the contaminating DNA. By taking advantage of this 

modification, we were able to purify the histone protein much better than the original 

reported method.  

In the complexation step of recombinant histone octamer and 147-mer DNA, 

we saw a clear evidence of binding between them, although the nucleosome particle 

formed was not as uniform as what we got previously using the chicken nucleosome 

core particle. One possible explanation is that the chicken nucleosome core particle 

was already wrapped by chicken nucleosomal DNA, which could help to stabilize the 

core particle as the mono-nucleosome at low salt concentration (50 mM NaCl). The 

recombinant histone octamer, however, did not contain DNA, and although it was 

stored at high salt concentration (2M NaCl), it may have formed aggregates during 

storage or during the salt gradient dialysis. The histone octamer aggregates might still 

be expected to bind to the 147-mer DNA duplex, but the bound complex might be 

non-uniform in terms of size and shape, exhibiting slower gel electrophoresis ability, 

as shown in Figure 5.14. Also these histone octamer aggregates could interfere with 

the nucleosome positioning ability of the 147-mer DNA duplex, since the octamer 

aggregate might have a bigger size and a different shape. The DNA might wrap in a 



 218 

different way compared with the histone mono octamer, which could lead to a 

different hydroxyl radical foot-printing results, as could be seen from Figure 5.15 and 

5.16, the red box indicate the partial footprinting results that was not consistent with 

the 10-11 bp periodicity of nucleosome pattern. When compared with the hydroxyl 

radical foot-printing of the chicken nucleosome core particle (Figure 5.17). We could 

see that the hydroxyl radical cleavage pattern was not as good as for the chicken 

nucleosome, as highlighted in the blue box in Figure 5.17, indicating the partial 

structure of the recombinant histone core particle around 50-60 bp DNA region (from 

5’ end) was probably different than the chicken histone core particle.  

Another possibility for the differences in the reconstitution and hydroxyl 

radical foot-printing assay could be due to difference in the sequences of the four 

histone proteins of chicken and xenopus. As shown from Table 5.4 to 5.7, there are a 

number of amino acid variants in the histone protein sequences. For example, there 

are 30 amino acid differences between the xenopus H2A sequence compared with 

that of the chicken (about 25% difference). There were 10 amino acid different in 

xenopus H2B compared with chicken H2B, while the sequence variations between 

H3 and H4 are relatively small between xenopus and chicken. These major sequence 

alterations could causes differences in the protein size, shape, hydrophobicity or 

charge. According to the crystal structure of the nucleosome, the amino acids from 76 

to 80 of the H2A loop region (L2) directly contact the 50-60 bp region in the 147-mer 

DNA duplex (4). The Arg78 of chicken H2A can insert its side chain into the minor 

groove of the DNA to help the binding and orientation of the DNA onto the histone 
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core surface. However, the same position on H2A from xenopus is replaced with Pro, 

which eliminates the direct interaction between the DNA and histone H2A. Also we 

can see the amino acids sequence in this loop region differ a lot between these two 

species, five out of the six are different, which probably cause a lot of structural 

change in this L2 loop region of H2A, hence changing the direct contact between the 

DNA and histone core surface at this area, making the corresponding histone octamer 

could differ a lot in the ability to complex with the 147-mer DNA duplex, leading to 

different binding products and foot-printing results. 

Conclusions 

We successfully expressed and purified all four histone proteins H2A, H2B, 

H3 and H4 utilizing a modification of a protocol described previously (9). By using 

the published procedure, we were able to assemble the recombinant histone octamer 

from these four pure histone proteins. Through the assembly process, we could wrap 

our synthetic 147-mer DNA duplex onto the histone octamer to form a nucleosome 

core particle. Although not completely the same as using nucleosome core particle 

from chicken blood cells, the hydroxyl radical foot-printing of the nucleosome core 

particle assembled from recombinant histone octamer did show a clear nucleosome 

positioning pattern with a 10-11 bp periodicity. The differences in size and 

footprinting between chicken nucleosome core particle and recombinant histone 

octamer could probably be due to several reasons: the size and shape of 

DNA-recombinant histone octamer aggregate was different from reconstituted 

chicken nucleosome core particle; the interactions between DNA and histone octamer 
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could be different due to variations in the amino acid sequence between these two 

species. 
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Table 5.1 Molecular Weights and Molar Extinction Coefficients (ε) for 

Full-Length and Trypsin Resistant Globular Domains of Histone Proteins. 

 

Full-length protein Globular domains 

Histones Mol. wt ε (cm/M), 276nm Amino Acid Mol. wt ε (cm/M), 276nm 

H2A 13,960 4050 19-118 11,862 4050 

H2B 13,774 6070 27-122 11,288 6070 

H3 15,273 4040 27-135 12,653 4040 

H4 11,236 5400 20-102 9,521 5400 
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Table 5.2 Calculated mass and experimental mass obtained for histone Proteins. 

 

Histones Calculated Mass Experimental Mass 

H2A 13,960 14,063 

H2B 13,774 13,574 

H3 15,273 15,405 

H4 11,236 11,304 



 224 

Table 5.3 DLS measurement of histone assembly fractions after gel filtration 

chromatography. 

 

Fraction No. Hydrodynamic diameter (nm) 

15 22 

16 21 

19 8.8 

20 8.5 

21 8.4 

 



 225 

Table 5.4 Sequence alignment of histone H2A between chicken and xenopus. 

 

 
H2A amino acid sequence alignment 

 
Chicken 
Xenopus 

 

 
MSGRGKQGGK ARAKAKSRSS RAGLQFPVGR VHRLLRKGNY 

      MSGRGKQGGK TRAKSKTRSS RAGLQFPVGR VHRLLRKGNY 

 
Chicken 
Xenopus 

 

 
AERVGAGAPV YLAAVLEYLT AEILELAGNA ARDNKKTRII 

       AERVGAGAPV YLAAVLEYLT AEILELAWER LPEITKRPVL 

 
Chicken 
Xenopus 

 
PRHLQLAIRN DEELNKLLGK VTIAQGGVLP NIQAVLLPKK TDSHKAKAK 
SPGTCNSLCN DEELNKLLGG VTIAQGGVLP NIQSVLLPKK TESSKSTKSK 
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Table 5.5 Sequence alignment of histone H2B between chicken and xenopus. 

 

 
H2B amino acid sequence alignment 

 
Chicken 
Xenopus 

 

 
MPEPAKSAPA PKKGSKKAVT KTQKKGDKKR KKSRKESYSI           
MPEPAKSAPA PKKGSKKAVT KTPKKDGKKR RKSRKESYAI 

 
Chicken 
Xenopus 

 

 
YVYKVLKQVH PDTGISSKAM GIMNSFVNDI EIRIAGEASR 
YVYKVMKQVH PDTGISSKAM GIMNSFVNDI FERIAGEASR 

 
Chicken 
Xenopus 

 
LAHYNKRSTI TSREIQTAVR LLLPGELAKH AVSEGTKAVT KYTSSK 
LAHYNKRSTI TSREIQTAVR LLLPGELAKH AVSEGTKAVT KYTSAK 
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Table 5.6 Sequence alignment of histone H3 between chicken and xenopus. 

 

 
H3 amino acid sequence alignment 

 
Chicken 
Xenopus 

 

 
MARTKQTARK STGGKAPRKQ LATKAARKSA PATGGVKKPH 
MARTKQTARK STGGKAPRKQ LATKAARKSA PATGGVKKPH 

 
Chicken 
Xenopus 

 

 
RYRPGTVALR EIRRYQKSTE LLIRKLPFQR LVREIAXDFK TDLRFQSSAV 
RYRPGTVALR EIRRYQKSTE LLIRKLPFQR LVREIAQDFK TDLRFQSSAV 

 
Chicken 
Xenopus 

 
MALQEASEAY LVGLFEDTNL CAIHAKRVTI MPKDIQLARR IRGERA 
MALQEASEAY LVGLFEDTNL CAIHAKRVTI MPKDIQLARR IRGERA 
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Table 5.7 Sequence alignment of histone H4 between chicken and xenopus. 

 

 
H4 amino acid sequence alignment 

 
Chicken 
Xenopus 

 

 
MSGRGKGGKG LGKGGAKRHR KVLRDNIQGI TKPAIRRLAR           
MSGRGKGGKG LGKGGAKRHR KVLRDNIQGI TKPAIRRLAR 

 
Chicken 
Xenopus 

 

 
RGGVKRISGL IYEETRGVLK VFLENVIRDA VTYTEHAKRK 
RGGVKRISGL IYEETRGVLK VFLENVIRDA VTYTEHAKRK 

 
Chicken 
Xenopus 

 
TVTAMDVVYA LKRQGRTLYG FGG 
TVTAMDVVYA LKRQGRTLYG FGG 
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Figure 5.1 Histone H2A elution profile from Sephacryl HR-200 gel-filtration 

chromatography. Both A260 and A280 were recorded. 
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Histone H2B Elution Profile
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Figure 5.2 Histone H2B elution profile from Sephacryl HR-200 gel-filtration 

chromatography. Both A260 and A280 were recorded. 
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Histone H3 elution profile
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Figure 5.3 Histone H3 elution profile from Sephacryl HR-200 gel-filtration 

chromatography. Both A260 and A280 were recorded. 
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Histone H4 elution profile
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Figure 5.4 Histone H4 elution profile from Sephacryl HR-200 gel-filtration 

chromatography. Both A260 and A280 were recorded. 
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Figure 5.5 Characterization of histone protein H2A by MALDI-TOP Mass 

Spectrometry. 
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Figure 5.6 Characterization of histone protein H2B by MALDI-TOP Mass 

Spectrometry. 



 235 

 

 

 

Figure 5.7 Characterization of histone protein H3 by MALDI-TOP Mass 

Spectrometry. 
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Figure 5.8 Characterization of histone protein H4 by MALDI-TOP Mass 

Spectrometry. 
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Figure 5.9 Characterization of purified histones H2A, H2B, H3 and H4 on 15% 

SDS-PAGE. 
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Histone octamer assembly elution profile
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Figure 5.10 Histone octamer assembly elution profile from Sephacryl HR-200 

gel-filtration chromatography.  
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Figure 5.11 Characterization of the purity and stoichiometry of histone assembly 

fractions on a 15% SDS-PAGE. 

 

 

 

 

 

 

 

 

 

 

 

 



 240 

 

0

10

20

30

0.1 1 10 100 1000 10000

N
um

be
r (

%
)

Size (d.nm)

Size Distribution by Number

Record 7: Assembly_15 1
 

 

 

0

10

20

30

0.1 1 10 100 1000 10000

N
um

be
r (

%
)

Size (d.nm)

Size Distribution by Number

Record 8: Assemly_16 1
 

 

Figure 5.12 DLS measurement of histone assembly fraction 15 & 16 after gel 

filtration chromatography. 
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Figure 5.13 DLS measurement of histone assembly fraction 19, 20 and 21 after 

gel filtration chromatography. 
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Figure 5.14 Reconstitution between recombinant nucleosome core particle (NCP) 

and 147-mer DNA duplex. The 147-mer DNA duplex (10nM) was incubated with 

increasing ratio of recombinant nucleosome core particles (NCP) to free DNA(lanes 

2-6: 0.5:1, 1:1, 3:1, 5:1, 10:1) incubated at 4°C for 30 mins, then first dialyzed against 

300 mL of 2 M KCl, 10 mM Tris-HCl, 1 mM DTT, pH 7.5, at 4°C, for 1 h, then 2.7 L 

dialysis buffer containing 10 mM Tris-HCl, 1 mM DTT, pH 7.5, was gradually added 

to the 300 mL original buffer through a pump at flow rate of 1.5-2.0 mL /min, which 

can slowly transfer the dialysis buffer into the original container used for the whole 

dialysis process. The pumping transfer and dialysis was carried out at 4°C, over a 

period of 36 h. The final salt concentration would be 0.2 M KCl. The reconstituted 

products were then electrophoresed on a native polyacrylamide gel (6% acrylamide, 

0.2% bisacrylamide in TBE). 
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Figure 5.15 Hydroxyl radical foot-printing of the reconstituted histone octamer. 

The histone octamer reconstituted with 5’-32P-labeled 147-mer duplex DNA was 

subjected to hydroxyl radical foot-printing and electrophoresed on a 7 M urea, 10% 

acrylamide, 0.3 % bisacrylamide denaturing gel. Lane 1: 25-bp DNA ladder, Lane 2, 

hydroxyl radical foot-printing of the free 147-mer DNA duplex; Lane 3, hydroxyl 

radical foot-printing of the reconstituted 147-mer DNA duplex under ratio of 

recombinant NCP to DNA at 0.5:1; Lane 4, hydroxyl radical foot-printing of the 

reconstituted 147-mer DNA duplex under ratio of recombinant NCP to DNA at 1:1; 
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Lane 5, hydroxyl radical foot-printing of the reconstituted 147-mer DNA duplex 

under ratio of recombinant NCP to DNA at 3:1; Lane 6, hydroxyl radical 

foot-printing of the reconstituted 147-mer DNA duplex under ratio of recombinant 

NCP to DNA at 5:1; lane 7, hydroxyl radical foot-printing of the reconstituted 

147-mer DNA duplex under ratio of recombinant NCP to DNA at 10:1. 
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Figure 5.16 Intensity plot of hydroxyl radical foot-printing of the reconstituted 

nucleosome core particles. 
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Figure 5.17 Intensity plot of hydroxyl radical foot-printing of the reconstituted 

nucleosome core particles, chicken erythrocyte vs xenopus oocyte. 
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Conclusions and Future Directions 

 

 

 

 

 

 

 

 

 

 

 



 248 

6.1 Conclusions 

In chapter 2, we reported the preparation and characterization of a cis-syn 

T=mCG CPD photoproduct in a 14-mer DNA oligodeoxynucleotide as a template for 

DNA polymerase bypass studies. This CPD site is a known hotspot for C methylation, 

CPD formation, and UV light-induced C-to-T mutations found in the p53 gene of 

basal and squamous cell cancers (1-4). By use of both single-hit and multiple-hit 

competitive nucleotide insertion assay, we showed that both yeast and human DNA 

polymerase η could synthesize past the 3’-mC in the T=mC CPD in a >99% error-free 

manner. The results are consistent with the highly water-exposed nature of the active 

site of the enzyme which would be expected to stabilize the amino tautomeric form of 

the mC, which might have led to its evolution (5). These results also demonstrate that 

the 3’-mC in the T=mC CPD is non-mutagenic when bypassed by polymerase η, but 

would become highly mutagenic after deamination to a T which would direct the 

insertion of an A. Thus our study provides strong evidence for the 

deamination-bypass mechanism for the origin of C to T transition mutations in UV 

light. 

Since in eukaryotic cells, genomic DNA is packaged into chromatin through 

the repeating structural unit of nucleosomes, it would be important to consider the 

effect of the nucleosome on photoproduct formation and deamination when trying to 

understand the molecular basis of UV-induced C→T mutations. In Chapter 3 we 

compared the photoreactivity and deamination rates of two T=mC CPDs in different 

rotational positions in a reconstituted nucleosome core particle. One site facing IN 
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and one facing OUT, and in Chapter 4 in all ten positions of a full helical turn. As a 

result of these studies, we found that that the rotational position of a TmCG site in a 

nucleosome greatly affects the photoproduct yield and deamination rate of the 

resulting CPD. Inside facing positions decrease the photoproduct yield and slowed 

down the deamination rate of the CPD, whereas outside facing sites enhanced the 

yield and the deamination rate. This discovery may explain at least in part the origin 

of UV mutation hotspots and coldspots in phased nucleosomes in living cells, with 

outside facing positions being hotspots, and inside facing inside positions being 

coldspots. Due to the dynamics of nucleosomes (6-9), deamination of CPDs may also 

be accelerated in unphased nucleosomes if the CPDs are in exchange with outside 

positions. The observation that the effect of rotational position on the deamination 

rate of an mC in a CPD flanked by a 3’-A is less than for G is consistent with our 

previous observation that the deamination rate is most sensitive to the C6 carbonyl 

group of a G. It suggests that the G is not optimally aligned in an inside position, but 

is in an outside position. We therefore expect that the greatest modulation of CPD 

deamination will be at sites flanked by a 3’-G. 

6.2 Future directions 

Although we have already measured the effect of rotational position on the mC 

deamination rate in a T=mC CPD around the dyad axis of a phased nucleosome , it 

remains to be investigated how the nucleosome would affect the deamination rate of 

CmCG CPDs, which are another hotspot for UV-induced mutations found in the p53 

gene of skin cancer cells. CmCG CPDs deaminate much more slowly than TmCG 
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CPDs in free DNA, so we expect that it might deaminate much faster if located in the 

facing outside regions in a phased nucleosome. There are also other types of DNA 

photoproducts, like (6-4) and Dewar photoproducts that could be formed at these 

hotspot mutation sites and could also deaminate. Nucleosome rotational positioning is 

also expected to affect the spontaneous deamination of C and mC and their more 

readily deaminated oxidized products, such as 5,6-dihydroxy cytosine. In addition to 

deamination, we could also investigate repair of these CPDs. It is known that CPD 

become much more susceptible to excision repair following deamination because a 

mismatch is produced that destabilizes the duplex, and so while outside facing 

positions may deaminate faster, they might also be repaired faster. 

Besides the effect of rotational position, there is also the effect of translational 

position to be investigated. So far we have focused on one particular translational 

position at the peudodyad axis, and know nothing of the rates of photoproduct 

formation, deamination and repair at other translational positions. Greenberg and 

coworkers have shown interesting effects of superhelix position 1.5 on strand 

cleavage at abasic sites, suggesting that this would be a good place to start (10). 

Beyond that, we can expand our insight to nucleosome arrays, not just a 

mononucleosome, and eventually mini-chromosome to investigate the effect of 

chromatin structure on DNA photomutagenesis. 

It will also be important to determine whether the effects observed in model 

systems in vitro can also be detected in chromatin structure in vivo. As shown in 

Appendix, we already developed a method to probe the nucleosome phasing along the 
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p53 gene in both HeLa cell and human primary keratinocytes, and found five CPD 

sites with different nucleosome positioning. Another member of the group has begun 

to measure the deamination rate of these five CPDs and compare the observed effects 

of nucleosome position with our in vitro data with nucleosome core particles. It will 

be extremely exciting if we can explain the origin of UV-induced C to T mutations 

hotspots in human primary keratinocytes by their position within a nucleosome. 

In chapter 5, we successfully expressed and purified all four histone proteins 

H2A, H2B, H3 and H4 utilizing a modified protocol described previously (11) and 

showed that we could assemble our synthetic 147-mer DNA duplex onto a histone 

octamer formed from these proteins.  Based on this approach, we could further 

investigate the effect of the nucleosome on deamination at an amino acid level by 

site-directed mutagenesis. We could also study the effect of post-translational 

modifications of histones (the “histone code”) which might also play a important role 

in carcinogenesis (12-15). 
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Appendix  

Nucleosomal positioning of DNA photoproduct sites along 

human p53 gene in living cells 

 

Introduction 

      In eukaryotic cells, genomic DNA is organized into chromatin, where 

nucleosomes and non-histone proteins can regulate many DNA-dependent processes 

(1). Under most circumstances the modulation is believed to be negative, i.e., 

nucleosome structures block access of DNA-binding or DNA-modifying proteins. 

Regulatory sequences are commonly found in nucleosome-free regions, and 

transcription factors are often excluded from sequences that are associated with 

nucleosomes (1, 2) although there are a few examples in which transcription factors 

can bind to DNA in a positioned nucleosome (3). 

      When cells are exposed to a DNA-damaging agent, i.e. UV light, the presence 

of nucleosomes could interfere with the formation, recognition, and repair of specific 

DNA lesions (4-6). The p53 tumor suppressor gene 53 gene is inactivated by bearing 

various mutation or deletion in many types of human malignancies (7-10). Most p53 

mutations are localized within the four evolutionarily conserved domains of the gene 

between exons 5-8 (8), and there are six mutational hot-spots located in this region 

that are found in many types of human cancer. They include codons 

175,245,248,249,273 and 282 (10). Five of these six p53 mutation hot-spot codons 

contain CpG dinucleotides (175,245,248,273, and 282). Previous work showed that 
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the distribution of mutations in the p53 gene in skin cancers is related to slow repair 

of DNA cyclobutane pyrimidine dimers (CPD) at specific sequence positions (11), 

with the repair rates for these UV-induced lesions highly sequence specific. In this 

case, it might be possible that these DNA mutagenesis along the p53 gene could be 

regulated by the particular chromatin or nucleosome structure at those mutational 

sites in p53 gene.  

      To determine the structure of the chromatin at a specific site we developed a 

hydroxyl radical foot-printing method to determine the phasing and positioning of 

nucleosome along the p53 gene in living cells. In this method, the short-lived 

hydroxyl radical was generated inside living cells from a fenton reagent that 

introduced by permeabilizing the cell membrane of HeLa cells and human primary 

keratinocytes. The hydroxyl radicals then cleave the genomic DNA at different 

chromosomal positions, depending on the relative accessibility of genomic DNA. To 

characterize and amplify the hydroxyl radical cleavage site along the p53 gene, we 

utilized ligation-mediation PCR with some modifications of the protocol described 

previously (12). Our foot-printing results were consistent with earlier data using 

DNase I footprinting showing that there was a clear nucleosome association pattern in 

exon 5 and 6 region along p53 gene (13), although the cell model we used were HeLa 

cells and human primary keratinocytes. In this appendix we describe our method for 

hydroxyl radical footprinting of DNA in vivo to determine phasing and positioning of 

nucleosomes along specific genes. 
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Experimental procedures 

Cell culture 

      HeLa cells or human primary keratinocytes were seeded at 1× 106 cells per 

100 mm cell culture plate, and were grown to approximately 80% confluence with 10 

mL DMEM media (for HeLa) or KSFM (for keratinocytes) after 48h. 

Cell membrane permeabilization 

      HeLa cells or human primary keratinocytes monolayers were washed twice 

with 10 mL PBS buffer, then permeabilized by treatment with 0.05% lysolecithin 

(type I; Sigma Chemical Co., St. Louis, MO) in permeabilization buffer containing 

150 mM sucrose, 80 mM KCl, 35 mM NaHEPES, pH 7.4, 5 mM K2HPO4, 5 mM 

MgCl2 and 0.5 mM CaC12 for 1 min at room temperature. After that, the 

permeabilization buffer was removed and the cells were washed once with 10 mL 

PBS buffer. 

Hydroxyl radical cleavage in living cells 

      After the cell membrane permeabilization, the HeLa cells or human primary 

keratinocytes were immediately subjected to hydroxyl radical cleavage with 50 mM 

sodium ascorbate, 5 mM Fe(NH4)2(SO4)2·6H2O + 10 mM EDTA and 0.6 % H2O2 that 

were added to 10 mL DMEM (HeLa) or KSFM (human primary keratinocyte) media 

in a 37°C incubator for 15 mins.  

Cell lysis, DNA isolation and purification 

      The HeLa or human primary keratinocyte cells were released from the cell 

culture plate by scraping directly into the corresponding growth media and transferred 

to a 15 mL conical tube and immediately cooled on ice before centrifugation at 4°C. 
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After centrifugation, the media was removed with a Pasteur pipette and the cell pellet 

was taken up in 0.9 mL lysis buffer containing 0.3 M NaCl, 10 mM EDTA and 10 

mM Tris-HCl pH 8.3, and the cell lysis started by the addition of 100 μL of 10% SDS. 

After incubating for a few minutes at room temperature, 50 μg proteinase K was 

added to the cell lysates and allowed to react with the cell lysates for 30 mins at 37°C 

at pH 8.4. This was followed by two phenol-chloroform-isopropanol extractions 

(saturated with 0.2 M NaCl and 30 mM Tris-HCl, pH 8.5). After that, sodium acetate 

(0.3 M), 20 mM Tris-HCl pH 8.3 and 200 μg of glycogen were added to the samples 

before the addition of 3 volumes of ethanol. The samples were then quickly frozen at 

-80°C for 20 mins, thawed on ice and centrifuged to pellet the DNA. The supernatant 

was removed and the pellet was resuspended in 300 μL of 0.3 M sodium acetate (with 

20 mM Tris-HCl, pH 8.3) and re-precipitated with ethanol. The pellets were then 

washed with 95% ethanol and air dried. Each pellet corresponding to one cell culture 

plate (about 40 μg DNA) was re-suspended in 400 μL of 50 mM NaCl and 

centrifuged at high speed to pellet any un-dissolved sample prior to further 

purification with the Qiagen PCR clean up kit to remove RNA. Three washes with the 

chaotropic salts at pH 5.5 were required to remove the RNA. After the final elution of 

the DNA in 10 mM Tris-HCl, pH 8.5 (100 μL per column), sodium acetate was added 

to 300 mM in addition to 200 μg glycogen before ethanol precipitation followed by 

an ethanol wash. After centrifugation, the DNA was air dried, re-suspended in 50 mM 

NaCl and then stored at -80°C. DNA samples were quantified by OD260 

measurements. 
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      Before the detection of hydroxyl radical cleavage by ligation-mediated PCR 

(LMPCR), the DNA fragments were run at 1% agarose gel to test the size range after 

the hydroxyl radical cleavage, as showed in Figure A.3, we could see that after the 

hydroxyl radical cleavage, both DNA in HeLa cells and human primary keratinocytes 

were fragmented down to size range between 200 bp to 1000 bp.  

Detection of hydroxyl radical cleavage site by ligation-mediated PCR (LMPCR) 

Blunt-end synthesis 

      Blunt end synthesis was carried out in a 30 μL reaction buffer mix containing 

2 μg DNA, 1X Vent polymerase mix and an additional 3 mM MgSO4 (both supplied 

by the manufacturer), 50mM NaCl, 0.01% gelatin, and 1 pmol of the P1 primer. After 

heating this mixture for 10 min, the samples were immediately chilled on ice-water 

bath, then 0.7 μL of dNTPs (25 mM each) was added to the samples before adding 

0.7 μL of the Vent polymerase. Samples were transferred to a 94°C water bath for 4 

min before transferring again to a 58°C water bath for the annealing-synthesis 

reactions. The annealing-synthesis reactions were continued for 40 min before 

transferring the samples to a 76°C water bath for 10 min to complete the synthesis 

reaction. The samples were then immediately put on an ice-water bath and 270 μL of 

cold 0.2 M NaCl was added to each sample and quickly mixed by vortexing. This was 

followed by the immediate addition of about 1 mL of phenol-chloroform-isopropanol.  

The samples were extracted by 5 min of inversions and then centrifuged to separate 

phases. Most of the bottom phenol layer was first removed by Pasteur pipette and the 

remaining phenol by a 200 μL Eppendorf tip. After a second centrifugation the top 
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aqueous layer was removed by a 200 μL tip. 3M sodium acetate was added to the 

sample to a final concentration of 0.3 M, along with 150 μg glycogen, followed by 

addition of three volumes of ethanol for DNA precipitation. After centrifugation, the 

pellet was washed, air dried and then taken up in 45 μL of 50 mM NaCl.  

Ligation 

      To the 45 μL sample incubating on ice-water batch, 5.6 μL of 10X T4 DNA 

ligase mix (from manufacturer) and 6.25 μL of the P4/P5 duplex (100 pmoles in 50 

mM NaCl) were added for ligation. The P4/P5 duplex was stored frozen, thawed 

before use in a water bath at 14°C and then kept on ice to avoid duplex dissociation 

before addition to the cold reaction mix. 2 μL of T4 DNA ligase was added to each 

sample and the reaction was incubated at 14°C overnight. After ligation, the samples 

were heated at 100°C for ten minutes, ethanol precipitated with sodium acetate 

omitting the glycogen, washed with ethanol. The pellet was air dried and taken up in 

50ul dd-water. 

PCR 

      50 μL of a PCR mix containing 100 mM NaCl, 2X PCR mix, 0.02% gelatin, 6 

mM MgSO4, 10 pmoles of P2 and P4 primers was added to each 50 μL DNA sample 

and heated at 100°C for 5 min. After that, the samples were immediately chilled on 

ice-water bath, and then 0.9 μL of dNTPs (25 mM each) was added before adding 

1μL Vent polymerase. Samples were then transferred to PCR tubes and kept on ice 

before incubation at 95°C in a water bath next to the PCR cycler. After 3 min in the 

95°C water bath, the samples were transferred to the PCR cycler set at 95°C for 8 min. 
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One sample at a time was transferred quickly to avoid cooling down of the sample. 

Samples were amplified by 25 cycles with settings of 95°C for 2 min, 65°C for 2 min 

and 76°C for 5min before a single 76°C cycle set at 13 min. Samples were removed 

after 10 min from this final cycle one at a time and placed directly into a rack on ice 

water to cool the samples quickly. The PCR samples were centrifuged briefly to 

remove condensation from the caps at 4°C. Samples were placed into the rotor 

containing the 1.5 mL tubes with the caps removed. These 1.5 mL tubes each 

contained 600 μL of ice cold water to insure no heating of the samples. After 

centrifugation the samples were transfer to ice and then transferred again to 1.5 mL 

Eppendorf tubes to prepare the labeling mix. 

End-Labeling 

      Toward the labeling mix, 0.7 μL dNTPs (25mM each), 0.7 Vent polymerase 

and 2 μL (5 pmol) of the 5’-32P-labeled P3 primer were added in order. Samples were 

briefly mixed after each addition. After completion, each sample was transferred back 

into new PCR tubes and kept on ice. The rack containing the PCR tubes was put 

quickly into a 96°C water bath next to the PCR instrument for 3 min and then each 

sample transferred into the PCR instrument set at 96°C for 8 min. Two linear PCR 

cycles were done with settings at 96°C for 4 min, 71°C for 2 min and 76°C for 10 

min. This was followed by a single cycle at 76°C set for 10 min. Samples were again 

removed one at a time into a rack on ice water after 2 min and centrifuged again in 

Eppendorf tubes containing ice cold water. Samples were then transferred to a tube 

containing 200 μL of 0.2 M NaCl and 1% SDS at room temperature, mixed by vortex 
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and incubated for 5 min before phenol-chloroform-isopropanol extraction. After 

extraction for 5 min, the samples were centrifuged and the bottom phenol layer 

removed by Pasteur pipette and finally by a 200 μL pipette tip. After a second 

centrifugation, the top 32P-labeled sample layer was removed by a 200 μL tip and 

transferred to a tube containing 150 μg of glycogen and 40 μL of 3 M sodium acetate. 

3 volumes of ethanol were added for precipitation. After freezing the sample on dry 

ice, the samples were brought to room temperature in a water bath. Centrifugation 

was at 18°C to avoid some precipitation of residual SDS. This was followed by an 

ethanol wash. Pellets were air-dried and then resuspended in 20 μL formamide 

containing the xylene-cyanol dye maker. Resuspension of the DNA pellet was a little 

problematic. The samples were heated for one min and mixed manually for four 

separate times before a final 10min heating prior to electrophoresis. 

      After heating, the samples were loaded onto a 10% denaturing PAGE 

containing TBE and 7 M urea. The gel was aged briefly (1 h) and pre-run 45 min at 

1100 V to reach an external temperature of about 50°C before loading the sample. 

After running at 1100 V for 2 h, the voltage was increased to 1300 V to maintain 

temperature. 

Results 

      We chose HeLa cells and human primary keratinocytes as our cell model, and 

developed the hydroxyl radical foot-printing method by the fenton reaction in these 

living cells. As shown in Figure A.1, the cells were first permeabilized by 

lysolecithins, which are phospholipids that can penetrate and become incorporated 
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into the cell membrane, and help permeabilize the both the cellular and nuclear 

membranes. The hydroxyl radical was generated by the reaction between sodium 

ascorbate, Fe (NH4)2(SO4)2·6H2O+ EDTA, and H2O2. Due to the short life-time of 

hydroxyl radical, the three reagents were freshly made right after the membrane 

permeabilization, and quickly mixed into the growth media within 5 s. After the 

hydroxyl radical cleavage, the cells were lysed, and genomic DNA was collected and 

identified by LMPCR. 

      The hydroxyl radical cleavage generated DNA fragments with size ranges 

between 200 bp to 1000 bp, as shown in Figure A.3. LMPCR was carried out on the 

DNA fragments after hydroxyl radical cleavage in both cell types, together with 

human genomic DNA after Maxam-Gilbert reaction to generate the G ladder along 

the p53 gene sequence. As shown in Figure A.4, the hydroxyl radical cleavage 

patterns in HeLa cells and human primary keratinocytes were almost the same, 

indicating that this part of p53 gene (Exon 5) had the same nucleosome positioning 

ability in both HeLa cell and human primary keratinocytes.  

      To detect the specific nucleosome positioning ability of different DNA 

photoproducts along p53 gene in HeLa cells, we aligned the LMPCR results of DNA 

photoproduct mapping, DMS mapping together with the hydroxyl radical 

foot-printing on one sequencing gel, as shown in Figure A.5. The partial sequence in 

Exon 5 and Exon 6 along p53 showed a clear nucleosome pattern, with roughly 10-11 

bp as a periodicity. The blue arrow indicates the maximum clevage intensity of each 

10-11 bp nucleosome turn along the DNA. As for the three T=mC DNA 
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photoproducts, the first one, CT=mCG, which was located at G46 position, exhibited 

an inside facing nucleosome position, as highlighted by the red arrow. The second 

T=mC DNA photoproduct, GT=mCG, which was located at G16 position, however, 

exhibited an outside facing nucleosome position. The last T=mC DNA photoproduct, 

AT=mCG, which was located at G12 position, unlike the other two photoproducts, 

exhibited a nucleosome positioning ability between inside and outside, leaning more 

towards out. So basically, we had three T=mC DNA photoproducts in three different 

nucleosome positions. When it comes to other DNA photoproducts, we could also 

find that one T=C DNA photoproduct, TC=TC, which was located between G15 and 

G16, exhibited an inside facing position, as highlighted by the red arrow, and there 

was another C=T DNA photoproduct, CT=CA, located between G13 and G12, that 

exhibited an outside facing position. These five different DNA photoproducts 

exhibited specific nucleosome positioning abilities that are summarized in Table A.2.  

These mapping results will allow us to interpret the results of LMPCR-based 

deamination studies being carried out by Vincent Cannistraro. 
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Table A.1 Primer sequences used for ligation-mediated PCR (LMPCR) 

 

Primers used in LMPCR 

ODN Definition Sequence 

P1 upstream primer for blunt end 

synthesis 

GCG CCA TGG CCA TCT ACA AG 

P2 specific amplification primer in PCR CAG TCA CAG CAC ATG ACG GAG GTT GTG AG 

P3  p32 end- labeling primer GTC ACA GCA CAT GAC GGA GGT TGT GAG GCG C 

P4 nonspecific primer ligated to the 

target phosphate at 5’ end 

GCG GTG ACC CGG GAG ATC TGA ATT C 

P5 short sequence to form heat labile 

duplex needed for blunt end ligation 

GAA TTC AGA TCT CC 
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Table A.2 Position of CPD photoproducts that were mapped along the p53 gene 

in HeLa cells and their specific nucleosome positioning. 

 

DNA photoproduct Nucleosome positioning ability 

CT=mCG In 

GT=mCG Out 

AT=mCG Intermediate-out 

TC=TC In 

CT=CA Out 
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Figure A.1 Strategy for hydroxyl radical foot-printing in HeLa cells and human 

primary keratinocytes. 
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Figure A.2 Flow chart of the ligation-mediated PCR protocol 
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Figure A.3 Testing the efficiency of hydroxyl radical cleavage of the DNA in 

HeLa cells and human primary keratinocytes. Lane 1: PCR marker. Lane 2: 

control HeLa cell DNA after cell membrane permeabilization, but no hydroxyl 

radical cleavage. Lane 3: control human primary keratinocytes DNA after cell 

membrane permeabilization, but hydroxyl radical cleavage. Lane 4: DNA fragment 

after hydroxyl radical cleavage in HeLa cells. Lane 5: DNA fragment after hydroxyl 

radical cleavage in human primary keratinocytes. 
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Figure A.4 Hydroxyl radical foot-printing of exon 5 along p53 gene in HeLa cells 

and human primary keratinocytes. Lane 1: hydroxyl radical foot-printing of exon 5 

along p53 gene in HeLa cells. Lane 2: hydroxyl radical foot-printing of exon 5 along 

p53 gene in human primary keratinocytes.  Lane 3: DMS mapping of the Gs along 

the p53 gene using human genomic DNA. On top is the DNA sequence of exon 5 that 

was amplified by LMPCR. 
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Figure A.5 Hydroxyl radical foot-printing of exon 5 and exon 6 of the p53 gene 

in HeLa cells.* Lane 1: T4 endo V mapping of CPD photoproduct sites in 

UVB-irradiated HeLa cells. Lan2: DMS mapping of G’s along p53 gene using human 

genomic DNA. Lane 3: hydroxyl radical foot-printing of exon 5 and exon 6 along the 

p53 gene in HeLa cells. Lane 4: cleavage band intensity plot of lane 3. On top is the 

DNA sequence of exon 5 along p53 gene that was amplified by LMPCR. 

 

 

 

* DNA photoproduct mapping was carried out by Dr. Vincent Cannistraro. 
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